Mandatory Summary

Data is all around us. Every year, millions of petabytes of data are recorded. Machine learning has become an increasingly
popular approach to learning from this data, where many of these models and methods assume a tabular data structure.
However, a graph-based representation has advantages over a tabular representation, as it can more naturally model data sets
with complex relationships and dependencies. Graphs are used in a variety of domains, for example, IoT networks of sensors,
traffic networks, and knowledge graphs. The use of Graph Neural Networks (GNN) models has increasingly become popular
for machine learning tasks, such as node classification and relation prediction. Models such as the Graph Convolutional
Networks (GCN) and Graph Attention Networks (GAT) have seen ground-breaking results in the field of deep learning. Unlike
traditional neural networks, these models assume a graph-based representation of the data and can leverage the inherent
structural information available in them. GNN models are powerful, but missing values pose a challenge for these models.

Missing values may be viewed as a type of erroneous data, and thus warrants detection and correction measures. Data may
be missing for various reasons that may occur during recording or when merging data sets. Samples may be missing due to
a sensor malfunction during recording. Participants filling in a questionnaire may decide to leave answers blank. Physicians
recording medical tests for patients may decide to leave the results unrecorded if they are not abnormal. As such, missing values
are an unavoidable fact of life when dealing with data sets. When modeling the data as graphs, the missingness will manifest
as missing nodes, edges, or attributes. Dealing with the missingness problem is important, as it can otherwise greatly impact a
model’s performance by introducing bias and making it less generalizable. Depending on the underlying reason, missing data
can be categorized into three different missingness mechanisms: Missing Completely at Random (MCAR), Missing at Random
(MAR), and Not Missing at Random (NMAR).

Previous work has suggested methods to test for the mechanisms of missingness; for example, Gad-Elrab et al. present a
method to test for MCAR using Explainable Boosting Machines. However, this method assumes a tabular dataset. In this work,
we examine how the mechanism of missingness may be determined using clustering and classification using a sub-graph of
Wikidata. The impact of the different missingness mechanisms for downstream machine learning tasks is not a well-studied
subject for graphs. While previous research has examined how to handle different missingness mechanisms for tabular data, the
same has not been done for graph data. In this work, we simulate missingness based on missingness mechanisms and formulate
link prediction as an imputation method. We examine how the downstream task of sepsis prediction, in the MIMIC-IV dataset,
is impacted by missingness, and how performance may change with imputation.

Our contribution can, therefore, be summarized as follows.

o We propose a method for simulating missingness mechanisms in a graph, given a specified rate.

o We empirically evaluate how the different mechanisms and missing rates affect downstream tasks for graph machine

learning, specifically sepsis prediction.

o We formulate link prediction as an imputation method for missing edges in a graph and investigate if it can improve the

downstream task of sepsis prediction.

o We propose three methods for determining the mechanism of missingness using classification and clustering.

We found that the performance of the GraphSAGE model used for predicting sepsis was not greatly impacted by the
different mechanisms, even at high missing rates. We hypothesize that the model may be missingness robust. We found that
imputation with link prediction did not improve the results in the case of MCAR and MAR, however, in the case of NMAR
it negatively impacted the performance. We discuss the implications and how this may be used as an alternative method for
predicting NMAR. We found that using node2vec and clustering with DBSCAN and HDBSCAN showed promising results for
determining MCAR as noise. However, results for determining the remaining two mechanisms were inconclusive. We found
that using a GCN model to classify MCAR also showed promising results. However, it performed worse than our clustering
strategy. Lastly, we attempted to cluster the negative embeddings created by the GCN model, however, while our clustering
method indicated well-defined clusters, we were unable to further conclude on the results. Our method for simulating different
types of missingness allows practitioners to make a more exhaustive analysis of how their model performs in the presence of
missingness. Our three methods for determining missingness mechanisms allow practitioners to gain more insight into their
data, and discover patterns of missingness.



Reuse of previous work

Parts of different sections in this work have been either partly or entirely reused from the pre-specialization, Handling
Missing Data for Graph Machine Learning: A Review, Alexander Hansen, 2023 [1]. The following provides an overview of
what has been reused:

o Mandatory Summary

Paragraph 1-2 has been reused from the introduction of Hansen 2023 [1], with some changes.

Abstract

Sentence 1-3 has been entirely reused from the abstract of Hansen 2023 [1], with only a few changes.

1. Introduction

Paragraph 1-2 has been entirely reused from the introduction of Hansen 2023 [1], with only a few changes.

II. Related work

IIL.

Iv.

Paragraph 1 and 3 have been almost entirely reused from the related work of Hansen 2023 [1] with few modifications.
Background

Subsection A. Graph has been entirely reused from combining subsections A. Simple graph and B. Property Graph
from the Background of Hansen 2023 [1], with the addition of an explanation of a knowledge graph.

Subsection B. Graph machine learning has been entirely reused, without modifications from the subsection C. Graph
Machine learning from Hansen 2023 [1].

The first paragraph of Subsection D. Embedding, has been entirely reused, from the subsection D. Embedding.
Subsection E. Graph neural networks, has been entirely reused, without modifications, from the subsection E. Graph
neural networks from Hansen 2023 [1].

Figure 2 have been reused without any modifications, from Figure 2 of Hansen 2023 [1].

Figure 3a and 3b has been entirely reused without any modifications from figure 3a and 3b of Hansen 2023 [1].
Figure 4 has been entirely reused without any modifications from figure 4 of Hansen 2023 [1].

Subsection F. Mechanisms of missingness, has been entirely reused from F. Mechanisms of Missingness from Hansen
2023 [1] without any modifications.

Subsection G. Imputation, has been entirely reused, without modifications, from the subsection G. Imputation from
Hansen 2023 [1].

