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Abstract

Field sprayers are widely used in the agricultural industry to combat weeds and diseases,
as well as fertilizing fields. The sprayers perform this task by pumping liquid from a tank
through a set of nozzles mounted on a boom and onto the plants on the field. Modern
sprayers can automatically turn sets of nozzles on and off based on their location, reducing
chemical usage and preventing overlap. Turning the nozzles on or off creates disturbances
in the fluid pressure at the boom. It was attempted to use a model predictive controller
to control the pressure on the boom, and using its predictive properties to anticipate
the impact of the disturbances. Both the use of a nonlinear and a linear controller was
investigated, using a nonlinear state space model and a timevariant linear state space
model respectively. The nonlinear controller was discarded due to its long execution time.
The linear controller was able to fulfill requirements set out by the ISO 16119-2 standard
in simulations, and thus moved on to be tested on a test rig emulating a field sprayer.
The linear controller was not able to fulfill the requirements set out by the standard when
used on the test rig, due to assumptions intended to linearize the model.

Synopse

Marksprøjter anvendes vidt og bredt i landbrugsindustrien til at bekæmpe ukrudt og
sygdomme, samt til at gøde marker. Sprøjterne klarer denne opgave ved at pumpe væske
fra en tank, gennem et sæt dyser monteret på en bom, og ud på planterne på marken.
Moderne sprøjter er i stand til, automatisk, at tænde og slukke for individuelle sæt af dyser
afhængigt af sprøjtens placering. Dette reducerer mængden af brugte kemikalier samt
forhindrer overlap på marken. Ved at tænde eller slukke for dyserne skabes forstyrrelser
i væsketrykket ved bommen. Det blev forsøgt at bruge en model predictive controller
til at regulere trykket på bommen og bruge dens forudsigende egenskaber til at forvente
påvirkningen fra forstyrrelserne. Både brugen af en ikke-lineær og en lineær regulator blev
undersøgt ved at bruge henholdsvis en ikke-lineær tilstands-model og en tidsvarierende
lineær tilstands-model. Den ikke-lineære regulator blev kasseret på grund af dens lange
afviklingstid. I simuleringer var den lineære regulator i stand til at opfylde kravene i
ISO 16119-2 standarden, og blev derfor yderligere testet på en testrig, der har de samme
funktionaliteter som en sprøjte. Den lineære regulator var ikke i stand til at opfylde
kravene i standarden, når den blev brugt på testriggen.
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ĜR Boom/pump ratio linearized variable

R̂pv Equivalent restriction value for sections and bypass linearized variable

x̂ Estimated state vector

x̂k−1 Predicted state space vector from previous time update
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Introduction 1
Modern farming uses a lot of different types of equipment, amongst these are field sprayers.
Field sprayers are used to apply herbicides, pesticides, fungicides, or fertilizers, collectively
referred to as chemicals, to crops. The chemicals are mixed with water and applied to the
crops using the sprayer liquid system. Sprayers are maneuverable objects, being moved
either by themselves, so-called self-propelled sprayers, or by tractors, as either lift-mounted
or trailed sprayers.

Figure 1.1. A trailer sprayer.

A sprayers liquid system consists of three main components: A pump, the boom liquid
system, and a liquid control system.

The pump is used to provide pressure and flow for the liquid system. The pump is usually
driven by the power take-off (PTO) of the tractor, or in the case of a self-propelled sprayer,
by the engine itself. Thus, in these cases, the pump is not controlled by the sprayer.
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Figure 1.2. A field sprayer pump.

The boom liquid system is the part of the sprayer which applies the chemicals onto the
plants. The boom is a metal construction which at Hardi ranges from 15.0 m to 44.0 m.
The nozzles on the boom are split into sections, each containing a number of nozzles and
is controlled by a section valves. The section valves are binary valves, either letting liquid
flow to its nozzles or not.

Figure 1.3. Picture of 3 section valves. Figure 1.4. Picture of a boom section.

The liquid control system is responsible for controlling the flow to, and the pressure
at, the boom, such that the correct amount of water is applied to the field per area.
The amount of water applied per area is called the application rate and is a function
of how fast the sprayer is going, the width of the boom, and the flow of liquid to the
boom. The two main objectives of the liquid control system on modern sprayers are to
reduce the amount of chemicals used in the spraying process and to maintain a consistent
boom pressure. A reduction in the amount of chemicals used can be accomplished by
turning off sections of the sprayer when it moves across areas that do not need to be
sprayed, so-called precision spraying, illustrated in figure 1.5. Such systems are already
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implemented on several sprayers by a variety of manufacturers, using Global Navigation
Satellite Systems (GNSSs) to get the position of the sprayer, and relying on classical
control systems for control. Turning sections on or off results in pressure changes in the
liquid system, interfering with the flow to the remaining sections. Current control systems
use open loop control to prime the system for changing boom conditions.

1 2 3 4 5 7 8 9 10 116

(a) Full field spraying.

1 2 3 4 5 7 8 9 10 116

(b) Spot spraying.

Figure 1.5. Illustration of precision spraying, green is to be sprayed, red is already sprayed or is
not to be sprayed.
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(a) Section spraying.
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(b) Spot spraying.

Figure 1.6. Illustration of which sections are on or off in figure 1.5. Green is on, red is off.

Model predictive control (MPC) is a control scheme using a known model to find a series
of future control signals which optimizes some defined cost function. A model predictive
controller (MPC) can prepare the liquid system for future events, such as switching section
valves, if these can be predicted. As the agricultural sector automates a greater and greater
deal of work, with more reliable sensors and systems, more and more reliable estimates
of the position of the sprayer will become available. This thesis thus proposes that it is
possible for an model predictive controller (MPC) to reduce the pressure spikes in the
liquid system of field sprayers with sections opening and closing, if the behaviour of the
sections can be estimated.

model predictive control has already been considered for controlling the liquid systems on
sprayers, such as the work done by Khan et al. [1], Schutz et al. [2], and Felizardo et al.
[3], non using the switching sections instead considering these as disturbances.
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Khan et al. implemented an MPC onto a sprayer mock up, though their system took
the switching for granted and had these as unmeasured disturbances. They did not con-
sider a system where a variable pressure could be present, using a linear model fitted
to a single operating point. Their results, when comparing the MPC to a proportional-
integral-derivative (PID)-controller, were not impressive, with their MPC resulting in
greater pressure spikes and greater rise times.

Schutz et al. looked into using fuzzy logic and predictive control on sprayers where the
actuator has dead zones. The fuzzy controller was able to achieve better performance than
a PID-controller on several parameters such as overshoot, settling time, all while reducing
the wear of the actuators. The article does not deal with a system where the sections are
switching, only testing for changes in flow setpoints.

Felizardo et al. used an MPC to control a spray system with a variable application rate. A
nonlinear model of the sprayer was developed and linearized online for control purposes.
Tests of the controller was performed on a sprayer mockup, and resulted in a performance
which was within the limits set by the authors.

The next chapter will delve further into the spraying system used for this thesis, explaining
its design, construction, and behavior.
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Requirements and test
description 2

This chapter will describe requirements for a liquid control system, the requirements will
be used in the design of the controller. In the end of the chapter it is described how each
requirement will be tested and what the success criteria is.

Requirements for a liquid control system are imposed both by standards, and by the con-
struction of the sprayers themselves. The standard: ISO 16119-2 specifies environmental
requirements for sprayers, including the liquid control system [4]. These requirements
specify settling time, maximum setpoint offset, and steady state error.

From the standard the following requirements are found:

1. In case of a disturbance, the controller should drive the pressure to within ±7.5 %
of the setpoint

2. The settling time of the application rate should be at most 7.0 s to within ±10.0 %
when a new application rate setpoint is set

3. At constant pump rotations, constant sprayer velocity, and with no disturbances,
the maximum deviation from the mean application rate should not be more than
5.0 %

From the sprayers, the following requirements are found:

A The boom pressure should not exceed 8.0 bar

To verify that the controller can uphold the requirements, the controller will simulate
spraying a slice of a field. While running, sections will open and close according to a
predefined spray map of the field, shown in figure 2.1. The first 180.0 m the application
rate setpoint will be 300.0 L ha−1, afterwards the setpoint will be 200.0 L ha−1.
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Figure 2.1. Spray map used for testing the controller.

