
SUMMARY

This paper addresses the challenge of missing position reports within vessel trajectories. The
position reports are continuously transmitted by the Automatic Identification System (AIS)
and describe the movement of a vessel, detailing critical information such as the vessel’s
current position, course, speed, and estimated time of arrival. AIS serves as the foundation
for a multitude of applications and research endeavors and plays a critical role in enhancing
maritime safety and operational efficiency, such as collision avoidance mechanisms.

In this paper, we present DGIVT (Depth-Map Enhanced Graph Imputation for Vessel
Trajectories), a framework for performing imputation on vessel trajectories, to minimize the
number of missing position reports. We utilize the freely available AIS data provided by the
Danish Maritime Authority to extract a year’s worth of position reports, which we refer to as
vessel samples in this paper. Employing a grid across the Danish maritime waters, we assign
each vessel sample to a corresponding grid cell, we denote this as the vessel sample grid.
Subsequently, we employ a density sampling algorithm to minimize the number of vessel
samples within each cell while preserving a spatial representation of the vessel samples. For
each cell, we construct a directed graph using the vessel samples as vertices and connect
them to other vertices within a distance that also adheres to the certain course over ground
criteria. To accommodate various vessel types, and ensure that the imputation does not render
vessel samples in inaccessible regions of the vessel, we assign a depth to each vertex. This
depth is determined by referencing a depth grid generated from a depth map. In areas lacking
depth data, we rely on the draught of the vessel sample. Finally, we ensure connectivity by
linking graphs for each cell with those in adjacent cells.

Following the graph creation, we proceed to imputation on vessel trajectories, where we
begin by identifying the cells in the vessel sample grid, traversed by the vessel trajectory, and
extracting the cells graphs. We then analyze consecutive vessel samples within the vessel
trajectory, namely a source and a destination vessel sample. We proceed by identifying
vertices within a specified distance from both the source and destination vessel samples.
For each, we establish edges that adhere to criteria including distance, course over ground,
and depth. After the edges are defined, we identify all vertices between the source and
destination vessel samples, eliminating those that do not meet the specified thresholds. We
then utilize an A* algorithm to navigate the paths between the source and destination vessel
samples, and add the path to the imputed vessel trajectory, and continue to the next two
consecutive vessel samples. We do this iteratively until all vessel samples are traversed,
yielding the complete imputed trajectory. Due to the placement of vessel samples within
the graph, imputed trajectories may exhibit a zigzag pattern. To address this, we employ a
refinement algorithm that solves a linear matrix equation and calculates the least squares
solution. This allows us to determine whether a vessel is traveling straight or turning.

We evaluate our framework within a defined region consisting of nine cells. Utilizing
approximately, 1450 random vessel trajectories, we apply three distinct reduction methods.
These include multiple gap reduction, where we minimize the trajectory to maintain
a minimum distance between each vessel sample; single gap reduction, involving the
introduction of a single gap within the trajectory; and realistic frequency reduction, aimed
at simulating scenarios where expected vessel samples are missing.

Our results indicate that we perform well in contrast to linear imputation and the
framework GTI on trajectories with multiple and single gaps. However, there remains
potential for improvement, particularly in terms of the number of vessel positions and
achieving a closer resemblance to the original trajectory shape.

DGIVT: Depth-Map Enhanced Graph Imputation
for Vessel Trajectories

Alex Farup Christensen∗ and Cecilie Merete Welling Fog‡

Computer Science Department, Aalborg University,
Aalborg, Denmark

Emails: {afch19∗, cfog19‡}@student.aau.dk

Abstract—This paper presents the Depth-Map Enhanced
Graph Imputation for Vessel Trajectories (DGIVT), a novel
framework designed to address the challenge of missing AIS
(Automatic Identification System) position reports in maritime
navigation. Utilizing historical AIS position reports and sea depth
map, DGIVT constructs directed graphs that facilitate accurate
imputation of vessel trajectories through an A∗ algorithm, ensur-
ing realistic pathfinding that considers vessel-specific constraints
such as depth. The approach distinguishes itself by not relying
on pre-established maritime routes, thus providing a flexible
and comprehensive solution for a variety of vessel types across
different maritime contexts. Our evaluation demonstrates the
framework’s effectiveness in enhancing the integrity of vessel
trajectories, which is crucial for improving maritime safety and
operational efficiency. Results highlight substantial improvements
in trajectory estimation over traditional methods, thereby sup-
porting the critical role of accurate data in maritime operations.

1. INTRODUCTION

Ocean shipping is responsible for transporting approxi-
mately 80% of all traded commodities worldwide across the
seas, playing a vital role in global trading [1, p. 55]. Given
the vast scale of ocean shipping, a significant technolog-
ical advancement in maritime navigation is the Automatic
Identification System (AIS), designed primarily to enhance
vessel identification and location tracking at sea [2, p. 5].
Mandated by the International Maritime Organization (IMO)
in 2004 to ensure the Safety of Life at Sea, the use of AIS is
compulsory for international passenger- and cargo vessels over
300 gross tonnage. AIS operates autonomously, incorporating
both transceiver systems and onboard navigational aids such
as Global Positioning System (GPS) receivers, gyrocompasses,
and rate-of-turn indicators [3]. Position reports based on
a vessel’s movements are continuously transmitted by AIS
and received by maritime authorities and nearby vessels The
position reports detail critical information such as the vessel’s
current position, course, speed, and estimated time of arrival
at ports. The aggregation of AIS position reports provides a
dynamic representation of a vessel’s movement over time, also
described as the vessel’s trajectory.

The data provided by AIS, describing the movement of ves-
sels through trajectories, serve as a foundation for a multitude
of applications and research endeavors, playing a critical role
in advancing maritime safety and operational efficiency. These

applications enhance maritime safety and efficiency through
collision avoidance mechanisms [4], analysis of maritime
traffic patterns [5], and optimization of routing for reduced
travel time and improved Estimated Time of Arrival (ETA)
[6].

(a) Trajectory of a cargo vessel traveling between Kiel and Brunsbüttel,
missing multiple position reports. The arrow indicates the travel direction.

(b) The trajectory of the cargo vessel in Figure 1a) with realistic position
reports after performing imputation.

Figure 1. Comparative trajectories of a cargo vessel traveling between Kiel
and Brunsbüttel, illustrating the completeness of the imputation method.

Despite the broad utility of the AIS at enhancing mar-
itime safety and efficiency, significant challenges impede its
effectiveness [7]. In densely trafficked maritime zones, the
volume of data transmitted between vessels and maritime
authorities can exceed the inherent communication limits of
the systems deployed, causing a loss of crucial position
reports. Missing position reports can further be caused by a
defective transceiver or the AIS being switched off manually.
The challenge of missing position reports poses a risk to
maritime safety by hindering effective collision avoidance

1

but also affects the accuracy of maritime traffic analysis and
routing optimization.

Additionally, the integrity of AIS data is further compro-
mised by instances of vessels transmitting under the same Mar-
itime Mobile Service Identity (MMSI)—a unique identifier for
each vessel—leading to potential identification errors, directly
impacting one of AIS’s core functions of vessel identification
and tracking. Manual entry errors, including outdated ETAs,
incorrect destination information, and outdated navigational
statuses, also undermine the integrity of AIS data. Such
inaccuracies can significantly impair the effectiveness of AIS
applications, from safety protocols to operational decision-
making, thereby challenging the overall efficiency of maritime
operations. Building on the understanding of the challenges
encountered by the AIS, this paper focuses on the challenge
of missing position reports.

An example of a real vessel trajectory with missing position
reports is illustrated in Figure 1a. Initially, following the di-
rection traveled by the vessel indicated by the black arrow, the
trajectory features densely placed position reports. However,
between the two highlighted position reports, a significant
gap creates the appearance that the vessel is traversing land.
Following the second highlighted position report, although the
trajectory may not be missing position reports, incorporating
additional ones enhances the realism of the trajectory. This
improvement allows applications to utilize the trajectory more
effectively, enabling, for example, more accurate calculations
of the ETA.

To address the large gaps created by missing position re-
ports, along with improving the visual path traveled by vessels,
our research aims to develop a trajectory imputation frame-
work that is applicable across a wider range of vessel types,
thereby offering a comprehensive solution for the imputation
of maritime trajectory data. We achieve this by constructing
a regional grid in which positional reports from historical
AIS data are assigned to each subregion. Subsequently, we
employ a sea depth map to develop a graph for each subregion,
ensuring connectivity between adjacent subregions within the
grid.

To reduce the complexity of constructing the graph, we
utilize a density sampling technique, such that the number
of vertices in the graph is reduced, without reducing area
coverage. By using a grid, we can focus on the specific
subregions traversed by a vessel. Utilizing a sea depth map
along with properties provided by the AIS, such as course
over ground, vessel type, and draught, vertices are connected
and traversed using the A* algorithm [8]. This allows for
imputation to only be performed if a vessel can travel to
a given vertex. To avoid unrealistic zigzag patterns in the
trajectories, the quality of the trajectories is improved using
a linear matrix equation, such that the trajectory is visually
improved and looks realistic.

Our methodology is inspired by a method described by three
papers [9, 10, 11] proposing the novel idea of constructing a
graph from historical trajectory data, rather than relying on
pre-established road networks. While the imputation methods

proposed by Isufaj et al. [9] and Elshrif et al. [10] demonstrate
effectiveness in addressing vehicle trajectory data on land,
their applicability to AIS data presents significant challenges,
due to vessel movement being influenced by factors such as
sea depth constraints. Furthermore, unlike land-based vehicles
which are largely confined to road networks, maritime vessels
navigate through a considerably more flexible spatial domain.
Although vessels follow designated shipping lanes, the vast-
ness of the maritime environment allows for a wider range
of movement, significantly broadening the potential area of
travel.

While the proposal by Magnussen et al. [11] does target
vessel trajectories, it also presents its own set of limitations.
Primarily focusing on tanker vessels, it overlooks the diversity
of vessel types and their specific navigational requirements,
such as sea depth. This not only narrows the applicability of
their methods but also misses the nuances that other vessel
types, such as passenger, fishing, and tender vessels introduce
into the trajectory data. Additionally, the focus on trajectories
within large open sea areas fails to account for the complexities
encountered in coastal sea areas. In these areas, movement is
more constrained, and navigational challenges are increased
due to the proximity of land, influencing the patterns of vessel
trajectories.
The following summarizes the contributions of this paper:

• Implement graphs using a regional grid and sea depth
map.

