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Chapter 1

Introduction

3D printing, or Additive Manufacturing steadily gained popularity at homes, allowing
makers to rapidly prototype and create their own products. According to Google
Trends, the adoption by the home users keep increasing, leading to more and more
manufacturers entering home 3d printing market.

The 3D printing process itself requires supervision, to ensure that the operated ma-
chine is calibrated and no printing failures occur. Depending on the object size and
the process parameters, the manufacturing process can take from a couple of minutes
to a couple of hours and days, creating a need to oversee the print process, as some
of the 3d printing errors may lead to a complete failure, resulting in lost time, energy
and resources or even worse, a potential fire hazard.

The calibration process itself may be cumbersome, requiring the operator to dial in
material parameters, which does not necessarily guarantee, that a resulting printout
will be flaw-free; visual defects may still occur, which depending printed object’s
purpose may introduce an additional post-processing step and if the flaw is severe
enough, the object will have to be re-printed, leading to material waste.

A potential solution would be to use Computer Vision, to solve the issue of automatic
print supervision, flaw detection and flaw severity assessment, potentially relieving
the user from the need of constant manufacturing process supervision and simplifying
the calibration process, as some of the printer settings could be adjusted on-the-
fly.

Commercial solution exist to solve the supervision problem, but those solutions lack
the ability to assess whether a flaw is severe enough to justify re-printing the manu-
factured product.

This master’s thesis aim to find out what defects are occurring in 3d printing, what

1



1.1. Initial problem statement 2

have been done to detect those flaws and extend upon the flaw detection task, by
introducing automatic assessment of the detected flaw.

1.1 Initial problem statement

The following project statement have been formed, based on the flaw detection and
supervision problem:
What are the 3d printing parameters, 3d printing defects and how can these defects
could be detected and assessed?



Chapter 2

Problem Analysis

This chapter aims to analyse what is additive manufacturing, what defects occur
during the manufacturing process, establish what are the current state of defect
detection in the context of additive manufacturing. Furthermore, defect severity
have been investigated, in order to find out why it is important, not only detect the
defects but also assess their severity.

2.1 Additive manufacturing

Additive manufacturing, or better known as 3D printing is the process of creating
physical objects from a geometrical representation by successive addition of material.
3D printing has its application in broad industry sectors, ranging from medical ap-
plications, jewellery, construction, ending on rapid prototyping and design [1].

In additive manufacturing a broad range of materials are being used. Many ther-
moplastics, ceramics, resins are being used in 3d printing [1]. With open source
projects like RepRap and companies creating affordable 3d printers, printing have
been adopted by average consumers, enabling them to experiment with 3d printing
and manufacture items at home [2] [3].

At homes, two types of 3D printing are typically used - Fused Deposition Modeling
(FDM) or Masked Sterelitography (M-SLA) in cojuntion with so-called slicer, which
divides and prepares a 3d model into layers and generates so-called Gcode.

2.1.1 Fused deposition modeling

Fused deposition modeling is a 3d printing process that uses a continuous filament
of a thermoplastic material and deposits it on a (usually) heated printing bed using
an extruder [1] [4]. The thermoplastic is heated up to a temperature that allows

3
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the plastic to be in semi-liquid state, enabling extrusion through the nozzle. A
printing head moves around the printing area and lays the material on a layer-by-
layer basis.

Figure 2.1: Printing head schematic [4]

Figure 2.1 represents an example of a 3D printing head. The extruder pushes filament
to the hot-end, to be finally laid on the printing bed.

A wide range of filaments are offered to consumers such as acrylonitrile butadiene
styrene (ABS), polylactic acid (PLA), polyethylene terephthalate glycol (PETG),
polyethylene terephthalate (PET), high-impact polystyrene (HIPS), thermoplastic
polyurethane (TPU) and aliphatic polyamides (Nylon). Physical properties of the
print depend on what material is being used. For example - PLA plastic is easier to
print with, but is less durable than ABS or PET/PETG and is susceptible to heat
[5].

The 3D model has to be processed in a slicer software. A 3D model is being imported
to the software and after adjusting parameters specific to the printing hardware and
to the used filament, a machine code called GCode is being generated. GCode con-
tains all instructions directed to the printer like axis movements, material extrusion
or temperature settings of the printing bed (if heated) and the hotend [4].
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Figure 2.2: A 3D model being sliced in Ultimaker Cura, in order to process and prepare the model
for a production job.

Figure 2.2 showcases a 3D model being sliced and prepared for 3D printing in Ulti-
maker Cura software. It can be seen how the model is divided into layers and infill.
Infill is needed for structural integrity of the model and its fill parameter can be
adjusted depending on specific needs.

2.1.2 Mask stereolitography

Mask stereolitography (MSLA) is a 3d printing process that uses a UV resin instead
of thermoplastics. Instead of a printing head and movable axes, a lifting platform, a
resin container and UV light source is needed. Each layer is being converted into a
2D mask image and is projected onto the resin to cure it [6].
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Figure 2.3: MSLA process visualisation [7].

On figure 2.3 the light is being shined onto the resin vat from the bottom. In MSLA
an LCD screen is being used to mask areas, where the UV light will come through
to the vat and solidify the resin. The lifting platform "peels" the layer from the vat
and the process is being repeated until the print is finished [6].

Similarly to the FDM process, slicer software is being used to prepare and slice the
print, however the print parameters are different.
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Figure 2.4: A 3d model being prepared for 3d printing in Lychee Slicer

Figure 2.4 shows a model being prepared for a resin print, with visible support
material.

2.2 Slicing process

In order to print an object on a 3D printer, so-called slicing process has to be per-
formed via piece of software called a slicer. A slicer has two jobs to perform: divide
the objects into layers, prepare object to be printed and generate GCode, which con-
trols 3d printer movements and the extrusion process. Several software distributions
like Slic3r, Ultimaker Cura, Lichee Slicer help with slicing and GCode generation,
offering printer parameter adjustment and toolpath previews.

2.2.1 FDM 3D printing parameters

Some printing parameters are crucial for a print to be successful and limit amount of
defects occurring in the resulting print. Based on [8] [9] [10], some of the parameters
include:

1. Hotend temperature - temperature at which the printer will print. Too
low temperature may lead to layer adhesion issues and extrusion issues This
parameter is set depending on what filament is being used, it varies between
filament brands, thermoplastic types and even filament colors.
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2. Print bed temperature - temperature to which a heated print bed will be
heated. Correct temperature will improve first layer adhesion. Incorrect print
bed temperature may lead to print defects like warping.

3. Print speed - controls how fast will 3D printer move its axes while printing.
Print speeds have to be calibrated per machine and per filament basis. Printing
too fast will lead to quality issues like ringing.

4. Retraction, Retraction distance, Retraction Speed - used to combat
stringing. Retraction distance controls "how much" will the printer pull the
filament back. Retraction speed controls the rate at which the filament will be
pulled back.

5. Layer height - controls the height of one layer. In general, the smaller layer
height, the finer details can be printed, at the expense of longer print times.
However, the layer height has to match nozzle diameter. It is recommended
that the layer height should not exceed 80% of the nozzle diameter , otherwise
it may lead to issues with inter-layer adhesion.

6. Infill type and infill density - infill fills the hollow space in the print and can
be adjusted to modify prints’ structural strength, or even flexibility if printing
with elastic materials like TPU. Higher percentage mean that the print will be
less "empty" inside, resulting in a stronger and heavier object.

2.2.1.1 GCode

GCode is a programming language used to control the 3D printer itself, generated
by the slicer software, consisting of commands that control axes movement, speeds
and at which temperatures 3d printer should operate [11].

Figure 2.5: Code listing presenting an example retraction.

Listing 2.5 sets necessary parameters for a retraction action (M207 command), per-
forms the retraction (G10 command), performs a linear move (G1 command) and
"unretracts" filament back to nozzle [11]. (G11 command) GCode syntax usually
consist of the code itself and the code parameters, separated by spaces [11].

Parameters in Gcode are configured via slicer software, for example in previously
mentioned Ultimaker Cura.
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Figure 2.6: Retraction settings set in slicer directly correspond to the Gcode M207 command.

Because GCode is a text format, it is possible to change the parameters after slicing or
even during printing, as commands are being sent one-by-one, enabling the possibility
to either inject GCode or modify commands on-the-fly, based on some kind of other
input. Such a property may be exploited for automatic print calibration, as users
have to calibrate their printers manually before printing using a specially designed
object to test printer capabilities like dimensional accuracy, extruder calibration, first
layer adhesion, nozzle heater PID controller or retraction settings [12].

