
SUMMARY

AIS provides detailed information on ships, their trajectories and purpose of venture. However,
AIS data contains vast amount of data points that is ever-increasing, as new data is recorded every
day. This presents the need for a modern and efficient database structures, that can handle large
datasets efficiently. A lot of research have gone into this, but none have yet attempted to utilize
a network structure to index the data. Therefore, this paper sets out to create an efficient network
structure to index data. It takes inspiration from land-based road networks, which is an extensively
researched area. This paper therefore both seeks to optimize current index structures for spatial
data and as an attempt to see if land-based methods can be applied in the maritime domain.

This paper contains three main sections: Extracting the network from AIS trajectories, map-
matching trajectories and querying using the proposed index. The network extraction consist of a
series of steps:

First, a rectangular area, encapsulating Kattegat, is partitioned into uniform grids, which we then
build a heatmap from. The heatmap represents the number of trajectories intersecting any given cell
and visualizes the maritime routes. The result is referred to as a density grid. A thinning process
then eliminates pixels from the density grid, forming a skeleton of the original density grid. Then
crossing and paths between crossings is computed from the skeleton, and finally used to extract
the network.

The second step is map-matching. Map-matching is the process of associating a trajectory to an
edge in the network. The map-matching method, introduced in this paper, differs from the traditional
one used in land-based road networks, as we do not require all trajectories to be mapped to an edge.
As well as the fact that we split trajectories, that can be partly mapped. Furthermore, a nautical
network, as proposed in this paper, is not required to be connected.

Finally, as the network work as an index, we present four new algorithms to insert, update, delete
and query data.

108 different configurations of a nautical network are extracted from 44, 509 trajectories from
January and February 2021, with each trajectory having a length of at least ten kilometers. The 108
different configurations are tested by indexing 71, 941 trajectories from January 2022, to find the
five best configurations for a nautical network. The 71, 941 trajectories have traversed a combined
distance of 2, 104, 914 kilometers. The result is the five best configurations, reaching upwards of
72% improvement compared to the GiST index implemented in PostGIS.

Maritime Indexing from Nautical Networks
Christopher Colberg Jensen, Jonas Noermark Falkesgaard, Kristian Morsing Pedersen

Computer Science Department, Aalborg University,
Aalborg, Denmark

Emails: {cjen19, jnoerm19, kpede19}@student.aau.dk

Abstract—This paper proposes Maritime Indexing from Nau-
tical Networks (MINN), which is an indexing method utilizing
a nautical network to improve query response times. The main
contributions of this paper are a method to build a nautical
network, a method to map-match trajectories to the nautical
network and a method to utilize the nautical network for indexing
trajectories. The performance of MINN is highly reliant on the
nautical network. Therefore, we test 108 different configurations
of a nautical network to find the configurations that provides the
best performance. The nautical network is built from 44,509
trajectories from January and February 2021, with each trajec-
tory having a length of at least ten kilometers. The trajectories
cover a combined distance of 4,273,441 kilometers. The index
is tested with 71,941 trajectories from January 2022, traversing
a combined distance of 2,104,914 kilometers. The 71,941
trajectories are map-matched using a novel approach. This is
done for each configuration of the nautical network. We test
MINN by executing spatial range queries, and comparing the
results to a GiST index. MINN improves query response times
by upwards of 72% compared to the GiST index.

1. INTRODUCTION

Within the maritime domain, massive amounts of vessel
data is being transmitted every day. Each transmitted data
message contains detailed information about a vessel, such as
the spatial location, speed and heading. As vessel data volumes
are growing rapidly when storing historical vessel data, it is
necessary to consider scalability to ensure reasonable query
response times. Traditionally, this is accomplished by utilizing
an index based on an R-tree [1] or variations thereof [2, 3].

The focus of this paper is to extract a nautical network to
index vessel trajectories in order to enhance query response
times. To the best of our knowledge, no existing research on
this subject exists. Solutions to utilizing a network can be
found in the land-based domain, where this subject has been
extensively researched [2, 4, 5, 6, 7]. In this paper, we modify
existing road network methods used to index trajectories from
vehicles to accommodate the maritime domain, i.e., indexing
trajectories from vessels, using a nautical network. Inherently,
a number of challenges arises from this. First, movement at
sea is unconstrained, unlike road networks [2, 4]. Therefore,
we extend the capabilities of a network to accommodate
unconstrained movement. Other challenges arising from the
unconstrained movement are map-matching vessel trajectories,
and implementing a nautical network aware index.

Extracting a nautical network is non-trivial. While land-
based road networks are restricted by physical roads, a nautical

Figure 1: Visualization of MiNN, including spatial queries
and trajectories.

network may be restricted by a fairway, but is often not, as
is the case at open sea. Therefore, Maritime Indexing from
Nautical Networks (MiNN) leverage heatmaps to discover the
most popular routes, based on the assumption that vessels
follow similar routes. The heatmap is utilized to construct a
nautical network through a series of steps and refinements.
Hereafter, we use map-matching to associate each vessel
trajectory with nautical network edges, using their spatial
segments. The segments work as the index for the given vessel
trajectory in a network-aware index, such as the one presented
by Krogh et al. [4].

Extracting nautical networks from vessel trajectories has,
to the best of our knowledge, not yet been used to improve
database performance by creating indexes based on the ex-
tracted nautical networks. In general, other works [8, 9, 10, 11]
examine more than just the longitude and latitude of the
vessels to enable a more elaborate analysis of the vessels’
movements. The proposed solution, MiNN, does not concern
itself with semantics or more complex relationships between

1

vessels and routes, but instead only uses the Global Positioning
System (GPS) coordinates of the trajectories with their respec-
tive timestamps, to construct a nautical network. MiNN, can
therefore also be utilized in other domains beside the maritime
domain.

The contributions of this paper are the following:
• A method to create a nautical network from trajectory

data
• A method to map-match vessel trajectories to a nautical

network
• A novel graph network based indexing method
• An empirical performance study indicating up to a
72% improvement, compared to the PostGIS Generalized
Search Tree (GiST) index [12]

The methods for creating nautical networks, map-matching,
and the index are described in Section 4, Section 5, and
Section 6, respectively. In Section 7, 108 different configu-
rations are used to build nautical networks and the resulting
networks are evaluated on a set of trajectories extracted from
Automatic Idenfication System (AIS). Each nautical network
configuration is built from 44, 509 trajectories from January
and February 2021, where trajectories that have covered
less than ten kilometers are excluded. Combined, they cover
4, 273, 441 kilometers. To evaluate MiNN, a total of 71, 941
trajectories from January 2022 are indexed, covering a com-
bined 2, 104, 914 kilometers. Eight spatial range queries have
been evaluated on each configuration of the nautical network.
MiNN is compared to PostGIS’s GiST index [12]. The results
show that the best configurations of MiNN outperforms the
GiST index by upwards of 72%.

2. RELATED WORK

Krogh et al. [4] and de Almeida and Güting [2] utilize
a network structure with edges that forms spatial polylines,
and are used to represent trajectories. This is possible, as
the trajectories are physically constrained to a network, e.g.,
roads. de Almeida and Güting associate each trajectory with an
edge, which allows a spatial range query to prune irrelevant
trajectories by using the intersection between the query and
edge polylines. Krogh et al. utilize a shortest path algorithm
to represent trajectories as the shortest path between edges in
a constrained network. This leads to an efficient in-memory
indexing method, while also improving query response times.
The idea of utilizing edge polylines to represent trajectories
provides the foundation of our solution. In MiNN, instead
of polylines to represent edges, we use spatial segments.
To accommodate the unconstrained movement, we add a
buffer [13] around an edge segment, to indicate that mapped
trajectories lie in a region around an edge segment.

Several methods to extract a nautical network from AIS
data have been proposed [8, 14]. Filipiak et al. [8] propose
using a parallel genetic algorithm on spatially partitioned AIS
data, to discover waypoints and construct a directed route
graph (i.e., a directed nautical network). While the proposed
method by Filipiak et al. exhibits good results, the choice
of hyperparameters for the genetic algorithm is area-specific,

there are no general values that would work well for all areas,
and also requires high computational demands.

A study by Ren et al. [14] propose a method that implements
a high-dimensional approach using the CLIQUE [15] and
BIRCH [16] algorithms, to consider both the spatial dimen-
sion, as well as including course over ground information,
extracted from AIS data. The CLIQUE clustering algorithm
divides the data space into cells, and identifies dense cells
based on a density threshold, i.e., the cells represent areas
with frequent maritime traffic, which is used to identify
possible waypoints. However, much like the method proposed
by Filipiak et al., the method is dependent on parameters
chosen for the clustering algorithms.

In contrast, Biagioni and Eriksson [7] propose a hybrid map-
inference method, which combines kernel density estimation
and trajectory-based refinement to produce a road network.
The steps involved consist of creating a density map and using
a thinning algorithm to extract road centerlines. Furthermore,
Biagioni and Eriksson employ a technique proposed by Shi
et al. [17] to determine if each pixel should either be part of
an edge or a node. They then refine the road network by map-
matching trajectories to the edges in the network and pruning
edges that has a low (or zero) trajectories mapped to them.

In MiNN, we aim to construct a nautical network in a
fast and efficient manner, and the genetic algorithm proposed
in Filipiak et al. shows promising results, but suffers from
high computational requirements in order to extract a network
in a timely manner. The work by Ren et al. also shows
promising results, as does the work by Biagioni and Eriksson,
where both methods require significantly less computational
resources compared to Filipiak et al.. Therefore, in order to
construct the nautical network in MiNN, we adopt the concept
of density grids akin to Ren et al. and Biagioni and Eriksson,
along with the method for extracting vertices and edges as
proposed by Biagioni and Eriksson. As the method proposed
by Biagioni and Eriksson does not use AIS data, but rather
vehicle data, using it in MiNN will also act as an experiment
whether such a method can be utilized in the maritime domain,
as it only requires spatial information (i.e., longitude and
latitude coordinates), and not, for example, course over ground
data as in Ren et al.. The MiNN method will therefore be able
to be used with any trajectory data.

