Summary

This paper, along with the previous work by the authors of this paper, addresses the
challenge of finding suitable footage for 3D reconstruction of coral amongst YouTube
videos. More specifically, this paper deals with the classification of videos with camera
motion that makes them suitable for 3D reconstruction of coral. The motivation behind
this project lies in the use of 3D reconstruction to study and understand the state of
the coral reefs around the world. Coral reefs are some of the most important and biolog-
ically diverse ecosystems on the planet. Additionally they serve many purposes to the
societies close to them. Coral reefs provide coastal protection, by absorbing the energy
of waves, and therefore lessening their magnitude. Coral reefs provide opportunities for
tourism, and they represent an annual value of several tens of billions of dollars. Coral
reefs are also important for fisheries, as around 25% of marine life depends on coral.
In previous work, we outlined and implemented a pipeline for the detection of YouTube
videos suitable for 3D reconstruction of coral. This pipeline consisted of several steps.
Firstly, the videos are put through a transformer model, called Video Swin Transformer,
in order to detect which sections of the video consisted of undersea footage. Afterwards,
the videos were run through a convolutional neural network (CNN) based model, called
YOLOvS8. This model would then pick out which sections of the undersea segments of
the videos contained footage of coral. The last step of the pipeline involves using the
same transformer model, Video Swin Transformer, to classify the camera motion of the
undersea segments containing coral. We designed the pipeline this way, because in order
to use footage to perform 3D reconstruction, a certain camera motion showing the entire
coral colony is desired.

In order to train the models used in the pipeline, we required a dataset. To our knowl-
edge, there previously existed no dataset suitable for our problem, so we made a new
one, by taking a relevant subset of the YouTube-8M dataset and manually classifying
undersea segments, coral segments and the camera motion of the coral segments.

We tested the performance of each individual step of the pipeline, and found that the
performance of the camera motion classifier was lacking. That is why in this paper we
sought out to improve the performance of this camera motion classifier in the previously
mentioned pipeline.

Our method consists of taking the motion vector found in compressed videos, modeling
these vectors using the HSI color model and therefore converting the motion vectors
into color images, where the colors of the image represents the magnitude and angle of
the motion vectors. Using this method we were able to model the camera motion in a
video. Using these new images, we blended these images with the original footage of the
YouTube video and used this to classify the camera motion in the video, using the same
Video Swin Transformer model. This method was inspired by a previous paper, which
did the same motion vector modeling, but instead used a CNN to classify the images.
We also implemented the previously mentioned method, which inspired our method,
along with a heuristic method for results comparison. We utilized hyperparameter search
to find the configuration for the CNN method and for our own transformer method. We
then ran experiments on our own dataset, and compared the F1l-score, precision and
recall of all three methods. We found that the method using the transformer performed
better on the dataset than both the heuristic method and the CNN method. Overall
though, the performance of the transformer model was quite poor, meaning that this
problem remains challenging.

We believe that the challenge of this problem lies in the level of noise in the data. As
the data is filmed by amateurs, the typical camera motion found in these video is very



inconsistent, and that it is because of this that our method fails to properly model the
motion patterns. Another challenge in this task lies in the creation of datasets. Footage
that is highly suitable for coral 3D reconstruction is, in our experience, extremely rare.
Therefore we had to compromise on what should be considered a positive class instance
of the camera motion we are looking for, in order to gather any meaningful amount of
data.
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ABSTRACT

The health of the planets oceans is facing a rapid decline, particularly the world’s
coral reefs have seen significant reduction since 2009. 3D reconstructions of coral
structures are vital methods for quantifying and monitoring the health of coral
reefs but such methods often require professionally obtained footage to be viable.
However, there are great amounts of amateur footage available online which might
be viable for use in 3D reconstruction but identifying it is a time consuming task,
as coral structures require views from more than one angle. We therefore propose a
model which might bridge a gap between public footage and scientific research by
identifying sections of public videos which might be relevant for 3D reconstruction.
In this work we present a model which identifies and isolates the desired camera
motion by extracting motion vectors from video footage and converting them to
HSI color images which are applied to a Swin transformer model. In order to train
and validate this model we expanded upon a benchmark dataset containing data
amateur footage for coral 3D reconstruction. In order to validate our model, it is
tested against two other approaches. A Convolutional Neural Network (CNN) model
also trained and validated upon HSI color images from vector and a Heuristic model
applied to motion vectors. The CNN model and Heuristic model both performed
poorly with an F1 score of 0.11 and 0.16 respectively. In contrast, Swin transformer
outperformed these approaches by scoring 0.19. However, simply applying the Swin
transformer without data augmentation performed the best with a score of 0.26. The
HSI Swin transformer performed significantly better on the validation set, meaning
the approach might be prone to over-fitting, or causes information loss for the model.
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1. Introduction

