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Synopsis:

In this thesis different methods of modelling

a bolted end-plate steel joint are considered

and how different joint configurations influ-

ences a frame. The investigated frame is a

portal frame with fixed supports.

The non-linear behaviour of several joint

configurations are predicted using two meth-

ods of analysis and are compared. The

first method investigated is the Component

Method, which is the method used in Eu-

rocode 3 and the second is the numerical

method where simulations are carried out in

the commercial software ANSYS.

Using the obtained moment-rotation curves,

the influence of the joint, in regards to

the global structure, is investigated. Two

methods of analysis are used, the first is

the Slope-deflection method, which is an

analytical method, and the second being the

numerical method where the commercial

software RFEM is used.

In conclusion the numerical determined

joint behaviour with bolts close to the edge

of a thin end-plate shows a lesser bending

moment resistance compared to the analyt-

ical method. The numerical model shows

a greater bending moment resistance for

the rest of the configurations. The frames

moment distribution shows a correlation

between the two methods. The difference

are due to the Slope-Deflection method is a

linear-elastic method.
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Referat

I dette speciale vil den ikke-linære adfærd for en boltet tværplade samling blive undersøgt

for en satellitramme eller portalframe, som det kaldes på engelsk. Rammens understøtninger

er indspændte. Der vil blive opstillet forskellige konfigurationer af samlingen, hvor der vil

undersøges, hvad der har indflydelse på samlingens arbejdskurve og moment bæreevne. To

metoder vil blive undersøgt og sammenlignet. Den første er Komponent Metoden, der er en

analytisk metode som benyttes i Eurocode 3. Den anden metode er den numeriske metode,

hvor finite element programmet ANSYS benyttes.

Når den ikke-linære arbejdskurve er bestemt, vil den blive brugt til at undersøge den indflydelse

en samling har på rammekonstruktionen. Rammens momentfordeling vil undersøges ved brug

af to metoder. Den første metode er Slope-Deflection metoden, som er en analytisk metode,

samt finite element programmet RFEM. De to metoder vil blive sammenlignet ved brug af de

ikke-linære arbejdskurver, der er blevet bestemt.

Moment bæreevnen bestemt med den analytiske metode og den numeriske metode viser en

afvigelse. Moment bæreevnen er mindre ved den numeriske metode for boltplaceringer, der

er placeret tæt ved en tynd tværplades kant. Det omvendte er gældende ved de samlings

konfigurationer, hvor bolt-placeringen er tættere mod midten af tværpladen. Her giver den

numeriske metode en større moment bæreevne.

Sammenligningen mellem momentfordelingerne bestemt analytisk og numerisk viser en

afvigelse. Dette skyldes, at den analytiske model antager at materialemodellen er linærelastisk,

hvorimod at den numeriske model benytter en materialemodel, der ikke er linær.
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1. Introduction

An introduction to the study will be presented in this chapter as well as the motivation and thesis

outline for this paper.

1.1 Background

The first use of steel as a structural material dates back to the mid-19th century and is now one

of the most used structural materials. It is used in structures as skyscrapers, wind turbines and

bridges and can be used alongside concrete, also known as a composite structure. Many known

structures are made of steel, one of which is the Golden Gate Bridge as seen in figure 1.1. [Vayas

et al., 2019]

Figure 1.1: Picture of the Golden Gate Bridge which is a steel structure. [Unsplash, 2018]

The traditional steel construction consist of an assembly of beams and columns, which

assembled results in a combination of steel frames. The connections between the different

elements plays a crucial role in the design of structural frames. They are responsible for

transferring forces between structural elements and ensuring the overall stability and integrity

of the structure. Thus predicting the behaviour of the connections is essential to achieve a safe

structure and simultaneously offer a solution which is economical sound and cost-effective. The
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Chapter 1. Introduction

design of connections and joints are mandated by national standards while Eurocode specifies

how structural design should be conducted within the European Union.

Eurocode 3 applies to the design of steel buildings and is concerned with the requirements for

the resistance, serviceability, durability and fire resistance [Dansk Standard, 2022]. Part 1-8 of

Eurocode 3 provides methods to design mechanical and welded joints subjected to mostly static

loads in steel grades S235, S275, S355 and S460 [Dansk Standard, 2007]. The standard takes the

various factors that can affect the performance of these connections into account, such as the

material properties of the steel, the load conditions, and the environmental factors.

Joints can be distinguished as either a mechanical connection or as a welded connection. The

two types of connections are assembled differently and the preferred joint depends on a variety

of factors, including the necessary strength, durability, flexibility and method of installation.

Figure 1.2 illustrates the two types of joints. [Vayas et al., 2019]

Figure 1.2: Example of a welded and bolted connection [Vayas et al., 2019].

Connections and joints are distinguished as two different things. A connection is the location

where two or more structural elements meet, whereas a joint refers to the zone where multiple

members are interconnected. For design purposes the connection is all the basic components

which connects the structural elements while the joint is all the basic components required to

depict the behaviour during the transfer of internal forces and moments. Figure 1.3 shows the

definition of a connection and a joint for a beam-to-column joint configuration. 1 is the web

panel in shear, 2 is the connection and 3 is the components e.g. the bolts and end-plate. [Dansk

Standard, 2007]

A welded connection would attract a different load compared to a bolted connection under the

same circumstances, due to different stiffness. Welded connections tend to be stiffer than bolted

connections, and would therefore attract a larger portion of the applied load. [Vayas et al., 2019]
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1.2 Motivation behind the study

Figure 1.3: Part of a beam-to-column joint configuration, where 1 is the web panel in shear 2 indicates a

connection and 3 illustrates the components e.g. the bolts and end-plate. [Dansk Standard,

2007].

This thesis will investigate bolted beam-to-column steel joints with an end-plate connection.

The beam and end-plate are welded together such a bolted connection can be established

between the end-plate and the column flange. The welded part of the joint will not be

investigated.

1.2 Motivation behind the study

A mechanical connection is a connection which joins two or more structural elements together

with bolts, rivets, pins etc. The Golden Gate Bridge, see figure 1.1, are held together with rivets

and bolts [Golden Gate Bridge, Highway and Transportation District, 2024]. In the present time,

bolt assemblies are the most used fastener to connect plates or profiles. A bolt assembly consist

of the bolt itself, a nut and one or more washers, see figure 1.4. All parts of a bolted joint, needs

to comply with the standards listed in section 1.2.4 of Eurocode 3 Part 1-8. [Jaspart and Weynand,

2016]

Figure 1.4: Example of bolt assemblies [Jaspart and Weynand, 2016].
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Chapter 1. Introduction

Modelling a steel joint has its benefits, although an experimental analysis can provide the

necessary result, it can be costly to test a full-scale joint [Augusto et al., 2015]. Establishing a

numerical model and simulating the behaviour of the joint, can therefore be cost-effective, given

the developed finite element models depicts the real behaviour of the real joints. There are five

different methods for predicting joint behaviour and can be divided into: numerical models,

mechanical models, physicals models, empirical models and analytical models [Faella et al.,

1999].

Mechanical modelling of a joint has gained vast recognition due to the balance between accuracy

and its simplicity. Eurocode 3 establishes a method of modelling a joint using the mechanical

method. Numerical modelling does provide a more realistic representation of the joint behaviour

compared to the mechanical model, but is more time consuming. [Augusto et al., 2015]

The findings of a numerical model can although not be blindly trusted. An error can lead to

results which can deviate substantially from the real behaviour and therefore different methods

of obtaining the desired results should be conducted and compared. The numerical model

should also be realistic such as depicting the real behaviour of the bolts, contact pressure

between the individual components etc.

1.3 Thesis outline

This thesis will examine a portal frame with fixed supports and determine the moment bearing

capacity of the beam-to-column joint with four different joint configurations. Two of the joint

configurations have a bolt placement close to the centre of the end-plate and the other two are

close to the edge of the end-plate. The bending moment distribution of the portal frame will

also be investigated and obtained for different beam-to-column joint stiffness’s. The first part of

this thesis will study the behaviour of the joint while the second part will examine the whole

global structure.

A vertical distributed load is applied on the beam of the frame. The load is assumed constant

over the entire beam and the column supports are assumed fixed with no rotational movement

and translational motion, see figure 1.5.

6



1.3 Thesis outline

Figure 1.5: The portal frame with fixed supports, and a vertical distributed constant load q .

This thesis will not consider the design of the portal frame and therefore only the characteristic

values will be used. The cross-section used for the beam and columns are traditionally used

profiles and the geometrical properties are taken from Jensen et al., 2022.

1.3.1 Moment bearing capacity

The following models are used to determine the moment bearing capacity of the beam-to-

column joint and the moment distribution of the frame.

• Mechanical model

• Finite element model

The design code of joints in Eurocode 3 Part 1-8 is based on the Component Method, which is a

mechanical model that can be used to determine the moment bearing capacity of a joint. This

method is based upon the rotational response of the joint being dependent on the mechanical

properties of the individual components of the joint. So the joint configuration is decomposed

into its basic components. Each basic component can be represented by a linear or non-linear

spring, which describes the properties of the component. This method of obtaining the joints

stiffness and moment bearing capacity will be further studied in this thesis. [Weynand et al.,

1995]

The finite element model has the advantage of not being limited by the geometry and therefore

easier to build and analyse the joints. The finite element program ANSYS will be used to

determine the moment bearing resistance.

Four different joint configurations are investigated, to analyse the effect the bolt-placement has

in regards to the distance to the end-plate edges. Three different end-plate thickness are also

investigated and implemented in the four joint configurations.
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Chapter 1. Introduction

1.3.2 Bending moment distribution

To determine the bending moment distribution of the frame the following models will be used:

• Analytical model

• Finite element model

The analytical model used is derived from the "slope deflection method", which is a structural

analytical method for beams and frames. The method is used to determine the end-moments of

the columns and beams.

The finite element software used is RFEM, and it is a commercial program. The results are

compared to the moment distribution determined from the analytical model.

1.4 Problem definition

The following objectives are made, so that the described thesis outline can be solved.

• Understand the requirement to determine the joint bearing capacity according to

Eurocode 3

• Understand the underlying theory of the Component Method

• Determine the moment bearing capacity of steel joints using the Component Method

• Perform a numerical analysis of a joint and compare the moment bearing resistance to

the model of Eurocode 3

• Determine the moment distribution of the frame using an analytical model

• Determine the moment distribution of the frame using RFEM and compare the results

with the analytical method

• Use the moment-rotation curve to determine the bending moment at the joint under a

loading condition of the frame

8



2. Initial considerations

In this part the portal frame and the joints is described and is illustrated in figure 2.1 and figure 2.2.

The dimensions of the column, beam, end-plate and bolts are presented and are presented in

table 2.2. The column, beam, bolts and end-plate are all kept constant except for the end-plate

thickness.

2.1 Joint configurations

The joint consist of different parts. The parts are listed as followed:

• Column

• Beam

• End-plate

• Bolts

The material for all parts are of steel. The end-plate is welded to the beam and the end-plate is

connected to the column with the bolts. The bolts consists of a header, washer, shaft, thread and

nut. The head and nut of the bolt are then able to interlock the end-plate and column together.

The static system which is being analysed is illustrated in figure 2.1 (a). The supports of the

frame are fixed. The frame is subjected to a vertical linear distributed load q . The columns and

beam of the frame is connected as illustrated in figure 2.1 (b) and the connection consists of two

bolt-rows. The beam and end-plate are welded together. The weld is assumed stronger than the

rest of the joint and is also assumed that it does not deform under a loading condition.

(a) (b)

Figure 2.1: Illustrations of (a) the considered frame (b) the considered joint.

The analysis of the joints moment bearing capacity consists of four different joint configurations.

The beam and column are kept the same for all configurations, whereas the bolt-placement and

end-plate thickness varies. The bolt-placement and beam-placement are shown in figure 2.2.

The edge distances e1 and e2 varies while the distance between the bolt-rows p1 are kept constant

9



Chapter 2. Initial considerations

at 100 mm. e1 and e2 are in compliance with Eurocode 3 Part 1-8 as the minimum edge distance

is 1,2d0, where d0 is the hole diameter for the bolt, see table 2.2.

Figure 2.2: The placements of the beam and bolts.

The four joint configurations are named Model 1-4 and described in table 2.1. The motivation is

to analyse the effect the bolt placement has in regards to the distance to the end-plate edge.

e1 e2 p1 p2

[mm] [mm] [mm] [mm]

Model 1 70 70 100 100

Model 2 35 35 100 170

Model 3 45 70 100 100

Model 4 70 45 100 150

Table 2.1: Description of the joint configuration.