The controller is found to comply with requirement 1 if the pressure falls within the
specified range when the section and bypass valves are at steady state along stretch A
on the spray map. Requirement 2 is likewise found to be satisfied if the application rate
settles within the specified amount of time on stretch A.

Requirement 3 is found to be satisfied if the application does not deviate more than
specified on stretch A.

Requirement A is tested by measuring the pressure and checking whether it exceeds the
8.0 bar defined by the requirement.

Four requirements were found which constrains the control systems performance. The re-
quirements puts constraints on the pressure and the application rate. In the next chapter,
a test rig is described. The test rig will be used to test the controller, and compare its
performance to the requirements.
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Test rig 3
This chapter will describe the test rig, which imitates a sprayer, and what components
are on it. The test rig will be used to test whether the requirements are satisfied. In the
end of the chapter, a block diagram of the control system and the test rig is presented in
order to connect all the components in the project.

The test rig used for this thesis is made to represent the liquid system of a sprayer. The
system consists of: A water tank, a pump, a fluid regulator valve, a series of section valves,
a bypass valve, and a Smartcom electronic control unit (ECU). Figure 3.1 shows the test
rig, while figure 3.2 shows where the components would be on a sprayer.

(a) Pump and tank. (b) Tank, regulator valve, section valves and
bypass valve.

Figure 3.1. Pictures of the sprayer system test rig.
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Section valves

Bypass valves

Regulator valves
Pump

Figure 3.2. Test rig components marked on a sprayer.

Figure 3.3 shows a piping and instrumentation diagram of the system.

The section valves are the actuators providing the primary disturbances to the liquid
system. In this project, these will be controlled by a section control system simulating a
tractor moving across a field. Each section valve allows liquid to flow to a particular set of
nozzles, for simplicity these are placed inside the water tank of the test rig. The pressure
inside the tank is usually considered to be at atmospheric pressure, thus the placement of
the nozzles have no influence on their pressure characteristic.

The bypass valve allows the water to bypass the boom when none of the section valves
are open. The bypass valve is of the same type as the section valves, except it leads the
water back to the tank, and thus has no associated nozzles. The bypass valve allows the
water coming from the pump to keep circulating and not let the pressure build up.

The regulator valve is the main actuator used by the control system in the current system,
it is capable of redirecting parts of the flow from the pump back to the tank, thus reducing
the flow to the boom. A controller to move the regulator valve will not be made or
described in this thesis, as the main point is to reduce the pressure spikes in the system.
A previously made controller for valve movement will be used in the project. This is the
only controllable input available for the model predictive controller (MPC), as the control
signal for the section valves and bypass valve will be determined by a separate script.
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Figure 3.3. Setup of the liquid system.

The pump is not the main actuator for this system due to its interface with the tractor.
Usually the pump is driven by the tractors power take-off (PTO) system, resulting in the
rotational speed of the pump being proportional to the rotational speed of the motor on
the tractor. Some pumps have begun to use hydraulic motors, allowing for changing the
revolutions of the pump using a simple valve on the hydraulic lines. This is not the case
on the test rig. The test rig will feature a single pump, though some sprayers are equipped
with multiple. The addition of an extra pump is not required to show how well model
predictive controls (MPCs) perform on sprayer systems.

To prevent the pressure from getting too high for the piping to handle, a relief valve is
placed before the regulator valve. The relief valve prevents the pressure from exceeding
8.3 bar.

The system contains four sensors: A flow sensor, a pressure sensor, a regulator valve angle
sensor, and a pump revolution sensor. The flow and pressure sensor is used to measure
the flow and pressure at the boom. These properties can be used to find the current
application rate of the system, for which chapter 2 has several requirements. On current
sprayers the two sensors are also used to provide online estimation of the fluid restriction
of the boom. The regulator valve angle sensor measures the current opening degree of the
regulator valve, and is used primarily to drive the valve to a desired position by an inner
loop controller. The pump revolution sensor measures the rotational speed of the pump.
The performance of the pump is described partially by its revolutions.

A Hardi Smartcom ECU will be used as an input-output interface for the system. The
Smartcom will read the sensor values, actuate the section valves, the bypass valve, and
the regulator valve. The setting of each section valve will be determined by a script
running on an external PC, communicating with the Smartcom unit via an ISO-canbus
connection. The MPC will be implemented on the same PC, generating control signals
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for the regulator valve. The smartcom runs on an internal update cycle of 20.0 ms. The
proposed control structure of the entire system with the smartcom and the PC is shown
in figure 3.4.

Regulator valve 
angle sensor

MPC

Estimator

Regulator valve
controller Regulator valve driver

Plant

Pressure sensor

State of each section
(t = {k : k+N})

ADC

ADC

Pressure setpoint

Nozzle driver

Smartcom

Mockup

Project
controller

Tractor
Simulator

PC
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ADC

Flow sensor

Pump RPM sensor

Regulator
valve

setpoint

Estimated
state

System
output

Currently
open sections

Future open
sections

Regulator
valve angle

Boom pressure

Boom flow

Pump RPM

Boom pressure

Boom flow

Pump RPM

Regulator
valve angle

Figure 3.4. Illustration of the proposed controller design.

The purpose of the tractor simulator is to simulate the tractor moving, and a Global
Navigation Satellite System (GNSS). The tractor simulator will provide a pressure setpoint
for the controller based upon an application rate setpoint. To obtain the application
rate setpoint, the simulator will assume a boom width of 24.0 m and a driving speed of
20.0 km h−1. The tractor simulator will include an algorithm that will decide which section
and bypass valves are open, this will be referred to as the auto section controller (ASC).
The ASC will provide a list of which section valves are open some update cycles into the
future.

This chapter described the test rig and its components: The pump, regulator valve, bypass
valve, section valve, the ECU, and the sensors. The relationship between the test rig
and the proposed controller was established. Supporting systems for the controller was
introduced, the systems will be used in order to emulate the parts of the spraying process
which the test rig is not capable of, e.g. the tractor, the GNSS-system, and the ASC. The
next chapter will develop a model of the test rig, and in extension a sprayer.
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Modeling 4
This chapter will deal with modelling the test rig described in chapter 3, it is made to
emulate the liquid system of a sprayer when operating in the field. The models will derive
dynamic models describing the boom pressure. The models resulting from the chapter
will be used for the model predictive controllers (MPCs) in the next chapter.

A liquid diagram of the test rig is shown in figure 4.1. The regulator valve is modelled as
a variable restriction, likewise, the sections and their valves are modelled as a combined
variable restriction. The section valve restriction are defined to be very large when the
valves are closed, and the combined restriction of the nozzles when open. The bypass
valve is modelled in a similar manner.

Figure 4.1. Fluid diagram of the spraying system.

To simplify the system, the assumptions below are made. From the assumptions, a sim-
plified liquid diagram is presented in figure 4.2.

1. All sections contain the same amount of nozzles and the same type of nozzles
2. The tank is at atmospheric pressure: pT = pA

3. The section valves can all be described by a single function Rsec

4. The flow into the pump is the same as the instantaneous flow out of the pump
5. The rotational speed of the pump is constant

11
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Figure 4.2. Simplified fluid diagram of figure 4.1 using the defined assumptions.

The system will be modelled using the hydraulic equivalent of Kirchhoffs current and
voltage laws [5]. Each element in the system will have an associated pressure drop from
one end to the other, a pressure differential. The pressure drop is going to be given as a
function of the flow through the element and the restriction of the element [6]. Summing
the pressure differentials in any loop throughout the system, with their associated sign,
will result in a pressure drop of 0, thus the pressure is equivalent to the voltage in the
analogy of Kirchhoffs laws. As for Kirchhoffs current law, the flow in and out of any node
in the system will sum to 0 when considering their respective sign.

∆p1 + ∆p2 + ∆p3 = 0 Q1 + Q2 − Q3 = 0

The dynamic models in this chapter will be based upon time derivatives of steady state
equations for the system. Dynamic pipe models derived via control volume approaches
will not be considered in this thesis, as the resulting fast dynamics combined with the
relative slow dynamics of the valves, results in a stiff system model. Additionally, from
tests on the test rig, the dominant dynamics originate from the valves in the system.