2.3 Calibration

Calibrating the 3d printer minimizes the chance of a defect occurring and increases
printout quality. Several components can be calibrated in a 3d printer, requiring
manual intervention from the user. The printer’s bed has to be leveled, ensuring
good print adhesion to the platform, so-called E-steps have to be correctly set to
make sure, that the extruder is serves the correct amount of filament to the nozzle
[13]. Thermoplastic filament settings like its printing temperature (specified by the
filament producer) and build platform temperature have to be set correctly in the
slicer software.
In order to calibrate the 3d printer several specially designed object have been cre-
ated. Which model is ought to be used, depends on the 3d printer’s component being
calibrated.

2.4 Selected FDM 3D printing defects

This section will present some of FDM 3D printing faults and why they occur.

2.4.1 Warping

Warping is a defect where a part of the print loses adhesion to the printing bed,
curling upwards. If a part of print gets abruptly cooled, the plastic will shrink and
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warping may occur. The susceptibility to this issue depends greatly on the material
used and the printing environment. For example ABS is much more susceptible to
this issue, as it shrinks more than PLA [14], if abruptly cooled. The issue can be
mitigated by implementing a 3D printing enclosure over the printer, to stabilize the
air temperature around the print [8].

Figure 2.7: A picture demonstrating warping defect. [14]

Figure 2.7 demonstrates how the corners of print lift up from the printing bed, due
to abrupt cooling of the printed object [8].

2.4.2 Stringing

Stringing is a defect, in which a small strands of plastic are left on the printed
model. Typically the issue occurs, when plastic oozes out of the nozzle (as the
material is in semi-liquid state) while the printing head moves from one place to a
new location.

Figure 2.8: Image showcasing stringing defect [8].
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Figure 2.8 presents how string looks alike on a print. To prevent stringing, retraction
setting in the slicer has to be enabled [8]. However, the retraction setting has to be
tuned depending on what filament type is used and how the filament was stored.
Plastic filaments are hygroscopic, absorbing surrounding moisture [15].
Furthermore, a humid filament may lose its properties [16] and may be prone to
stringing, due to water absorbed by the filament boiling in the nozzle [17] [18],
especially if PET-G or ASA filaments are being used [19].
Print speed has influence on stringing. Printing too fast may lead to stringing, as the
plastic may have not enough time to solidify and drag along the nozzle, as it moves
[8] [20].

2.4.3 Layer Separation and Splitting

Layer splitting occurs when inter-layer lamination is lost. Similarly to warping, the
issue may occur when a part of print is being cooled, causing plastic to shrink [21]
and when invalid print settings like nozzle diameter/layer height are configured [8].
Resulting print has "cracks" between layers, weakening printed objects’ strength and
is a visual defect.

Figure 2.9: Picture showing how layer separation influences a print [21]

To avoid the issue presented in 2.9, a heated enclosure and a heated printing bed is
recommended [8] [21]. Making sure that the layer height and printing nozzle diameter
is set correctly, as mentioned in section 2.2.1.

2.4.4 Spaghetti

Spaghetti happens when the printer starts to print "in air" and the extruded plastic
ends up curling up on the nozzle, instead of being extruded onto the printing bed and
the produced item. In result, if print is left for long enough a "spaghetti" of extruded
filament is being produced, usually meaning that the print has to be interrupted and



2.4. Selected FDM 3D printing defects 12

started from the beginning. The issue may occur because the print may detach from
the printing bed or there is an error in the sliced object [22].

Figure 2.10: A printed object that has spaghetti issue present [22].

2.4.5 Blobs and zits

Blobs and zits are marks and ridges on the outer walls of the print. This issue may
be caused by too frequent, too small or too slow retractions in the print (causing the
plastic to ooze from the nozzle), inconsistent extrusion caused by worn-out bowden
tube (if the 3d printer has a bowden extruder, instead of direct-drive one), too high
hot-end temperature and improper cooling, leading the melted material to "slide off",
forming a zit when next layer is being laid.

Figure 2.11: Printed objects having blobs and zits on the walls [5]
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2.5 Defect severity

3D printing is a process that may lead to defects, as described in 2.4 due to insuffi-
cient machine maintenance, incorrect filament storage or other machine and printing
environment issues.

Depending on what has fault occurred, a print may need an additional post-processing
step to remove excess plastic, like in the case of stringing defect or may needed to
be reprinted if the surface of the print cracked, which is the case in inter-layer lami-
nation loss. All of this leads to time, material and energy losses, as the print has to
be manually processed or reprinted, for the print to fulfil its use.

Material loss costs rise more, as the production is being scaled and specialized fil-
aments are being used to print. For example, a solid-color PLA filament can be
purchased for as low as 20 EUR per 1kg filament spool and filaments with metal
dust embedded in the filament may cost from 95 EUR per 1kg spool, meaning that
a job restart or even excess material extrusion will lead to increased costs of printing
and in a commercial setting lead to income loss.

Energy costs have to be taken into considerations as well. A 3d printer draws con-
siderable amounts of powering the hotend and printing bed, if heated. For instance,
Creality Ender 3 V3 SE FDM printer is rated for 350W [23] and the assumed energy
price is 0.43 EUR per kWh (3.33 kr) [24], then one hour of printing will cost 0.15
EUR, excluding initial nozzle and printing bed heating process. A print that will
take 4 hours will cost 0.60 EUR in just energy costs. Having multiple printers will
increase the costs even further.

The presented costs necessitate print supervision, but also automated early print
job cancellation, via defect severity assessment, to at least limit energy and material
losses. However, a defect may not be severe enough, to justify job cancellation, since
a defect may not influence the produced objects’ functionality enough.

To further investigate 3D printing defects’ severity, several test prints and defect
images have been collected, differentiate between defect severity levels.
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Figure 2.12: Different severity levels of said stringing defect, produced by changing retraction
settings, printed by the author.

Figure 2.12 demonstrate different levels of stringing defect, starting from left: "high",
"medium", "low". Despite the fact that retraction was configured, some stringing has
prevailed. In all cases some material has to be trimmed off. The defect itself does
not influence model’s functionality, regardless of severity.

Warping described in 2.4 may lead to print failure, meaning that the print will have
to be reprinted with changed print parameters, to ensure that the problem will not
rise up again.

Figure 2.13: Different levels of warping, caused by insufficient print bed heating. Image sources
from left: [25], [26], [27]

Figure 2.13 demonstrate different warping levels, from left: "high", "medium" and
"low". Different severity levels are produced by either insufficient bed heating, lack of
machine thermal insulation via an enclosure if printing with warping-prone filaments
like ABS and poor first layer adhesion to the print bed. Depending on print intended
use and defect severity, the print may be used or will have to be reprinted, with the
correct settings and/or environment.
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Blobs and zits defect can show up with different severity levels as well, caused by
intermittent overextrusion during printing.

Figure 2.14: Different levels of blobs defect on the surface of print, due to overextrusion. Image
sources from left: [28], [29], [30]

Figure 2.14 present varying levels of the blobs and zits defect, from left: "high",
"medium" and "low". Blobs and zits usually are a visual defect, introducing an
additional post-processing step after printing. The excess material has to be sanded
off, if a smoother surface is desired.

Spaghetti defect on the other hand in many cases mean that the print ended up in
a total failure, due to the other issue. For example:

Figure 2.15: Spaghetti defect, which occurred due to loss of bed adhesion. [31]

Here, on figure 2.15, the model has detached during the printing and ended up in a
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spaghetti defect. That would be a total loss, the print is not finished and necessitate
a reprint.

A defect could be assessed incorrectly, either by underestimating its severity or by
overestimating its severity. An underestimation may have detrimental effects on the
print job, as the defect may be more severe in reality and might need to be restarted,
to avoid wasting energy and material. On the other hand, overestimation may stop
more prints and save material, at the expense of being overactive and stopping print
jobs that didn’t need it, leading to material and energy again. One solution would
be to inform the printer operator, if a severity threshold will be reached and the
operator would make the decision if the print will be stopped, or not.

Stringing defect have been chosen as the defect for the project, due to fact that it
may appear without easily visible reason. Wrong filament storage, wrong printing
process settings may lead to stringing [17] [18]. Consistent appearance of the said
defect may force the machines’ operator to verify plastic filament quality, machines’
calibration and 3D printing jobs’ settings. Despite stringing being a visual defect, it
takes time to remove excess material with sharp tools, which in effect if the operator
is not careful enough, will lead to the printed objects’ damage. As effect, excess
plastic waste may be produced.

2.6 Related Works

The following section presents past work on the topic of flaw detection in 3d print-
ing.

2.6.1 Scientific research

Some research have been done on defect detection in 3d printing. In particular,
Machine Learning and Deep Learning methods find use in defect detection. Solutions
proposed are not only vision-based, but also sensor-based [32] [33]. Deep Learning-
based methods involve the use of CNN-based models to detect various issues with
3d prints like stringing [34] or other printout issues [35].

Deep learning finds its use in other 3d printing processes. In, [36] a CNN based flaw
detector is employed, by analyzing a thermal image from laser-powder bed fusion
(LPB-F) process. The network has accuracy of 97%. However, the model is trained
to detect flaws specific to the LPB-F process, being radically different from the FDM
process, used in this project.