Our planet’s oceans are facing unprecedented decline due to a combination of environ-
mental pressures stemming from human activity. Among the most alarming aspects of
this decline is the degradation of coral reefs. More than 14% of the world’s coral reefs
have disappeared in the period between 2009 and 2018, and the rate of decline only
seems to be increasing (Souter et al. 2021). There are multiple causes for this decline,
such as the ocean’s rising temperatures and acidity levels, but our knowledge of the
current and future health of the coral reefs is still not perfect. Coral reefs are one of the
most biologically diverse ecosystems, and they play an important economical role for
many societies via fishing, tourism, coastal protection and new biochemical compounds
(Hoegh-Guldberg et al. 2007). Therefore, it is increasingly important to monitor reefs



so that we can detect and respond to changes caused by human activities. One method
of doing this comes in the form of creating three-dimensional graphical representations
of coral structures (Rossi et al. 2021). These models can be used to determine how live
coral structures are currently faring and what happens to reef organisms when coral
reefs are continuously impacted by outside disturbances (Gonzalez-Rivero et al. 2017).

Several conditions determine the quality of these 3D reconstructions as different re-
construction methods require different conditions. However, some of these conditions
are universal. An example of such a condition is that corals must be viewed from more
than one angle. This can be in the form of overlapping images taken from multiple
angles, such that the entirety of a coral colony is pictured, or by filming the coral from
multiple different angles (Roelfsema et al. 2020). Therefore, 3D reconstructions are often
exclusively crafted from professionally obtained footage, which is quite limiting as such
footage is expensive and in limited supply. There are vast amounts of public underwater
footage readily available on the internet, and even if most of it is unusable, perhaps some
of it does fulfill the conditions of 3D reconstruction. However, using amateur footage
for 3D reconstruction would leave researchers with the time-consuming task of filtering
through large quantities of footage before anything usable with the right conditions can
be found. Therefore, there is an unmet need for a method to bridge the gap between
public footage and scientific research, allowing for the vast amounts of available public
data to be utilized.

A solution to this could be a method, that allows one to filter through large amounts
of video data and indicate only the sections of it that might be of interest for 3D
reconstruction. A way to identify only the relevant parts of the footage could be to look
for footage where some of the conditions of 3D reconstruction are present. One such
condition is the viewing of a coral from more than one angle.

The work presented in (Larsen et al. 2024), which shares several authors with this
work, already explores this issue. A solution was explored in the form of a model com-
posed of three components. An underwater detection, coral detection, and camera mo-
tion detection component. The first of the former components showed strong results,
isolating only the sections of footage containing underwater coral frames. The third
component was designed to detect desirable camera motion patterns to isolate footage
sections where corals are viewed from multiple angles. The camera motion detection
however, did not perform to expectations and could not capture the desired move-
ment patterns of the camera. A specialized component was not applied but rather a
pre-trained, general purpose neural network was used.

Thus, in this work, we explore the idea of using motion vectors in a Transformer-
based model to identify camera motion for 3D coral classification. Transformer-based
models have seen an increase in usage for video classification tasks. Models such as VTN
(Neimark et al. 2021) and Video Swin Transformer (Liu et al. 2022) outperform state-
of-the-art CNN-based models in video classification tasks. So far, we have not been able
to find camera motion classification approaches that use a Transformer model. This
creates an opportunity to construct a Transformer model that makes use of motion
vectors to classify the camera motion in a video.