Simulating missingness mechanisms

In Subsection B. Evaluation, the brief explanation of the MIMIC-IV dataset has been entirely reused from Hansen
2023 [1] Section V. Setup for Evaluating Method of Handling Missingness
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Abstract—In the field of machine learning, learning on graphs
has become increasingly popular due to its usefulness in modeling
data sets with complex relationships and dependencies. However,
missing values in graph data pose a challenge for machine
learning. The way missing values are handled has significant
implications, as it can inhibit the performance of models by
introducing bias and lessening the generalizability. The impact of
how different missingness mechanisms affect downstream tasks
for graphs is not a well-studied subject. In this work, we simulate
missingness in a graph of medical data from patients and use
the tasks of sepsis prediction with a graph convolutional network
(GCN) model to evaluate. To explore if the missingness can be
handled, we formulate link prediction as an imputation method
and evaluate if it can improve the models’ prediction performance
despite missingness. Other work has been done to show how
Explainable Boosting Machines (EBM) can help gain insights into
missingness mechanisms, and propose how EBM may be used
to test for MCAR. However, they present these methods while
assuming a tabular data structure. In this work, we examine how
the type of missingness may be determined by using techniques
such as classification and clustering.

Index Terms—Graph machine learning, Property graphs,
Knowledge graphs, Embedding, Imputation, Missingness mech-
anisms, Clustering, Classification

I. INTRODUCTION

Data is all around us. Every year, millions of petabytes of
data are recorded [2]. Machine learning has become an increas-
ingly popular approach to learning from this data, where many
of these models and methods assume a tabular data structure.
However, a graph-based representation has advantages over a
tabular representation, as it can more naturally model data sets
with complex relationships and dependencies [3]. To illustrate
these points, consider a citation network. Representing this in
a tabular structure may not be as simple, as a paper may cite
or be cited by a varying number of papers. Furthermore, these
papers may have a number of properties and a set of papers
they relate to. This makes it challenging to represent with a
single row of a tabular-based structure, as a fixed number of
columns cannot be used to represent this. A graph structure
more naturally accommodates this relationship. Graphs are
used in a variety of domains, for example, IoT networks of
sensors [4], traffic networks [5], and knowledge graphs which
are graph representations of knowledge [6]. To illustrate, a
simple example of a graph can be seen in Figure 1.
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Fig. 1: Svortuloft Lighthouse is used as an example entity in
a graph where the inception is missing.

The use of graph neural network (GNN) models has increas-
ingly become popular for machine learning tasks, such as node
classification [7] and relation prediction [8]. Models such as
the graph convolutional network (GCN) and graph attention
network (GAT) have seen ground-breaking results in the field
of deep learning [9]. Unlike traditional neural networks, these
models assume a graph-based representation of the data and
can leverage the inherent structural information available in
them. GNN models are powerful, but missing values pose a
challenge for these models. Missing values may be viewed
as a type of erroneous data, and thus warrants detection and
correction measures. Data may be missing for various reasons
that may occur during recording or when merging data sets
[10]. Samples may be missing due to a sensor malfunction
during recording. Participants filling in a questionnaire may
decide to leave answers blank. Physicians recording medical
tests for patients may decide to leave the results unrecorded
if they are not abnormal [11]. As such, missing values are an
unavoidable fact of life when dealing with data sets. When



modeling the data as graphs, the missingness will manifest as
missing nodes, edges, or attributes. Dealing with the missing-
ness problem is important, as it can otherwise greatly impact
a model’s performance by introducing bias and making it
less generalizable [12]. Depending on the underlying reason,
missing data can be categorized into three different missing-
ness mechanisms: missing completely at random (MCAR),
missing at random (MAR) and not missing at random (NMAR)
[13]. The underlying reason for the missingness is valuable
information to researchers, as it can provide important insights
into the data and the data collection process.

Previous work has suggested methods to classify mech-
anisms of missingness; for example, Gad-Elrab et al. [14]
present a method to test for MCAR using Explainable Boost-
ing Machines (EBM). However, this method assumes a tabular
dataset. In this work, we examine how the mechanism of
missingness may be determined using clustering and classi-
fication using a sub-graph of Wikidata. The impact of the
different missingness mechanisms for downstream machine
learning tasks is not a well-studied subject for graphs [1].
While previous research has examined how to handle different
missingness mechanisms for tabular data, the same has not
been done for graph data [15]. In this work, we simulate
missingness based on missingness mechanisms and formulate
link prediction as an imputation method. We examine how
the downstream task of sepsis prediction, in the MIMIC-IV
dataset, is impacted by missingness, and how performance may
change with imputation.

Our contribution can, therefore, be summarized as follows.

o We propose a method for simulating missingness mech-
anisms in a graph, given a specified rate.

o« We empirically evaluate how the different mechanisms
and missing rates affect downstream tasks for graph
machine learning, specifically sepsis prediction.

o We formulate link prediction as an imputation method for
missing edges in a graph and investigate if it can improve
the downstream task of sepsis prediction.

e We propose three methods for determining the mecha-
nism of missingness using classification and clustering.

The rest of the paper is structured as follows: In Sec-
tion II we review related work. In Section III we provide
background and preliminary definitions. Our main contribu-
tions are presented in Sections IV, V and VI, where we
propose and evaluate methods for determining the impact of
missingness mechanisms, imputing edges, and determining
missingness mechanisms respectively. We discuss the results
of the three evaluations in Section VII and conclude in Section
Section VIIIL.

II. RELATED WORK

Chami et al. [16] describes a taxonomy of graph representa-
tion learning, presenting and generalizing popular algorithms
for semi-supervised and unsupervised learning of graph rep-
resentations into a single, consistent approach. The taxonomy
encompasses topics such as network embedding and graph
neural networks, including models such as GNN, GCN, and

algorithms such as DeepWalk and node2vec. While the authors
discuss link prediction as a method for predicting missing or
unobserved links, they do not specify how this may be used
to handle missingness for downstream tasks on graphs. In
this work, we examine how link prediction, formulated as an
imputation technique, may be used to improve the downstream
task of sepsis prediction.