Classical computer vision is being utilized as well. Study [37] compares a 3d-scanned
model of a resulting print against a CAD model, by computing the distance be-
tween scanned vertex and the ground truth vertex, yielding possible deviations in
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the printout surface. The method is able to classify if a underfill/underextrusion or
overfill/overextrusion surface defect is being detected.

In [38], the project compares workpiece simulation against a picture from calibrated
camera. The system continuously captures the work piece as it is being printed and
compares it against the simulated image. Both the capture and simulation is being
segmented, so the shape, size and infill pattern can be compared. In [34], an attempt
to detect honeycomb infill defects, by creating a dataset that contains both defected
and flawless top-down pictures of infill, then a CNN-based classifier is being trained
that classifies if the infill has flaws or not on layer-by-layer basis. In [35], a dataset
of 1166 images in the training set and 498 images in the test set, captured by a CCD
camera, have been created. The processed pictures in the study are in grayscale,
which decreases the image size, at the expense of losing color information, which
may be useful. Additionally, the study labeled their data as 0 and 1, where 0 means
that the print is without defects and 1 meaning that the print contains defects.

An attention-based method have been attempted to solve the problem of flaw detec-
tion in 3D printing. The method involves the use of attention mechanism to predict
printing parameters on the fly. The model is able to assign one of three labels ("low",
"good", "high") to four of 3d printing parameters - flow rate, lateral speed (X and Y
axes print speed), z offset and the hotend/printing nozzle temp and is able to adjust
the parameters in GCode on-the-fly. The created dataset contains 1.2m images of
the nozzle region, which showcases how the plastic is being extruded. Each snapshot
is automatically labeled by the current printing parameters: actual and target tem-
peratures, flow rate, lateral speed and the z offset parameters [39]. This approach,
hewer does only predict and estimate the ideal parameters, it does not perform the
detection of a flaw, but actively tries to prevent it from happening, by ensuring that
ideal print parameters are being used.

Image quality metrics based methods are being used as a way to asses if a 3d print is of
a good quality. In [40], the paper describes the application of the SSIM (Structural
Similarity), CW-SSIM (Complex-Wavelet SSIM) and STSIM (Structural Texture
Similarity) metrics in the context of 3d printing quality assessment, by assuming
that a high-quality print will have a homogeneous surface, meaning that parts of the
print will be self-similar. Each print picture (taken by a high-resolution camera or
scanned using a flat-bed scanner) is divided into 4 and 16 blocks. For each block the
metrics have been calculated, yielding a 4x4 or 16x16 matrix of scores. The study
concluded that the use of SSIM metric on its own is not sufficient, but STSIM use for
scanned images allows to distinguish between a good quality print and a low quality
one, if a division into 16 blocks is assumed.
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2.6.2 Open source and commercial solutions

Commercial solutions and open source solutions dedicated for 3d printing flaws are
in active development.
First solution found is QuinlyVision by 3dQue. According to the company’s docu-
mentation, it’s an object detection model which is able to detect 5 FDM 3D printing
flaws: Spaghetti, Underextrusion, Warping, Stringing and first layer adhesion issues
[41]. The software seem to be able to run on a Raspberry Pi 4, meaning that either
the used model is quantized or runs on the cloud, as the mentioned SBC (single board
computer) lacks a CUDA-enabled GPU [42]. The company does not disclose what
model was used or what and how big dataset was being used to train their model.
QuinlyVision does not perform severity assessment of the detected flaw, however it
seems to be planned as a future software upgrade [41].

A similar solution developed by PrintPal, called PrintWatch have been found. It’s
a solution that integrates with OctoPrint and Klipper print host software, enabling
users to detect 3d printing defects. The company does not mention what defects are
being used or what model is being utilized [43]. The model seem to be execuded on
the cloud, as the examples provided by PrintPal require an API key and the soft-
ware distributed by the company are plugins to aforementioned print host software.
Similarly to QuinlyVision, PrintWatch performs only flaw detection.

Roboflow is a dataset and model training software platform. It enables its users to
create and train various computer vision models. The platform supports a variety of
deep learning models, including 19 object detection algorithms (different flavours of
YOLO and other multi-modal models like GPT-4 or LLaVA), 7 classification models
(ViT, YOLO-based classification, OpenAI CLIP and Efficient net), 6 instance seg-
mentation models, 1 semantic segmentation model and 2 keypoint detection models.
On Roboflow many users train their own models, but the trained models are limited
to the datasets created by the said user.

2.6.3 Summary

The presented scientific research and solutions focus on defect detection, without
assessing how severe a defect is, which in production at a scale may be crucial.
Only one of the presented studies focus on severity assessment and is based on the
self-attention mechanism, which is using a massive (over 1 million samples) dataset
and is not feasible for manual data collection. Open-source and commercial solu-
tions do provide defect detection, but also lack severity assessment, which may lead
unnecessary job cancellation, increasing energy and material costs.
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2.7 Datasets

Studies mentioned in 2.6 are using data collected by the researchers themselves. Not
many of the studies used any public datasets, nor published the created datasets,
posing a challenge - how to obtain the data necessary for a 3d printing defect object
detection model training?

2.7.1 Object detection public datasets

Object detection is a popular problem in deep learning. Many public datasets exist
to help researchers train and evaluate their findings against other works. There are
many datasets, but the most known are [44]: MS COCO [45], Pascal VOC [46],
ImageNet [47]. However, none of the mentioned datasets include 3d printing flaws,
the datasets include "common" real-life objects. For example Pascal VOC dataset
includes 20 classes like "car", "cat" or "motorbike", but none of the classes refer to 3d
printing at all.

2.7.2 3d printing datasets

Manual labelling process could be used to solve the issue, however manual data
labelling is a time-intensive process, despite the fact that many software distribution
exist to streamline and speed up the process [48] [49]. Studies use varied sizes of
their datasets, as mentioned in 2.6, however it seems that a bigger dataset is being
favoured [50] [34] [36].

The Roboflow platform mentioned in 2.6 allows users to publish their own datasets,
serving as a place for computer vision experimentaion platform. Datasets on Roboflow
are searchable on the platform, allowing to filter by the dataset name and labels con-
tained within the search query. Query "3d printing" returns a great amount (more
than 100k) of user-submitted datasets.

Figure 2.16: Query results in on the Roboflow platform.
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Datasets submitted on the platform vary in size, class count and class names, requir-
ing further post-processing to unify similar class names ("stringing" vs "stringging")
and to merge the selected datasets together. Furthermore, it’s necessary to assess if
the images within the selected datasets are of good quality and the labels are correct,
as some of the defects may be incorrectly labeled. ("stringing" vs "spaghetti" vs "poor
bridging")
Each dataset can be exported to one of most popular labeling formats associated
with the most popular object detection datasets like COCO or Pascal VOC [51],
simplifying data merge process.

2.8 Analysis discussion

Commonly occurring 3d printing defects, along with a review of current both com-
mercial solutions and scientific approaches to solve the problem of 3d printing flaw
detection and quality assessment have been presented.

Presence of user-submitted labeled datasets solves the issue of data availability, as
the datasets published on the Roboflow platform are with the CC-BY 4.0 licence,
allowing the use of the datasets, assuming correct attribution of the dataset authors.
The data available on Roboflow can be exported to one of the most-commonly used
data formats, further simplifying the dataset creation process.

Since the amount of 3d printing defects is limited and their characteristics are con-
sistent and don’t vary too much between prints, the use of more advanced object
detection frameworks like Open Vocabulary Object Detection or Zero-Shot object
detection may not be justified, because for Open Vocabulary framework, a dataset
needs to be captioned properly, so the language model will be able to infer labels
for a defect. The presence of already labeled datasets on Roboflow, enables easier
training and evaluation of a resulting model, relieving from the need of manual data
labeling of the defects.

It seems that little work was done towards the severity assessment of 3d printing de-
fects (stringing defect in particular), as only one study [39] seems to achieve a similar
outcome, by assigning labels to the toolpaths as they are being laid out. However,
the labels are not continuous, which may limit the usability of the solution. Com-
mercial solutions mentioned in 2.6.2 seem not to attempt flaw severity assessment,
but may be included in the future updates.

Severity assessment of print is necessitated by the material costs and energy costs of
the print process. A print that wasn’t stopped in time and had severe enough defects
will lead to material and energy waste, creating a need to not only detect defects,
but also assess how severe the defect is.



2.9. Problem statement 21

2.9 Problem statement

Considering the problem analysis, the object detection models, methodologies and
data presence, the following project statement have been formed:
"Given the current object detection approaches and the dataset availability, how can
one create a defect object detection and severity assessment model in the context of
FDM 3d printing, to aid 3d print job supervision?"



