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Abstract
Recently, Unmanned Aerial vehicles (UAVs)
have gained significant attention in many
fields due to their ease of deployment, flex-
ibility, and affordability. They are widely
used for disaster management, surveillance,
border monitoring, battlefield monitoring,
data collection, crop monitoring, communi-
cation services, emergency aid, etc. This
thesis primarily investigates the role of
UAVs in supporting search and rescue teams
in a disaster, intending to facilitate rescue
operations and provide services to victims
using minimal resources. In this context,
they provide real-time information that can
aid decision-making. UAVs in disaster man-
agement can decrease response time, cover a
wide area, and analyze the situation quickly.
To provide complete rescue operations with
the optimal number of UAVs and mini-
mum energy consumption, we test four dif-
ferent algorithms for UAV trajectory plan-
ning, namely, Randomized Coverage Itera-
tion (RCI), Intelligent Randomized Cover-
age Iteration (IRCI), scan movement, and
nearest movement in the simulation environ-
ment. The performance of these algorithms
is evaluated for the four different environ-
ments in terms of the number of UAVs re-
quired to cover the whole area, average total
distance travelled, average energy consump-
tion, and number of configurations. Simula-
tion results indicate that the scan algorithm
requires the least number of UAVs for cov-
erage in all environments compared to other
algorithms. Moreover, we analyze the im-
pact of various height bounds on the cover-
age radius and the required number of UAVs
to cover the entire area in different environ-
ments.
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Introduction 1
1.1 Overview

This chapter provides the background and introduction of Unmanned Aerial Vehicle
(UAV). It provides comprehensive insights into how UAVs can be used in different sectors
and how the advancement of UAV technology makes effective disaster management and
rescue operations possible with the incorporation of UAVs. It also summarizes the
destruction and losses around the world due to natural disasters.

1.2 Background and Introduction

UAV also known as a drone, is an aerial vehicle with the capability of flying without
any pilot onboard. It can be either operated using a computer or remotely controlled
by the human operator. Nowadays, UAVs are getting a lot of attention due to their
versatility, flexibility and affordability. UAVs are widely utilized in military, agricultural,
and disaster relief applications due to their low cost, freedom from terrain constraints, and
rapid coverage [Mozaffari et al., 2019; Elmeseiry et al., 2021]. Fig. 1.1 provides a glance
on the applications of UAVs.
In the military, one of the most important roles of UAVs is surveillance and reconnaissance.
UAVs equipped with high-resolution cameras and advanced sensors can provide real-
time information on the movements of enemies, positions, and activities. UAVs used
in surveillance have the capabilities to improve battle situational awareness, assist in the
detection of possible threats and plan effective military plans. UAVs can be essential
assets in urban warfare settings where the environment is challenging and unpredictable,
supporting ground soldiers in navigating and comprehending the battlefield from above.
In agriculture, UAVs can be used for a variety of operations such as crop mapping,
inspection of soil, watering, and pest management. UAVs can quickly and efficiently cover
wide areas of land, allow farmers to collect data and monitor crops more efficiently. This
can aid in the early detection of problems, resulting in more rapid and effective actions.
UAVs can also be used for livestock management. They can assist ranchers in providing a
real-time view of the livestock for better livestock management and monitoring. Thermal
sensors mounted to UAVs are also utilized for nighttime observation of livestock and real-
time identification of problems.
In the case of disaster management and relief, situation assessment can be remotely done
by using UAVs, location mapping, providing emergency aid, extinguishing fires, etc. In this
context, it helps in providing real-time information which can aid in decision-making. UAVs
in disaster management can decrease response time, cover wide distances, and analyze the
situation quickly.
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CT 10 1. Introduction

Furthermore, UAVs can also be used in wireless networks to enhance coverage and
connectivity. In UAV-assisted wireless networks, UAVs have several potentials as shown
in Fig. 1.2. UAVs have the potential to provide Line-of-Sight (LoS) communication
links which results in significant enhancement of coverage, capacity, delay performance
of conventional wireless network [Munawar et al., 2022]. UAVs have the ability to provide
additional capacity because of their mobility and communication capabilities, which can
help to reduce network congestion in locations with a high density or in events that are
particularly crowded. The traffic that is being carried by the ground network might be
offloaded to them by acting as aerial relays or Aerial Base Station (ABS) [Sharafeddine
and Islambouli, 2019]. In instances such as emergencies, disaster recovery, or events that
need quick deployment of communication infrastructure, UAVs can be utilized to build
temporary communication links. In addition, they have the capability to expand wireless
coverage to locations where the existing infrastructure is either damaged or insufficient
[Saif et al., 2021]. This makes it easier for vital operations and services to communicate
in a timely and efficient manner. However, there are certain challenges associated with
UAV-assisted networks as shown in Fig. 1.2, such as 3d optimal deployment, flight time
issues due to energy limitations, security, and privacy concerns, etc [Mohsan et al., 2023].

Figure 1.1. UAV Applications.

2



1.2. Background and Introduction Aalborg University

Figure 1.2. Potentials and challenges of UAV-assisted wireless networks.

In natural disaster scenarios, such as earthquakes, heavy rains, tsunamis, floods, and
landslides, a significant challenge arises from the failure of communication infrastructure,
which consequently affects the efficacy of response efforts. This frequently results in a large
number of victims being entrapped. In the case of man-made disasters, such as terrorist
attacks and hostage situations, similar situations have been observed. The continuous
climate change phenomenon is projected to increase every year in a greater number with
high intensity. The number of disaster events recorded across the world is shown in Fig.
1.3. According to these statistics, in 2022, the global record of natural disaster events hit
421 incidents, increasing over the previous year’s stated count of 406 [Salas, 2023].

3



CT 10 1. Introduction

Figure 1.3. The number of disasters recorded around the world from the year 2000 to 2022.

In the year 2022, the Asian Pacific area saw the most significant incidence of natural
catastrophes [Ahmed, 2023]. The adverse effects of natural disasters on individuals
and nations are substantial due to their destructive nature. In 2023, the number of
fatalities from natural calamities exceeded 90,000 individuals, and the global economic
damage from natural catastrophes has been estimated to be 380 billion U.S. dollars [Salas,
2024a,b]. During these events, damage to infrastructure, power outages, and overloaded
networks cause conventional communication technologies to fail, highlighting the need for
promising alternative networks. Hence, implementing robust and self-sustainable networks
is necessary to manage search and rescue operations effectively.

In this regard, UAVs offer a potentially effective way to tackle these problems. They
provide a novel approach to disaster management by providing a quick and adaptable way
to establish communication networks in areas devastated by disasters. In addition, UAVs
can facilitate rescue teams in providing essential supplies like first aid kits and food to
the victims. UAV-enabled network can be deployed in disaster-struck areas to monitor
the affected zone to enable rescue workers to search and locate people or animals who are
in need. Recently, there has been an increasing consideration of UAV-enabled networks,
which have shown the ability to quickly establish wireless networks with large coverage.
However, the limited flight time of the UAV poses certain difficulties for the low-cost
deployment of emergency communication through UAV networks, as it results in reduced
network lifetime and unstable network coverage which can significantly impact disaster
management and rescue activities. Moreover, finding the optimal number of UAVs that
are required to cover the complete target area is important for the efficient use of resources.
In this work, the efficient UAV movement approach is developed to ensure the complete
coverage of disaster-struck areas with efficient use of resources. In addition, the UAV
energy consumption is modeled so that the energy-efficient UAV-enabled network can be
established.

1.3 Problem Statement

Disaster events cause the destruction of roads, communication networks, and other
infrastructure and restrict access to the disaster area. Due to the unavailability of
communication services, obtaining the information of victims such as their location,
number of victims, etc, is difficult and the destruction of roads makes it difficult to
deliver essential supplies like first aid kits and food to the victims. Hence, the problem
investigated is:

• How to implement quick and robust communication service with efficient
resource management to effectively perform and manage rescue opera-
tions?

1.4 Aim & Objectives

The main aim of this work is to focus on the deployment and implementation of UAVs in
disaster scenarios to enable rescue operations for providing rescue services to the victims.

4



1.5. Thesis Structure Aalborg University

The main objectives of this work are to:

• To develop an efficient movement strategy of UAVs to cover the complete target area.
• To find the optimal number of UAVs required to provide complete coverage of the

target area.
• To investigate and compare different movement schemes of UAVs for ensuring

complete coverage.
• To model the UAV energy consumption patterns to provide energy-efficient

movement planning of UAVs.
• To investigate the completion time of rescue operations under different deployment

strategies.

1.5 Thesis Structure

Fig. 1.4 shows the structure of this thesis. The thesis is composed of the following chapters:

• Chapter 1 provides insight into the overview of disaster scenarios and the importance
of UAV-enabled networks in disaster events with associated challenges.

• Chapter 2 discussed the existing work in the literature on UAV-assisted communica-
tion for disaster management.

• Chapter 3 provides an outline of the assumptions guiding our study. Formulates the
problem to be addressed. Different algorithms for UAVs deployment.

• Chapter 4 shows how performance is evaluated. Show the performance of all schemes,
compare results and discuss findings.

• Chapter 5 summarizes and highlights the main results.

Figure 1.4. Thesis structure.
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Literature Review 2
2.1 Overview

This chapter provides the overview and state-of-the-art related to UAV technology. The
important role of UAVs in disasters, particularly in the context of UAVs deployment
for coverage, is comprehensively explored. In addition, various works on UAV power
consumption are discussed.

2.2 Diverse Roles of UAVs in Disaster

In disaster secarios, UAVs facilitate disaster management and rescue efforts in many ways.
UAVs are crucial in performing prompt and efficient aerial surveys as they can provide
aerial images and immediate data to facilitate efficient evaluation of the extent of damage.
UAVs capabilities enables more effective collaboration among rescue team personnel in
addition to prioritizing rescue efforts based on imaginary data collected through UAVs.
UAVs with advanced sensors, such thermal imaging, make it possible to identify victims in
dangerous or difficult-to-reach areas. Additionally, UAVs are utilized for the distribution
of supplies and logistics to remote locations, guaranteeing the prompt delivery of vital aid
like food, medication, and medical supplies [Khan et al., 2022]. Mapping and Geographic
Information Systems (GIS) capabilities of UAVs are helpful in creating comprehensive maps
of disaster-affected areas, which aid in the evaluation of infrastructure damage, resource
distribution, and general situational awareness [Mavroulis et al., 2019].

