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Synopsis:

In this thesis different methods of modelling
a bolted end-plate steel joint are considered
and how different joint configurations influ-
ences a frame. The investigated frame is a
portal frame with fixed supports.

The non-linear behaviour of several joint
configurations are predicted using two meth-
ods of analysis and are compared. The
first method investigated is the Component
Method, which is the method used in Eu-
rocode 3 and the second is the numerical
method where simulations are carried out in
the commercial software ANSYS.

Using the obtained moment-rotation curves,
the influence of the joint, in regards to
the global structure, is investigated. Two
methods of analysis are used, the first is
the Slope-deflection method, which is an
analytical method, and the second being the
numerical method where the commercial
software RFEM is used.

In conclusion the numerical determined
joint behaviour with bolts close to the edge
of a thin end-plate shows a lesser bending
moment resistance compared to the analyt-
ical method. The numerical model shows
a greater bending moment resistance for
the rest of the configurations. The frames
moment distribution shows a correlation
between the two methods. The difference
are due to the Slope-Deflection method is a
linear-elastic method.

The content of the report is freely available, but publication (with source reference) may only take place in agreement

with the authors.






Readers guide

Where sources have been used, references to the source are given with the author(s) surname(s)
and the year of publication. If the source is used actively in the associated content, the reference
is presented as surname(s), year of publication. If the source is used passively, the reference is
presented as [surname(s), year of publication]. Figures, tables and expressions are consecutively
numbered with respect to the chapter in which they are presented, which means that e.g. third
figure of chapter six is named figure 6.3. The specification of the name and number will appear
just below figures and tables, whereas the numbering of expressions will appear close to the
right-margin of the page. Figures without references are composed by the author of the report.




Referat

I dette speciale vil den ikke-linzere adferd for en boltet tveerplade samling blive undersogt
for en satellitramme eller portalframe, som det kaldes pa engelsk. Rammens understgtninger
er indspzendte. Der vil blive opstillet forskellige konfigurationer af samlingen, hvor der vil
undersoges, hvad der har indflydelse p& samlingens arbejdskurve og moment beereevne. To
metoder vil blive undersogt og sammenlignet. Den forste er Komponent Metoden, der er en
analytisk metode som benyttes i Eurocode 3. Den anden metode er den numeriske metode,
hvor finite element programmet ANSYS benyttes.

Nér den ikke-lineere arbejdskurve er bestemt, vil den blive brugt til at undersege den indflydelse
en samling har pd rammekonstruktionen. Rammens momentfordeling vil underseges ved brug
af to metoder. Den forste metode er Slope-Deflection metoden, som er en analytisk metode,
samt finite element programmet RFEM. De to metoder vil blive sammenlignet ved brug af de
ikke-lineere arbejdskurver, der er blevet bestemt.

Moment baereevnen bestemt med den analytiske metode og den numeriske metode viser en
afvigelse. Moment baereevnen er mindre ved den numeriske metode for boltplaceringer, der
er placeret teet ved en tynd tveerplades kant. Det omvendte er geldende ved de samlings
konfigurationer, hvor bolt-placeringen er tettere mod midten af tveerpladen. Her giver den
numeriske metode en storre moment bareevne.

Sammenligningen mellem momentfordelingerne bestemt analytisk og numerisk viser en
afvigelse. Dette skyldes, at den analytiske model antager at materialemodellen er linzerelastisk,
hvorimod at den numeriske model benytter en materialemodel, der ikke er lineer.
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1.1

(l . Infroduction

An introduction to the study will be presented in this chapter as well as the motivation and thesis
outline for this paper.

Background

The first use of steel as a structural material dates back to the mid-19th century and is now one
of the most used structural materials. It is used in structures as skyscrapers, wind turbines and
bridges and can be used alongside concrete, also known as a composite structure. Many known
structures are made of steel, one of which is the Golden Gate Bridge as seen in figure[I.1] [Vayas

etal., 2019
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Figure 1.1: Picture of the Golden Gate Bridge which is a steel structure. [Unsplash, |[2018]

The traditional steel construction consist of an assembly of beams and columns, which
assembled results in a combination of steel frames. The connections between the different
elements plays a crucial role in the design of structural frames. They are responsible for
transferring forces between structural elements and ensuring the overall stability and integrity
of the structure. Thus predicting the behaviour of the connections is essential to achieve a safe
structure and simultaneously offer a solution which is economical sound and cost-effective. The




Chapter 1. Introduction

design of connections and joints are mandated by national standards while Eurocode specifies
how structural design should be conducted within the European Union.

Eurocode 3 applies to the design of steel buildings and is concerned with the requirements for
the resistance, serviceability, durability and fire resistance [Dansk Standard, 2022]. Part 1-8 of
Eurocode 3 provides methods to design mechanical and welded joints subjected to mostly static
loads in steel grades S235, S275, S355 and S460 [Dansk Standard,[2007]. The standard takes the
various factors that can affect the performance of these connections into account, such as the
material properties of the steel, the load conditions, and the environmental factors.

Joints can be distinguished as either a mechanical connection or as a welded connection. The
two types of connections are assembled differently and the preferred joint depends on a variety
of factors, including the necessary strength, durability, flexibility and method of installation.
Figure[I.2]illustrates the two types of joints. [Vayas et al.,

Figure 1.2: Example of a welded and bolted connection [Vayas et al.,[2019].

Connections and joints are distinguished as two different things. A connection is the location
where two or more structural elements meet, whereas a joint refers to the zone where multiple
members are interconnected. For design purposes the connection is all the basic components
which connects the structural elements while the joint is all the basic components required to
depict the behaviour during the transfer of internal forces and moments. Figure[I.3|shows the
definition of a connection and a joint for a beam-to-column joint configuration. 1 is the web
panel in shear, 2 is the connection and 3 is the components e.g. the bolts and end-plate. [Dansk

Standard, |2007]

A welded connection would attract a different load compared to a bolted connection under the
same circumstances, due to different stiffness. Welded connections tend to be stiffer than bolted
connections, and would therefore attract a larger portion of the applied load. [Vayas et al.,[2019]
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1.2 Motivation behind the study
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Figure 1.3: Part of a beam-to-column joint configuration, where 1 is the web panel in shear 2 indicates a
connection and 3 illustrates the components e.g. the bolts and end-plate. [Dansk Standard,

2007).

This thesis will investigate bolted beam-to-column steel joints with an end-plate connection.
The beam and end-plate are welded together such a bolted connection can be established
between the end-plate and the column flange. The welded part of the joint will not be
investigated.

Motivation behind the study

A mechanical connection is a connection which joins two or more structural elements together
with bolts, rivets, pins etc. The Golden Gate Bridge, see figure[I.1} are held together with rivets
and bolts [Golden Gate Bridge, Highway and Transportation District,2024]. In the present time,
bolt assemblies are the most used fastener to connect plates or profiles. A bolt assembly consist
of the bolt itself, a nut and one or more washers, see figure[L.4] All parts of a bolted joint, needs
to comply with the standards listed in section 1.2.4 of Eurocode 3 Part 1-8. [Jaspart and Weynand,

2016]

Figure 1.4: Example of bolt assemblies [Jaspart and Weynand, .
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Chapter 1. Introduction

Modelling a steel joint has its benefits, although an experimental analysis can provide the
necessary result, it can be costly to test a full-scale joint [Augusto et al.,[2015]. Establishing a
numerical model and simulating the behaviour of the joint, can therefore be cost-effective, given
the developed finite element models depicts the real behaviour of the real joints. There are five
different methods for predicting joint behaviour and can be divided into: numerical models,
mechanical models, physicals models, empirical models and analytical models [Faella et al.,
1999].

Mechanical modelling of a joint has gained vast recognition due to the balance between accuracy
and its simplicity. Eurocode 3 establishes a method of modelling a joint using the mechanical
method. Numerical modelling does provide a more realistic representation of the joint behaviour
compared to the mechanical model, but is more time consuming. [Augusto et al.,2015]

The findings of a numerical model can although not be blindly trusted. An error can lead to
results which can deviate substantially from the real behaviour and therefore different methods
of obtaining the desired results should be conducted and compared. The numerical model
should also be realistic such as depicting the real behaviour of the bolts, contact pressure
between the individual components etc.

Thesis outline

This thesis will examine a portal frame with fixed supports and determine the moment bearing
capacity of the beam-to-column joint with four different joint configurations. Two of the joint
configurations have a bolt placement close to the centre of the end-plate and the other two are
close to the edge of the end-plate. The bending moment distribution of the portal frame will
also be investigated and obtained for different beam-to-column joint stiffness’s. The first part of
this thesis will study the behaviour of the joint while the second part will examine the whole
global structure.

A vertical distributed load is applied on the beam of the frame. The load is assumed constant
over the entire beam and the column supports are assumed fixed with no rotational movement
and translational motion, see figure[1.5]




1.3.1

1.3 Thesis outline
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Figure 1.5: The portal frame with fixed supports, and a vertical distributed constant load g.

This thesis will not consider the design of the portal frame and therefore only the characteristic
values will be used. The cross-section used for the beam and columns are traditionally used
profiles and the geometrical properties are taken from Jensen et al., 2022,

Moment bearing capacity

The following models are used to determine the moment bearing capacity of the beam-to-
column joint and the moment distribution of the frame.

¢ Mechanical model
¢ Finite element model

The design code of joints in Eurocode 3 Part 1-8 is based on the Component Method, which is a
mechanical model that can be used to determine the moment bearing capacity of a joint. This
method is based upon the rotational response of the joint being dependent on the mechanical
properties of the individual components of the joint. So the joint configuration is decomposed
into its basic components. Each basic component can be represented by a linear or non-linear
spring, which describes the properties of the component. This method of obtaining the joints
stiffness and moment bearing capacity will be further studied in this thesis. [Weynand et al.,
1995]

The finite element model has the advantage of not being limited by the geometry and therefore
easier to build and analyse the joints. The finite element program ANSYS will be used to
determine the moment bearing resistance.

Four different joint configurations are investigated, to analyse the effect the bolt-placement has
in regards to the distance to the end-plate edges. Three different end-plate thickness are also
investigated and implemented in the four joint configurations.
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1.3.2 Bending moment distribution

1.4

To determine the bending moment distribution of the frame the following models will be used:

* Analytical model
¢ Finite element model

The analytical model used is derived from the "slope deflection method", which is a structural
analytical method for beams and frames. The method is used to determine the end-moments of
the columns and beams.

The finite element software used is RFEM, and it is a commercial program. The results are
compared to the moment distribution determined from the analytical model.

Problem definition

The following objectives are made, so that the described thesis outline can be solved.

* Understand the requirement to determine the joint bearing capacity according to
Eurocode 3

¢ Understand the underlying theory of the Component Method

* Determine the moment bearing capacity of steel joints using the Component Method

» Perform a numerical analysis of a joint and compare the moment bearing resistance to
the model of Eurocode 3

* Determine the moment distribution of the frame using an analytical model

¢ Determine the moment distribution of the frame using RFEM and compare the results
with the analytical method

¢ Use the moment-rotation curve to determine the bending moment at the joint under a
loading condition of the frame
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(2. Initial considerations

In this part the portal frame and the joints is described and is illustrated in figure[2.1|and figure[2.2
The dimensions of the column, beam, end-plate and bolts are presented and are presented in
table[2.3 The column, beam, bolts and end-plate are all kept constant except for the end-plate
thickness.

Joint configurations

The joint consist of different parts. The parts are listed as followed:

e Column
e Beam

¢ End-plate
¢ Bolts

The material for all parts are of steel. The end-plate is welded to the beam and the end-plate is
connected to the column with the bolts. The bolts consists of a header, washer, shaft, thread and
nut. The head and nut of the bolt are then able to interlock the end-plate and column together.
The static system which is being analysed is illustrated in figure (a). The supports of the
frame are fixed. The frame is subjected to a vertical linear distributed load g. The columns and
beam of the frame is connected as illustrated in ﬁgure (b) and the connection consists of two
bolt-rows. The beam and end-plate are welded together. The weld is assumed stronger than the
rest of the joint and is also assumed that it does not deform under a loading condition.

Lty
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(a) (b)

Figure 2.1: Illustrations of (a) the considered frame (b) the considered joint.