Chapter 3

Technical Analysis

This chapter aims to describe and analyse what methods can be used to create a
defect detection and severity assessment model.

3.0.1 Deep Learning

Deep learning is a subset of machine learning, based on Artificial Neural Networks.
In deep learning a model, based on a multi-layer architecture is used to extract pro-
gressively higher-level features from the submitted data. Depending on the problem’s
domain, different features learned. The features are being extracted automatically,
without previous feature extraction; the model itself performs feature extraction
and uses them for downstream tasks, like classification or object detection [52]. In
the context of computer vision, a earlier layer may identify edges, corners or lines,
whereas deeper layers will detect more complex features [53]. The task of feature
extraction may be performed by so-called Convolutional Neural Networks (CNNs)
or Vision Transformers (ViT).

3.0.1.1 Convolutional Neural Networks

Convolutional Neural Networks are a type of deep learning that utilize image filters
to learn and extract features from an image. The filter is being slid along input,
producing a matrix of values, called a feature map [54]. Such a feature map is being
used as input to the next layer, allowing the network to learn increasingly complex
features [54]. A filter applies the following operation:

22
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g(x, y) =
R∑

j=−R

R∑
j=R

h(i, j) · f(x + i, y + j) (3.1)

Figure 3.1: The definition of output pixel as a result of applied filter.

In equation 3.1 output pixel g(x, y), where x and y are image positions within the
sliding window, i and j are coefficient positions within the filter, the pixel g(x, y) is
calculated as dot product of surrounding pixels f(x, y) and filter coefficients h(i, j).
R is the filter’s kernel size. The resulting layer is being fed into an activation function
which helps the network learn non-linear features [54].
Various types of pooling layers are being utilized as well, to perform feature selection
and reduce feature maps’ dimensions, before feeding the outputs to the next layer.
For instance MaxPooling selects the highest within a sliding window of a feature map.
On the other hand AveragePooling averages the values within a window [55]. Feature
maps generated by the CNN layers are used in downstream tasks, like classification,
object detection, instance segmentation and other.

3.0.1.2 Object detection

Object detection is a task of finding and localizing an object within a scene. Pre-
viously mentioned CNNs are usually used to perform the task, however ViT-based
networks seem to be used as well [56].

Figure 3.2: Example detection after applying an object detection model on an image.

Figure 3.2 presents an image with a localized 3d printing defect on it. The detection
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includes a bounding box which localizes the defect, the defect classification (or rather
defect’s type) and the class confidence, which informs the user on how confident the
model is.

Object detection models can be divided into three categories:

• Single-stage detectors, which locate and categorize the object in "one pass" [44].

• Two-stage detectors, which divide the object detection task into two sub-tasks:
object localization and object classification. [44].

• Open vocabulary object detection, a novel object detection method, aiming to
detect objects beyond detected classes using captions [57].

Each object detection model include a backbone network, which performs the feature
extraction process and based on the generated feature maps perform the detection
[44].

3.0.2 Object detection model types

A single-stage detector locates and categorizes the object simultaneously, without
dividing it to two portions [44]. Such a network directly map the image’s pixels to a
bounding box and a class prediction. Single-stage models are faster than two-stage
models, at the expense of being less accurate [44].

In a two-stage detector, first the network generates region proposals, where the
object is localized and then the region is being classified. Such a detector has higher
accuracy, over the single-stage detector, at the expense of being slower [44].

Open vocabulary object detection is a new object detection framework, in which
a model takes an input image and detects any object within given target vocabulary.
To train such a model, a image-caption dataset is needed, which will cover a large
variety of words but also a smaller dataset containing localized object annotations
from a set of base classes. Target classes are not known during training and can
be any subset of the entire input caption vocabulary. The combination of language
models and CNN-based models improves resulting model’s performance [58].

3.0.3 Object detection model evaluation

Each object detection has to be evaluated to asses how well the model performs. A
set of datasets and evaluation metrics have been developed to facilitate it.

3.0.3.1 Detection classifications

A detection can be classified as one of four cases [44]:
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• True Positive (TP) - the prediction have been made and is correct.

• True Negative (TN) - the prediction have not been made and there isn’t a
detection to be made.

• False Positive (FP) - the prediction have been made but is incorrect.

• False Negative (FN) - the prediction have not been made, but there is a detec-
tion to be made.

3.0.3.2 Intersection over Union

Intersection over Union (IoU) is a metric that measures the overlap between a de-
tected bounding box and the ground truth bounding box [44].

Figure 3.3: An image illustration how IoU may be interpreted. Source: By Adrian Rosebrock -
http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718559

Its values range from 0 to 1, where 0 means no overlap and 1 meaning that the
detection box and the ground truth box are identical in size and position [44], as
demonstrated on figure 3.3. A threshold of 0.5 or more may be established to assess
if the detection is good enough to consider [44].

IoU is defined with the following equation:

IoU =
|GT ∩ Detection|
|GT ∪ Detection|

(3.2)

Figure 3.4: The definition of IoU metric

In simple terms - IoU can be understood as the division of the ground truth bounding
box and the detection box over the total area of the ground truth bounding box and
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the detection box.

3.0.3.3 Accuracy

Accuracy describes model’s performance across all classes. It is computed as the
ratio of the total number of samples classified correctly vs the total sample count
[44].

Accuracy is defined by the following formula:

Accuracyc =
TPc + TNc

TPc + FPc + TNc + FNc
(3.3)

Figure 3.5: The definition of Accuracy metric

3.0.3.4 Precision

Precision says how much positive identifications were actually correct. It’s a ratio
between the number of accurately identified samples to the total count of positive
samples [44]:

Accuracyc =
TPc + TNc

TPc + FPc + TNc + FNc
(3.4)

Figure 3.6: The definition of Accuracy metric

3.0.3.5 Recall

Recall indicates how many of actual positive classification were identified correctly.
It is a proportion of correctly identified samples to the total number of actual positive
samples [44]:

Recallc =
TPc

TPc + FNc
(3.5)

Figure 3.7: The definition of Accuracy metric

3.0.3.6 Mean average precision

The mean average precision (mAP) is calculated by taking the average over all objects
categories, evaluating the performance of object detectors [44]:
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APc =
1
j

j∑
c=1

Precisionc

mAP =
1
j

j∑
c=1

APc

(3.6)

Figure 3.8: The definition of Accuracy metric

In the formula 3.8, j is the number of all categories.

3.0.4 Object detection evaluation datasets

Multiple datasets have been created for the task of evaluating an object detection
model. Most of the well-known datasets include many kinds of common objects
real-life objects and are used by many researchers as a benchmark to compare and
evaluate their model’s performance against other works.

3.0.4.1 PASCAL VOC

The PASCAL Visual Object Classes (VOC) is a dataset created for the needs of the
VOC challenge. The newest iteration of the dataset (and the challenge) includes
20 classes of the most-common objects like "cat" or "bottle" across 11k images [46].
PASCAL VOC uses AP@0.5 as its evaluation metric.

3.0.4.2 MS COCO

The MS Common Object in Context (COCO) is another common choice for an
evaluation dataset. The newest version of the dataset contains over 123 thousand
of images divided 80 classes, like "person", "horse" or "zebra" [45]. MS COCO uses
Average Precision as one of its metrics, with different IoU thresholds and scales:

1. Average Precision (AP) - average precision of a class:

• AP - AP at IoU from .75 to 0.95 with a 0.05 step.

• APIoU=.50 - AP at IoU greater than 0.50.

• APIoU=.75 - AP at IoU greater than 0.75.

2. AP Across Scales - AP across different area of the ground truth detections:

• APsmall - AP for objects with area less than 322.

• APmedium - AP for objects with area more than 322 and less than 962.
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• APlarge - AP for objects with area more than 962.

3.1 Selected models

Two models were picked to accomplish the task of stringing defect detection with
severity assessment.

3.1.1 MobileNetV3

MobileNetV3 is a backbone network used in object detection, classification and se-
mantic segmentation, optimized for edge and mobile applications [59] [60], where a
GPU or other processing accelerators are unavailable for use. Here, it will achieve the
task of severity classification. The architecture is comprised of so-called depth-wise
separable convolutions (introduced by MobileNetV1), which separate feature map
generation and spatial filtering mechanism, increasing layer’s efficiency [61], linear
bottlenecks and inverted residual structures (added in MobileNetV2), which allow for
a compact representation of higher-dimensional feature space, thus increasing the
expressiveness of non-linear per-channel transformations [62].
MobileNetV3 further enhances the architecture, by introduction of the swish activa-
tion layer, which overcomes sigmoids’ inaccuracies in fixed-point arithmetic.
Other modifications include latency reduction and high-dimensional feature preserva-
tion by moving the inverted bottleneck structure past the final AvgPool layer, result-
ing in increased efficiency [59]. Thanks to the use of aforementioned swish activation
function, the number of image filters could been reduced to 16 from 32, while main-
taining the same accuracy, saving more computational power [59].