Disasters often lead to serious disruptions to communication services due to destruction
of communication infrastructures. UAVs play a significant role for providing wireless
communication in disaster scenarios due to their ease of deployment. Particularly, UAVs
as Aerial Based Stations (ABSs) are used for a variety of applications including traffic
offloading from congested conventional base stations or providing wireless connectivity
service in emergency scenarios such as disaster scenes or remote areas when the traditional
Base Stations (BS) are difficult to deploy [Kishk et al., 2020]. The key aspects of ABS
are shown in Fig. 2.1. ABSs have flexible 3D deployment which implies that they can be
quickly and easily deployed in any location due to their mobility, coverage and Quality-
of-Service (QoS) of on-ground users can be significantly enhanced [Bose et al., 2022].
However, they are short-term because of their battery limitation. Disasters frequently
result in the destruction of traditional ground base stations, causing the network to become
paralyzed. In such situations, determining how to quickly restore the network can be
difficult. A fully operational communication network is critical in disaster situations where
the ground infrastructure is completely or partially damaged to coordinate relief activities

7
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and save lives. UAVs have the potential to assist disaster-stricken communities in rapidly
and effectively restoring connectivity. The use of UAVs as ABSs in disaster scenarios
contributes to a significant change in emergency communication networks [Zhao et al.,
2019]. In contrast to traditional infrastructure, UAVs have flexibility which allows them
to traverse difficult terrain and reach isolated regions where constructing ground-based
communication infrastructure would be impracticable or time-consuming.

Figure 2.1. ABS vs conventional base station.

2.3 UAVs Deployment

The optimal deployment of UAVs in the target area to get optimal coverage and service
quality for the ground users is challenging. Authors in [Al-Hourani et al., 2014b] optimally
deploy the UAV by optimizing the altitude of a single UAV to maximize the coverage
region. The work in [Mozaffari et al., 2015] expanded the scenario to include two UAVs
and analyzed the influence of altitude on transmission power, taking into account the
interference that could occur between them. The overview of state-of-the-work on UAV-
assisted network applications and classifications is provided in [Li and Savkin, 2021]. This
review also includes the analysis of the common challenges in UAV control, navigation,
and deployment, and research open challenges and future directions are identified. The
ABS deployment problem is addressed and investigated in the [Viet and Romero, 2022],
as well as the limitations and challenges involved with it. This work also discusses the
concept of adaptable placement and several techniques to address deployment problems
in 2D and 3D areas. To maximize coverage, authors in [Bor-Yaliniz et al., 2016; Alzenad
et al., 2017] evaluated the optimal placement of a single UAV in three-dimensional space.
The work in [Wang et al., 2018] presented a traffic-aware adaptive UAV deployment scheme
in which the UAV positioned at the center of the cell adjusted its distance and direction
of flight in response to the Poisson-distributed mobile users present in the target cell. The
optimal deployment of multiple UAVs is more challenging. In [Mozaffari et al., 2016],
an efficient deployment technique based on circular packing theory is proposed for the
deployment of multiple UAVs, resulting in maximal coverage in which each UAV utilizes
the least amount of transmit power. The work in [Majeed et al., 2022] proposed a decision-
making approach for cellular networks to use UAVs to get an effective coverage area. The
approach provides a dynamic reconfiguration of nodes in the network based on UAVs

8
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to meet the network’s desired criteria. Authors in [Kalantari et al., 2016] designed a
particle swarm optimization-based heuristic algorithm that calculates the least number of
UAVs and their positions to serve all users in a specific region with varying user densities.
Authors in [Kabashkin, 2023] presented a model for measuring sensor service availability
in a wireless network with ABS placement, with a focus on the employment of UAVs
in real-world settings. This model includes UAV-assisted mobile edge computing with
ABS placement and a UAV energy restoration ground station. The work in [Masroor
et al., 2021] focused on strategically deploying UAVs in destroyed infrastructures to provide
the necessary requirement for communication as well as assistance services in emergency
scenarios. The study formulates as an integer linear optimization problem a multi-objective
problem including UAV placement, user-UAV communication, distance, and cost. To
tackle this, a high-complexity branching and bound algorithm is introduced, along with a
low-complexity heuristic for efficient goal achievement. Table 2.1 summarized the recent
related work. It is observed that different techniques have been used for UAVs deployment
focusing on diverse UAVs use-cases.

2.4 Path loss Modeling in UAV Networks

Path loss modeling is an important factor aspect in designing and optimizing wireless
communication networks. In case of disaster recovery and management, UAVs have to
fly over diverse environments including urban landscapes and open fields. These diverse
environments affect communication links and impose certain challenges such as signal
attenuation, blockage of LOS links, multipath fading, and penetration losses [Maxama and
Markus, 2018]. Signal losses increase with the increase in path loss due to the increased
distance between transmitting and receiving devices for any given environment. In the
case of a hilly or irregular terrain environment, path loss is more as compared to free
space. Different environments give different values of path loss exponent [Naseem et al.,
2018]. Hence, it is important to model the path loss. The path loss models aid in the
prediction of signal strength attenuation during the propagation of communication signals
from the UAV to the BS or between UAVs. Signal propagation from UAV to ground user
is referred to as Air-to-Ground (A2G) path loss and signal propagation between UAVs
is referred to as Air-to-Air (A2A) path loss [Moraitis et al., 2023]. UAVs equipped with
communication interfaces are also referred as Aerial Platforms (AP). Depending on the
altitude of UAVs, these APs can be High Altitude Platforms (HAPs) or Low Altitude
Platforms (LAPs). There are certain factors that significantly contribute to path loss in
the case of UAV-assisted networks. These factors include UAV altitude and trajectory,
frequency selection, multipath fading, different environments, etc. Table 2.2 summarized
the some path loss models. The statistical models in [Pang et al., 2022] are proposed to
predict the LOS A2G path that is appropriate for various altitudes and frequencies, with
the consideration of various factors such as transceiver altitude, building height, building
width, building location, and the Fresnel zone. Other models include a modified two-ray
planar reflection A2G path loss model is proposed based on elevation angle (EA) with a
variable reflection coefficient for the A2G channel. As a result of the influence of curved-
earth approximation, the authors in [Matolak and Sun, 2016] provided a two-segment
path-loss model incorporating Rician fading. Authors in [Athanasiadou and Tsoulos, 2019]
investigate the path loss characteristics of the A2G channels for different altitudes of UAVs.

9
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Table 2.1. Summary of existing work.

Ref. Number
of UAVs

Technique Objective Func-
tion

Model Scenario

[Wu et al., 2023] Multiple Distance-based
location se-
lection +
Mixed-integer
linear program

To maximize the
traffic flow from a
any source to a des-
tination node

UAV-assisted Wire-
less network

[Sami et al.,
2023]

Multiple K-means +
Evolutionary
memetic based
algorithm

To support vehicu-
lar fog cluster for-
mation and service
placement

UAV-enabled
Vehicular commu-
nication

[Kirubakaran
and Hosek,
2023]

Multiple Genetic algo-
rithm

To ensure complete
user coverage and
permanent connec-
tions

Disaster

[Lei et al., 2023] Multiple Stackelberg
game

to efficiently deploy
limited UAVs to pa-
trol on borders

Military

[Liu et al., 2023] Multiple UAV-BS deplo-
ment algorithm

To provide on-
demand wireless
coverage with min-
imum UAVs

UAV-assisted cellu-
lar network

[Su et al., 2023] Single &
Multiple

Quasi-convex
optimization

To maximize sys-
tem capacity

UAV-assisted
IoV (Internet-of-
Vehicle) communi-
cation environment

[Bi et al., 2023] Single Gibbs sampling
integrated with
block coordinate
descent

To jointly optimize
of 3D deployment
and resource alloca-
tion

UAV-assisted com-
munication & local-
ization

[Zhu and Zhou,
2023]

Single Greedy heuris-
tic & Particle
swarm opti-
mizer

To maximize to-
tal weighted target
coverage

UAV-enabled sen-
sor network

[Huang and
Savkin, 2022]

Multiple Decentralized
deployment
algorithm

To provide the op-
timal coverage

Disaster

[Sabzehali et al.,
2022]

Multiple Graph theory To ensure backhaul
connectivity with
minimum UAVs

Remote area

[Liu et al., 2022] Single Proximal
stochastic
gradient descent
based algorithm

To improve the
Quality-of-Service
(QoS)

UAV-assisted cellu-
lar network

[Seraj et al.,
2022]

Multiple Multi-step
Adaptive Ex-
tended Kalman
Filter + Wild-
fire propagation
mathematical
model

To enable accurate,
online wildfire cov-
erage and tracking

Wildfires

10



2.5. UAVs Power Consumption Aalborg University

Authors in [Odesanya et al., 2023] proposed a hybrid approach for path loss prediction by
coupling strengths of machine learning techniques and empirical models. It is important
to note that statistical models are preferable because machine learning-based methods
have limitations in the context of huge data requirements, optimization of parameters,
and generalization.

Table 2.2. Summary of A2G path loss models.

Ref. Model Description
[Pang et al., 2022;
Khawaja et al., 2020]

Statistical propaga-
tion models

Used to model A2G path loss in
urban environments

[Ranchagoda et al.,
2021]

Elevation-angle
based two-ray model

Used to model the A2G path loss
based on elevation angle.

[Bolli, 2020; Sun
et al., 2022]

Path Loss Model
Based on Environ-
mental Variables

Used to model the A2G path loss
based on environmental variables
for air-to-ground communication.

[Odesanya et al.,
2023]

Hybrid Path Loss
Prediction Model

Used to predict path loss based on
artificial intelligence and empirical
models.

[Al-Hourani et al.,
2014b]

Statistical Path Loss
Model

Used to model A2G path loss over
urban environment.

2.5 UAVs Power Consumption

In order to fully realize the potential of UAVs for providing wireless communication services,
a number of challenges and technical issues must be addressed, including privacy and public
safety concerns, regulatory and standardization issues, limited battery capacity, energy
consumption, and so on [Mohsan et al., 2023]. One of the most concerning among these
challenges is the energy consumption of UAVs. This is due to the low battery capacity of
UAVs, which limits the maximum time the UAV can fly to give coverage to ground users.
UAVs with different designed models have different capabilities like battery energy, flight
time, hovering time, payload, etc. Table 2.3 provides the capabilities of different models
of UAVs obtained from manufacturer website [Dji, 2024]. It can be seen that different
models of UAVs have different specifications. The battery energy of all these models is
calculated from Battery Energy = Capacity × V oltage using capacity in mAh and voltage
in V from the manufacturer’s website. Most of these parameters are measured in windless
environments. These characteristics do not accurately reflect the actual operations of UAVs
in the real world because, in the real world, UAVs have to experience dynamic weather
conditions.

It is vital to consider the power consumption models to project and optimize the power
consumption of UAVs to address this issue. There have been several research carried out in
order to construct comprehensive power consumption models for UAVs. These models are
based on analysis of battery usage for a variety of UAV missions. The utilization of these
models is necessary for the planning of energy-efficient missions and the most effective
recharge.

11
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Table 2.3. Different capabilities of UAVs (Manufacturer data).

UAV
Model

Payload
(Kg)

Max. Flight
Time

Max.
hov-
ering
Time
(min)

Max.
Speed
(m/s)

Max.
Flight
Dis-
tance
(Km)

Battery
Energy
(J)

DJI
Mavic
2 Pro

0.91 31 min at consis-
tent 25 kph

29 20 18 213444

DJI
Mavic
3

0.89 46 min at consis-
tent 32.4 kph

40 19 30 277200

DJI Air
2

.57 24 min 33 12 18.5 145530

DJI Air
3

.72 46 min at consis-
tent 28.8 kph

42 21 32 225349

Figure 2.2. Different parameters contributing to the power consumption of the UAV.