The dimensions and material properties of the beam, column, bolts and end-plate are shown

in table 2.2. For all the joint configurations the moment bearing capacity are determined for a

end-plate thickness of 10 mm, 14 mm and 17 mm.

10



2.1 Joint configurations

Parameter Unit Value

Beam IPE200 Height, hb mm 200

Width, bb mm 100

Thickness of the flange, t f b mm 8,5

Thickness of the web, twb mm 5,6

Radius of root fillet, rb mm 12

Moment of inertia, Iy mm4 19,4106

Length of frame, L mm 5500

Column HE240B Height, hc mm 240

Width, bc mm 220

Thickness of the flange, t f c mm 17

Thickness of the web, twc mm 10

Radius of root fillet, rc mm 18

Moment of inertia, Iy mm4 80,9106

Height of frame, H mm 3000

End-plate Height, hep mm 240

Width, bep mm 240

Thickness, tep mm 10,14,17

Hole diameter, d0 mm 15

Bolt M16 Diameter of shaft, di mm 13,5

Bolt-head height, hb mm 10

Nut height, hnut mm 13

Washer diameter, dw mm 30

Washer thickness, tw mm 3

Steel Yield strength, fy MPa 235

Yield strength bolts, fyb MPa 640

Modulus of elasticity, E MPa 2,1105

Poisson’s ratio, ν 0,30

Table 2.2: The parameters and the value used for analysing the steel frame [Jensen et al., 2022].

The dimensions of the beam an columns are shown in figure 2.3 (a) as well as the axis for the

moment of inertia. The dimensions of the bolts are shown in figure 2.3 (b).
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(a) (b)

Figure 2.3: Dimensions of (a) the beam and columns (b) the bolts.

2.2 Material behaviour

The material used is steel. Eurocode 3 Part 1-1 provides the characteristics values for the chosen

steel grade of the column, beam and end-plate. The chosen steel grade is S235 and the given

characteristics values of yield strength and ultimate tensile strength are shown in table 2.3. The

nominal properties for the bolts are dictated by Eurocode 3 Part 1-8. The characteristic strength

properties of the bolts are given in table 2.3.

Elements Bolts

[MPa] [MPa]

Yield strength 235 640

Ultimate tensile strength 360 800

Table 2.3: characteristics strength values for the elements (beams and columns) and bolts.

The internal forces and moments can either be determined by an elastic or plastic global analysis.

An elastic global analysis can be used in all cases and is based on the assumption the stress-strain

relation of a material is linear. For the plastic global analysis only steel grades up to S460 and if

the the cross-sections of the beam and column are classified as a class 1 can be analysed. The

method of global analysis is elastic-perfectly plastic. The stress-strain relation for steel as a

elastic-plastic material is shown in figure 2.4 [Dansk Standard, 2022].
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2.2 Material behaviour

Figure 2.4: The stress-strain relation for steel.
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3. Structural properties

In this chapter the structural properties of a joint is presented. The moment-rotation curve is

described for joints in general.

The members of a joint, can be represented by its centre-lines which is connected by a rotational

spring. Figure 3.1(a) illustrates a single-sided beam-to-column joint configuration whereas

figure 3.1(b) illustrates the centre lines being connected. [Dansk Standard, 2007]

(a) (b)

Figure 3.1: Illustration of; (a) single-sided beam-to-column joint configuration, (b) the centre lines of the

joint configuration [Dansk Standard, 2007]

The rotational spring can be expressed with the relationship between the bending moment

M j ,E d and the corresponding relative rotation ΦE d between the connecting members. This

relation is also called the design moment-rotation relation and should describe the following

three characteristics of the joint [Dansk Standard, 2007]:

• Moment resistance M j ,Rd

• Rotational stiffness S j

• Rotational capacityΦC d

The design moment-rotation characteristics can be derived from the M −Φ curve, see figure 3.2.

The curve consists of three parts; a linear part, a non-linear part and a yield plateau. The first

part of the curve is linear with the corresponding stiffness called the initial stiffness S j ,i ni , which

resembles the slope. The linear part is assumed to end at 2/3M j ,Rd where the non-linear part

begins, as it is assumed that yielding of the material occurs. The stiffness at the non-linear part

is described as the secant stiffness S j . The yield plateau is reached when M j ,E d is equal to M j ,Rd ,

and the stiffness can no longer be described. [Weynand et al., 1995]
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Chapter 3. Structural properties

Figure 3.2: The design moment-rotation characteristics [Dansk Standard, 2007].

The design moment-rotation characteristics of a joint is required to properly model joints

behaviour. Several methods can be used to model the design moment-rotation characteristics

where the Component Method and the numerical method is used.

18



4. Component Method

The purpose of this chapter is to introduce the Component Method from Eurocode 3 Part 1-8

which is the mechanical model. The general model of the Component Method is described in

appendix A. The calculations are presented to determine the joint stiffness and moment bearing

capacity. The bolt placement are showed in figure 2.2 and table 2.1. A worked example of Model 1

with end-plate thickness of 10 mm are shown in appendix B.

The Component Method is a method of determining the design moment-rotation characteristics

of a joint by decomposing it into a set of individual components. Each of the components are

modelled as non-linear springs, each having individual stiffness’s and resistances. Figure 4.1

illustrates the spring model for a beam-to-column end-plated joint with two bolt-rows in tension.

The springs k1 and k2 represents the components in shear and compression. The springs k3,r ,

k4,r , k5,r and k10,r represents the components in tension for bolt-row r . This is also the spring

model for Model 1-4. [Weynand et al., 1995]

Figure 4.1: The spring model for a one-sided beam-to-column end-plated joint with two bolt-rows in

tension [Weynand et al., 1995]. This is also the spring model for Model 1-4.

The stiffness coefficients of the individual components are used to determine the overall

rotational stiffness. This is done with the procedure given in Eurocode 3 Part 1-8. For a single-

sided bolted end-plate beam-to-column joint with two or more bolt-rows in tension, the stiffness

coefficients to be taken into account are; k1, k2, k3, k4, k5 and k10. The stiffness coefficients are

obtained from the following basic components:

• k1 - Column web panel in shear

• k2 - Column web in compression

• k3 - Column web in tension

• k4 - Column flange in bending

• k5 - End-plate in bending

• k10 - Bolts in tension

The design procedure according to Eurocode 3 Part 1-8 can be divided into three steps. The

steps are the following:

• Identify the relevant components

• Characterise the individual components strength and stiffness properties
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Chapter 4. Component Method

• Assemble the individual components and determine the joints structural properties

For an end-plate column-to-beam connection mainly subjected to bending the relevant

components can be divided in three different zones; compression, shear and tension. Figure 4.2

illustrates a bolted end-plated joint where the bending moment is split into a tension and

compression force. [P., 2000]

Figure 4.2: The bending moment resulting in a tension and compression zone.

The basic components can then be divided into each of the zones which all has its own strength

and stiffness. The three zones are as follows with the relevant components:

• Compression zone:

Beam flange and web in compression

Column web in compression

• Shear zone

Column web panel in shear

• tension zone

Column web in tension

Column flange in bending

Bolts in tension

End-plate in bending

Beam web in tension

According to Eurocode 3 Part 1-8 the design moment bearing M j ,Rd is determined by

equation (4.1).

M j ,Rd =∑
hr Ftr,Rd (4.1)

Where

hr is the distance from bolt-row r to the centre of compression, see figure4.3

Ftr,Rd is the effective design tension resistance of bolt-row r

The effective design resistance Ftr,Rd for bolt-row r is taken as the smallest design tension

resistance of the basic components in tension. The number of bolt-rows are defined from the
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4.1 Equivalent T-stub

joint configuration. Figure 4.2 has two bolt-rows, where the bolt-row furthest from the centre

of compression, is the first bolt-row while the second bolt-row is the closest to the centre of

compression. This is illustrated in figure 4.3.

Row 1

Row 2

Centre line

compression

Figure 4.3: Illustration of bolt-rows numbering and centre line of compression

The bearing resistance of the components in shear and compression are then checked against the

tension resistance. If the tension resistance is greater than the shear or compression resistance,

it is then reduced. The moment bearing resistance is determined from the components which

are in tension. The components in tension, compression and shear are listed earlier. The

equivalent T-stub methodology is used to model the components in tension and determine the

design tension resistance which then can be used to obtain the moment bearing capacity with

equation (4.1). [Dansk Standard, 2007]

4.1 Equivalent T-stub

The equivalent T-stub method is an geometric idealisation of plates subjected to transverse

forces. The name comes from the appearance of the geometry and consists of a web in tension

and a flange i bending, see figure 4.4. The T-stub has the advantage that a component in bending

and tension can be studied with the model.

The visualisation of a T-stub in a bolted joint with the end-plate and the column flange is shown

in figure 4.5. The figure also shows that the T-stub approach should be done to both sides of a

joint as both the end-plate and column flange can be represented as a T-stub.

When the T-tub is subjected to a tension force, the flanges of the T-stub deforms due to bending

and the bolts elongate due to the tension forces. Failure occurs when either yield lines around

the bolt develops or the bolts being in failure. [Zoetemeijer, 1974]
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Chapter 4. Component Method

Figure 4.4: Geometry of a bolted T-stub [Jaspart and Weynand, 2016].

Figure 4.5: Visualisation of a T-stub of a bolted joint [Jaspart and Weynand, 2016].

4.1.1 Failure modes of the T-stub

The failure modes of a T-stub is based on the plastic behaviour of the flanges and bolts, where

plastic hinges are eventually formed at the bolts and/or the flanges. The failure of a T-stub is

either due to failure of the bolt, plastification of the flange plate or a combination of the two.

[Zoetemeijer, 1974]

The resistance of the T-stub can be determined from three possible failure modes. The three

failure modes are given as:

• Failure mode 1 - yielding of the flange

• Failure mode 2 - failure of bolts and partial yielding of the flange

• Failure mode 3 - failure of bolts

Failure mode 1 occurs when the flanges are yielding and is associated to the formation of plastic

hinges in the flange and development of the prying force Q, see figure 4.6(a). Prying forces are

forces which develops due to the contact between the beam and column flange. It is further

explained in chapter 4.1.2. The bolts are sufficiently strong enough to resist the the applied

tension force and the prying forces which leads to the flanges yielding before the bolts tension

resistance is reached.

Failure mode 2 occurs when tensile failure of the bolts and partial yielding of the flange happens

at the same time. Yield lines in the flanges develops, but not to the same extent as the full plastic

mechanism in failure mode 1, see figure 4.6(b). Prying forces also develops in this failure mode.
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4.1 Equivalent T-stub

Failure mode 3 is the failure of bolts. No prying forces develops as the flange does not yield, so

there only occurs failure of the bolts, see figure 4.6(c).

(a) (b) (c)

Figure 4.6: The failure modes of an equivalent T-stub where (a) is failure mode 1 (b) is failure mode 2 and

(c) is failure mode 3.

The three different failure modes results in different design resistance and is determined for each

bolt-row as well as the bolt-row groups. The failure mode which results in the lowest bearing

capacity is the design bearing resistance for the considered bolt-row or bolt-row group.

4.1.2 Prying force

Prying forces will develop if the bolt can not elongate significantly when the T-stub is under

tension. This will result in a clamping effect between the flanges in contact. Figure 4.6(a) shows

the prying force Q on a T-stub in tension. The sum of the transferred forces will increase, if

prying forces develops, this is also illustrated in figure 4.6(a). If the bolt can elongate enough,

the prying forces will have a negligible effect and can therefore be disregarded. To determine

whether the bolt has a significant elongation, EC3 Part 1-8 provides a criterion, which if satisfied

can be concluded that prying forces will develop, see equation (4.2). [Jaspart and Weynand,

2016]

Lb ≤ 8,8m3 Asnb∑
le f f ,1t 3 (4.2)

Where:

Lb is the elongation length, taken as the total thickness of material and washer, plus half

the sum of the height of the bolt and height of the nut

t is the thickness of the T-stub flange

m is a geometrical length which represent the distance between the bolt axis and

the point where the "potential" plastic hinge will form, see figure 4.15

nb is the number of bolts in one bolt-row

le f f is the effective length and is explained in chapter 4.1.3
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If prying forces develop equation (4.15) and equation (4.16) are used to determine the bearing

resistance for failure mode 1. Equation (4.17) is used to determine the bearing resistance for

failure mode 2. Otherwise equation (4.18) is used for both failure modes.