• Design an imputation method that utilizes properties
provided by the AIS, such as draught and course over
ground, to address the issue of missing position reports.

• Supports trajectory imputation for multiple vessel types,
such as fishing, cargo, and passenger vessels.

• Utilizes 397 days worth of AIS data (1,489,884,660
vessel positions) to implement, test, and validate our
solution against alternatives.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work, Section 3 introduces a set
of preliminaries that are used throughout the paper. While
Section 4 presents the solution, Section 5 highlights the results,
Section 6 concludes the paper.

2. RELATED WORK

In this section, we examine related approaches to trajectory
imputation, as well as similar studies related to time series
imputation.

A wide range of studies examine techniques for inserting
points between two consecutive GPS points. This notion
includes various names such as trajectory interpolation, -
restoration, -recovery, -cleaning, and -imputation. Common for
all of these approaches is to combat trajectories with large
gaps, by inserting candidate GPS points in the trajectory. This
task can generally be viewed from two different settings,
based on whether underlying map information, such as a
road network, is present or not. For example, several studies
[12, 13, 14] rely on existing road networks to apply imputation
methods for generating missing GPS points in trajectories

2

with gaps. However, for the maritime domain, such existing
networks are not present, and cannot be utilized for vessel tra-
jectory imputation. Furthermore, by using underlying networks
the imputation becomes reliant and requires continuously up-
to-date maps as networks may evolve.

To avoid relying on existing networks for trajectory imputa-
tion, previous studies [9, 10, 11, 15] have proposed leveraging
graphs derived from GPS points of historic trajectories, in con-
junction with employing a graph search algorithm to perform
imputation for new trajectories.

One of these studies [10] proposes a novel method TrImpute
that relies on ’crowd wisdom’ to guide the imputation process
of trajectories with gaps, meaning it prioritizes directions
frequented by other trajectories during the imputation process.
However, to construct its graphs, TrImpute is dependent on
trajectories with no missing points, which makes it susceptible
to a high error rate in regions, where data is sparse. It further
uses an exhaustive search strategy to traverse its graph, leading
to computational inefficiency during the imputation. A similar
approach [9], GTI, mitigates the computational inefficiency of
TrImpute by using Dijkstra’s shortest path algorithm. However,
both methods have only been tested on vehicle trajectories and
do not account for different types of vehicles. This limitation
makes them less suitable for vessel trajectories, where it is
crucial to ensure that imputation does not occur in locations
where vessels cannot normally travel, such as on land or in
shallow waters where grounding might occur. The navigability
of travel varies depending on the vessel type and its draught.

A study [11] that does consider vessel trajectories, is the
novel method DAISTIN that has a similar approach to the
aforementioned studies, GTI and TrImpute, but uses an A∗

shortest path algorithm to traverse the graph. As this method
only considers vessels of the type ’oil tanker’, it has not been
tested for other vessel types, and further, like the other related
studies, does not consider locations where the vessel might
ground, as this consideration is not necessary when imputing
data for a single vessel type.

Unlike the aforementioned studies that are based on graphs,
one study [15] proposes the novel method KAMEL, and is
based on the Natural language processing (NLP) model BERT .
BERT can perform linguistic tasks, including sentence com-
pletion, and is trained to predict missing words in a sentence,
given the surrounding context of the left- and right word.
KAMEL is equipped with a BERT model improved with spatial
awareness, such that it can find missing GPS points in tra-
jectories. KAMEL showcases a high accuracy for performing
imputation on trajectories with few points, however, like the
aforementioned studies, KAMEL also only considers vehicle
trajectories, and does not extend to considering different types
of vehicles.

Instead of leveraging graphs from historic trajectory data,
or utilizing NLPs, another interesting approach to the im-
putation problem is proposed by other studies [12, 16, 17].
The propositions are inspired by the Generative Adversarial
Network (GAN) methodology or framework proposed by one
study [18]. The GAN framework consists of two main parts, a

generator network, and a discriminator network, that compete
with each other to produce the best possible imputation
positions. For instance, the study by Shi et al. [16] describes
how a generator uses an encoder-decoder architecture to fill
in missing trajectory data, while a discriminator evaluates the
realism of the generated trajectories. This iterative process
continues until the discriminator cannot differentiate between
the original and the generated trajectories. Despite its inge-
nuity, this methodology proves unreliable for our purposes
in vessel trajectory imputation. The technique relies on large
amounts of trajectory data with no missing points as training
material, which contrasts sharply with the sparse nature of AIS
data, characterized by significant gaps between consecutive
AIS points.

While DAISTIN like DGIVT considers vessel trajectories,
none of the aforementioned studies [9, 10, 11, 15] consider the
notion of inaccessible regions. For vessels, this encapsulates
land and sea regions where grounding can occur. DGIVT uses
a similar methodology to TrImpute, GTI and DAISTIN, but
with the awareness of inaccessible regions by considering a
vessel’s draught, as well as the sea depth.

3. PRELIMINARIES

This section presents concepts used throughout this study.
The first concept is a position report. A single position report
contains 27 data fields [19], where not all fields are relevant to
the algorithms we present in Section 4. We limit ourselves to
11 of the 27 data fields, namely longitude, latitude, timestamp,
draught, course over ground, speed over ground, navigational
status, vessel type, width, length, and MMSI, which is a unique
identifier of a vessel. To make a clear distinction between
position reports with 27 data fields, and a position report with
11 data fields, a vessel sample is introduced in Definition 1.

Definition 1 (Vessel Sample). A vessel sample vs is an 11-
tuple (t, lng , lat , draught , cog , sog , nav status , vessel type,
width , length , mmsi) where:

• t is the timestamp, indicating when the position was
transmitted.

• lng and lat represent the longitude and latitude of the
vessel, respectively.

• draught is the draught measurement of the vessel and
indicates the depth of water required to float.

• cog and sog are abbreviations of the course over ground
and speed over ground, where course over ground de-
scribes the heading of the vessel, and speed over ground
describes the speed of the vessel, respectively.

• nav status and vessel type represent the navigational
status and the vessel type of the vessel, respectively.

• width and length are the width and length of the vessel.
• mmsi is the MMSI, a unique identifier for the vessel.

With the introduction of vessel samples, we utilize the
Haversine formula [20][p. 2] to calculate the great-circle
distance between two vessel samples on a sphere, using the
positions’ longitudes and latitudes. This formula calculates the
distance in meters between two vessel samples, assuming that

3

the radius r of the earth is 6, 371, 000 meters. The formula is
shown in Definition 2.

Definition 2 (Haversine). Given two vessel samples vs1 and
vs2, the Haversine formula calculates the distance in meters
between the vessel samples, given their longitudes and lati-
tudes. It is defined as:

d (vs1, vs2) = 2r arcsin

(
sqrt

(
sin2

(
ϕ2 − ϕ1

2

)
+cos(ϕ1) cos(ϕ2) sin

2

(
γ2 − γ1

2

)))
,

where:
• sqrt is the square root.
• ϕ1 and ϕ2 are the latitudes of vs1 and vs2, respectively,

expressed in radians.
• γ1 and γ2 are the longitudes of vs1 and vs2, respectively,

also expressed in radians.
• r is Earth’s radius, approximately, 6,371,000 meters.

We can extend the formula d to also work with other tuples
containing longitude and latitude

With the definitions of a vessel sample and the Haversine
formula, we define a vessel trajectory.

Definition 3 (Vessel Trajectory). Let VS be a set of ves-
sel samples. A vessel trajectory vt is a sequence vt =
⟨vs1, . . . , vsn⟩, given the following conditions:

n ≥ 2

vsi ∈ VS ∧ i ∈ {1, . . . , n}
vsi.mmsi = vsi+1.mmsi ∧ i ∈ {1, . . . , n− 1}
vs1.t < vs2.t < · · · < vsn.t

The distance D traveled by a vessel trajectory is calculated
using the Haversine formula d as follows:

D (vt) =

n−1∑
i=1

d(vsi, vsi+1)

We proceed to define additional concepts used for vessel
trajectory imputation. As described by Section 1, DGIVT uses
a sea depth map to guide the imputation of vessel trajectories,
such that vessels do not appear to either cross land or travel
in locations, where they cannot travel due to their draught. To
utilize the sea depth map, we first define a grid.

Definition 4 (Grid). Given a geographical region R bounded
by coordinates (lngmin, latmin) and (lngmax, latmax), a grid
G is a matrix of subregions Gi,j with m rows and n columns,
representing subdivisions into m×n subregions Gi,j , referred
to as cells, with subareas:

Gi,j = [lngmin + (j − 1) ·∆lng , lngmin + j ·∆lng)

× [latmin + (i− 1) ·∆lat , latmin + i ·∆lat)

i ∈ {1, . . . ,m }
j ∈ {1, . . . , n},

where ∆lng and ∆lat are the longitudinal and latitudinal
dimensions of each cell, calculated as:

∆lng =
lngmax − lngmin

n

∆lat =
latmax − latmin

m

The centroid of each cell Gi,j is calculated as:

centroid (Gi,j) = (lngmin + (j − 0.5) ·∆lng ,

latmin + (i− 0.5) ·∆lat)

Next, each cell Gi,j has a sea depth depthi,j , which may be
unknown. With the formula for finding the centroid of a cell, it
can be determined given a vessel sample vs , which cell Gi,j

in grid G has the centroid closest to vs , using the method
closest cell (vs, G) defined by next:

closest cell(vs, G) =

(
argmin

Gi,j

d
(
vs, centroid(Gi,j)

)
,

min
Gi,j

d
(
vs, centroid(Gi,j)

))
where argmin returns the cell Gi,j with the centroid having
the smallest distance to the vessel sample, and min returns
the distance to the cell. If two cells have the same distance,
the first one found is returned.

Furthermore, given a vessel sample vs , the intersection
method ints(vs , Gi,j) determines whether vs is within the
boundaries of cell Gi,j .

ints(vs,Gi,j) =



1 ((lngmin + (j − 1) ·∆lng) ≤ vs.lng

< (lngmin + j ·∆lng)) ∧
((latmin + (i− 1) ·∆lat) ≤ vs.lat

< (latmin + i ·∆lat))

0 otherwise

A simplified grid is illustrated in Figure 2. It illustrates a
grid of size m rows and n columns. Each cell is labeled with
its column and row index, and each has a red dot, representing
the cells’ centroids. The blue dot illustrates a vessel sample
vs that falls within the bounds of cell G2,2.