Gad-Elrab et al. [14] present how recent advances in Ex-
plainable Boosting Machines (EBM) can help gain insights
on missingness mechanisms. They present how EBM may be
used to detect or even alleviate risks introduced in models by
imputation algorithms. They also propose how EBM may be
used to test for MCAR. However, they present these methods
while assuming a tabular data structure. In this work, we
present how missingness can be handled in graphs using
imputation and how the mechanism of missingness may be
determined using clustering and GNN classification.

Lin and Tsai [15] review a decade of imputation tech-
nique research. The authors describe statistical techniques
such as expectation maximization (EM), gaussian mixture
model (GMM) and, multiple imputation by chained equations
(MICE) as well as machine learning-based techniques that
use models such as K-nearest neighbors (KNN), multilayer
perceptron (MLP), and random forest (RF). While the authors
present these techniques while also considering missingness
mechanisms, all the techniques assume a tabular representation
of the data and do not leverage the structural information in-
herent to graph-based representations. In this work, we present
and explore an imputation method for graphs to mitigate edge
missingness.

III. BACKGROUND

In this section, we introduce the background necessary for
understanding our findings.

A. Graph

Simple graphs can be represented as:
G = (V,E)

where G represents the graph itself, V is the set of nodes or
vertices, and E is the set of edges [17, p. 148].

o Vertices or nodes: Nodes represent entities in a system.
In a social network, nodes may be people. In an IoT
network, a node may be an IoT device or a sensor.

o Edges: Edges define relationships between nodes or en-
tities. Edges can be used to model interactions, depen-
dencies, or other connections between nodes. In a social
network, an edge could denote friendship between two
people. An edge may be directed or undirected. An undi-
rected edge indicates a symmetric relationship between
nodes, and a directed edge indicates an asymmetric one.

A graph may be either homogeneous or heterogeneous. For
example, in a homogeneous social network, all nodes consist
of people, and all edges denote a relationship between people;
the node type and edges are the same.



Machine learning on graphs often involves using a prop-
erty graph, which extends the simple graph with labels and
properties, allowing for heterogeneous graphs. It allows for
modeling more complex relations and more complex systems.
A property graph [18] extends the simple graph and can be
represented as:

G=(N,R,i,\T)

where N is a set of nodes. RR is a set of relationships. ¢ is a
function that maps a node or relationship and a property key
to a value. A is a function that maps nodes to a set of labels.
7 is a function that maps relationships to a relationship type.
To illustrate, an example of a property graph can be seen in
Figure 2 showing a social network. We show how it can be
represented as G = (N, R, ¢, A\, 7).

e N ={nl..nl0}

e« R = {T1T9}

e 2 t(nl,name) — Ben, t(n2,name) — James,
t(n3,name) — Sasha ... «(n9, Location) —
Copenhagen

e X A(nl) = Dancer, ...
ArtStudio, ...

e T:7(rl) — friend, .., 7(rd) — interacted,
e T(r8) — frequents, 7(r9) — collaborate,
7(r10) — collaborate

, A(nd) — Artist, ..., \(n7) —

An extension of the property graph is the knowledge graph,
where nodes and edges are enriched with schemata, rules, and
ontologies. This helps to validate, structure, and define the
semantics of the graph while enabling a machine to reason
over the graph [19, p. 45].

B. Graph machine learning

Machine learning is an essential tool for deriving patterns
and insights from graphs. It has a wide range of uses, such as
forecasting traffic [5] or analyzing the structure of proteins [6].
Machine learning may be either supervised or unsupervised
depending on the model or tasks. In supervised learning, the
data set will have labels. Depending on the tasks, labels may
be for the whole graph, sub-graphs, nodes, or edges, and
the model will try to learn the mapping between a given
component and its label by training. Examples of supervised
learning include prediction [20] and classification [21]. In
unsupervised learning, the data set is not labeled. Instead,
the model will try to learn underlying patterns in the data.
Examples of unsupervised learning include clustering [22] and
embedding [23]. In this work, we use the following tasks:

o Prediction: Given a graph G and a target variable V,
the goal of prediction is to define a function that maps a
component of the graph to the variable [8]. An example of
prediction is link prediction, where the goal is to predict
missing links between pairs of entities [24].

« Classification: Classification is a type of prediction task
where the goal is to determine the function f, such that
given a graph G, the function will correctly map the
graph or its components to a set of classes C' [25, p. 10].
An example could be node classification, to determine

whether a person in a social network is a celebrity or
not. The aforementioned example is a case of binary
classification, as there are only two classes in C.

o Clustering: The goal of clustering is to determine the
function f, such that, given a graph G, the function will
group the graph or its components into clusters based on
similarity [25, p. 8-9].

C. Clustering algorithms

A clustering algorithm is an algorithm that groups a graph,
or its components, into clusters based on similarity. In this
work, we use the clustering algorithms K-means [26], DB-
SCAN [27] and HDBSCAN [28]. K-means is a partitioning-
based clustering method that divides the dataset into K non-
overlapping clusters. Because of how clusters are found, K-
means assumes that clusters are convex-shaped. This allows
for an efficient algorithm [29], however, it is less suitable
than a density-based algorithm, when the shape of the dataset
is arbitrary [30]. DBSCAN [27] is a density-based clustering
method that groups data points based on density. How clusters
are formed can be parameterized by € and a minimum samples
parameter. If samples do not satisfy the conditions of the
parameters, they will be labeled as noise. e specifies the
maximum distance for a sample to be considered in the
neighborhood of another sample. Minimum samples specify
how many samples in a neighborhood are required to form a
cluster. A sample is a core sample if there are at least minimum
samples within an e distance of the sample, including itself.
When a cluster contains less than the minimum samples, it
is denoted as noise. This is also the case if a sample is not
within € of a core sample and is not a core sample itself.
Together, ¢ and minimum samples affect how many samples
are labeled as noise and how sparse or dense the clusters
will be. Clusters by DBSCAN can be any shape. HDBSCAN
[28] extends DBSCAN by using hierarchical density-based
clustering. The density-based cluster hierarchy allows the
clusters to be of varying densities, which is not possible when
using DBSCAN. € is not specified, instead, the algorithm
determines the different density levels of the clusters.