Our proposed model considers public videos sourced entirely from YouTube. The model
is based on the Transformer architecture, Video Swin Transformer, and we model motion
vectors as HSI colors, as the HSI color model can represent the motion vector direction
and their magnitude (Pavan et al. 2022). We introduce mixing these HSI color images
with real color to include both the motion, and picture data of the video for classification.
These blended images can be fed directly to a video classification model. The noisy
nature of many public amateur videos and the fact that they are underwater leads to



the usage of a transformer model approach that can consider multiple frames and weigh
parts of the frames and videos differently, and an approach that makes use of both the
motion data, and the frame color data.

In order to evaluate the proposed model, the model will be compared to two other
methods. The first method is a heuristic method, described in (Lee and Hayes 2002),
based on analyzing the motion vectors in compressed videos. The other method involves
the conversion of motion vectors to HSI color images, and then classifying these images
with a convolutional neural network (Pavan et al. 2022). The methods will be compared,
by comparing their accuracy, precision and recall. The dataset used for this evaluation
is made for 3D reconstruction of coral, as previously described in (Larsen et al. 2024),
and contains data for whenever multiple angles of corals are being shown in YouTube
videos. Additionally, this dataset has been extended for the purposes of this paper.

2. Related Work

Traditional approaches to camera motion classification rely on analyzing motion vec-
tors between successive frames. Methods such as affine (Kim et al. 2000) and simplified
affine (Gillespie and Nguyen 2004) directly analyze motion vectors that are present in an
MPEG-encoded video. Lee and Hayes (2002) segment motion vectors from subsequent
frames into 3 x 3 motion blocks, and compare these motion blocks with templates which
are also defined in blocks. These approaches can be seen as heuristic approaches. Duan
et al. (2006) propose a method to utilize mean shift clustering on block motion vectors
in order to detect dominant clusters whose histogram projections are used to classify
one of six camera motion types for video indexing. Hasan et al. (2014) take this further
to classify cinematographic shots, and introduce more steps such as motion consistency
analysis to remove noisy motion vectors. (Duan et al. 2006) and (Hasan et al. 2014)
make use of support vector machines to perform the classification.

Determining motion vectors can be done through block matching techniques, optical
flow approaches, or tracking points of interest (Rublee et al. 2011). Bommes et al.
(2020) provide an approach to extract motion vectors from H.264 or MPEG-4 encoded
compressed videos. This works by making use of the compression technique which, in-
stead of saving full-color frames for every frame, saves key-frames. Intermediate non-key
frames get segmented into macro-blocks that are encoded by the motion vectors, which
define the movement to past or future frames. This way, intermediate non-key-frames
reuse information from key-frames.

Heuristic approaches limit the reliability and generalization of camera motion classifica-
tion (Ouenniche et al. 2021). These limitations have led to the exploration of machine-
learning approaches for camera motion classification. Convolutional neural networks
(CNNs) see usage within image and video classification domains. Tran et al. (2015) are
among the first to propose a 3D CNN architecture for video classification. For camera
motion classification, Ouenniche et al. (2021) propose a 3D CNN architecture based
on ResNet (He et al. 2015) that accepts a video as an input and outputs the type of
motion. This approach is trained and tested on 2-second-long videos that were collected
from various YouTube videos and different movies and achieves an average accuracy of
94% on a dataset generated by Ouenniche et al. (2021). Pavan et al. (2022) propose
an approach that works with motion vectors extracted from a H.264 encoded video,
modeling the underlying motion vectors in the HSI color model, converting HSI colors
to RGB colors, and feeding the converted RGB images to a 2D CNN;, classifying 11
different camera motion types per frame. Pavan et al. (2022) achieve an accuracy of



98% on H.264 encoded video sequences. However, the generalizability of these accuracy
results is questionable as the dataset consists of 26 curated high-quality videos in which
the camera motion is deliberate and clean.

To the best of our knowledge, none of these models have been attempted on a chal-
lenging task such as the one presented by Larsen et al. (2024) where it is attempted
to detect subtle camera motion patterns in footage with a large degree of noise. Here,
we suggest a Transformer-based approach where we make use of modeling motion as
HSI color images, comparing it to the CNN based approach that does this (Pavan et al.
2022), and a heuristic approach (Lee and Hayes 2002).