The models’ performance have been measured on a Google Pixel [63] smartphone
and presents as following:
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Figure 3.9: MobileNetV3 comparison of Top-1 accuracy vs latency at different internal resolutions

Figure 3.9 show that the MobileNetV3 is fast enough to operate on a smartphone,
without any additional accelerators, while maintaining decent classification accu-
racy.

3.1.2 YOLOv8

YOLOv8 is the 8th iteration of popular single-stage object detection model architec-
ture. The model is composed 3 blocks [64]:

1. Backbone network - the foundation of the model, responsible for feature ex-
traction from the input image, based on CSPDarknet53 network.

2. Neck - based on Path Aggregation Network, used to improve information flow
across different resolutions, enhancing multi-scale feature extraction.

3. Head - responsible for processing feature maps, producing detections and clas-
sifications.

3.1.2.1 CSPDarknet53 backbone

CSPDarknet53 is the backbone network used by YOLOv8 based on Darknet53 CNN,
comprised of several convolutional layers and residual layers, outperforming similar
architectures like Resnet-101 and Resnet-152 [65].
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CSPDarknet53 extends on Darknet53 by integrating the Cross Stage Partial Network
(CSPNet). It works by splitting the feature maps in a dense block into two, in which
one of the split feature maps will go directly to the output and the other feature
map will go through another dense block. That way the gradient information is
not duplicated, like it’s the case in DenseNet [66], increasing the efficiency of the
architecture.

3.1.2.2 Path Aggregation Network

Path Aggregation Network (PANet) involves the use of a Feature Pyramid Network
(FPN), bottom’s-up path augmentation and adaptive feature pooling in order to
improve networks’ performance.

Figure 3.10: PANet architecture visualized. (a) - Feature Pyramid Network, (b) - Bottom-up path
augmentation, (c) - Adaptive feature pooling, (d) - Box and class detection head, (e) - semantic
segmentation mask generation head. [67]

Feature Pyramid Network (FPN) is a type of top-down architecture, in which
multi-scale features are being detected via convolution at different scales. However,
PANet enhances localization of the feature hierarchy by propagating stronger re-
sponses of lower layers, as high-responses to edge features or instance parts are a
string indicator to accurately localize instances. A "shortcut" is being added, that
consists of 10 layers is being added (green arrow on figure 3.10)[67].
Augmented bottom-up structure follows FPN to define layers, which produce
feature maps with the same spatial size in the same network stage.
Adaptive feature pooling pools features from all levels of the FPN and fuses them
for a prediction. Each proposal is clustered into four classes, based on the levels from
the FPN, improving prediction accuracy [67].
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3.2 Performance requirements

3.2.1 Model inference time

Solutions mentioned in 2.6.2, try to achieve real-time model performance, which may
not be necessary, depending on the printout size and 3d printer’s lateral speed 2.2.1.
Small models will print faster, larger models will take more time to finish.
To estimate the average print time and derive model inference time requirements,
a set of test objects have been sliced, varied in size and print parameters, sliced in
the Ultimaker Cura software. Print time estimates are directly derived from the
generated GCode, based on the print movements and programmed print speed. The
slicer software have been configured with the Creality CR-20 printing profile and a
nozzle diameter of 0.4mm.

The following test object have been processed:

1. 3DBenchy by Creative Tools - one of the most commonly used test prints used
for benchmarking and testing 3D printers [68].

2. *MINI* All In One 3D printer test - a test object aiming to test all of the
printer’s capabilities to print. The test contains a lot of small details and
separated structures, provoking more travel movements [69].

3. XYZ 20mm Calibration Cube by iDig3Dprinting - a simple test object aiming
to test machine’s dimensional accuracy. The object contains a lot of infill,
allowing to test out the influence of the infill type and percentage vs print time
[70].

Each object is placed directly in the middle, the default purge line is being kept.
The following table describes what parameters have been configured in the slicer
software:

Parameter Name [paremeter unit] Parameter Values
Layer Height [mm] 0.3, 0.2, 0.16, 0.12
Infill Density [%] 5, 20, 40, 50, 80, 100

Print Speed [mm/s] 10, 40, 80, 100, 200, 300, 500
Support Generation [bool] True/False

Table 3.1: Table presenting tested parameters.

For each time estimation, median layer time, average layer time, layer’s time mode
have been calculated. Additionally, the FPS values of object detection models have
been considered.
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3.2.1.1 Print time estimation results

Result Name [paremeter unit] Result Value
Median layer time [secs] 39
Average layer time [secs] 46
Mode layer time [secs] 15

Table 3.2: Table presenting print time estimation results.

The table 3.2 represent the print time estimation results. The lowest time was
achieved was with the mode time, equaling to 15 seconds per layer. Having a low
inference time means, that the model will be able to observe most of the layers
during the printing process, ensuring that the printed object is inspected closely. To
further examine if the mode layer time, as the model’s inference time requirement is a
reasonable value, it is necessary to see how some of object detection models perform
on benchmark datasets. A performance comparison is made in [44] of a couple of
object detection models:

Model Name and backbone network FPS value Frame time [sec]
Fast RCNN + VGG16 0.03 33.(3)

Faster RCNN + VGG16 5 0.2
SSD300 + VGG16 46 0.021
SSD512 + VGG16 19 0.05

YOLOv5 650 + CSPDarknet 140 0.007

Table 3.3: Object detection models performance comparison made on COCO 2015 and 2017
datasets [44].

Models presented in 3.3 show that at the slowest model (FastRCNN) takes on aver-
age 33 seconds to generate predictions, however other single-shot models take signif-
icantly less time to generate predictions, generally taking less than 1 second to make
predictions, meaning that single-shot models presented in the comparison [44] will
be able to make multiple predictions per one layer. Of course, some shorter layers
may be missed, if the printed object is extremely small and the mode layer time will
be considered as the inference time requirement.

3.2.2 Target hardware platform

Mentioned in section 2.6.2 OctoPrint is a popular printer control software, targeting
popular Raspberry Pi 4 education computer. Raspberry Pi 4 proven to be a good
choice for the maker community, offering a good balance of performance and a great
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variety of I/O options, enabling a broad range of interfacing options with the exter-
nal world [42] [71].
Because OctoPrint (via the OctoPi software distribution) offers out-of-the-box ex-
perience on the Raspberry Pi 4, it is often used as the go-to solution to control a
3D printer. A camera can be attached as well, transforming Raspberry Pi 4 into a
full-featured 3D printer controller.
A potential solution has to be fast and efficient enough to run on the Raspberry Pi
4, without interrupting the printing process, as the commands have to be streamed
to the printer via the USB port [72]. Raspberry Pi 4 offers the following hardware
specifications [42]:

Parameter name Value
CPU 64-bit Quad Core ARM Cortex A7 @ 1.8 GHz
RAM 4GB of LPDDR4-2400MHz SDRAM
GPU Broadcom VideoCore IV

Table 3.4: Raspberry Pi 4 hardware specification important to the project.

The GPU presented in table 3.4 does not support for CUDA or ROCm software devel-
opment platforms, stripping the computer from deep learning acceleration, without
the use of external hardware like the Google Coral TPU. OpenCL is supported by the
computer, hovewer OpenCL support for inference is inconclusive for the Raspberry
Pi 4 platform, leaving CPU to do all of the calculations [73].
In that case, the model has to fit in the computers’ RAM and run fast enough and
infer on layer-by-layer basis. To make sure that OctoPrint has enough of RAM for
its operation (without the use of swap, as the SD cards are a slow mass-storage
medium), it seems that reserving half of specified RAM amount (2 GB) a reasonable
option.

3.2.3 Model accuracy

The COCO and the Pascal VOC publish the datasets challenge results online, aiding
with model accuracy mAP score derivation. Since Pascal VOC [46] dataset considers
samples that have more than 0.5 IoU as True Positive, the same score is considered
in the case of the COCO dataset. For each dataset, the average, the mean and the
mode values have been calculated and present as following, based on the published
results from the challenges:

Dataset Name mAP @ 0.5 average mAP @ 0.5 median mAP @ 0.5 mode
Pascal VOC 2012 0.61 0.71 0.81

COCO 0.59 0.62 0.66

Table 3.5: Table presenting calculated statistics of mAP @ 0.5 scores.
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The mode of Pascal VOC seems to be quite high, comparing to the COCO dataset.
One of possible causes is that, the COCO dataset is a much larger dataset (886k in-
stances vs 19k instances). Considering the lower mode value (0.66), it seems reason-
able to select it as the accuracy requirement, as it was the most commonly submitted
score in the COCO dataset challenge.