To utilize the nautical network for indexing, we use map-
matching to map the trajectories to edges in the nautical net-
work. Map-matching has been a research topic for many years,
especially for in-vehicle navigation systems in cars, where it
must determine exactly which road the vehicle is traversing,
often in real time. Some of the more notable being the works
by Newson and Krumm [18] and Lou et al. [19]. These works
are made for land-based vehicles, such as cars, which are
physically restricted to a road. However, in MiNN, we operate
on maritime vessels, which we cannot guarantee has actually
traversed any actual path in our nautical network, as a vessel
is often not physically limited to any path at sea. Another
important difference to consider is that a nautical network
may not be fully connected, which means utilizing shortest

2

path algorithms on a network can be an issue. Therefore, we
do not rely on traditional shortest path algorithms, but we use
the concept of shortest distance between network edges and
trajectory segments, which is also the basis of the works by
Newson and Krumm and Lou et al..

3. PRELIMINARIES

The following section presents preliminaries. First, we
define the spatial domain MiNN operates in (Definition 1–
5). Second, we define a set of functions, that allows us to
extract, modify, and delete elements in the spatial domain
(Definition 6–11). Finally, we conclude this section with
Definition 12, which describes the base structure of MiNN.

Definition 1 (Spatial Point). A spatial point p = (lng , lat)
is a pair, where lng is a longitude and lat is a latitude.
Furthermore, the function TRANSFORM(p) transforms the
coordinate (lng , lat) to 2D Cartesian coordinates x and y,
using a map-projection that scales the coordinates to meters
(e.g., Universal Transverse Mercator (UTM) [20])

The TRANSFORM(p) function is essential for MiNN, as it
requires extensive distance computations measured in meters.
We use the implementation provided by the PROJ library [21].

Definition 2 (Spatial Segment). A spatial segment s = (p1, p2)
is defined by a pair of spatial points.

Definition 3 (Spatio-Temporal Segment). A spatio-temporal
segment tps = ((p1, ts1), (p2, ts2)) is defined by a pair of
pairs of spatial points and timestamps, where ts1 < ts2 .

Definition 4 (Trajectory). A trajectory τ = {tps1, . . . , tpsn},
is a set of spatio-temporal segments. From a trajectory
τ we can extract its spatial segments using the function
SEGMENTS(τ) = {(pi, pi+1) | ((pi, tsi), (pi+1, tsi+1)) ∈
τ ∧ i ∈ [1, n− 1]}, i.e., its spatio-temporal segments, without
the timestamps.

We differentiate between spatial- and spatio-temporal seg-
ments, as trajectories have to have temporally ordered seg-
ments. Besides this, only spatial segments are used for the
remainder of the paper, and no ordering is required for the
rest of the definitions. Therefore, when referring to segments
further on, it refers to spatial segments.

Definition 5 (Density Grid). In a Euclidean space, a density
grid DG is a uniform partitioning of a rectangular region
into m × k equal-sized cells. A cell c consists of a 4-tuple
(z, q, square, d), where z and q is the column- and row index
of c, respectively, square is the square describing the spatial
area of c, and d is the density of cell c, capturing the number
of trajectories intersecting it. A cell c′ is connected to a cell
c if it is part of the Moore neighborhood [22] of c. To lookup
a cell, we define the function L(z, q,DG), where z and q is
the column- and row index of the wanted cell c. It returns cell
c ∈ DG, where c.z = z ∧ c.q = q.

We use a density grid to form a heatmap, to find high
density areas, such that we can extract a nautical network

Figure 2: Cell Neighborhood of N (c1, α): α = 1 yields the
red and white cells, and α = 2 yields all cells.

that represents the most traffic dense areas, i.e., forming a
representative network of the most common traversed routes
at sea.

Definition 6 (Cell Neighborhood - modified from Chen and
Hsu [23]). Given a cell c ∈ DG, the Cell Neighborhood
N (c, α) =

⋃
z′∈{z−α,...,z+α}∧q′∈{q−α,...,q+α} L(z′, q′,DG),

where α ∈ {1, 2}.

A visualization of Definition 6 is shown in Figure 2. If a
cell has missing neighbors, e.g., if a cell is in the corner of a
density grid, imaginary cells with a density of zero replaces
the missing cells. Chen and Hsu only works on the 1-wide
neighborhood N (c, 1), whereas we extend the neighborhood
to be a generic term given by α.

Definition 7 (Fringe). The Fringe F(c) of a cell c ∈ DG is
the set of cells in the outer neighborhood of N (c, 2). That is,
F(c) = N (c, 2) \ (N (c, 1) ∪ {c}).

An example of a fringe F(c1) can be seen in Figure 2,
where the blue shaded area corresponds to the fringe of c1.

In order to form a nautical network, we consider for each
cell in a density grid whether it should be a part of the
final network or should be removed. To determine this, our
algorithms require information about the surrounding cells, to
which end the definition of a cell’s neighborhood and fringe
is used.

Definition 8 (Shortest Distance). Given two spatial segments
s1 and s2, the distance function MINDIST(s1, s2) returns
the shortest distance between a pair of a spatial point in
s1 and a spatial point in s2. The algorithm computing the
MINDIST(s1, s2) function can be seen in Appendix A.

Definition 9 (Longest Shortest Distance). Given two spatial
segments s1 and s2, the distance function MAXDIST(s1, s2)
returns the longest shortest distance between a pair of a spatial

3

point in s1 and a spatial point in s2. The algorithm computing
the MAXDIST(s1, s2) function can be seen in Appendix B.

The two distance functions are used in our map-matching
algorithm to determine whether a trajectory can be matched
to an edge. This is done by using the two different types of
distance calculations between trajectories and edge segments,
to find and filter candidate edges to match to a given trajectory.

Definition 10 (Bounding rectangle). The bounding rectangle
of a segment s with a distance ds , BUFFER(s, ds) is the
smallest rectangle that contains the Minkowski sum [24] of
s, using a circle with a radius of ds .

An example of a bounding rectangle can be seen in Figure 1,
where any of the shaded rectangles corresponds to a bounding
rectangle of an edge.

Definition 11 (Boundary). The boundary of a rectangle rt
is the set of line segments that make up its perimeter. The
boundary of rt is obtained by the function BD(rt).

Definition 12 (Nautical Network). A Nautical Network
Ψ is an undirected graph G(V ,E ,Tbucket), where
V = {p1, . . . , pj} is a set of spatial points,
E = {(s1,Ts1 , γs1 , brs1), . . . , (sr,Tsr , γsr , brsr)} is a
set of edges and Tbucket is a set of trajectories. Each e ∈ E
is a 4-tuple containing a segment s, referred to as the edge
segment, a set of trajectories Ts, a distance γs and a bounding
rectangle brs. The set of trajectories Ts is the trajectories
that have been mapped to the edge. γs denotes the longest
shortest distance from s to any trajectory segment, i.e., γs ←
max {MAXDIST(s′, s) | s′ ∈

⋃
τ∈Ts,SEGMENTS(τ), s

′ ∩ brs}.
The bounding rectangle brs is computed using the edge
segment and γs, i.e., brs ← BUFFER(s, γs). The last
element in a nautical network is Tbucket , which is the set of
trajectories that contains at least one segment, that could not
be mapped to any edge in the given nautical network.

To utilize a nautical network as an index, we extend the
notion of an edge. The first element, s, is the segment of the
edge, referred to as the edge segment. The second element, Ts,
is the set of trajectories associated with the edge. Next, γs is a
distance threshold, used to calculate a bounding rectangle brs.
The bounding rectangle enables the nautical network to use the
edge segments to represent trajectories, while still maintaining
their spatial position when querying. For example, in Figure 1,
Q1 does not spatially intersect sbc and scd , but it does intersect
their bounding rectangles. Therefore, we know that some
trajectories intersecting Q1 are represented by either sbc , scd ,
or both. Note that a trajectory is not necessarily represented
exclusively by one edge segment, but can be represented by
multiple.

In the map-matching algorithm, only part of a trajectory
segment may be within the maximum mapping distance to an
edge segment. Therefore, we split such a segment into sub-
segments, by calculating the intersection with the boundary
of the bounding rectangle of the candidate edge. An example
of such a case is shown in Figure 8 in Section 5, where a

trajectory segment s2 is split into sub-segments, s4 and s5.
We use the implementation provided by PostGIS PSC, OSGeo
[25], for calculating the boundary.

4. CONSTRUCTING THE NAUTICAL NETWORK

The nautical network is structured as a graph, but with
the caveat that an edge contains additional information, such
as the bounding rectangle of the edge segment, and a set
of trajectories mapped to the edge segment, along with the
maximum mapping distance. This information is included
such that the segments of the edges in a nautical network
can be used as an index for trajectories. Extending the edge
information with the maximum distance allows us to form
a bounding rectangle of an edge. The bounding rectangle
is used to prune irrelevant edges based on the intersection
between a spatial query region and the bounding rectangles.
The bounding rectangles are visualized in Figure 1 where
τdot is mapped to sef , sce , scd and sbc . Thereby, when we
perform a spatial query, e.g. Q2, we find that it intersects
the bounding rectangles brsce , brsbc and brscd , and therefore
we only examine trajectories mapped to the edge segments
sce ,scd , and sbc resulting in τdot and τdash .

The following section will describe the process of construct-
ing the nautical network (i.e., the index). An overview of each
step in the process can be seen in Figure 3.

Build Density Grid

Skeletonize

Extract Vertices & Edges

Insertion (Map-Matching)

Figure 3: The steps involved in constructing the nautical
network (index), along with insertion.

As shown in Figure 3, the first step is to construct the
density grid (Definition 5), which is then thinned, until only
the skeleton of the grid remains. The skeleton can then be used
to extract the vertices and edges, which makes up the nautical
network. Finally, the trajectories are map-matched and inserted
to the edges in the network.