G1,1 G2,1 G3,1 G4,1 G5,1 G6,1

G1,2 G2,2 G3,2 G4,2 G5,2 G6,2

G1,3 G2,3 G3,3 G4,3 G5,3 G6,3

G1,4 G2,4 G3,4 G4,4 G5,4 G6,4

vs

Grid Columns (n = 6)

G
ri

d
R

ow
s

(m
=

4
)

∆lng

∆lat

Figure 2. Illustration of the grid system as defined in Definition 4.

4

With the concept of grid introduced, we introduce the next
concept, directed graph, which is essential for the imputation
of vessel trajectories.

Definition 5 (Directed Graph). A directed graph DG is
defined by as a 3-tuple DG = (V,E,w), where

• V is a non-empty set of vertices
• E ⊆ V × V is a set of 2-tuples, called directed edges.

For each directed edge (u, v) ∈ E

• u is the source vertex
• v is the destination vertex
• u ∈ V, v ∈ V, u ̸= v
• w : E 7→ R is an associated weight that maps each edge
(u, v) to a numerical value

In Section 4, we will showcase the DGIVT solution of graph
creation and imputation, utilizing the definitions defined in this
section.

4. DGIVT
In this section, we introduce the key components of

Depth-Map enhanced Graph Imputation for Vessel Trajectories
(DGIVT), a framework for performing imputation on vessel
trajectories.

4.1 DGIVT overview
An overview of DGIVT is presented in Figure 3. The

figure illustrates the three modules of the framework and the
overall process of data flow and execution. The rectangular
boxes represent input and output, whereas the hexagonal boxes
denote data processing. The following sections in this chapter
provide an in-depth look at these modules and their purposes.

DATA PREPARATION
MODULE

Vessel Sample
Grid

GRAPH
MODULE

IMPUTATION
MODULE

Set of Vessel
Samples

Create
Grid

Depth Map

Create
Grid

Sea Depth
Grid

Imputation

Imputed
Trajectory

Create
Graphs

Density
Sampling

Set of
Representative
Vessel Samples

Set of Graphs

Vessel
Trajectory

Figure 3. Overview of the DGIVT Framework.

Data Preparation Module [Section 4.2]: This module en-
capsulates two core functionalities. The first functionality
processes as a set of vessel samples, associating each with
a cell in a grid, referred to as vessel sample grid in Figure 3.
This grid serves as a foundational data structure for subsequent
graph construction algorithms. Concurrently, another grid is
constructed using a depth map, associating each cell in this
grid with a sea depth. We refer to this grid as the sea depth
grid in Figure 3.
Graph Module [Section 4.3]: This module leverages both
the vessel sample grid and sea depth grid generated by
the Data Preparation Module. Its primary purpose is graph

construction, beginning with a density sampling technique
[21] that reduces the number of vessel samples in cells with
dense spatial representation. Following the density sampling
technique, graphs are constructed with the remaining vessel
samples as vertices for each cell in the vessel sample grid.
Each vertex is associated with a depth, using the sea depth
grid. Edges are furthermore established between graphs of
connected cells.
Trajectory Imputation Module [Section 4.4]: This module
leverages the graphs created in the Graph Module. It identifies
cells in the vessel sample grid traversed by a given vessel
trajectory. The imputation process involves integrating con-
secutive vessel samples into the graphs as vertices, specifically
targeting the graphs corresponding to the cells intersected by
these samples. To traverse the graph, we apply an A∗ to guide
the imputation.

4.2 Data Preparation Module

The data preparation module has two core functionali-
ties. First, it processes the incoming set of vessel samples,
VS , which are later used for graph construction. A naive
approach is to use all the vessel samples to construct the
graphs; however, the number of vessel samples may reach
billions, making such processing computationally inefficient.
We therefore propose an alternative approach that divides the
overall spatial region into smaller subregions. Each subregion
is represented as a cell, VSGi,j , within a grid, VSG , and
contains a subset of the vessel samples in VS . An illustration
with real vessel samples is seen in Figure 4, highlighting the
vessel samples associated with a respective cell in the vessel
sample grid.

Figure 4. Illustration of the vessel sample grid VSG . Each color corresponds
to a specific cell VSGi,j ∈ VSG , and each cell contains a subset of vessel
samples vs ∈ VS . The centrally located region, with no vessel samples,
appears due to shallow depth, making it inaccessible to vessels. The presence
of vessel samples on land likely occurs due to faulty AIS transmission, as
vessel samples with a draught ≤ 0 have been discarded.

5

In addition to creating the vessel sample grid, the DGIVT
framework utilizes a sea depth grid, SDG , where each cell,
SDG l,k, is associated with a depth value. The sea depth
grid is used for associating each vessel sample with a depth.
Thus, the module outputs two distinct grids: the vessel sample
grid, VSG , which reduces computational complexity in graph
construction and vessel trajectory imputation, and the sea
depth grid, SDG , which enriches each vessel sample with sea
depth information.

4.3 Graph Module
Given the vessel sample grid, VSG , and a sea depth grid,

SDG , as arguments, the primary objective of the graph module
is to create a directed graph, DG , for a set of vessel samples,
VS , associated with a cell in the vessel sample grid, VSG .
This section presents a data-driven approach for constructing
such graphs. The first step in the module processes the
incoming vessel samples, VS . If the cell contains a substantial
amount of vessel samples, it can become a bottleneck when
performing imputation on a vessel trajectory, due to the size
of the graph created for the cell. Hence, we reduce the number
of vessel samples in cells with dense spatial representation to
improve computational efficiency while preserving the spatial
representation of the data. In subregions with a high density
of vessel samples, we minimize their number; in subregions
with a low density of vessel samples, we maintain the ex-
isting number of samples. Algorithm 1, introduces a density
sampling technique, implementing a vessel sample reduction
function.

Algorithm 1 Density Sampling
Input: A set of vessel samples (VS), a vessel sample cell

(VSG i,j), and a neighbor distance threshold (ndist th)
Output: Set of vessel samples RVS

1: function DENSITY SAMPLING(VS , VSG i,j , ndist th)
2: RVS ← ∅
3: EVS ← ∅
4: CVS ← {vs | vs ∈ VS ∧ ints (vs,VSG i,j)}
5: for all vs ∈ CVS do
6: if EVS = CVS then
7: Exit
8: if vs /∈ EVS then
9: NB ← range query (vs,CVS ,ndist th)

10: md ← maxnvs∈NB nvs.draught
11: md ← max (vs.draught ,md)
12: Q← quadrants(md ,NB ,EVS)
13: RVS ← RVS ∪Q
14: EVS ← EVS ∪NB ∪ {vs}
15: return RVS

The algorithm takes three arguments: the set of vessel
samples, VS , a cell in the vessel sample grid, VSGi,j , and
a neighbor distance threshold, ndist th . In Lines 2 and 3,
we initialize two empty sets: RVS , for storing spatially
representative vessel samples, and EVS , for tracking excluded
vessel samples. We then proceed in Line 4 to instantiate CVS

as a subset of vessel samples in VS that intersects with cell
VSGi,j using the intersection function defined in Definition 4.

In Line 5, we iterate through all the vessel samples in
CVS , ensuring in Lines 6 to 8 that neither the elements in
EVS correspond to the elements in CVS , nor that we have
processed a vessel sample already in EVS . If EVS = CVS , it
means we have finished processing all the vessel samples, and
we exit the for loop. Conversely, if we have only processed the
current vessel sample, we continue to the next vessel sample.

In Line 9, we employ a range query function to locate all
neighboring vessel samples to vs within the neighbor distance
threshold, ndist th . Although not illustrated in the algorithm,
the set NB is organized as a kdtree data structure [22], which
is a binary search tree specifically designed for efficiently
searching multidimensional data, such as vessel samples.

In Lines 10 and 11, we define the variable md , representing
the maximum draught among vs and its neighboring vessel
samples, nvsi ∈ NB . This variable is useful during graph
creation when no associated depth in our sea depth grid is
available for the vessel sample, allowing us to use md as an
alternative measure.

Line 12 introduces the variable Q, instantiated through the
quadrants function. This function takes three arguments: md ,
NB , and EVS . It is designed to select a maximum of four
representative vessel samples, and we demonstrate the function
in Figure 5, where Figure 5a shows the set of neighbors,
{nvs1 , . . . ,nvs7} ∈ NB .

0◦

180◦

90◦ 270◦nvs1

nvs5

nvs7

nvs2

nvs6

nvs3

nvs4

(a) Shows the set of neighbors nvsi ∈
NB within a given distance ndist th .
Each vessel sample is depicted in a
different color to indicate its course
above ground relative to the randomly
selected center nvs1.

0◦

180◦

90◦ 270◦rvs1

rvs2
rvs3

rvs4

(b) Results after performing the
quadrants function. The representa-
tive vessel samples rvsi contain the
tuples elements of its associated nvsi,
but with updated draught and course
over ground.

Figure 5. The quadrants function. It shows a circle divided into four colors,
centered on nvs1. The arrows indicate the vessel samples’ course over ground,
and the colors of the vessel sample show which quadrant they are associated
with in the circle, with respect to nvs1.

We use colors to illustrate the course over ground dif-
ferences between neighboring vessel samples, categorized
into four ranges: [315◦, 45◦], (45◦, 115◦], (115◦, 225◦], and
(225◦275◦), relative to nvs1 .cog . For each quadrant, we select
a neighbor vessel sample, calculate the average course over
ground for all neighbor vessel samples within the quadrant,
and generate a corresponding representative vessel sample,
incorporating both the maximum draught variable, md , and an

6

average course over ground for the quadrant. This is illustrated
in Figure 5b, where the arrows on the representative vessel
samples, correspond to an average of the course over ground
for the neighbor vessel samples associated with the quadrants.
The argument EVS is used to ensure that a neighbor vessel
sample, used as a representative vessel sample, has not been
added to EVS .

An example of applying density sampling to real vessel
samples, in a cell, is demonstrated in Figure 6. The fig-
ure shows a clear distinction between the number of vessel
samples before and after the implementation of the density
sampling algorithm, while keeping a spatial representation of
the vessel samples.