3.3 Model functionality

3.3.1 Model severity assessment

Section 2.5 established 4 severity labels, essentially reducing the severity assessment
problem to a classification problem. In a 3d print smaller defect can occur, which may
have less of an influence over whole print job and will not need any post-processing
to full-fill its purpose. Small defects, like isolated blobs and zits or single stringing
strands should be classified as "low" severity, as they have little influence on the
overall print. In cases, where the defect occurs consistently but does not affect the
object’s functional usability should be "low" severity as well. The decision whether
to stop the print may lie on the machine’s operator, if a "low" severity defect will
occur.

3.3.2 Model severity assessment metrics

It is crucial to correctly assess defect’s severity, but also to ensure that false positive
rate is as low, as it is possible. Not only the accuracy has crucial impact on model’s
performance, but also False Positive and False Negative rate. If a less-severe defect
is being classified as a higher-severity one, then it may lead to unjustified job stop,
for example if a defect had a the ground truth class assignment as "medium" severity
and was classified as "total", then the print might be stopped without a reason.
Similarly, if defect’s severity is underestimated, then a print may continue, when
it was necessary to stop it, to avoid material and energy losses. In the study [39]
the highest accuracy achieved was 85.3% across all four parameters examined in the
study, increasing the number to 90% seem like a reasonable idea for a proof of concept
project.
Another case to consider is detected defect count across multiple frames. A detection
could be intermittent; it could happen in only one frame, meaning that a single
invalid detection and severity classification could stop 3d print without any apparent
reason. For that reason consider severity assessment over several layers and if the
single layer time is long enough - multiple frames. That way it will be possible to
limit the amount of false positives and false negatives.

In subsection 3.2.1.1 it was established, that the most common value layer time
among tested models was 15 seconds. In those 15 seconds, a defect may start ap-
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pearing, which may lead to different severity assessments across multiple layers. It
may be necessary for a severity assessment to be consistent over the course of multi-
ple layers to be correct. In how many layers a defect will fully emerge is dependent
on the layer height and on the defect type.

3.4 Test requirement list

3.4.1 Performance requirements

To summarize, the following requirement list have been formed:

• The model should occupy no more than 2 GB of RAM during inference, to
prevent the swap space from being used.

• The model inference time should not exceed the mode layer time, being 15
seconds.

3.4.2 Functional requirements

3.4.2.1 Model accuracy

• The model should reach at least 0.66 COCO mAP @ 0.5 on the stringing defect
on the dataset test split.

• The model should be able to reach at least 90% of accuracy in the testing across
all four defect classes during a test print, across multiple layers.



Chapter 4

Design

This chapter aims to describe the solutions’ and severity assesment score design.

4.1 System design

The overall system will consist of several components:

1. 3D printer controller, connected to the 3D printer via USB, sending GCode
commands and recording the printing process.

2. 3D printer itself, executing commands sent by the controller, resulting in a
printout.

3. Deep learning models residing on the 3d printer controller, perfroming the task
of stringing defect detection and severity assesment.

Overall system schematic is shown on the following diagram:
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Figure 4.1: System’s design diagram

Figure 4.1 represents the system’s design. The 3d printer controller sends the com-
mands to the machine in a streaming fashion, once the controller receives a confir-
mation from the machine, next command is being sent. When a Z-axis movement
command is being sent, a snapshot is being taken with the connected camera to it,
resulting in a timelapse of the 3d printing process. A live stream from the printing
process is being captured as well. The snapshot is forwarded to the deep learning
models, running in parallel to the printing process, making sure that the models run-
ning will not disturb the printing process. If a detection is made, the detected defect
is then forwarded to the severity assessment model, resulting in a severity class. If
the class is severe enough, a notification is sent to the machines’ operator.

4.1.1 Hardware

Raspberry Pi 4 described in section 3.2.2 is an ideal hardware platform to host the
controller, due to its low cost, popularity and relatively good performance. The
controller will be connected via USB serial connection to the 3D printer, sending
GCode commands to it. The computer is powered via a 5V USB-C power supply
and will have OctoPi Linux distribution installed on it, providing a ready-to-use
environment for testing. Sliced 3D models will be uploaded to the computer via a
web-browser.
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Figure 4.2: OctoPrint GUI with visible view on the printing area.

Figure 4.2 presents OctoPrints’ GUI visible in a web-browser. The camera connected
to the controller points directly to the printing area, at the front of Y-axis and has
the following specifications:

Parameter name Value
Manufacturer Imilab

Maximum resolution 1920x1080
Framerate 30FPS

Connection interface USB 2.0

Table 4.1: Specifications of USB webcam connected to the 3D printer controller

4.1.2 Severity score design

3D printing faults defect analysis conducted in 2.5 could be quantified to simple
labels, essentially converting the problem of severity assesment to a classification
problem, simplifying data labeling process. Based on analysis four labels are pro-
posed:

1. Label "Low" - the defect is visible, but has little-to-none influence on item
usability and/or aesthetics. Simple post-processing steps may be needed to
further improve the item.

2. Label "Medium" - the defect moderately affects items’ usability and/or aesthet-
ics. More post-processing or item alteration may be needed for item to fully
fulfill its purpose.

3. Label "High" - the defect severely affects items’ usability and/or aesthetics.
The item has to severely modified and post-processed to be usable.
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4. Label "Total" - the defect is completely destroys items’ usability and aesthetics.
No post-processing or item alteration will make the print usable

However, stringing defect is a visual defect and rarely results in print failure nor
influences object’s functionality (assuming a correct post-processing process). Having
that in mind the following labels have been defined, to better reflect stringing defect’s
nature:

1. Label "Low" - single strands of extruded plastic are visible on the resulting
printout.

2. Label "Medium" - multiple strands of extruded plastic in multiple places are
visible on the resulting printout. Some oozed plastic blobs may be visible on
the dragged strands.

3. Label "High" - strands of extruded plastic in multiple places dominate the
printout. Oozed plastic blobs may be visible on the dragged strands of extruded
plastic.

Instead of discrete labels the severity score could be continuous, making the problem
of severity assessment a regression problem. The severity of the defect could be
modeled after the density of plastic strands within the detected defects’ bounding
box, creating a score from 0-3, where 0 is no stringing within the bounding box and
3 is the most severe case of stringing.

Figure 4.3: Examples of assigned severity regression scores, taken from the created dataset.

Figure 4.3 present different stringing defect severities, scored after their densities
within the bounding box. The severity scores would be, from the left: 2 (due to
visible, connected plastic strands between two points), 3 (due to high density of
the defect, forming thicker blobs), 0.5 (due to little density of the plastic and being
localized to one point within the printed object)



Chapter 5

Implementation

5.1 Dataset Creation

5.1.1 Stringing defect dataset

A stringing defect dataset have been created on the Roboflow platform, by combining
datasets shared by other users on the said platform. The following datasets have been
combined:

• "3D Printing Error" by AtCo [74] - dataset containing 315 stringing defect
samples.

• "Defect 3d Print" by rmuti [75] - dataset containing 848 stringing defect sam-
ples.

• "3D printing defects" by HCMUT [76] - dataset containing 626 stringing defect
samples.

• "3dprintfail_v2" by MoschA [77] - dataset containing 26 stringing defect sam-
ples.

The datasets contained samples from other 3d printing defects, those labels and
samples have been removed, to simplify and speed up the training process.
In the resulting dataset, the samples have been resized to 640x640 (which is the
size required by the selected object detection model) and auto-oriented to match the
orientation of the bounding box labels.

Each label in the dataset have been labeled using Ultralytics [78] YOLOv8 labeling
format with the addition of severity class to a bounding box:
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Figure 5.1: Example label from the created dataset

Figure 5.1 representing an example label, is formatted in the following manner: <de-
fect_class> <severity_class> <normalized_bbox_center_x> <normalized_bbox_center_y>
<normalized_bbox_width> <normalized_bbox_height>

Such a label can be directly consumed by the YOLOv8 model or be easily converted
to other formats on the Roboflow platform or be converted to other formats by the
torchvision [60] package.

5.1.2 Severity assessment label creation

The total amount of bounding boxes for the dataset exceed 3000. Manually labelling
such an amount of bounding boxes will take a significant amount of time. To auto-
mate the process, a small subset (around 300 samples, picked at random) of samples
have been labelled and then a small bootstrap model have been trained.
Based on the comparison [60] prepared by the torchvision project, MobileNetV3 clas-
sification model have been selected, as the bootstrap model. The model will assist
the user with labelling, producing suggestions, that after user acceptance are being
used. Wrong labels were corrected on-spot. After reaching 500 of labeled samples,
the rest of bounding boxes were labeled by the model without user supervision, to
save more time.

5.2 Software implementation

The solution have been implemented using the Python programming language, us-
ing torch with torchvision [60], ultralytics YOLOv8 implementation [78], albumen-
tations image augmentation library [79] and torchmetrics metric calculation library
[80]. Currently, training and evaluation code is implemented, however due to time
constraints, operator notification system is left unimplemented as it would require
integration with OctoPrint. The system tests rely on the OctoPrint timelapse sys-
tem.