The analysis of the joints moment bearing capacity consists of four different joint configurations.
The beam and column are kept the same for all configurations, whereas the bolt-placement and
end-plate thickness varies. The bolt-placement and beam-placement are shown in figure[2.2]
The edge distances e; and e, varies while the distance between the bolt-rows p; are kept constant

9



Chapter 2. Initial considerations

at 100 mm. e; and e, are in compliance with Eurocode 3 Part 1-8 as the minimum edge distance
is 1,2d,, where d is the hole diameter for the bolt, see table[2.2}

120 mm

Y y
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iZO mm
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Figure 2.2: The placements of the beam and bolts.

The four joint configurations are named Model 1-4 and described in table[2.1] The motivation is
to analyse the effect the bolt placement has in regards to the distance to the end-plate edge.

e1 e P1 p2

[mm] [mm] [mm] [mm]
Model1 | 70 70 100 100
Model 2 | 35 35 100 170
Model 3 | 45 70 100 100
Model 4 | 70 45 100 150

Table 2.1: Description of the joint configuration.

The dimensions and material properties of the beam, column, bolts and end-plate are shown
in table[2.2] For all the joint configurations the moment bearing capacity are determined for a
end-plate thickness of 10 mm, 14 mm and 17 mm.

10



2.1 Joint configurations

Parameter Unit Value

Beam IPE200 Height, h;, mm 200
Width, by, mm 100
Thickness of the flange, 77/, mm 8,5
Thickness of the web, ¢, mm 5,6
Radius of root fillet, 7y, mm 12
Moment of inertia, I, mm* 19,4108
Length of frame, L mm 5500

Column HE240B | Height, h, mm 240
Width, b, mm 220
Thickness of the flange, rf mm 17
Thickness of the web, £, mm 10
Radius of root fillet, r, mm 18
Moment of inertia, I, mm?* 80,9108
Height of frame, H mm 3000

End-plate Height, h, mm 240
Width, b, mm 240
Thickness, t., mm  10,14,17
Hole diameter, dj mm 15

Bolt M16 Diameter of shaft, d; mm 13,5
Bolt-head height, hy, mm 10
Nut height, hy; ¢ mm 13
Washer diameter, d, mm 30
Washer thickness, t,, mm 3

Steel Yield strength, fy MPa 235
Yield strength bolts, f); MPa 640
Modulus of elasticity, E MPa 2,110°
Poisson’s ratio, v 0,30

Table 2.2: The parameters and the value used for analysing the steel frame [Jensen et al., 2022].

The dimensions of the beam an columns are shown in figure[2.3|(a) as well as the axis for the
moment of inertia. The dimensions of the bolts are shown in ﬁgure (b).

11
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\ I -

(a) (b)

Figure 2.3: Dimensions of (a) the beam and columns (b) the bolts.

2.2 Material behaviour

The material used is steel. Eurocode 3 Part 1-1 provides the characteristics values for the chosen
steel grade of the column, beam and end-plate. The chosen steel grade is S235 and the given
characteristics values of yield strength and ultimate tensile strength are shown in table[2.3] The
nominal properties for the bolts are dictated by Eurocode 3 Part 1-8. The characteristic strength
properties of the bolts are given in table[2.3]

Elements | Bolts

[MPa] [MPa]
Yield strength 235 640
Ultimate tensile strength | 360 800

Table 2.3: characteristics strength values for the elements (beams and columns) and bolts.

The internal forces and moments can either be determined by an elastic or plastic global analysis.
An elastic global analysis can be used in all cases and is based on the assumption the stress-strain
relation of a material is linear. For the plastic global analysis only steel grades up to S460 and if
the the cross-sections of the beam and column are classified as a class 1 can be analysed. The
method of global analysis is elastic-perfectly plastic. The stress-strain relation for steel as a
elastic-plastic material is shown in ﬁgure [Dansk Standard, |2022].

12



2.2 Material behaviour

E

Figure 2.4: The stress-strain relation for steel.
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(3. Structural properties

In this chapter the structural properties of a joint is presented. The moment-rotation curve is
described for joints in general.

The members of a joint, can be represented by its centre-lines which is connected by a rotational
spring. Figure (3.1(a)|illustrates a single-sided beam-to-column joint configuration whereas
figure[3.1(b)|illustrates the centre lines being connected. [Dansk Standard, 2007

L L
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(a) (b)

Figure 3.1: [llustration of; (a) single-sided beam-to-column joint configuration, (b) the centre lines of the
joint configuration [Dansk Standard, [2007|

The rotational spring can be expressed with the relationship between the bending moment
M pq and the corresponding relative rotation ®r, between the connecting members. This
relation is also called the design moment-rotation relation and should describe the following
three characteristics of the joint [Dansk Standard, 2007|:

* Moment resistance M; rq
* Rotational stiffness S;
* Rotational capacity ¢4

The design moment-rotation characteristics can be derived from the M — ® curve, see figure[3.2}
The curve consists of three parts; a linear part, a non-linear part and a yield plateau. The first
part of the curve is linear with the corresponding stiffness called the initial stiffness S; ;,,;, which
resembles the slope. The linear part is assumed to end at 2/3M; gz where the non-linear part
begins, as it is assumed that yielding of the material occurs. The stiffness at the non-linear part
is described as the secant stiffness S;. The yield plateau is reached when M g is equal to M; rg,
and the stiffness can no longer be described. [Weynand et al.,{1995]

17
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\ =2

Figure 3.2: The design moment-rotation characteristics [Dansk Standard, |[2007].

The design moment-rotation characteristics of a joint is required to properly model joints
behaviour. Several methods can be used to model the design moment-rotation characteristics
where the Component Method and the numerical method is used.

18



(4. Component Method

The purpose of this chapter is to introduce the Component Method from Eurocode 3 Part 1-8
which is the mechanical model. The general model of the Component Method is described in
appendix[A The calculations are presented to determine the joint stiffness and moment bearing
capacity. The bolt placement are showed in figure[2.4 and table|2.1 A worked example of Model 1
with end-plate thickness of 10 mm are shown in appendix[B

The Component Method is a method of determining the design moment-rotation characteristics
of a joint by decomposing it into a set of individual components. Each of the components are
modelled as non-linear springs, each having individual stiffness’s and resistances. Figure[4.1]
illustrates the spring model for a beam-to-column end-plated joint with two bolt-rows in tension.
The springs k; and k, represents the components in shear and compression. The springs ks,
kar, ks, and ko, represents the components in tension for bolt-row r. This is also the spring
model for Model 1-4. [Weynand et al.,|1995]

Figure 4.1: The spring model for a one-sided beam-to-column end-plated joint with two bolt-rows in
tension [Weynand et al.,|1995|. This is also the spring model for Model 1-4.

The stiffness coefficients of the individual components are used to determine the overall
rotational stiffness. This is done with the procedure given in Eurocode 3 Part 1-8. For a single-
sided bolted end-plate beam-to-column joint with two or more bolt-rows in tension, the stiffness
coefficients to be taken into account are; ki, ka, k3, k4, ks and k. The stiffness coefficients are
obtained from the following basic components:

* k) - Column web panel in shear
* [y - Column web in compression
¢ k3 - Column web in tension

* k4 - Column flange in bending

* k5 - End-plate in bending

* kio - Bolts in tension

The design procedure according to Eurocode 3 Part 1-8 can be divided into three steps. The
steps are the following:

¢ Identify the relevant components
* Characterise the individual components strength and stiffness properties

19



Chapter 4. Component Method

¢ Assemble the individual components and determine the joints structural properties

For an end-plate column-to-beam connection mainly subjected to bending the relevant
components can be divided in three different zones; compression, shear and tension. Figure
illustrates a bolted end-plated joint where the bending moment is split into a tension and
compression force. [P,2000]

Figure 4.2: The bending moment resulting in a tension and compression zone.

The basic components can then be divided into each of the zones which all has its own strength
and stiffness. The three zones are as follows with the relevant components:

¢ Compression zone:
Beam flange and web in compression
Column web in compression
* Shear zone
Column web panel in shear
* tension zone
Column web in tension
Column flange in bending
Bolts in tension
End-plate in bending
Beam web in tension

According to Eurocode 3 Part 1-8 the design moment bearing M;rq is determined by

equation (4.1).

Mjra =) hiFirra 4.1)
Where
h, is the distance from bolt-row r to the centre of compression, see ﬁgur

Firra | is the effective design tension resistance of bolt-row r

The effective design resistance F;, g4 for bolt-row r is taken as the smallest design tension
resistance of the basic components in tension. The number of bolt-rows are defined from the

20



4.1

4.1 Equivalent T-stub

joint configuration. Figure[4.2has two bolt-rows, where the bolt-row furthest from the centre
of compression, is the first bolt-row while the second bolt-row is the closest to the centre of
compression. This is illustrated in figure[4.3]

Row 1 77;7770,,,770,,,,;,,

Row 2 77;7770,,,770,,,,;,,

Centre line

compression

Figure 4.3: Illustration of bolt-rows numbering and centre line of compression

The bearing resistance of the components in shear and compression are then checked against the
tension resistance. If the tension resistance is greater than the shear or compression resistance,
itis then reduced. The moment bearing resistance is determined from the components which
are in tension. The components in tension, compression and shear are listed earlier. The
equivalent T-stub methodology is used to model the components in tension and determine the
design tension resistance which then can be used to obtain the moment bearing capacity with
equation (4.I). [Dansk Standard, [2007]

Equivalent T-stub

The equivalent T-stub method is an geometric idealisation of plates subjected to transverse
forces. The name comes from the appearance of the geometry and consists of a web in tension
and a flange i bending, see figure[4.4] The T-stub has the advantage that a component in bending
and tension can be studied with the model.

The visualisation of a T-stub in a bolted joint with the end-plate and the column flange is shown
in figure[4.5] The figure also shows that the T-stub approach should be done to both sides of a
joint as both the end-plate and column flange can be represented as a T-stub.

When the T-tub is subjected to a tension force, the flanges of the T-stub deforms due to bending
and the bolts elongate due to the tension forces. Failure occurs when either yield lines around
the bolt develops or the bolts being in failure. [Zoetemeijer, 1974]

21
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_—web

_ flange

=1

Figure 4.4: Geometry of a bolted T-stub [Jaspart and Weynand, [2016].

End plate

Figure 4.5: Visualisation of a T-stub of a bolted joint [Jaspart and Weynand, |2016].

Failure modes of the T-stub

The failure modes of a T-stub is based on the plastic behaviour of the flanges and bolts, where
plastic hinges are eventually formed at the bolts and/or the flanges. The failure of a T-stub is
either due to failure of the bolt, plastification of the flange plate or a combination of the two.
[Zoetemeijer, [1974]

The resistance of the T-stub can be determined from three possible failure modes. The three
failure modes are given as:

e Failure mode 1 - yielding of the flange
e Failure mode 2 - failure of bolts and partial yielding of the flange
e Failure mode 3 - failure of bolts

Failure mode 1 occurs when the flanges are yielding and is associated to the formation of plastic
hinges in the flange and development of the prying force Q, see figure[d.6(a)] Prying forces are
forces which develops due to the contact between the beam and column flange. It is further
explained in chapter[4.1.2] The bolts are sufficiently strong enough to resist the the applied
tension force and the prying forces which leads to the flanges yielding before the bolts tension
resistance is reached.

Failure mode 2 occurs when tensile failure of the bolts and partial yielding of the flange happens
at the same time. Yield lines in the flanges develops, but not to the same extent as the full plastic
mechanism in failure mode 1, see figure Prying forces also develops in this failure mode.
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4.1 Equivalent T-stub

Failure mode 3 is the failure of bolts. No prying forces develops as the flange does not yield, so
there only occurs failure of the bolts, see figure[4.6(c)

T Frira T Frora T Frara

0 o—]
0 0]

<+——3
o,
<+—
<+—]

o d o |

(a) (b) (c)

Figure 4.6: The failure modes of an equivalent T-stub where (a) is failure mode 1 (b) is failure mode 2 and
(c) is failure mode 3.

The three different failure modes results in different design resistance and is determined for each
bolt-row as well as the bolt-row groups. The failure mode which results in the lowest bearing
capacity is the design bearing resistance for the considered bolt-row or bolt-row group.