To develop comprehensive power consumption models, several parameters that influence
energy consumption have been considered. The work in [Zhang et al., 2021] proposed the
comprehensive investigation of key parameters contributing to the energy consumption
of UAVs used for delivery. Fig. 2.2 shows some important parameters that significantly
contribute to the power consumption of UAVs. Various elements that include wind, speed,
take-off, landing, hovering, payload, communication, and on-ground power consumption
have been investigated in [Abeywickrama et al., 2018b]. The authors in [Góra et al.,
2022] provided the universal machine learning model as a substitution for a conventional
mathematical model for the power consumption of UAVs. The authors stated that this
machine-learning solution is simpler and faster to implement because it does not require
prior knowledge of UAV construction. This is a substantial benefit, particularly for multi-
UAV system owners who lack the resources to create an analytical power model for each
robot. In [Beigi et al., 2022], the state-of-the-art on the UAV power consumption and
the general factors that contribute to the power consumption of UAVs during mission

12
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accomplishment are provided. In [Van Huynh et al., 2021], optimal path planning
algorithms are proposed for UAVs in order to reduce completion time and overall energy
consumption throughout data collecting.
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System Model 3
3.1 Overview

This chapter provides the proposed system model, energy model, and UAV trajectory
configurations. In the system model, the comprehensive details of path loss model
is provided followed with problem formulation. In the energy model, the modes and
factors contribution to the energy consumption of UAVs are discussed. In UAV trajectory
configurations, UAV movement algorithms are explained.

3.2 Proposed System Model

Disaster scenarios such as a massive earthquake, flood, tsunami, or landslide severely affect
people in that area. The majority of structures and infrastructure get damaged, roads are
blocked by contamination, and essential commodities such as electricity food and water
suffer disruptions. The cellular communication infrastructure has sustained significant
damage, specifically, this implies a loss of communication. As a result of disaster, the
traditional communication infrastructure can be either completely or partially damaged.
Disaster scenarios necessitate the urgent need to establish emergency communication
between available devices and responders in that situation. This is crucial to prevent
operational interruptions and ensure the timely fulfillment of essential needs for victims,
including medicine, water, food, and other necessities.

Figure 3.1. System model.

Figure 3.1 shows the system model which illustrates the disaster scenario we are considering
for this work. In this scenario, the traditional communication infrastructure is unavailable,
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and on-scene devices cannot communicate with the responders. We are considering
M devices that are randomly distributed within the disaster zone. The devices can
communicate with each other and also connect with a responder through any available UAV
in their proximity. Because it is supposed that devices and the UAV are equipped with
device-to-device communication interface which enable them to connect with each other.
The UAVs are acting as temporary BSs, facilitating communication between responders
and on-scene devices. The UAVs enable the line of sight communication link between
ground users and temporary BS. However, the link between any ground user to another
ground user is non-line of sight. Overall, the goal of this work is to efficiently deploy UAVs
to provide full coverage of disaster areas with minimum energy usage for enabling rescue
services so that rescue efforts can be done effectively. In the case of our system model, the
following assumptions are considered:

• All the ground devices support device-to-device communication technologies such as
LTE Direct, WiFi Direct, BLE, etc.

• All the ground devices have the capability of discovering the neighboring devices.
• All the UAVs can directly communicate with the command center.
• Minimum distance between any two UAVs is greater than the coverage radius of the

UAV.
• Consider the collision-free environment which implies the height of each UAV greater

than obstacles like trees, buildings, etc.
• Any UAV can move to the next waypoint only if it has enough energy to fly back to

the starting position.
• Each UAV can carry a payload of up to 500 grams.

3.3 Air-to-Ground (A2G) Path loss

When radio signals radiated from an ABS enter an urban environment, they undergo
additional loss in the A2G link due to shadowing and scattering caused by man-made
structures. These effects persist even after the signals have traversed free space. The
additional loss sustained beyond the path loss in free space is denoted as excessive path
loss. This path loss follows a Gaussian distribution. However, for the purposes of this
investigation, we focus on its expected mean value rather than its stochastic behavior,
thus, η in this context denotes the expected mean value of the excessive path loss. In
addition, rapid changes in the propagation environment result in small-scale fluctuations
which are not considered. The path loss model we followed is taken from [Al-Hourani
et al., 2014b]. The mean A2G path loss can be expressed as:

PLξ = PLFS + ηξ (3.3.1)

Where the PLFS denotes the free space path loss of signal propagation from ABS to
the ground receiver and the unit of PLξ is decibel (dB). The ξ refers to the propagation
class that can be either LOS or non-LOS (NLOS). The NLOS propagation class refers to
environment structures causing shadowing and scattering.

To determine the spatial expectation of the path loss, represented as Λ (measured in dB),
which occurs between LAP and all ground receivers sharing the same elevation angle θ,
the subsequent expectation rule can be expressed as:
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Λ =
∑
ξ

PLξP (ξ, θ) (3.3.2)

where P (ξ, θ) represents the probability that a certain environmental effect will occur due
to its high correlation with the elevation angle. As the ξ ∈ (LOS,NLOS), the propagation
class probabilities are linked as

P (NLOS, θ) = 1− P (LOS, θ) (3.3.3)

The LOS probability P (LOS, θ) depends on α, β, and γ statistical parameters. The
parameter α refers to the ratio of built-up target area to the total target area. The
parameter β refers to the average number of infrastructures or buildings per unit target
area. The parameter γ refers to the Rayleigh probability density function that characterizes
the distribution of building heights as investigated in [Al-Hourani et al., 2014b]. The LOS
probability can be expressed as:

P (LOS) =
m∏

n=0

1− exp

−
[hTx −

(n+ 1
2
)(hTx−hRx)

m+1 ]

2γ2

 (3.3.4)

where m is obtained from m = (d
√
αβ − 1) and d represents the distance between the

transmitter and the receiver. The hRx can be disregarded in the case of a low-altitude ABS
because it is significantly shorter than both the mean building height and the LAP altitude.
Furthermore, the ground distance is calculated as R = h/tan(θ) (θ = arctan(h/R)), where
h represents the altitude of ABS. The α, β, and γ parameters for sub, dense and highrise
urban environment are given in Table 3.1 [Al-Hourani et al., 2014a]. Following this trend,
the P (LOS, θ) is approximated to sigmoid function with parameters a and b in [Al-Hourani
et al., 2014b] as follow :

P (LOS, θ) =
1

1 + aexp(−b[θ − a])
(3.3.5)

These parameters are directly linked to the statistical parameters α, β, and γ using surface
fitting. The α, β are considered as one variable, and γ is second variable.

z =
3∑

j=0

3−j∑
i=0

Cij(αβ)
iγj (3.3.6)

Where z is the α or β with polynomial coefficient Cij The values of Cij for calculating
parameters a and b are used from [Al-Hourani et al., 2014b]. The A2G link is considered

Table 3.1. Parameters for different environments [Al-Hourani et al., 2014a].

Environment α β γ
Sub-Urban 0.1 750 8
Urban 0.3 500 15
Dense-Urban .5 300 20
Highrise-
Urban

.5 300 50
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as failed when the total path loss between the ABS and a receiver is greater than the
unacceptable level (exceeds the threshold). In the case of ground receivers, this threshold
corresponds to a coverage radius of R. This is because all receivers contained within
this coverage zone exhibit a path loss equal to or less than PLmax. The mathematical
expression representing the radius of the coverage zone is as follows:

R = d|PLmax (3.3.7)

Where d is the distance between transmitter and receiver (d = r, r is illustrated in Fig.
3.2). To find the optimal altitude of the UAVs, the relation between coverage radius R

and UAV altitude is deduced. For that, the Equation 3.3.1 can be written as:

PLLOS = 20 log d+ 20 log f + 20 log(
4π

c
) + ηLOS (3.3.8)

PLNLOS = 20 log d+ 20 log f + 20 log(
4π

c
) + ηNLOS (3.3.9)

Where d =
√
h2 +R2 (d = r, r is illustrated in Fig. 3.2), is the distance between

transmitter and receiver at the circular coverage radius of R, and f represents the frequency
of the system. The Equation 3.3.2 can be re-expressed as:

Λ = PLNLOSP (NLOS) + PLLOSP (LOS) (3.3.10)

After substitution of equation 3.3.3, 3.3.5, 3.3.7 and 3.3.9 into equation 3.3.10, then after
some algebric reduction, the equation 3.3.10 becomes:

PLmax =
ηLOS − ηNLOS

1 + aexp(−b[arctan(h/R)− a])
+ 10 log(h2 +R2) + 20 log f + 20 log(

4π

c
) + ηNLOS

(3.3.11)
The Equation 3.3.11 is not explicit so the h and R can not be expressed explicitly in terms
of each other. To find the optimal altitude hopt that results in maximum coverage, the
value of h will be searched that satisfies the critical value of the equation:

∂R

∂h
= 0 (3.3.12)

Fig. 3.2 illustrates the impact of different altitude on coverage radius. The optimal altitude
h is considered as the upper bound hUB and the average height of the building refers to
the lower bound hLB. If we consider the upper bound of h, the resulting coverage radius
will be reduced and practically taking the UAV to the altitude of the upper bound is not
feasible. Considering the lower bound of h results in more path loss due to NLOS effects
and below lower bound can result in collision with buildings. So to avoid such problems,
the medium bound hMB is calculated as:
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hMB =
hUB + hLB

2
(3.3.13)

The circular coverage radius against these bound of h will be obtained from Equation 3.3.7.

Figure 3.2. Illustration of impact of different altitude on coverage radius.

3.4 Mathematical Method for finding coverage area and
non-coverage area

Considering the objective of developing an effective strategy to deploy a minimum number
of UAVs to cover the target area completely, We assumed that N UAVs are randomly placed
over the target area. The coverage radius of each UAV is R obtained from Equation 3.3.7.
As we considered N UAVs over the target area and each with a circular coverage radius R.
This implies that each UAV (from the set of N UAVs) covers a portion of the total target
area. The percentage that most of the portion of the target area is covered can be defined
as:

Pcov =
Covered Area
Total Area

(3.4.1)

As we assumed that each UAV has a circular radius the equation of circle can be used to
find the area covered by UAVs. The equation of a circle is expressed as:

x2 + y2 = R2 (3.4.2)

Where R is equal to the coverage radius of UAV. It can be rewritten as follows:

y =
√
R2 − x2 (3.4.3)

From Equation 3.4.3, area can be obtained as:
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A =

∫ x

0

√
R2 − x2 dx (3.4.4)

Converting Equation 3.4.4 into to polar coordinate system for ease of simplicity. In polar
coordinates x = R sin θ which implies that dx = R cos θdθ. Using these values in Equation
3.4.4, we get:

A =

∫ θ

0

√
R2 −R2 sin2 θR cos θ dθ (3.4.5)

A =

∫ θ

0

√
R2(1− sin2 θ)R cos θ dθ (3.4.6)

A =

∫ θ

0
R2 cos2 θ dθ (3.4.7)

A = R2

∫ θ

0

1 + cos 2θ

2
dθ (3.4.8)

Where R can be [0,∞] and θ can be [0, 2π]. So the area covered by N UAVs can be
obtained as:

Pcov =

∑N
i=1Ai

Total Area
(3.4.9)

Pcov =

∑N
i=1R

2
∫ θi
0

1+cos 2θ
2 dθ

Total Area
(3.4.10)

The area under consideration is considered a square grid, the number of waypoints Wmn

are defined in that square area based on circular radius R so that the complete area
will be covered with overlapping circles. Each element in Wmn such as w11, w12, . . . wmn

represents the center of small sub-areas of total area. The waypoints in the square area
can be expressed in terms of the matrix as follows:

Wmn =


w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n
...