(a) The set CVS before sampling. (b) The set RVS after density sam-
pling.

Figure 6. Illustration of Density Sampling.

The reduction of vessel samples significantly improves the
computational efficiency during vessel trajectory imputation,
as the numbers of vertices, V , and edges, E , to consider are
significantly reduced. The next step of the module is to create
a directed graph, DG , using the representative vessel samples
RVS . In Algorithm 2, we present our graph creation approach.

The algorithm takes six arguments: the representative vessel
samples, RVS , a sea depth grid, SDG , a cell in the vessel sam-
ple grid, VSGi,j , two threshold values, dist th and cdist th ,
and a distance penalty rate, dist pr .

In Line 2, we define a set VVS , which we instantiate to all
vessel samples vs in RVS that intersect with the cell VSGi,j .
To associate a vessel sample with a depth, we extend our
definition of a directed graph from Definition 5 to include
an additional tuple element, dm , such that a directed graph is
now defined as a 4-tuple DG = (V,E,w, dm), where dm is
defined as a mapping function:

dm : VS 7→ R,

We instantiate the tuple elements required for building the
directed graph, DG , in Lines 3, 4, 5, and 6.

In Line 7, we proceed by iterating through all vessel
samples, vs ∈ VVS . For each vs , we use the function
closest cell in Line 8, described in Definition 4, to retrieve
the cell SDGk,l ∈ SDG with a centroid closest to vs , along
with the distance to the centroid of SDGk,l, cdist . Retrieving
the distance to the centroid of the SDGk,l is necessary, as we
do not necessarily have a sea depth grid that covers the entire
domain. We check in Line 9, whether cdist exceeds the cell
distance threshold, cdist th . If this is the case, we map the

Algorithm 2 Graph Creation
Input: A set of representative vessel samples (RVS), a sea

depth grid (SDG), a cell in vessel sample grid (VSG i,j),
a distance threshold (dist th), a cell distance threshold
(cdist th), a distance penalty rate (dist pr)

Output: Directed graph DG
1: function CREATE GRAPH(RVS , SDG , VSG i,j , dist th ,

cdist th , dist pr)
2: VVS ← {vs | vs ∈ RVS ∧ ints (vs,VSG i,j)}
3: V ← ∅
4: E ← ∅
5: w ← new mapping function for edges
6: dm ← new mapping function for vertices to depth
7: for vs ∈ V V S do
8: (SDGk ,l , cdist)← closest cell (vs,SDG)
9: if cdist > cdist th then

10: dm(vs)← ¬vs.draught
11: else
12: dm(vs)← depthk,l

13: V ← V ∪ {vs}
14: for vs ∈ V do
15: NB ← range query (vs, V, dist th)
16: tdist ← dist th
17: while NB\{vs} = ∅ do
18: tdist ← tdist · dist pr
19: NB ← range query (vs, tdist)

20: for nvs ∈ NB\{vs} do
21: w(vs,nvs)← weight(vs,nvs)
22: E ← E ∪ {(vs,nvs)}
23: DG ← (V,E,wdm)
24: return DG

negated draught value of the vessel sample in Line 10, and
otherwise, map the depth, depthk,l, of the cell to the vessel
sample in Line 12. We then proceed to add vs to the set of
vertices, V , in Line 13.

In Line 14, we enter a second for loop, iterating through
each vs ∈ VS . We begin by instantiating the set of neighbors
NB for vs ∈ V . Next, we introduce a temporary distance
variable, tdist . We use this variable, given NB = ∅ evaluates
to true in the while loop in Line 17. We multiply tdist
with the distance penalty rate, dist pr , to keep increasing the
search space for neighbors until the predicate of the while loop
evaluates to false .

Once the while loop evaluates to false , we iterate through all
the neighboring vessel samples, nvs ∈ NB in Line 20. Within
the for loop, we map the weight from vs to nvs to w using
the weight function. The weight function takes two arguments:
the current vessel sample, vs , and the current neighbor vessel
sample, nvs .

The function for weight is defined as follows:

weight(vs1 , vs2) = d(vs1, vs2)+cog penalty(vs1 , vs2),

7

where cog penalty influences the weight of the edge, if they
are not traveling in a similar direction. We formally define the
cog penalty as:

cog penalty(vs1 , vs2) =

(
min (|cd | , 360− |cd |)

180

)
·Θ ,

where:
• cd = vs2 .cog − vs1 .cog .
• Θ is an angle threshold applied, when the course over

ground vs2 .cog ̸= vs1 .cog .
We demonstrate the weight function in Figure 7.

(a) Example of using
the distance threshold.

(b) Example of using
the course over ground
penalty

(c) Illustration of
performing the weight
function.

Figure 7. Illustrates the function weight .

Figure 7a illustrates how the edges are created, if we
only consider the distance to the neighboring vessel samples.
Figure 7b illustrates how the edges are created, if we only
consider the course over ground for the neighboring vessel
samples. Here we see, that unlike in Figure 7b, we only
create edges when the course over ground does not differ
greatly. Figure 7c illustrates how the edges are created when
we combine the two functions. We see that we only include the
neighboring vessel samples if they are both within the distance
threshold and have a course over ground that does not differ
greatly from vs

After creating the mapping to w, we add the edge (vs,nvs)
to the set of edges, E , in Line 22, and continue iterating.
Once done, we instantiate and return the directed graph, DG ,
in Lines 23 and 24.

To ensure connectivity across different subregions in VSG ,
it is essential to establish edges between the individual graphs
associated with each subregion. For instance, consider a
scenario where we need to perform imputation on a vessel
trajectory starting in subregion VSG1 ,1 , and ends in sub-
region VSG1 ,2 . Without interconnected graphs, it would be
impossible to traverse between subregions. To address this,
we link the graphs within VSG using the method outlined in
Algorithm 2 (see Line 14). This process specifically employs
an adjusted version of the range query to identify vessel
samples, vs ∈ VS , for each subregion, VSG1 ,1 and VSG1 ,2 ,
that are within a distance threshold of each other, ensuring
spatial navigation across subregions.

To summarize, this module utilizes a density sampling
technique to reduce the set of vessel samples, VS , without
compromising the spatial representation, and return a rep-
resentative set of vessel samples, RVS . Using the set of

representative vessel samples, the module continues creating
vertices, V , edges, E, edge weights, w, and depths, dm, to
create a directed graph, DG , for each grid cell VSG i,j . Once a
directed graph has been created for all cells in VSG , the vessel
samples in neighboring cells, within a distance threshold of
each other, are connected by edges in their respective directed
graphs. The next module Section 4.4 will now leverage the
graphs to perform vessel trajectory imputation.

4.4 Vessel Trajectory Imputation
The main objective of this module is to insert realistic vessel

samples in a vessel trajectory. Our imputation approach can
be viewed in Algorithm 3. It takes four arguments: A vessel
sample grid, VSG , a vessel trajectory, vt , a distance threshold,
dist th , and a distance penalty rate, dist pr .

Algorithm 3 Imputation
Input: A vessel sample grid (VSG), a vessel trajectory (vt),

a distance threshold (dist th), and a distance penalty rate
(dist pr)

Output: A vessel trajectory(ivt)
1: function IMPUTATION(VSG , vt , dist th , dist pr)
2: ivt ← empty sequence of vessel samples
3: DG ← find intersecting graphs(VSG , vt)
4: for i← 1 to len(vt)− 1 do
5: svs ← vsi ∈ vt
6: dvs ← vsi+1 ∈ vt
7: DG .V ← DG .V ∪ {svs, dvs}
8: dist ← dist th
9: SNB ← range query(svs,DG .V, dist th)

10: while SNB\{svs} = ∅ do
11: dist ← dist · dist pr
12: SNB ← range query(svs,DG .V, dist)

13: for nvs ∈ SNB\{svs} do
14: if reachable(svs,nvs) then
15: DG .E ← DG .E ∪ {(svs,nvs)}
16: DG .w(svs,nvs)← weight(svs,nvs)

17: DNB ← range query(dvs,DG .V, dist th)
18: Perform Lines 10 and 16 for DNB
19: dist ← d(svs, dvs)
20: NB ← range query(svs,DG .V, dist))
21: NB ← {svs, dvs} ∩ (NB ∪

range query(dvs,DG .V, dist)
22: Perform Lines 10 and 12 for NB
23: for nvs ∈ NB\{svs, dvs} do
24: if ¬reachable(svs,nvs) ∨

¬reachable(nvs, dvs) then
25: Remove all edges and vertices

containing nvs

26: path ← A∗(DG , svs, dvs)
27: if path = ∅ then
28: ivt ← ivt ◦ ⟨svs, dvs⟩
29: else
30: ivt ← ivt ◦ path
31: return ivt

8

The algorithm begins by defining DG in Line 3, using
the function find intersecting graphs . The function selects
the graphs that the vessel trajectory, vt , travels through, and
merges them. We then proceed traversing through every vessel
sample vs ∈ vt , using a len function that returns the total
number of vessel samples in the vessel trajectory. We extract
one from the length of the vessel trajectory to avoid out-of-
bounds issues.

We then proceed to instantiate a source vessel sample,
svs , and a destination vessel sample, dvs , which are two
consecutive vessel samples in vt . We add both svs and dvs to
the vertices DG .V in Line 7. In Lines 8 to 12, we follow a
similar approach in Lines 15 to 19 in Algorithm 2, ensuring we
find the neighbors SNB to svs . If no neighbors are found, we
increase the search space, using a distance threshold, dist th .
Once the while loop evaluates to true , we begin traversing the
found neighbors nvs ∈ SNB in Line 13. For each nvs , we
check whether svs is able to reach nvs , using the function
reachable in Line 14. This function compares the draught
of the source vessel sample with the depth value on the
neighboring vessel sample. If it determines the depth of the
neighbor vessel sample is appropriate given the draught of
the source vessel sample, we add edge (svs,nvs) to the set
of edges DG .E , as well as update the weight in mapping
function in Lines 15 and 16.

This is illustrated in Figure 8, where the darker area
symbolizes a depth, where the vessel can travel. Figure 8a

(a) Illustration of
performing the weight
function.

(b) Example of using
draught penalty.