4.1.3 Effective length

The effective length le f f is a theoretical length and is defined as the equivalence between the

actual component and the T-stub idealisation in the plastic stage where yield line develops. The

possible yield lines characterise the effective length. Eurocode 3 Part 1-8 presents two different

failure patterns with yield lines and expressions of le f f according to the failure patterns. The

failure patterns are only according to failure mode 1 and 2 as failure mode 3 does not develop

any yield lines at the flange. Figure 4.7 shows the different failure patterns and that the failure

patterns can be described as either circular or non-circular. [Jaspart and Weynand, 2016]

(a) (b)

Figure 4.7: Illustrations of (a) circular yield patterns (b) non-circular yield patterns [Jaspart and Weynand,

2016].

As seen on figure 4.7 two types of yield line patterns can develop. Each of the yield lines can

develop when considering bolt-rows individually and bolt-rows as part of a group of bolt-rows.

Figure 4.8 illustrates the yield line patterns for a group of bolt-rows. Figure 4.8(a) illustrates

the yield lines for a circular failure pattern and figure 4.8(b) illustrates the yield lines for a

non-circular pattern. [Dlubal, 2023a]

The failure patterns characterises the effective length. Zoetemeijer, 1974 establishes a method

to determine the effective lengths using plasticity theory and assuming that the elastic

deformations are negligible. For failure mode 1 the collapse of the flange is seen in figure 4.9 for

a non-circular pattern. The failure patterns are observed through experiments and expressions

of the effective lengths are then determined. Bt is the bolt force, T is the tensile load and ∆δ is

the plastic deformation. Bt and T are equal if no prying forces develop. The unknowns which

are solved for are α and β. The angles are solved so it produces the smallest tension load.
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4.1 Equivalent T-stub

(a) (b)

Figure 4.8: A bolt of groups with (a) circular yield lines (b) non-circular yield lines [Dlubal, 2023a].

Figure 4.9: Collapse of flange for failure mode 1 [Zoetemeijer, 1974].

The internal dissipation energy, ∆E is set equal to the work done by the external force ∆T , see

equation (4.3). When the yield lines develop at the bolts, the bolt force does not affect the

external force as no displacement occurs at the bolts, see figure 4.9.

∆E =∆T (4.3)

The work done by the external forces is given in equation (4.4).

∆T = T∆δ (4.4)

Expressions for the six yield lines given in figure 4.9. The internal dissipation energy and rotation

are determined through geometric relations and given in equation (4.5) to equation (4.10).

[Zoetemeijer, 1974]
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∆E1 = a
∆δ

m
mp (4.5)

∆E2 = (a +2m tanα)
∆δ

m
mp (4.6)

∆E3 = 2
m +n′

sinβ

cosα

cos
(
β−α) ∆δ

m
mp (4.7)

∆E4 = 2n′

b
∆δmp (4.8)

∆E5 = 2

(
cotβ+ n′

m

cosα

sinβcos
(
β−α) − n′

b

)
∆δmp (4.9)

∆E6 = 2m

cosα

∆δ

m

sinβ

cos
(
β−α)mp (4.10)

Where:

mp is the yield moment per unit length of the plate

n′ is the distance from the centre-line of the bolt to edge of the flange, see figure 4.9

n is the distance from the centre-line of the bolt to the edge of the plate, see figure 4.9

m is the distance from centre-line from the bolt to yield line closest to the web

a is the distance between the bolts

b is the free edge distance from yield line 4 to yield line 5

The bolts are assumed to only be influenced by elastic deformations. The total internal energy is

then set equal to the work done by the external force, see equation (4.3). This can be reduced to

equation (4.11).

T∆δ= 2

(
a

m
+ m +2n′

m
− cosα

sinβcos
(
β−α) + tanα+cotβ+ sinβ

cosαcos
(
β−α))

∆δmp (4.11)

From equation (4.11) it can be observed that minimising the load T will result in minimising the

right hand side of the equation. If equation (4.12) is satisfied the minimum value is found using

the angles α and β.

∂
∑
∆E

∂α
= 0,

∂
∑
∆E

∂β
= 0 (4.12)

If the partial derivative is carried out and the unknowns α and β are solved the effective lengths

can then be determined. The same procedure can be applied to failure mode 2 for a non-circular

failure pattern. For a circular pattern the effective lengths are expressed using the circumference

of the circular part of the yield lines. The radius is assumed to be m which is illustrated in

figure 4.13. For a unstiffened column flange the effective lengths are given in figure 4.10 and for

the end-plate components the effective lengths are given in figure 4.11.
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4.1 Equivalent T-stub

Figure 4.10: The effective lengths for an unstiffened column [Dansk Standard, 2007].

Figure 4.11: The effective lengths for an end-plate [Dansk Standard, 2007].

Considering a joint configuration shown in figure 4.3 both bolt-rows for an unstiffened column

flange are considered "end bolt-rows" individually and as part of a group of bolt-rows in

figure 4.10. When considering the end-plate, bolt-row 1 is taken as the "first bolt-row below

tension flange beam" and bolt-row 2 is taken as "other end bolt-row". To determine the effective

lengths for an end-plate, α needs to be established. α is read from figure 4.12. [Dansk Standard,

2007]

To determine α the values of λ1 and λ2, which can be determined from equation (4.13) and

equation (4.14).
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Figure 4.12: Graph of the α-values. [Dansk Standard, 2007].

28



4.1 Equivalent T-stub

λ1 = m

m +e
(4.13)

λ2 = m2

m +e
(4.14)

The parameters m,m2 and e is defined in figure 4.13. The figure illustrates the end-plate and

beam web where the "+" symbols represents the bolts.

Figure 4.13: Illustration of m,m2 and e. ap is the leg size of the weld. [Dansk Standard, 2007].

4.1.4 Design resistance of T-stub in tension

The T-stub consists of a flange and a web, see figure 4.4. The design resistance is determined

for the flange and the web individually. As seen in figure 4.5, the column flange and end-plate

can be considered the flange on the T-stub. Likewise the column web and beam web can be

considered the web of the T-stub. The design resistance of the T-stub flange can be determined

according to Eurocode 3 Part 1-8 with the following equations:

Failure mode 1 Yielding of the flange (prying forces may develop):

Method 1:

FT,Rd ,1 =
4Mpl ,1,Rd

m
(4.15)

Method 2:

FT,Rd ,1 =
(8n −2ew )4Mpl ,1,Rd

2mn −ew (m +n)
(4.16)

Failure mode 2 Partial yielding of the flange and failure of bolts (prying forces may develop):

FT,Rd ,2 =
2Mpl ,2,Rd +∑

nFt ,Rd

m +n
(4.17)

Failure mode 1 and 2 (prying forces does not develop):

FT,Rd ,1−2 =
2Mpl 1,Rd

m
(4.18)
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Failure mode 3 Failure of the bolts

FT,Rd ,3 =
∑

Ft ,Rd (4.19)

The design resistance for the T-stub web of the column and beam is given in Eurocode 3 Part 1-8

as equation (4.20) and equation (4.21) respectively.

Ft ,wc,Rd = ωbe f f ,t ,wc twc fy

γM0
(4.20)

Ft ,wb,Rd = be f f ,t ,wb twb fy

γM0
(4.21)

Where

Mpl ,1,Rd is the plastic bending resistance for failure mode 1, see equation (4.22)

Mpl ,2,Rd is the plastic bending resistance for failure mode 2, see equation (4.23)

ew is dw /4, where dw is the diameter of the washer

Ft ,Rd is the design tension resistance of a bolt for a bolt, see equation (4.24)

n is a geometrical dimension describing the position of the prying force. It is the

minimum value of emi n and 1,25m

emi n is the smaller distance from the bolt, see figure 4.15

le f f 1, le f f 2 is the minimum effective lengths to the corresponding failure mode

twc thickness of the column web

ω a reduction factor, see equation (4.25)

be f f ,t ,wc is the effective width and equal to the effective length of the column flange

be f f ,t ,wb is the effective width and equal to the effective length of the end-plate

The plastic bending moment and the bolts tension resistance are given in equation (4.22),

equation (4.23) and equation (4.24).

Mpl ,1,Rd =
0,25

∑
le f f ,1t 2

f fy

γM0
(4.22)

Mpl ,2,Rd =
0,25

∑
le f f ,2t 2

f fy

γM0
(4.23)

Ft ,Rd = 0.9As fyb

γM2
(4.24)

Where

t f is the thickness of the T-stub flange

fy is the yield strength

As is the tensile stress area of a bolt

le f f 1, le f f 2 is the minimum effective lengths to the corresponding failure mode
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4.1 Equivalent T-stub

The reduction factor ω is to allow the shear interaction with the column web. ω can be

determined by equation (4.25). [Dansk Standard, 2007]

ω= 1√
1+1,3(be f f ,c,wc twc /Avc )2

(4.25)

Two methods are used for the bearing resistance of failure mode 1, where the lowest bearing

resistance is used. Method 1 assumes the force from the bolt applied to the T-stub flange is

concentrated in the centre-line of the bolt, while the method 2 assumes the force is uniformly

distributed under the washer, see figure 4.14. [Dansk Standard, 2007]

(a) (b)

Figure 4.14: Force distribution under the washer of (a) method 1 (b) method 2 for failure mode 1.

The value n is a geometrical length describing the position of the prying force. It is the minimum

value of emi n and 1,25m, see figure 4.15.

Figure 4.15: Definition of emi n and m [Dansk Standard, 2007].

Eurocode 3 Part 1-8 describes another failure mode, where the bolts can elongate significantly,

this results in negligible prying force. If no prying forces develops, the design formula for failure

mode 1 and 2 is substituted to equation (4.18). [Vayas et al., 2019]
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4.1.5 Design resistance of the column web in compression

The design resistance of the column web in compression for an unstiffened joint is given in

equation (4.26).

Fc,wc,Rd = ωkwc be f f ,c,wc twc fy

γM0
but Fc,wc,Rd ≤ ωkwcρbe f f ,c,wc twc fy

γM1
(4.26)

Where

ω is a reduction factor, see equation (4.25)

kwc is a reduction factor due to the compressive stress in the column and is set equal to 1

ρ is a reduction factor due to plate buckling

The left hand side expression of equation (4.26) is the resistance of the column web in

compression, while the right hand side takes instability into consideration by using ρ which is

determined from the plate slenderness λ̄p , see equation (4.27).

λ̄p = 0,932

√
be f f ,c,wc dwc fy

Et 2
wc

if

{
λ̄p ≤ 0,72 , ρ = 1,0

λ̄p > 0,72 , ρ = (λ̄p −0,2)/λ̄p

}
(4.27)

Where

dwc is equal to hc −2(t f c + rc )

E is the Youngs modulus

rc is the root fillet

The resistance for the column web in compression is compared to the total tension resistance.

If the tension resistance is greater than the compression resistance the tension resistance is

reduced.

4.1.6 Design resistance of the web panel in shear

For a single sided joint, the design plastic shear resistance Vw p,Rd for an unstiffened column

web panel is given in equation (4.28).

Vw p,Rd = 0,9 fy Avcp
3γM0

(4.28)

Equation (4.28) is only valid if the column web slenderness satifies the condition dwc /twc ≤ 69ε.

The resulting shear force from the bending moment for a single sided joint is obtained with

equation (4.29). The forces are shown in figure 4.16.

Vw p,E d = ME d

z
−VE d (4.29)
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4.2 Moment bearing capacity from the Component Method

Where

ε is equal to
√

fy /235MPa [Dansk Standard, 2022]

Avc is the shear area of the column

z is the lever arm, see figure 4.17

Figure 4.16: Illustration of the lever arm.

There is not applied any shear force, so only the bending moment will affect the web panel. The

lever arm, z is shown in figure 4.17 and given as the distance from the centre of compression to

the midway point between the two bolt-rows.

Figure 4.17: Illustration of the lever arm.

4.2 Moment bearing capacity from the Component Method

With the known effective lengths for each component and whether prying forces develops,

the bearing capacity can be determined for the relevant components with equation (4.15) to

equation (4.21). The bearing capacity is determined for each basic component and considering

bolt-rows as individual and in a group of bolt-rows. The design resistance for each basic

component will then consist of three resistances, see equation (4.30).