...
...

. . .
...

wm1 wm2 wm3 . . . wmn

 (3.4.11)

Where Wmn waypoint matrix with m and n columns, represents the center of mnth circle
in the squared area. The value of each entry in the matrix Wmn can be 1 or 0. For
instance, the value of w11 = 1 if this waypoint is visited by any UAV otherwise the value
of this waypoint will be zero. The probability of total coverage in terms of waypoints can
be written as:

Pcov =

∑m
i=1

∑n
i=1Wmn

m× n
(3.4.12)
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When each entry in the matrix Wmn is 1, then it becomes the matrix of ones and we get
the complete coverage that is Pcov = 1. In this case, cost function is to maximize the Pcov.
With the help of Equation 3.4.12, we can figure out the uncovered portions of the target
area as:

Pnon−cov = 1− Pcov (3.4.13)

Equation 3.4.13 gives the percentage of the uncovered portion of the target area.

3.5 Problem Formulation

The coverage problem is formulated as UAV deployment based on linear programming with
the aim of minimizing the number of UAVs required to provide coverage over a complete
operational area. The following notations are considered to solve the formulated problem:

• A set of waypoints (W = w1, w2, ..., wm) is considered over the target area where
each point represents the center of circular coverage.

• A set of UAVs (U = u1, u2, ..., un) is considered.
• Each UAV Ui has a specific energy capacity Eui and coverage radius Rui .
• If a battery of UAV is depleted and it is unable to continue to the subsequent

waypoint, it is required to recharge at the origin point O.

Objective: Ensuring complete area coverage while minimizing the number of UAVs
needed to visit all waypoints, considering the limitations imposed by their energy
capacities.

Variables: The function fij is introduced for covering waypoints and it works as follows:

fij =

{
1, if a UAV ui visits the waypoint wj

0, otherwise
(3.5.1)

The function Yi is introduced for minimizing the number of UAVs and it works as follows:

Yi =

{
1, if a UAV ui is used
0, otherwise

(3.5.2)

Objective Function: Minimize Z =
∑n

i=1 Yi
Constraints: The constraints which are considered are given by Equation 3.5.3, 3.5.4,
and 3.5.5. The constraint in Equation 3.5.3 imposes that each waypoint should be covered
by at least one UAV. The constraint in Equation 3.5.4 imposes that the energy of each
UAV should be greater than the energy required to cover wj and return back to the original
position O. The constraint in Equation 3.5.5 imposes that UAV is considered as used when
it visits at least one waypoint from the given set of waypoints.

n∑
i=1

fij ≥ 1, ∀wj ∈ W (3.5.3)

E(ui) ≥ Energy required , wj ∈ W ui ∈ U (3.5.4)
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Yi ≥ fij wj ∈ W ui ∈ U, (3.5.5)

3.6 Energy Model

The UAV Energy model is a critical factor in determining the effectiveness, range, and
versatility of configuration schemes of UAVs. It helps to provide insights into energy
consumption trends and operating constraints of UAVs. It can lead to better energy
management, lowering the operational risks of the UAVs for performing any mission.
Efficient energy management results in extended flight duration and ensures a broader
operational scope, enhancing the overall utility of UAVs.

The energy model of UAV includes the several critical factors and modes of UAV operations
that contribute to the computation of UAV energy [Abeywickrama et al., 2018a]. All the
equations of the energy model that are mentioned below, are taken from the work in
[Abeywickrama et al., 2018a] and the unit of energy is joule. Authors in [Abeywickrama
et al., 2018a] performed the experiment multiple times for UAV energy consumption and
recorded the energy consumption over time. Then, they found the expression for average
energy consumption for different modes. The details of each mode and the impact of
different factors are explained in the following subsections.

3.6.1 Idle Mode

In idle mode, UAVs are turned on and maintained stationary without any rotation of their
propellers, maintaining no communication with the base station. In this case, power would
be required by the UAV for internal processing, LED indications, and broadcasting a Wi-Fi
signal. The energy consumption in the idle mode can be obtained as:

EIdle = 8.195× tIdle + 0.087 (3.6.1)

Where tIdle is the amount of time UAVs stay in idle mode.

3.6.2 Armed Mode

In armed mode, UAVs are turned on and maintained stationary on the ground with the
rotation of their propellers, maintaining no communication with the base station. In this
case, power would be required by the UAV for propellers in addition to the power required
in idle mode. The power consumption in armed mode is greater than in idle mode. The
energy consumption in the armed mode can be obtained as:

EArmed = 29.027× tArmed − 0.087 (3.6.2)

Where tArmed is the amount of time UAVs stay in armed mode.

3.6.3 Takeoff Mode

Takeoff mode is the mode where the UAV either ascends to a higher altitude or descends
to a lower altitude. The energy consumption due to takeoff can be obtained as:
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Etakeoff = −0.432× V 2 + 3.786 ∗ V − 1.224 (3.6.3)

Where V is representing the UAV speed during takeoff.

3.6.4 Hovering Mode

The hovering mode is about UAV stationary duration in the air at some fixed position.
The UAV continuously consumes energy to remain in its hovering mode. The total energy
consumption in hovering mode can be written as:

Ehovering = (4.917× h+ 275.204)× thover (3.6.4)

Where h is the altitude of the UAV during hovering and thover represents the amount of
time the UAV hovers.

3.6.5 Vertical upward Flying Mode

Before the proper flying of the UAVs, they have to take off and fly vertically upward
to reach to particular altitude. The power consumption of UAVs while flying vertically
upward with a distance of D, can be calculated as:

Everti = 315×D − 211.261 (3.6.5)

3.6.6 Horizontal Flying Mode

Horizontal flying mode refer to the model where UAVs flying in straight line with constant
speed. The energy consumption during horizont flying can be expressed as:

Ehori = 308.709× thori − 0.852 (3.6.6)

Where thori is the amount of time UAVs stay in horizontal flying mode.

3.6.7 Flight Time

The total flight time is the time taken by a single UAV to complete the mission. It is
calculated as [Javed et al., 2023]:

Ft =
mn∑
i=1

disti
V

+ Tf + thover (3.6.7)

Where mn is the total waypoints, disti is the distance from one waypoint to another
waypoint, V is the speed of UAV and Tf is the amount of time UAV fly. The thover is the
hovering time which is considered the same for all UAVs.

3.6.8 Impact of Payload

Payload is the mode in which UAVs are loaded with different amounts of loads and make
them hover or fly with their loads. The energy consumption due to the presence of load
on UAVs can be given as:

23



CT 10 3. System Model

Epayload = 0.311× L+ 301.524 (3.6.8)

Where L is the amount of load a UAV carries measured in grams.

3.6.9 Impact of GPS

UAVs establish communication with the ground stations for accessing information on travel
coordinates using the Global Positioning System (GPS). The energy consumption of UAVs
for the time period of tGPS can be obtained as:

EGPS = 8.262× tGPS (3.6.9)

3.6.10 Impact of IR Sensor

An Infrared (IR) sensor mounted on the UAV is responsible for detecting obstacles during
UAV movement. IR sensor will be on during the whole UAV operation which results in
energy consumption. The energy consumption due to the IR sensor per unit of time tIR
is represented as:

EIR = 8.262× tIR (3.6.10)

3.6.11 Impact of Communication

During UAV operation, UAV moves from one point to another to perform its tasks. Before
moving to the next point UAV communicates with the command center so that the collision
with the other UAVs in the airspace can be avoided which results in energy consumption
due to communication. The energy consumption due to communication Ecomm is as follows.

Ecomm = 8.264 (3.6.11)

3.6.12 Total Energy Consumption

The total energy consumption can be expressed as a sum of all energy consumption:

Etotal = EIdle + EArmed + Etakeoff + Ehovering+

Everti + Ehori + Epayload + EGPS + EIR + Ecomm

(3.6.12)
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3.7 UAV Movement Cases

Figure 3.3. UAVs Movement cases.

Fig. 3.3 provides an illustration of UAV movement. There are three cases. The red path
shows the best case where UAV moves based on Euclidean distance. In the best case, the
UAV moves in a straight line based on the Euclidean distance metric. The purple path
shows the worst case where the UAV moves based on Manhattan distance. The equations
for calculating Euclidean and Manhattan distance are given in appendix A.4.1 and A.4.2
respectively. In the worst case, the UAV first moves in the x-direction and then in the
y-direction to reach the target point. The brown path shows the practical case which is
in between the best and worst case. In practical cases, a straight line can not be followed
due to the UAVs stability factor.

3.8 UAV Trajectory Configuration

The term configuration refers to the optimal movement planning of UAVs over the target
area that maximizes the probability of coverage to gather data from the whole target
area while considering certain constraints such as a limited number of UAVs, coverage
radius, etc. The section investigates four methodologies for planning UAVs’ movement
to collect data from a target area. The main objective is to cover the entire area with
the minimum number of UAVs. The area under consideration is considered a square grid,
with the coverage of UAVs represented by the circular of a predefined radius. First, we
approximate the number of UAVs (N) required to cover the whole area. Let the side of
the square be S, and the radius of UAV coverage is Rcov. The number of UAVs needed to
cover the target area without considering overlap can be approximated as N ≈ S2∑M

i=1 πR
2
cov,i

.

However, in our case, we must ensure complete coverage of the target area. We need more
UAVs compared to N ≈ S2∑M

i=1 πR
2
cov,i

due to the circular nature of UAV coverage and the

square shape of the area. Additionally, in some cases, we require UAVs at the edges of the
square.