D. Embedding

Many downstream tasks, such as node classification and
link prediction on graphs, rely on node and graph embedding,
as many machine learning algorithms for graphs learn on
numerical vectors, i.e., vectors of real numbers. In order
to represent a graph as a vector, embedding can be used.
Embedding is a way of mapping a complex data structure of
high dimensionality, such as a graph, into a fixed-length vector
that captures key features while reducing the dimensionality
[16]. For graph embedding, these key features capture the
relational information within a graph. For node embedding,
the embedding captures the node’s local relationships within
the graph. A toy example of node embedding can be seen in
Figure 3, where the graph is embedded in 2D vector space.
Figure 3a shows the graph used for the embedding examples.
Figure 3b shows node embeddings, where nodes in three
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Fig. 2: An example of a property graph showing a network of dancers, artists, and art studios.

neighborhoods green, orange, and blue are also close together
in the embedding space.

To represent the local neighborhoods, embedding techniques
can involve methods for sampling neighborhoods, such as
random walk [31] or message passing [9]. An example of
an embedding method is the node2vec algorithm [31], which
computes embeddings for nodes in a graph. It works by
sampling a fixed number of random walks on the graph.
The result will be a fixed number of sequences of nodes.
These sequences then get passed to a skip-gram model, which
computes the embedding for each sequence. The skip-gram
model is a language model designed to maximize the co-
occurrence probability of words that appear in a context
window [32]. In the case of graphs, the words are nodes,
and the context window is the sequence of nodes generated
from the random walk. The random walk strategy can also be
parameterized to be biased by variables p and ¢ which guide
the walk. The two parameters allow the search procedure to
balance between a depth first search (DFS) and breadth first
search (BFS) strategy [31].

E. Graph neural networks

A graph neural network (GNN) is a type of supervised
machine learning algorithm that can be applied to graphs
[9]. The model is able to leverage the structural information
inherent in graphs and can represent key information about
nodes and local contexts. The key concept of the GNN is
the message passing algorithm, as it is the method by which
it learns graph representations. To illustrate, Figure 4 shows
two iterations of the message-passing algorithm with node
4 as the target. In the first iteration, every node will send
out a message to its neighbors. This means each node will

have several incoming messages, which it will aggregate
using an aggregation function, where the implementation will
depend on the model. As such, each of node 4’s neighbors
aggregates its corresponding neighbors. In the second iteration,
every node will have an updated representation based on
its neighbors. Finally, node 4’s neighbors 3, 5, and 6 are
aggregated to update node 4’s representation. This process is
performed for every node, and the number of iterations will
dictate how far information gets passed in the network.

An example of a GNN is the graph convolutional network
(GCN) model [33], which extends the message passing al-
gorithm with the concept of convolutional layers, commonly
used in image processing. In the message-passing phase, each
node will send out a message consisting of its features as
a vector. In the aggregation, firstly a simple order-agnostic
aggregation function like mean, max, and sum is applied
to aggregate every incoming feature vector. The aggregated
feature vector is then passed through a dense neural network
layer, which transforms the feature vector. Each layer gets
passed the previous aggregated and transformed feature vector.
In the case of the GCN, the number of iterations will depend
on the number of layers in the dense neural network [34].



Nl
o

~No
/i\)

3 —08— 2

(a) Input Graph G

[ ] H
3
¢
46
[ ]
3 ’ i
0.0 1.5 3.0

(b) Node Embedding

Fig. 3: A small example of what node embedding can look like, when nodes are embedded to 2D-vectors. [23].

/ N\

3

/

| e
6

2

1

Igc

Aggregation

function [

Aggregation Aggregation
«—{ 5 < «—| 6

function function
6 \CD
A SN

Aggregation
function [ 4

Fig. 4: An example of the message passing algorithm, showing two iterations where the target node is node 4.

F. Mechanisms of missingness

Data points can be missing for a variety of reasons. Miss-
ingness may be due to observed or unobserved variables
and can be described using missingness mechanisms. Missing
data can be categorized into the following categories: missing
completely at random (MCAR), missing at random (MAR)
and not missing at random (NMAR) [11].

o Data is MCAR when the probability of missingness is
unrelated to the value of the data point, observed, or
unobserved variables. As such, the probability of a data
point missing is the same as for any other data point [12].
To illustrate, consider a clinical trial, where patients are
asked to record different information at certain time inter-
vals. Due to a malfunction in the data collection system,
random samples went missing. In this case, missingness
is not correlated to any recorded or unrecorded variables
and therefore MCAR.

o Data is MAR when the probability of missingness for

a data point is determined from an observed variable
[12]. To illustrate, in the same clinical trial, patient were
asked to record their pain level at different time intervals.
Some patients forgot to perform the recordings. The
missingness was not completely random, as it could likely
be inferred from information about their health condition.
Clinicians found that patients in good health were more
likely to forget to record pain levels than patients in poor
health. In this case, the missingness is correlated to the
observed variable “health condition” and therefore MAR.
Data is NMAR when the probability of missingness is
related to an unobserved variable [12]. To illustrate, in
the same clinical trial, patients were asked to record the
side effects of their anti-depressant medication. Some
participants who experienced side effects were less likely
to record their side effects, as they were afraid of getting



switched to a different medication. In this case, miss-
ingness is correlated to the unobserved variable “motiva-
tion”.