The steady state pressure drop over a restriction R is given by equation 4.1. As the flow
in the system is only meant to move in the directions marked on figure 4.2, the flow term
Q2 is used instead of the more generic term |Q|Q.

∆p = R Q2 (4.1)

∆p Pressure differential across restriction [bar]

Q Flow through restriction [L min−1]

R Restriction value [min2 L−2]

12
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Pumps are complex but is in this case modelled as pressure sources, providing a pressure
differential as a function of the flow through the pump and the rotational velocity of the
pump.

∆pp = pp(Q, ω) (4.2)

The boom pressure pb is the primary variable deciding the effectiveness of the liquid
system, as it decides the flow out of each nozzle irrelevant of how many nozzles are
open. The pressure is described in equation 4.3 by the boom flow Qb, and the equivalent
restriction Rpv, describing the parallel restrictions of the bypass and section valves. This
restriction is based on whether the bypass valve is open and how many section valves are
open at any given time.

pb = Rpv Q2
b

Rpv = Rbp Rsec(√
Rbp +

√
Rsec

)2 (4.3)

pb Boom pressure [bar]

Qb Boom flow [L min−1]

Rpv Equivalent restriction value for sections and bypass [min2 L−2]

Rbp Restriction of bypass valve and pipe element [min2 L−2]

Rsec Restriction of currently open boom sections [min2 L−2]

Defining, the boom equivalent restriction Req as the series connection of the constant
boom restriction RB and the valve equivalent restriction Rpv, it is possible to simplify the
model in figure 4.2 even further into the model in figure 4.3.

Req = Rbp Rsec(√
Rbp +

√
Rsec

)2 + RB = Rpv + RB (4.4)

Req Total boom restriction [min2 L−2]

RB Constant boom restriction from regulator valve to boom sections [min2 L−2]

13
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Figure 4.3. Further simplified liquid diagram.

A function describing the two boom restrictions, Rbp, Rsec, are found in appendices B and
C respectively. The bypass valve restriction is defined by its opening degree θbp which
is defined to be in the range [0,1], where 0 is fully closed, and 1 is fully open. The
valves function is given in equation 4.5. The zero compensation variable ϕ is added to the
function parameter such that the function is defined for θbp = 0, the value is chosen to be
100.0E−6.

Rbp(θbp) = Gbp

θbp + ϕ
(4.5)

θbp Bypass valve opening degree [·]

Gbp Bypass valve restriction function gain [min2 L−2]

ϕ Zero compensation constant [·]

The section valve restriction is given by equation 4.6. The parameter θsec does not repre-
sent the opening degree of a single valve, but instead the combined opening degree of all
the section valves, thus for the test rig it is defined in the range [0,11]. A zero compen-
sation term is once again added in order to define the function for θsec = 0. Due to the
function representing a set of parallel restrictions, the control signal, the denominator, is
squared.

Rsec(θsec) = Gsec

(θsec + ϕ)2 (4.6)

θsec Sum of section valve opening degrees [·]

Gsec Section valve restriction function gain [min2 L−2]
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Figure 4.4. Section valve restrictions as a function of number of valves open.

The flow through the regulator valve can be described using the boom flow, as shown in
equation 4.7. The resulting regulator flow is thus described merely by the boom flow,
the model predictive control (MPC) controlled restriction value Rr, and the section valve
controlled restriction Req.

Q2
r = pr

Rr
= Q2

b

Req

Rr

Qr = Qb

√
Req

Rr

(4.7)

Qr Flow through regulator valve [L min−1]

Rr Regulator valve time varying restriction [min2 L−2]

The regulator valve restriction Rr is defined by a function found in appendix A, shown in
equation 4.8. The input θreg represents how open the valve is, it is defined in the range
[−40, 40] and is given in degrees.

Rr(θreg) = 1
(aregθ2

reg − bregθreg + creg)2 (4.8)

θreg Regulator valve angle [·]

areg Regulator valve second order coefficient [L min−1]

breg Regulator valve first order coefficient [L min−1]

creg Regulator valve zeroth order coefficient [L min−1]
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Figure 4.5. Regulator valve restriction as a function of θreg.

The boom flow is the flow coming from the pump but without the flow going through
the regulator valve, Qb = Qp − Qr. Qb can therefore be described by equation 4.9. The
equation provides a gain, GR, describing the relation between the boom flow and the
pump flow.

Qb = Qp − Qb

√
Req

Rr

→ Qb = Qq

√
Rr√

Rr +
√

Req
= Qp

√
GR

(4.9)

Qp Flow from pump [L min−1]

GR Boom/Pump squared flow ratio [·]

Equation 4.9 also provides a method for describing the boom pressure using only the pump
flow, the regulator valve restriction, and the bypass and section valves restrictions.

pb = RpvQ2
b

pb = Rpv GRQ2
p

(4.10)

For control purposes it is desired to generate a first order differential equation describing
ṗb, this is done by differentiating equation 4.10 with respect to time. The non-differential
terms Q2

p in the equation is given by Q2
p = pb

RpvGR
, derived from equation 4.10

ṗb = d

dt
pb

= Rpv GR
d

dt
Q2

p + GRQ2
p

d

dt
Rpv + Q2

pRpv
d

dt
GR

(4.11)
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The differential d
dtRpv is expanded in equation 4.12.

d

dt
Rpv = d

dt

RbpRsec(√
Rbp +

√
Rsec

)2
=
(√

Rbp +
√

Rsec

)−2 d

dt
RbpRsec + RbpRsec

d

dt

(√
Rbp +

√
Rsec

)−2

= RbpṘsec + RsecṘbp(√
Rbp +

√
Rsec

)2 − 2 RbpRsec(√
Rbp +

√
Rsec

)3 d

dt

(√
Rbp +

√
Rsec

)
= RbpṘsec + RsecṘbp(√

Rbp +
√

Rsec
)2 − 2 RbpRsec(√

Rbp +
√

Rsec
)3 d

dt

(
Ṙbp

2
√

Rbp
+ Ṙsec

2
√

Rsec

)

= R1.5
sec(√

Rbp +
√

Rsec
)3 Ṙbp +

R1.5
bp(√

Rbp +
√

Rsec
)3 Ṙsec

(4.12)

In appendix C it was found that the section valves act as a first order system, illustrated
by the step responses in figure 4.6. The the dynamics introduced by the section valves
are modelled by having the opening degree θsec act as the first order ordinary differential
equation in 4.13, with the input given by the control signal usec. The bypass valve is
of the same type as the section valves, thus these are described by the same function.

θ̇sec = −1
τsec

θsec + 1
τsec

usec

→ Ṙsec = −2Gsec

(θsec + ϕ)3 θ̇sec

θ̇bp = −1
τsec

θbp + 1
τsec

ubp

→ Ṙbp = −Gbp

(θbp + ϕ)2 θ̇bp

(4.13)
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Figure 4.6. Step responses for the section
valves.

usec Section valve control signal [·]

ubp Bypass valve control signal [·]

τsec Section valve time constant [s]

The differential term d
dtGr, is derived in equation 4.14. Note that Ṙeq = Ṙpv.
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d

dt
Gr = d

dt

Rr(√
Rr +

√
Req

)2
= Rr

d

dt

(√
Rr +

√
Req

)−2
+
(√

Rr +
√

Req

)−2 d

dt
Rr

= −2Rr(√
Rr +

√
Req

)3 d

dt

(√
Rr +

√
Req

)
+ Ṙr(√

Rr +
√

Req
)2

= ṘrReq − RrṘeq(√
Rr +

√
Req

)3√
Req

(4.14)

For the sake of simplicity, the differential regulator restriction is modelled by having the
valve angle θreg behave as a first order system, given by equation 4.15, in the same manner
as the section and bypass valves.

θ̇reg = −1
τreg

θreg + 1
τreg

ureg

→ Ṙr = −2 (2 areg θreg + breg)
(areg θ2

reg − breg θreg + creg)3 θ̇reg

(4.15)

τreg Regulator valve time constant [s]

The pump is modelled using equation 4.16. The model was chosen from a series of fitted
functions, described in appendix A. The model was not the one with the absolutely best
fit, it was the second best, though the models behaviour in the operating area was more
well behaved.