5.3 Training

Both models have to be trained on the stringing defect dataset described in section
5.1, using the models described in section 3.1.



5.3. Training 42

5.3.1 Severity assessment bootstrap model training

MobileNetV3 model have been chosen to assist and then automatically create neces-
sary labels for the severity assessment process. Torchvision [60] provides the model
definition. The data have been augmented with two sets of data augmentations in
effort improve models’ performance, provided by library albumentations [79]:

1. Set #1 - vertical and horizontal image flips, image contrast and brightness
transform, random pixel dropout, random 90 degrees rotation

2. Set #2 - random 90 degrees rotation, image defocus, random pixel dropout,
vertical flip

Both sets have been applied to the samples, creating two more samples out of one in
effort to prevent overfitting from happening.

The chosen hyperparameters are:

Hyperparameter Name Hyperparameter Value
Batch size 8

Learning Rate 0.0001
Epoch count 55

Table 5.1: Table containing selected severity assessment model hyperparameters

Training and validation plots present as following:
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Figure 5.2: Training and validation loss plots
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Figure 5.3: Training and validation accuracy plots

The training and validation loss plots seem to decrease during the training process,
indicating that the model is indeed learning the selected 300 samples. However,
the validation accuracy seem to be unstable, showing that potentially there may
be difficult samples to classify. The training started at training loss of 1.08 and
decreased to loss value of 0.05. Validation loss started at 1.2 and decreased down to
0.58. Training accuracy started at 0 and increased to 1, validation accuracy started
at 0.33 and increased to 1.

5.3.2 Severity assessment model training

MobileNetV3 model have been chosen to classify the severity. The implementation
of the model have been used provided by torchvision [60] package. The same data
augmentations have been used, like in bootstrap model training. Similarly, both sets
of augmentations have been applied to the dataset, creating more samples for the
training purposes.

During training the model kept overfitting to the train dataset, due to that mul-
tiple iterations of hyperparameters have been tested, ending up with the following
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hyperparameter set:

Hyperparameter Name Hyperparameter Value
Batch size 8

Learning Rate 0.0001
Epoch count 20

Weight decay rate 6e-1

Table 5.2: Table containing selected severity assessment model hyperparameters

MLFlow was used to monitor training progress, torchmetrics [80] package was used
to calculate nessesary metrics. Training, validation and accuracy plots present as
following:
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Figure 5.4: Loss plots during severity model training
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Figure 5.5: Accuracy plots during severity model training

Figures 5.4 and 5.5 show that there may be a problem with the severity dataset. Train
loss and validation losses decrease as the training progresses, however the validation
loss graph has sudden increases in the loss values, whereas train loss plot doesn’t,
indicating that there may be a problem with training and the dataset. Accuracy
plots further reinforce the concern, that there may be a problem with the severity
assessment dataset [81], because the accuracy does not increase, as the training
process progresses.
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5.3.3 Object detection model training

The selected implementation of YOLOv8 created by ultralyrics [78], due to the fact
that their implementation includes everything needed to train, evaluate and test the
model, hiding a lot of the boilerplate. The selected variant for training is YOLOv8s.
The data have been augmented with the default set of augmentations defined by
ultralytics:

1. HSV space augmentation - hue, saturation and value changes

2. Image transformations - translate, rescale, image flip left-to-right.

3. Random erasure of image data from the image

The hyperparameters were kept default, presenting as following:

Hyperparameter Name Hyperparameter Value
Batch size 16

Learning Rate 0.01
Epoch count 500

Weight decay rate 0.0005
Loss functions weights box: 7.5, cls: 0.5, dfl: 1.5

Table 5.3: Table containing selected stringing defect detection model

The training statistics plots present as following:

Figure 5.6: Training statistic plots of the stringing defect detection model
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Figure 5.6 indicate that the model fits the dataset quite well. Both training and vali-
dation losses decrease consistently as the training process progresses. The mAP plots,
precision and recall metrics increase as the model is able to learn the data.

The following table present statistics calculated on the training split:

Metric name Metric value
Starting box loss 3.86
Ending box loss 0.71

Starting class loss 4.15
Ending class loss 0.52
Starting DFL loss 4.23
Ending DFL loss 1.046

Table 5.4: Object detection model training statistics

The following table present statistics calculated on the validation split:

Metric name Metric value
Starting box loss 3.753
Ending box loss 1.7

Starting class loss 3.18
Ending class loss 1.8
Starting DFL loss 4.15
Ending DFL loss 1.93

Precision 0.8
Recall 0.46

mAP @ 50 0.51

Table 5.5: Object detection model training statistics

Tables 5.4 and 5.5 further reinforce the fact, that the model successfully trained the
dataset.



Chapter 6

Experiments

This chapter aims to describe the conducted experiments on the projects’ dataset,

6.1 Evaluation on test split

This section aims to evaluate whether the solution is able to work with out-of-
distribution data.

6.1.0.1 Evaluation results

During inference evaluation mAP metrics have been calculated, defined in accordance
to COCO mAP.

Metric name Metric value
mAP @ 0.75 - 0.95 0.373

mAP @ 0.5 0.62
mAP @ 0.75 0.39

Table 6.1: Table presenting mAP metric results on the test set.

Table 3.5 presents mAP metrics for the test split. Metric that is taken into account
in requirements 3.4 is mAP @ 0.5. The metrics’ value is close to the requirements’
value. The value achieved on the test set is approximately 6% off the target require-
ment.

6.1.1 Detection examples

The trained model was directly run on the dataset’s test set. All preprocessing steps
are handled by the Ultralytics library itself [82]. The test set contains 69 labeled
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images of varying resolutions.

Figure 6.1: Visualization showing some of the ground truth images, along with ground truth
bounding boxes and predictions inferred by the model

The trained model was able to make predictions on the test set, as demonstrated on
figure 6.1.

However, in some cases the predictions are missed. The first image example with
missing prediction is:

Figure 6.2: Missing detection example. On the left the ground truth image is shown, on the right
image with missing predictions is shown.

On the figure 6.2 the model missed predictions, due to fact that the labeled bounding
boxes are small and the strands of the dragged material are fine and blend-into the
background. The image also seem to use a light that is close in color to the printed
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object’s color. The solution for such a case would be to label whole cluster of dragged
material as one defect and use a different light color during image capture, so the
material strands do not blend into the background.

The next case is of missing predictions is:

Figure 6.3: Missing detection example. On the left the ground truth image is shown, on the right
image with missing predictions is shown.

Figure 6.3 presents missed prediction for a stringing defect. The strands are not
dense, and may be too fine and underrepresented in the dataset to be detected.

Another case represents the situation when the labels rendered by ultralytics is in-
consistent with the ground truth rendered on Roboflow:
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Figure 6.4: A case of inconsistent ground truth representation. On the left - ground truth rendered
by ultralytics, middle - missing predictions, right - ground truth rendered by Roboflow

On the figure 6.4 labels between ultralytics and Roboflow are inconsistent, which
could lead to a missing prediction. More investigation is needed to verify, where
the problem occurs - during export from Roboflow or during label processing in
ultralytics.

6.1.2 Severity assessment model

Similarly to defect detection model, the severity assessment (classification) model was
run on the test set, containing 258 samples, labeled first by a human with a bootstrap
model assistance, then with the model itself, as described in section 5.1.2.

The model reached 60% accuracy on the test split of the dataset, not satisfying
the accuracy requirement, meaning that the model is not accurate enough, to be
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considered "good". To investigate why that’s the case, samples from the test split
have been drawn, to see how the bootstrap model has labeled the dataset.

Figure 6.5: Incorrectly labeled images, in which the label the assigned label is "high".

Figure 6.5 represents image examples, that have been mislabeled, but classified as
true positive. The definition of "high" severity states, that the stringing defect
should’ve contain blobs in the dragged plastic strands, which are missing on pre-
sented samples. The correct classes for the presented images would be, starting from
left "low", "medium" and "low".

Figure 6.6: Correct classification examples for class "high"

On the other hand figure 6.6 present correctly classified and labeled samples from the
test set, showing that many samples are mislabeled by the bootstrap model. In order
to improve the accuracy better user supervision over the bootstrap model labelling
process has to be employed.

A confusion matrix have been created, to illustrate how the model performed severity
classifications:
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Figure 6.7: Confusion matrix created based on the classifications from the test split. Class assig-
ments: 0 - "low", 1 - "medium", 2 - "high"

The confusion matrix displayed on figure 6.7 contains samples with data augmenta-
tion. The test split (and possibly whole dataset) is quite unbalanced, favouring class
"low" and class "medium".