Ft ,i ,Rd =

 min(Ft ,i ,r 1,Rd )

min(Ft ,i ,r 2,Rd )

min(Ft ,i ,r 1−2,Rd )

 (4.30)

Where:
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Ft ,i ,Rd is the design resistance for the basic component i

Ft ,i ,r,Rd is the design resistance for bolt-row r of basic component i

The sum of the individual bolt-rows design resistance must be lower than the design resistance

of the group of bolt-rows [Dansk Standard, 2007], so equation (4.31) must be fulfilled.

Ftr 1−2,Rd ≥ Ftr 1,Rd +Ftr 2,Rd (4.31)

If equation (4.31) is not fulfilled, the design resistance for the bolt-row closest to the centre of

compression is reduced until it is fulfilled. [Dansk Standard, 2007]

The design resistances from each of the basic components are compared and the joints bearing

capacity is then taken as the minimum value of all the basic components individual bearing

resistance, see equation (4.32).

Ftr,Rd =

 min(Ftr 1,Rd )

min(Ftr 2,Rd )

min(Ftr 1−2,Rd )

 (4.32)

The moment bearing resistance M j ,Rd can then be determined from equation (4.1).

4.3 Rotational stiffness

The rotational response of the joint is determined from the rotational stiffness of the joint given

in equation (4.33). It is determined from the flexibility’s of the basic components. The basic

components flexibility’s are represented by the stiffness coefficients ki . [Dansk Standard, 2007]

S j = E z2

µ
∑ 1

ki

(4.33)

Where:

z is the lever arm, see figure 4.17

ki is the stiffness coefficient of the basic component i

µ is the stiffness ratio between the linear and non-linear curve, see figure 3.2

The stiffness coefficient of each the basic components are described at the beginning of

chapter 4. They can be determined according to EC3 Part 1-8 and is given in equation (4.34) to

equation (4.39). The expressions are developed through experimental and numerical research

[Weynand et al., 1995].
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4.3 Rotational stiffness

k1 =0,38Avc

βz
Column web panel in shear (4.34)

k2 =
0,7be f f ,c,wc twc

dc
Column web in compression (4.35)

k3 =
0,7be f f ,t ,wc twc

dc
Column web in tension (4.36)

k4 =
0,9le f f , f l ang e t 3

f c

dc
Column flange in bending (4.37)

k5 =
0,9le f f ,ep t 3

p

m3 End-plate in bending (4.38)

k10 =1,6As

Lb
Bolts in tension (4.39)

Where:

Avc is the shear area of the bolt according to Eurocode 3 Part 1-1

β is the transformation parameter and is equal to 1 for a single sided joint

connection

be f f ,c,wc is the effective width of the column web in compression component

be f f ,t ,wc is the effective width of the column web in tension component

dc is the inner distance from flange to flange

twc is the thickness of the column web

t f c is the thickness of the column flange

m is defined in figure 4.15

be f f ,c,wc for a bolted end-plate connection is determined from equation (4.40). be f f ,t ,wc is equal

to the smallest effective length le f f given from figure 4.10.

be f f ,c,wc = t f b +2
p

2ap +5(t f c + s)+ sp (4.40)

Where:

sp is the length obtained by dispersion of 45° through the end-platep
2ap is the leg-size of the weld connection

s is the root radius of an I- or H section

With the known stiffness coefficients of the equivalent stiffness coefficient keq can be determined

from equation (4.41).

keq =
∑
r

ke f f ,r hr

zeq
(4.41)
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Where:

ke f f ,r is the effective stiffness coefficient for bolt-row r taking the stiffness coefficient k3,

k4,k5 and k10 into account

hr is the distance from bolt-row r to the centre of compression

zeq is the equivalent lever arm

The effective stiffness coefficient ke f f ,r is determined from equation (4.42).

ke f f ,r =
1∑

i

1

ki ,r

(4.42)

Where:

ki ,r is the stiffness coefficient of component i for bolt-row r

The equivalent lever arm zeq is determined from equation (4.43).

zeq =

∑
r

ke f f ,r h2
r∑

r
ke f f ,r hr

(4.43)

The stiffness ratio µ is used to dictate the varying stiffness in the non-linear part of the rotational

response. The stiffness ratio is determined from the following:

µ= 1 if M j ,E d ≤ 2/3M j ,Rd (4.44)

µ=
(

1,5M j ,E d

M j ,Rd

)ψ
if M j ,E d > 2/3M j ,Rd (4.45)

The value ψ is a constant and determined from Eurocode 3 Part 1-8 and is equal to 2,7 for a

bolted end-plate. From the given equations the rotational stiffness of the joint can be calculated

with equation (4.33). With the stiffness known the rotational response can be determined.

4.4 Results

The calculated initial stiffness’s and moment bearing capacities of the models are stated in

table 4.1. A worked example is shown in appendix B. The column and beam profiles are kept

constant as HE240B and IPE200 respectively while the end-plate thickness is changed.
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4.4 Results

End-plate thickness, Initial stiffness, Moment bearing capacity,

tep [mm] S j ,i ni [kNm/(°)] M j ,Rk [kNm]

Model 1 10 3,05 103 20,23

14 3,85 103 25,59

17 4,08 103 32,32

Model 2 10 3,90 103 24,35

14 5,56 103 29,38

17 6,06 103 29,38

Model 3 10 5,00 103 23,11

14 5,11 103 28,35

17 5,10 103 28,35

Model 4 10 2,70 103 20,34

14 3,53 103 25,81

17 3,81 103 27,98

Table 4.1: Moment bearing capacity of the models and different end-plates.

From table 4.1 it is evident that Model 2 and 3 has a significant greater moment bearing capacity.

The models are the ones with the bolts placement furthest from the centre-line of compression,

which could lead to a greater bearing capacity. The moment-rotation curves are shown in

figure 5.8, figure 5.10 and figure 5.11.
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5. FEM modelling of a joint

The purpose of this chapter is to model and analyse the different joint configurations in ANSYS.

The FE models are presented and a convergence analysis is conducted for one of the models.

The idea of modelling with FEM is to subdivide a large model into smaller parts, also called finite

elements which each contains a number of nodes. It is through these nodes that a solution is

found in regards to the proposed problem. The software used is ANSYS and the element type

used is SHELL181 which is a 4-node shell element. Each node has 6 degrees of freedom (DOFs),

three of them being translational in the x, y and z direction and three being rotational degrees

of freedom around the x−, y− and z−axis. The element is shown in figure 5.1.

Figure 5.1: Illustration of the element SHELL181. [ANSYS, 2023b]

The full model is not modelled as the provided version of ANSYS is a STUDENT version and

can only solve problems with a limited number of DOFs of 128.000 nodes. Therefore the model

is reduced to figure 5.2 as only the internal moment at the joint is in interest for the moment

bearing capacity. This provides a denser mesh compared to modelling the full-scale frame,

which in turn can provide with more precise results.

Figure 5.2: Illustration of the reduced model and the support condition used for the numerical model.
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The bolts are modelled as a beam element instead of a solid element. This can reduce the

computational time as modelling the bolts, header and washer can increase the number of

elements and nodes. The beam element is scoped between two holes and connected to an area

the size of the washer, see figure 5.3 (a). The beam connection consists of two nodes (I and

J), see figure 5.3 (b). The two nodes are pilot nodes and each node has 6 DOFs with 3 being

translational and 3 being rotational. The connections between the beam connections and the

area of the washer is done through the pilot node, see figure 5.3 (c). The multipoint constraints

applies kinetic constraints, which are infinitely stiff elements, between the pilot nodes and the

nodes at the washer, see figure 5.3 (d). [ANSYS, 2023a]

(a) (b)

(c) (d)

Figure 5.3: Illustrations of (a) A beam element connection (b) non-circular yield patterns (c) the the pilot

node of the bolt and the washer, which are connected (d) the kinetic constraints between the

pilot node and the washer. [ANSYS, 2023a]

The weld is not considered and therefore the beam and end-plate are connected with use of

shared topology. The area where the beam and end-plate are in contact, the nodes are shared

and therefore the beam and end-plate act as one element. This ensures that they won’t separate.

The contact area between the end-plate and column flange are modelled as a frictionless contact.

This establishes a contact where both elements can separate and hinders the elements topology

merging under er loading condition.

The support condition is seen in figure 5.2. This is the general model used to model the joints.

The bolt placement and end-plate thickness are changed for each of the models. The material

model is described in chapter 2.2.
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5.1 Numerical model

5.1 Numerical model

The numerical model in ANSYS consist of an assembly of the column flange and an end-plate

which is welded to the beam. A set of bolts then connects the end-plate and column flange. The

individual components are shown in figure 5.4 and the meshed models are shown in figure 5.5.

(a)

(b)
(c)

Figure 5.4: Illustation of the individuel components.
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Chapter 5. FEM modelling of a joint

(a) (b)

(c) (d)

Figure 5.5: The mesh for (a) Model 1, (b) Model 2, (c) Model 3 and (d) Model 4.

The bending moment is established at end of the beam, see figure 5.6 (a), and is increased

in increments. The finite element software uses the Newton-Raphson method to converge

towards a solution, which is a iterative method to obtain the corresponding displacements

and deformation at a given load step. This method is further explained in appendix C. Load

control is used since the bending moment is controlled and for each load increment the

displacement are calculated. Displacement control is not applicable in this model, as ANSYS

cannot introduce a rotational displacement. In principle both methods should give the same

results, but displacement control tend to be more stable and can lead to more precise results.

[Krenk, 2009] [Cook et al., 2002]

The rotation is simplified to a linear rotation and calculated by using the trigonometry of a right

triangle whereas the displacement is calculated at the top and bottom flange. The displacement
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5.2 Convergence

is obtained at the points seen in figure 5.6 (b) indicated with an "x" at the connection between

the end-plate and beam. The deformed joint is shown in figure 5.12, where the deformed end-

plate is non-linear and therefore assuming it to be linear is a simplification of the deformed

joint.

(a) (b)

Figure 5.6: (a) is a illustration of where the bending moment is established (b) is a frontal view where the

"x" indicates where the displacement is obtained.

The rotational deformation is obtained by using equation (5.1).

θ = arctan

(
d1 +d2

h1

)
(5.1)

Where:

d1 is the displacement at the top flange point

d2 is the displacement at the bottom flange point

h1 is vertical distance between the two points

5.2 Convergence

For a numerical model a convergence analysis needs to be carried out, to determine if the model

has a sufficient mesh. The convergence analysis is done to Model 1 with an end-plate thickness

of 10 mm within the elastic region of the material model. A moment force is applied to the end

of the beam of M j = 15 kNm. The convergence is illustrated in figure 5.7.
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Chapter 5. FEM modelling of a joint

Figure 5.7: The rotation at the beam-end-plate connection compared to the number of DOFs for model 1.

The STUDENT license of ANSYS has a limited amount of nodes/elements of 128 000 and

therefore limits the mesh sensitivity. The computational time at the lower amount of DOFs is

around 15 seconds, while at the higher amount of DOFs could take up to 45 minutes. Therefore

choosing a lower number of DOFs can significantly decrease the computational time when also

performing a non-linear analysis. It can be observed in figure 5.7 that a convergence is reached

at around 150 000-200 000 DOFs and it is within this span the other models are modelled as well.

5.3 Results and comparison

The moment bearing capacity determined from the Component Method and numerical model

are compared. The models for which the moment bearing capacity is determined are shown in

figure 5.5 and described in chapter 2. Figure 5.8, figure 5.10 and figure 5.11 shows the moment-

rotation, M − θ, curves for three different end-plate thickness. The Component Method is

explained in chapter 4 and the numerical model is described in chapter 5. Figure 5.8 shows

the rotational response to of Model 1-4 with and end-plate thickness of 10 mm. The linecolour

represents the model and linetype represents the method of analysis.
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Figure 5.8: Comparison of the four joint configurations with end-plate trickiness of 10 mm.

Figure 5.8 strongly indicates a discrepancy between the Component Method and the numerical

method for certain joint configurations. The numerical model of Model 2 and Model 4 shows a

large discrepancy compared to the Component Method with a lower moment bearing capacity.

This is likely due to the placement of the bolts being close to the edge of the end-plate. The

equivalent Von-Mises stresses at the surface of the end-plate are illustrated in figure 5.9(a) and

figure 5.9(b) at approximately 50 % of the largest bending moment for the numerical model of

Model 1 and Model 2 respectively. It shows that the formation of the stresses around the upper

boltholes are reaching the materials yield stresses for both cases, although yielding occurs at

edge of the end-plate for Model 2. This can result in a lower bearing capacity as the stresses

around the bolt-hole cannot redistribute as effectively compared to a model where the boltholes

are further from the edge. It can further be examined that numerical model of Model 1 and

Model 3 has a greater moment bearing capacity than the Component Method.