4.1 Constructing and Thinning the Density Grid
To construct a density grid, a set of trajectories is used in

combination with a grid of cells, where each cell’s density
is incremented by each trajectory spatially intersecting with
it (Definition 5). The constructed density grid is then thinned
using a thinning algorithm, which is based on the work by
Zhang and Suen [26] with the improvements proposed by

4

Chen and Hsu [23]. Furthermore, we modify the thinning
algorithm such that it will work with a density grid DG. The
density grid is akin to a bitmap, where each bit corresponds
to a cell c ∈ DG. Furthermore, a bit b can only contain the
values b ∈ {0, 1}, whereas we use the density of each cell to
represents its value, where c.d ∈ {0} ∪ N.

The thinning process is iterative, meaning it applies a set
of rules to the density grid repeatedly. It terminates when
no further changes occur. During an iteration, the algorithm
looks at each cell in a density grid and determines whether it
should keep its density value or have its density value set to 0
(indicating that the cell should be removed). To simplify the
formula of the conditions, we refer to Figure 2 for notation
of cells. The cells c1, . . . , c9 in the figure, corresponds to the
cells c1, . . . , c9 in Equation 1–5. Each iteration consists of
two sub-iterations, and in the first sub-iteration, the conditions
presented in Equations 1–3 are applied.

In Equation 1, B(c1) is the number of neighbor cells of
a cell c1 with density greater than zero, i.e., B(c1) ← {c′ |
c′ ∈ N (c1, 1), c

′.d > 0}. Therefore, the first equation states,
that a cell c1 must have at least two and maximum seven cell
neighbors, with a density greater than zero, in order to be keep
its density value.

In Equation 2 and 3, A(c1) refers to the number of (0, d >
0) pairs in the sequence ⟨c2.d, c3.d, ..., c9.d, c2.d⟩ where d >
0. I.e., let SP = {c2.d, . . . , c9.d, c2.d}, A(c1) is the number
of pairs (ca.d, ca+1.d) ∈ SP , where ca.d = 0 and ca+1.d > 0.
Note that c2.d is added at the end such that we also examine
the pair (c9.d, c2.d).

2 ≤ B(c1) ≤ 7 (1)

A(c1) = 1⇒ c2.d · c4.d · c6.d = 0∧ c4.d · c6.d · c8.d = 0 (2)

A(c1) = 2⇒ (c2.d · c4.d ≥ 1 ∧ c6.d+ c7.d+ c8.d = 0) ∨
(c4.d · c6.d ≥ 1 ∧ c2.d+ c8.d+ c9.d = 0)

(3)

If the number of (0, d > 0) pairs of a cell is equal to one,
Equation 2 is applied. If the number of (0, d > 0) pairs is
equal to two, Equation 3 is applied. If all the conditions hold,
the density of the examined cell is set to zero, i.e., c1.d← 0.

In the second sub-iteration, Equation 1 is applied, along
with Equations 4 and 5.

A(c1) = 1⇒ c2.d · c4.d · c8.d = 0∧ c2.d · c6.d · c8.d = 0 (4)

A(c1) = 2⇒ (c2.d · c8.d ≥ 1 ∧ c4.d+ c5.d+ c6.d = 0) ∨
(c6.d · c8.d ≥ 1 ∧ c2.d+ c3.d+ c4.d = 0)

(5)

The algorithm terminates when no density of any cell in the
density grid is changed in an iteration. We denote the output
of the algorithm as a skeletonized grid SG. Thinning of the
density grid is from hereon referred to as skeletonization.

To visualize the skeletonization process, we refer to Fig-
ure 4, where red cells indicate that they will be removed

Figure 4: The thinning process (skeletonization) of a density
grid DG.

during the current (sub)iteration, gray cells indicate that they
have been removed in a previous (sub)iteration and white
cells indicate that they are yet to be examined or that they
are currently part of the output. As input, the density grid
DG is provided. After applying the first set of rules in the
first sub-iteration, the red shaded cells in DG11 are removed.
For example, the cell c1 in DG11 is marked for removal, as
it satisfies Equations 1, 2 and 3, however, cell c2 is kept
in this iteration, as it does not satisfy Equation 3 because
c6 + c7 + c8 ̸= 0 and c2 + c8 + c9 ̸= 0.

The second sub-iteration is then applied to the output of
DG11 , where more cells are marked for removal, as seen in
DG12 . The next iteration is then applied, with the first sub-
iteration being DG21 , where the last couple of cells are marked
for removal. Note, the figure does not show the second sub-
iteration of the last iteration, (i.e., DG22) as no more cells
would be marked for removal. The output is the skeletonized
grid SG, which is a subset of the original grid DG.

4.2 Extracting Vertices and Edges

Similar to Biagioni and Eriksson [7], we employ a modified
version of the method introduced in Shi et al. [17] to extract
vertices and edges from a skeletonized grid SG. Shi et al. work
on binary pixel images. Therefore, we use the same strategy
as in Section 4.1 and extend the set of possible density values
of any cell c ∈ SG to be {−1, 0} ∪ N. The output of the
following process is denoted a crossing grid CG.

To extract vertices and edges, we iteratively employ Algo-
rithm 1 on all cells in SG. Algorithm 1 is modified based
on algorithm 1 by Shi et al.. The algorithm looks at a cell c
and a copy of its cell neighborhood N (c, 2) and determines
whether c is a crossing (c.d ← −1), a path (c.d keeps its
value), or, in the case that it has no neighboring cells, deletes
it from the skeleton grid (c.d ← 0). To visualize this, we

5

refer to Figure 2 and set c = c1. Then if c1, c2, c10, cc25, c6
and c18 all have a density > 0 and the rest have density 0,
c1 is marked as a path (c1.d ← c1.d). If we add c4.d > 0
then c1 is marked as a crossing (c1.d ← −1). Finally, if
∀c′ ∈ {c2 , c3 , . . . , c9} : c′.d = 0 then c1 has no connections
and is deleted (c1.d ← 0). From SG, we build a crossing
grid CG, by iteratively running Algorithm 1 on each c ∈ SG:
CG = {c | c ∈ SG, c.d← COMBUST(c)}. Algorithm 1 initial-

Algorithm 1 Combust

Input: A cell c
Output: integer representing crossing, path or deleted

1: function COMBUST(c)
2: queue combusting ← c
3: set fringe ← ∅
4: while combusting ̸= ∅ do
5: c′ ← DEQUEUE(combusting)
6: for all c′′ ∈ N (c′, 1) do
7: if c′′.d > 0 then
8: c′′.d← 0
9: if c′′ /∈ F(c) then

10: ENQUEUE(combusting , c′′)
11: else if c′′ /∈ fringe ∧ c′′ ∈ F(c) then
12: fringe ← fringe ∪ {c′′}
13: ENQUEUE(combusting , c′′)

14: zp ← ZEROONEPAIRS(fringe)
15: if zp = 1 ∨ zp > 2 then
16: return −1
17: else if zp = 2 then
18: return c.d
19: else
20: return 0

izes two variables: a queue combusting and a set fringe . Then,
in the while loop (Line 4), the first element of combusting
is dequeued (Line 5), such that we can extract and examine
its neighbors c′′ ∈ N (c′, 1) in the for loop on Line 6. If c′′

has density greater than zero, we set c.d ← 0 (Lines 7–8),
marking that it has been examined. If c′′ is not part of the
fringe of c (Line 9), c′′ is added to the queue combusting
(Line 10). If it is part of the fringe F(c), but not part of the
set fringe (Line 11), it is added to the set fringe (Line 12)
and the queue combusting (Line 13). Note that the function
fringe F(c) returns all cells in the fringe of c, whereas the
set fringe only contains cells in the fringe that have a path
to c, where all cells in the path have a density greater than
zero. If none of the if-cases hold, we simply continue to the
next c′′ ∈ N (c′, 1). In Line 14 we determine the number of
(0, d > 0) pairs in the set fringe. Note that the function
ZEROONEPAIRS(fringe) is similar to the function A(c) for
Equation 2 - 5, but only looks at cells in the fringe that has
a path to c. Finally, in Lines 14–20, the number of (0, d > 0)
pairs in the set fringe determines if c is a crossing (Line 16),
path (Line 18) or should be deleted (Line 20).

Figure 5 illustrates a visual example of Algorithm 1. The
black square is the cell under evaluation, the blue squares are

Figure 5: Illustration of Algorithm 1 that finds crossings and
paths.

marked crossings and the white squares are paths. Initially, we
start with a skeletonized grid SG, and examine the black cell,
referred to as cblack . Again, note the difference between the
set fringe and the function F(c). We see that the set fringe
of cblack contains one element, and the density is thereby set
to −1, marking it as a crossing. This provides us with SG1,
which has one cell marked as a crossing (blue) and one black
cell, which is the next cell to be examined. After examining
each cell c ∈ SG, we obtain the crossing grid CG.

A crossing grid CG may contain long paths, which forms
a small curve. This curve loses its shape if we create a
direct edge between the two crossings connected by the path.
Therefore, we add another crossing after encountering a given
number of path cells in a sequence, such that the curvature
of the path is maintained. Note, that the process of adding
crossings after a set amount of path cells is not shown in
Algorithm 1.

A crossing grid CG provides the foundation of extracting
vertices and edges. Algorithm 2 depicts the overall structure
of the process. It utilizes algorithm Algorithm 3 to extract a
set of cells forming a crossing.

Algorithm 2 loops through all c ∈ CG (Line 3). If a crossing
is found (Line 4), we call EXTENDEDCOMBUST(c) (Line
5) which finds every cell in a crossing denoted CS vertex .
A further explanation of EXTENDEDCOMBUST(c) (Algo-
rithm 3) follows in the next paragraph. This creates what
is known as a main crossing, for which we find all cross-
ings with connecting paths, denoted subordinate crossings
[17]. The subordinate crossings are found using the function
FOLLOWPATH(c′′) (Line 8) which follows each path extending
from CS vertex (Lines 7–8). Once a crossing cell ccros is found,
EXTENDEDCOMBUST(ccros) is called and the full crossing set
extending from ccros is added to the main crossing CS vertex .
Finally, we add each main crossing CS vertex , to the set of
main crossings MC (Line 9).