∆pp(Qp, ω) = α ω + β Qp + γ Q2
p + δ ω Qp + ϵ (4.16)

∆pp Pump pressure differential [bar]

ω Pump rotational velocity [rpm]

α Pump RPM coefficient [bar rpm−1]

β Pump flow coefficient [bar min L−1]

γ Pump second order flow coefficient [bar min2 L−2]

δ Pump flow RPM coefficient [bar min L−1 rpm−1]

ϵ Pump affine coefficient [bar]

The pressure across the pump can also be described by the restrictions and flows in the
remaining parts of the system, as done by equation 4.17.
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∆pp = RpQ2
p + ReqQ2

b

= RpQ2
p + ReqGRQ2

p = RαQ2
p

(4.17)

Rp Constant pump restriction from pump to regulator valve [min2 L−2]

Rα Equivalent pump system restriction [min2 L−2]

Equation 4.17 can be combined with equation 4.16 to achieve a model for the pump, where
the only time dependent variable is the pump flow.

RαQ2
p = αω + βQp + γQ2

p + δωQp + ϵ

Qp = β + δω ±
√

(β + δω)2 + 4(Rα − γ)(αω + ϵ)
2(Rα − γ) = λ(Rα, ω)

2(Rα − γ)
(4.18)

λ Pump pressure numerator [L min−1]

The time derivative for Qp is given by equation 4.19.

Q̇p = ±2(αω + ϵ)Ṙα

2(Rα − γ)
√

(β + δω)2 + 4(Rα − γ)(αω + ϵ)
− 2Ṙα λ

(2Rα − 2γ)2 (4.19)

The final differential term for this model is Ṙα, which is derived in equation 4.20.

Ṙα = d

dt
(Rp + Req GR)

= GR
d

dt
Req + Req

d

dt
GR = GR

d

dt
Rpv + Req

d

dt
GR

=
Ṙpv R1.5

r + Ṙr R1.5
eq(√

Rr +
√

Req
)3

(4.20)

Putting everything together and including the first order characteristics for Rr, Rsec and
Rbp, results in the set of four ordinary differential equations in equation 4.21. Table 4.1
list the value of the parameters which has been measured and fitted for the model.
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ṗb = 2 Rpv GR Q̇p + GR
pb

RpvGR
Ṙpv + pb

RpvGR
Rpv ĠR

θ̇bp = − 1
τbp

θbp + 1
τbp

ubp

θ̇sec = − 1
τsec

θsec + 1
τsec

usec

θ̇reg = − 1
τreg

θreg + 1
τreg

ureg

(4.21)

Constant Value

RB 99.1E−3 min2 L−2

RP 115.0E−3 min2 L−2

areg 15.8E−3 L min−1

breg −3.3 L min−1

creg 104.6 L min−1

Gsec 11.6E−3 min2 L−2

Constant Value

τsec 152.0E−3 s

Gbp 67.9E−6 min2 L−2

α 880.0E−3 bar rpm−1

β −1.9 bar min L−1

γ 3.7E−3 bar min2 L−2

δ 1.7E−3 bar min L−1 rpm−1

ϵ 73.8 bar

Table 4.1. Values for constants in the model.

4.1 Model validation

In this section the model derived is validated by comparing simulations of the model to
step responses performed on the test rig. Comparisons will be performed when changing
the number of open section valves, when switching to the bypass, and when changing the
angle of the regulator valve.

Figure 4.7 shows steps for different setpoints in the amount of open section valves. The
model is able to reach the same steady state level as the system, though with some
deviation in the rise time. But considering the low root mean squared (RMS)-error of
both step responses, this is not considered a problem.
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(a) From 11 open sections to 1 open section,
RMS-error = 170.0E−3 bar.
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(b) From 1 open section to 11 open sections,
RMS-error = 250.0E−3 bar.

Figure 4.7. Step responses for changes in number of open sections.

Figure 4.8 shows step responses for the bypass valve. The significant deviation between
the simulation and the measurement in figure 4.8a is due to an over- or underestimation
of either the bypass valve restriction or section valve restriction. On a production sprayer
a parameter estimator would be present to estimate these in real time, due to the type of
nozzles being unknown, and therefore their restrictions. Such an estimator is not made in
this project.
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(a) From 0 open sections to 11 open sections,
RMS-error = 200.0E−3 bar.
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RMS-error = 350.0E−3 bar.

Figure 4.8. Step responses for changes in number of open sections.

Figure 4.9 shows step responses for the regulator valve. This is only done for validation
as a first order system does not appropriately describe the regulator valve.
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Figure 4.9. Step responses for change in regulator valve angle.

4.2 Linearization

The linearized model is, like the nonlinear model, based on the function describing boom
pressure using the pump flow from equation 4.10. An additional assumption is made,
however, which results in a linear time variant model. The primary assumption is that,
given constant pump rotations, the pump flow, Qp, is constant and independent of the
number of open sections and the position of the regulator valve. This assumption is based
upon the pump flow found when doing step responses on the section valves, with the pump
flow from some of the tests shown in figure 4.10.
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Figure 4.10. Pump flow Qp while performing step responses on the section valves.

The pump boom gain, GR, is not expanded in this model, and is used as the control signal.
The idea being that a controller would generate a specific gain, and afterwards be trans-
lated via a nonlinear function into a position for the regulator valve, the transformation
is depicted in figure 4.11. The dynamic description of the model is thus given by equation
4.22.
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pb = Rpv GR Q̄2
p

ṗb = Rpv Q̄2
p ĠR + GR Q̄2

p Ṙpv

(4.22)

Q̄p Pump flow operating point [L min−1]
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Figure 4.11. Relationship between the gain GR and the regulator valve angle.

Equation 4.22 is still nonlinear, and therefore it is linearized using a taylor approximation,
resulting in equation 4.23.

ˆ̇pb =
(
ĜR − ḠR

)
Q̄2

p
¯̇Rpv +

(
R̂pv − R̄pv

)
Q̄2

p
¯̇GR

+
( ˆ̇GR − ¯̇GR

)
Q̄2

p R̄pv +
( ˆ̇Rpv − ¯̇Rpv

)
Q̄2

p ḠR

(4.23)
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ḠR Boom/pump ratio operating point [·]

R̄pv Equivalent restriction value for sections and bypass operating
point

[min2 L−2]

¯̇GR Boom/pump ratio time derivative operating point [s−1]
¯̇Rpv Equivalent restriction value for sections and bypass time derivative

operating point
[min2 L−2 s−1]

ĜR Boom/pump ratio linearized variable [·]

R̂pv Equivalent restriction value for sections and bypass linearized vari-
able

[min2 L−2]

ˆ̇GR Boom/pump ratio time derivative linearized variable [s−1]
ˆ̇Rpv Equivalent restriction value for sections and bypass time derivative

linearized variable
[min2 L−2 s−1]

ˆ̇pb Linearized boom pressure time derivative [bar s−1]

It is assumed that the operating points ¯̇Rpv = ¯̇GR = 0 as the pressure should be at rest
when the system is at steady state. The operating points R̄pv and ḠR are chosen to
be time varying, thus being updated on each controller update. The resulting linearized
model is shown in equation 4.24.

ˆ̇pb = ˆ̇GR Q̄2
p R̄pv + ˆ̇Rpv Q̄2

p ḠR (4.24)

Equation 4.12 is used to describe the term ˆ̇Rpv, the differential parts Ṙsec, and Ṙbp will
be used as measured disturbances as these are determined by the section controller. The
term ˆ̇GR will be described by a first order system with a time constant τGR

.

ˆ̇Rpv = Gbp(Rbp, Rsec) Ṙbp + Gsec(Rbp, Rsec) (4.25)

ˆ̇pb =
( 1

τGR

uGR
− 1

τGR

GR

)
Q̄2

p R̄pv

+
(
Gbp(rbp, rsec) Ṙbp + Gsec(rbp, rsec)Ṙsec

)
Q̄2

p ḠR

(4.26)

The linear model can then be described by the state space matrices in equation 4.27.