(c) Using draught
penalty along with
weight function

Figure 8. Illustrates the difference in edge creation when taking draught into
account. The darker spots symbolize a depth, where the vessel can travel.

demonstrates the edges created for a source vessel sample,
where we only apply the weight function. It illustrates that
if we only use the weight , we end up creating edges to
neighboring vessel samples, where the vessel cannot travel.
Figure 8b demonstrates potential edges, if we only consider
the draught of the vessel, and do not include the weight
function. Here there vessel is able to travel to all the edges, but
there is no filtering applied. Figure 8c demonstrates the edges
created, when both using both functions, and we see that the
combination of the functions returns only a single edge.

While not demonstrated in the algorithm, we follow a
similar approach, as described above, to add edges between the
neighboring vessels samples DNB to dvs in Lines 17 and 18

In Line 19, we initialize the variable dist as the distance
between svs and dvs , and in Lines 20 and 21, we define NB

as the set of common neighbors between svs and dvs . If the
set of neighbors is empty, similar to earlier, we increase the
search space.

Once we have a valid set of neighbors, NB , we utilize the
reachable function again in Line 24 to remove neighboring
vessel samples with an inappropriate depth relative to the
draught values of svs and dvs . Consequently, neighboring
vessel samples are removed in Line 25 if the if condition
evaluates to true . After removing invalid neighboring vessel
samples, we employ an A∗ algorithm in Line 26.

Depending on whether the algorithm finds a path, we
either add the found path or ⟨svs, dvs⟩ to the imputed vessel
trajectory ivt in Lines 28 and 30. We then continue to the next
two consecutive vessel samples in the for loop in Line 4, until
the whole vessel trajectory has been processed. We return the
imputed vessel trajectory in Line 31.

While not demonstrated in the algorithm, we update the
timestamp, course over ground, and speed over ground of
the vessel samples in the paths found by the A∗ algorithm.
We acquire this by performing linear interpolation [23], and
we illustrate this calculation for the timestamp of the vessel
sample in Equation 1. The calculation can be done similarly
for speed over ground and course over ground.

vsi .t = vs1.t+
vsn.t− vs1.t

D(path)
·
i−1∑
j=1

d(vsj , vsj+1) (1)

where
• 1 < i < n
• ⟨vs1, . . . , vsn⟩ ∈ path
• vs1 = svs
• vsn = dvs

4.4.1 Vessel Trajectory Refinement: The arrangement of
vertices in the directed graph produced in Algorithm 2, may re-
sult in Algorithm 3 producing vessel trajectories with a zigzag
pattern. By solving a linear matrix equation and computing the
least squares solution [24], we can determine whether a subset
of the vessel positions in a vessel trajectory is considered
straight. As long as the residuals obtained from solving the
linear matrix equation are below or equal to the threshold ϵ,
we say that the vessel travels in a straight line. When the
residual exceeds ϵ, we say that the vessel is turning and look
at the next subset of vessel positions. Algorithm 4 and Figure 9
provide a thorough description of this procedure.

Algorithm 4 takes two arguments: a vessel trajectory, vt , and
a threshold value, ϵ, used to say when a subset of the trajectory
is no longer considered to travel straight. An illustration of
such a vessel trajectory can be seen in Figure 9a, where vt =
⟨vs1, . . . vs7⟩.

In Lines 2 and 3, we instantiate the variables anchor and w.
The variable anchor determines the beginning of the sequence
of vessel positions that we are currently looking at. As we
are beginning at the start of the vessel trajectory, anchor is
instantiated to one. The variable w represents the total number
of vessel samples, we are considering at once. We instantiate

9

Algorithm 4 Vessel Trajectory Refinement
Input: A vessel trajectory(vt) and a residual threshold ϵ
Output: A vessel trajectory rvt

1: function TRAJECTORY REFINEMENT(vt , ϵ)
2: anchor ← 1
3: w ← 3
4: turn detected ← false
5: prev fit ← ⟨vs1, vs2⟩ ∈ vt
6: rvt ← ⟨⟩
7: while (anchor + w) ≤ len (vt) do
8: sec ← ⟨vsanchor , . . . , vsanchor+w−1⟩ ∈ vt
9: (fit sec, res)← best fit (sec)

10: if (res > ϵ) ∧ ((anchor + w) < len(vt)) then
11: seq ex ← ⟨vsanchor , . . . , vsanchor+w−2,

vsanchor+w⟩, vs ∈ vt
12: (, res)← el2 (best fit (seq ex))
13: if res > ϵ then
14: turn detected ← true
15: else
16: vs tp ← find center pos(

⟨vsanchor+w−2,
vsanchor+w−1,
vsanchor+w⟩)

17: sec ←
⟨vsanchor , . . . , vsanchor+w−2, vs tp⟩,
⟨vsanchor , . . . , vsanchor+w−2⟩ ∈ vt

18: (fit sec, res)← best fit (sec)

19: if turn detected then
20: rvt ← rvt ◦ prev fit
21: anchor ← anchor + w − 1
22: w ← 3
23: prev fit ← ⟨vsanchor , vsanchor+1⟩ ∈ vt
24: else
25: prev fit ← fit sec
26: w ← w + 1

27: rvt ← rvt ◦ prev fit
28: return rvt

w to three, as a sequence of two vessel samples, ⟨vs1 , vs2 ⟩
always shapes a straight line, and, furthermore, is the minimum
required number of vessel samples to define a vessel trajectory.
This is also why the variable prev fit in Line 5 is instantiated
as the two first vessel samples in the vessel trajectory.

In Line 6, we instantiate rvt , representing the refined version
of vt , and in Line 7, we use a function len to check whether
we are exceeding the length of vt . If this is not the case, we
enter the while loop.

In Line 8, we instantiate the variable sec to a sequence of
vessel samples, beginning from vsanchor to vsanchor+w−1 . In
Figure 9a, this is equivalent to the first three vessel samples
in the vessel trajectory.

In Line 9, we use the best fit function to obtain a best-fit
line [24] fitsec along with a residual res used to say whether vt
is traveling straight for the vessel samples in sec. An example

forspacing

vs1

vs2 vs3

vs4

vs5
vs6

vs7

w = 3, res ≤ ϵ

(a) First Iteration.

vs1
vs2

vs3

vs4

vs5
vs6

vs7

w = 4, res ≤ ϵ

(b) Second Iteration.

forspacing

vs1
vs2

vs3
vs4

vs5
vs6

vs7

res > ϵ w = 3, res ≤ ϵ

(c) Third and Fourth Iteration.

forspacing

vs1
vs2

vs3
vs4

vs5 vs6 vs7

(d) Refinement complete.

Figure 9. Illustrates Algorithm 4 on a vessel trajectory. Figure 9a, Figure 9b,
Figure 9c, and Figure 9d illustrates how the vessel trajectory is refined for
each iteration.

of a best-fit line is shown in Figure 9a as the red dashed line.
We then check in Line 10, whether res exceeds the threshold
ϵ and that vtanchor+w is not the last vessel sample in vt .
If it evaluates to true , we enter the if case, and check if
exchanging the vessel sample vsw−1 with the following vessel
sample vsw also result in a residual res > ϵ. Here, we use
a function el2 to retrieve the second tuple element returned
by the function best fit in Line 12, as we only need the
residual value. If the residual res > ϵ, we enter the if case
in Line 13 and instantiate the variable turn detected to true
in Line 14. Otherwise, we enter the else in Line 15, and in
Lines 16 and 18, use the function find center pos to center
vsanchor+w−1 between the vessel samples vsanchor+w−2 and
vsanchor+w and again calculate the best-fit line.

In Line 19, given we determined the vessel to be turning,
we enter the if and in Lines 20 and 23 we add prev fit to rvt ,
as it can be refined no further. We update the variables anchor
and w such that the variable prev fit looks at the next three
vessel samples in the next iteration. If it is not determined that
the vessel is turning in Line 19, we instead update prev fit to
the variable fit sec in Line 24, and expand w to look at the
next vessel sample in vt .

Once the while loop evaluates to false , we expand the
refined vessel trajectory rvt with the remaining vessel samples
in prev fit in Line 27, and return the refined vessel trajectory
rvt in line Line 28.

In Figure 9a, the residual value is not greater than or equal
to ϵ, and we, therefore, update the vessel samples to the best-fit
line and expand w. The same happens in the second iteration
in Figure 9b, where the residual value is also not greater than
or equal to ϵ. However, in the third iteration, the residual value
is greater than ϵ, and we determine that the vessel is turning,
resulting in a best-fit line with a residual less than ϵ. The
completed trajectory is shown in Figure 9d.

5. EXPERIMENTS & EVALUATION

This section illustrates the effectiveness of DGIVT in im-
puting vessel trajectories. We introduce the data utilized to
demonstrate DGIVT in Section 5.1. Section 5.3 highlights the
evaluation metrics we use for comparing the original vessel

10

trajectories with the imputed trajectories. Section Section 5.4
presents the final results of DGIVT .

5.1 Data
We utilize real AIS data obtained from the Danish Maritime

Authority to extract vessel trajectories. This involves both
cleansing and filtration of the data, described in further detail
in Appendix A. Additionally, we impose the constraint that all
vessel samples must fall within the longitude and latitude of
the Danish maritime domain. The vessel trajectories obtained
from the cleansing and filtration process, contain vessel sam-
ples spanning the entire day, covering both moving and station-
ary periods. To determine whether a vessel trajectory should
be divided, we consider factors such as speed over ground,
navigational status of the vessel samples, and harbor data.
This is also described in more detail in Appendix A. In total,
we have 815, 806 vessel trajectories, which in total include
1, 489, 884, 660 vessel samples. The total distance covered by
these trajectories is approximately 80, 985, 367.19 kilometers.
The vessel sample grid, VSG , is restricted to the area of
the Danish maritime domain, and each grid cell, VSG i,j ,
covers an area of approximately 50km × 50km , resulting
in 169 cells. The sea depth grid, SDG , is obtained from a
.tiff file containing approximately 38, 000, 000 cells of size
50m × 50m, ranging with depth values from approximately
−480m to 0m.

5.2 Experiments Setup
To perform comparable results with existing solutions, we

limit our subregion coverage to nine cells, covering an area of
22.5000km , as seen in Figure 10.

Figure 10. Nine cells in the vessel sample grid, covering an area of
22.5000km .

These cells are associated with a total of 182, 466, 434
vessel samples, approximately 12 percent of our total vessel
samples.