It is important to note that all the UAV movement algorithms considered the waypoints
in the target area as explained in Equation 3.4.11.
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3.8.1 Randomized Coverage Iteration (RCI) algorithm

This algorithm is about random movement planning of the predefined number of UAVs
over the target area until all the target area gets covered. In this algorithm, different
random paths resulting from the movement of the UAVs are considered while ensuring
the combination of all these paths of UAVs gives the probability of coverage equal to 1.
Algorithm 1 shows detailed steps illustrating the algorithm that employs a stochastic non-
optimal strategy for achieving area coverage. It is initiated by key parameters, including
the coverage radius of UAV and the targeted coverage zone. The algorithm randomly
traverses the waypoints defined in the area as explained in Equation 3.4.11. A binary
matrix is created to reflect areas under surveillance, with binary values indicating the
presence or absence of UAVs in the target area. 1 in the binary matrix represents the
covered area by any UAV, and 0 represents the area not covered by any UAV. In the next
step, the amount of the target area currently covered by the UAVs is calculated. Then,
it is evaluated whether the entire target area is covered or not. If the target area is not
fully covered, the algorithm updates the configuration to K+1 and moves the UAVs to
the next random position. This step updates the paths of UAVs. If all of the waypoints
are visited, the process ends, and we have achieved our goal. UAVs cover all the target
areas. One flaw in the RCI algorithm is that UAVs may be visited to previously covered
positions, potentially leading to redundant coverage and inefficient use of resources. Fig.
3.4 illustrates the resulted path obtained from the RCI algorithm. It can be seen that
some waypoints are visited more than once that is highlighted by blue circles.

Algorithm 1 Randomized Coverage Iteration (RCI) algorithm
Require: UAV Coverage Radius, Target Area defined as a Waypoints
1: Start
2: Set Parameters:

• UAV Coverage Radius ▷ Obtained from Eq. 3.3.12
• Obtained matrix of Waypoints (x, y) from Eq. 3.4.11
• Configuration K = 1 ▷ initial configuration index

3: Initially place N UAVs at initial N waypoints
4: while Target area is not fully covered do :

• UAVs randomly visit the waypoints
• Update Binary Matrix for Coverage

◦ Initialize Binary Matrix for coverage
◦ For each UAV in Grid:
- Mark corresponding grid cells as covered within UAV coverage radius

• Calculate the Coverage Area
◦ Count the number of ones in the Binary Matrix

• Check if Area is Fully Covered
◦ If all cells in the Target area are marked as covered (1), then break the loop

• If not fully covered, increment Configuration K by 1
5: Area Fully Covered
6: End

Output: Final path of UAVs that ensure the complete coverage of Target area.
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Figure 3.4. Illustration of UAVs path based on Randomized Coverage Iteration (RCI).

3.8.2 Intelligent Randomized Coverage Iteration (IRCI)

The improved version of the UAV movement method is defined as the Intelligent
Randomized Coverage Iteration (IRCI). Algorithm 2 shows detailed steps illustrating the
algorithm that employs an intelligent random strategy for achieving full area coverage. In
the previous approach, UAVs could end up visiting the same waypoints more than once,
which was not a good use of resources. In this updated method, once a UAV visits a
waypoint, that waypoint is taken off the list for the next time, so this waypoint will not
be visited again by any UAV. This ensures that more area gets covered without wasting
resources. In this IRCI method, the process starts by deciding how far each UAV can
see and making a pattern for where they can go. However, each time when the UAVs
visit points, the pattern is updated to remove the existing visited spots of UAVs. This
amendment ensures that each UAV visits a new waypoint and unoccupied coordinate,
thereby eliminating the possibility of overlapping coverage zones and leading to a more
efficient utilization of UAVs. The iterative process continues until all the waypoints are
visited. However, with this adjustment, the algorithm advances toward optimal resource
deployment by preventing UAVs from reoccupying the exact location across successive
iterations. Fig. 3.5 illustrates the resulting path obtained from the IRCI algorithm.

Figure 3.5. Illustration of UAVs path based on Intelligent Randomized Coverage Iteration (IRCI).

In both algorithms, the main objective is to minimize the number of configurations required
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Algorithm 2 Intelligent Randomized Coverage Iteration (IRCI) algorithm
Require: UAV Coverage Radius, Target Area defined as a Waypoints
1: Start
2: Set Parameters:

• UAV Coverage Radius ▷ Obtained from Eq. 3.3.12
• Obtained matrix of Waypoints (x, y) from Eq. 3.4.11
• Configuration K = 1 ▷ initial configuration index

3: Initially place N UAVs at initial N waypoints
4: while Target area is not fully covered do

• UAVs randomly visit the waypoints
• Update Binary Matrix for Coverage

◦ Initialize Binary Matrix for coverage
◦ For each UAV in Grid:
- Mark corresponding grid cells as covered within UAV coverage radius

• Calculate the Coverage Area
◦ Count the number of ones in the Binary Matrix

• Check if Area is Fully Covered
◦ If all cells in the Target area are marked as covered, then break the loop

• If not fully covered, increment Configuration K by 1
• Update the waypoint array by removing the previously visited waypoints

5: Area Fully Covered
6: End

Output: Final path of UAVs that ensure complete coverage without visiting the same
waypoint more than once.

to achieve complete coverage, which can be mathematically formalized as:

P (Area fully covered|Conf1, Conf2, . . . Confn) = 1 (3.8.1)

3.8.3 Scan Movement Algorithm

The scan movement algorithm traverses the defined waypoints along the x-direction.
Algorithm 3 shows detailed steps illustrating the working of the algorithm for achieving
full area coverage. Fig .3.6 shows the illustration of the movement of two UAVs based on
scanning along the x-direction. In this scan movement algorithm, N number of UAVs from
the disaster management control center are placed on the first 1, 2, 3, . . . , N waypoints on
the grid representing the area. Then, N UAVs move to their next waypoints based on the
distance of NR so that the collision between N UAVs is avoided. Where R is the coverage
radius of the UAV. The waypoints that are visited by N UAVs will not be visited again
by any UAV. The UAVs continue to move until all the waypoints are visited. At the end,
the order of traversing the waypoints for each UAV is stored as an optimal path. It can
be easily seen in Fig.3.6 that two UAVs are placed at the first and second waypoints and
they are moving to the next waypoint based on the distance of 2R.
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Algorithm 3 Scan Movement algorithm
Require: Number of UAVs (N), Coverage radius (R), Obtained matrix of Waypoints (x,

y) from Eq. 3.4.11
1: Initialize an empty array to store the optimal path for each UAV

• Place N UAVs to initial N waypoints
• Initialize an empty list to store the path for the current UAV

2: while There are unvisited waypoints do
• Move each UAV to the next waypoint based on the distance of N*R
• Add the currently visited waypoint to the path list of UAVs
• Mark the current waypoint as visited
• Add the path of the current UAV to the list of optimal paths

3: End
Output: Optimal path of each UAV that ensures complete coverage.

Figure 3.6. UAVs path based on scanning along the x-direction.

3.8.4 Nearest UAV movement Algorithm

This algorithm traverses the defined waypoints in the grid based on minimum Euclidean
distance. Algorithm 4 shows detailed steps illustrating the working of the algorithm for
achieving full area coverage. Fig .3.7 shows the illustration of the movements of two
UAVs based on minimum distance criteria. In this algorithm, the first step is the same as
the scan movement algorithm that is N number of UAVs from the disaster management
control center are placed on the first 1, 2, 3, . . . , N waypoints on the grid representing the
area. Then, each UAV checks the distance from its current position to the first unvisited
waypoint in the x-direction and then in the y-direction. The nearest waypoint that has
the minimum Euclidean distance from the UAV is selected as the next waypoint. At each
UAV movement, the waypoints list is updated by removing the visited waypoints. The
waypoints that are visited by N UAVs will be not be visited again by any UAV. The UAVs
continue to move based on minimum distance criteria until all the waypoints are visited.
At the end, the order of traversing the waypoints for each UAV is stored as an optimal
path. It can be easily seen in Fig.3.6 that two UAVs are placed at the first and second
waypoints and they are moving to the next waypoint based on the minimum distance. The
final path of both UAVs is highlighted with different colors.
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Algorithm 4 Nearest UAV Movement algorithm
Require: Number of UAVs (N), Coverage radius (R), Obtained matrix of Waypoints (x,

y) from Eq. 3.4.11
1: Initialize an empty array to store the optimal path for each UAV

• Place N UAVs to initial N waypoints
• Initialize an empty list to store the path for the current UAV

2: while There are unvisited waypoints do
◦ For each UAV in range 1 to N
- Calculate the distance from the current position of UAVs to the unvisited waypoint

in the x-direction
- Calculate the distance from the current position of UAVs to the unvisited waypoint

in the y-direction
- Compare the distance of the nearest unvisited waypoint in the x-direction and the

waypoint in the y-direction
- Select the waypoint with minimum distance as the next waypoint
- Mark the selected waypoint as visited
- Add the currently visited waypoint to the UAV’s path list
- Add the path of the current UAV to the list of optimal paths

◦ End
3: End

Output: Optimal path of each UAV that ensures complete coverage.

Figure 3.7. UAVs path based on minimum distance
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Results and Discussion 4
This chapter provides comprehensive insights into results obtained from simulations. It
also presents the comparison between different implemented algorithms.

4.1 Results

All the implementations are done in Python. The values of the parameters used in
simulations are provided in Table 4.1. The optimal radius and optimal altitude of UAV
for upper and lower bound are calculated using Equation 3.3.7 and 3.3.11, parameters
are mentioned in Table 3.1 for different environments. However, the medium bound
values are obtained from Equation 3.3.13. Table 4.2, 4.3, and 4.4 provide the obtained
values for upper, lower, and medium bound respectively. It is observed that the upper
bound has large values of altitude and radius as compared to the lower and medium
bounds. The coverage radius of wireless networks can vary significantly depending on the
different environments. The suburban environment often has a more extensive coverage
radius compared to urban, dense urban, and high-rise urban environments due to fewer
construction and obstructions. In urban, high-rise, and dense urban areas, there are
more buildings, structures, and other obstacles that can contribute to signal attenuation,
reflection, diffraction, and scattering, all of which can result in degradation of the quality
of the wireless signal and reduce the effective coverage radius. Stabilizing and maintaining
the smooth flight of the UAV at such high altitudes is difficult because higher altitudes
require more power for flight. With the limited battery constraints, UAVs are unable to
reach and operate efficiently at higher altitudes.

Fig. 4.1 illustrated the full coverage of a target area covered by UAVs. In the figure, the
1000 m x1000 m target area is depicted as densely packed with circles where each circle
representing the coverage of a UAV, ensuring that each region of the target area is covered
by one of the UAVs.

31



CT 10 4. Results and Discussion

Table 4.1. Summary of simulation parameters [Abeywickrama et al., 2018b].