Figure 5.10 shows the M −θ-curve for the end-plate being 14 mm. The rotational response of the

numerical model of Model 2 and Model 4 are closer to the rotational response of the Component

Method. It is clear that an increase in end-plate thickness results in a larger moment bearing

resistance of the numerical model compared to the Component Method.
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Chapter 5. FEM modelling of a joint

(a) (b)

Figure 5.9: Equivalent Von-Mises stresses for (a) Model 1 end-plate with thickness of 10 mm and (b)

Model 2 with end-plate thickness of 10 mm at M = 11,5 kNm.
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Figure 5.10: Comparison of the four joint configurations with end-plate trickiness of 14 mm.

The rotational response of the end-plate thickness of 17 mm is seen in figure 5.11. It can be seen

that the numerical model for Model 2 shows a moment bearing capacity lower than the other

models. For the other 3 models, the moment bearing capacity determined with the numerical
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5.3 Results and comparison

model is shown to be greater, as a larger bending moment is required for a similar rotational

response for the Component Method.
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Figure 5.11: Comparison of the four joint configurations with end-plate trickiness of 17 mm.

The deformed joint of Model 1 with end-plate thickness of 10 mm is seen in figure 5.12.

Figure 5.12 (a) shows the deformed joint at half the largest moment and figure 5.12(b) and

it can be seen that the structure deforms as expected. The beam and end-plate does not separate

and establishes a contact region between the end-plate and the column flange.
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Chapter 5. FEM modelling of a joint

(a) (b)

Figure 5.12: The deformed joint of Model 1 with end-plate thickness of 10 mm at (a) 50% of the largest

applied moment (b) the end of the simulation.
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6. Analysis of frame

This chapter introduces the frame which the bending moment distribution is determined. The

points where the bending moment is determined are showed.

The considered frame is illustrated in figure 6.1 and is analysed in 2D in both the analytical and

numerical model. Due to symmetry, the moments at the two supports are equal as well as the

moment at the two joints. Therefore only point A, B and C are considered when determining the

moment distribution. The circle with the "x" indicates the joint with rotational springs. Point C

is at the centre of the beam. The dimensions of the beam and columns are listed in table 2.2.

Figure 6.1: Illustration of the static system.

The moment at point A, B and C are determined with varying joint stiffness’s from the joint

assumed pinned to rigid. The bending moment distribution of the considered frame, when the

joints are assumed pinned, rigid and semi-rigid are shown in figure 6.2.
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Chapter 6. Analysis of frame

(a) (b) (c)

Figure 6.2: Principle sketches of the bending moment diagram of a frame with (a) rigid joints (b) pinned

joints (c) semi rigid joints.

The bending moment diagram in figure 6.2 shows the bending moments of the considered frame

when the joints are considered rigid and pinned. It can be seen that the bending moment at the

point of interest are local maxima.

The analytical and numerical models are compared to validate the results. The moments at

point A, B and C are compared and the non-linear moment-rotation curves from chapter 5.3

are then used to establish the relation between the bending moment at the joint and the load q

shown in figure 6.1.
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7. Analytical model

In this chapter the analytical method to determine the bending moment distribution is used. The

analytical method used is the slope-deflection method. The rotational stiffness of the beam-to-

column joint is changed, and the bending moment distribution is determined at the locations

specified in chapter 6. The derivation of the Kleinlogel-type formulations are expanded on in

appendix D.

The slope-deflection method is used to determine the moment distribution of the frame given

in 6.1. The slope-deflection method is a method to obtain the end-moments of statically

indeterminate structures and was first used for analysis of rigid-joint structures [Norris et al.,

1997]. The expressions for the end-moments are derived from rotations and deflection of the

joint and is a linear elastic method [McCormac and Nelson, 1997]. Adolf Kleinlogel authored

a book which contained formulas that determined the internal bending moments and forces

for rigid frames under different loading conditions. The formulas were produced using elastic

analysis with only bending causing deformations and was obtained using the slope-deflections

equations [Kleinlogel, 1953]. Kleinlogel simplified the formulas by introducing notations, which

were specific for a frame with a specific loading scenario [Henderson, 2022].

Kleinlogel’s formula for a portal frame shown in figure 6.1 with fixed support and rigid joints,

have been modified so it includes joint stiffness’s. The bending moment at the support is given

in equation (7.1) and the bending moment at the joints is given in equation (7.2), see appendix D

for the method of obtaining the formulas. The formulations are derived and expressed as a

Kleinlogel-type formulae. [Henderson, 2022]

MA =qL2

12

(1−2K A)KB

(2−K A +kKB )
(7.1)

MB =− qL2

12

(2−K A)KB

(2−K A +kKB )
(7.2)

K A and KB are coefficients which are dependent on the stiffness of the column feet and joint

respectively. They are determined from equation (7.3).

K A = 2E Ic

S j A H +4E Ic
; KB = S j B H

S j B H +2kE Ic
(7.3)

Where:

53



Chapter 7. Analytical model

k is equal to
Ib H

Ic L
Ic is the columns moment of inertia

Ib is the beams moment of inertia

S j A is the rotational stiffness of the support

S j B is the the rotational stiffness of the joint

H is the height of the frame

L is the length of the frame

When the end-moments are known, the bending moment at point C can be determined using

equation (7.4). The derivation is shown in appendix E.

MC = MB + q(L/2)2

2
− qL

2
(7.4)

The rotational stiffness at the support S j A is infinite as the support is assumed fixed. The

coefficient K A will then be equal to 0 and therefore does not influence the bending moment

distribution of the frame when the joints rotational stiffness are changed. The slope-deflection

method assumes the centre-lines of the beam and column are connected with no eccentricities,

see figure 8.2 (a).

The bending moments determined from equation (7.1), equation (7.2) and equation (7.4) can be

normalised with the distributed load q as the model is linear elastic. The results of the analytical

model are shown in chapter 8.2.
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8. Numerical model

The frame is modelled in RFEM to determine the bending moment distribution at different

rotational stiffness’ of the joint. Two models are evaluated, one of which introduces an eccentricity

at the beam-to-column joint, the other assumes no eccentricities. The results of the numerical

model are compared to the result obtained from the analytical model.

The software used to for the numerical modelling is RFEM. The element type is a 2 node elements

with 12 DOFs and is used to represent beams, trusses, ribs, cables and rigid couplings. Each

node consists of 6 DOFs for translational ind the x-, y- and z-direction and rotations around the

x-, y-, and z-axis, see figure 8.1. [Dlubal, 2022]

Figure 8.1: Illustration of the elements used in RFEM and the DOFs.

The model is first used as a linear elastic model, where the relation between the bending

moments and distributed forces are linear. This is done to validate the numerical model by

comparing it to the analytical model. After the numerical model has been validated, the non-

linear moment-rotation curves from chapter 5.3 are used to simulate the bending moments at

a given load q and compared to the analytical model using a linear elastic material model, to

further validate the two models. The load q is gradually increased and a solution is obtained

using Newton-Raphson iterations. Newton-Raphson are further expanded on in appendix C.

The material model is changes to the one described in chapter 2 and the relation between the

bending moment and the load q is determined.
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Chapter 8. Numerical model

8.1 Modelling of frame

Two models are developed. The first models connects the centre lines of the beam and column

and the second which introduces an eccentricity which represents a practical joint more closely.

The eccentricity is introduced by transforming the DOFs in the local stiffness matrix for which an

infinitely stiff beam connects the end-points of the beam and column [Dlubal, 2023b]. The model

where the centre-lines connects represents the analytical model. The moment distributions are

determined for both cases. The joints are illustrated in figure 8.2.

(a) (b)

Figure 8.2: Illustration of the two models in RFEM with (a) joint with no eccentricities (b) joint with

eccentricities. The rigid element is modelled as infinitely stiff beam.

The stiffness of the joints are analysed from being pinned to fixed and the bending moment

at the support, joint and the beam midpoint are measured in the numerical model. Since the

relation between the distributed force and the bending moment are linear-elastic, the bending

moments can be normalised with the distributed load q . The results are shown in chapter 8.2.

8.2 Results and comparison

The results are the normalised bending moment as a function of the initial stiffness. The results

are shown in figure 8.3. The figure shows that the normalised bending moment at Point A, which

is the support, determined analytical and numerical are identical. The numerical model which

includes the joint eccentricities shows a larger bending moment, while the analytical model

closely resembles the numerical model without any joint eccentricities. The normalised bending

moment at Point B, which is the joint, shows a larger bending moment with the numerical model

with the joint eccentricity. The bending moment from the analytical model and the numerical

model with no joint eccentricities are also identical. The bending moments for the numerical

model with joint eccentricity follows the same bending moment development with increasing

stiffness up until a stiffness of around 3500kN m/°. The normalised bending moment at Point C,

which is at the middle of the beam, the bending moment for the numerical model with joint
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8.2 Results and comparison

eccentricity is greater than the other two models. The bending moment for the numerical model

with the joint with no eccentricities is also identical.
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Figure 8.3: The relation between the normalised bending moment distribution and the initial joint

stiffness at Point A, B and C.

The non-linear M −θ curve determined from the moment bearing resistance in chapter 5.3,

is used to compare the analytical model and the numerical model with no joint eccentricity.

Using the M −θ curve to represent the joint behaviour under er loading shown in figure 6.1, the

load q can be determined for the given bending moment. Figure 8.4 shows the analytical and

numerical model, where the numerical model uses a linear-elastic material model.

57



Chapter 8. Numerical model

0 5 10 15 20 25 30 35 40

Distributed load, q [kN/m]

0

5

10

15

20

25

30

35
B

e
n
d
in

g
 m

o
m

e
n
t 
[k

N
m

]

t
ep

=10mm

t
ep

=14mm

t
ep

=17mm

(a)

0 5 10 15 20 25 30 35

Distributed load, q [kN/m]

0

5

10

15

20

25

30

35

B
e
n
d
in

g
 m

o
m

e
n
t 
[k

N
m

]

t
ep

=10mm

t
ep

=14mm

t
ep

=17mm

(b)

0 5 10 15 20 25 30

Distributed load, q [kN/m]

0

5

10

15

20

25

30

35

40

45

B
e
n
d
in

g
 m

o
m

e
n
t 
[k

N
m

]

t
ep

=10mm

t
ep

=14mm

t
ep

=17mm

(c)

0 5 10 15 20 25 30

Distributed load, q [kN/m]

0

5

10

15

20

25

30

35

B
e
n
d
in

g
 m

o
m

e
n
t 
[k

N
m

]

t
ep

=10mm

t
ep

=14mm

t
ep

=17mm

(d)

Figure 8.4: The bending moments at the joint as a function of q for (a) Model 1 (b) Model 2 (c) Model 3 (d)

Model 4. The constant lines represents the numerical model and the dashed lines represents

the analytical model.

The analytical and numerical method shows identical results of the bending moments due to

both models using a linear-elastic material model. Figure 8.5 shows the numerical model using

a non-linear material model.
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Figure 8.5: The bending moments at the joint for (a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4. The

constant lines represents the numerical model and the dashed lines represents the analytical

model.

Using a non-linear material model for the numerical model the results deviates significantly in

figure 8.5. The bending moment at the joint is greater for the numerical model at the same load

compared to the analytical model.

The M −θ-curve for both the analytical and numerical model determined in chapter 5.3 are

compared in figure 8.6 with a material model which is elastic-perfectly plastic.
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Figure 8.6: The bending moments at the joint for (a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4. The

constant lines represents the numerical model and the dashed lines represents the analytical

model.

Figure 8.6 shows a great correlation between the bending moments in general at the linear part

of the graph. When the bending moments reaches non-linearity it deviates significantly which

also was showcased in chapter 5.3, when considering the moment-rotation curves. The figure

also shows that the thinner end-plates reaches the non-linearity at a lower distributed load. The

comparisons of the four models with the same end-plate thickness is shown in figure 8.7.
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Figure 8.7: The bending moments at the joint for (a) end-plate thickness of 10 mm (b) end-plate thickness

of 14 mm (c) end-plate thickness of 17 mm. The constant lines represents the numerical

model and the dashed lines represents the analytical model.