Prying force

Prying forces will develop if the bolt can not elongate significantly when the T-stub is under
tension. This will result in a clamping effect between the flanges in contact. Figure[4.6(a)|shows
the prying force Q on a T-stub in tension. The sum of the transferred forces will increase, if
prying forces develops, this is also illustrated in figure[4.6(a)] If the bolt can elongate enough,
the prying forces will have a negligible effect and can therefore be disregarded. To determine
whether the bolt has a significant elongation, EC3 Part 1-8 provides a criterion, which if satisfied
can be concluded that prying forces will develop, see equation (.2). [Jaspart and Weynand,
2016]

- 8,8m> Asny, 4.2
pSE ———— .
Yleppatd

Where:

Ly is the elongation length, taken as the total thickness of material and washer, plus half
the sum of the height of the bolt and height of the nut

is the thickness of the T-stub flange

m is a geometrical length which represent the distance between the bolt axis and

the point where the "potential" plastic hinge will form, see ﬁgurem

np is the number of bolts in one bolt-row

lerr | is the effective length and is explained in chapterm

~
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Chapter 4. Component Method

If prying forces develop equation (4.15) and equation (4.16) are used to determine the bearing
resistance for failure mode 1. Equation (4.17) is used to determine the bearing resistance for
failure mode 2. Otherwise equation (4.18) is used for both failure modes.

Effective length

The effective length I, ¢ ¢ is a theoretical length and is defined as the equivalence between the
actual component and the T-stub idealisation in the plastic stage where yield line develops. The
possible yield lines characterise the effective length. Eurocode 3 Part 1-8 presents two different
failure patterns with yield lines and expressions of /¢ according to the failure patterns. The
failure patterns are only according to failure mode 1 and 2 as failure mode 3 does not develop
any yield lines at the flange. Figure[4.7]shows the different failure patterns and that the failure
patterns can be described as either circular or non-circular. [Jaspart and Weynand, |2016]

(b)
Figure 4.7: Illustrations of (a) circular yield patterns (b) non-circular yield patterns [Jaspart and Weynand,
2016].

(a)

As seen on figure[4.7|two types of yield line patterns can develop. Each of the yield lines can
develop when considering bolt-rows individually and bolt-rows as part of a group of bolt-rows.
Figure [4.8|illustrates the yield line patterns for a group of bolt-rows. Figure illustrates
the yield lines for a circular failure pattern and figure illustrates the yield lines for a
non-circular pattern. [Dlubal, 2023a]

The failure patterns characterises the effective length. Zoetemeijer, |1974|establishes a method
to determine the effective lengths using plasticity theory and assuming that the elastic
deformations are negligible. For failure mode 1 the collapse of the flange is seen in figure[d.9|for
anon-circular pattern. The failure patterns are observed through experiments and expressions
of the effective lengths are then determined. By is the bolt force, T is the tensile load and A¢ is
the plastic deformation. B; and T are equal if no prying forces develop. The unknowns which
are solved for are a and . The angles are solved so it produces the smallest tension load.
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4.1 Equivalent T-stub
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Figure 4.8: A bolt of groups with (a) circular yield lines (b) non-circular yield lines [Dlubal, 2023a].
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Figure 4.9: Collapse of flange for failure mode 1 [Zoetemeijer, 1974].
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The internal dissipation energy, AE is set equal to the work done by the external force AT, see
equation (4.3). When the yield lines develop at the bolts, the bolt force does not affect the
external force as no displacement occurs at the bolts, see figure[4.9]

AE=AT

4.3)

The work done by the external forces is given in equation (4.4).

AT =TAS

(4.4)

Expressions for the six yield lines given in figure[4.9] The internal dissipation energy and rotation
are determined through geometric relations and given in equation (4.5) to equation (4.10).

[Zoetemeijer, 1974]
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Chapter 4. Component Method

AO
AEy=a—my (4.5)
m
AS
AE; = (a+2mtana)ﬁmp (4.6)
AE 2m+n’ cosa AS @7
= —m )
3 sinf cos(f-a) m "
2n'
AE4 = TA(‘imp (48)
AEs = 2(cotp+ 1o <082 ) as 4.9)
=2|co —_— | Afm .
° msinfcos(f—a) b P

2m A6 sinf
AEg= —— =2 m, (4.10)
cosa m cos(f - «)

Where:

my | is the yield moment per unit length of the plate

n' | is the distance from the centre-line of the bolt to edge of the flange, see figure

n is the distance from the centre-line of the bolt to the edge of the plate, see figure
m | is the distance from centre-line from the bolt to yield line closest to the web

a is the distance between the bolts

b is the free edge distance from yield line 4 to yield line 5

The bolts are assumed to only be influenced by elastic deformations. The total internal energy is
then set equal to the work done by the external force, see equation (4.3). This can be reduced to
equation (4.11).

m+2n' cosa sin 8
+tana +cotf+

Tas =22 +

- Ad 4.11
m m sin fcos(f - @) mp (41D

cosacos(f—a)

From equation (4.11) it can be observed that minimising the load T will result in minimising the
right hand side of the equation. If equation (4.12) is satisfied the minimum value is found using
the angles « and .

OLAE _ = OLAE _
da 0B

0 (4.12)

If the partial derivative is carried out and the unknowns a and S are solved the effective lengths
can then be determined. The same procedure can be applied to failure mode 2 for a non-circular
failure pattern. For a circular pattern the effective lengths are expressed using the circumference
of the circular part of the yield lines. The radius is assumed to be m which is illustrated in
figure[d.13] For a unstiffened column flange the effective lengths are given in figure[4.10]and for
the end-plate components the effective lengths are given in figure[4.11]
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4.1 Equivalent T-stub

Bolt-row considered Bolt-row considered as
[Bolt-row | individually part of a group of bolt-rows
Location | Circular patterns  |[Non-circular patterns Circular patterns Non-circular patterns
[keﬁ'.co e effne { cfficp Cefrne
[nner
+1.25 2
bolt-row 2xm 4m + 1,25 P P
The smaller of: The smaller of: The smaller of: [The smaller of:
[End 5 - - -
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[Mode 2: r:ff..‘ = [cﬁ.uc Zlcff._’ = Z[ effine

Figure 4.10: The effective lengths for an unstiffened column [Dansk Standard, [2007].
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Figure 4.11: The effective lengths for an end-plate [Dansk Standard, [2007].

Considering a joint configuration shown in figure[4.3|both bolt-rows for an unstiffened column
flange are considered "end bolt-rows" individually and as part of a group of bolt-rows in
figure[d.10] When considering the end-plate, bolt-row 1 is taken as the "first bolt-row below
tension flange beam" and bolt-row 2 is taken as "other end bolt-row". To determine the effective
lengths for an end-plate, a needs to be established. « is read from ﬁgure [Dansk Standard,

2007]

To determine « the values of 1, and A,, which can be determined from equation (4.13) and

equation (4.14).
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4.1 Equivalent T-stub

A =2 (4.13)
m+e

Ay = 12 (4.14)
m+e

The parameters m, m, and e is defined in figure[4.13] The figure illustrates the end-plate and
beam web where the "+" symbols represents the bolts.

0,8v2 a,

+ | +

m,

|
\l'\\l
m "X 0,82,

\ \
N

Figure 4.13: Illustration of m, my and e. ay, is the leg size of the weld. [Dansk Standard, [2007].

4.1.4 Design resistance of T-stub in tension

The T-stub consists of a flange and a web, see figure[4.4] The design resistance is determined
for the flange and the web individually. As seen in figure[4.5} the column flange and end-plate
can be considered the flange on the T-stub. Likewise the column web and beam web can be
considered the web of the T-stub. The design resistance of the T-stub flange can be determined
according to Eurocode 3 Part 1-8 with the following equations:

Failure mode 1 Yielding of the flange (prying forces may develop):

Method 1:
4Mpi1,Rd
Frpa) = ——" (4.15)
m
Method 2:

8n-— 2ew)4]\/[pl,1,Rd

(4.16)
2mn—ey(m+n)

Frra1=

Failure mode 2 Partial yielding of the flange and failure of bolts (prying forces may develop):

2Mpi2 Ra + 2 NnF; Rra
Frra» = P ———— 4.17)

Failure mode 1 and 2 (prying forces does not develop):

2Mpi1,Rd

Frra1-—2= — (4.18)
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Chapter 4. Component Method

Failure mode 3 Failure of the bolts

Frras=)_ Fira

(4.19)

The design resistance for the T-stub web of the column and beam is given in Eurocode 3 Part 1-8
as equation (4.20) and equation (4.21) respectively.

wbe ,t,wctwcfy
Fiwepa = —2Ltwewely (4.20)
Y Mo
be ,t,wb tway
Ft,wb,ra = —J S b Wby (4.21)
Y Mo
Where
Mpi1,Ra is the plastic bending resistance for failure mode 1, see equation (4.22)
Mp12,ra is the plastic bending resistance for failure mode 2, see equation (4.23)
ew is dy, /4, where d,, is the diameter of the washer
Fi Rra is the design tension resistance of a bolt for a bolt, see equation (4.24)
n is a geometrical dimension describing the position of the prying force. It is the
minimum value of ¢;;;;, and 1,25m
emin is the smaller distance from the bolt, see ﬁgureﬁ

legrislegye
Twe

w

beff, t,wc
beff,t,wb

is the minimum effective lengths to the corresponding failure mode
thickness of the column web

areduction factor, see equation

is the effective width and equal to the effective length of the column flange
is the effective width and equal to the effective length of the end-plate

The plastic bending moment and the bolts tension resistance are given in equation (4.22),

equation ([4.23) and equation (4.24).

M

My 2 ra =

Ft,Rd =

Where

Ly
Iy
As

leprislerfo

pl,1,Rd =

0,25% legr1 14 fy

(4.22)
Y Mo
o,zszleff,zt]%fy s
Y Mo (4.23)
M (4.24)
Y M2

is the thickness of the T-stub flange

is the yield strength

is the tensile stress area of a bolt

is the minimum effective lengths to the corresponding failure mode
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4.1 Equivalent T-stub

The reduction factor w is to allow the shear interaction with the column web. w can be
determined by equation (4.25). [Dansk Standard, 2007|

_ 1
\/1 + 1»3(beff,c,wctwc/Ayc)2

w (4.25)

Two methods are used for the bearing resistance of failure mode 1, where the lowest bearing
resistance is used. Method 1 assumes the force from the bolt applied to the T-stub flange is
concentrated in the centre-line of the bolt, while the method 2 assumes the force is uniformly
distributed under the washer, see ﬁgure [Dansk Standard, [2007]

0,5 Fpg+ Q 0,5 Frpq+ Q 0,5 F cq+ Q 0,5 Frpg* Q
' ' e i
T | | (YT T ) (v
P - ! | P - ol |
| | : | 1 A | | : : | A
Q dw o dw Q a dw Lo dw Q
} n i m i | m H n | } n 1 m i i m i n H
™ - ™ L L — ]

(a) (b)

Figure 4.14: Force distribution under the washer of (a) method 1 (b) method 2 for failure mode 1.

The value 7 is a geometrical length describing the position of the prying force. It is the minimum
value of ey, and 1,25m, see figure[4.15

) Iﬂ.Er
e
mm M r
4

Figure 4.15: Definition of e;;;, and m [Dansk Standard, [2007].

Eurocode 3 Part 1-8 describes another failure mode, where the bolts can elongate significantly,
this results in negligible prying force. If no prying forces develops, the design formula for failure
mode 1 and 2 is substituted to equation (4.18). [Vayas et al.,|2019]
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Chapter 4. Component Method

Design resistance of the column web in compression

The design resistance of the column web in compression for an unstiffened joint is given in

equation (4.26).

wkycb t wkycob 13
wclef f,c,we wcfy but Fc,wC,Rd < wcP eff,c,wc wcfy (4.26)
Y Mo Y M1

Fc,wc,Rd =

Where

w is a reduction factor, see equation (4.25)
kwc | is areduction factor due to the compressive stress in the column and is set equal to 1
o is a reduction factor due to plate buckling

The left hand side expression of equation (4.26) is the resistance of the column web in
compression, while the right hand side takes instability into consideration by using p which is
determined from the plate slenderness /fp, see equation (4.27).