G. Imputation

One method for handling missing data is imputation [35]
[36]. Imputation involves substituting missing values with
some new value. A simple and common approach is to impute
the missing values with the mean value for the given variable,
i.e., mean imputation. A more sophisticated approach is mul-
tiple imputation. For multiple imputation, when substituting
a value, multiple variables will be considered [37]. Another
method is creating a prediction model and training it with all
features in the data set except for the feature to impute. This
model can then be used to predict the missing value, thus
imputing it. When imputing data in graphs, the structure of a
graph can be leveraged by the imputation methods [38].

IV. SIMULATING MISSINGNESS MECHANISMS

In this section, we present our method for simulating the
different missingness mechanisms in a property graph (§
IV-A). We then demonstrate its utility by examining the impact
of different types of missingness on a downstream graph-based
machine learning task (§ IV-B). The results are discussed in
Subsection IV-C

A. Proposed method

We introduce missingness to the graph by removing edges
from the graph based on a missing rate and mechanism. For
MCAR, we uniformly remove edges at random. The same
method will be used when removing edges for the remaining
mechanisms. For MAR, we remove edges randomly based on
an observable conditional variable, where the variable will be
a node attribute. For NMAR, the missingness depends on an
unobservable conditional variable, which will also depend on
a node attribute. The attribute used is removed from the graph
to make the variable unobservable.

B. Evaluation

We evaluate the performance impact of different types of
missingness for downstream tasks while applying our method
for simulating missingness on the Medical Information Mart
for Intensive Care IV (MIMIC-IV) dataset [39] and the task of
sepsis prediction. The MIMIC-IV data set contains healthcare
data of real-world patients recorded from hospitals in Boston,
Massachusetts, USA. This is hospital-level data and data from
the ICU and emergency department, including data about
patients, their medication, admissions, diagnoses, and more.
We base our implementation on Hansen et al. [21], where the
MIMIC-IV data set will be transformed into a bidirectional
heterogeneous graph. Domain hierarchies are used for embed-
ding initialization. The number of nodes can be seen in Table I
and the number of relations in Table II.

We use the missing rates 10%, 20%, 30%, 50%, 70%, 90%,
99.99%. For MCAR we use NumPy’s uniform [40] function to
remove edges. For MAR, we choose the conditional variable to

Node type  Count
Patient 128,605
Medication 1,749
LabTest 664
Procedure 1,228
Total 132,246

TABLE I: Node types and count of each in the MIMIC-IV
graph.

Relation type Count
Patient-LabTest 10,548,163
Patient-Medication 3,926,669
Patient-Procedure 194,836
Total 14,669,668

TABLE II: Relation types and count of each in the MIMIC-IV
graph.

Edge type MCAR MAR NMAR
Patient-Labtest 1 0.38 0.48
Patient-Medication 1 0.33 0.5
Patient-Procedure 1 0.36 0.51

TABLE III: The actual number of edges that are removed

based on the specified missing rate for each mechanism and
edge type.

be age. As such, patients between the ages of 17 and 54 are the
only patients where their edges may be removed. For NMAR,
we choose the conditional variable to be sex, where male
patients are the only patients where edges may be removed.
Both MAR and NMAR variables are chosen based on Getzen
et al. [41], where both patients between 17-54 and male
patients are part of a ’data-lacking group” since these groups
are statistically less likely to seek or have access to care.
Because of the definitions we have used for the missingness
mechanisms, the actual missing rate for each mechanism will
not be identical to the specified rate. This is illustrated in
Table III, where for each edge type, the proportion of edges
that are actually removed, based on the specified rate, is
denoted. The actual missing rates for MAR and NMAR are
lower, as the missingness can only be simulated for the edges
based on the conditional variable used, as opposed to all edges
for MCAR.

To evaluate the impact of missingness, we use the task of
sepsis prediction, meaning whether a patient will be diagnosed
with sepsis based on information about the patient and their
stay in care. Predictions will be done using the GraphSAGE
model [42] created with the Python framework PyTorch [43].
The best hyperparameters found in Hansen et al. [21] will be
used. To evaluate the performance of sepsis prediction, we use
the metric F1 score, which can be derived from the Ff3 score.
The formula for the F/3 score can be seen below:

(1+ B2) - precision - recall

FpB Score =

(B2 - precision + recall

The B parameter represents the ratio of recall importance: F1,
where $=1 would give the harmonic mean of precision and
recall.



Recall and precision are defined below:
#True Positives
#True Positives + # False Negatives
#True Positives
#True Positives + # False Positives

recall =

precision =

Recall measures how many positive samples the model cor-
rectly guesses. Precision measures of how many of the positive
guesses are correct.

C. Results

In Figure 5 we show the results of how each missingness
mechanism affects the F1 score of sepsis prediction. Figure 5a
shows how the mechanisms, simulated across all edge types,
impact the F1 score of sepsis prediction. Figure 5b shows the
F1 score of when simulating for the Patient-LabTest edge type,
Figure 5c for the Patient-Medication type and Figure 5d for the
Patient-Procedure type. Except for the Patient-Procedure edge
type, we generally find that MCAR impacts the F1 score the
most, resulting in the lowest performance for each missing
rate. This is not so surprising, as MCAR is the mechanism
that exhibits the highest actual missing rate. However, for the
Patient-Medication and Patient-Procedure type, we find that
NMAR impacts the performance very similarly to MCAR,
despite exhibiting roughly half the actual missing rate. When
simulating for all edge types, we find that NMAR impacted
the performance more than MAR for missing rates higher than
55%. Overall, we find that the performance of the model was
not significantly impacted when only simulating missingness
for a single edge type, even at high rates. For this reason,
we only consider missingness across all edge types for the
following experiment, as it was the case that had the largest
impact on performance.

V. EDGE IMPUTATION

In this section, we present our method for imputing missing
edges in a graph (§ V-A). We demonstrate its use by enriching
a property graph with new imputed edges and evaluate the
impact on a downstream graph-based machine learning task
(§ V-B). The results are discussed in Subsection V-C.