Figure 8.7 shows that the joint of Model 3 attracts a greater bending moment when considering

the distributed loads. This also aligns with the result obtained in chapter 5.3, as the stiffness of

Model 3 is greater than the other models. The bending moment at the centre of the beam is also

influenced by the linear distributed load, as is also indicated in figure 8.3. The bending moment

at the middle of the beam is greater, when the joint tend towards a pinned connection. This can

also illustrated using the obtained moment-rotation curve, see figure 8.8.
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Figure 8.8: Comparison of the bending moment at the joint and the middle of the beam. The lower values

are at the joint, while the greater values are at the middle of the beam

The comparison shown in figure 8.8 shows the increase in bending moments at the centre of

the beam. When the bending moment at the joint reaches a plateau, the joint will resemble

a pinned joint and the beam would then resemble a simple supported beam. Therefore the

bending moments in the beam would increase at a greater rate, when the distributed load would

increase.
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9. Conclusion and discussion

In this chapter the overall project is summarised and concluded upon. A general discussion of the

two methods used is presented. The Models investigated are highlighted and compared.

Bolted joints are one of the most used methods of joining elements together in steel structures

and buildings. Loads are transferred through the joints from one of the connected elements to

the other. A bolted joint consists of a threaded bolt that joins two elements together secured

by a nut. The assembly and structure of the joint as well as the steel grade used can influence

the stiffness and moment bearing capacity. A portal frame with fixed supports are analysed

and a vertical distributed force is applied to the beam. Steel grade S235 is used for the beam,

column and end-plate while bolt grade M8.8 is used in the analysis. The design of the frame is

not considered and therefore the design values evaluated is all the characteristics values. Four

different joint configurations with different bolt-hole placements have been investigated, as well

as the effects of varying end-plate thickness.

Two approaches to determining the effects of the joint configurations are used; the analytical

method and numerical method. The analytical methods consists of the Component Method, to

determine the moment bearing capacity and the other method is the slope-deflection method,

to determine the effects the stiffness of the joint has on the bending moment distribution of the

frame. The numerical method consists of the use of ANSYS to determine the moment bearing

capacity and RFEM to investigate the influence the joint stiffness has on the bending moment

diagram.

9.1 Moment bearing capacity

Firstly a convergence analysis has been performed for the numerical model, to determine if

the number of elements used enough to gain an accurate result. A convergence analysis was

conducted for the Model 1 of the joint in ANSYS. The result from the convergence analysis was

used for the other models as well with the varying end-plate thickness.

The different models moment bearing capacity were used to investigate if the bolt placement

had an influence in the analytical and numerical model. For the models with bolt placement at

the edge of the end-plate ie. Model 2 and Model 3, the numerical model showed a decrease in

the moment bearing capacity compared to the analytical model with an end-plate thickness

of 10 mm. With an greater end-plate thickness the analytical and numerical method gave a

larger moment bearing resistance which could indicate, that the end-plate thickness could be

the limiting factor to a degree. With all the models with increasing end-plate thickness, the

moment bearing resistance increased. The numerical models showcases an increase in moment

bearing resistance, as it becomes greater than the analytical models when increasing the end-

plate thickness. The reasoning could be the stress concentration around the bolt-holes, as the

bolt-holes close to the edges cannot redistribute the stresses with a thin end-plate. Therefore

with a thicker end-plate, the stresses around the bolt-holes redistributes better and the moment

bearing capacity is therefore increased.
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Chapter 9. Conclusion and discussion

An issue of the Component Method is the complexity of the calculations. For a joint with one

bolt-row in tension, the calculations is a bit more simple, as no bolt-row groups are considered.

The complexity increases significantly with an increasing number of bolt-rows in tension. With

two bolt-rows in tension, there is one group of bolt-rows which are considered, while three sets

of bolt-row groups are considered for three bolt-rows in tension.

One problem that occurred in chapter 5 was that the simulations did not reach a moment

plateau and aborted before it could. The reason for this could be the use of force control, and

therefore the simulation could not reach a solution at a certain force. A different load scenario

could have been used, for instance displacement control, but would have required a different

model built as ANSYS cannot introduce a rotational deformation. Displacement control has its

benefits as its typically more stable than load control, as an increase in displacement may not

necessary increase the internal moments and forces. This in turn could lead to the simulations

reaching a plateau where a larger deformation does not lead to an increase in bending moment.

If displacement control should be used a larger model would need to be constructed, where half

the frame is modelled, as symmetry then can be used. Although it can be discussed if a more

precise result is beneficial as the computational time would increase significantly with a larger

numerical model.

To determine the most precise and effective method to determine the moment bearing

capacity involves a lot of factors. To determine the real behaviour of the investigated joints

an experimental analysis should be conducted and could be used to calibrate the numerical

model. The models used to determine the moment bearing capacity in the numerical method is

a simplified model, which has not been compared to a full scale numerical model. The precision

of the simplified model has not been checked and could vary significantly from a full scale

numerical model.

9.2 Bending moment distribution

The different stiffness at the corners of the portal frame is investigated to determine how the

joint stiffness influences the bending moment diagram of the frame. For the analytical method,

with the slope-deflection method, one configuration is investigated where the beam and column

centre-lines are connected. The numerical method is investigated in RFEM and two models are

modelled. The first is where the centre-lines of the beam and columns are connected, and the

second is where an eccentricity is introduced, at which the beam is connected to the flange of

the column. The analytical method are assumed linear elastic while the numerical method is

analysed using both a linear elastic and elastic-perfectly plastic material model. The bending

moments are determined at the column foot, the joint between the column and beam, and the

midpoint of the beam.

The two analysis methods showed identical bending moments at the investigated points if the

linear elastic model where used and there were no eccentricity introduced in the numerical

model. The analytical model and the numerical model with a joint eccentricity showed a small

variation likely due to the different ways the models are constructed.
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9.2 Bending moment distribution

The non-linear moment-rotation curve determined from the moment bearing capacity is used

to simulate the joints bending moment, when the frame is influenced by a linear distributed load.

The load is increased gradually and shows the bending moments at the linear part are similar,

but deviates when the joints reaches non-linearity, when the same model but with different

end-plate thickness are compared.
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A. Stiffness model of Eurocode 3

In this appendix the general model of the Component Method is presented which Annex J of

Eurocode 3 provides.

A.1 Theory behind the Component Method

Annex J of Eurocode 3 provides the background of the Component Method. The annex also

compares the Component Method with test results, which shows a good agreement between

the two methods. The difference in resistance between the two methods is that the Component

Method does not take strain hardening and membrane effects into account.

A.1.1 The general model

It is provided that the rotational capacity is not limited. In the general model of the component

method consist of three parts. The first part is the linear elastic part up to 2/3 of the moment

bearing resistance, M j ,r D . The corresponding stiffness is the initial stiffness, S j ,i ni . After the first

part, the curve becomes non-linear up until the moment reaches M j ,Rd and it then will reach a

yield plateau. This is illustrated in figure A.1.

Figure A.1: The non-linaer M −θ curve.

The shape of the non-linear part is given with equation (A.1).

S j =
S j ,i ni(

1,5M j ,Sd

M j ,Rd

)ψ (A.1)

Where
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Chapter A. Stiffness model of Eurocode 3

ψ for end-plated joint it is 2,7

It is then necessary to determine S j ,i ni , to determine the stiffness of the non-linear part. The

joint is considered as a spring, where the spring is connected to the intersection of the beam

and column centrelines, see figure A.2. The properties of the spring expresses the relationship

between the bending moment ME d and the corresponding rotationΦE d .

Figure A.2: The joint and how it is modelled.

The initial stiffness is derived from the elastic stiffness of the components, which can be

represented as a rotational spring. The force-deformation relation is given by equation (A.2).

Fi = ki ·E ·∆i (A.2)

Where

Fi is the force in the spring of component i

ki is the stiffness coefficient of component i

E is the Young modulus

∆i is the spring deformation of component i

It can be observed in equation (A.2) that the stiffness of the the individual component is given as

ki ·E , which means the stiffness coefficients is a unit of length. Each of the components springs

are combined into a single spring model, see figure A.3, which shows a spring model for a bolted

end-plate with two bolt-rows in tension. From figure A.3 it can be seen that the moment M j

results in a rotationΦ j . It is assumed that the deformation at the bolt-row is proportional to the

distance to the centre of compression for all bolt-rows. Figure A.3 represents a spring model for

an end-plated joint with two bolt-rows, where each spring has a stiffness coefficient of ki .
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A.1 Theory behind the Component Method

Figure A.3: The joint and how it is modelled.

Each spring represents a basic component, which is given as the following, where r indicates

the bolt-row:

• k1 - Column web panel in shear

• k2 - Column web in compression

• k3,r - Column web in tension

• k4,r - Column flange in bending

• k5,r - End-plate in bending

• k10,r - Bolts in tension

The summarised force of all the springs in tension is equal til F . The moment M j is then equal

to F z, where z is the distance between the centre of tension and centre of compression. The

rotationΦ j can likewise be rewritten as equation (A.3).

Φ j =
∑
∆i

z
(A.3)

The initial stiffness can be derived from equation (A.2) and equation (A.3) and is given in

equation (A.4).

S j ,i ni = E z2∑ 1

ki

(A.4)

With two bolt-rows the individuel stiffness coefficients can be substituted to an effective stiffness

coefficient ke f f ,r , representing the deformation for each bolt-row, and an equivalent stiffness

coefficient keq , representing the total deformation for both bolt-rows, see figure A.4. The

equivalent spring is acting with a lever arm z to the centre of compression. The equivalent

stiffness keq can be used directly in equation (A.4).
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Chapter A. Stiffness model of Eurocode 3

Figure A.4: The effective stiffness coefficient and equivalent stiffness coefficient.

To determine the stiffness coefficients, the concept of "equivalent T-stub" may be used. The

method can both be used to calculate the strength and stiffness of the components. This is

explained in chapter 4.1.
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B. Worked Example - Component method

The joint stiffness and moment bearing capacity of Model 1 is determined in this worked example.

The model consists of a HE240B column, an IPE200 beam, an end-plate with dimension 240 mm

× 240 mm and 4 M16 bolts, see table B.1 for the dimensions. The worked example is based on

Eurocode 3 Part 1-8.

Parameter Unit Value

Beam IPE200 Height, hb mm 200

Width, bb mm 100

Thickness of the flange, t f b mm 8,5

Thickness of the web, twb mm 5,6

Radius of root fillet, rb mm 12

Moment of inertia, Iy mm4 19,4106

Column HE240B Height, hc mm 240

Width, bc mm 240

Thickness of the flange, t f c mm 17

Thickness of the web, twc mm 10

Radius of root fillet, rc mm 21

Moment of inertia, Iy mm4 80,9106

End-plate Height, hep mm 240

Width, bep mm 240

Thickness, tep mm 10,14,17

Bolt M16 Diameter of shaft, di mm 13,5

Bolt-head height, hb mm 10

Nut height, hnut mm 13

Washer diameter, dw mm 30

Washer thickness, tw mm 3

Steel Yield strength, fy MPa 235

Yield strength bolts, fyb MPa 640

Modulus of elasticity, E MPa 2,1105

Poisson’s ratio, ν 0,30

Table B.1: The dimensions used to determine the moment bearing capacity using the Component

Method.

The placements of the beam and bolts are shown in figure B.1.
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Figure B.1: The placements of the beam and bolts.

The four joint configurations are named Model 1-4 and described in table B.2.

e1 e2 p1 p2

[mm] [mm] [mm] [mm]

Model 1 70 70 100 100

Model 2 35 35 100 170

Model 3 45 70 100 100

Model 4 70 45 100 150

Table B.2: Description of the joint configuration.

B.1 Moment bearing resistance

The basic components are identified according to Eurocode 3 Part 1-8 as: Column web in

transverse tension, column flange in bending, end-plate in bending, beam web in tension and

bolts in tension. The procedure of determining the moment bearing resistance are divided into

four steps:

• Step 1 - Identify the key dimensions to determine le f f

• Step 2 - Calculate le f f

• Step 3 - Calculate the resistance of the T-stubs and web panels

• Step 4 - Determine the moment bearing capacity
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B.1 Moment bearing resistance

B.1.1 Step 1

Step 1 is to identify the key elements to determine le f f for the column flange and end-plate.

Column flange in bending

Clause 6.2.6.4 in Eurocode 3 Part 1-8.