Algorithm 3 is modified and based on algorithm 2 by Shi
et al., such that it works with density grids. We extend the
set of values that the density of a cell can be to c.d ∈
{−2,−1, 0} ∪ N, whereas Shi et al. allows a pixel to have
the values {0, 1, 2, 3}. Algorithm 3 uses a copy of a cell c

6

Algorithm 2 Build Network Vertices

Input: A crossing grid CG
Output: Set MC containing main crossings and their con-

nected subordinate crossings CS i.
1: function BUILDNETWORKVERTICES(CG)
2: set MC ← ∅
3: for all c ∈ CG do
4: if c.d = −1 then
5: CS vertex ← EXTENDEDCOMBUST(c)
6: set π ← {n | c′ ∈ CS vertex ,

c′′ ∈ N (c′, 1), c′′ > 0}
7: for all c′′ ∈ π do
8: CS vertex ← CS vertex ∪FOLLOWPATH(c′′)

9: MC ←MC ∪ {CS vertex}
10: vertex ← vertex + 1

11: return MC

marked as a crossing as input. It returns a set of cells that
form a full crossing CS , i.e., cells with density −1 connected
by their Moore neighborhoods. In Line 2 the density of c is set
to −2 marking c as part of a main crossing. Line 4 initializes
the queue combusting . combusting is used to keep track of
the cells whose neighbors have not yet been examined. The
while loop in Line 5 runs until all cells in the crossing set CS
have been found. In the while loop, the head of combusting is
extracted such that we can examine its one-wide neighborhood
for cells marked as a crossing. We look at each cell c′′ in a
copy of the neighborhood of c′ (Line 7). If c′′.d = −1, we
set c′′.d ← −2 marking that it has been examined, add it to
the crossing set CS and enqueue c′′ to combusting , such that
c′′’s neighbors is examined in a later iteration. If c′′ is not
marked as a crossing, the loop continues to the next iteration
(Line 13). Finally, the set CS is returned in Line 14.

Algorithm 3 Extended Combust

Input: A cell c
Output: A set of cells CS , representing a group of cells

marked as one crossing
1: function EXTENDEDCOMBUST(c)
2: c.d← −2
3: set CS ← c
4: queue combusting ← c
5: while combusting ̸= ∅ do
6: c′ ← DEQUEUE(combusting)
7: for all c′′ ∈ N (c′, 1) do
8: if c′′.d = −1 then
9: c′′.d← −2

10: CS ← CS ∪ {c′′}
11: ENQUEUE(combusting , c′′)
12: else
13: continue
14: return CS

Algorithm 2 is visualized in Figure 6, where gray marks

a set of cells as the current main crossing, and blue marks a
set of cells as a subordinate crossing. Note that the output of
Figure 5 is used as input in Figure 6.

Figure 6: Main crossings mc and their subordinate crossings
sc.

First, we look at cell c1 and mark it as a main crossing
mc1, visualized in gray. Hereafter, we follow the surrounding
path cells c′′ ∈ π (Lines 7–8 in Algorithm 2). In this
case, the only surrounding path cell is c2. From c2, we
reach a crossing cell c3 and call EXTENDEDCOMBUST(c3)
(Algorithm 3). This returns the set {c3, c4, c5} which is
made into the subordinate crossing scm1,1(c3, c4, c5) of
the main crossing mc1 . This process is repeated for
each main crossing (mc2,mc3 and mc4), creating the fi-
nal set of main crossings with its subordinate crossings
MC = {{mc1, scmc1,1}, {mc2, scmc2,1, scmc2,2scmc2,3},
{mc3, scmc3,1}, {mc4, scmc4,1}}.

4.2.1 Connecting Vertices: Connecting vertices is a multi-
step process. First, the centroid of each set of cells CS vertex

in CS vertex ∈MC is extracted, and the subordinate crossings
gets connected to the main crossing of CS vertex . A visualiza-
tion of this is presented in Figure 7. Note that the output of Fig-
ure 6 is the input of Figure 7. First, the centroids of the main
crossings and subordinate crossing are computed and con-
nected. As any subordinate crossing in any CS vertex ∈ MC
is a main crossing of another CS ′

vertex ∈MC it is possible to
connect the main crossings through their subordinate crossings
as depicted in the final step in Figure 7.

5. MAP-MATCHING

The map-matching algorithm works by iterating through
each segment in a trajectory, and for each segment, it finds
the edge segments in a nautical network that are within some
distance threshold th (i.e., the maximum mapping distance).
If no edge segments are within the distance threshold, the
algorithm adds the trajectory to Ψ.Tbucket , and continues
to the next segment. If some candidate edges are found,
the algorithm calculates the area of the bounding rectangles
required to fully cover the trajectory segment. The edge with
the smallest area of its bounding rectangle is selected as the
best candidate. The algorithm then calculates the shortest- and
longest shortest distance (Definition 8–Definition 9) between

7

Figure 7: Extracting vertices from main and subordinate
crossings.

the trajectory segment and the candidate segment. The longest
shortest distance is the shortest distance from the spatial point
in a segment that is farthest away from the other segment (The
algorithm can be seen in Appendix B). If the longest shortest
distance is within the threshold, we map-match the segment to
the selected candidate edge. If the shortest distance is below
the threshold, but the longest shortest is not, we enlarge the
bounding rectangle of the edge to be equal to the maximum
mapping distance threshold, and then split the segment at
its intersection with the boundary of the bounding rectangle.
This creates new (sub)segments, which are added back to the
trajectory, such that they also can be matched, if possible.
Should both the shortest- and longest shortest distance be
greater than the threshold, the trajectory segment cannot be
matched to any edge in the nautical network, and the algorithm
moves on to the next segment in the trajectory. The output
of the algorithm is a set of pairs {(s′1, ds1), . . . , (s′n, dsn)},
where s′ is an edge segment in a nautical network and ds
is the longest shortest distance between s′ and the trajectory
segment that was matched to it. A visual example is presented
in Figure 8, and the algorithm is shown in Algorithm 4.

In Figure 8, the nautical network contains two edges e1
and e2, and are represented visually by their edge segments
s′1 and s′2, respectively. The trajectory τ is represented using
it spatial segments s1, s2, s3. Looking at segment s1, both
the shortest distance (denoted by MinDist), and the longest
shortest distance (denoted by MaxDist) to the edge segment s′1
is below the given threshold th . This means, that the bounding
rectangle of s′1 (the red shaded rectangle) can cover the entire
segment, and therefore the resulting pair (s′1,MaxDist(s, s′1))
will be part of the result.

The following trajectory segment s2 has a shortest distance
to s′2 that is within the threshold th , but the longest shortest

Figure 8: Map Matching a trajectory τ containing three
segments s1, s2 and s3, to two edge segments s′1 and s′2 of
the edges e1 and e2. Note the trajectory is described using

its spatial segments.

distance is greater than the threshold. Therefore, we enlarge
the bounding rectangle of s′2 (the green shaded area) to be
equal to the threshold value th , and we split the segment
s2 where the boundary of the bounding rectangle intersects
with the segment (the green X in the figure). This creates
two new (sub)segments, s4 and s5, where both will be added
to the trajectory, such that they will be map-matched in
a later iteration, i.e., τ now consists of the four segments
s1, s4, s5, s3. The final trajectory segment s3 is too far away
from both s′1 and s′2, and can therefore not be map-matched.
Therefore, the trajectory shown in Figure 8 can be map-
matched to the edge segments s′1 and s′2. However, since the
trajectory contains a segment that could not be map-matched, it
is also added to Ψ.Tbucket , i.e., Ψ.Tbucket ← Ψ.Tbucket∪{τ}.

The map-matching algorithm, shown in Algorithm 4, uses
the following input: a trajectory τ , a nautical network Ψ, and
a maximum mapping distance threshold th . The output is a
set of pairs {(s′1, ds1), . . . , (s′n, dsn)}, where s′ is an edge
segment, and ds is the longest shortest distance between the
edge segment s′ and the trajectory segment that was matched
to it. In Line 2-3 the result set is initialized to be the empty
set, and the set of segments is extracted from the trajectory τ .
Then, the for-loop iterates through each segment in Line 4, and
in Line 5 we extract a set of candidate edge segments CS from
the set E, where the distance between the edge segment s′ and
the trajectory segment s has a shortest distance that is less
than the distance threshold th . In Line 6 a bounding rectangle
is computed for each candidate edge, that fully covers the
trajectory segment, and the edge segment with the smallest
area of its bounding rectangle is chosen as the best candidate
edge. In Lines 7–8, we calculate the shortest- and longest
shortest distance between the trajectory segment s and s′,
respectively. In Line 9, the if-statement checks if the longest

8

Algorithm 4 Map-Matching a Trajectory τ

Input: A trajectory τ , a Nautical Network Ψ, a maximum
mapping distance threshold th

Output: A set of pairs of segment s and distances ds
{(s′1, ds1), . . . , (s′n, dsn)}, that τ is mapped to.

1: function MAPMATCH(τ,Ψ, th)
2: set result ← ∅
3: set segments ← SEGMENTS(τ)
4: for all s ∈ segments do
5: CS ← {s′ | s′ ∈ Ψ.E, MINDIST(s, s′) < th}
6: segment s′ ← argmin

s′∈CS
MINBRAREA(s′, s)

7: distance dsmin ←MINDIST(s, s′)
8: distance dsmax ← MAXDIST(s, s′)
9: if dmax < th then

10: result ← result ∪ (s ′, dsmax)
11: else if dmin < th then
12: segments ← segments

∪ SPLITSEGMENT(s, s′, th)
13: else
14: Ψ.Tbucket ∪ {τ}
15: result ← result
16: return result

shortest distance is within the maximum mapping threshold.
If that is the case, τ is mapped to that edge segment, and it is
added to the result set. If dmax is greater than the threshold,
the else-if in Line 11, checks if the shortest distance is less
than the threshold. If so, we split the trajectory segment into
sub-segments (Line 12), and add the new sub-segments back
to the segment set, to be processed in a future iteration. If
neither of the distances are within the threshold, the trajectory
τ gets added to the bucket of trajectories, as seen in Line 14,
and the result set is not updated with any new pairs, as shown
in Line 15. Finally, the result is returned in Line 16.