A. Proposed method

We propose a method for the imputation of edges in a graph
by proposing link prediction as an imputation method and
investigating if it can improve the performance of downstream
tasks. After simulating missingness, we perform link predic-
tion to enrich the MIMIC-IV graph by scoring potentially
missing edges and selecting the top K edges to add to the
graph, where K is equal to the number of removed edges.
We use the models ConvE and TuckER to perform link
prediction. The ConvE model is presented by Dettmer et al.
[20] where they show that the model is effective at modeling
nodes with a high node indegree, which is very common
in complex knowledge graphs. The model is a multi-layer
convolutional network model for computing embeddings of
knowledge graphs, which can also be used for link prediction.

Parameter

Input dropout

Feature map dropout
Projection layer dropout
Embedding dimensionality
Batch size

Learning rate

Range Best found
{0.0, 0.1..0.5} 0.0

{0.0, 0.1..0.5} 0.1

{0.0, 0.1..0.5} 0.5

{100, 200} 100

{64, 128, 256} 256
{0.001, 0.003}  0.003

TABLE IV: Parameters for ConvE hyperparameter tuning.

Parameter Range Best

found
Embedding {16, 32, 48..256} 224
dimensionality
Dropout values {0.1, 0.2..0.5} (0.5,0.5,0.1)
Learning rate {0.01, 0.005, 0.003, 0.003

0.001, 0.0005}

TABLE V: Parameters for TuckER hyperparameter tuning.

Parameter Range Best found
Hidden dimensions {32, 64, 128, 256} 64

Model dept {2..12} 11
Learning rate {0.0005, 0.001, 0.005, 0.01}  0.005
Dropout rate U(0.0..0.5) 0.44

TABLE VI: Parameters for GCN hyperparameter tuning.

In BalaZevi¢ et al. [44] they present TuckER, a linear model
based on Tucker decomposition of the binary tensor repre-
sentation of knowledge graph triples. The model can compute
embeddings of knowledge graphs and perform link prediction.

B. Evaluation

We implement the models using the PyKEEN (Python
KnowlEdge EmbeddiNgs) library [45] and tune the models
according to the parameter ranges presented in their original
work. We use grid search over the parameters for a subset
of all triples from the MIMIC-IV graph. The subset consists
of ~15,000 triples, ~5000 of which are used as validation.
For ConvE, hyperparameter ranges can be seen in Table IV.
The Adam optimizer and early stopping are also used. For
TuckER, the hyperparameters can be seen in Table V. Batch
normalization and the Adam optimizer with early stopping are
used. We evaluate the performance of the imputation based on
the F1 score for the sepsis prediction task.

C. Results

Figure 6a shows the F1 score when TuckER and ConvE
have been used as preprocessing to enrich the graph with
imputed edges. The baseline shows the F1 score without
any imputation. Figure 6b shows the same but for the MAR
mechanism, and Figure 6¢c shows for NMAR. What we find,
in general, is that using link prediction as imputation does
not improve the F1 score of the downstream task. When the
mechanism is MCAR and MAR, the F1 score does not deviate
much from the baseline. What is interesting, however, is when
the mechanism is NMAR, there is a decrease in performance.

VI. DETERMINING MISSINGNESS MECHNANISM
In this section, we propose our three methods for deter-
mining the mechanism of missingness in a graph (§ VI-A).
We examine the utility of the three methods by evaluating
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Fig. 5: Graphs showing how the task of sepsis prediction is impacted by the simulations of the different missingness mechanisms

across the different types of edges in the graph.

whether the methods can determine the missingness mecha-
nisms present in a knowledge graph (§VI-B). The results are
discussed in Subsection VI-C.

A. Proposed method

For the first method, we propose embedding the nodes of
the graph using node2vec and using clustering to determine
the missingness mechanism. We use K-means, DBSCAN, and
HDBSCAN to hopefully discover clusters of MCAR, MAR,
and NMAR. For the second method, we propose using a
GCN model to classify MCAR. Lastly, we propose using the
embeddings created by a GCN from the last hidden layer, after
performing MCAR classification and determining the miss-
ingness mechanism using clustering. We use the embeddings
predicted not to be MCAR, and perform clustering on them to
hopefully identify clusters exhibiting MAR and NMAR. For
this, we use the same aforementioned clustering algorithms.

B. Evaluation

To explore how missingness mechanisms can be determined,
we use a sub-graph of Wikidata. Wikidata is a knowledge
graph used to store information from Wikimedia projects,
including Wikipedia [46]. Entries in Wikimedia are written by
different users, with over 24,000 users active in the last 30 days
[47]. This means that different patterns may emerge for similar
entities, as information is primarily added by humans. For
example, if one user denotes the date a city was founded with
the relation start time (P580) instead of the correct
relation inception (P571), then two cites may have
the same date information, but with different semantics. To
examine whether it is possible to determine the underlying
missingness mechanism, we construct an undirected graph
consisting of locations in Iceland as nodes, where all nodes
are missing the relation inception. Each location node
only has its immediate relations, except for a type hierar-
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(c) The Fl-score of the sepsis diagnosis for each missing rate using
the missingness mechanism NMAR.

Fig. 6: Graphs showing the fl-score performance of sepsis diagnosis, when Tucker and ConvE are used as preprocessing to
impute missing edges, given the three types of missingness mechanisms

chy. The type hierarchy consists of four layers, meaning
that for every <location isInstance ol>, we also re-
trieve <ol isSubclassOf 02>, <02 isSubclassOf
03> and <03 isSubclassOf o4>. The graph is created
using the deep graph learning (DGL) library. The graph
consists of 500 nodes, where 100 of the locations are simulated
as MCAR by randomly selecting 100 locations from the set
of locations that do have an inception date, and removing
their inception date relation. However, we do not know the
actual distribution of labels for the remaining 400 locations.
Therefore, there may be more than 100 MCAR samples. We
use K-means as it is a very efficient and scalable cluster-
ing algorithm, which provides distinct and non-overlapping
clusters. DBSCAN was chosen as it can identify clusters of
arbitrary shapes and has been acknowledged as an algorithm

that has stood the test of time [48]. HDBSCAN was chosen,
as it addresses some of the limitations of DBSCAN, by being
able to detect clusters of varying densities.