3. Augmenting video data with motion as colors

In this section, we describe the process of modeling motion vectors in videos as HSI
color images, and the process of mixing these images with real frame colors. However,
first we want to clarify what the motion we want to classify looks like in a 2D motion
vector field. This is necessary both to properly describe what we are classifying in videos
and to make it possible to formulate a heuristic for model comparison in Section 5.

3.1. Multiple angle view as a vector field

We review the block motion vector fields in a few videos from the benchmark proposed
in (Larsen et al. 2024). We find that there are two general situations where the camera
views corals from multiple angles; one where the camera pivots around the coral, and
one where the camera passes the coral in a way that shows multiple, small angles of it,
i.e briefly passes the coral over the top. These types of motion are shown in figures 1
and 2 respectively. Notably, the pivoting motion generally has less movement towards
the center of the frame, and the passing over the top motion has movement that is in
the same direction across the whole frame, but the motion is more pronounced on the
corals as they are closer to the camera than the rest.

(a) First example of pivoting around a coral. This one (b) Second example of pivoting around a coral,

has clear motion in one direction, except for the middle camera is shaky, so the vectors are a less uniform,

where the coral is and is appearing stationary in the but this one rotates around it from the top, so the

video. vectors do not share the same direction around the
coral.

Figure 1. Examples of motion when camera pivots and rotates around corals.



(a) First example of passing over the top of some corals. (b) Second example of passing over the top of a
The vectors are mostly pointing downwards because the coral. The vectors are pointing downwards. Here,
camera is passing over the corals from bottom to top. the vectors on the corals have a higher magnitude
Motion vectors on the left and right edge of the frame than those in the upper half of the frame because
are very small. the corals are closer to the camera.

Figure 2. Examples of motion when camera passes over the top of some corals.

3.2. Motion vectors to HSI color images

The first process in our approach is to extract motion vectors from compressed videos.
The ideal approach here is to utilize the block motion vectors already present in H.264
encoded videos, which is all videos that are downloaded in the MP4 format from
YouTube. Bommes et al. (2020) provide a tool to extract block motion vectors for
each frame in a video. The idea that Pavan et al. (2022) introduce is modeling block
model motion vector orientation and magnitude as HSI colors, where the orientation is
the Hue, the magnitude is the Saturation, and the Intensity is fixed at 100%. This HSI
representation of the block motion vectors can then be converted to a RGB representa-
tion, which can be fed into a video classification network. This representation is depicted
in Figure 3. It is important to note that when using frames that are segmented into
blocks, the frame size decreases based on the number of blocks. The block size depends
on the encoding. In MP4 videos downloaded from YouTube the block size varies—8 x 8,
8 X 16, 16 x 8, 16 x 16—within the same frame, depending on the detail required for
compression, which makes the resolution inconsistent. Furthermore, we invert motion
vectors in frames that reference a future frame, as these vectors are otherwise inverted,
creating unnecessary noise for classification.

The Hue and Saturation parts of the HSI representation can be calculated using
the orientation and the magnitude of the motion vectors, respectively. A motion vector
consists of two components, the horizontal and the vertical component. Therefore, let
MV = (MVX MVY) in which MV is the horizontal component, and MV?Y is the
vertical component. From this, we can calculate the orientation MV,,; and magnitude
MVipag using the following formulas:

Y
MV, = arctan(M—“;X),O < MVy; <2m (1)
MVinag =\ (MVX)2 4 (MVY )2 2)
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Figure 3. HSI color gamut depicting the possible colors given an angle. The magnitude of the vectors can
be interpreted as the distance from the center of the color gamut, or saturation of the color. Figure is from
(Pavan et al. 2022).

Using MV,,; and MV,,,4, the HSI color for a block can be assigned as:
Hue < MV,,;, Saturation <= M Va4, Intensity < 100%

This assignment corresponds to converting the two-dimensional coordinates of motion
vectors into an RGB image that purely represents motion in the video. By structuring
motion input as images, we enable image/video classification models to classify motion
in videos. However, using motion vectors from H.264 encoding includes getting motion
from moving objects, and moving point of view. Therefore, using motion vectors from
a video is not entirely representing the motion of the camera. Figure 4a shows how an
image generated from motion vectors looks.