Figure B.2: The dimensions of m,rc ,e and emi n where e = emi n = e2.

Due to the end-plate and column flange having the same width, e = emi n = e2. m is determined

for the column:

mc = p2

2
− twc

2
−0,8rc = 100mm

2
− 10mm

2
−0,8 ·21mm

mc = 28,2mm

End-plate in bending

Clause 6.2.6.5 in Eurocode 3 Part 1-8.

Figure B.3: The dimensions of e and p where p = p1.

m is determined for the end-plate:
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Chapter B. Worked Example - Component method

mep = p1

2
− twb

2
−0,8rc = 100mm

2
− 5,6mm

2
−0,8 ·12mm

mep = 37,60mm

The beam flange is considered a stiffener and therefor the α value is determined. m2 is shown in

figure B.4.

Figure B.4: The values of m and m2. ap is the length of the weld root

λ1 =
mep

mep +e
= 37,6mm

37,6mm+70mm

λ1 = 0,35

λ2 = m2

mep +e
= 43,6mm

37,6mm+70mm

λ2 = 0,41

α= 6,5

α is read on graph from Eurocode 3 Part 1-8 figure 6.11.

B.1.2 Step 2

Step 2 is to determine the effective lengths for the column flange in bending and end-plate in

bending. The effective length are determined for bolt-row 1, 2 and as a bolt-row group and are

denoted as follows for mode 1 for the column flange in bending:

le f f ,1, f c,1 Effective length for bolt-row 1 at mode 1

le f f ,1, f c,2 Effective length for bolt-row 2 at mode 1

le f f ,1, f c,1−2 Effective length for bolt-row group at mode 1

The effective length for the end-plate in bending will have the subscript "ep".
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B.1 Moment bearing resistance

Column flange in bending

Bolt-row location: Bolt-row 1, 2 and group

Bolt-row 1:

le f f ,cp,1 = min

([
2πmc

πmc +2e1

])
= min

([
2π ·28,2mm

π ·28,2mm+2 ·70mm

])
le f f ,cp,1 = 177,19mm

le f f ,nc,1 = min

([
4mc +1,25e

2mc +0,625e +e1

])
= min

([
4 ·28,2mm+1,25 ·70mm

2 ·28,2mm+0,625 ·70mm+70mm

])
le f f ,nc,1 = 170,15mm

Bolt-row 2:

le f f ,cp,2 = 2πmc = 2π ·28,2mm

le f f ,nc,1 = 177,19mm

le f f ,nc,2 = 4mc +1,25e = 4 ·28,2mm+1,25 ·70mm

le f f ,nc,2 = 200,30mm

Bolt-row 1 as a group:

le f f ,cp,g r 1 = min

([
πmc +p1

2e1 +p1

])
= min

([
π ·28,2mm+100mm

2 ·70mm+100mm

])
le f f ,cp,g r 1 = 188,59mm

le f f ,nc,g r 1 = min

([
2mc +0,625e +0,5p1

e1 +0,5p1

])

= min

([
2 ·28,2mm+0,625 ·70mm+0,5 ·100mm

100mm+0,5 ·100mm

])
le f f ,nc,g r 1 = 120,00mm

Bolt-row 2 as a group:

le f f ,cp,g r 2 = min

([
πmc +p1

2e1 +p1

])
= min

([
π ·28,2mm+100mm

2 ·70mm+100mm

])
le f f ,cp,g r 2 = 177,19mm

le f f ,nc,g r 2 = min

([
2mc +0,625e +0,5p1

e1 +0,5p1

])

= min

([
2 ·28,2mm+0,625 · (70mm+100mm)+0,5 ·100mm

70mm+100mm+0,5 ·100mm

])
le f f ,nc,g r 2 = 150,15mm

The effective length for the individual bolt-rows for mode 1 and 2 is determined with the

following equations:
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Mode 1

le f f ,1 = min

([
le f f ,cp

le f f ,nc

])
Mode 2

le f f ,2 = le f f ,nc

The effective length for the a bolt-row group for mode 1 and 2 is determined with the following

equations:

Mode 1∑
le f f ,1 = min

([∑
le f f ,cp∑
le f f ,nc

])
Mode 2∑

le f f ,2 =
∑

le f f ,nc

The effective lengths becomes for individual bolt-rows:

Mode 1

le f f ,1, f c,1 = 170,15mm

le f f ,1, f c,2 = 177,19mm

le f f ,1, f c,1−2 = 270,15mm

Mode 2

le f f ,2, f c,1 = 170,15mm

le f f ,2, f c,2 = 200,30mm

le f f ,2, f c,1−2 = 270,15mm

End-plate in bending

The same procedure is done with the end-plate with the use of different expressions for le f f

which is from Eurocode 3 Part 1-8 Table 6.6.
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B.1 Moment bearing resistance

Bolt-row 1:

le f f ,cp,1 = 2πmep = 2π ·37,6mm

le f f ,cp,1 = 236,25mm

le f f ,nc,1 =αmep = 6,5 ·37,6mm

le f f ,nc,1 = 244,40mm

Bolt-row 2:

le f f ,cp,2 = 2πmep = 2π ·37,6mm

le f f ,cp,2 = 236,25mm

le f f ,nc,2 = 4mep +1,25e1 = 4 ·37,6mm+1,25 ·70mm

le f f ,nc,2 = 237,90mm

Bolt-row 1 as a group:

le f f ,cp,g r 1 =πmep +p1 =π ·37,6mm+100mm

le f f ,cp,g r 1 = 218,12mm

le f f ,nc,g r 1 = 0,5p +αmep − (2mep +0,625e1)

= 0,5 ·100mm+6,5 ·37,6mm− (2 ·37,6mm+0,625 ·70mm)

le f f ,nc,g r 1 = 175,45mm

Bolt-row 2 as a group:

le f f ,cp,g r 2 =πmep +p =π ·37,6mm+100mm

le f f ,cp,g r 2 = 218,12mm

le f f ,nc,g r 2 = 2mep +0,625e1 +0,5p = 2 ·37,6mm+0,625 ·70mm+0,5 ·100mm

le f f ,nc,g r 2 = 168,95mm

The effective lengths becomes for individual bolt-rows:

Mode 1

le f f ,1,ep,1 = 236,25mm

le f f ,1,ep,2 = 236,25mm

le f f ,1,ep,1−2 = 344,40mm

Mode 2

le f f ,2,ep,1 = 244,40mm

le f f ,2,ep,2 = 237,90mm

le f f ,2,ep,1−2 = 344,40mm

B.1.3 Step 3

Step 3 is to determine the resistance of the T-stub and web panels.
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Column flange in bending

First it is checked if prying forces develops. Prying forces develops if the following condition

applies:

Lb ≤ L∗
b = 8,8m3

c As

le f f ,1, f c t 3
f c

As is the shear area of the bolt and is 157mm2. Lb is the bolts elongation length and is equal

to 46 mm and mc = 28,2mm and t f c = 17mm. L∗
b is determined for bolt-row 1, 2 and the bolt

group.

le f f ,1, f c,1 = 170,15mm

le f f ,1, f c,2 = 177,19mm

le f f ,1, f c,1−2 = 270,15mm

Lb = 46mm 6≤ L∗
b =


37,06mm

35,59mm

23,34mm




Prying forces does not develop in this joint configuration and therefore only Mpl ,1 is used. In

case prying forces develops both Mpl ,1 and Mpl ,2 needs to be determined. The plastic bending

resistance can be determined for bolt-row 1, 2 and the bolt group with the known effective

lengths and then the tension resistance is determined afterwards.

The tension resistance for the column flange in bending can now be determined. The effective

lengths are calculated earlier and given as:

Mode 1

le f f ,1, f c,1 = 170,15mm

le f f ,1, f c,2 = 177,19mm

le f f ,1, f c,1−2 = 270,15mm

Mode 2

le f f ,2, f c,1 = 170,15mm

le f f ,2, f c,2 = 200,30mm

le f f ,2, f c,1−2 = 270,15mm

Tension resistance Mode 1 and 2 for the column flange in bending:
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B.1 Moment bearing resistance

The column flange thickness is given as 17 mm and fy = 235 MPa.

Mpl ,1, f c = 0,25 · le f f ,1, f c t 2
f c fy = 0,25le f f ,1, f c · (17mm)2 ·235MPa

Mpl ,1, f c =


2,89kNm

3,01kNm

4,59kNm




FT,1−2, f c =
2Mpl ,1, f c

mc
= 2Mpl ,1, f c

28,2mm

FT,1−2, f c =


204,89kN

213,36kN

325,31kN




Tension resistance Mode 3 for the column flange in bending:

Mode 3 is bolt failure and is given as:

FT,3, f c =
∑

(nbFt )

nb is the number of bolts in one bolt-row, which is 2 bolts. Ft is the tension resistance of a single

bolt. k2 is given as 0,9 according to Eurocode 3 Part 1-8.

Ft = k2 fyb As = 0,9 ·235MPa ·157mm2

Ft = 90,43kN

The bolt resistance for each bolt-row:

FT,3, f c =


180,86kN

180,86kN

361,72kN




End-plate in bending

The same procedure is repeated to determine the tension resistance of the end-plate. First it is

checked if prying forces develops, where Lb , As is the same as before and mep = 34,6mm. The

end-plate thickness is 10 mm:
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Chapter B. Worked Example - Component method

le f f ,1,ep,1 = 236,25mm

le f f ,1,ep,2 = 236,25mm

le f f ,1,ep,1−2 = 344,40mm

Lb ≤ L∗
b =

8,8m3
ep As

le f f ,1,ep t 3
ep

Lb = 46 ≤ L∗
b =


310,87mm

310,87mm

213,25mm




Prying forces develops. The tension resistance for end-plate in bending can now be determined.

The effective lengths for the end-plate is given as:

Mode 1

le f f ,1,ep,1 = 236,25mm

le f f ,1,ep,2 = 236,25mm

le f f ,1,ep,1−2 = 344,40mm

Mode 2

le f f ,2,ep,1 = 244,40mm

le f f ,2,ep,2 = 237,90mm

le f f ,2,ep,1−2 = 344,40mm

Tension resistance Mode 1 for the end-plate in bending:
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B.1 Moment bearing resistance

Method 1:

Mpl ,1,ep = 0,25le f f ,1,ep t 2
p fy = 0,25 · le f f ,1,ep · (10mm)2 ·235MPa

Mpl ,1,ep =


1,39kNm

1,39kNm

2,02kNm




FT,1,method1,ep = 4Mpl ,1,ep

mep
= 4Mpl ,1,ep

37,6mm

FT,1,method1,ep =


147,65kN

147,65kN

215,25kN




Method 2:

nep = min

([
emi n

1,25mep

])
= min

([
70mm

1,25 ·37,6mm

])
nep = 47mm

ew = dw

4
= 30mm

4

ew = 7,5mm

FT,1,method2,ep = (8nep −2ew )Mpl ,1,ep

2mep nep −ew (mep +nep )
=

(8 ·47mm−2 ·7,5mm)Mpl ,1,ep

2 ·37,6mm ·47mm−7,5mm · (37,6mm+47mm)

FT,1,method2,ep =


172,78kN

172,78kN

251,88kN




Tension resistance Mode 2 for the end-plate in bending:

Mpl ,2,ep = 0,25le f f ,2,ep t 2
ep fy = 0,25 · le f f ,2,ep · (10mm)2 ·235MPa

Mpl ,2,ep =


1,44kNm

1,40kNm

2,02kNm




FT,2,ep = 2Mpl ,2,ep +nep
∑

Ft

mep +nep
= 2Mpl ,2,ep +47mm

∑
Ft

37,6mm+47mm

FT,2,ep =


134,42kN

133,52kN

148,31kN




Tension resistance Mode 3 for the end-plate in bending:

The tensions resistance of the bolts are the same as the one calculated for column flange in

bending.
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Chapter B. Worked Example - Component method

FT,3,ep =


180,86kN

180,86kN

361,72kN




Column web in transverse tension

The effective width be f f ,t ,wc is taken equal to le f f ,1, f c due to being lower than le f f ,2, f c . The

shear area Avc of the column web is determined as well as the reduction factor ω.

be f f ,t ,wc,1 = 170,15mm

be f f ,t ,wc,2 = 177,19mm

be f f ,t ,wc,1−2 = 270,15mm

Avc = max

([
Ac −2bc t f c + (twc 2rc )t f c

ηhwc twc

])