For node2vec, we use the implementation from Cohen
[49], and we choose the parameters seen in Table VII. The
implementation of the clustering algorithms is from Pedregosa
et al. [50], and we tune the clustering algorithms using grid
search and use the silhouette score to determine the best
parameters. The ranges and parameters tuned can be seen in
table Table VIII, Table IX, and Table X. We train the GCN
model in a supervised setting, using a separate graph, which
also consists of 500 total locations, 100 of which are MCAR.
We tune the GCN model by performing 300 iterations of tree-
based Parzen estimation for hyperparameter tuning, shown in
Table VI. Adam optimizer and early stopping are also used.



Parameter value
Embedding dimensionality 128
walk length 80
Number of walks 10
p 1
q 1
TABLE VII: parameters for node2vec.
Parameter Range Best found
n_clusters {2..30} 2
n_init {10,20,30} 10

TABLE VIII: parameters for KMeans hyperparameter tuning.

Parameter Range Best found
c 10.1.05.1.2.5} 3
min_samples  {2..10,15,20,30} 5

metric {Euclidean, Manhattan}  Euclidean

TABLE IX: parameters for DBSCAN hyperparameter tuning.

Parameter Range Best found
min_samples {1..10} 1
min_cluster_size {2..10} 8

metric {Euclidean, Manhattan}  Euclidean
a {0.1,0.5,1,2,3} 3
cluster_selection_epsilon ~ {0.1,0.2..1.0} 1.0

TABLE X: Parameters for HDBSCAN hyperparameter tuning.

We use binary cross entropy as the loss function.

To evaluate the classification task, we use the F5 score and
F1 score derived from the F3 score. We choose to value recall
higher than precision since we don’t want any MCAR in our
remaining samples after the classification, as we would like to
derive useful clusters and the underlying patterns that occur for
NMAR and MAR. We also know that some unlabeled samples
could be MCAR, and we do not want to punish the model for
potentially classifying these. For this reason, we value the F5
score more than the F1 score when evaluating our results.

To evaluate our clusters we use the silhouette score [51] as
a measure of cluster goodness. The score is defined as follows:

s(i) = —2)—old) _

maz(a(i), b(3))
where s(7) is the silhouette score for a single data point i, a (%)
is the intra-cluster distance for point 4, b(7) is the inter-cluster
distance for point i. max(a(z),b(i)) is used to normalize the
score between -1 and 1. The silhouette score is computed
for every data point, and the mean is computed to get a
single score. A silhouette score of 1 indicates that the clusters
are well apart from each other and distinguishable. A score
of -1 indicates misclassification and a score of 0 indicates
overlapping clusters or that the clusters are indistinct.

C. Results

Figure 7a shows a principal component analysis (PCA)
transformation of the vectors created by node2vec, where
each dot is the vector of a location. Orange-colored dots are
vectors labeled MCAR while the remaining blue are unknown.
Figure 7b, Figure 7c, and Figure 7d show the clusters found
using the K-means, DBSCAN and HDBSCAN algorithms
respectively. K-means obtains a silhouette score of 0.043,
DBSCAN a score of 0.084, and HDBSCAN a score of 0.136.
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Algorithm FS5score F1score recall precision
node2vec + DBSCAN 0.92 0.76 0.94 0.64
node2vec + HDBSCAN  0.94 0.73 0.96 0.59

GCN

TABLE XI: Metrics for classifying MCAR. The scores for
DBSCAN and HDBSCAN are for classifying MCAR as noise
using node2vec embeddings.

0.83+0.07 0.60+0.05 0.85+0.08 0.47+0.07

While the silhouette score indicates that the clusters are not
distinct nor clearly separated, we also evaluate how well the
samples determined as noise by DBSCAN and HDBSCAN
corresponded to MCAR. The F5 score, F1 score, recall, and
precision can be seen in Table XI. For the F5 score, we
find that both DBSCAN and HDBSCAN perform well with
an F5 score of 0.92 and 0.94, respectively. The algorithms
can correctly classify the majority of samples labeled as
MCAR. As such, while we find that DBSCAN and HDBSCAN
perform well at classifying MCAR, the silhouette scores for
the remaining clusters are quite low.

Using our GCN model to classify MCAR locations in our
Wikidata graph, we obtain the average scores on the test
set across five separate runs as seen in Table XI. The table
shows the F5 score, F1 score, recall, and precision. The model
obtains an average F5 score of 0.83. We verify the statistical
significance of the model’s performance by using a t-test, with
10 separate runs split into two groups. We obtain a P value
of 091 and a 95% confidence interval. We can, therefore,
conclude that the difference in results between runs is not
statistically significant.

After performing MCAR classification using the GCN
model, we performed clustering on the embeddings predicted
as not MCAR using DBSCAN, HDBSCAN, and K-means.
The clusters are visualized in Figure 8, where Figure 8c shows
resulting clusters for DBSCAN, Figure 8d for HDBSCAN and
Figure 8b for K-means. Figure 8a shows the actual distribution
of the labels. The figures also show the embeddings that
were predicted as MCAR by the GCN model. Clustering on
the negative embeddings resulted in the following silhouette
scores of 0.76, 0.44, and 0.59 for DBSCAN, HDBSCAN,
and K-means, respectively. We find that DBSCAN obtains the
highest silhouette score, with a score that indicates clear and
well-defined clusters. However, we are not able to determine
whether the clusters specifically correlate with NMAR or
MAR, making the results inconclusive.