A =

0 − GR
τGR

Q̄2
pR̄pv

0 − 1
τGR

 B =

 1
τGR

1
τGR

 x =

 pb

GR

 u =
[
uGR

]

Bd =

GbpQ̄2
pḠR GsecQ̄

2
pḠR

0 0

 C =

1 0

0 1

 ud =

 Ṙbp

Ṙsec


(4.27)
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τGR
Boom/pump ratio time constant [s]

A State space state matrix

B State space input matrix

Bd State space disturbance matrix

C State space output matrix

x State vector

u State space input vector

ud State space disturbance vector

Two models for describing the liquid system on the test rig were presented in this chapter,
a nonlinear and a linear model. Both models will be considered in the next chapter where
the MPC will be developed.
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Controller design 5
This chapter will describe the design and use of the model predictive controllers which
will be used to control the liquid system. Two controllers are considered in this chapter:
A nonlinear model predictive controller, and a linear model predictive controller. Both
MPCs will use the models described in chapter 4. The nonlinear model predictive control
(MPC) will use the nonlinear model, and the linear MPC will use the linearized model. In
the end of the chapter, the two controllers will be compared when controlling a simulated
plant.

5.1 Nonlinear MPC

The nonlinear MPC will calculate the control signal for the regulator valve based on the
nonlinear model found. This controller will use the nonlinear MPC from MATLAB’s
Model Predictive Control Toolbox. Figure 5.1 illustrates the control loop for the MPC.

Receive dataStart Update ASC
Calculate current

section and bypass
OD

Estimate states for
model

Run nonlinear MPCTransmit actuator
signalsPause

Figure 5.1. Control loop for the nonlinear MPC.

5.1.1 State estimator

A Kalman filter is used to estimate the four states in the nonlinear model. Specifically
due to the nonlinear model, an unscented kalman filter (UKF) is used. Two of the states,
the boom pressure and the regulator valve angel, are measured directly. For the sake of
convenience, the values for the states θbp and θsec, are found through open loop simulations
performed online when the controller is running. Thus, the purpose of the filter is merely
to remove noise, as the value of all states are either measured or obtained otherwise. For
the state estimator the discrete time model in equation 5.1 is assumed, where w is the
noise on the states, and v is the noise on the output.
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x(k + 1) = F (x(k), u(k)) + w(k) w ∈ N(0, Qn)
y(k) = G(x(k), u(k)) + v(k) v ∈ N(0, Rn)

(5.1)

y Measured plant output

F Discrete time state space function

G Discrete time state space output function

w Model state noise

Qn State noise covariance

v Model output noise

Rn Model output noise covariance

The nonlinear model from chapter 4 is discretized in time using a forward euler approxi-
mation, thus the model is given by equation 5.2.

x(k + 1) = x(k) + f(x(k), u(k)) ts

y(k) = g(x(k), u(k))
(5.2)

f Continuous time state space function

g Continuous time state space output function

ts State estimator sampling time [s]

The UKF works in two stages: The measurement update and the time update [7]. In
the measurement update, the current estimate for the state vector is calculated, based
on both the measured and predicted output of the system, y and ŷ respectively, as well
as the kalman gain, K, and the state error covariance, P . In the time update stage, the
state variables are propagated one time step into the future, x̂k−1, as well as the state
error covariance, Pk−1. The predicted output is found using the output function and the
predicted states, thus an initial guess for the states are required for the filter. The steps
involved with the measurement and time update steps are shown below. Unlike the linear
kalman filter, the covariances, and expected values are found by sampling the state and
output function at specific points, determined via the unscented transform.
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Measurement update
1. Calculate expected value of ŷ, the

covariance between ŷ and x̂k−1, and
the covariance of ŷ via the unscented
transform

2. Calculate the covariance of the out-
put error

3. Find error between expected output
and actual output

4. Calculate the kalman gain
5. Find current state estimate
6. Calculate state error variance

Time update
1. Calculate the expected value of the

predicted state at the next time sam-
ple

2. Calculate the predicted state error
variance

Measurement update 

Time update

 

Figure 5.2. Illustration of data flow in the UKF.

The unscented transform is given as function of the model output function, predicted
states, inputs, and the predicted state error covariance. The output of the function is
the predicted output, its covariance, and the covariance between the predicted output
error, and the predicted state error. The predicted output is found by taking the mean of
several outputs, generated by evaluating the output function at several test points. The
test points are found perturbing the predicted state vector x̂k−1. From the perturbed
states and the predicted outputs, the two covariances are estimated.


ŷk

Cov(ỹk−1, x̃k−1)

Cov(ŷ)

 = U(g, x̂k−1, u(k), Pk−1) (5.3)
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ŷ Predicted output of plant from previous time update

ỹk−1 Predicted output error

x̃k−1 Predicted state error

x̂k−1 Predicted state space vector from previous time update

Pk−1 Predicted state error covariance from previous time update

For step 2 of the measurement update, the output error covariance is found via equation
5.4.

Cov(ỹ) = Cov(ŷ) + Rn (5.4)

The simplest step in running the UKF is finding the output error in the measurement
update. The step is given by equation 5.5.

ỹ = y − ŷ (5.5)

The kalman gain is used to correct the predicted states, according to the measured output.
The kalman gain is given by equation 5.6.

K = Cov(ỹk−1, x̃k−1)T Cov(ỹ)T (5.6)

K Kalman gain

The current state estimate is given by the correcting the predicted state with the kalman
gain and the output error, as done in equation 5.7.

x̂ = x̂k−1 + Kỹ (5.7)

x̂ Estimated state vector

As the final step of the measurement update, the current state error covariance is found
using equation 5.8.

P = Pk−1 − KCov(ỹk−1, x̃k−1) (5.8)

P State error covariance
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The time update will predict the states at the next time sample, xk+1 using the unscented
transform, and the predicted state error covariance. Both of the predictions will be used
the next time the measurement update is performed. The unscented transform will in this
case use the discrete time state function, f , with the currently estimated state, x̂, and the
current state error covariance P .

 x̂k+1

Cov(x̂)

 = U(f, x̂, u(k), P ) (5.9)

The second and final step in the time update is the predicted state error covariance, Pk+1,
which is found by equation 5.10.

Pk+1 = Cov(x̂) + Qn (5.10)

5.1.2 Controller

An MPC generates a control signal based upon a prediction of the plants future behavior
based on its current state and what disturbances are to be expected. The control signal
is found by minimizing an associated cost function describing the plant’s deviation from
some reference, and how much the control signal changes. The prediction is done using a
model of the plant, in this case it is the nonlinear model derived in chapter 4. The MPC
is not capable of predicting an infinitely long time into the future, but only a limited
amount of time samples, the prediction horizon, Np. The MPC does not have to generate
a control signal for all time samples it predicts, it only generate signals until the control
horizon Nc. The control horizon is usually shorter than the prediction horizon, in order
to reduce the amount of variables it has to optimize over. Additionally, with a longer
prediction horizon than control horizon, it is capable of finding a set of control signals
which stabilizes the plant.

As the nonlinear model does not guarantee a convex problem, the nonlinear MPC will
have to optimize a more complex problem than if it was convex. For the nonlinear MPC
there is also the chance that it will reach a local minimum which will not result in the most
optimal way to actuate the plant, but which the MPC will be trapped in. The result of
the optimization is based on the initial conditions, the current state estimate, the previous
control signal, and the initial set of future controls. The MPC used in this chapter is the
nonlinear MPC provided by Mathworks Model Predictive Control Toolbox, utilizing the
non-convex solver FMINCON.