3.3. Mixing HSI color image with real frame

An approach that considers multiple frames that only consist of motion vectors con-
verted to HSI color images has the possibility of being completely unable to classify
anything. This is due to the inherent noise in motion vectors extracted from compressed
underwater videos. To mitigate this, we mix the HSI color image with real colors from
the frame. This approach also enables the model to recognize the presence of corals in
the frames while considering motion. The mixing is done with a simple linear interpola-
tion between the HSI color image and the real image, with a mixing coefficient to decide
how much the resulting image resembles one or the other. In our implementation, we
set the mixing coefficient to a fixed value of 0.6, but it would be interesting to have it
as a hyperparameter. The resulting image looks like the real frame with the HSI colors
as an overlay.

4. Video Swin Transformer

This section describes the architecture of the Video Swin Transformer, which we use
as our classification model. We choose Video Swin Transformer because it is a well
known video classification model that can consider motion by employing techniques
such as 3D shifted windows. We use the tiny version of Video Swin Transformer (Swin-



(b) HSI representation of motion vectors from Fig-
ure la converted to an RGB image and mixed with
the real frame. Here, the mixing coefficient is 0.5
to make it clear.

(a) Motion vectors from Figure la converted to an
HSI representation, and then to an RGB image.
Following Figure 3, most of the camera movement
is to the right, and the middle of the frame, where
the coral is, has less camera movement.

Figure 4. Motion vectors and frame from Figure la represented as HSI colors, and HSI colors mixed with

the real frame.

T) proposed by (Liu et al. 2022). Video Swin Transformer is a development of Swin
Transformer (Liu et al. 2021), so it follows similar model architecture with significant
modifications that allow it to perform video recognition. Figure 5 shows an overview of
the architecture for the tiny version of Video Swin Transformer. The input undergoes
a 3D patch partitioning process, is linearly embedded into a feature space of size C,
and passes through four stages where multi-head self-attention is calculated and the
dimensions are downscaled by a factor of 2. The input video has the shape T'x H x W x 3,
where T' is the temporal dimension, H is the height of the frames, W is the width of
the frames, and 3 represents the three color channels for RGB.
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Figure 5. Video Swin Tiny architecture overview, based on (Liu et al. 2022).

3D patch partitioning

The first step of the model is partitioning the input into 3D patches, and linearly
embedding the three color channels into 96 features. The result of this has the shape
% x W % %X 96. Then, the 96 features are linearly embedded into C' amount of features.

1
C varies depending on the model size. In Swin-T it is 96.

Multi-head self-attention

Figure 5 shows each Video Swin Transformer block where multi-head self-attention
(MSA) is performed. MSA is chosen because a global self-attention representation would
be too expensive to compute. MSA is performed within each 3D window. The 3D
windows are evenly partitioned patches along the temporal dimension, the height, and



width, in a way that ensures the windows do not overlap. Each window has the size
P x M x M, which means the partitioning yields % X % % windows.

3D shifted windows

Due to the application of multi-head self-attention within non-overlapping windows,
connections between the windows are absent. To address this, a 3D window shifting
process is introduced after the initial window partitioning of the first layer in each
stage. The windows are shifted by (g, %, %) patches, and computing multi-head self-
attention for these windows introduces connections to the previous layer’s windows.
Furthermore, a relative position bias is introduced to include bias to each head in the
self-attention computation. This positional bias B is a parameterized variable in the

self-attention computation which is sampled from matrix B € RP~1)x@M-1)x(2M-1),

Attention(Q, K, V) = SoftMaz(QK™* /Vd + B)V (3)