VII. DISCUSSION

We find that the classification performance was not impacted
as much as we expected when performing sepsis prediction,
even at high missing rates. This could indicate that the
GraphSAGE model is missingness robust and potentially be
an ideal model to use when datasets have large amounts of
missing relations. We found that when data is NMAR and link
prediction is applied as imputation, the classification perfor-
mance decreases. It is interesting as it is also what is found to
be the case in literature for imputation in tabular datasets [14].
As such, future research may avoid using imputation, when
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(a) A PCA transformation of the embeddings created by node2vec.
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MCAR. The blue dots are unknown.
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KMeans Clustering of Node2Vec Embeddings

@ Clusterl ° )
154 @ Cluster2 Y °
.
. P
. .
10 R P .
L] L Y ) ® o
. 0. L] 3‘ . 'r‘ []
o [ J °
§ 05+ e e °ape, ° . .'.o
< . ] . . .
g a0 s % 8o o
s
% o0 “. P '.\'.. :"' LY YIRS O o
5 . o oo .. ° . e ... e °® °
£ I RCE. 3 oo
e o o2 ® .
-0.5 &% MY o 'S o
. ﬁf ° e ° 5
» ws ° ,.
¢ Le3%° o®e
~1.04 . o, 8°
.
.
-10 -05 0.0 05 10 15

Principal Component 1
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Fig. 7: PCA transformation of the embeddings created by node2vec. The plots show how the algorithms DBSCAN, HDBSCAN

and K-means have clustered the embeddings.

data is known to be NMAR in a graph. Another implication
worth considering is if this information could be used to detect
if data is NMAR by examining the classification performance
after imputation. We find that DBSCAN and HDBSCAN
performed well at classifying MCAR as noise on the node2vec
embeddings. This means that node2vec combined with either
of the clustering algorithms could be used to classify MCAR.
This is a novel finding that allows researchers to examine their
datasets for MCAR as opposed to simply testing for MCAR.
Given the efficiency and scalability of the model [31] and
algorithms [30] selected in our method, our method will be
suitable even for large graphs.

While the discoveries presented in this work are novel,
we are not able to generalize our results, as we have only
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investigated one use case for each of our major contributions.
As such, other and larger graphs and tasks would have to
be employed to generalize our results. Another point that
hinders generalizability is that we have not investigated or
argued whether the simulations we employ of different mech-
anisms in graphs are equivalent to real-world missingness. It
would require a study of how well the definitions we have
used for missingness mechanisms fit real-world missingness.
However, we found this to be outside the scope of what this
work should encompass, and as such, it was not investigated.
The link prediction models we selected do not improve the
performance, which may be because they do not consider type
information and consider the graph homogeneous. As such,
valuable information is not leveraged. The models selected
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(b) A PCA transformation of the embeddings created by GCN, where
each color denotes a cluster found by the K-means algorithm
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Fig. 8: PCA transformations of the embeddings from GCN. Each figure displays a different clustering of locations depending

on the clustering algorithm.

would need to be modified to incorporate the type information.
Aside from the unaltered performance by using link prediction
as imputation, we also found that models used on our MIMIC
knowledge graph were very computationally expensive to
train. For our task, training one model takes ~30 hours on
an NVIDIA A10 GPU.

While our results for MCAR classification using GCN
show worse performance than node2vec with DBSCAN and
HDBSCAN, the results are still promising. With an F5 score of
0.83, the result is substantial but not robust enough for use in
practical applications. However, we can envision future work
to improve these results. In the future, we could use a custom
loss function, which encourages false positives. This could

have resulted in a higher recall score, which is important for
us. We also see positive silhouette scores when clustering on
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the negative embeddings created by the GCN model, however,
we did not further evaluate the clusters. One way could be
to inspect the clusters and determine if there is a common
variable for the node in the clusters, such as a common type
or relation. Another evaluation method would be to construct
a graph and simulate MCAR, NMAR, and MAR for all nodes,
such that labels are available for every node, but only using a
subset of the MCAR labels during training for the GCN. As
such, clusters could be evaluated with labels by using F1 score,
recall, and precision. Currently, for DBSCAN and HDBSCAN,
the embedding and clustering are two separate phases. As
such, the training phase of the clustering algorithms cannot
be used to update the learned embeddings. This complicates
how we perform hyperparameter tuning. In our work, we



only try one set of parameters for node2vec, compute the
embeddings, and use grid search to determine the parameters
for the clustering algorithms. One way to tune the parameters
for node2vec using clustering could be to perform a grid search
of the parameters for node2vec and use the mean silhouette
score of the different clustering algorithms to determine the
best parameters. However, this way the optimal parameters for
clustering and embedding will depend on each other.

VIII. CONCLUSION

In this work, we propose a method for simulating missing-
ness in a property graph and examine the impact of missing-
ness mechanisms for the downstream task of prediction. We
propose a method for imputing missing edges in a graph and
three methods for determining the mechanism of missingness
in a graph.

We examine how the missingness impacts the task of sepsis
prediction, where we found the GraphSAGE model seems
to be very robust towards missingness. Link prediction used
as imputation did not show noteworthy improvements in F1
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score when using Tucker and ConvE. However, for NMAR
in particular, we found that the performance decreased for all
missing rates, which was not the case with the other missing
mechanisms. This could imply that imputation negatively
affects the task when the mechanism is NMAR. For the clus-
tering of the node2vec embeddings from the Wikidata graph,
both DBSCAN and HDBSCAN show good results with an F5
score of 0.925 and 0.938 respectively for classifying MCAR
as noise. When using a GCN for the binary classification of
MCAR, the performance on the task results in an average F5
score of 0.826. When clustering the embeddings from the GCN
the highest silhouette score is from DBSCAN with 0.76, which
indicates a strong clustering where the clusters are distinct.

Our method for simulating different types of missingness
allows practitioners to make a more exhaustive analysis of
how their model performs in the presence of missingness. Our
three methods for determining missingness mechanisms allow
practitioners to gain more insight into their data, and discover
patterns of missingness.
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