As the MPC is an optimizing controller, it is possible to implement constraints on the
output and input, which the controller will consider when generating the control signal.
To ensure that the optimization can complete if the current output is beyond the feasible
region for the optimization problem, a slack variable, ε is added to these constraints. The
slack variable increases the cost of a solution drastically if the output of the plant moves
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beyond the constraints [8]. An example of an output constraint is given in equation 5.11,
where the maximum output is given by ymax.

y(i) − ε ≤ ymax (5.11)

ε Model Predictive Controller slack variable []

ymax Model Predictive Controller maximum output constraint []

The cost function for the MPC determines how the set of control signals generated will
look, the MPC will find the set of future inputs which minimizes the value of the cost
function. The cost function consists of three terms: A reference tracking term, an input
rate term, and a slack variable cost term. The reference tracking term provides a cost
dependent on the system outputs distance from the reference for that output, the greater
the distance, the greater the cost. The input rate term increases the cost for changing the
value of the control signal, thus punishing the controller from making very large changes
in small amounts of time, and oscillation the control signal. The slack variable term
is included in order for the cost function to increase when the constraints are violated,
without the term the controller would not even consider the slack variable. For a single
output single controlled output system, as the one from chapter 4, the cost function is
given by equation 5.12. The cost function is quadratic such that no matter whether the
reference error is positive or negative, it is punished, as well as punishing both positive
and negative changes of the control signal. Both terms are scaled using a constant values,
q for the reference error, and s for the input rate term.

J =
Np∑
i=1

q (r(i) − y(i))2 +
Nc∑
i=1

s (u(i) − u(i − 1))2 +
Np∑
i=1

v ε(i)2 (5.12)

J Model Predictive Controller cost function []

Np Model Predictive Controller prediction horizon []

Nc Model Predictive Controller control horizon []

q Reference deviation cost multiplier []

r Setpoint reference for Model Predictive Controller []

s Control signal rate of change cost multiplier []

v Slack variable cost multiplier []

5.1.3 Controller validation

The state estimator and the nonlinear MPC will be validated by simulating a run of the
spray map from chapter 2. From the plots in figure 5.3, the UKF is tested on a step
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response of the section valves. The filter fulfills its purpose of filtering out measurement
noise.
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Figure 5.3. Test of the UKF on measured data.

The MPC has been tuned, such that the controller uses the parameters given in table 5.1.
The prediction horizon is chosen to be long enough for the controller to acknowledge that
the amount of open sections will change some time in advance, but short enough for the
controller to not have a very long execution time.

Parameter Np Nc ts q s

Value 10 5 0.10 s 10 0

Table 5.1. Tuned parameters used by the nonlinear MPC.

From the resulting states of the simulation run in figure 5.4, it is confirmed that the
pressure settling time is fulfilled on stretch A, and at the point where the application rate
setpoint changes. Requirement A limiting the pressure to at max 8.0 bar is also fulfilled.
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Figure 5.4. States from simulation of the nonlinear MPC.

The requirement for the maximum deviation of the application rate while at steady state,
is fulfilled by this controller, as shown in figure 5.5b.
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Figure 5.5. Application rate during the validation test.

An issue with this controller is the execution time for each run through the control loop,
plotted in figure 5.6. The mean execution time is 5.3 s, which is significantly longer than the
time constants for both the regulator valve and section valves. At a speed of 20.0 km h−1

the sprayer would have covered a distance of 30.0 m between each update cycle.
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Figure 5.6. Execution time of the nonlinear MPC.

5.2 Linear MPC

A nonlinear MPC is not needed when a linear model is provided, and the constraints are
linear. In that case it is possible to setup a convex optimization problem for the MPC,
which can significantly decrease its execution time. In this section, the linear model from
section 4.2 will be used for such an MPC, in order to decrease the execution time of the
controller from section 5.1.

For this controller the prediction of the restrictions on the boom, rbp, rsec, and their change
over time, ṙbp, ṙsec, are not done by the MPC, but are instead calculated before hand,
being used as time varying gains and measured disturbances respectively.

The two states in the linear model, pb and GR, are found via the UKF, using the nonlinear
model, described in section 5.1.1. pb are taking directly as one of the estimated states, while
the gain is found using the estimated restrictions, rbp and rsec, as well as the estimated
regulator valve angle, using the definition of GR from equation 4.9.

Receive dataStart Update ASC Calculate boom
restrictions

Estimate state
variables

Run MPCTransmit actuator
signalsPause

Figure 5.7. Update loop for the linear MPC.
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5.2.1 Controller

The linear MPC developed for this project is based on the MPC described by Wang [9].
The MPC uses a set of lifted system matrices to calculate the predicted output and uses
this to generate the control signal.

In order for the controller to implement integral action, an augmented discrete time plant
model is used. The plant is discretized using a forward euler approximation. The aug-
mented model incorporates the controlled output of the plant, as well as the change in
the states and inputs from one time sample to the next, as illustrated in equation 5.13.

∆x(k + 1)

y(k + 1)

 = Aa

∆x(k)

y(k)

+ Ba∆u + Bd,a∆ud

y(k) = Ca

∆x(k)

y(k)


(5.13)

The augmented state space matrices are given by equation 5.14.

Aa =

 A 0

C A I

 Ba =

 B

C B



Bd,a =

 Bd

C Bd

 Ca =
[
0 I

] (5.14)

The future response of the system can be found by continuously evaluating the discrete
time system, as done in equation 5.15.

xa(k + 1) =Aaxa(k) + Ba∆u(k) + Bd,a∆ud(k)
xa(k + 2) =Aaxa(k + 1) + Ba∆u(k + 1) + Bd,a∆ud(k + 1)

=Aa (Aaxa(k) + Ba∆u(k) + Bd,a∆ud(k)) + Ba∆u(k + 1) + Bd,a∆ud(k + 1)
=A2

axa(k) + Aa Ba ∆u(k) + Ba ∆u(k + 1) + Aa Bd,a ∆ud(k) + Bd,a∆ud(k + 1)
. . .

(5.15)

The output of the system can be found from the prediction model above by left multiplying
with the augmented output matrix Ca.
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y(k + 1) = Ca Aaxa(k) + Ca Ba∆u(k) + Ca Bd,a∆ud(k)
y(k + 2) = Ca A2

axa(k) + Ca Aa Ba ∆u(k) + Ca Ba ∆u(k + 1)
+ Ca Aa Bd,a ∆ud(k) + Ca Bd,a∆ud(k + 1)

. . .

(5.16)

Equation 5.16 can be rewritten into a sum of matrix vector products, as done in equation
5.17. The future input change vector ∆U is the optimization variable in this prediction
system. The state vector xa(k) and future disturbance input ∆Ud are known in advance,
from the state estimator and the auto section controller (ASC) respectively.


y(k + 1)

y(k + 2)

. . .

 =


Ca Aa

Ca A2
a

. . .

 xa(k) +


Ca Ba 0 . . .

Ca Aa Ba Ca Ba . . .

...
...

...




∆u(k)

∆u(k + 1)
...



+


Ca Bd,a 0 . . .

Ca Aa Bd,a Ca Bd,a . . .

...
...

...




∆ud(k)

∆ud(k + 1)
...


−→ Y = Fxa(k) + L∆U + M∆Ud

(5.17)

For the linear model MPC in this report, only an input constraint is used. The input
constraint is present to limit the gain GR between 0 and 1. The input constraint is given
by equation 5.18, integrating the control signal using the optimization variable.

GR,min ≤ u(k − 1) +


1 0 0 . . .

1 1 0 . . .

...

∆U ≤ GR,max (5.18)

For this MPC, the cost function is similar to the one in equation 5.12 from the nonlin-
ear MPC. Though the slack variable term is excluded as there is no output constraint
implemented.

J =
Np∑
i=1

q (r(i) − y(i))2 +
Nc∑
i=1

s ∆u(i)2 (5.19)
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5.2.2 Controller validation

The controller is tested on the spray map described in chapter 2, with the simulation plant
using the nonlinear model described from chapter 4. Using the simulations, the controller
has been tuned to use the parameters listed in table 5.2 for its validation run.

Parameter Np Nc ts q s

Value 40 20 200.0E−3 s 20 20

Table 5.2. Tuned parameters used by the linear MPC.

An animation of the validation run can be found via the link below.

https://github.com/soerenLang/mpc4sprayer_public/blob/main/27-May-2024%
2009-06-40.gif

Figure 5.8 shows the resulting pressure and regulator angle. The boom pressure does not
exceed the maximum pressure requirement of 8.0 bar, nor the settling time requirement
of 7.0 s.
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Figure 5.8. Simulation results of the linear MPC running.