5. Experimental evaluation

In this section, we present the performance of the proposed approach described in
Sections 3 and 4, on the extended multi-view coral benchmark described in Section
5.1. We compare our approach to others: a CNN based a approach which makes use of
motion vectors represented in HSI colors (Pavan et al. 2022), and a heuristic approach
(Lee and Hayes 2002). All the models are trained and evaluated on the same benchmark.
Pre-processing is done for each video before training and testing. For the deep-learning
approaches, each video is converted into an HSI color representation of the motion
vectors. Furthermore, each video is divided into 10-second segments, each labeled as
either containing (1) or not containing (0) corals from multiple angles. As the videos
do not exclusively contain coral footage, we only consider segments that include corals.
This is a choice made because the benchmark assumes that the segments considered for
a multiple-angle view of coral already pass the filter, which filters out footage that is not
underwater or does not contain corals. Additionally, each frame is resized to a 122 x 122
matrix and normalized using the mean and standard deviation of the RGB values. The
tensors are arranged as B x C'x T'x W x H, representing the mini-batch size (B), color
dimension (C'), temporal dimension (7'), frame width (W), and frame height (H). From
the videos, we use 70% for training, 20% for testing, and 10% for validation which means
we do not split on the 10-second segments. Before evaluating performance on the test
set, we use the training and validation sets to conduct a hyperparameter search with
Weights & Biases (Biewald 2020). We use AdamW (Loshchilov and Hutter 2019) as the
optimizer for training, cosine decay learning rate scheduler, and binary cross-entropy
loss as the loss function. We present the results using the F1 score, recall, and precision
metrics. For training, we instantiate the Video Swin Transformer on pre-trained weights
from a model trained on the Kinetics400 dataset (Liu et al. 2022). Then, we replace the
last layer with a two-layer linear network that maps the internal features of the layer
before the last layer to one class. Additionally, we employ random weighted sampling to
under-sample the negative class during training to address the imbalance in the training
set.



5.1. Benchmark

Here we describe the benchmark created in (Larsen et al. 2024) and extended for the
purposes of this paper. This benchmark provides the training, testing, and validation
data for the experiments.

As previously there existed, to our knowledge, no datasets/benchmarks containing
data for 3D reconstruction of coral, one had to be created. As outlined in (Larsen
et al. 2024), we created a dataset from YouTube videos by taking a subset of the
YouTube-8M dataset (Abu-El-Haija et al. 2016) tagged as containing underwater
footage and corals. These videos were then classified by writing down which segments
contained undersea footage, which segments contained corals, and which segments
viewed the same corals from multiple angles. For the purposes of this paper, the coral
camera motion data will be used for the training and validation of multiple camera
motion models. Additionally, the dataset was extended for this paper by classifying
the camera motion in an additional 122 videos containing coral footage, making it a
total of 354. Notably, 38 of the additional videos contain segments with corals viewed
from multiple angles. These videos were retrieved by running an implementation of the
first two stages in the pipeline described by Larsen et al. (2024), and were manually
labeled. After segmenting all of the videos into 10-second segments, the total number
of positive segments is 414, and the total number of negative segments is 3077.

One challenge encountered in creating this benchmark was the overall quality of
the camera motion data found in the YouTube videos. Ideally, for coral 3D reconstruc-
tion, the camera motion consists of a full 360° pivot around the coral, showing the
entire coral structure (Ferrari et al. 2017). However, in our experience, this kind of
footage very rarely occurs, and in 342 videos containing footage of coral, we have found
no instance of what would be considered ideal footage for coral 3D reconstruction. This
means we had to soften the requirement of the camera motion such that a positive
instance of the camera motion would simply be an instance where the camera pivots
around the coral and shows multiple angles, regardless of how many degrees the camera
pivots or how much is shown of the coral structure.

Despite this, instances of quite high-quality camera motion were found. Figure 6 shows
an example of some of the highest-quality footage we found in making the benchmark.

Heuristic approach

A heuristic approach to classification of camera motion is used as a point of comparison
to the proposed method. This heuristic method is based on (Lee and Hayes 2002). This
method is based on looking at averages of the motion vectors in MPEG-compressed
videos and then comparing these averages to templates to match the motion to a cer-
tain template. Given that the proposed model described in (Lee and Hayes 2002) is to
classify basic camera operations, some modifications were made so as to suit the purpose
of identifying the desired camera motion of this work better.

The first step of the approach is filtering of noisy motion vectors. This is done by apply-
ing a simple median filter to the magnitude of the horizontal and vertical components
of the motion vectors separately.