The function MINBRAREA(s, s′) can be seen in Appendix
C, and the function SPLITSEGMENT(s, s′, th) is shown in Al-
gorithm 5, where it takes the segment to be split s1, a segment
s2 and distance ds , where s2 and ds is used in combination to
find the intersection to split the segment s1 at. The output is a
set of segments S. Note that, when the operators ∪,∩,⊆ and \
are used on spatial elements, such as rectangles and segments,
it is equivalent to ST_Union [27], ST_Intersection
[28], ST_Within [29], and ST_Difference [30], as de-
fined by PostGIS PSC, OSGeo [31], respectively.

In Line 2, in Algorithm 5, a sequence PS is created, with
the first spatial point of segment s1. In Line 3, we create
a bounding rectangle around the segment s2, with the given
threshold value th . The boundary of the rectangle is computed
in Line 4, which is then used to calculate the intersecting
spatial points in Line 5. The segments can then be created
using the spatial points, as shown in Line 6. The result is then
returned on Line 7.

Algorithm 5 Splits a segment into multiple sub-segments

Input: Two segments s1 and s2, and a distance threshold th
Output: A set of segments S

1: function SPLITSEGMENT(s1, s2, th)
2: sequence PS ← s1.p1
3: rectangle bf ← BUFFER(s2, th)
4: boundary bd ←BD(bf)
5: PS ← PS ∪ (s1 ∩ bd) ∪ {s1.p2}
6: S ← {(pi , pi+1) | pi ∈ PS ∧ 1 ≤ i < |PS|}
7: return S

6. THE INDEX

Figure 1 visualizes the idea of MiNN. It consists of a
nautical network with edge segments and their respective
bounding rectangles. Every time a trajectory is map-matched
and inserted, it is determined if the bounding rectangle should
be expanded to cover the trajectory. For example, τdot is map-
matched to segment sef and sce and upon insertion, they
expand their bounding rectangles depicted as the gray and
orange shaded area, respectively. The same happens for edge
segments sab , sbc and scd when inserting τdash . The resulting
network and the bounding rectangles of the edge segments is
then utilized when executing a spatial range query, e.g. Q1 and
Q2 from Figure 1. Q2 is fully contained in the union of the
bounding rectangles it intersects. We can therefore guarantee
that any trajectory segment intersecting Q2 is mapped to
edge segments sef , sce , sbc and scd , and thereby avoiding
evaluating Q2 against τline , limiting the amount of trajectories
to examine.

6.1 Insertion, Deletion, and Updates

Inserting trajectories into the index is described in Algo-
rithm 6. The algorithm takes a trajectory τ to be inserted, a
nautical network Ψ, and a distance threshold th as input. In
Line 2 the trajectory τ is map-matched using Algorithm 4, and
the output is stored in the set Mτ . Then, in Line 3, a set Ematch

is created. Ematch contains the pairs of the corresponding
edges e, which the trajectory has been mapped to, along with
the distances map.ds . map.ds is the longest shortest distance
between the edge segments, and the trajectory segment that
was mapped to it. In Line 4, each pair in Ematch is looped
trough, where the set of trajectories mapped to each edge is
updated to include the input trajectory τ (Line 5), along with
updating the longest shortest distance γ of the edge, as seen
in Line 6.

Deletion of a trajectory is defined in Algorithm 7, which
takes the trajectory τ to be removed as input, as well as the
nautical network Ψ, where the trajectory should be removed
from. Then, in Line 3, for each edge in Econtains , it removes
the trajectory τ from the set T, thereby updating the nautical
network.

To update a trajectory, the trajectory is first deleted using
Algorithm 7, and then inserted again using Algorithm 6.

9

Algorithm 6 Trajectory insertion

Input: A trajectory τ to be inserted, a nautical network Ψ, a
threshold th

1: function INSERT(τ,Ψ, th)
2: Mτ ← MAPMATCH(τ,Ψ, th)
3: Ematch ← {(e,map.ds) | e ∈ Ψ.E,map ∈Mτ ,

e.s = map.s}
4: for all (e,map.ds) ∈ Ematch do
5: e.T← e.T ∪ {τ}
6: e.γ ← MAX(e.γ,map.ds)

Algorithm 7 Trajectory Deletion

Input: A trajectory τ to be removed, a nautical network Ψ
1: function DELETE(τ,Ψ)
2: Econtains ← {(s,T, γs) | (s,T, γs) ∈ Ψ, τ ∈ T}
3: for all (s,T, γs) ∈ Econtains do
4: T← T \ {τ}
5: Ψ.Tbucket ← Ψ.Tbucket \ {τ}

6.2 Spatial Range Queries

To perform a spatial range query, MiNN uses Algorithm 8.
As input, it takes a spatial range query Q and a nautical
network Ψ. It returns a set of trajectories T′ intersecting Q.
In Line 3 we find the edge segments that have a bounding
rectangle intersecting Q and in Line 4 we create the union of
those bounding rectangles. Finding intersecting trajectories is
done one of two ways: Either Q is fully covered by the union
of the intersecting bounding rectangles, determined in Line 6,
or it is not fully contained. If it is fully contained, only the
trajectories mapped to the edges with intersecting bounding
rectangles, is extracted and evaluated against Q (Lines 6-7).
If it is not fully contained, we examine two different sets
and return the combined result. First, we find the intersection
between Q and the bounding rectangles in Eintersect (Line 9).
Second, we find the spatial difference between Qintersection

and Q (Line 10) denoted Qdiff . We then find the trajectories
in TP that intersects Qintersection and combine it with the
set of trajectories in Tbucket intersecting Qdiff (Line 11-12).
Finally, we return the set T′ in Line 13.

To visualize Algorithm 8, we refer to Figure 1, and set
Q = Q2. In this case, Q2 is fully contained within the
bounding rectangles it intersects, i.e., Q2 ⊆ brce ∪brcd ∪brbc .
Therefore, Algorithm 8 apply Lines 6–7 which builds the set
T′ from all trajectories mapped to any edge e ∈ Pintersect that
intersects Q2. For Figure 1 tdot is mapped to sce , scd and sbc
and intersects Q2. Thereby, T′ = {τdot}.

For the case that Q = Q1, we see that Q ⊈ Punion (Line 6
Algorithm 8), and we therefore apply Lines 9–12. We see that
Q1 ⊈ Qunion and therefore, we first find the set of trajectories
intersecting Qintersection , which is {τdash}, and then find the
set of trajectories intersecting Qdiff , which is {τline}, thereby
getting the resulting set T′ = {τdash , τline}.

Algorithm 8 Evaluation of Spatial Range Queries

Input: Spatial range query Q and a nautical network Ψ
Output: A set of trajectories intersecting Q denoted T′

1: function RANGEQUERY(Q, Ψ)
2: T′ ← ∅
3: Eintersect ← {e | e ∈ Ψ.E, e.br ∩Q ̸= ∅}
4: Punion ←

⋃
e.br,e∈Eintersect

5: TP ←
⋃

e.T∈Eintersect

6: if Q ⊆ Punion then
7: T′ ← T′ ∪ {τ | τ ∈ TP , τ ∩Q}
8: else
9: Qintersection ← Q ∩

⋃
e.s∈Eintersect

10: Qdiff ← Q \Qintersection

11: T′ ← T′ ∪ {τ | τ ∈ TP , τ ∩Qintersection}
12: T′ ← T′ ∪ {τ | τ ∈ Ψbucket , τ ∩Qdiff }
13: return T′

7. EXPERIMENTS AND RESULTS

In order to evaluate the performance of MiNN, we perform
a set of spatial range queries. Since MiNN heavily relies on
the nautical network, different configurations for the nautical
network are tested, to find the best of the tested configurations.

7.1 Hardware, Software and Data
The hardware used for building and testing our solution is

two machines. One machine is responsible for creating the
nautical network as well as running map-matching algorithm.
This machine has the following hardware:

• 6-core, 12-thread Intel i7-9750H 2.6Ghz
• 16 GB DDR4 memory
• 512 GB NVMe SSD

The second machine contains the database and therefore the
MiNN index. This machine has the following hardware:

• 8-core, 16-thread AMD Ryzen 7 5800x 3.8Ghz
• 32 GB DDR4 memory
• 4 TB NVMe SSD

The database is running the following software:
• PostgreSQL 15.3 [32]
• PostGIS 3.3.2 [31]
• MobilityDB 1.1.0 [33]
The implementation of skeletonization, combustion (Algo-

rithm 1), extended combustion (Algorithm 3), finding vertices
and edges (Algorithm 2), and map-matching (Algorithm 4–5)
is written in C++ using the GEOS library [34] for spatial cal-
culations. Both skeletonization and map-matching have been
implemented with parallelization, significantly improving the
run-time of both algorithms. Furthermore, the map-matching
algorithm utilizes an in-memory R-tree [1, 34] to index edge
segments in a given nautical network, making it significantly
faster when computing possible candidate edges. Constructing
the density grid, connecting vertices in the nautical network
and building the index is done in PostgreSQL [32] using the
PostGIS add-on [31]. In PostgreSQL, we assign each edge

10

and trajectory a unique identifier, and connect trajectories and
edges through a bridge table. This allows us to index the
identifiers using a B-tree [12]. Furthermore, a demo website
is developed in TypeScript [35] with React [36] and Leaflet
[37]. The website comes with an Application Programming
Interface (API) developed in Python [38] with FastAPI [39].
The website is able to show nautical networks with different
configurations, show density grids, and manually execute a
spatial range query using both the MiNN- and the GiST
Index, providing performance numbers and comparisons for
both indexes. We use trajectory data from AIS [40], and the
trajectories are cleansed. We use 44, 509 trajectories from
January and February 2021 to extract a nautical network,
where each trajectory must have covered at least 10 kilometers.
MiNN is evaluated on 77, 941 trajectories from January 2022.