The application rate from the validation run, shown in figure 5.9a, fulfills the settling
time requirement. Additionally the maximum application rate deviation requirement is
also fulfilled, as shown in figure 5.9b.
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Figure 5.9. Application rate during the validation test.

Finally, the linear MPC runs significantly faster than the nonlinear MPC, when comparing
the execution time per update in figure 5.10, with the execution time from section 5.1.3.
The sampling time will be increased though to 200.0 ms in order for the system to be
guaranteed a constant loop time.
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Figure 5.10. Execution time of the linear MPC.

Due to all parts of the validation run fulfilling the requirements, the linear MPC is cho-
sen as the controller used for the acceptance test on the test rig, described in the next
chapter.
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This chapter will describe the results of the acceptance test. The acceptance test is
performed in order to verify that the model predictive controller (MPC) upholds the
requirements set forth in chapter 2 when comtrolling the test rig described in chapter 3.
The test will be performed using the linear MPC described in section 5.2, with the linear
system model found in section 4.2. Figure 6.1 shows the three plots which will be used to
analyze the test, an animation of the acceptance run can be found via the link below.

https://github.com/soerenLang/mpc4sprayer_public/blob/main/17-May-2024%
2010-52%20output%20animation.gif
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(a) Plant output during acceptance test.
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(b) Plant application rate during acceptance
test.

Figure 6.1. Plots from acceptance test.

Requirement 1 is fulfilled if the pressure settles to within ±7.5 % of the setpoint. From
figure 6.1 it is seen, that the pressure does not settle, but oscillates, thus the requirement
is not fulfilled. As the pressure oscillates, so does the application rate. The application
rate oscillates beyond the settling limits, thus never settling, not fulfilling the settling time
of requirement 2, and the maximum application rate deviation from requirement 3.
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The last requirement, requirement A, is fulfilled. The boom pressure never exceeds the
maximum pressure of 8.0 bar during the test.

Requirement Description Fulfilled

1 Maximum steady state pressure offset ±7.5 % ✗

2 Application rate settling time less than 7.0 s ✗

3 Max application rate deviation at steady state, 5.0 % ✗

A Max boom pressure less than 8.0 bar ✓

Table 6.1. Summary of results from acceptance test.

6.1 Discussion of results

The results of the acceptance test differs from the ones obtained by the simulation. Where
the simulated controller was capable of fulfilling all the requirements, using the controller
on a real life system resulted in only a single requirement being fulfilled. One of the things
that could affect the difference is the behaviour of the regulator valve. The relationship
between the valve and the gain in the controller, GR, is nonlinear. Thus, it was not possible
to set linear constraints on the rate of change of the gain. Additionally, it was attempted
to introduce a time delay into the gain by modelling it as a first order system. Figure
6.2 shows the regulator valve angle and its control signal, the regulator valve on the real
system moves significantly slower than in the simulation. A time delay is also observed
in the acceptance test when the valve changes direction, this is due to combination of
communication delay between the controller and the smartcom electronic control unit
(ECU), as well as the mechanical construction of the valve.
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(a) Simulation.
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(b) Acceptance test.

Figure 6.2. Comparison between regulator valve control signal and the valve angle.

40



6.1. Discussion of results Aalborg University

In early simulations a similar problem to the one in the acceptance test was observed,
where the controller employed a bang-bang form of control, this was resolved by lowering
the time constant of the gain significantly. The same solution was attempted for this
controller early in the test regime, where the time constant was lowered even further,
though with little success.
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Conclusion 7
Field sprayers are large and complex machines with a specific purpose: To deliver chemicals
in the form of herbicides or fertilizers, to plants in a field. A focus of modern sprayers are to
spray only where is needed, while providing a more robust and consistent spraying system.
Systems which automatically switches sections of the sprayer on or off exists and are based
upon Global Navigation Satellite Systems (GNSSs). The switching systems disturbs the
liquid system, thus a control scheme is needed in order to keep a constant pressure. It was
proposed that a model predictive controller (MPC) would be capable of controlling such
a liquid system, specifically using the predictive properties of the controller to anticipate
the change in open sections, and thus priming the liquid system for the disturbances.

Controllers for sprayer liquid systems must comply with the ISO 16119-2 standard, as well
as the physical constraints the components of the sprayer imposes. For this project, a test
rig emulating a field sprayer was created, with all the various components needed for a
sprayer to function.

For the model predictive controller, a nonlinear hydraulic model of a liquid system was
developed. The model was capable of describing the changing fluid restrictions on the
boom from the sections, as well as the change in pressure when turning the systems
regulator valve. A linear version of the model was developed as well, which assumed
a constant pump flow and precalculated the pressure changes from sections turning on
and off. Two types of MPCs was tested, a nonlinear version and a linear version. The
nonlinear MPCs was only tested in simulation as the execution time for the controller was
well above what was necessary to control the system. The linear MPC was tested on the
test rig, as it fulfilled all the requirements in the simulations. The linear controller was
only able to fulfill 1 out of 4 requirements when used on the test rig.
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Discussion 8
In this chapter, certain areas which required more attention and work, than was possible
in the rest of the report is touched upon and discussed.

8.1 Nonlinear MPC

Even though it was decided to not go ahead with the nonlinear model predictive controller
(MPC) described in section 5.1 due to the long execution time, there are some techniques
which could be used to improve the performance of the controller.

The prediction and control horizon was chosen to be 10 and 5 samples respectively, such
that the controller would be able to use the anticipated disturbances, these could be
lowered even further, thereby reducing the execution time significantly. If the prediction
horizon was lowered to 2 samples and the control horizon lowered to 1 sample, the average
execution time would well below 0.50 s.

The execution time could be reduced even further if the model was reduced to a two
state model. The controller described in section 5.1 uses the control signals for the bypass
and section valves in its prediction, and then calculates the dynamics from those. The
controller has to recalculate these several times during the optimization procedure, even
though their contribution is exactly the same every time. These calculations could be
computed beforehand as done in the control loop for the linear MPC. Removing these
from the MPC would also allow for a generalization of the controller, such that little
rework would have to be done if it was to be used together with a different liquid system
on the boom.

It is also possible to precompile the controller. As MATLAB is an interpreted language, it
takes a longer time to run. Having the controller beforehand could reduce the execution
time significantly as well.

8.2 Parameter estimation

The MPC requires an accurate model in order to function properly, the more precise the
model, the better prediction, the more optimal control. The liquid system of the sprayer
is significantly more complex than what the test rig represents, with several filters placed
throughout the system, filters which can be clogged and reduce the likeness between the
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model and the system. To achieve a more representative model, the parameters in the
system could be estimated. For the nonlinear model there are essentially four parameters,
which needs to be estimated: Rbp, Rsec, RB, and Rr. If the pump flow is assumed constant,
the pump restriction Rp, does not need to be estimated, as the only relevant thing for the
model would be the flow into the regulator valve boom junction. The two dynamic boom
restrictions can be estimated with the current set of sensors, the boom pressure sensor and
the boom flow sensor. In order to estimate RB and Rr, another set of flow and pressure
sensors would be needed. The pressure sensor should be placed at the junction where the
regulator valve diverts the pump flow away from the boom, while the flow sensor should
be placed in order to measure the pump flow. The flow sensors accuracy increases as the
flow increases, thus it should be placed where the largest flow is present, which is out of
the pump. The resulting piping and instrumentation diagram is shown in figure 8.1. RB

and Rr can be described by equation 8.1.

RB = pr − pb

Q2
b

Rr = pr

(Qp − Qb)2

(8.1)
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Figure 8.1. Piping and instrumentation diagram for the system if parameter estimation should
be implemented.

The function describing Rr could be found by doing online least squares fitting, in the
same manner as done in appendix A.