In the next step, the motion vector field (MVF) of the frames of the video is divided into
9 regions called sub-MFVs. These sub-MVFs are then categorized as either background
sub-MVFs or object sub-MVFs. The purpose of this is to decide which sub-MVFs are
most relevant to consider when attempting to classify the camera motion, with the sub-



Figure 6. Pictures showing some of the best camera motion around a coral found in the YouTube videos.
Ideally, the camera motion consists of a pivot around the coral structure, showing as much of the structure as
possible.

MVFs categorized as background being the only ones considered. Then, within each
background sub-MVF the average magnitude and angle of the macroblock vectors are
found. Originally, this method calculated the average magnitude of the movement within
background sub-MVFs and compared it to some preset threshold whenever a camera
movement occurs, so that only motion vectors of a significant magnitude were consid-
ered. However, given that the desired motion vectors this model is searching for are
both small and large, then the aspect of the model which considers magnitude became
unusable and was thus discarded. Despite this, every frame was still grouped into a
segment of a given size, which are used to create phase histograms to better capture
the angle distributions over multiple frames by aggregating them. These histograms are
then compared to histograms created based on a number of different motion templates.

Motion templates as seen in Figure 7 describes a certain camera motion, for example,

Tilting

(down)

Rotating Panning Tilting
(right) (right) (up)

Figure 7. Examples of modified camera motion templates as opposed to those presented in (Lee and Hayes
2002)
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the camera panning to the right, would make the background sub-MVFs point to the
left (or have an angle of 180°), so a template for panning to the right would consist of
background sub-MVF vector pointing to the left. The original templates described in
(Lee and Hayes 2002) were originally created to capture only basic camera movements
and have therefore been modified to better reflect the desired camera motion which this
model attempts to identify. The template that best describes the vector angles of the
background sub-MVEFs of the actual frame segment is found by comparing their phase
histograms. If the match is close enough the frame is classified as belonging to the
camera motion described by the template. If enough consecutive segments are classified
as having the same type of camera motion, that type of camera motion is registered as
detected within a time frame.

2D CNN approach

One of the approaches we compare to is the one proposed by Pavan et al. (2022). Pavan
et al. (2022) build a small two-dimensional CNN that recognizes camera motion from
motion vectors converted to HSI color images in a highly curated dataset of videos.
Notably, this approach uses HSI color images only, the images are not mixed with
the real frame. Furthermore, the input data is of size 44 x 34 with the tensor shape
B x C x W x H, which means the CNN only considers one frame at a time at a much
smaller size. Here, we train this CNN on our dataset and compare it with our approach,
where the frames correspond to the same segments in the training, test, and validation
sets.

Hyperparameter search

In this section, we describe the hyperparameter search for the attention model, and
the 2D CNN approach. For the attention model, we have the following training hyper-
parameters: mini-batch size, epochs, learning rate, weight decay, and warm-up epochs.
We use Weights & Biases (W&B) (Biewald 2020) for hyperparameter search by set-
ting up possible value ranges for each hyperparameter, and trying to maximize the F1
score on the validation set. We set up W&B to perform hyperparameter search by us-
ing Bayesian optimization, and allowing it 30 attempts to try different hyperparameter
configurations. The models from this hyperparameter search that perform the best on
the validation set, are tested on the test set.

Results

We carry out experiments for our approach, the CNN approach, and the template
matching heuristic approach. The results are shown in Table 1.

Overall, our approach marginally outperforms the CNN and the heuristic approaches
in the combined F1 score. However, according to the recall score our approach only
classifies 26% of the positives as positives, but it does not yield as many false positives
as the CNN and the heuristic which leads to a higher precision score.

Discussion

Our tests show that our benchmark remains challenging, as the baseline approaches
perform much worse than the original papers suggested. We find that the HSI-CNN
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Table 1. Results of running each model on the test set.
HSI-Swin-T is our approach of mixing HSI images gener-
ated from motion data with real frames, and classifying
with the Video Swin-T model. For the Swin-T, the input
comprises just the video segments.

F1 score Recall Precision

HSI-CNN 0.11 0.53 0.06
Template matching 0.16 0.37 0.11
Swin-T 0.26 0.51 0.17
HSI-Swin-T 0.19 0.26 0.15

approach is not able to capture anything, and is very close in performance as simply
randomly assigning positive or negative to each class. For instance, the amount of true
positives and false negatives was almost the same. This is also reflected in the recall
score, as 53% of the positive entries in the test set are classified correctly, but the
precision is only 0.06. Given the class imbalance for frames (444 positives versus 7684
negatives), randomly guessing the label for each frame would yield a precision of 0.054.
This means the CNN was only marginally better than just guessing the label randomly.