Parameters Values
Area (A) 2000m x 2000m= 4,000,000 m2

Radius (R) obtained from Table 4.2, 4.3, and 4.4
(Vary for environments)

Speed of UAV (V) 10 m/sec
Idle time tIdle 30 sec
Armed time (tArmed) 30 sec
Vertical takeoff speed
(V )

3.5 m/sec speed while moving

Hovering time thover 60 sec to 180 sec
Altitude (h) Obtained from Equation 3.3.11 PL

max equation
Payload L 500 g
Frequency (f) 2GHz=2× 109Hz
Flight Distance Flight Speed × Flight Time
Epm Battery energy (Joules) /flight dis-

tance (meters)
Capacity 4000mAh
Voltage 14.8V
Battery energy Capacity* Voltage * 3.6 = 213120

Joule
Transmitting power 30 dB
Receiving power -80 dB
Maximum PL -110 dB
Dimensions (hub-to-
hub)

360mm

height 222mm
Weight 865g
Propeller length 222mm
Cost of 1 UAV 15,000 kroner(Assumed)

Table 4.2. Optimal radius and altitude for the upper bound.

Environments Optimal radius Optimal altitude
Sub-Urban 3442.36 1252.92
Urban 2233.11 2010.70
Dense-Urban 1416.26 2022.63
Highrise-Urban 191.66 768.70

Table 4.3. Optimal radius and altitude for the lower bound.

Environments Optimal radius Optimal altitude
Sub-Urban 370.87 8
Urban 402.85 15
Dense-Urban 288.74 20
Highrise-Urban 77.13 50
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Table 4.4. Optimal radius and altitude for medium bound.

Environments Optimal radius Optimal altitude
Sub-Urban 2701.22 630.46
Urban 1695.53 1012.85
Dense-Urban 1111.77 1021.32
Highrise-Urban 167.09 409.35

Figure 4.1. UAVs deployment (Overlapping case)

Fig. 4.2 shows the impact of the coverage radius of UAVs on the number of UAVs required
to cover the target area of square meters of different dimensions for overlapping case. It
can be seen that as the coverage radius of the UAV increases from 100 to 350 meters, the
number of UAVs required to cover the target area decreases. However, a further increase
in coverage radius has no impact on the number of UAVs. This example is carried out to
verify the impact of increasing radii for different area sizes.
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Figure 4.2. Impact of coverage radius on number of UAVs ( Overlapping case)

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure 4.3. Performance analysis of RCI algorithm in different environment considerations in
terms coverage cost vs Number of UAVs.

The performance analysis of each developed algorithm is evaluated for the lower, medium,
and upper bound altitude in four different environments in terms of a cost function defined
as Pcov in Equation 3.3.13. The value of altitudes for upper, lower, and medium bound for
each environment is taken from Table 4.2, 4.3, and 4.4, respectively.
The cost function shows the percentage of coverage area. Coverage area is calculated as the
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Battery energy of a UAV/ required energy to cover the target area. Battery energy for a
UAV is mentioned in Table 4.1. The required energy for each UAV to cover the target area
for different environments of all algorithms can be seen in Fig. A.2, Fig. A.6, Fig. A.10
and Fig. A.14. The cost function value equal to 0 refers to the 0 percent area coverage and
1 refers to the 100 percent area coverage. When the target area is covered completely, this
way, we obtain the exact number of UAVs needed to cover 100 percent area in different
environments. The worst and the best cases that are considered are explained in Section
3.7.

Fig. 4.3 shows the performance analysis of the RCI algorithm in different environment
considerations. In Fig. 4.3 (a), the cost function is analyzed with respect to the number of
UAVs in a suburban environment. It can be seen that the lower bound altitude with the
best case gets the maximum cost value of 1 at 69 number of UAVs and the lower bound
altitude with the worst case gets the maximum cost value of 1 at 87 number of UAVs.
That means the lower altitude with best and worst case provides the 100 percent coverage
of the target area with 69 and 87 number of UAVs respectively. However, the medium and
upper-bound cases provide no solution. These cases have the maximum cost value of 0.45
and 0.25 respectively which implies that these cases provide the 45 and 25 percent coverage
of the target area. In Fig. 4.3 (b) the cost function is analyzed with respect to the number
of UAVs in the urban environment. It can be seen that the lower bound altitude with the
best case gets the maximum cost value of 1 at 80 number of UAVs and the lower bound
altitude with the worst case gets the maximum cost value of 1 at 94 number of UAVs.
That means the lower altitude with best and worst case provides the 100 percent coverage
of the target area with 80 and 94 number of UAVs respectively. However, the medium
and upper-bound cases provide no solution. These cases have the maximum cost value of
0.25 and 0.18 respectively which implies that these cases provide the 25 and 18 percent
coverage of the target area. In Fig. 4.3 (c) the cost function is analyzed with respect to
the number of UAVs in a sub-urban environment. It can be seen that the lower bound
altitude with the best case gets the maximum cost value of 1 at 148 number of UAVs and
the lower bound altitude with the worst case gets the maximum cost value of 1 at 157

number of UAVs. That means the lower altitude with best and worst case provides the
100 percent coverage of the target area with 148 and 157 number of UAVs respectively.
However, the medium and upper bound cases provide no solution as they do not satisfy
the constraint in Equation 3.5.4. These cases have the maximum cost value of 0.25 and
0.16 respectively which implies that these cases provide the 25 and 16 percent coverage of
the target area. In Fig. 4.3 (d) the cost function is analyzed with respect to the number
of UAVs in a sub-urban environment. It can be seen that all the cases provide no solution.
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(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure 4.4. Performance analysis of optimal IRCI algorithm in different environment
considerations in terms coverage cost vs Number of UAVs.

Fig. 4.4 shows the performance analysis of the non-optimal RCI algorithm in different
environment considerations. In Fig. 4.4 (a), the cost function is analyzed with respect to
the number of UAVs in a sub-urban environment. It can be seen that the lower bound
altitude with the best case gets the maximum cost value of 1 at 17 number of UAVs and the
lower bound altitude with the worst case gets the maximum cost value of 1 at 18 number
of UAVs. That means the lower altitude with best and worst case provides the 100 percent
coverage of the target area with 17 and 18 number of UAVs respectively. However, the
medium and upper bound cases provide no solution. These cases have the maximum cost
value of 0.46 and 0.23 respectively which implies that these cases provide the 46 and 23

percent coverage of the target area. In Fig. 4.4 (b) the cost function is analyzed with
respect to the number of UAVs in an urban environment. It can be seen that the lower
bound altitude with the best case gets the maximum cost value of 1 at 17 number of UAVs
and the lower bound altitude with the worst case gets the maximum cost value of 1 at 19

number of UAVs. That means the lower altitude with best and worst case provides the 100

percent coverage of the target area with 17 and 19 number of UAVs respectively. However,
the medium and upper bound cases provide no solution. These cases have the maximum
cost value of 0.27 and 0.18 respectively which implies that these cases provide the 27 and
18 percent coverage of the target area. In Fig. 4.4 (c) the cost function is analyzed with
respect to the number of UAVs in a sub-urban environment. It can be seen that the lower
bound altitude with the best case gets the maximum cost value of 1 at 27 number of UAVs
and the lower bound altitude with the worst case gets the maximum cost value of 1 at 33

number of UAVs. That means the lower altitude with best and worst case provides the 100

percent coverage of the target area with 27 and 33 number of UAVs respectively. However,
the medium and upper bound cases provide no solution. These cases have the maximum
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cost value of 0.25 and 0.17 respectively which implies that these cases provide the 25 and
17 percent coverage of the target area. In Fig. 4.3 (d) the cost function is analyzed with
respect to the number of UAVs in a sub-urban environment. It can be seen that all the
lower bound altitudes with best case get the maximum cost value of 1 at 300 number of
UAVs and lower bound altitudes with worst case get the maximum cost value of 1 at 365

number of UAVs. That means the lower altitude with best and worst case provides the
100 percent coverage of the target area with 300 and 365 number of UAVs respectively.
However, the medium and upper bound cases provide no solution. As these cases have
got the maximum cost value of 0.64 and 0.4 respectively which implies that these cases
provide the 64 and 40 percent coverage of the target area.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure 4.5. Performance analysis of scan movement algorithm in different environment
considerations in terms coverage cost vs Number of UAVs.

Fig. 4.5 shows the performance analysis of the scan movement algorithm in different
environment considerations. In Fig. 4.5 (a), the cost function is analyzed with respect to
the number of UAVs in a sub-urban environment. It can be seen that the lower bound
altitude with the best case gets the maximum cost value of 1 at 13 number of UAVs and the
lower bound altitude with the worst case gets the maximum cost value of 1 at 14 number
of UAVs. That means the lower altitude with best and worst case provides the 100 percent
coverage of the target area with 13 and 14 number of UAVs respectively. However, the
medium and upper bound cases provide no solution. These cases have the maximum cost
value of 0.43 and 0.23 respectively which implies that these cases provide the 43 and 23

percent coverage of the target area. In Fig. 4.5 (b) the cost function is analyzed with
respect to the number of UAVs in an urban environment. It can be seen that the lower
bound altitude with the best case gets the maximum cost value of 1 at 13 number of UAVs
and the lower bound altitude with the worst case gets the maximum cost value of 1 at 14
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number of UAVs. That means the lower altitude with best and worst case provides the 100

percent coverage of the target area with 13 and 14 number of UAVs respectively. However,
the medium and upper bound cases provide no solution. These cases have the maximum
cost value of 0.25 and 0.19 respectively which implies that these cases provide the 25 and
19 percent coverage of the target area. In Fig. 4.5 (c) the cost function is analyzed with
respect to the number of UAVs in a sub-urban environment. It can be seen that the lower
bound altitude with the best case gets the maximum cost value of 1 at 18 number of UAVs
and the lower bound altitude with the worst case gets the maximum cost value of 1 at 27

number of UAVs. That means the lower altitude with best and worst case provides the 100

percent coverage of the target area with 18 and 27 number of UAVs respectively. However,
the medium and upper bound cases provide no solution. These cases have the maximum
cost value of 0.25 and 0.18 respectively which implies that these cases provide the 25 and
18 percent coverage of the target area. In Fig. 4.5 (d) the cost function is analyzed with
respect to the number of UAVs in a sub-urban environment. It can be seen that all the
lower bound altitudes with best case get the maximum cost value of 1 at 243 number of
UAVs and lower bound altitudes with worst case get the maximum cost value of 1 at 243

number of UAVs. That means the lower altitude with best and worst case provides the
100 percent coverage of the target area with 243 and 243 number of UAVs respectively.
However, the medium and upper bound cases provide no solution. These cases have the
maximum cost value of 0.62 and 0.4 respectively which implies that these cases provide
the 62 and 40 percent coverage of the target area.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure 4.6. Performance analysis of nearest movement algorithm in different environment
considerations in terms coverage cost vs Number of UAVs.
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Fig. 4.6 shows the performance analysis of the non-nearest movement algorithm in different
environment considerations. In Fig. 4.6 (a), the cost function is analyzed with respect to
the number of UAVs in a sub-urban environment. It can be seen that the lower bound
altitude with the best case gets the maximum cost value of 1 at 13 number of UAVs and the
lower bound altitude with the worst case gets the maximum cost value of 1 at 17 number
of UAVs. That means the lower altitude with best and worst case provides the 100 percent
coverage of the target area with 13 and 17 number of UAVs respectively. However, the
medium and upper bound cases provide no solution. These cases have the maximum cost
value of 0.43 and 0.23 respectively which implies that these cases provide the 43 and 23