7.2 Nautical Network

There are several adjustable parameters that influence the
resulting nautical network. In order to find the most suitable
choice of value for each parameter, several configurations are
tested. The adjustable parameters and their possible values can
be seen in Table 1, which is ordered by the best mean time
improvement.
Min Density is a threshold made to filter out cells in the

density grid with a density lower than the Min Density
value. The parameter Max Path Length determines how
many cells we traverse during the combustion step before
adding a crossing, and together with Cell Size and Min
Density, it affects the number of nodes and edges in the
nautical network. Lastly, Max Mapping Distance affects
the maximum size of the bounding polygon of the edges in
the nautical network.

To extract the nautical network, we include trajectories
from vessels of type Cargo and Tanker since the vessels
often rely on routes and fairways to save on fuel costs and
minimize travelling time, in theory providing a more accurate
representation of the routes. If a trajectory is very short, the
nautical network would not gain much information of routes
from the trajectory. Therefore, we use trajectories longer than
ten kilometers to extract the nautical network. MiNN is built
and tested on trajectory data that lies within the gray boundary
depicted in Figure 9. MiNN are evaluated by the spatial range
queries, denoted SRQ, in Figure 9.

7.3 MINN Index

To evaluate the performance of MiNN, we examine a set of
parameters listed below:

• Query response times for MiNN vs PostGIS GiST index
[12]

• Size of MiNN bounding rectangles vs size of Minimum
Bounding Rectangle (MBR) in GiST

• Query response time performance per query area
• The distance from trajectories to the edge segments they

are mapped to
• Amount of trajectories mapped to an edge segment

We perform spatial queries for eight different areas seen in
Figure 9. The eight areas are chosen such that we can examine
performance on large query areas (area 2), high traffic volume
areas (area 1, 5 and 6), harbors (area 4 and 6), and some
random areas (3, 7 and 8). Each spatial range query is executed
ten times to collect an average reading.

SRQ 1

SRQ 2

SRQ 3
SRQ 4

SRQ 5

SRQ 6

SRQ 7
SRQ 8

Figure 9: Nautical networks and spatial range queries.

7.4 Results

The spatial range queries are executed on 108 configurations
of a nautical network. Table 2 shows the results for the five
configurations with the best mean time improvement. Table 2
show that the best configurations for the nautical network
does not include networks with a cell size of four kilometers
and does also not include any configurations with a max
mapping distance lower than five kilometers. The nautical
network performs better when the cell size is one or two
kilometers. In our ranking, the mean time is valued the highest.
Configurations for one kilometer perform almost equal in
mean time, but shows a better minimum (№3) or maximum
(№4) time improvement. We also see that the number of
vertices and edges for a configuration with one kilometer
is far greater than the configurations using a cell size of
two kilometers. The number of edges in particular can have
influence on how fast map-matching can be done. However,
map-matching is not necessarily slower because the number
of edges and vertices are greater, as Table 6 shows. The
map-matching time is mainly determined by the maximum
mapping distance and less the number of edges. The max
mapping distance also has the largest impact on the percentage
of trajectories that can be mapped. To visualize a nautical
network, Figure 9 show №1 and №3, from Table 2, colored
red and green, respectively.

11

Parameter Values Description

Cell Size 1, 2, 4 The side length (in km) of each cell in the density grid

Min Density Q1*, Q2*, Q3* The minimum density a cell must have to be considered

Max Path Length 12km
Cell Size

, 24km
Cell Size

, 48km
Cell Size

The maximum number of cells traversed in a path before manually adding a crossing

Max Mapping Distance 1, 2.5, 5, 10 The maximum distance (in km) between a trajectory segment and an edge segment

Table 1: An overview over the parameters and their configuration values. Q1*, Q2*, Q3* is the 25%, 50% and 75% quartile
of density values respectively.

№ Cell Size
(km)

Max Path
Length Min Density Max Mapping

Distance (km)
Mean Time

Improvement # Vertices # Edges

№1 2 6 114 (Q3) 10 19% 283 229

№2 2 12 114 (Q3) 10 18% 223 169

№3 1 12 16 (Q2) 5 17% 1, 239 920

№4 2 24 114 (Q3) 10 13% 196 143

№5 1 48 4 (Q1) 5 0% 1, 557 1, 098

Table 2: Best configurations for MiNN, given mean time improvement between MiNN and GiST.

№ Mean Time
MiNN (ms)

Mean Time
GIST (ms)

Min time
improvement

Max Time
Improvement

Mean Time
Improvement

Median Time
Improvement

№1 73.83 90.94 −27% 57% 19% 30%

№2 75.3 90.94 −15% 59% 18% 23%

№3 75.5 90.94 −11% 63% 17% 18%

№4 79.9 90.94 −23% 62% 13% 14%

№5 91.1 90.94 −73% 72% 0% 12%

Table 3: Time measurements for the best configurations of MiNN. The ranking number refers to a corresponding
configuration in Table 2. The best time difference in each column is highlighted in bold and underlined.

0 2 4 6 8 10
0%

10%

20%

30%

40%

50%

60%

pe
rc

en
ta

ge

2%
4% 5% 4%

6% 6% 7% 8%
10

%
48

%

Config No 1

0 2 4 6 8 10

5% 6% 6% 6% 5% 6% 6% 7% 8%
45

%

Config No 2

0 1 2 3 4 5

5% 5% 6% 6% 6%
4% 4% 5%

8%
51

%

Config No 3

0 1 2 3 4 5

3%
6% 7% 8% 9% 8%
6%

8% 7%
38

%

Config No 4

0 2 4 6 8 10

5% 6% 6% 7% 5% 6% 7% 7% 8%
45

%
Config No 5

Distance moved (km)

Figure 10: The distance from a trajectory segment to and edge segment it has been mapped to.

12

Trajectories Total
Trajectories

% of Total
Trajectories

SRQ 1 896 71, 941 1.25%

SRQ 2 265 71, 941 0.37%

SRQ 3 675 71, 941 0.94%

SRQ 4 610 71, 941 0.85%

SRQ 5 1, 268 71, 941 1.76%

SRQ 6 1, 226 71, 941 1.70%

SRQ 7 663 71, 941 0.92%

SRQ 8 1, 218 71, 941 1.69%

Table 4: Output trajectories for each spatial range query.

№1 №2 №3 №4 №5

SRQ 1 −27.2% −15.4% −11.5% −17.0% −58.3%

SRQ 2 44.3% 44.5% 14.1% 42% −0.1%

SRQ 3 36.0% 22.8% 32.0% 6.9% −43.3%

SRQ 4 57.0% 59.8% 63.7% 62.1% 72.2%

SRQ 5 31.5% 26.7% 34.5% 23.7% 35.7%

SRQ 6 30.0% 23.6% 22.9% 22.6% 29.9%

SRQ 7 −9.9% −8.6% −2.8% −11.4% 25.2%

SRQ 8 −6.6% −7.4% −10.8% −23.4% −73.1%

Table 5: Query Time improvement per area (row) and
nautical network configuration (column).

The goal of testing MiNN is to see if there exist a con-
figuration of a network, where the query response time is
improved compared to the GiST index [12]. Table 3 show
that the five best configurations have a query speed averaging
upwards of 19% improvement compared to GiST. Table 3
provides minimum-, maximum-, mean- and median time for
each configuration. Note that the mean GiST time is the
same for all five configurations, as it is not dependent on
the configuration. Instead, the mean GiST time is found by
running the eight queries using the GiST index, independently
of the configurations. Table 6 shows that we are able to
map a majority of the trajectories to the nautical network.
We expect the majority of trajectory segments to have a
mapping distance nearing the max mapping distance due to the
splitting of trajectory segments in the map-matching algorithm
(Algorithm 4), which is indicated by Figure 10.

An interesting observation is the low number of vertices and
edges in the network. As seen in Table 2 the number of edges
and vertices is mainly determined by the cell size, but also
the maximum path length and minimum density. Moreover,
the low number of edges and vertices is also influenced by
the type of vessels used. Since we use cargo and tankers, their
size forces them to follow certain routes. This is not inherently

№ Mean
Time (ms) Mapped Not

Mapped % Mapped

№1 9.23 57, 897 14, 044 80.5%

№2 7.75 54, 195 17, 746 75.3%

№3 7.19 56, 269 15, 672 78.2%

№4 9.14 57, 819 14, 122 80.4%

№5 9.42 57, 490 14, 451 79.9%

Table 6: Average time to map-match a trajectory, and the
number of trajectories that were mapped and not mapped to

an edge segment for the top 5 configurations.

seen as a drawback, as the maximum mapping distance ensures
that vessels travelling outside these routes are also mapped to
an edge. However, this also means, indexing vessel types such
as yachts or pleasure crafts, could be an issue, as they do not
exhibit the same behavior as tanker and cargo vessels, meaning
there likely will not be an edge that their trajectories could
be mapped to. I.e., pleasure crafts often sail close to shore,
compared to tanker and cargo vessels, and would therefore
either not be mapped at all, or require a very large maximum
mapping distance, which has a negative performance impact.

Table 4 show the number of trajectories retrieved by each
spatial range query. This is important, as the output from a
query should be a small fraction of the total data in order
to best utilize an index [41]. Table 5 show the percentage
improvement gained by using MiNN for each spatial range
query compared to GiST [12]. Here we see, that for SRQ
1, SRQ 7 and SRQ 8 MiNN is not better than the original
GiST index. However, in most cases MiNN outperforms GiST,
and for SRQ 2, which is a spatial range query not fully
covered by any of the five nautical networks, MiNN still
outperforms GiST by up to 44.5%. The strength of MiNN
lies in its ability to reduce the search area compared to GiST,
which uses minimum bounding rectangles. This can be seen
in Table 7, where, for all spatial range queries encapsulated by
MiNN (Appendix D), MiNN reduces the area between 98.3%
and 99.8%. Even in regions where the spatial range query is
not fully encapsulated (Appendix D) we still reduce the area
compared to GiST

PostGIS’s GiST index [12] outperforms MiNN for the
spatial queries SRQ 1, SRQ 7, and SRQ 8. The explanation
for the subpar performance for SRQ 1, SRQ 7 and SRQ 8 is
the large amount of intersecting bounding rectangles, affecting
the performance of the index negatively.