The template matching heuristic approach has a precision score higher than HSI-
CNN, indicating that the positive class classification is slightly more reliable with less
false positives. However, recall is lower, indicating that a significant amount of the
positive class was falsely classified as negative. This is expected as the noisy nature of
the videos makes it almost impossible to generalize motion vectors in a way that does
not get a lot of false negatives or false positives. Especially given that the model was
originally designed to capture macro movements and it had to be modified for this work
S0 as to also capture more subtle movement patterns. However, it is still interesting that
a simple approach like this outperforms the CNN approach.

Our approach of mixing HSI images with real frames seems to outperform both the
template matching heuristic approach, and the HSI-CNN approach. However, simply
feeding the real frames to a Swin-T model provides results that also outperform these
approaches in terms of F1 score, while having a reasonable recall without sacrificing
as much performance in precision. Our arbitrary choice of mixing coefficient (0.6) for
the HSI-Swin-T model has lead to a worse result than the base Swin-T model. We
could not test the mixing coefficient as a hyperparameter, as trying a different mixing
coefficients means having to wait for video preprocessing each time, and takes more
time than training the model 30 times. Further evaluation should be done to conclude
if using HSI colors to represent motion in these frames either adds noise to the data,
or if a mixing coefficient can be found that helps the model to classify the motion.
Notably, Swin-T model on its own implicitly analyzes motion by performing 3D shifted
windows, so mixing the frames with HSI colors could be detrimental to the model
performance. Furthermore, our approach had a higher F1 score, recall and precision
than the base Swin-T on the validation set. That could potentially mean that the
sweeps found an optimal hyperparameter configuration to classify the validation set.
This did not transfer to the test set, which would usually indicate a case of over-fitting.
We expect that mitigating noise in motion vectors, making the motion vectors more
consistent throughout the segment would assist the classification model in classifying
the camera motion. However, we show that our approach (HSI-Swin-T) and the base
Swin-T approach outperform the previous camera motion classification approaches, and
there is room for improvement in this particular task.
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6. Future Work

In this section, we describe possible ways to improve our approach. An obvious develop-
ment would be to implement a method such as a median filter to eliminate noisy motion
vectors or approximate the general motion in a segment. This would help a classifica-
tion model in learning and testing as the motion would be less ambiguous throughout
a segment.

As multi-modal approaches have seen success within video classification domains,
one could structure the attention model with a multi-modal approach. This could be
done by adding a multi-modal fusion layer at the beginning of the model, resulting in
the motion vectors being a separate input from the frames. Additionally, generating
synthetic data could help including less noisy data for the training process, and could
mitigate the class imbalance. For instance, one could use a virtual 3D setting (Qiu et al.
2017) to generate scenes with camera motion that would allow for 3D reconstruction.
Furthermore, one could extend the benchmark and model to include not just generic
desired camera motion but more specific types of camera motion. Hence allowing the
model to produce a more specific result should a more precise type of movement be
desired.

7. Conclusion

The goal of this work was to create a model which could be used to identify camera
motion relevant for 3D reconstruction of corals in amateur footage. We extend the multi-
view coral benchmark to include more videos of corals viewed from multiple angles. We
employ a Video Swin Transformer based model and utilize HSI color images created
from motion vectors to augment video data for classification. We compare this model
to two other camera motion classification approaches, a CNN model and a heuristic
model which both also utilize motion vectors in compressed videos. We find that the
transformer based video classification model, i.e., the Video Swin Transformer, outper-
forms both of the original camera motion classification approaches with or without HSI
color images created from motion vectors. However, in our testing, data augmentation
via converting motion vectors to HSI colors is prone to introduce noise, or cause the
model to start over-fitting for the validation set, causing it to perform worse than only
performing normalization and rescaling on the input data. Overall, the problem remains
challenging, and more work could be done to improve camera motion classification mod-
els in amateur underwater videos.
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