8.3 Alternative liquid system

Throughout this report the rotational velocity of the pump was considered constant, as
sprayers have no control of the tractors power take-off (PTO). But if the pump was con-
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trollable by the sprayer, if it was driven by a high pressure hydraulic system for instance, it
would be possible to remove the regulator valve entirely from the system. Such a system is
illustrated in figure 8.2, where the pumps rotational speed is controlled by a proportional
hydraulic valve. The simplification would remove a lot of complexity from the intercon-
nected liquid system, and separate the control problem into two systems, a hydraulic and
a liquid system, which could have the potential to be modelled independently of each
other. If a parameter estimator was implemented, fewer sensors would be required, as
there are fewer nodes in the system.
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Figure 8.2. Alternative to the liquid system used in the thesis.
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Modelling of regulator
valve A

This appendix will describe the develpoment of a contionous model, describing the regu-
lator valve restriction based upon the regulator valve angle. Based upon measurements of
the hydraulic equivalent admittance value for the regulator valve, the linear denominator
model and the quadratic denominator model in equations A.1 and A.2 respectively, are
proposed.

Rreg (θreg) = 1
(a θreg + b) (A.1)

Rreg (θreg) = 1(
a θ2

reg + b θreg + c
) (A.2)

Based upon the fitted models, shown in figure A.1, the quadratic approximation is chosen,
as the pole of the model is placed significantly higher valve angle than the the pole of the
linear model.
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(a) Linear approximation for denominator.

-40 -20 0 20 40
Angle	[deg]

10-6

10-4

10-2

100

R
es
tri
ct
io
n

Fit
Measurements
HD	angle

(b) Quadratic approximation for denomina-
tor.

Figure A.1. Fitted regulator valve model.
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Modelling of bypass valve B
In this appendix a model describing the restriction of the bypass valve as a function of the
opening degree, will be found. For an opening degree of 0, the valve restriction should tend
towards infinity, such that no or very little liquid passes through. For an opening degree
of one, the restriction should tend towards a certain value, thus, the proposed model for
the bypass valve is given by equation B.1.

Rbp(θbp) = Gbp

θbp
(B.1)

The gain Gbp is found by finding the steady state restriction of the boom while the bypass
restriction is open, and all the section valves are closed. The gain is thus found by taking
the mean of the three measured restrictions in figure B.1, resulting in Gbp = 67.8E−6.
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Figure B.1. Plots of the tests used to find the gain Gbp.

48



Modelling of section
valves C

This appendix will describe how the model for the section valves were derived. There are
two main things related to the model: The steady state gain, and the dynamics.

C.1 Steady state gain

The steady state gain of the section valves have been found by running the system at
different operating conditions, with a different amount of section valves open. The system
has been allowed to settle, at which points the pressure and flow to the boom has been
measured for some time. The test has been repeated for some number of open section
valves. Based on the pressure and the flow, the restriction value has been calculated from
the mean flow and pressure of the test using equation C.1. The measured restrictions are
given in table C.1

R = p

Q2 (C.1)
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C.1. Steady state gain Aalborg University

Open
valves

1 3 5 6 8 10 11

Test 1 11.8E−3 1.9E−3 667.0E−6 403.0E−6 217.0E−6 126.0E−6 103.0E−6

Test 2 11.7E−3 2.1E−3 653.0E−6 406.0E−6 - - 101.0E−6

Test 3 11.4E−3 2.2E−3 658.0E−6 389.0E−6 - - 101.0E−6

Test 4 11.8E−3 2.2E−3 681.0E−6 389.0E−6 - - 103.0E−6

Test 5 11.8E−3 2.1E−3 667.0E−6 403.0E−6 - - 100.0E−6

Test 6 11.1E−3 1.9E−3 667.0E−6 403.0E−6 - - 101.0E−6

Test 7 12.2E−3 - 639.0E−6 - - - 103.0E−6

Test 8 11.7E−3 - 694.0E−6 - - - 103.0E−6

Test 9 11.4E−3 - 667.0E−6 - - - 103.0E−6

Test 10 11.7E−3 - 667.0E−6 - - - 100.0E−6

Test 11 10.4E−3 - 683.0E−6 - - - 100.0E−6

Mean 11.5E−3 2.1E−3 667.0E−6 399.0E−6 217.0E−6 126.0E−6 102.0E−6

Table C.1. Caption

Based upon the equation for parallel restrictions, the data is attempted fitted to the two
functions given in equation C.2. With the results shown figure C.1. The affine power
approximation has a mean squared error of 67.7E−9 while the power approximation has
a mean squared error of 93.2E−9. Even though the power approximation has the highest
mean squared error, it is chosen as the model for the system, due to the better fit at low
restrictions.

Rsec,1(θsec) = a

θ2
sec

+ b

Rsec,2(θsec) = a

θ2
sec

(C.2)
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C.2. Dynamics Aalborg University
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(a) Affine power approximation.
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(b) Power approximation.

Figure C.1. Fitted steady state model for the section valves.

C.2 Dynamics

The dynamical model of the section valves begins by looking at the plots in figure C.2, and
realising that the restriction changes like a first order system. It is therefore desired to
set up a model which describes the number of open section valves as a first order system.
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(a) Affine power approximation.
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Figure C.2. Fitted steady state model for the section valves.

The only variable needed to fit a first order model with a steady state gain of 1, is the
time constant. The time constant for several section valve steps are found in table C.2.
The time constant is found by finding the mean of the time constants resulting in a time
constant for the section valve of 0.2 s.
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C.2. Dynamics Aalborg University

Test Start pres-
sure

End pres-
sure

60 % pres-
sure change

Step start
time

60 % time τ

1 1.0 bar 4.0 bar 2.8 bar 2.40 s 2.56 s 0.16 s

2 0.6 bar 1.8 bar 1.3 bar 3.63 s 3.75 s 0.12 s

3 4.8 bar 1.0 bar 2.5 bar 1.44 s 1.56 s 0.12 s

4 7.6 bar 1.3 bar 3.8 bar 3.35 s 3.50 s 0.15 s

5 1.0 bar 4.0 bar 2.8 bar 2.40 s 2.56 s 0.16 s

6 3.8 bar 1.1 bar 2.2 bar 2.94 s 3.07 s 0.13 s

7 8.9 bar 1.7 bar 4.6 bar 1.66 s 1.86 s 0.20 s

8 1.7 bar 8.9 bar 6.0 bar 2.18 s 2.40 s 0.22 s

9 1.3 bar 4.8 bar 3.4 bar 2.27 s 2.49 s 0.22 s

10 0.7 bar 1.9 bar 1.4 bar 1.65 s 1.78 s 0.13 s

11 2.1 bar 4.4 bar 3.5 bar 0.76 s 0.90 s 0.14 s

12 7.2 bar 4.5 bar 5.6 bar 0.60 s 0.74 s 0.14 s

13 2.9 bar 1.8 bar 2.2 bar 0.56 s 0.67 s 0.11 s

14 9.7 bar 5.6 bar 7.2 bar 0.34 s 0.47 s 0.13 s

15 1.8 bar 5.6 bar 4.1 bar 0.26 s 0.44 s 0.18 s

Table C.2. Table for finding the time constant of the section valves.
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Modelling of pump D
This appendix will describe the process of acquiring a continuous model describing the
pump. The primary source of data is the data in figure D.1. A set of data describing the
relationship between pressure, flow and pump revolutions is acquired from the figure.

Figure D.1. Flow-RPM-pressure relationship for the pump. 1

Three models for describing the pressure differential of the pump is fitted to the data: A
linear approximation, a quadratic approximation, and a semi quadratic approximation.
The three models are given in equations D.1, D.2, and D.3, respectively.

∆Pp = a Q + b ω + c (D.1)

∆Pp = a ω2 + b Q ω + c Q2 + d ω + e Q + f (D.2)

∆Pp = a Q2 + bω + c Q + d + e Q ω (D.3)

The fitted models are plotted in figure D.2a, along with the fitting data. From the mean
squared errors between the model and the data, listed in table D.1, it is seen that the
quadratic approximation has the lowest mean squared error (MSE). The semi quadratic
model is however chosen as the pump model, due to its finer behaviour in the operating
area, not having two possible flow values for a certain amount of revolutions.

1Hardi 464 pump datasheet.
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Aalborg University

Model Linear Quadratic Semi quadratic

MSE 2.8 0.4 1.3

Table D.1. Mean squared error of the three fitted models.
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(a) Linear approximation.
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(b) Quadratic approxima-
tion.
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(c) Semi quadratic approxi-
mation.

Figure D.2. Plots of the pump models within the expected operating area.
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