8. CONCLUSION

We present a new method to index trajectories named
MiNN. We describe three overall process: building a nautical
network from a partitioned grid, map-matching trajectories to
the nautical network and insert, update, delete and performing
spatial queries on a network. The networks are built from
44, 509 trajectories from January and February 2021 and tested
on 71, 941 trajectories from January 2022. MiNN utilizes a

13

№1 №2 №3 №4 №5

SRQ 1 98.6% 98.8% 98.8% 99.5% 3.9%

SRQ 2 85.1% 85.1% 85.7% 85.1% 88.1%

SRQ 3 99.3% 99.5% 99% 98.6% 1.4%

SRQ 4 99.1% 99.1% 99.1% 99.5% 99.4%

SRQ 5 99.2% 99.0% 99.0% 99.7% 99.7%

SRQ 6 99.6% 99.6% 99.3% 99.2% 99.3%

SRQ 7 99.8% 98.2% 98.6% 99.5% 99.0%

SRQ 8 99.4% 99.3% 98.3% 98.3% 49.4%

Table 7: Size reduction of area needed to represent
trajectories in MiNN vs GiST.

graph structure and introduces the idea of querying on bound-
ing rectangles to optimize query time performance. MiNN
reached upwards of 19% mean time improvement and 72%
maximum improvement compared to GiST on well-chosen
query areas. It shows promising results on large and small
query areas, as well as within harbors. Overall, MiNN proved
better than GiST with exceptions in the outer regions of the
tested area. We believe, that the performance of MiNN in these
areas could be improved and outperform GiST if more data
was provided in the outer regions.

Future research should focus on creating networks in regions
where numerous trajectories intersect, resulting in distorted
route patterns. Here, the direction or other filtering measures
could assist in finding patterns. Another interesting research
area is to implement localized maximum mapping distances,
rather than having a global threshold.

ACKNOWLEDGMENTS

We would like to thank Kristian Torp1 and Christian
Søndergaard Jensen2 for their supervision and guidance
throughout the project. This paper would not be possible
without their expertise.

1https://vbn.aau.dk/da/persons/108522
2https://vbn.aau.dk/da/persons/christian-s-jensen

REFERENCES

[1] A. Guttman, “R-trees: a dynamic index structure for
spatial searching,” ser. SIGMOD ’84. New York, NY,
USA: Association for Computing Machinery, 1984,
p. 47–57. [Online]. Available: https://doi.org/10.1145/
602259.602266

[2] V. T. de Almeida and R. H. Güting, “Indexing
the trajectories of moving objects in networks*,”
GeoInformatica, vol. 9, no. 1, pp. 33–60, Mar 2005.
[Online]. Available: https://doi.org/10.1007/s10707-004-
5621-7

[3] D. Pfoser, C. S. Jensen, Y. Theodoridis et al., “Novel
approaches to the indexing of moving object trajectories.”
in VLDB, vol. 2000. Citeseer, 2000, pp. 395–406.

[4] B. Krogh, C. S. Jensen, and K. Torp, “Efficient in-
memory indexing of network-constrained trajectories,” in
Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, ser. SIGSPACIAL ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2996913.2996972

[5] H. He, R. Li, S. Ruan, T. He, J. Bao, T. Li, and
Y. Zheng, “Trass: Efficient trajectory similarity search
based on key-value data stores,” in 2022 IEEE 38th
International Conference on Data Engineering (ICDE),
2022, pp. 2306–2318.

[6] T. Li, R. Huang, L. Chen, C. S. Jensen, and
T. B. Pedersen, “Compression of uncertain trajectories
in road networks,” Proc. VLDB Endow., vol. 13,
no. 7, p. 1050–1063, mar 2020. [Online]. Available:
https://doi.org/10.14778/3384345.3384353

[7] J. Biagioni and J. Eriksson. (2012) Map inference in
the face of noise and disparity. Accessed February
28th, 2024. [Online]. Available: https://www.cs.uic.edu/
∼jakob/papers/biagioni-gis12.pdf

[8] D. Filipiak, K. Wecel, M. Stróżyna, M. Stróżyna,
and W. Abramowicz, “Extracting maritime traffic
networks from ais data using evolutionary algorithm,”
Business & Information Systems Engineering, vol. 62,
no. 5, pp. 435–450, Oct 2020. [Online]. Available:
https://doi.org/10.1007/s12599-020-00661-0

[9] R. Vettor and C. Guedes Soares, “Detection and analysis
of the main routes of voluntary observing ships in the
north atlantic,” Journal of Navigation, vol. 68, no. 2, p.
397–410, 2015.

[10] Z. Yan, Y. Xiao, L. Cheng, R. He, X. Ruan,
X. Zhou, M. Li, and R. Bin, “Exploring ais data
for intelligent maritime routes extraction,” Applied
Ocean Research, vol. 101, p. 102271, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0141118720303631

[11] G. Pallotta, M. Vespe, and K. Bryan, “Traffic route
extraction and anomaly detection from ais data,” 06 2013.

[12] T. P. G. D. Group. (2024) Postgresql index types.
Accessed May 21th, 2024. [Online]. Available: https:

14

https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1007/s10707-004-5621-7
https://doi.org/10.1007/s10707-004-5621-7
https://doi.org/10.1145/2996913.2996972
https://doi.org/10.14778/3384345.3384353
https://www.cs.uic.edu/~jakob/papers/biagioni-gis12.pdf
https://www.cs.uic.edu/~jakob/papers/biagioni-gis12.pdf
https://doi.org/10.1007/s12599-020-00661-0
https://www.sciencedirect.com/science/article/pii/S0141118720303631
https://www.sciencedirect.com/science/article/pii/S0141118720303631
https://www.postgresql.org/docs/current/indexes-types.html

//www.postgresql.org/docs/current/indexes-types.html
[13] PostGIS PSC, OSGeo. (2024) Postgis st buffer

documentation. Accessed May 19th, 2024. [Online].
Available: https://postgis.net/docs/ST Buffer.html

[14] F. Ren, Y. Han, S. Wang, and H. Jiang, “A
novel high-dimensional trajectories construction network
based on multi-clustering algorithm,” EURASIP Journal
on Wireless Communications and Networking, vol.
2022, no. 1, p. 18, 2022. [Online]. Available: https:
//doi.org/10.1186/s13638-022-02108-4

[15] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic subspace clustering of high dimensional
data for data mining applications,” SIGMOD Rec.,
vol. 27, no. 2, p. 94–105, jun 1998. [Online]. Available:
https://doi.org/10.1145/276305.276314

[16] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch:
an efficient data clustering method for very large
databases,” in Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, ser.
SIGMOD ’96. New York, NY, USA: Association
for Computing Machinery, 1996, p. 103–114. [Online].
Available: https://doi.org/10.1145/233269.233324

[17] W. Shi, S. Shen, and Y. Liu, “Automatic generation of
road network map from massive gps vehicle trajectories,”
11 2009, pp. 1 – 6.

[18] P. Newson and J. Krumm, “Hidden markov map
matching through noise and sparseness,” in Proceedings
of the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ser.
GIS ’09. New York, NY, USA: Association for
Computing Machinery, 2009, p. 336–343. [Online].
Available: https://doi.org/10.1145/1653771.1653818

[19] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang,
and Y. Huang, “Map-matching for low-sampling-rate
gps trajectories,” in Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, ser. GIS ’09.
New York, NY, USA: Association for Computing
Machinery, 2009, p. 352–361. [Online]. Available:
https://doi.org/10.1145/1653771.1653820

[20] “The universal transverse mercator (utm) grid,” Reston,
VA, Tech. Rep., 2001, report. [Online]. Available:
https://pubs.usgs.gov/publication/fs07701

[21] PROJ contributors, PROJ coordinate transformation
software library, Open Source Geospatial Foundation,
2024. [Online]. Available: https://proj.org/

[22] E. W. Weisstein, “Moore neighborhood,” retrieved 2024.
[Online]. Available: https://mathworld.wolfram.com/
MooreNeighborhood.html

[23] Y.-S. Chen and W.-H. Hsu, “A modified fast
parallel algorithm for thinning digital patterns,” Pattern
Recognition Letters, vol. 7, no. 2, pp. 99–106, 1988.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/0167865588901249

[24] R. Schneider, Convex Bodies: The Brunn–Minkowski
Theory, 2nd ed., ser. Encyclopedia of Mathematics and

its Applications. Cambridge University Press, 2013.
[25] PostGIS PSC, OSGeo. (2024) Postgis st buffer

documentation. Accessed May 20th, 2024. [Online].
Available: https://postgis.net/docs/ST Boundary.html

[26] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm
for thinning digital patterns,” Commun. ACM, vol. 27,
no. 3, p. 236–239, mar 1984. [Online]. Available:
https://doi.org/10.1145/357994.358023

[27] PostGIS PSC, OSGeo. (2024) Postgis st union
documentation. Accessed May 19th, 2024. [Online].
Available: https://postgis.net/docs/ST Union.html

[28] ——. (2024) Postgis st intersection documentation.
Accessed May 19th, 2024. [Online]. Available: https:
//postgis.net/docs/ST Intersection.html

[29] ——. (2024) Postgis st within documentation. Accessed
May 19th, 2024. [Online]. Available: https://postgis.net/
docs/ST Within.html

[30] ——. (2024) Postgis st difference documentation.
Accessed May 19th, 2024. [Online]. Available:
https://postgis.net/docs/ST Difference.html

[31] ——. (2024) Postgis documentation. Accessed May 5th,
2024. [Online]. Available: https://postgis.net/

[32] The PostgreSQL Global Development Group. (2024)
Postgresql documentation. Accessed May 5th, 2024.
[Online]. Available: https://www.postgresql.org/docs/15/
index.html

[33] E. Zimányi, M. Sakr, and A. Lesuisse, “Mobilitydb:
A mobility database based on postgresql and postgis,”
ACM Trans. Database Syst., vol. 45, no. 4, dec 2020.
[Online]. Available: https://doi.org/10.1145/3406534