_ b d Ap<0,72, p=1,0
7, = 0,082, |2t bewedwely oo | Ay p ] @.27)
EtZ, Ap>0,72, p=(A,-0,2)/1,

Where

dyc | isequalto he —2(tpc+rc)
E is the Youngs modulus
Te is the root fillet

The resistance for the column web in compression is compared to the total tension resistance.
If the tension resistance is greater than the compression resistance the tension resistance is
reduced.

Design resistance of the web panel in shear

For a single sided joint, the design plastic shear resistance Vy,, rq for an unstiffened column
web panel is given in equation (4.28).

0,9f, Ape

Vwp,Rd = m (4.28)

Equation (4.28) is only valid if the column web slenderness satifies the condition d,,/ t,,c < 69¢.
The resulting shear force from the bending moment for a single sided joint is obtained with
equation (:29). The forces are shown in figure[4.16]

M
pr,Ed = TEd - VEa (4.29)
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4.2 Moment bearing capacity from the Component Method

Where

€ is equal to y/ f,/235MPa [Dansk Standard, 2022

Ayc | is the shear area of the column
z is the lever arm, see ﬁgurem

VEdj

Mg,

Figure 4.16: Illustration of the lever arm.

There is not applied any shear force, so only the bending moment will affect the web panel. The
lever arm, z is shown in figure and given as the distance from the centre of compression to
the midway point between the two bolt-rows.

Figure 4.17: Illustration of the lever arm.

4.2 Moment bearing capacity from the Component Method

With the known effective lengths for each component and whether prying forces develops,
the bearing capacity can be determined for the relevant components with equation to
equation (4.21). The bearing capacity is determined for each basic component and considering
bolt-rows as individual and in a group of bolt-rows. The design resistance for each basic
component will then consist of three resistances, see equation (4.30).

min(F; ; r1,rd)
Fiira=| min(F;; 2 ra) (4.30)

min(Fy; r1-2,ra)

Where:
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F;ira | isthe design resistance for the basic component i
F;irra | is the design resistance for bolt-row r of basic component i

The sum of the individual bolt-rows design resistance must be lower than the design resistance
of the group of bolt-rows [Dansk Standard, 2007|, so equation (4.31) must be fulfilled.

Fir1-2,rd Z Ftr1,rd + Ftro,rd (4.31)
If equation (4.31) is not fulfilled, the design resistance for the bolt-row closest to the centre of
compression is reduced until it is fulfilled. [Dansk Standard, 2007]

The design resistances from each of the basic components are compared and the joints bearing
capacity is then taken as the minimum value of all the basic components individual bearing
resistance, see equation (4.32).

min(Fy1 pa)
Fiyra = | min(Fsro pa) (4.32)

min(F;r1-2 ra)

The moment bearing resistance M; 4 can then be determined from equation (4.1).

Rotational stiffness

The rotational response of the joint is determined from the rotational stiffness of the joint given
in equation (.33). It is determined from the flexibility’s of the basic components. The basic
components flexibility’s are represented by the stiffness coefficients k;. [Dansk Standard, 2007

Ez?

- 1
qu—i

S; (4.33)

Where:

z | isthelever arm, see ﬁgurem
k; | is the stiffness coefficient of the basic component i
u | isthe stiffness ratio between the linear and non-linear curve, see ﬁgure

The stiffness coefficient of each the basic components are described at the beginning of
chapter[d] They can be determined according to EC3 Part 1-8 and is given in equation to
equation ({4.39). The expressions are developed through experimental and numerical research
[Weynand et al.,|1995].
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4.3 Rotational stiffness

0,38A .
k1= ﬁ—vc Column web panel in shear (4.34)
z
0,7b t
ko = % Column web in compression (4.35)
C
0,7b t
3 = % Column web in tension (4.36)
C
Orgleff,flange ts
4= p ‘ Column flange in bending (4.37)
Cc
0,91 [
ks = w End-plate in bending (4.38)
m
1,6A; . .
k1o = T Bolts in tension (4.39)
b
Where:
Ay is the shear area of the bolt according to Eurocode 3 Part 1-1
B is the transformation parameter and is equal to 1 for a single sided joint
connection

beff,cwe | is the effective width of the column web in compression component
beff,t,we | is the effective width of the column web in tension component

d; is the inner distance from flange to flange
twe is the thickness of the column web
tfe is the thickness of the column flange

m is defined in figure

beff,c,wc for abolted end-plate connection is determined from equation (4.40). be f,1,u¢ is equal
to the smallest effective length I, given from figure[4.10}

beffewe = Lrp+2V2a,+5(trc+) +5p (4.40)
Where:
Sp is the length obtained by dispersion of 45° through the end-plate
V2 ap | is the leg-size of the weld connection
s is the root radius of an I- or H section

With the known stiffness coefficients of the equivalent stiffness coefficient k., can be determined
from equation (4.41).

Xr:keff,rhr

keq = (4.41)

z‘gq
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Where:

keryr,r | is the effective stiffness coefficient for bolt-row r taking the stiffness coefficient ks,
ks, ks and ko into account

h, is the distance from bolt-row r to the centre of compression

Zeq is the equivalent lever arm

The effective stiffness coefficient k., is determined from equation (4.42).

keff,r = 1 (4.42)

Where:

ki, | is the stiffness coefficient of component i for bolt-row r

The equivalent lever arm z,, is determined from equation (4.43).

> Kerfrh:
a

. (4.43)
“d Zkeff,rhr
7

The stiffness ratio u is used to dictate the varying stiffness in the non-linear part of the rotational
response. The stiffness ratio is determined from the following:

if Mj ga < 2/3Mj pa (4.44)

1
1,5M;j ga
( ) if Mj,Ed > 2/3Mj,Rd (4.45)

]Rd

The value v is a constant and determined from Eurocode 3 Part 1-8 and is equal to 2,7 for a
bolted end-plate. From the given equations the rotational stiffness of the joint can be calculated
with equation (4.33). With the stiffness known the rotational response can be determined.

Results
The calculated initial stiffness’s and moment bearing capacities of the models are stated in

table A worked example is shown in appendix[B] The column and beam profiles are kept
constant as HE240B and IPE200 respectively while the end-plate thickness is changed.
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4.4 Results

End-plate thickness, Initial stiffness, Moment bearing capacity,
lep [mm] Sj,ini KNm/(®)] M gi [KNm]
Model 1 | 10 3,05 10° 20,23
14 3,85 10° 25,59
17 4,08 10° 32,32
Model 2 | 10 3,90 10° 24,35
14 5,56 103 29,38
17 6,06 103 29,38
Model 3 | 10 5,00 103 23,11
14 511103 28,35
17 5,10 10° 28,35
Model 4 | 10 2,70103 20,34
14 3,53 10° 25,81
17 3,81 10° 27,98

Table 4.1: Moment bearing capacity of the models and different end-plates.

From table[4.1]it is evident that Model 2 and 3 has a significant greater moment bearing capacity.
The models are the ones with the bolts placement furthest from the centre-line of compression,
which could lead to a greater bearing capacity. The moment-rotation curves are shown in

figure[5.8] figure and figure
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(5. FEM modelling of a joint

The purpose of this chapter is to model and analyse the different joint configurations in ANSYS.
The FE models are presented and a convergence analysis is conducted for one of the models.

The idea of modelling with FEM is to subdivide a large model into smaller parts, also called finite
elements which each contains a number of nodes. It is through these nodes that a solution is
found in regards to the proposed problem. The software used is ANSYS and the element type
used is SHELL181 which is a 4-node shell element. Each node has 6 degrees of freedom (DOFs),
three of them being translational in the x, y and z direction and three being rotational degrees
of freedom around the x—, y— and z—axis. The element is shown in figure[5.1]

J
Figure 5.1: Illustration of the element SHELL181. [ANSYS, 2023b)]

The full model is not modelled as the provided version of ANSYS is a STUDENT version and
can only solve problems with a limited number of DOFs of 128.000 nodes. Therefore the model
is reduced to figure[5.2]as only the internal moment at the joint is in interest for the moment
bearing capacity. This provides a denser mesh compared to modelling the full-scale frame,
which in turn can provide with more precise results.

Figure 5.2: Illustration of the reduced model and the support condition used for the numerical model.
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Chapter 5. FEM modelling of a joint

The bolts are modelled as a beam element instead of a solid element. This can reduce the
computational time as modelling the bolts, header and washer can increase the number of
elements and nodes. The beam element is scoped between two holes and connected to an area
the size of the washer, see ﬁgure (a). The beam connection consists of two nodes (I and
]), see ﬁgure (b). The two nodes are pilot nodes and each node has 6 DOFs with 3 being
translational and 3 being rotational. The connections between the beam connections and the
area of the washer is done through the pilot node, see figure[5.3|(c). The multipoint constraints
applies kinetic constraints, which are infinitely stiff elements, between the pilot nodes and the
nodes at the washer, see figure[5.3|(d). [ANSYS,

i

(@) (b)

(V)] (d)

Figure 5.3: Illustrations of (a) A beam element connection (b) non-circular yield patterns (c) the the pilot
node of the bolt and the washer, which are connected (d) the kinetic constraints between the
pilot node and the washer. [ANSYS, 2023al]

The weld is not considered and therefore the beam and end-plate are connected with use of
shared topology. The area where the beam and end-plate are in contact, the nodes are shared
and therefore the beam and end-plate act as one element. This ensures that they won't separate.
The contact area between the end-plate and column flange are modelled as a frictionless contact.
This establishes a contact where both elements can separate and hinders the elements topology
merging under er loading condition.

The support condition is seen in figure[5.2] This is the general model used to model the joints.
The bolt placement and end-plate thickness are changed for each of the models. The material
model is described in chapter[2.2]
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5.1

5.1 Numerical model

Numerical model

The numerical model in ANSYS consist of an assembly of the column flange and an end-plate
which is welded to the beam. A set of bolts then connects the end-plate and column flange. The
individual components are shown in figure[5.4Jand the meshed models are shown in figure[5.5|

(b)

()

(a)

Figure 5.4: Illustation of the individuel components.
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Chapter 5. FEM modelling of a joint

(a) (b)
(c) (d)

Figure 5.5: The mesh for (a) Model 1, (b) Model 2, (c) Model 3 and (d) Model 4.

The bending moment is established at end of the beam, see figure (a), and is increased
in increments. The finite element software uses the Newton-Raphson method to converge
towards a solution, which is a iterative method to obtain the corresponding displacements
and deformation at a given load step. This method is further explained in appendix[C] Load
control is used since the bending moment is controlled and for each load increment the
displacement are calculated. Displacement control is not applicable in this model, as ANSYS
cannot introduce a rotational displacement. In principle both methods should give the same
results, but displacement control tend to be more stable and can lead to more precise results.

[Krenk,[2009] [Cook et al.,[2002]

The rotation is simplified to a linear rotation and calculated by using the trigonometry of a right
triangle whereas the displacement is calculated at the top and bottom flange. The displacement
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5.2 Convergence

is obtained at the points seen in figure[5.6|(b) indicated with an "x" at the connection between
the end-plate and beam. The deformed joint is shown in figure where the deformed end-
plate is non-linear and therefore assuming it to be linear is a simplification of the deformed
joint.

(a) (b)

Figure 5.6: (a) is a illustration of where the bending moment is established (b) is a frontal view where the
"x" indicates where the displacement is obtained.

The rotational deformation is obtained by using equation (5.1).

(5.1)

d+d
Q:arctan( 1+ 2)

1

Where:

d; | is the displacement at the top flange point
dy | is the displacement at the bottom flange point
hy | isvertical distance between the two points

Convergence

For a numerical model a convergence analysis needs to be carried out, to determine if the model
has a sufficient mesh. The convergence analysis is done to Model 1 with an end-plate thickness
of 10 mm within the elastic region of the material model. A moment force is applied to the end
of the beam of M; = 15 kNm. The convergence is illustrated in ﬁgure
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Figure 5.7: The rotation at the beam-end-plate connection compared to the number of DOFs for model 1.