Both the implementation of DGIVT and our data is deployed
on a server, equipped with the following specifications:

• AMD EPYC Processor with 16 vCPUs
• Operating System: Ubuntu 22.04 LTS (Jammy Jellyfish)

• 64 Gigabyte (GB) of RAM
• 1000 GB of SSD storage space for the Operating System,

DGIVT components, and data
Imputation tests are conducted using three types of trajec-

tories to assess performance under different conditions:
• Trajectories with multiple gaps of 8000, 4000, 2000, or
1000 meters, with a minimum distance of the respective
intervals between consecutive vessel samples.

• Trajectories with a single gap of 8000, 4000, 2000, or
1000, respectively.

• Trajectories reflecting a realistic frequency of missing
vessel samples, such that each expected vessel sample,
based on the transmission rates in Table 1, is consistently
absent.

Moving Status Transmission Rate Frequency

Anchored or Moored 3 minutes

Speed between 0 and 14 knots 10 seconds

Speed between 0 and 14 knots and
changing course

3.33 seconds

Speed between 14 and 23 knots 6 seconds

Speed between 14 and 23 knots and
changing course

2 seconds

Speed above 23 knots 2 seconds

Speed above 23 knots and changing
course

2 seconds

Table 1
Transmission rate of Class A vessels [25].

Additionally, we evaluate the effectiveness of DGIVT for
vessels traversing all nine cells, as well as for those navigating
near the coast. For vessel trajectories traversing the nine cells,
we have selected 50 random trajectories across all vessel types
and reduced the number of vessel samples for each trajectory
type, as described previously. This results in an unequal
amount of trajectories per run test, as not all the trajectories
necessarily have traveled, for example, 8000 meters. To test
the effectiveness of vessel trajectories near the coast, we select
a 1000 random vessel trajectory in the area from Aalborg
harbor to Kattegat. We select 1000 trajectories to make more
meaningful comparisons with GTI, as it requires the same data
for both graph creation and imputation.

5.3 Evaluation Metrics
For evaluating the correctness of our imputation, we use

Dynamic Time Warping (DTW) [26] and Fréchet Distance
[27] as metrics for comparing how close the imputed vessel
trajectories are to the original vessel trajectories.

Given two vessel trajectories vt1 = ⟨vs1, . . . , vsn⟩ and
vt2 = ⟨vs1, . . . , vsm⟩, the DTW algorithm finds the cumula-
tive cost of the optimal alignment path between vt1 and vt2.
This is achieved using dynamic programming, starting with
the computation of the haversine distance matrix, HD :

HD i,j = d(vsi, vsj)

11

https://web.ais.dk/aisdata/
https://web.ais.dk/aisdata/

where:
• vsi ∈ vt1 ∧ i ∈ {1, . . . , n}.
• vsj ∈ vt2 ∧ j ∈ {1, . . . ,m}.

The cumulative cost matrix, C, is then computed using the
recursive relation:

Ci,j = HD i,j +min(Ci−1,j , Ci,j−1, Ci−1,j−1)

given the conditions:
• C0,0 = HD0,0,
• Ci,0 = HD i,0 + Ci−1,0 ∧ i ∈ {1, . . . , n},
• C0,j = HD0,j + C0,j−1 ∧ j ∈ {1, . . . ,m}.

Finally, the Cn,m represents the cumulative alignment cost,
quantifying the similarity or dissimilarity between the two
vessel trajectories.

The Fréchet Distance between vt1 and vt2 is the minimum,
possible maximum distance between any two corresponding
vessel samples in the two trajectories, as we traverse through
them:

F (vt1, vt2) = inf
α,β

max
t∈[0,1]

d (vt1(α(t)), vt2(β(t))) ,

where α and β are continuous non-decreasing functions map-
ping the interval [0, 1] to the parameterized indices of the two
trajectories.

5.4 Results
The algorithms in Section 4 use three different threshold

values: a distance threshold in density sampling, a distance
threshold in graph creation, and a distance penalty rate. We
aim to find the optimal threshold values for the graphs in the
nine cells, through non-exhaustive experimentation. Table 2
shows the result of the optimal threshold values tested through-
out the experimentation.

Table 2
List of threshold experimentation values, with the optimal column being the

values resulting in the best imputation results.

Threshold values Optimal Start End Step

Distance Threshold in Density
Sampling

80m 50m 150m 10m

Distance Threshold in Graph
Creation

160m 100m 300m 10m

Distance Penalty in Imputation 50m 20m 100m 10m

Number of Vertices 4.17M 5.35M 1.11M

Number of Edges 43.3M 58.8M 2.30M

Table 2 reveals that the optimal value for the distance
threshold in density sampling, yielding the most favorable
imputation results, is approximately 80 meters, resulting in
a total of 4, 170, 938 vertices.

In graph creation, we find that we get the best imputation
results when the distance threshold is approximately twice
the density sampling distance threshold, and therefore select
a distance threshold of 160 meters, resulting in the creation
of 43, 349, 897 edges. Choosing a lower threshold value,

combined with the course over ground penalty, complicates
the creation of edges between vertices, due to how the density
sampling distributes vertices across the graph to ensure even
coverage. Increasing the distance threshold above 160 meters,
resulted in fewer vessel samples in the imputation output, and
yielded no substantial benefits.

For the distance penalty threshold in the imputation algo-
rithm, we find that the optimal value is 50 meters. Increasing
this threshold leads to a reduction in vessel samples, as it
removes samples close to the distance threshold, despite their
courses over ground being close. Conversely, a smaller value
resulted in more vessel samples but included many with near
opposite courses over ground

Moving forward, the remaining part of this section aims to
test and evaluate DGIVT using the optimal threshold values
and compare with Linear Interpolation and GTI. We use the
two evaluation metrics described in Section 5.3 to compare
the imputed vessel trajectories with their original vessel tra-
jectories. We test two subregions with both DGIVT , Linear
Interpolation, and GTI. Each approach uses the three types
of trajectories described in Section 5.2 with different gaps of
sizes: 8000, 4000, 2000, and 1000 meters. The first subregion
consists of the earlier mentioned nine cells, with ≈ 450 vessel
trajectories for each gap size and type. The second subregion
is from Aalborg harbor to Kattegat with ≈ 1000 vessel trajec-
tories for each gap size and type and includes four subregions
of the 9 cells. Our goal is to evaluate how effectively the
three approaches, DGIVT , GTI, and Linear Interpolation can
reconstruct the three types of vessel trajectories and compare
to the original vessel trajectory’s shape and number of vessel
samples.

The imputation results of DGIVT and GTI for the nine cells
are detailed in Tables 3 and 4.

Table 3
DGIVT imputation results for the nine cells.

Vessel Trajectory No. of No. of No. of Execution
gap Original

vs
Reduced
vs

Imputed
vs

Time (s)

Metric avg. avg. avg. avg.

Mult-8000 1723 11 734 29.50
Mult-4000 1667 19 730 31.35
Mult-2000 1618 35 721 41.45
Mult-1000 1604 66 727 55.87

Single-8000 1723 1444 1532 13.65
Single-4000 1667 1499 1546 13.50
Single-2000 1618 1507 1529 14.85
Single-1000 1604 1533 1535 15.21

Realistic 1556 1234 1289 19.68

The first column in both tables describes the three vessel
trajectory types: multiple, single, and realistic, while the
second column presents the average number of vessel samples
found in the original trajectories. The third column presents
the number of vessel samples remaining in the trajectory after
reducing the vessel samples in each vessel trajectory, using the
methods described in Section 5.2. The fourth column presents

12

Table 4
GTI imputation results for the nine cells.

Vessel Trajectory No. of No. of No. of Execution
gap Original

vs
Reduced
vs

Imputed
vs

Time (s)

Metric avg. avg. avg. avg.

Mult-8000 1723 11 11 0.07
Mult-4000 1667 19 20 0.11
Mult-2000 1618 35 36 0.23
Mult-1000 1604 66 69 0.46

Single-8000 1723 1444 2186 13.19
Single-4000 1667 1499 2343 13.10
Single-2000 1618 1507 2407 16.78
Single-1000 1604 1533 2431 26.38

Realistic 1556 1234 1220 60.83

the average number of vessel samples after imputation.
Our findings highlight that for trajectories containing mul-

tiple gaps of 8000, 4000, 2000, and 1000 meters, DGIVT
notably enriches the reduced vessel trajectories, reclaiming up
to 45% of the original number of vessel samples. In contrast,
GTI struggles to enrich the vessel trajectories, likely because
GTI requires the vessel trajectories to travel closely to perform
meaningful imputations. This is also reflected in Figures 12a
and 12d, where both the DTW and Fréchet scores for the
trajectories with multiple gaps are significantly lower for GTI
and Linear Interpolation compared to DGIVT .

For trajectories featuring a single gap of 8000, 4000, 2000,
and 1000 meters, respectively, DGIVT exhibits less substantial
performance, contributing on average with 88 vessel samples
to the reduced vessel trajectory. Meanwhile, GTI achieves a
high number of vessel samples, however, upon closer exam-
ination of the imputed trajectories produced for both DGIVT
and GTI in Figure 11, a nuanced difference emerges. While
GTI does add a substantial amount of vessel samples, it does
not necessarily contribute to closing the gaps as depicted in
11c, whereas DGIVT introduces significantly fewer samples

but adeptly fills the gap in the vessel trajectory in 11b. This
is likewise also depicted in Figures 12b and 12e where the
two metric scores are lower in comparison to GTI, despite
their overall amount of imputed vessel samples is significantly
higher than DGIVT .

For the subregion from Aalborg harbor to Kattegat, the
tests are conducted with a sample of 1000 random vessel
trajectories, each reduced with the aforementioned methods.
Results of the tests are seen in Tables 5 and 6 and figs. 13a
to 13f.

Similar to the earlier results of the nine cells, the vessel
trajectories with multiple gaps, DGIVT can reclaim approx-
imately 40 percentage of the number of vessel samples in
the original vessel trajectory. GTI also performs similarly
for vessel trajectories with 8000 and 4000 meters vessel
trajectories, however, it outperforms DGIVT for the vessel
trajectories with multiple gaps of 1000 and 2000 meters, in
both the number of vessel samples produced and execution
time. However, for the vessel trajectories with a single gap,

(a) The Original Vessel Trajectory.

(b) The Imputation by DGIVT .

(c) The Imputation by GTI.