The severity assessment model classified most of "low" and "high" samples correctly.
The "medium" class seems to be the most difficult to classify. To produce better
results, it’s likely that the dataset has to be re-balanced, re-labelled and model has
to be retrained. Another option would be to remove class "medium" and redistribute
the samples between labels "low" and "high".

6.2 Print timelapse test

Models have been tested on a 3D printing timelapse captured via the OctoPrint
software [72] in order to check whether the model performs well in a real-life appli-
cation.

6.2.1 Testbed setup

Several test prints have been produced with retraction setting turned off, in order to
provoke the stringing defect to occur.

OctoPrint have been configured to capture a frame on Z-axis movement, after layer
change, simulating layer-by-layer frame capture. Device on which OctoPrint will run
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is previously mentioned Raspberry Pi 4 single board computer with active cooling,
running at stock CPU clock frequency.

The machine used for test is the Creality CR-20 FDM 3D printer, with the following
print parameters:

1. Nozzle type and size - brass 0.5mm nozzle.

2. Layer height - 0.16mm, yielding

3. Retraction - off.

4. Z-axis hop - off.

5. Infill density and type - 20% and cubic infill pattern.

6. Filament type - Fiberology Gray Easy PLA.

7. Printing temperatures - nozzle: 215°C, printing bed: 50°C.

8. Support generation - off.

9. Print speed - 85 mm/s.

"Stringing test" by Na-temps [83] 3D object have been printed for the test purpose
being positioned at the bed center, with a wooden background present. The room,
in which printer was situated was filled with natural light, which intensity depended
on the time of day. Turning off retraction produces stringing defect severity classified
as "high".

Figure 6.8: Sample screenshot from one of recorded timelapses.

Figure 6.8 presents a timelapse screenshot with the printed object and visible string-
ing defect. The camera directly points at the printed object, being positioned at the
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front of the 3D printer.

The printed object consists of a base and two cylinders, which causes the 3D printer
to axes perform so-called travel moves, which will produce stringing, if retraction is
turned off. The test object is presented on the following render:

Figure 6.9: Test object render in Ultimaker Cura.

6.2.2 Testing process

A test Python script have been developed that takes a frame from the timelapse. The
bounding boxes detected by the defect detection model (if any defect was detected)
are then fed into severity assessment model, to ultimately produce a bounding box
containing information about what defect have been detected and how severe the
defect is. One severity ("high") have been labeled on the image, as the retraction
setting produces a consistent defect on the resulting printout. Defect bounding boxes
have been labeled as well. Timelapse had 250 samples, beginning 25 frames are not
containing the defect, due to object’s base being printed first.

6.2.3 Testing results

Defect detection model detected defects in 45 frames out of 225. If a detection was
made, the IoU of the detection was high. Severity of the detected defects have been
classified correctly in most of the detected cases. Missed detections are counted as if
their IoU was 0 and no correct classifications was made.
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The results present as following, if missed detections are excluded:

Metric name Metric value
Average IoU 0.74

Average processing time per frame 1817 ms
Severity assessment classification accuracy 75%

Severity assessment precision 0.5
Severity assessment recall 0.36

Detection precision 0.964
Detection recall 0.8

Detection mAP @ 50 0.891
Memory Usage 565MB

Table 6.2: Table presenting timelapse test results, excluding missing detections.

However the results are much worse, if missed detections are included:

Metric name Metric value
Average IoU 0.14

Average processing time per frame 1659 ms
Severity assessment classification accuracy 16%

Severity assessment precision 0.048
Severity assessment recall 0.24

Detection precision 0.422
Detection recall 0.292

Detection mAP @ 50 0.28
Memory Usage 565MB

Table 6.3: Table presenting timelapse test results, including missing detections.

Tables 6.2 and 6.3 show that if a detection is made, then the detection is accurate.
However, detections are inconsistent, missing the defect in most of the captured
frames.

6.2.3.1 Detection examples

The model seem to be able to make a good detection, scoring high average IoU.
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Figure 6.10: Example of a good detection. Green bounding box - the ground truth, red bounding
box - defect detection.

On figure 6.10 the model was able to match closely the ground truth, which applies to
the rest of detections. However, sometimes the model missed the defect and detected
an unrelated object in the scene:

Figure 6.11: Example of a bad detection. Green bounding box - the ground truth, red bounding
box - defect detection.

Figure 6.11 presents, that the model has missed the defect on the printed object.
What’s interesting, such an invalid detection happens only half-way of the printing
process.
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The model to seem to miss the beginning phases of the defect, but makes detections
near the end of print job:

Figure 6.12: Beginning phases of the print job with missing detections. Green box - the ground
truth.

Figure 6.12 present how the model missed detections at the beginning of the print
job. The reason of the missed detections may be due to the fact, that a webcam has
a worse quality sensor, comparing to smartphones and cameras [84]. The issue could
be resolved by recording 3D printing process using a variety of webcams, labeling
the samples and including them in the dataset. Additionally, most of the samples
in the dataset "fill-up" the frame, whereas in the samples from the timelapse don’t.
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Better camera positioning could help resolve the issue.

Figure 6.13: Comparison of two samples from the dataset (left) and the timelapse (right).

Dataset sample presented on the figure 6.13 subjectively has a better quality, in
comparison with the timesample frame. The image from dataset is sharper, whereas
the image captured by the webcam seems blurry.
Furthermore, the created dataset has 1600 images, which in comparison with major
object detection datasets like MS COCO [45] (330k images) or PACAL VOC (9963
images) [46] seem small.

Additionally, the presented confusion matrix in 6.7 may explain why the severity
assessment model made correct predictions, if a detection was made. Most of "high"
labeled samples have been classified correctly during validation, which is the case
here. The print settings created defect with "high" severity, which the severity as-
sessment model was able to classify correctly and explain high accuracy, if missed
detections are ignored.
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Results and discussion

This chapter aims to discuss the results and requirements fulfillment.

7.1 Requirements

The project was able to fulfill some of the requirements, if tested just on the datasets’
test split. However, the results are much worse when the model is tested on a
timelapse recording, recorded during printing process.

7.1.1 Performance requirements

Model inference time

The projects’ inference time was fast enough to fulfill the layer time requirement. The
average time of 1800 milliseconds is low enough, to perform multiple inferences during
one layer, if a live capture setup is desired. Such a low processing time leaves a lot of
room for potential improvements regarding model selection and dataset size.

Model memory size

The project occupied 565 MB of tested devices’ RAM, which is 1/4th of maximum
2GB, set by the requirement, leaving more than enough space for OctoPrint to func-
tion on the device.
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7.1.2 Functional requirements

Defect detection accuracy

During validation on the test set, the model reached 0.62 mAP @ 0.5, which is
approximately 6% off the target requirement. It does not mean that the project is
not able to make predictions on the test set, it’s just not accurate enough. Lowering
this requirement to the level of 0.62 from 0.66 wouldn’t influence the results too
much.

However, during the test on the timelapse, the project was struggling with making
consistent detections and severity predictions, due to poor generalization, towards
out-of-distribution data. If a detection was finally made, then the detection was
accurate, scoring 0.89 mAP @ 50. More work is needed, if the project is ought
to work in a real-life application, but the results show some promise, that it is
possible.

Severity assessment accuracy

The project reached 60% accuracy on the test set, which is far below the requirement.
The possible causes are poor automatic labeling of the severity dataset, which could
be reflected in the training and accuracy plots during training. Proper labelling is
needed, to see whether the selected classification model is able to perform the task
of severity assessment.

7.1.3 Requirements table

Based on the comments made in the previous section, a table have been composed,
to summarize the requirements is fulfilled or not.

Requirement name Success?
Processing time Yes
Memory usage Yes

Defect detection accuracy Yes, on test set, if the requirement is relaxed.
No, on a real-life capture.

Defect severity assessment No

Table 7.1: Requirements summary

2 of 4 requirements are passed. The model is small and fast enough to run on a
Raspberry Pi 4, without interrupting the printing process and will be able to make
multiple prediction attempts per one layer.
If the accuracy requirement is relaxed, then the detection model is accurate enough
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on the test set, however the model is not making consistent detections on real-
life capture, meaning that more work is needed on the detection part. The last
requirement, the severity assessment requirement isn’t fullfilled, due to model being
not accurate enough and due possible issues with the severity assessment dataset.
More work is needed on the dataset, in order for the solution to be functional, hovewer
it may just the matter of relabelling the severity assessment dataset.



Chapter 8

Conclusion

This thesis tried to solve the following problem statement:

Given the current object detection approaches and the dataset availability, how can
one create a stringing defect object detection and severity assessment model in the
context of FDM 3d printing, to aid 3d print job supervision?

The current state of project failed to solve the problem of stringing defect detection
and severity assessment, due to problems with the defect detection on a real-life image
capture. The project as it is now makes inconsistent detection (albeit accurate, if a
detection is made), which is unacceptable in a real-life application, as well severity
assessment model is underperforming to be considered "good" to be useful.
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