The STUDENT license of ANSYS has a limited amount of nodes/elements of 128 000 and
therefore limits the mesh sensitivity. The computational time at the lower amount of DOFs is
around 15 seconds, while at the higher amount of DOFs could take up to 45 minutes. Therefore
choosing a lower number of DOFs can significantly decrease the computational time when also
performing a non-linear analysis. It can be observed in figure[5.7|that a convergence is reached
at around 150 000-200 000 DOFs and it is within this span the other models are modelled as well.

Results and comparison

The moment bearing capacity determined from the Component Method and numerical model
are compared. The models for which the moment bearing capacity is determined are shown in
figure[5.5|and described in chapter[2] Figure[5.8} figure and figure shows the moment-
rotation, M — 0, curves for three different end-plate thickness. The Component Method is
explained in chapter[dand the numerical model is described in chapter[5 Figure[5.8/shows
the rotational response to of Model 1-4 with and end-plate thickness of 10 mm. The linecolour
represents the model and linetype represents the method of analysis.
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Figure 5.8: Comparison of the four joint configurations with end-plate trickiness of 10 mm.

Figure[5.8|strongly indicates a discrepancy between the Component Method and the numerical
method for certain joint configurations. The numerical model of Model 2 and Model 4 shows a
large discrepancy compared to the Component Method with a lower moment bearing capacity.
This is likely due to the placement of the bolts being close to the edge of the end-plate. The
equivalent Von-Mises stresses at the surface of the end-plate are illustrated in figure[5.9(a) and
figure[5.9|(b) at approximately 50 % of the largest bending moment for the numerical model of
Model 1 and Model 2 respectively. It shows that the formation of the stresses around the upper
boltholes are reaching the materials yield stresses for both cases, although yielding occurs at
edge of the end-plate for Model 2. This can result in a lower bearing capacity as the stresses
around the bolt-hole cannot redistribute as effectively compared to a model where the boltholes
are further from the edge. It can further be examined that numerical model of Model 1 and
Model 3 has a greater moment bearing capacity than the Component Method.

Figure[5.10]shows the M —6-curve for the end-plate being 14 mm. The rotational response of the
numerical model of Model 2 and Model 4 are closer to the rotational response of the Component
Method. It is clear that an increase in end-plate thickness results in a larger moment bearing
resistance of the numerical model compared to the Component Method.
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Figure 5.9: Equivalent Von-Mises stresses for (a) Model 1 end-plate with thickness of 10 mm and (b)
Model 2 with end-plate thickness of 10 mm at M = 11,5 kNm.
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Figure 5.10: Comparison of the four joint configurations with end-plate trickiness of 14 mm.

The rotational response of the end-plate thickness of 17 mm is seen in figure It can be seen
that the numerical model for Model 2 shows a moment bearing capacity lower than the other
models. For the other 3 models, the moment bearing capacity determined with the numerical
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model is shown to be greater, as a larger bending moment is required for a similar rotational
response for the Component Method.
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Figure 5.11: Comparison of the four joint configurations with end-plate trickiness of 17 mm.

The deformed joint of Model 1 with end-plate thickness of 10 mm is seen in figure [5.12]
Figure (a) shows the deformed joint at half the largest moment and figure (b) and
it can be seen that the structure deforms as expected. The beam and end-plate does not separate
and establishes a contact region between the end-plate and the column flange.
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Figure 5.12: The deformed joint of Model 1 with end-plate thickness of 10 mm at (a) 50% of the largest
applied moment (b) the end of the simulation.
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(6. Analysis of frame

This chapter introduces the frame which the bending moment distribution is determined. The
points where the bending moment is determined are showed.

The considered frame is illustrated in figure[6.1]and is analysed in 2D in both the analytical and
numerical model. Due to symmetry, the moments at the two supports are equal as well as the
moment at the two joints. Therefore only point A, B and C are considered when determining the
moment distribution. The circle with the "x" indicates the joint with rotational springs. Point C
is at the centre of the beam. The dimensions of the beam and columns are listed in table2.2]

L/2

N
\\

E
i ® /7777

Figure 6.1: Illustration of the static system.

The moment at point A, B and C are determined with varying joint stiffness’s from the joint
assumed pinned to rigid. The bending moment distribution of the considered frame, when the
joints are assumed pinned, rigid and semi-rigid are shown in figure[6.2}
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Ms Mc Mp My Mc Mp Mg Mc M,
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Figure 6.2: Principle sketches of the bending moment diagram of a frame with (a) rigid joints (b) pinned
joints (c) semi rigid joints.

The bending moment diagram in figure|6.2|shows the bending moments of the considered frame
when the joints are considered rigid and pinned. It can be seen that the bending moment at the
point of interest are local maxima.

The analytical and numerical models are compared to validate the results. The moments at
point A, B and C are compared and the non-linear moment-rotation curves from chapter[5.3|
are then used to establish the relation between the bending moment at the joint and the load g
shown in figure
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(7. Analytical model

In this chapter the analytical method to determine the bending moment distribution is used. The
analytical method used is the slope-deflection method. The rotational stiffness of the beam-to-
column joint is changed, and the bending moment distribution is determined at the locations
specified in chapter([6l The derivation of the Kleinlogel-type formulations are expanded on in

appendix[D,

The slope-deflection method is used to determine the moment distribution of the frame given
in The slope-deflection method is a method to obtain the end-moments of statically
indeterminate structures and was first used for analysis of rigid-joint structures [Norris et al.,
1997|. The expressions for the end-moments are derived from rotations and deflection of the
joint and is a linear elastic method [McCormac and Nelson, 1997]. Adolf Kleinlogel authored
a book which contained formulas that determined the internal bending moments and forces
for rigid frames under different loading conditions. The formulas were produced using elastic
analysis with only bending causing deformations and was obtained using the slope-deflections
equations [Kleinlogel, 1953]. Kleinlogel simplified the formulas by introducing notations, which
were specific for a frame with a specific loading scenario [Henderson, 2022].

Kleinlogel's formula for a portal frame shown in figure [6.1]with fixed support and rigid joints,
have been modified so it includes joint stiffness’s. The bending moment at the support is given
in equation and the bending moment at the joints is given in equation (7.2), see appendix[D]
for the method of obtaining the formulas. The formulations are derived and expressed as a
Kleinlogel-type formulae. [Henderson, |2022]

ql?> (1-2Ku)Kp
M=t — A0 7.1
AT 2 2-Ka+kKp) 7.
_qL2 (2—-Ka)Kp

E(Z—KA+ICKB)

Mg = (7.2)

K, and Kp are coefficients which are dependent on the stiffness of the column feet and joint
respectively. They are determined from equation (7.3).

2EI, SjpH

_ K= BT 7.3
SjaH+4EI, "7~ S;gH+2KkEI, (7.3)

Ka

Where:
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I,H
k is equal to Ih

c
I, is the columns moment of inertia

Iy is the beams moment of inertia

Sja | is the rotational stiffness of the support
Sjp | is the the rotational stiffness of the joint
H | isthe height of the frame

L is the length of the frame

When the end-moments are known, the bending moment at point C can be determined using
equation (7:4). The derivation is shown in appendix[E

2
QL2 _ gk (7.4)

Mc=Mp+
C B 5 5

The rotational stiffness at the support S, is infinite as the support is assumed fixed. The
coefficient K4 will then be equal to 0 and therefore does not influence the bending moment
distribution of the frame when the joints rotational stiffness are changed. The slope-deflection
method assumes the centre-lines of the beam and column are connected with no eccentricities,

see figure[8.2] (a).

The bending moments determined from equation (7.1), equation (7.2) and equation can be
normalised with the distributed load g as the model is linear elastic. The results of the analytical
model are shown in chapter[8.2]
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(8. Numerical model

The frame is modelled in RFEM to determine the bending moment distribution at different
rotational stiffness’ of the joint. Two models are evaluated, one of which introduces an eccentricity
at the beam-to-column joint, the other assumes no eccentricities. The results of the numerical
model are compared to the result obtained from the analytical model.

The software used to for the numerical modelling is RFEM. The element type is a 2 node elements
with 12 DOFs and is used to represent beams, trusses, ribs, cables and rigid couplings. Each
node consists of 6 DOFs for translational ind the x-, y- and z-direction and rotations around the
X-, -, and z-axis, see ﬁgure [Dlubal, 2022

/ exl Wi

/ul

Figure 8.1: Illustration of the elements used in RFEM and the DOFs.

The model is first used as a linear elastic model, where the relation between the bending
moments and distributed forces are linear. This is done to validate the numerical model by
comparing it to the analytical model. After the numerical model has been validated, the non-
linear moment-rotation curves from chapter[5.3are used to simulate the bending moments at
a given load g and compared to the analytical model using a linear elastic material model, to
further validate the two models. The load ¢ is gradually increased and a solution is obtained
using Newton-Raphson iterations. Newton-Raphson are further expanded on in appendix|C|
The material model is changes to the one described in chapter[2|and the relation between the
bending moment and the load g is determined.
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Chapter 8. Numerical model

Modelling of frame

Two models are developed. The first models connects the centre lines of the beam and column
and the second which introduces an eccentricity which represents a practical joint more closely.
The eccentricity is introduced by transforming the DOFs in the local stiffness matrix for which an
infinitely stiff beam connects the end-points of the beam and column [Dlubal, 2023b]. The model
where the centre-lines connects represents the analytical model. The moment distributions are
determined for both cases. The joints are illustrated in figure[8.2]
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C]L CL
Column Column

(a) (b)

Figure 8.2: Illustration of the two models in RFEM with (a) joint with no eccentricities (b) joint with
eccentricities. The rigid element is modelled as infinitely stiff beam.

The stiffness of the joints are analysed from being pinned to fixed and the bending moment
at the support, joint and the beam midpoint are measured in the numerical model. Since the
relation between the distributed force and the bending moment are linear-elastic, the bending
moments can be normalised with the distributed load g. The results are shown in chapter[3.2}

Results and comparison

The results are the normalised bending moment as a function of the initial stiffness. The results
are shown in figure[8.3] The figure shows that the normalised bending moment at Point A, which
is the support, determined analytical and numerical are identical. The numerical model which
includes the joint eccentricities shows a larger bending moment, while the analytical model
closely resembles the numerical model without any joint eccentricities. The normalised bending
moment at Point B, which is the joint, shows a larger bending moment with the numerical model
with the joint eccentricity. The bending moment from the analytical model and the numerical
model with no joint eccentricities are also identical. The bending moments for the numerical
model with joint eccentricity follows the same bending moment development with increasing
stiffness up until a stiffness of around 3500k Nm/°. The normalised bending moment at Point C,
which is at the middle of the beam, the bending moment for the numerical model with joint
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eccentricity is greater than the other two models. The bending moment for the numerical model
with the joint with no eccentricities is also identical.
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Figure 8.3: The relation between the normalised bending moment distribution and the initial joint
stiffness at Point A, B and C.

The non-linear M — 0 curve determined from the moment bearing resistance in chapter 5.3}
is used to compare the analytical model and the numerical model with no joint eccentricity.
Using the M — 6 curve to represent the joint behaviour under er loading shown in figure[6.1} the
load g can be determined for the given bending moment. Figure[8.4]shows the analytical and
numerical model, where the numerical model uses a linear-elastic material model.
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Figure 8.4: The bending moments at the joint as a function of g for (a) Model 1 (b) Model 2 (c) Model 3 (d)
Model 4. The constant lines represents the numerical model and the dashed lines represents
the analytical model.

The analytical and numerical method shows identical results of the bending moments due to
both models using a linear-elastic material model. Figure[8.5/shows the numerical model using
a non-linear material model.
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Figure 8.5: The bending moments at the joint for (a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4. The
constant lines represents the numerical model and the dashed lines represents the analytical

model.

Using a non-linear material model for the numerical model the results deviates significantly in
figure[8.5] The bending moment at the joint is greater for the numerical model at the same load
compared to the analytical model.

The M — 0-curve for both the analytical and numerical model determined in chapter|[5.3|are
compared in figure[8.6|with a material model which is elastic-perfectly plastic.
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Figure 8.6: The bending moments at the joint for (a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4. The
constant lines represents the numerical model and the dashed lines represents the analytical
model.