Figure 11. Single gap of 4000 meters.

Table 5
DGIVT imputation results for the area of Aalborg harbor to Kattegat.

Vessel Trajectory No. of No. of No. of Execution
gap Original

vs
Reduced
vs

Imputed
vs

Time (s)

Metric avg. avg. avg. avg.

Mult-8000 801 5 341 6.48
Mult-4000 801 8 344 6.48
Mult-2000 801 15 348 6.86
Mult-1000 801 28 351 7.09

Single-8000 801 519 619 7.80
Single-4000 801 631 669 7.90
Single-2000 801 703 708 8.22
Single-1000 801 734 721 7.52

Realistic 801 628 641 6.74

DGIVT is consistent in its imputation, while GTI is unable
to create any results, as seen in both Table 6 and Figure 13.
This is due to GTI using every vessel sample as a vertex in its
graph creation, and as such, is unable to produce any results
due to its computational complexity.

13

(a) Multiple gaps Dynamic Time Warping results. (b) Single gap Dynamic Time Warping results. (c) Realistic gaps Dynamic Time Warping results.

(d) Multiple gaps Fréchet distance results. (e) Single gap Fréchet distance results. (f) Realistic gaps Fréchet distance results.

Figure 12. Dynamic Time Warping and Fréchet data for the 9 cells region. The y-axis is given in meters and the x-axis is the distance gap.

Table 6
GTI imputation results for the area of Aalborg harbor to Kattegat.

Vessel Trajectory No. of No. of No. of Execution
gap Original

vs
Reduced
vs

Imputed
vs

Time (s)

Metric avg. avg. avg. avg.

Mult-8000 801 5 6 0.009
Mult-4000 801 8 9 0.017
Mult-2000 801 15 467 0.077
Mult-1000 801 28 934 0.220

Single-8000 801 519 N/A N/A
Single-4000 801 631 N/A N/A
Single-2000 801 703 N/A N/A
Single-1000 801 734 N/A N/A

Realistic N/A N/A N/A N/A

6. CONCLUSION

In this paper, we introduced DGIVT , a trajectory imputation
framework to insert realistic vessel samples in vessel trajecto-
ries. The framework utilizes a data-driven approach that uses
a regional grid, associating vessel samples from historic AIS
data to each subregion in the grid. Within each subregion,
we utilize a density sampling algorithm to maintain a spatial
representative set of vessel samples. We then construct a
directed graph for each subregion and proceed to impute vessel
trajectories, by inserting realistic vessel samples between gaps,
simulating as though no vessel samples are missing. The
results show that DGIVT effectively accomplishes this task

by achieving DTW and Fréchet scores lower than both Linear
Interpolation and GTI in trajectories with multiple and single
gaps. However, in realistic trajectories where no substantial
gaps exist, Linear Interpolation seems to fare better than
DGIVT . We suspect this is an effect of the realistic trajectories
structure, where no large gaps occur, and DGIVT inability to
fill gaps for trajectories, where two consecutive vessel samples
are near each other. For future development of DGIVT , we
propose experimenting with individual threshold values for
each cell in the vessel sample grid, to accommodate different
regional differences. We furthermore suggest exploring the
creation of graphs tailored to specific vessel types and applying
imputation techniques to these graphs. This approach operates
under the assumption that vessels belonging to the same vessel
type, follow similar trajectories.

ACKNOWLEDGMENTS

We would like to thank Christian Søndergaard Jensen and
Kristian Torp for their invaluable guidance and counseling
throughout the project. We are also grateful for the AIS data
and sea depth map provided by the Danish Maritime Authority,
as well as the harbor data supplied by DIPAAL.

14

REFERENCES

[1] U. N. C. O. T. A. DEVELOPMENT., Review of Maritime
Transport 2023. UNITED NATIONS, 2023.

[2] A. Artikis and D. Zissis, Guide to maritime informatics,
1st ed. Cham, Switzerland: Springer, 2021.

[3] IALA, “Iala guideline 1082 an overview of ais
edition 1.0,” 2016, accessed May, 21th, 2024. [Online].
Available: https://www.e-navigation.nl/sites/default/files/
1082-Ed.2-Overview-of-AIS June2016-1.pdf

[4] J. M. Mou, C. van der Tak, and H. Ligteringen, “Study on
collision avoidance in busy waterways by using ais data,”
Ocean Engineering, vol. 37, no. 5, pp. 483–490, 2010.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S002980181000020X

[5] G. Pallotta, M. Vespe, and K. Bryan, “Traffic knowledge
discovery from ais data,” in Proceedings of the 16th
International Conference on Information Fusion, 2013,
pp. 1996–2003.

[6] A. Alessandrini, F. Mazzarella, and M. Vespe, “Estimated
time of arrival using historical vessel tracking data,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 1, pp. 7–15, 2019.

[7] K. Omholt-Jensen. (2021, May) Ais and the main
categories of ais challenges. [Accessed March 22, 2024].
[Online]. Available: https://www.maritimeoptima.com/
insights/ais-and-the-main-categories-of-ais-challenges

[8] R. B. Games, “Introduction to a*,” Jan 2020,
accessed May, 20th, 2024. [Online]. Avail-
able: https://www.redblobgames.com/pathfinding/a-star/
introduction.html

[9] K. Isufaj, M. M. Elshrif, S. Abbar, and M. Mokbel,
“Gti: A scalable graph-based trajectory imputation,” in
Proceedings of the 31st ACM International Conference
on Advances in Geographic Information Systems, ser.
SIGSPATIAL ’23. New York, NY, USA: Association
for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3589132.3625620

[10] M. M. Elshrif, K. Isufaj, and M. F. Mokbel,
“Network-less trajectory imputation,” in Proceedings
of the 30th International Conference on Advances in
Geographic Information Systems, ser. SIGSPATIAL
’22. New York, NY, USA: Association for
Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3557915.3560942

[11] B. B. Magnussen, N. Bläser, and H. Lu, “Daistin:
A data-driven ais trajectory interpolation method,”
in Proceedings of the 18th International Symposium
on Spatial and Temporal Data, ser. SSTD ’23.
New York, NY, USA: Association for Computing
Machinery, 2023, p. 75–84. [Online]. Available: https:
//doi.org/10.1145/3609956.3609961

[12] K. Zhang, Z. He, L. Zheng, L. Zhao, and
L. Wu, “A generative adversarial network for travel
times imputation using trajectory data,” Computer-
Aided Civil and Infrastructure Engineering, vol. 36,

no. 2, pp. 197–212, 2021. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/mice.12595

[13] C. Chen, S. Jiao, S. Zhang, W. Liu, L. Feng, and Y. Wang,
“Tripimputor: Real-time imputing taxi trip purpose lever-
aging multi-sourced urban data,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 10, pp.
3292–3304, 2018.

[14] M. T. Asif, N. Mitrovic, L. Garg, J. Dauwels, and
P. Jaillet, “Low-dimensional models for missing data
imputation in road networks,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing,
2013, pp. 3527–3531.

[15] M. Musleh and M. F. Mokbel, “Kamel: A scalable bert-
based system for trajectory imputation,” Proc. VLDB
Endow., vol. 17, no. 3, p. 525–538, nov 2023. [Online].
Available: https://doi.org/10.14778/3632093.3632113

[16] Y. Shi, H. Gao, and W. Rao, “Tigan: Trajectory impu-
tation via generative adversarial network,” in Advanced
Data Mining and Applications, X. Yang, H. Suhartanto,
G. Wang, B. Wang, J. Jiang, B. Li, H. Zhu, and N. Cui,
Eds. Cham: Springer Nature Switzerland, 2023, pp.
195–209.

[17] Z. Guo, Y. Wan, and H. Ye, “A data imputation
method for multivariate time series based on
generative adversarial network,” Neurocomputing,
vol. 360, pp. 185–197, 2019. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S0925231219308306

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza,
B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, Eds., vol. 27.
Curran Associates, Inc., 2014. [Online]. Avail-
able: https://proceedings.neurips.cc/paper files/paper/
2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[19] Llyods List Intelligence. The essential guide
to the automatic identification system (ais).
Accessed April, 26th, 2024. [Online]. Available:
https://www.lloydslistintelligence.com/knowledge-
hub/data-storytelling/essential-guide-automatic-
identification-system-ais-signals

[20] E. Maria, E. Budiman, Haviluddin, and M. Taruk,
“Measure distance locating nearest public facilities
using haversine and euclidean methods,” Journal of
Physics: Conference Series, vol. 1450, no. 1, 02
2020, copyright - © 2020. This work is published
under http://creativecommons.org/licenses/by/3.0/ (the
“License”). Notwithstanding the ProQuest Terms and
Conditions, you may use this content in accordance
with the terms of the License; Last updated - 2023-
11-28. [Online]. Available: https://www.proquest.com/
scholarly-journals/measure-distance-locating-nearest-
public/docview/2569099652/se-2

[21] D. Mount, “Lecture 19 geometric sampling, vc-

15

https://www.e-navigation.nl/sites/default/files/1082-Ed.2-Overview-of-AIS_June2016-1.pdf
https://www.e-navigation.nl/sites/default/files/1082-Ed.2-Overview-of-AIS_June2016-1.pdf
https://www.sciencedirect.com/science/article/pii/S002980181000020X
https://www.sciencedirect.com/science/article/pii/S002980181000020X
https://www.maritimeoptima.com/insights/ais-and-the-main-categories-of-ais-challenges
https://www.maritimeoptima.com/insights/ais-and-the-main-categories-of-ais-challenges
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://doi.org/10.1145/3589132.3625620
https://doi.org/10.1145/3557915.3560942
https://doi.org/10.1145/3609956.3609961
https://doi.org/10.1145/3609956.3609961
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12595
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12595
https://doi.org/10.14778/3632093.3632113
https://www.sciencedirect.com/science/article/pii/S0925231219308306
https://www.sciencedirect.com/science/article/pii/S0925231219308306
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.lloydslistintelligence.com/knowledge-hub/data-storytelling/essential-guide-automatic-identification-system-ais-signals
https://www.lloydslistintelligence.com/knowledge-hub/data-storytelling/essential-guide-automatic-identification-system-ais-signals
https://www.lloydslistintelligence.com/knowledge-hub/data-storytelling/essential-guide-automatic-identification-system-ais-signals
https://www.proquest.com/scholarly-journals/measure-distance-locating-nearest-public/docview/2569099652/se-2
https://www.proquest.com/scholarly-journals/measure-distance-locating-nearest-public/docview/2569099652/se-2
https://www.proquest.com/scholarly-journals/measure-distance-locating-nearest-public/docview/2569099652/se-2

dimension, and applications,” 2021, accessed May, 20th,
2024. [Online]. Available: https://www.cs.umd.edu/class/
fall2021/cmsc754/Lects/lect19-vc-dim.pdf

[22] C. Kingsford, “Kd-trees,” 2008, accessed May, 20th,
2024. [Online]. Available: https://www.cs.cmu.edu/
∼ckingsf/bioinfo-lectures/kdtrees.pdf

[23] Cuemath, “Linear interpolation formula - derivation,
formulas, examples,” accessed May, 24th, 2024.
[Online]. Available: https://www.cuemath.com/linear-
interpolation-formula/

[24] J. R. Dan Margalit, “Interactive linear
algebra,” accessed May, 20th, 2024. [Online].
Available: https://textbooks.math.gatech.edu/ila/least-
squares.html#:∼:text=So%20a%20least%2Dsquares%
20solution,difference%20b%20%E2%88%92%20Ax%
20is%20minimized.