[34] (2024) Postgis documentation. Accessed May 5th, 2024.
[Online]. Available: https://libgeos.org/

[35] Microsoft. (2024) Typescript. Accessed May 18th, 2024.
[Online]. Available: https://www.typescriptlang.org/

[36] Meta Open Source. (2024) React. Accessed May 18th,
2024. [Online]. Available: https://react.dev/

[37] Volodymyr Agafonkin et al. (2024) Leaflet.
Accessed May 18th, 2024. [Online]. Available:
https://leafletjs.com/

[38] (2024) Python documentation. Accessed May 19th,
2024. [Online]. Available: https://docs.python.org/3/

[39] S. Ramı́rez. (2024) Fastapi documentation. Ac-
cessed May 19th, 2024. [Online]. Available:
https://fastapi.tiangolo.com/

[40] Llyods List Intelligence. The essential guide
to the automatic identification system (ais).
Accessed May 5th, 2024. [Online]. Available:
https://www.lloydslistintelligence.com/knowledge-
hub/data-storytelling/essential-guide-automatic-
identification-system-ais-signals

[41] T. P. G. D. Group. (2024) Postgresql documentation:
Indexes and order by. Accessed May 21th, 2024.
[Online]. Available: https://www.postgresql.org/docs/
current/indexes-ordering.html

[42] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars, Computational Geometry: Algorithms and

15

https://www.postgresql.org/docs/current/indexes-types.html
https://postgis.net/docs/ST_Buffer.html
https://doi.org/10.1186/s13638-022-02108-4
https://doi.org/10.1186/s13638-022-02108-4
https://doi.org/10.1145/276305.276314
https://doi.org/10.1145/233269.233324
https://doi.org/10.1145/1653771.1653818
https://doi.org/10.1145/1653771.1653820
https://pubs.usgs.gov/publication/fs07701
https://proj.org/
https://mathworld.wolfram.com/MooreNeighborhood.html
https://mathworld.wolfram.com/MooreNeighborhood.html
https://www.sciencedirect.com/science/article/pii/0167865588901249
https://www.sciencedirect.com/science/article/pii/0167865588901249
https://postgis.net/docs/ST_Boundary.html
https://doi.org/10.1145/357994.358023
https://postgis.net/docs/ST_Union.html
https://postgis.net/docs/ST_Intersection.html
https://postgis.net/docs/ST_Intersection.html
https://postgis.net/docs/ST_Within.html
https://postgis.net/docs/ST_Within.html
https://postgis.net/docs/ST_Difference.html
https://postgis.net/
https://www.postgresql.org/docs/15/index.html
https://www.postgresql.org/docs/15/index.html
https://doi.org/10.1145/3406534
https://libgeos.org/
https://www.typescriptlang.org/
https://react.dev/
https://leafletjs.com/
https://docs.python.org/3/
https://fastapi.tiangolo.com/
https://www.lloydslistintelligence.com/knowledge-hub/data-storytelling/essential-guide-automatic-identification-system-ais-signals
https://www.lloydslistintelligence.com/knowledge-hub/data-storytelling/essential-guide-automatic-identification-system-ais-signals
https://www.lloydslistintelligence.com/knowledge-hub/data-storytelling/essential-guide-automatic-identification-system-ais-signals
https://www.postgresql.org/docs/current/indexes-ordering.html
https://www.postgresql.org/docs/current/indexes-ordering.html

Applications, 3rd ed. Santa Clara, CA, USA: Springer-
Verlag TELOS, 2008. [Online]. Available: https://
link.springer.com/book/10.1007/978-3-540-77974-2

ACRONYMS

AIS Automatic Idenfication System. 2, 11
API Application Programming Interface. 11

GiST Generalized Search Tree. 2, 11–14
GPS Global Positioning System. 2

MBR Minimum Bounding Rectangle. 11
MiNN Maritime Indexing from Nautical Networks. 1–3, 9–

14, 20, 21

UTM Universal Transverse Mercator. 3

16

https://link.springer.com/book/10.1007/978-3-540-77974-2
https://link.springer.com/book/10.1007/978-3-540-77974-2

APPENDIX A
SHORTEST DISTANCE BETWEEN TWO SEGMENTS

The following algorithm is based on the work by de Berg et al. [42].

Algorithm 9 Calculates the shortest distance between two segments

Input: Two segments s1 and s2
Output: Shortest distance between s1 and s2

1: function MINDIST(s1, s2)
2: TRANSFORM(s1.p.1)
3: TRANSFORM(s1.p.2)
4: TRANSFORM(s2.p.1)
5: TRANSFORM(s2.p.2)
6: Ax← s1.p1.x
7: Ay ← s1.p1.y
8: Bx← s1.p2.x
9: By ← s1.p2.y

10: Cx← s2.p1.x
11: Cy ← s2.p1.y
12: Dx← s2.p2.x
13: Dy ← s2.p2.y

14: r ← (Ay − Cy)(Dx− Cx)− (Ax− Cx)(Dy − Cy)

(Bx−Ax)(Dy − Cy)− (By −Ay)(Dx− Cx)

15: s← (Ay − Cy)(Bx−Ax)− (Ax− Cx)(By −Ay)

(Bx−Ax)(Dy − Cy)− (By −Ay)(Dx− Cx)

16: if 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1 then
17: return 0
18: else
19: Spatial Point A← s1.p1
20: Spatial Point B ← s1.p2
21: Spatial Point C ← s2.p1
22: Spatial Point D ← s2.p2
23: Distance As2 ← POINTTOSEGMENTDIST(A, s2)
24: Distance Bs2 ← POINTTOSEGMENTDIST(B, s2)
25: Distance Cs1 ← POINTTOSEGMENTDIST(C, s1)
26: Distance Ds1 ← POINTTOSEGMENTDIST(D, s1)
27: return min(As2 , Bs2 , Cs1 , Ds1)

17

Algorithm 10 Calculates the Shortest Distance between a Spatial Point and a Segment

Input: A spatial point p and a segment s
Output: Shortest distance between p and s

1: function POINTTOSEGMENTDIST(p, s)
2: TRANSFORM(p)
3: TRANSFORM(s.p.1)
4: TRANSFORM(s.p.2)
5: Px← p.x
6: Py ← p.y
7: Ax← s.p1.x
8: Ay ← s.p1.y
9: Bx← s.p2.x

10: By ← s.p2.y

11: r ← (Px−Ax)(Bx−Ax) + (Py −Ay)(By −Ay)

(Bx−Ax)2 + (By −Ay)2

12: if r ≤ 0 then
13: result ←

√
(Px−Ax)2 + (Py −Ay)2

14: return result
15: else if r ≥ 1 then
16: result ←

√
(Px−Bx)2 + (Py −By)2

17: return result
18: else
19: s← (Ay − Py)(Bx−Ax)− (Ax− Px)(By −Ay)

(Bx−Ax)2 + (By −Ay)2

20: result ← |s| ·
√
(Bx−Ax)2 + (By −Ay)2

21: return result

18

APPENDIX B
LONGEST SHORTEST DISTANCE FROM A SEGMENT TO ANOTHER SEGMENT

Algorithm 11 Calculates the longest shortest distance from one segment to another

Input: Two segments s1 and s2
Output: Longest Shortest distance from s1 to s2

1: function MAXDIST(s1, s2)
2: A← s1.p1
3: B ← s1.p2
4: As2 ← POINTTOSEGMENT(A, s2)
5: Bs2 ← POINTTOSEGMENT(B, s2)
6: return max (As2 , Bs2)

APPENDIX C
AREA OF BOUNDING RECTANGLE OF A SEGMENT s1 , THAT IS LARGE ENOUGH TO ENCAPSULATE A SEGMENT s2

Algorithm 12 Calculates the area of Boundary Rectangle of segment s1, that encapsulates a segment s2
Input: Two segments s1 and s2
Output: Area of bounding rectangle of s1, that encapsulates s2.

1: function MINBRAREA(s1, s2)
2: Distance ds ← MAXDIST(s1, s2)
3: Bounding rectangle r ←BR(s1, ds)

4: width w ←
√
(r.p2.x− r.p1.x)2 + (r.p2.y − r.p1.y)2

5: length l←
√
(r.p4.x− r.p1.x)2 − (r.p4.y − r.p1.y)2

6: return w · l

19

APPENDIX D
QUERY AREA IS ENCAPSULATED IN MINN

№1 №2 №3 №4 №5

SRQ 1 Yes Yes Yes Yes No

SRQ 2 No No No No No

SRQ 3 Yes Yes Yes Yes No

SRQ 4 Yes Yes Yes Yes Yes

SRQ 5 Yes Yes Yes Yes Yes

SRQ 6 Yes Yes Yes Yes Yes

SRQ 7 Yes Yes Yes Yes Yes

SRQ 8 Yes Yes Yes Yes No

Table 8: Specifies if a query is encapsulated by MiNN.

20

APPENDIX E
TIME FOR EACH STEP BUILDING MINN

№1 №2 №3 №4 №5

Skeletonize 99 95 8, 168 99 20, 174

Computing crossings
and connections

236 202 5, 197 190 9, 998

Building MiNN
database index

1, 537 1, 516 3, 576 1, 559 5, 445

Table 9: Time (ms) for each step of building MiNN per configuration.

21

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Constructing the Nautical Network
	4.1 Constructing and Thinning the Density Grid
	4.2 Extracting Vertices and Edges
	4.2.1 Connecting Vertices

	5 Map-Matching
	6 The Index
	6.1 Insertion, Deletion, and Updates
	6.2 Spatial Range Queries

	7 Experiments and Results
	7.1 Hardware, Software and Data
	7.2 Nautical Network
	7.3 MINN Index
	7.4 Results

	8 Conclusion
	Appendix A: Shortest Distance between two Segments
	Appendix B: Longest Shortest Distance from a segment to another segment
	Appendix C: Area of bounding rectangle of a segment s1, that is large enough to encapsulate a segment s2
	Appendix D: Query area is encapsulated in name
	Appendix E: Time for each step building name