Figure[8.6]shows a great correlation between the bending moments in general at the linear part
of the graph. When the bending moments reaches non-linearity it deviates significantly which
also was showcased in chapter[5.3] when considering the moment-rotation curves. The figure
also shows that the thinner end-plates reaches the non-linearity at a lower distributed load. The
comparisons of the four models with the same end-plate thickness is shown in figure[8.7]
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Figure 8.7: The bending moments at the joint for (a) end-plate thickness of 10 mm (b) end-plate thickness
of 14 mm (c) end-plate thickness of 17 mm. The constant lines represents the numerical

model and the dashed lines represents the analytical model.

Figure[8.7]shows that the joint of Model 3 attracts a greater bending moment when considering
the distributed loads. This also aligns with the result obtained in chapter[5.3} as the stiffness of
Model 3 is greater than the other models. The bending moment at the centre of the beam is also
influenced by the linear distributed load, as is also indicated in figure[8.3] The bending moment
at the middle of the beam is greater, when the joint tend towards a pinned connection. This can
also illustrated using the obtained moment-rotation curve, see figure[8.8|
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Figure 8.8: Comparison of the bending moment at the joint and the middle of the beam. The lower values
are at the joint, while the greater values are at the middle of the beam

The comparison shown in figure[8.8|shows the increase in bending moments at the centre of
the beam. When the bending moment at the joint reaches a plateau, the joint will resemble
a pinned joint and the beam would then resemble a simple supported beam. Therefore the
bending moments in the beam would increase at a greater rate, when the distributed load would
increase.
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9.1

(9. Conclusion and discussion

In this chapter the overall project is summarised and concluded upon. A general discussion of the
two methods used is presented. The Models investigated are highlighted and compared.

Bolted joints are one of the most used methods of joining elements together in steel structures
and buildings. Loads are transferred through the joints from one of the connected elements to
the other. A bolted joint consists of a threaded bolt that joins two elements together secured
by a nut. The assembly and structure of the joint as well as the steel grade used can influence
the stiffness and moment bearing capacity. A portal frame with fixed supports are analysed
and a vertical distributed force is applied to the beam. Steel grade S235 is used for the beam,
column and end-plate while bolt grade M8.8 is used in the analysis. The design of the frame is
not considered and therefore the design values evaluated is all the characteristics values. Four
different joint configurations with different bolt-hole placements have been investigated, as well
as the effects of varying end-plate thickness.

Two approaches to determining the effects of the joint configurations are used; the analytical
method and numerical method. The analytical methods consists of the Component Method, to
determine the moment bearing capacity and the other method is the slope-deflection method,
to determine the effects the stiffness of the joint has on the bending moment distribution of the
frame. The numerical method consists of the use of ANSYS to determine the moment bearing
capacity and RFEM to investigate the influence the joint stiffness has on the bending moment
diagram.

Moment bearing capacity

Firstly a convergence analysis has been performed for the numerical model, to determine if
the number of elements used enough to gain an accurate result. A convergence analysis was
conducted for the Model 1 of the joint in ANSYS. The result from the convergence analysis was
used for the other models as well with the varying end-plate thickness.

The different models moment bearing capacity were used to investigate if the bolt placement
had an influence in the analytical and numerical model. For the models with bolt placement at
the edge of the end-plate ie. Model 2 and Model 3, the numerical model showed a decrease in
the moment bearing capacity compared to the analytical model with an end-plate thickness
of 10 mm. With an greater end-plate thickness the analytical and numerical method gave a
larger moment bearing resistance which could indicate, that the end-plate thickness could be
the limiting factor to a degree. With all the models with increasing end-plate thickness, the
moment bearing resistance increased. The numerical models showcases an increase in moment
bearing resistance, as it becomes greater than the analytical models when increasing the end-
plate thickness. The reasoning could be the stress concentration around the bolt-holes, as the
bolt-holes close to the edges cannot redistribute the stresses with a thin end-plate. Therefore
with a thicker end-plate, the stresses around the bolt-holes redistributes better and the moment
bearing capacity is therefore increased.
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Chapter 9. Conclusion and discussion

An issue of the Component Method is the complexity of the calculations. For a joint with one
bolt-row in tension, the calculations is a bit more simple, as no bolt-row groups are considered.
The complexity increases significantly with an increasing number of bolt-rows in tension. With
two bolt-rows in tension, there is one group of bolt-rows which are considered, while three sets
of bolt-row groups are considered for three bolt-rows in tension.

One problem that occurred in chapter |5| was that the simulations did not reach a moment
plateau and aborted before it could. The reason for this could be the use of force control, and
therefore the simulation could not reach a solution at a certain force. A different load scenario
could have been used, for instance displacement control, but would have required a different
model built as ANSYS cannot introduce a rotational deformation. Displacement control has its
benefits as its typically more stable than load control, as an increase in displacement may not
necessary increase the internal moments and forces. This in turn could lead to the simulations
reaching a plateau where a larger deformation does not lead to an increase in bending moment.
If displacement control should be used a larger model would need to be constructed, where half
the frame is modelled, as symmetry then can be used. Although it can be discussed if a more
precise result is beneficial as the computational time would increase significantly with a larger
numerical model.

To determine the most precise and effective method to determine the moment bearing
capacity involves a lot of factors. To determine the real behaviour of the investigated joints
an experimental analysis should be conducted and could be used to calibrate the numerical
model. The models used to determine the moment bearing capacity in the numerical method is
a simplified model, which has not been compared to a full scale numerical model. The precision
of the simplified model has not been checked and could vary significantly from a full scale
numerical model.

Bending moment distribution

The different stiffness at the corners of the portal frame is investigated to determine how the
joint stiffness influences the bending moment diagram of the frame. For the analytical method,
with the slope-deflection method, one configuration is investigated where the beam and column
centre-lines are connected. The numerical method is investigated in RFEM and two models are
modelled. The first is where the centre-lines of the beam and columns are connected, and the
second is where an eccentricity is introduced, at which the beam is connected to the flange of
the column. The analytical method are assumed linear elastic while the numerical method is
analysed using both a linear elastic and elastic-perfectly plastic material model. The bending
moments are determined at the column foot, the joint between the column and beam, and the
midpoint of the beam.

The two analysis methods showed identical bending moments at the investigated points if the
linear elastic model where used and there were no eccentricity introduced in the numerical
model. The analytical model and the numerical model with a joint eccentricity showed a small
variation likely due to the different ways the models are constructed.
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9.2 Bending moment distribution

The non-linear moment-rotation curve determined from the moment bearing capacity is used
to simulate the joints bending moment, when the frame is influenced by a linear distributed load.
The load is increased gradually and shows the bending moments at the linear part are similar,
but deviates when the joints reaches non-linearity, when the same model but with different
end-plate thickness are compared.
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(A. Stiffness model of Eurocode 3

In this appendix the general model of the Component Method is presented which Annex J of
Eurocode 3 provides.

A.1 Theory behind the Component Method

Annex J of Eurocode 3 provides the background of the Component Method. The annex also
compares the Component Method with test results, which shows a good agreement between
the two methods. The difference in resistance between the two methods is that the Component
Method does not take strain hardening and membrane effects into account.

A.1.1 The general model

It is provided that the rotational capacity is not limited. In the general model of the component
method consist of three parts. The first part is the linear elastic part up to 2/3 of the moment
bearing resistance, M; ,p. The corresponding stiffness is the initial stiffness, S; ; ;. After the first
part, the curve becomes non-linear up until the moment reaches M; g4 and it then will reach a
yield plateau. This is illustrated in figure[A.1]

moment
A
M LRd 1
M 184 e
%M, . T
J,Rd
S, (at level M LR )
a —
rotation ¢Cd

Figure A.1: The non-linaer M — @ curve.

The shape of the non-linear part is given with equation (A.1).

Jhrini
S: = _ (A.1)
J (1,5Mj,5d)w
M; ra
Where

73



Chapter A. Stiffness model of Eurocode 3

v | for end-plated joint it is 2,7

It is then necessary to determine S ;,;, to determine the stiffness of the non-linear part. The
joint is considered as a spring, where the spring is connected to the intersection of the beam
and column centrelines, see figure[A.2] The properties of the spring expresses the relationship
between the bending moment Mg, and the corresponding rotation ® g .

__/!\/__
|
|
i =
-
- H-=-==-
! E
|
|
/e
| | !\\/__

Figure A.2: The joint and how it is modelled.

The initial stiffness is derived from the elastic stiffness of the components, which can be
represented as a rotational spring. The force-deformation relation is given by equation (A.2).

Fi=k;i-E-A; (A.2)

Where

F; | is the force in the spring of component i
k; | is the stiffness coefficient of component i
E | is the Young modulus

A; | is the spring deformation of component i

It can be observed in equation that the stiffness of the the individual component is given as
k; - E, which means the stiffness coefficients is a unit of length. Each of the components springs
are combined into a single spring model, see figure[A.3} which shows a spring model for a bolted
end-plate with two bolt-rows in tension. From ﬁgureit can be seen that the moment M;
results in a rotation @;. It is assumed that the deformation at the bolt-row is proportional to the
distance to the centre of compression for all bolt-rows. Figure[A.3|represents a spring model for
an end-plated joint with two bolt-rows, where each spring has a stiffness coefficient of k;.
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A.1 Theory behind the Component Method

ki kyy ksy ko

kl k2 M

Figure A.3: The joint and how it is modelled.

Each spring represents a basic component, which is given as the following, where r indicates
the bolt-row:

¢ kj - Column web panel in shear
* ky - Column web in compression
* k3 r - Column web in tension

* k4 r - Column flange in bending
* ks r - End-plate in bending

* kjo,r - Bolts in tension

The summarised force of all the springs in tension is equal til F. The moment M; is then equal
to F z, where z is the distance between the centre of tension and centre of compression. The
rotation @; can likewise be rewritten as equation (A.3).

_zy

[oR
/ z

(A.3)
The initial stiffness can be derived from equation and equation and is given in
equation (A.4).

Ez?
Sjini = —7 (A.4)

ki

With two bolt-rows the individuel stiffness coefficients can be substituted to an effective stiffness
coefficient k¢, r, representing the deformation for each bolt-row, and an equivalent stiffness
coefficient k.4, representing the total deformation for both bolt-rows, see figure The
equivalent spring is acting with a lever arm z to the centre of compression. The equivalent
stiffness k., can be used directly in equation (A.4).
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Chapter A. Stiffness model of Eurocode 3

Figure A.4: The effective stiffness coefficient and equivalent stiffness coefficient.

To determine the stiffness coefficients, the concept of "equivalent T-stub" may be used. The
method can both be used to calculate the strength and stiffness of the components. This is
explained in chapter[4.1]
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(B. Worked Example - Component method

The joint stiffness and moment bearing capacity of Model 1 is determined in this worked example.
The model consists of a HE240B column, an IPE200 beam, an end-plate with dimension 240 mm
x 240 mm and 4 M 16 bolts, see tablefor the dimensions. The worked example is based on
Eurocode 3 Part 1-8.

Parameter Unit Value
Beam IPE200 Height, hy mm 200
Width, by, mm 100
Thickness of the flange, f;/, mm 8,5
Thickness of the web, £, mm 5,6
Radius of root fillet, 7, mm 12
Moment of inertia, I, mm?* 19,4108
Column HE240B | Height, h, mm 240
Width, b, mm 240
Thickness of the flange, tfe  mMm 17
Thickness of the web, £, mm 10
Radius of root fillet, r, mm 21
Moment of inertia, I, mm?* 80,9106
End-plate Height, h, mm 240
Width, b, mm 240
Thickness, t., mm  10,14,17
Bolt M16 Diameter of shaft, d; mm 13,5
Bolt-head height, ky, mm 10
Nut height, hy;, ¢ mm 13
Washer diameter, d,, mm 30
Washer thickness, t,, mm 3
Steel Yield strength, fy MPa 235
Yield strength bolts, f); MPa 640
Modulus of elasticity, E MPa 2,110°
Poisson’s ratio, v 0,30

Method.

The placements of the beam and bolts are shown in figure|[B.1]

Table B.1: The dimensions used to determine the moment bearing capacity using the Component
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Chapter B. Worked Example - Component method

120 mm

)LZO mm
€ ) b2 ,
A A

O O

P:

~ 0 O

Figure B.1: The placements of the beam and bolts.