[25] MarineTraffic, “How often do the positions of the vessels
get updated on marinetraffic?” accessed May, 22th, 2024.
[Online]. Available: https://help.marinetraffic.com/hc/
en-us/articles/217631867-How-often-do-the-positions-
of-the-vessels-get-updated-on-MarineTraffic

[26] E. Alizadeh, “An introduction to dynamic time warping,”
accessed May, 22th, 2024. [Online]. Available: https:
//builtin.com/data-science/dynamic-time-warping

[27] J. P. Figueira, “Fast discrete fréchet dis-
tance,” accessed May, 22th, 2024. [Online].
Available: https://towardsdatascience.com/fast-discrete-
fr%C3%A9chet-distance-d6b422a8fb77

ACRONYMS

AIS Automatic Identification System. 1–3, 5, 11, 14, 17

DGIVT Depth-Map enhanced Graph Imputation for Vessel
Trajectories. 5

DTW Dynamic Time Warping. 11, 13, 14

ETA Estimated Time of Arrival. 1, 2

GAN Generative Adversarial Network. 3
GB Gigabyte. 11
GPS Global Positioning System. 1–3

IMO International Maritime Organization. 1

MMSI Maritime Mobile Service Identity. 2, 3, 17

NLP Natural language processing. 3

16

https://www.cs.umd.edu/class/fall2021/cmsc754/Lects/lect19-vc-dim.pdf
https://www.cs.umd.edu/class/fall2021/cmsc754/Lects/lect19-vc-dim.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf
https://www.cuemath.com/linear-interpolation-formula/
https://www.cuemath.com/linear-interpolation-formula/
https://textbooks.math.gatech.edu/ila/least-squares.html#:~:text=So%20a%20least%2Dsquares%20solution,difference%20b%20%E2%88%92%20Ax%20is%20minimized.
https://textbooks.math.gatech.edu/ila/least-squares.html#:~:text=So%20a%20least%2Dsquares%20solution,difference%20b%20%E2%88%92%20Ax%20is%20minimized.
https://textbooks.math.gatech.edu/ila/least-squares.html#:~:text=So%20a%20least%2Dsquares%20solution,difference%20b%20%E2%88%92%20Ax%20is%20minimized.
https://textbooks.math.gatech.edu/ila/least-squares.html#:~:text=So%20a%20least%2Dsquares%20solution,difference%20b%20%E2%88%92%20Ax%20is%20minimized.
https://help.marinetraffic.com/hc/en-us/articles/217631867-How-often-do-the-positions-of-the-vessels-get-updated-on-MarineTraffic
https://help.marinetraffic.com/hc/en-us/articles/217631867-How-often-do-the-positions-of-the-vessels-get-updated-on-MarineTraffic
https://help.marinetraffic.com/hc/en-us/articles/217631867-How-often-do-the-positions-of-the-vessels-get-updated-on-MarineTraffic
https://builtin.com/data-science/dynamic-time-warping
https://builtin.com/data-science/dynamic-time-warping
https://towardsdatascience.com/fast-discrete-fr%C3%A9chet-distance-d6b422a8fb77
https://towardsdatascience.com/fast-discrete-fr%C3%A9chet-distance-d6b422a8fb77

APPENDIX A
AIS DATA PREPARATION

The study utilizes AIS data obtained from the Danish Maritime Authority. Although the available dataset covers the period
from 2006 to 2024, our analysis specifically focuses on the data spanning 397 days, from March 1st, 2023, to April 1st, 2024.

A1 Initial Data Filtration

The 397 days of AIS encompasses a total of 5, 339, 615, 793 vessel samples reports. To refine the scope of our analysis, we
apply the following filtration criteria:

• Each vessel sample must contain a unique eight-digit MMSI.
• The vessel type of the vessel sample must correspond to one of the vessel types listed in Table 10.
• Only vessel reports with Class A vessels are considered.
• The longitude and latitude in the vessel sample must be within Danish maritime waters
• Draught value must not be negative, as this indicates the vessel sample does not belong to a vessel

While this paper primarily examines Class A vessels within Danish maritime waters, the proposed methodology is applicable
to other regions and Class B vessels as well.

After applying the filtration criteria outlined above, the total number of vessel samples is reduced from 5, 339, 615, 793 to
2, 981, 044, 561. This reduction is detailed in Table 7.

Table 7
Amount of Vessel Samples after Filtrating invalid Vessel

Samples

Days Vessel Samples
before Filtration

Vessel Samples
after Filtration

Total 5,339,615,793 2,981,044,561
Min 9,064,616 6,029,364
Average 13,449,914 7,508,928
Max 31,593,836 9,524,507
Quantile 25% 11,090,954 7,148,215
Median 13,433,568 7,370,149
Quantile 75% 15,372,159 7,692,112

Table 8
Amount of Vessel Trajectories before and after Filtration on Draught

Vessel Trajectories
per Day

Vessel Trajectories
After Draught
Filtration

Vessel Samples per
Vessel Trajectory

Total 663,077 573,305 2,524,715,052
Min 1,250 1,079 1
Average 1,670 1,444 4,402
Max 2,492 2,167 43,491
Quantile 25% 1,459 1,261 701
Median 1,563 1,347 701
Quantile 75% 1,821 1,572 7,868

With the filtration of vessel samples completed, we extract vessel trajectories by grouping vessel samples based on MMSI
and ordering them by timestamp. To ensure consistency within each vessel trajectory for vessels using the same MMSI, we
separate vessel samples in the vessel trajectory that do not share the same length, width, name, and vessel type. Additionally,
each vessel trajectory must comprise at least two vessel samples. Following these criteria, we identified a total of 663,007
vessel trajectories, as documented in Table 8

We use draught values to determine a vessel’s capability to navigate to specific destinations. Therefore, we perform an
additional filtration step, requiring that at least one vessel sample in each vessel trajectory has a non-negative draught value.
Vessel trajectories not meeting this criterion are excluded, resulting in a final count of 573, 305 vessel trajectories, corresponding
to 2, 524, 715, 052 vessel samples, detailed further in Table 8.

A2 Vessel Trajectory Splitting

The vessel trajectories include both moving and stationary periods, however, our focus is exclusively on the periods where the
vessel is in motion. To identify whether a vessel is traveling, we utilize harbor data combined with the vessel’s navigational status
and speed over ground, such that vessel trajectories that travel between harbors with intervening stops, are split accordingly.
Furthermore, vessel trajectories that are not traveling at all, are discarded. The detailed implementation of this approach can
be accessed in our repository at GitHub §

After processing and splitting the vessel trajectories, we increase the number of vessel trajectories from 573, 305 to 815, 806,
while decreasing the total number of vessel samples from 2, 524, 715, 052 to 1, 489, 884, 660, as described in Table 9.

17

https://web.ais.dk/aisdata/
https://github.com/CilFog/VTI/blob/main/etl/split_tractories.py

Table 9
Vessel Trajectories after Splitting

Vessel Trajectories after Split per Day Vessel Samples per Vessel Trajectory Distance Traveled in Meters per Vessel
Trajectory

Total 815,806 1,489,884,660 80,985,367,191.31
Min 990 2 0.06
Average 2,055 1,826 99,270.38
Max 3,013 39,924 36,893,632.36
Quantile 25% 1,839 158 7,110.91
Median 2,025 651 29,506.38
Quantile 75% 2,282 2,507 129,460.45

For the total 815, 806 vessel trajectories, Table 10 illustrates the distribution across different vessel types. The ’Passenger’
category represents the majority of vessel trajectories, while ’Towing (Long/Wide)’ appears least frequently.

Table 10
Total number of vessels

Vessel Type Occurrences

Anti-Pollution 750
Cargo 188,675
Diving 1,029
Dredging 21,389
Fishing 50,920
Law Enforcement 5,859
Passenger 386,339
Pilot 39,685
Pleasure 1,418
Port Tender 7,244
Tanker 80,645
Towing 3,635
Towing (Long/Wide) 656
Tug 27,562
Total 815806

18

APPENDIX B
AALBORG TO KATTEGAT DYNAMIC TIME WARPING AND FRECHET DISTANCE DATA

(a) Multiple gaps Dynamic Time Warping results. (b) Single gap Dynamic Time Warping results. (c) Realistic gap Dynamic Time Warping results.

(d) Multiple gaps Fréchet distance results. (e) Single gap Fréchet distance results. (f) Realistic gaps Fréchet distance results.

Figure 13. Dynamic Time Warping and Fréchet data for Aalborg to Kattegat region. The y-axis is given in meters and x-axis is the distance gap.

19

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 DGIVT
	4.1 DGIVT overview
	4.2 Data Preparation Module
	4.3 Graph Module
	4.4 Vessel Trajectory Imputation
	4.4.1 Vessel Trajectory Refinement

	5 Experiments & Evaluation
	5.1 Data
	5.2 Experiments Setup
	5.3 Evaluation Metrics
	5.4 Results

	6 Conclusion
	Appendix A: AIS Data Preparation
	A.1 Initial Data Filtration
	A.2 Vessel Trajectory Splitting

	Appendix B: Aalborg to Kattegat Dynamic Time Warping and Frechet Distance Data