= max

([
10,6 ·103mm2 −2 ·240mm ·17mm+ (10mm ·2 ·21mm) ·17mm

1,0 ·206mm ·10mm

])
Avc = 3324mm2

ω= 1

1+1,3

(
be f f ,t ,wc

twc

Avc

)2 = 1

1+1,3

(
be f f ,t ,wc

10mm

3324mm2

)2

ω=


0,75

0,73

0,54




From the given values, the tension resistance for the column web in transverse tension is given

as:

Ft ,wc =ωbe f f ,t ,wc twc fy = be f f ,t ,wc ·10mm ·235MPa

Ft ,wc =


298,26kN

304,07kN

341,56kN




Beam web in tension

The effective width be f f ,t ,wb is taken equal to le f f ,1,ep due to being lower than le f f ,2,ep .
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B.1 Moment bearing resistance

be f f ,t ,wb,1 = 236,25mm

be f f ,t ,wb,2 = 236,25mm

be f f ,t ,wb,1−2 = 344,40mm

Ft ,wb = be f f ,t ,wb twb fy = be f f ,t ,wb ·5,6mm ·235MPa

= Ft ,wb


310,90kN

310,90kN

453,23kN




Column web in compression

The effective width is determined.
p

2ap is the leg-size of the weld and is 8 mm. s is equal to

rc = 27 mm. sp is equal to tep and is the length when dispersing through the end-plate at a 45°

angle.

be f f ,c,wc = t f b +2
p

2ap +5(t f c + s)+ sp

= 8,5mm+2 ·8mm+5 · (17mm+27mm)+10mm = 216,5mm

ρ is determined from the plate slenderness λ̄p . dwc is the web panel depth and is given as

164 mm

λ̄p = 0,932

√
be f f ,c,wc dwc fy

Et 2
wc

= 0,932

√
216,5mm ·164mm ·235MPa

210000MPa · (10mm)2

λ̄p = 0,58 ⇒ ρ = 1

ω is determined:

ω= 1

1+1,3

(
be f f ,c,wc

twc

Avc

)2 = 1

1+1,3 ·
(
216,5mm · 10mm

3324mm

)2

ω= 0,64

The resistance of the column web in compression is determined where kwc = 1.

Fc,wc = min

([
ωkwc be f f ,c,wc twc fy

ωkwcρbe f f ,c,wc twc fy

])
= min

([
0,64 ·1 ·216,5mm ·10mm ·235MPa

0,64 ·1 ·1 ·216,5mm ·10mm ·235MPa

])
Fc,wc = 325,62kN
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Chapter B. Worked Example - Component method

Web panel in shear

The resistance of the web panel in shear is determined. The shear are of the column was

claculated earlier to 3324mm2.

Vw p = 0,9 fy Avcp
3

= 0,9 ·235MPa ·3325mm2

p
3

Vw p = 405,89kN

Summary: Resistance of the T-stub

The resistance for the individual T-stubs is the lowest resistence for each bolt-row and the group

of bolt-rows and is given as follows:

FT =


134,42kN

133,52kN

148,31kN




The sum of the tension resistance of the first two rows are greater than the tension resistance for

the bolt-row groups. The individual bolt-row tension resistance needs to satisfy the following:

FT,r 1 +FT,r 2 ≤ FT,r 1−2

The tension resistance of the individual bolt-row is reduced so it satisfies the expression. The

tension resistance of the bolt-row at the bottom is reduced until it is satisfied and therefore

becomes:

FT =


134,42kN

13,89kN

148,31kN




B.1.4 Step 4

The last step is to determine the moment bearing capacity. The moment bearing capacity is

determined as the following:

M j =
∑

r
hr Ftr = 145,75mm ·134,42kN+45,75mm ·13,89kN

M j = 20,23kNm
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B.2 Rotational stiffness

B.2 Rotational stiffness

The individual components stiffness coefficients is determined for row 1 and 2. z is taken as the

midway point between the two bolt-rows to the centre of compression and is 95,75 mm:

k1 = 0,38Avc

βz
= 0,38 ·3324mm2

1 ·95,75mm

k1 = 13,19mm

k2 =
0,7be f f ,c,wc twc

dc
= 0,7 ·216,5mm ·10mm

164mm

k2 = 9,10mm

k3,r =
0,7be f f ,t ,wc,r twc

dc
= 0,7 ·be f f ,t ,wc 10mm

164mm

k3,r =
([

7,26mm

7,56mm

])

k4,r =
0,9le f f , f c,r t 3

f c

d 3
c

= 0,91 · le f f , f c,r · (17mm)3

(164mm)3

k4,r =
([

23,66mm

29,61mm

])

k5,r =
0,9le f f ,ep,r t 3

p

m3
ep

= 0,9 · le f f ,ep,r · (10mm)3

(37,6mm)3

k5,r =
([

2,97mm

2,86mm

])

k10 = 1,6As

Lb
= 1,6 ·157mm

46mm

= k10 = 5,46mm

ke f f is determined where k3,r , k4,r , k5,r and k10 is used for each bolt-row.

ke f f ,r =
1∑

i

1

ki ,r

=
([

1,43mm

1,43mm

])

zeq and keq is determined:
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Chapter B. Worked Example - Component method

zeq =

∑
r

ke f f ,r h2
r∑

r
ke f f ,r hr

= 1,43mm · (145,75mm)2 +1,43mm · (45,75mm)2

1,43mm ·145,75mm+1,43mm ·45,75mm

zeq = 121,83mm

keq =
∑
r

ke f f ,r hr

zeq
= 1,43mm ·145,75mm1,43mm ·45,75mm

121,83mm

keq = 2,25mm

The initial rotational stiffness can then be determined for µ= 1:

S j = E z2

µ
∑ 1

ki

= 210000MPa · (95,75mm)2

1 ·
(

1

k1
+ 1

k2
+ 1

keq

)
S j = 3052,70kNm
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C. Newton-Raphson

In this appendix the Newton-Raphson method for establishing the behaviour of a non-linear

model. This appendix is based on Cook et al., 2002.

Linear models tend to provide results which are suitable approximations for common and

everyday problems which involves engineering. However, non-linearity is a common problem

as materials in the perspective of structural mechanics often behave non-linearly. Non-linearity

of a material could be non-linear elasticity, plasticity and creep and is non-linear due to the

stiffness of the material becomes a function of the displacement and deformation.

Newton-Raphson is a method to determine the displacement u to the corresponding load P

when the material behave non-linear. Considering the initial state where u = 0, a load P1 is then

applied and the corresponding displacement u1 is unknown. The displacement is determined

by first estimating the initial tangent stiffness ktO , see figure C.1.

Figure C.1: Iterations to converge at load P1.

The initial load increment is the load itself, as there is no load at the start. The estimated initial

stiffness ktO is used to calculate the current displacement increment.

ktO∆u =∆P1 ∆u = k−1
tO∆P uA = 0+∆u
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Chapter C. Newton-Raphson

ua is the current estimate of the of u1 and are not exact due to the deformation not corresponding

to the load P1. The load imbalance ePA can then be determined as:

ePA = P1 −kuA

k is the stiffness evaluated at displacement uA and kuA would then equal the load Pa . The idea

is then to reduce the load imbalance to zero by iterations. The load P1 is kept constant and

another step is taken from point a with the tangent of kt a . This results gives a displacement of

uB which is a more accurate displacement for the load P1. The load increment from point a is

ePA and the current displacement increment is determined and updated:

kt a∆u = ePA ∆u = k−1
t a ePA uB = uA +∆u

The force at displacement uB is still not equal to P1 and the current load imbalance is then:

ePB = P1 −kuB

k is the stiffness evaluated at displacement uB and kuB would then equal to the load Pb . The

next step is to move along another tangent beginning at point b. This iterations step is repeated

and the next iteration would come closer to a deflection which corresponds to the load P1.

The more iterations that are performed, the closer the load imbalance gets to zero and the

displacement will tend to u1. The next load increment P2 can then be added and the iterations

are repeated until the corresponding displacement u2 are reached.
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D. Slope-deflection method

The method of determining the moment distribution at the supports and joints are expanded here.

This appendix is based on [Henderson, 2022].

The slope-deflection method is used to determine the bending moments at the frame supports

and the joints. The slope-deflection method establishes a relation between the end moments

and the rotation as well as the displacement of the considered element. Equations are developed

that describes the relations when considering the curvature of the element. The slope-deflection

method can be used to analyse statically determinate and indeterminate beams and frames.

Figure D.1: Illustration of the support conditions of the beam.

Considering the beam element shown in figure D.1, the equations are given as:

MAB = 2E I

L

(
2θA +θB − 3δ

L

)
−MF (D.1)

MB A = 2E I

L

(
θA +2θB − 3δ

L

)
−MF (D.2)

Where

MAB , MB A is bending moment at A and B respectively

θA ,θB is the rotation at A and B respectively

δ is the relative deflection

MF is the fixed-end moment

The frame can be divided into three individual elements: two columns connected to the beam,

see figure D.2. Point C is used to indicate the middle of the beam. The sum of the moment at a

joint is equal to zero. So at B where element A-B and B-D connects, the moments MB A+MBC = 0.

The frame is symmetrical and the members are assumed axially rigid which results in the relative

displacement δ= 0.
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Chapter D. Slope-deflection method

Figure D.2: Illustration of the elements and internal moments of the frame.

Considering a single element AB with a rotation at each end, see figure D.3, the end-moments

can be described in equation (D.3).

Figure D.3: Illustration of the beam with end moments and rotation.

MA = 4E I

L
θA + 2E I

L
θB (D.3)

For a beam with fixed connection with a uniform load q , see figure D.4, the fixed-end moments

are given in equation (D.4).

Figure D.4: The moments of a fixed beam with a line load q .

MA =−qL2

12
(D.4)

96



From figure D.3 the rotation at A and B are equal but in the opposite direction. Using the

principle of superposition the moment at A is determined in equation (D.5).

MA = 2E I

L
θ− qL2

12
(D.5)

When introducing a rotational stiffness at the supports and joints the bending moments due to

the springs can be denoted Sθ, where S is the rotational spring and θ is the rotational spring.

The sum of the bending moment in the column and bending moment due to the spring is equal

to 0, this is expressed in equation (D.6).

S AθA + 2E Ic

H
(2θA +θB ) = 0 (D.6)

Likewise the slope-deflection equations can be used at the joints, see equation (D.7).

MBD L

2E Ib
+ MBD

SB
= 2θB +θD (D.7)

Solving for the bending moments at the support and the joints then give the Kleinlogel-type

formulations, see equation (D.8) and equation (D.9).

MA =qL2

12

(1−2K A)KB

(2−K A +kKB )
(D.8)

MB =− qL2

12

(2−K A)KB

(2−K A +kKB )
(D.9)

K A and KB are coefficients which are dependent on the stiffness of the column feet and joint

respectively. They are determined from equation (D.10).

K A = 2E Ic

S j A H +4E Ic
; KB = S j B H

S j B H +4E Ic
(D.10)

Where:

k is equal to
Ib H

Ic L
S j A is the rotational stiffness of the support

S j B is the the rotational stiffness of the joint

H is the height of the frame

L is the length of the frame
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E. Bending moment at the centre of a beam

The bending moment at the centre of the beam is derived, when the end-moments are known, in

this appendix.

The internal bending moment at the centre of the beam is determined with the use of equilibrium

analysis. Figure E.1 shows the forces acting on the beam. The supports are shown as pinned

with a rotational stiffness.

Figure E.1: Illustration of the support conditions of the beam.

The free body diagram of the beam can be seen in figure E.2. Due to the rotational stiffness,

a moment is developed at the supports. The forces at each supports are identical due to the

frame being symmetrical at centre of the beam. The bending moments M0 are known from the

slope-deflection method and V0 is given as half the distributed load summarised over the beam

length.

Figure E.2: Free body diagram of the beam.

To determine the internal bending moments, the beam is divided such the sections forces are

illustrated in figure E.3.

Figure E.3: Section forces of the beam.

Determining the moment at the cut of the beam gives the equation:
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Chapter E. Bending moment at the centre of a beam

M(x)−M0 +qx − qx2

2
= 0 (E.1)

⇓

M(x) = M0 −qx + qx2

2
(E.2)

The bending moment at Point C where x = L/2 is determined from equation (E.3).

M(L/2) = M0 − qL

2
+ q(L/2)2

2
(E.3)

This is the bending moment at the centre of the beam with supports with a rotational stiffness.
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