The four joint configurations are named Model 1-4 and described in table[B.2]

el e pP1 p2
[mm] [mm] [mm] [mm]
Model 1 | 70 70 100 100

Model 2 | 35 35 100 170
Model 3 | 45 70 100 100
Model 4 | 70 45 100 150

Table B.2: Description of the joint configuration.

B.1 Moment bearing resistance

The basic components are identified according to Eurocode 3 Part 1-8 as: Column web in
transverse tension, column flange in bending, end-plate in bending, beam web in tension and
bolts in tension. The procedure of determining the moment bearing resistance are divided into
four steps:

* Step 1 - Identify the key dimensions to determine [, ¢ ¢

* Step 2 - Calculate l.f¢

* Step 3 - Calculate the resistance of the T-stubs and web panels
¢ Step 4 - Determine the moment bearing capacity
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B.1.1

B.1 Moment bearing resistance

Step 1

Step 1 is to identify the key elements to determine [, ¢ for the column flange and end-plate.

Column flange in bending

Clause 6.2.6.4 in Eurocode 3 Part 1-8.

A J
A

1 € min

N

Figure B.2: The dimensions of m, r¢, e and e;,;, where e = ep,in = €3.

Due to the end-plate and column flange having the same width, e = e,;,;,, = 2. m is determined
for the column:

P2 lwe 100mm 10mm
c= o T - »8rc: -

2 2 2 2
me =28,2mm

-0,8:-2Imm

End-plate in bending

Clause 6.2.6.5 in Eurocode 3 Part 1-8.

Figure B.3: The dimensions of e and p where p = p;.

m is determined for the end-plate:
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Chapter B. Worked Example - Component method

t 100mm 5,6mm
mep:%_%b_o,grcz 5~~~ 08-12mm

Mep = 37,60mm

The beam flange is considered a stiffener and therefor the a value is determined. m, is shown in

figure[B.4]
0,82 a,
my
Y \ W
e m "R 0,82,
Figure B.4: The values of m and m. a,, is the length of the weld root
1= Mep 37,6mm
1= Mep + € B 37,6mm + 70mm
A1 =0,35
1 = my 43, 6mm
2= Mep + € B 37,6mm + 70mm
A>=0,41
a=6,5

a is read on graph from Eurocode 3 Part 1-8 figure 6.11.

B.1.2 Step 2

Step 2 is to determine the effective lengths for the column flange in bending and end-plate in
bending. The effective length are determined for bolt-row 1, 2 and as a bolt-row group and are
denoted as follows for mode 1 for the column flange in bending:

lepf,fen Effective length for bolt-row 1 at mode 1
leffi,fe2 Effective length for bolt-row 2 at mode 1
leffa,fe1-2 Effective length for bolt-row group at mode 1

The effective length for the end-plate in bending will have the subscript "ep".
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B.1 Moment bearing resistance

Column flange in bending

Bolt-row location: Bolt-row 1, 2 and group

Bolt-row 1:

2mme

oo
oo

277-28,2mm ])

l =min
eff.cp,l ( m-28,2mm+2-70mm

Tme+2e;

leff,cp,l =177,19mm

leff,nc,l =min

2m:+0,625e+ e, 2:28,2mm+0,625-70mm + 70mm

( 4m.+1,25e

4-28,2mm + 1,25-70mm ])

lef f,ne,1 = 170,15mm

Bolt-row 2:

leffep2 =2mme = 27m-28,2mm

leffne1 =177,19mm

leff.ne2 =4me+1,25e =4-28,2mm + 1,25-70mm

oo

2me +0,625e+0,5p1
el +0,5p1

leff,nc,Z =200,30mm
Bolt-row 1 as a group:

m-28,2mm + 100mm
2-70mm + 100mm

|

2-28,2mm+0,625-70mm + 0,5 - 100mm
100mm+0,5-100mm

nMe + pr
261 + p1

|

leff,cp,grl =min (

leff,cpgr1 = 188,59mm

leff,nc,grl =min (

=min(

leff,nc,grl =120,00mm

Bolt-row 2 as a group:

m-28,2mm + 100mm
2-70mm + 100mm

|

2-28,2mm + 0,625 - (70mm + 100mm) + 0,5 - 100mm
70mm + 100mm + 0,5 - 100mm

. Tme+ P1
leff,cp.grz = min

oo

2me +0,625e+0,5p1
el +0,5p1

|

2e1+ p1

lef f.epgr2 = 177,19mm

leff,nc,grz =min

= min(

|

leff,ne,gr2 = 150,15mm

The effective length for the individual bolt-rows for mode 1 and 2 is determined with the

following equations:
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Chapter B. Worked Example - Component method

Mode 1

l
leff,l =min effrep
leff,nc

Mode 2

leff,2 = leff,nc

The effective length for the a bolt-row group for mode 1 and 2 is determined with the following
equations:

Mode 1

Zleff,l = min(

Z leff,cp
> leff,nc
Mode 2

Y lerr2=) leffne

The effective lengths becomes for individual bolt-rows:

Mode 1

leff,fe1 =170,15mm
leffa,fe2 =177,19mm
leff,fe1-2 =270,15mm
Mode 2

leff,2,fc1 =170,15mm
leff2,fe;2 = 200,30mm
leff,2,fe1-2 =270,15mm

End-plate in bending

The same procedure is done with the end-plate with the use of different expressions for ¢ ¢
which is from Eurocode 3 Part 1-8 Table 6.6.
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B.1 Moment bearing resistance

Bolt-row 1:

leff,ep) = 27Mep = 27 -37,6mm

leff,cp1 = 236,25mm

lef f,ne = @Mep = 6,5-37,6mm

leff,nc,l =244,40mm

Bolt-row 2:

lef f,ep2 = 2Mep = 270 -37,6mm

leff,cp2 = 236,25mm

leffinc2 =4mep+1,25€) =4-37,6mm +1,25-70mm
lef f,ne2 = 237,90mm

Bolt-row 1 as a group:

leff.cpgrl = TMep + p1 = 7-37,6mm + 100mm
leff,cpgr1 =218,12mm

lef fne,gr1 = 0,5p + amep — (2mep +0,625e1)
=0,5-100mm+6,5-37,6mm — (2-37,6mm + 0,625 - 70mm)
leffne,gr1 = 175,45mm

Bolt-row 2 as a group:

leff,cpgrz =TMep+ p=m-37,6mm+100mm
leff.cp,gre =218,12mm

leffne,grz =2Mep+0,625e1 +0,5p =2-37,6mm +0,625- 70mm + 0,5- 100mm
lef fne,gre = 168,95mm

The effective lengths becomes for individual bolt-rows:

Mode 1

leff1,ep1 =236,25mm
leff1,ep,2 =236,25mm
leff1,ep1-2 = 344,40mm
Mode 2

leff2,ep1 =244,40mm
leff,2,ep,2 =237,90mm
leff2,ep1-2 = 344,40mm

B.1.3 Step 3

Step 3 is to determine the resistance of the T-stub and web panels.
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Chapter B. Worked Example - Component method

Column flange in bending

First it is checked if prying forces develops. Prying forces develops if the following condition
applies:

8,8m3 As

Ly<Lj=——F6"
leff,l,fct]gcc

Ay is the shear area of the bolt and is 157mm?. L is the bolts elongation length and is equal
to 46 mm and m, = 28,2mm and #7, = 17mm. L, is determined for bolt-row 1, 2 and the bolt
group.

leff,fe1 =170,15mm
leff1,fc2 = 177,19mm
leff,l,fc,l—z =270,15mm

37,06mm
Lp=46mm £ L; = [ |35,59mm
23,34mm

Prying forces does not develop in this joint configuration and therefore only M, ; is used. In
case prying forces develops both M,,; ; and M,,;» needs to be determined. The plastic bending
resistance can be determined for bolt-row 1, 2 and the bolt group with the known effective
lengths and then the tension resistance is determined afterwards.

The tension resistance for the column flange in bending can now be determined. The effective
lengths are calculated earlier and given as:

Mode 1

legf1,fe1 =170,15mm
leffa,fe2 =177,19mm
leff1,fe1-2 = 270,15mm
Mode 2

leff,2,fc1 =170,15mm
leff.2,fe,2 = 200,30mm
leff,2,fc1-2 =270,15mm

Tension resistance Mode 1 and 2 for the column flange in bending:
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B.1 Moment bearing resistance

The column flange thickness is given as 17 mm and f) = 235 MPa.

My, pc=0,25- leff_l,fctj%cfy =0,25le77,1,fc - (17mm)® - 235MPa

2,89kNm
Mpl,l,fc = 3,01kNm
4,59kNm

21\4pl,1,fc _ 21\4pl,1,fc

Frq_ = =
T1=2fc me 28,2mm

204, 89kN

FT,1—2,fc =1 1213,36kN

325,31kN

Tension resistance Mode 3 for the column flange in bending:

Mode 3 is bolt failure and is given as:

Fra fc= Y (npFy)

np is the number of bolts in one bolt-row, which is 2 bolts. F; is the tension resistance of a single
bolt. k» is given as 0,9 according to Eurocode 3 Part 1-8.

F; = ko fypAs =0,9-235MPa- 157mm?
F; =90,43kN

The bolt resistance for each bolt-row:

180, 86kN
Frs,rc = | |180,86kN
361,72kN

End-plate in bending

The same procedure is repeated to determine the tension resistance of the end-plate. First it is
checked if prying forces develops, where Ly, A; is the same as before and m,, = 34,6mm. The
end-plate thickness is 10 mm:
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Chapter B. Worked Example - Component method

leff,1,ep1 = 236,25mm
leff.1,ep2 = 236,25mm
leff’1,€p,l—2 = 344, 40mm

., 8.8my,Aq

<
=ty leff1,eptep
310,87mm
L,=46<L;=|]310,87mm
213,25mm

Prying forces develops. The tension resistance for end-plate in bending can now be determined.
The effective lengths for the end-plate is given as:

Mode 1

leff1,ep1 =236,25mm
leff1,ep,2 =236,25mm
leff,l,ep,l—z =344,40mm
Mode 2

leff,2,ep,1 = 244,40mm
leff2,ep,2 =237,90mm
leff,2,ep,1—2 =344,40mm

Tension resistance Mode 1 for the end-plate in bending:
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B.1 Moment bearing resistance

Method 1:
Mpl,l,ep =0, 25leff,l,ep tlzgfy =0,25- leff,l,ep . (IOmm)z -235MPa
1,39kNm
Mpi1,ep=| |1,39kNm
2,02kNm
F . 4Mpl,1,ep _ 4Mpl,1,ep
T,1,methodl,ep — Mep = 37 6mm
147,65kN
FT,l,methodl,ep = 147,65kN
215,25kN
Method 2:
. €min . 70mm
nep =min =min
1,25mep 1,25-37,6mm

Nep =47mm

dy, 30mm
ew - =

4 4
ey =7,5mm

Bnep —2ew)Mpi1,ep

Fr,1,method2,ep = =
P 2MepNep — € (Mep + Nep)

(8-47mm—2-7,5mm)M; 1 ¢p
2-37,6mm-47mm—7,5mm- (37, 6mm +47mm)
172,78kN
FT,I,methadz,ep = 172,78kN
251,88kN

Tension resistance Mode 2 for the end-plate in bending:

Mpi2,ep =0,25lepf2.eptopfy = 0,25 lopf.2,.0p- (10mm)* - 235MPa

1,44kNm
Mpl,z,@p = 1,401(Nm
2,02kNm
F _ 2Mpizepthep X Fr _ 2Mpi2.ep +47mmY F,
T2,ep = Mep + Nep ~ 37,6mm+47mm
134,42kN
Fraep=| [133,52kN
148,31kN

Tension resistance Mode 3 for the end-plate in bending:

The tensions resistance of the bolts are the same as the one calculated for column flange in
bending.
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Chapter B. Worked Example - Component method

180,86kN
Fra,ep = | |180,86kN
361,72kN

Column web in transverse tension

The effective width b, 1 is taken equal to lofy 1, rc due to being lower than ly¢f o r.. The
shear area A, of the column web is determined as well as the reduction factor w.