percent coverage of the target area. In Fig. 4.5 (b) the cost function is analyzed with
respect to the number of UAVs in an urban environment. It can be seen that the lower
bound altitude with the best case gets the maximum cost value of 1 at 13 number of UAVs
and the lower bound altitude with the worst case gets the maximum cost value of 1 at
14 number of UAVs. That means the lower altitude with best and worst case provides
the 100 percent coverage of the target area with 13 and 14 number of UAVs respectively.
However, the medium and upper bound cases provide no solution. These cases have the
maximum cost value of 0.25 and 0.19 respectively which implies that these cases provide
the 25 and 19 percent coverage of target area. In Fig. 4.5 (c) the cost function is analyzed
with respect to the number of UAVs in a sub-urban environment. It can be seen that the
lower bound altitude with the best case gets the maximum cost value of 1 at 24 number of
UAVs and the lower bound altitude with the worst case gets the maximum cost value of 1
at 27 number of UAVs. That means the lower altitude with best and worst case provides
the 100 percent coverage of the target area with 24 and 27 number of UAVs respectively.
However, the medium and upper-bound cases provide no solution. These cases have the
maximum cost value of 0.25 and 0.18 respectively which implies that these cases provide
the 25 and 18 percent coverage of the target area. In Fig. 4.5 (d) the cost function is
analyzed with respect to the number of UAVs in a sub-urban environment. It can be seen
that all the lower bound altitudes with best case get the maximum cost value of 1 at 243

number of UAVs and lower bound altitudes with worst case get the maximum cost value of
1 at 269 number of UAVs. That means the lower altitude with best and worst case provides
the 100 percent coverage of target area with 243 and 269 number of UAVs respectively.
However, the medium and upper bound cases provide no solution. These cases have the
maximum cost value of 0.62 and 0.4 respectively which implies that these cases provide
the 62 and 40 percent coverage of the target area.

Table 4.5 provides the comparison of algorithms for lower bound of different environments.
In Fig. 4.3 to 4.6, it is noted that all the algorithms provided the 100 percent coverage in
lower bound. Therefore, in this Table 4.5, the number of UAVs required to provide complete
coverage are compared for four different environment cases. It can be seen that scan
movement algorithm required minimum number of UAVs for complete coverage in all cases.
Table 4.6 provide the comparison of algorithms in terms of budget cost. The budget cost
for each algorithm cases is calculated using the cost of 1 UAV×Number of UAVs required
where the cost of 1 UAV given in Table 4.1. It can be seen that the scan algorithm have the
minimum cost for environment cases as compared to other algorithms because it requires
minimum number of UAVs compared to other.

From Fig. 4.3 to 4.6 and above tables, it is observed that in all the cases, the sub-urban
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Table 4.5. Algorithms comparison

Environment Bound RCI Algo-
rithm

IRCI Algo-
rithm

Scan
Movement
Algorithm

Nearest
Movement
Algorithm

Sub-Urban Lower
best

69 UAVs 17 UAVs 13 UAVs 13 UAVs

Lower
worst

87 UAVs 18 UAVs 14 UAVs 17 UAVs

Urban Lower
best

80 UAVs 17 UAVs 13 UAVs 13 UAVs

Lower
worst

94 UAVs 19 UAVs 14 UAVs 14 UAVs

Dense-Urban Lower
best

146 UAVs 27 UAVs 18 UAVs 24 UAVs

Lower
worst

158 UAVs 33 UAVs 27 UAVs 27 UAVs

Highrise-Urban Lower
best

No solution 300 UAVs 243 UAVs 243 UAVs

Lower
worst

No solution 365 UAVs 243 UAVs 269 UAVs

Table 4.6. Algorithms comparison in terms of budget cost.

Environment Bound RCI Algo-
rithm

IRCI Algo-
rithm

Scan
Movement
Algorithm

Nearest
Movement
Algorithm

Sub-Urban Lower
best

1035K 255K 195K 195K

Lower
worst

1305K 270K 210K 255K

Urban Lower
best

1200K 255K 195K 195K

Lower
worst

1410K 285K 210K 210K

Dense-Urban Lower
best

2190K 405K 270K 360K

Lower
worst

2370K 495K 405K 405K

Highrise-Urban Lower
best

No solution 4500K 3645K 3645K

Lower
worst

No solution 5475K 3645K 4035K
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environment with lower bound we get the 100 percent coverage with the minimum number
of UAVs compared to other environments. Also, the scan algorithm had the minimum
cost for all environment cases. It is noted that at medium and upper altitude cases, the
complete coverage solution did not exist. At these higher altitudes, although the UAVs
have a broader coverage radius, but certain limitation arises due to the battery power
constraints inherent to UAV technology. Due to these limitations, UAVs are unable to
reach and operate efficiently. In addition, it is noted that the scan movement algorithms
are outperforming other algorithms with the minimum number of UAVs. The nearest
movement algorithm is performing better than RCI and IRCI. The scan and nearest
movement algorithm provides a better coverage percentage than other algorithms for
medium and higher bound cases in all environments. It is also noted that the RCI
algorithm has no solution for all bound cases in highrise-urban environments. Other
algorithms provide the solution for lower bound cases in highrise-urban environments for
a significantly higher number of UAVs.

The performance of the algorithms in terms of total distance traveled, energy consumption,
number of configurations and total flight time for lower, medium, and upper bound altitude
in four different environments, is evaluated in the appendix from Fig. A.1 to A.16.

4.2 Findings

This section provides the findings obtained from results analysis and discussion. The four
different UAV movement algorithms including RCI, IRCI, Scan, and nearest, are developed
to provide the complete coverage of target area. These algorithms were evaluated for four
different environments, sub-urban, urban, dense-urban, and highrise-urban. Three bounds
lower, upper, and medium are defined for UAV altitude. From results it is found that

• All the algorithms provided the 100 percent coverage for lower bound in sub-
urban environment. The coverage radius of wireless networks significantly vary
depending on different environments. The sub-urban environment often experiences
the extensive coverage compared to other environments due to fewer obstructions
and less constructions that allow for more straightforward propagation models where
signals can travel farther without significant loss. However, in case of urban, high-
rise, and dense urban areas, there are more buildings, structures, and other obstacles
that causes signal attenuation, reflection, diffraction, and scattering, and affect the
quality of the wireless connection resulting in reduced the effective coverage area.

• Among all the algorithms, scan algorithm provided the complete coverage with
minimum number of UAVs for lower bound in all environments. It is noted that
at medium and upper altitude cases, the complete coverage solution did not exist.
Altitudes at medium and upper bound were higher, at higher altitudes although UAV
have large coverage radius but UAV requires more power for sustained flight. Due to
certain critical limitation such as UAV battery power constraints, UAVs are unable
to reach and operate efficiently at these heights. Consequently, despite the potential
for greater ground coverage, no viable solution was found for UAV operations at
medium and upper altitudes under our current UAV battery constraints.

• As scan algorithm requires minimum number of UAVs for complete coverage for all
environment cases which results in minimum budget cost. But less number of UAVs
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lead to increased rescue time for completing rescue operation as the rescue time
depends on flight time which can be seen in Fig. A.12 that less number of UAVs
require more flight time. In the cases of other environments, the number of UAVs
required for complete coverage increased which means budget cost also increases.
But with the increased number of UAVs, response time for rescue operation decreases
because more UAVs are involved to complete the operation as shown in Fig. A.4,
A.8, and A.16.

• It is also observed that in all the environments the energy consumption decreases
with the increased number of UAVs as shown in A.2, A.6, A.10 and A.14. Because
when the number of UAVs increases the flight time to cover the whole area decreases
which results in decreased energy consumption.

• Given the limited UAV resources, the scan algorithm will be performed because it
require minimum number of UAVs as compared to other algorithms at the cost of
increased response time.
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Conclusion 5
This work focused on the deployment of UAVs as aerial base stations for providing complete
coverage in disaster scenarios to enable rescue operations and services to the victims using
the minimum available resources as detailed by the problem statement:
How to implement quick and robust communication service with efficient
resource management to effectively perform and manage rescue operations?
In this context, four different UAV movement algorithms: Randomized Coverage Iteration
(RCI), Intelligent Randomized Coverage Iteration (IRCI), scan movement, and nearest
movement, were developed to provide complete coverage with the optimal number of UAVs
and minimum energy consumption. The performance of these algorithms was evaluated
for the three different bounds of altitudes: lower, medium, and upper bound altitude in
four different environments. The four different environments: suburban, urban, dense-
urban, and highrise-urban were considered. The performance was analyzed in terms of
coverage, average total distance travelled, average energy consumption, and number of
configurations. It was noted that all the algorithms provide complete coverage in suburban
environments with lower altitude bounds. The medium and upper altitude cases did not
provide the complete coverage solution. Because at higher altitudes UAVs are unable
to reach and operate efficiently due to their battery constraints. It is observed that the
scan algorithm in the sub-urban environment with a lower altitude bound outperforms
in terms of the minimum number of UAVs as compared to other algorithms. It is also
observed that in all the environments the average distance travel, energy consumption,
and flight time decrease with the increased number of UAVs because when the number
of UAVs increases the average distance and flight time of a single to cover the whole
area decreases which results in decreased energy consumption. Given the limited UAV
resources, the scan algorithm will be performed because it requires a minimum number
of UAVs as compared to other algorithms at the cost of increased response time. It is
important to note that these results may change for other UAVs with different simulation
parameters. It can be concluded that lower altitude settings offer superior performance
for the considered simulation parameters. In future, our aim is to test the developed
algorithm in real-time to ensure their practical efficacy. In addition, we will incorporate
the Intelligent Reflective Surface (IRS) technology to further UAV coverage capabilities
and response time. The limitation of this work is that this solution can not be useful in
dense and highly dense urban environments because in these environments, UAVs need to
operate at high altitudes and at high altitudes our solution is not performing good. In
future, We will work on customized UAVs specifically their batteries designed for high and
medium-altitude operations.
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Appendix A
This appendix shows the performance of the algorithms in terms of total distance traveled,
energy consumption, number of configurations and total flight time for lower, medium, and
upper bound altitude in four different environments. These metrics show the average total
distance traveled, number of configurations, and total flight time of a single UAV.

A.1 RCI Algorithm

Fig. A.1 shows the average total distance traveled by a single UAV of RCI algorithm for
lower, medium, and upper bound altitude in four different environments. The average
total distance traveled is calculated by

∑mn
i=1 disti, where mn is the total waypoints and

disti is the distance between one waypoint to another waypoint. It can be seen that as
the number of UAVs increases, the average distance traveled by a single UAV decreased.
For all the environments, the average distance traveled by a single UAV for lower bound
altitude is greater than other bound cases. Because in lower bound less number of UAVs
are required to provide full coverage as compared to other bounds cases.