beff,t,wc,l =170,15mm
beff twe2 =177,19mm
beff,t,wc,l—z =270,15mm

Ao = max AC—ZthfC+(tw52rc)tch
nhwctwc
:max( 10,6-103mm2—2-240mm-17mm+(10mm~2-21mm)-17mm])
1,0-206mm - 10mm
Aye = 3324mm?
e 1 ~ 1
1+1,3(befftwa)2 1+1,3(befftwcloﬂ)2
bwea bW 330 Amm?
0,75
w=1]10,73
0,54

From the given values, the tension resistance for the column web in transverse tension is given

as:

Fiwe= wbeff,t,wc twcfy = beff,t,wc -10mm - 235MPa
298, 26kN

Frwe=11304,07kN
341,56kN

Beam web in tension

The effective width b ;b is taken equal to e 1,¢p due to being lower than lef 2 ¢p-
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B.1 Moment bearing resistance

beff,t,wp1 =236,25mm
beff,t,wp,2 = 236,25mm

beff,1,wh1-2 = 344,40mm

Fiwb = beff,t,wbtwbfy = Deff,t,wp -5 6mm-235MPa

310,90kN
=F;up| |310,90kN
453,23kN

Column web in compression

The effective width is determined. \/Qa,, is the leg-size of the weld and is 8 mm. s is equal to
re =27 mm. sp, is equal to f.p, and is the length when dispersing through the end-plate at a 45°
angle.

beffewe = Lrp+2V2a,+5(trc+9) +5p
=8,5mm+2-8mm+5-(17mm+27mm) + 10mm = 216,5mm

p is determined from the plate slenderness A, p- dwc is the web panel depth and is given as
164 mm

_ b da 216,5mm - 164mm - 235MPa
Ap=0,932 M:o,ggg ;
Ef2, 210000MPa - (10mm)

Ap=058 = p=1

w is determined:

1 1
w = =
wc

2
t
1+1’3(beff.c,wcA_) 1+1,3~(216,5mm.

vc

10mm )2

3324mm
w=0,64

The resistance of the column web in compression is determined where k;,c = 1.

0,64-1-216,5mm-10mm-235MPa

F; e = min
’ 0,64:-1-1-216,5mm-10mm -235MPa

(Ukwcbeff,c,wctwcfy — min
wkwcpbeff,c,wc twe fy

Fe.we = 325,62kN

|
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Chapter B. Worked Example - Component method

Web panel in shear

The resistance of the web panel in shear is determined. The shear are of the column was
claculated earlier to 3324mm?.

v = 99y Ave 0,9-235MPa-3325mm?*
wp \/§ \/§
Vip =405,89kN

Summary: Resistance of the T-stub

The resistance for the individual T-stubs is the lowest resistence for each bolt-row and the group
of bolt-rows and is given as follows:

134,42kN
Fr=|1133,52kN
148,31kN

The sum of the tension resistance of the first two rows are greater than the tension resistance for
the bolt-row groups. The individual bolt-row tension resistance needs to satisfy the following:

Frpi+Frro<Frr-2

The tension resistance of the individual bolt-row is reduced so it satisfies the expression. The
tension resistance of the bolt-row at the bottom is reduced until it is satisfied and therefore

becomes:
134,42kN
Fr= 13,89kN
148,31kN
B.1.4 Step 4

The last step is to determine the moment bearing capacity. The moment bearing capacity is
determined as the following:

M; =Y hF, = 145,75mm- 134, 42kN +45,75mm - 13,89kN
r

M; =20,23kNm
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B.2

B.2 Rotational stiffness

Rotational stiffness

The individual components stiffness coefficients is determined for row 1 and 2. z is taken as the

midway point between the two bolt-rows to the centre of compression and is 95,75 mm:

0,384, _0,38-3324mm?

ke

Bz 1-9575mm
k1 =13,19mm
0;7beff,c,wctwc 0,7-216,5mm-10mm
- d, - 164mm
ko =9,10mm
ks = 0»7beff,t,wc,rtwc _ 0,7-beff,t,m10mm
’ d. 164mm
_( 7,26mm])
kS,r -
7,56mm

. 0vgleff,fc,rtgc 0,91-leff,fc,r-(17mm)3
b d3 - (164mm)3

23,66mm
k4’r ) ( )

29,61mm
_0,9%¢feprty 0,9 Loff,ep,r - (10mm)

T md, (37,6mm)3
2,97mm
kS,r =
2,86mm
1,6A; 1,6-157mm
Ly 46mm

= kw =5,46mm

ke is determined where k3 r, ka,r, ks, and ki is used for each bolt-row.

Zeq and ke is determined:
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Chapter B. Worked Example - Component method

keffrh?
B 2kesprhy _ 1,43mm- (145,75mm)2 + 1,43mm - (45, 75mm)?
7 Zkeff,rhr ~ 1,43mm-145,75mm + 1,43mm-45,75mm
8

Ze

Zeqg =121,83mm

r ’ ,40mm - ,» (omml, 25mm - 49, /omm

_Zkeff’hr_143 145,75mm]1,43mm - 45,75
T zeg 121,83mm

keq =2,25mm

The initial rotational stiffness can then be determined for p = 1:

_ Ez* _ 210000MPa- (95, 75mm)?
T 1 1 1 1
IJZ—. 1-(—+—+—)
1

Sj =3052,70kNm

Sj
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(C. Newton-Raphson

In this appendix the Newton-Raphson method for establishing the behaviour of a non-linear

model. This appendix is based on Cook et al., 2002.

Linear models tend to provide results which are suitable approximations for common and
everyday problems which involves engineering. However, non-linearity is a common problem
as materials in the perspective of structural mechanics often behave non-linearly. Non-linearity
of a material could be non-linear elasticity, plasticity and creep and is non-linear due to the
stiffness of the material becomes a function of the displacement and deformation.

Newton-Raphson is a method to determine the displacement u to the corresponding load P
when the material behave non-linear. Considering the initial state where u = 0, a load P; is then
applied and the corresponding displacement u; is unknown. The displacement is determined

by first estimating the initial tangent stiffness k;o, see figure[C.1]

P a
A B

P,

ke b

Cpa

O u, U

Figure C.1: Iterations to converge at load P;.

The initial load increment is the load itself, as there is no load at the start. The estimated initial

stiffness k;o is used to calculate the current displacement increment.

kioAu=AP;  Au=k; AP  us=0+Au




Chapter C. Newton-Raphson

U, is the current estimate of the of ©; and are not exact due to the deformation not corresponding
to the load P;. The load imbalance eps can then be determined as:

eépa = P1 - kuA

k is the stiffness evaluated at displacement u 4 and ku4 would then equal the load P,. The idea
is then to reduce the load imbalance to zero by iterations. The load P; is kept constant and
another step is taken from point a with the tangent of k;,. This results gives a displacement of
up which is a more accurate displacement for the load P;. The load increment from point a is
epa and the current displacement increment is determined and updated:

kiaAu=epy Au=kt_alepA Ugp=uas+Au

The force at displacement u is still not equal to P; and the current load imbalance is then:

eépp = P1 - kuB

k is the stiffness evaluated at displacement up and kup would then equal to the load P;. The
next step is to move along another tangent beginning at point b. This iterations step is repeated
and the next iteration would come closer to a deflection which corresponds to the load P;.
The more iterations that are performed, the closer the load imbalance gets to zero and the
displacement will tend to u;. The next load increment P, can then be added and the iterations
are repeated until the corresponding displacement u, are reached.
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(D. Slope-deflection method

The method of determining the moment distribution at the supports and joints are expanded here.
This appendix is based on [Henderson, 2022).

The slope-deflection method is used to determine the bending moments at the frame supports
and the joints. The slope-deflection method establishes a relation between the end moments
and the rotation as well as the displacement of the considered element. Equations are developed
that describes the relations when considering the curvature of the element. The slope-deflection
method can be used to analyse statically determinate and indeterminate beams and frames.

M

O

= *
Figure D.1: Illustration of the support conditions of the beam.

Considering the beam element shown in figure[D.]} the equations are given as:

2EI 30
MAB:_(29A+BB__)_MF (D.1)

L L

2EI 30
MBA:—L (8A+293_T)_MF (D.2)

Where

Mg, Mp, | is bending moment at A and B respectively

04,08 is the rotation at A and B respectively
o is the relative deflection
Mg is the fixed-end moment

The frame can be divided into three individual elements: two columns connected to the beam,
see figure[D.2] Point C is used to indicate the middle of the beam. The sum of the moment at a
joint is equal to zero. So at B where element A-B and B-D connects, the moments Mp 4+ Mpc = 0.
The frame is symmetrical and the members are assumed axially rigid which results in the relative
displacement 6 = 0.
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Chapter D. Slope-deflection method

B¢ b (—J,D
f\MM N Mpg
M
R Mgp s E
/7777777 1777777

Figure D.2: Illustration of the elements and internal moments of the frame.

Considering a single element AB with a rotation at each end, see figure the end-moments
can be described in equation (D.3).

M, Ms

(o <)

Figure D.3: Illustration of the beam with end moments and rotation.

4E1 2E1
MA:TQA-'I'TQB (D.3)

For a beam with fixed connection with a uniform load g, see figure[D.4] the fixed-end moments
are given in equation (D.4).

3Tl
- é
MA Mg

Figure D.4: The moments of a fixed beam with a line load g.

My=—— (D.4)
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From figure the rotation at A and B are equal but in the opposite direction. Using the
principle of superposition the moment at A is determined in equation (D.5).

2EI  ql?
My="0-"1- D.5
A= 12 (D.5)

When introducing a rotational stiffness at the supports and joints the bending moments due to
the springs can be denoted S0, where S is the rotational spring and 0 is the rotational spring.
The sum of the bending moment in the column and bending moment due to the spring is equal
to 0, this is expressed in equation (D.6).

2FI
HC (204 +6p) =0 (D.6)

SA0A+

Likewise the slope-deflection equations can be used at the joints, see equation (D.7).

MppL N Msgp
2EI,  Sp

=205 +0p (D.7)

Solving for the bending moments at the support and the joints then give the Kleinlogel-type
formulations, see equation and equation (D.9).

_qL* (1-2Kx)Kp

T 12 (2-Ka+kKp)
qL? (2-Ka)Kp
12 (2- K4+ kKp)

A (D.8)

Mp=- (D.9)

K, and Kp are coefficients which are dependent on the stiffness of the column feet and joint
respectively. They are determined from equation (D.10).

2EI, SjpH
Kpy=0——— Kp=F—7>—"—- (D.10)
SjAH+4EIC S]'BH+4EIC
Where:
IyH
k is equal to b

Cc
Sja | is the rotational stiffness of the support

Sjp | is the the rotational stiffness of the joint
H | is the height of the frame
L is the length of the frame
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(E. Bending moment at the centre of a beam

The bending moment at the centre of the beam is derived, when the end-moments are known, in
this appendix.

The internal bending moment at the centre of the beam is determined with the use of equilibrium
analysis. Figure [E.I|shows the forces acting on the beam. The supports are shown as pinned
with a rotational stiffness.

T 0 A A O N

Figure E.1: Illustration of the support conditions of the beam.

The free body diagram of the beam can be seen in figure Due to the rotational stiffness,
a moment is developed at the supports. The forces at each supports are identical due to the
frame being symmetrical at centre of the beam. The bending moments M, are known from the
slope-deflection method and V) is given as half the distributed load summarised over the beam
length.

MOCT T)Mo

Vo Vo

Figure E.2: Free body diagram of the beam.

To determine the internal bending moments, the beam is divided such the sections forces are

illustrated in figure
Lyl

° M
MO CT Vo V(X)i) (X)
X

Figure E.3: Section forces of the beam.

Determining the moment at the cut of the beam gives the equation:
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Chapter E. Bending moment at the centre of a beam

2

qx
M(x)—M0+qx—T:O (E.1)
U

qx*
M(x)=Mp—gx+ T (E.2)

The bending moment at Point C where x = L/2 is determined from equation (E.3).

L L/2)?
M(L/Z):Mo—q?+q(2/ )

(E.3)

This is the bending moment at the centre of the beam with supports with a rotational stiffness.
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