Fig. A.2 shows the average energy consumption of RCI algorithm for lower, medium, and
upper bound altitude in four different environments. The average energy consumption is
calculated using Equation 3.6.12. It can be seen that in all the environments the energy
consumption decreases with the increased number of UAVs because when the number
of UAVs increases the flight time to cover the whole area decreases which results in
decreased energy consumption. In Fig. A.2 (a), the medium bound cases have lower
energy consumption compared to other bound cases. However, in other environments (b),
(c), and (d), all the bound cases have no significant difference between energy consumption.
This is due to the random movements of UAVs.

Fig. A.3 shows the average number of configurations of a single UAV of RCI algorithm for
different bound cases in all environments. The term configuration refer to the movement of
UAV from one point to another. It can be seen that the average number of configurations
of single UAV decreases with increase in the number of UAVs. Because when the number
of UAVs increases, the total configurations are divided between the UAVs, so the average
number of configuration for single UAV decreases.

Fig. A.4 shows the average flight of a single UAV of RCI algorithm for different bound
cases in all environments. The average flight time ic calculated using Equation 3.6.7. It
can be seen that as the number of UAVs increases, the average flight time of a single
UAV decreased. For all the environments, the average distance traveled by a single UAV
for lower bound altitude is greater than other bound cases. Because in lower bound less
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number of UAVs are required to provide full coverage as compared to other bounds cases.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.1. Performance analysis of RCI algorithm in different environment considerations in
terms of total distance traveled by UAVs to cover the target area.
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(a) Sub-urban environment. The scale of the
y-axis for energy consumption is 107

(b) Urban environment. The scale of the y-axis
for energy consumption is 107

(c) Dense-urban environment. The scale of the
y-axis for energy consumption is 107

(d) Highrise-urban environment. The scale of
the y-axis for energy consumption is 107

Figure A.2. Performance analysis of RCI algorithm in different environment considerations in
terms of energy consumption by UAVs to cover the target area.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.3. Performance analysis of RCI algorithm in different environments in terms of number
of configurations required to cover the target area.

49



CT 10 A. Appendix

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.4. Performance analysis of RCI algorithm in different environment considerations in
terms of total flight time to cover the target area.

A.2 IRCI Algorithm

Fig. A.5 shows the average total distance traveled by a single UAV of IRCI algorithm
for lower, medium, and upper bound altitude in four different environments. The average
total distance traveled is calculated by

∑mn
i=1 disti, where mn is the total waypoints and

disti is the distance between one waypoint to another waypoint. It can be seen that as
the number of UAVs increases, the average distance traveled by a single UAV decreased.
For all the environments, the average distance traveled by a single UAV for lower bound
altitude is greater than other bound cases. Because in lower bound less number of UAVs
are required to provide full coverage as compared to other bounds cases.

Fig. A.6 shows the average energy consumption of IRCI algorithm for lower, medium, and
upper bound altitude in four different environments. The average energy consumption is
calculated using Equation 3.6.12. It can be seen that in all the environments the energy
consumption decreases with the increased number of UAVs because when the number
of UAVs increases the flight time to cover the whole area decreases which results in
decreased energy consumption. In Fig. A.6 (a), the medium bound cases have lower
energy consumption compared to other bound cases. However, in other environments (b),
(c), and (d), all the bound cases have no significant difference between energy consumption.
This is due to the random movements of UAVs.

Fig. A.7 shows the average number of configurations of a single UAV of IRCI algorithm for
different bound cases in all environments. The term configuration refer to the movement of
UAV from one point to another. It can be seen that the average number of configurations
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of single UAV decreases with increase in the number of UAVs. Because when the number
of UAVs increases, the total configurations are divided between the UAVs, so the average
number of configuration for single UAV decreases.

Fig. A.8 shows the average flight of a single UAV of IRCI algorithm for different bound
cases in all environments. The average flight time ic calculated using Equation 3.6.7. It
can be seen that as the number of UAVs increases, the average flight time of a single
UAV decreased. For all the environments, the average distance traveled by a single UAV
for lower bound altitude is greater than other bound cases. Because in lower bound less
number of UAVs are required to provide full coverage as compared to other bounds cases.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.5. Performance analysis of IRCI algorithm in different environment considerations in
terms of total distance traveled by UAVs to cover the target area.
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(a) Sub-urban environment. The scale of the
y-axis for energy consumption is 106

(b) Urban environment. The scale of the y-axis
for energy consumption is 106

(c) Dense-urban environment. The scale of the
y-axis for energy consumption is 106

(d) Highrise-urban environment. The scale of
the y-axis for energy consumption is 107

Figure A.6. Performance analysis of IRCI algorithm in different environment considerations in
terms of energy consumption by UAVs to cover the target area.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.7. Performance analysis of IRCI in different environments in terms of number of
configurations required to cover the target area.
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(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.8. Performance analysis of IRCI algorithm in different environment considerations in
terms of total flight time to cover the target area.

A.3 Scan Movement Algorithm

Fig. A.9 shows the average total distance traveled by a single UAV of scan movement
algorithm for lower, medium, and upper bound altitude in four different environments.
The average total distance traveled is calculated by

∑mn
i=1 disti, where mn is the total

waypoints and disti is the distance between one waypoint to another waypoint. It can
be seen that as the number of UAVs increases, the average distance traveled by a single
UAV decreased. For all the environments, the average distance traveled by a single UAV
for lower bound altitude is greater than other bound cases. Because in lower bound less
number of UAVs are required to provide full coverage as compared to other bounds cases.

Fig. A.10 shows the average energy consumption of scan movement algorithm for lower,
medium, and upper bound altitude in four different environments. The average energy
consumption is calculated using Equation 3.6.12. It can be seen that in all the environments
the energy consumption decreases with the increased number of UAVs because when the
number of UAVs increases the flight time to cover the whole area decreases which results
in decreased energy consumption. In Fig. A.10 (a), (b), and (c), the lower bound cases
have lower energy consumption compared to other bound cases. However, in A.10 (d)
highrise-urban environment, all the bound cases have no significant difference in energy
consumption as a significantly higher number of UAVs is required to cover the whole target
area.

Fig. A.11 shows the average number of configurations of a single UAV of scan movement
algorithm for different bound cases in all environments. The term configuration refer to the
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movement of UAV from one point to another. It can be seen that the average number of
configurations of single UAV decreases with increase in the number of UAVs. Because when
the number of UAVs increases, the total configurations are divided between the UAVs, so
the average number of configuration for single UAV decreases.

Fig. A.12 shows the average flight of a single UAV of scan movement algorithm for different
bound cases in all environments. The average flight time ic calculated using Equation 3.6.7.
It can be seen that as the number of UAVs increases, the average flight time of a single
UAV decreased. For all the environments, the average distance traveled by a single UAV
for lower bound altitude is greater than other bound cases. Because in lower bound less
number of UAVs are required to provide full coverage as compared to other bounds cases.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.9. Performance analysis of scan movement algorithm in different environment
considerations in terms of total distance traveled by UAVs to cover the target area.
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(a) Sub-urban environment.The scale of the y-
axis for energy consumption is 106

(b) Urban environment. The scale of the y-axis
for energy consumption is 106

(c) Dense-urban environment. The scale of the
y-axis for energy consumption is 106

(d) Highrise-urban environment. The scale of
the y-axis for energy consumption is 107

Figure A.10. Performance analysis of scan movement algorithm in different environment
considerations in terms of energy consumption by UAVs to cover the target area.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.11. Performance analysis of scan movement in different environments considerations
in terms of number of configurations required to cover the target area.
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(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.12. Performance analysis of scan movement algorithm in different environment
considerations in terms of total flight time to cover the target area.

A.4 Nearest Movement Algorithm

Fig. A.13 shows the average total distance traveled by a single UAV of nearest movement
algorithm for lower, medium, and upper bound altitude in four different environments.
The average total distance traveled is calculated by

∑mn
i=1 disti, where mn is the total

waypoints and disti is the distance between one waypoint to another waypoint. It can
be seen that as the number of UAVs increases, the average distance traveled by a single
UAV decreased. For all the environments, the average distance traveled by a single UAV
for lower bound altitude is greater than other bound cases. Because in lower bound less
number of UAVs are required to provide full coverage as compared to other bounds cases.

Fig. A.14 shows the average energy consumption of nearest movement algorithm for lower,
medium, and upper bound altitude in four different environments. The average energy
consumption is calculated using Equation 3.6.12. It can be seen that in all the environments
the energy consumption decreases with the increased number of UAVs because when the
number of UAVs increases the flight time to cover the whole area decreases which results
in decreased energy consumption. In Fig. A.14 (a), (b), and (c), the lower bound cases
have lower energy consumption compared to other bound cases. However, in A.14 (d)
highrise-urban environment, all the bound cases have no significant difference in energy
consumption as a significantly higher number of UAVs is required to cover the whole target
area.

Fig. A.15 shows the average number of configurations of a single UAV of nearest movement
algorithm for different bound cases in all environments. The term configuration refer to the
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movement of UAV from one point to another. It can be seen that the average number of
configurations of single UAV decreases with increase in the number of UAVs. Because when
the number of UAVs increases, the total configurations are divided between the UAVs, so
the average number of configuration for single UAV decreases.

Fig. A.16 shows the average flight of a single UAV of nearest movement algorithm for
different bound cases in all environments. The average flight time ic calculated using
Equation 3.6.7. It can be seen that as the number of UAVs increases, the average flight
time of a single UAV decreased. For all the environments, the average distance traveled
by a single UAV for lower bound altitude is greater than other bound cases. Because in
lower bound less number of UAVs are required to provide full coverage as compared to
other bounds cases.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.13. Performance analysis of nearest movement algorithm in different environment
considerations in terms of total distance traveled by UAVs to cover the target area.
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(a) Sub-urban environment. The scale of the
y-axis for energy consumption is 106

(b) Urban environment. The scale of the y-axis
for energy consumption is 106

(c) Dense-urban environment. The scale of the
y-axis for energy consumption is 106

(d) Highrise-urban environment. The scale of
the y-axis for energy consumption is 107

Figure A.14. Performance analysis of nearest movement algorithm in different environment
considerations in terms of energy consumption by UAVs to cover the target area.

(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.15. Performance analysis of nearest movement in different environment considerations
in terms of number of configurations required to cover the target area.
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(a) Sub-urban environment. (b) Urban environment.

(c) Dense-urban environment. (d) Highrise-urban environment

Figure A.16. Performance analysis of nearest movement algorithm in different environment
considerations in terms of total flight time to cover the target area.

A.4.1 Distance Formula

The two metrics for distance calculation are considered that are: Euclidean and
Manhattan.

The Euclidean distance between two points (x1, y1) and (x2, y2) can be calculated as:

dEuc =
√

[(x2 − x1)2 + (y2 − y1)2] (A.4.1)

The Manhattan distance between two points (x1, y1) and (x2, y2) can be calculated as:

dMan = |(x2 − x1)|+ |(y2 − y1)| (A.4.2)
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