
Lasse Leuchtmann 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In-silico modelling of cardiopulmonary interactions for estimating pulse pressure 

variation under conditions of respiratory muscle activity 

28/02/2024 



Second year of masters degree at Department of Health

Science and Technology

Biomedical Engineering and Informatics

Selma Lagerløfs Vej 249

9260, Gistrup

https://www.hst.aau.dk

https://www.hst.aau.dk


ST8 Group 8406

Project topic:
Masters project: In-silico mod-

elling of cardiopulmonary inter-

actions for estimating pulse pres-

sure variation under conditions

of respiratory muscle activity

Project period:

September 2023 - february 2024

Participants:

Lasse Henrik Bech Leuchtmann

Supervisors:

Stephen Edward Reese

Pages report: 56

Pages appendix: 46

Pages total: 102

Finished: 1st of march, 2024

Abstract:

Introduction Patients receiving mechanical ventilation

(MV) often require fluid resuscitation, due to e.g. sepsis or

trauma. However, only 50% of patients are capable of adapt-

ing their cardiac output (CO) in response to fluid resusci-

tation. The ability to adapt is termed fluid responsiveness

(FR). Pulse pressure variation (PPV) is a reliable biomarker

for predicting FR. However, PPV is unreliable when respi-

ratory muscle activity (Pmus) occurs. This study hypothe-

sises a method for augmenting the PPV signal with an ex-

tra indice, -PPV, derived from the effect of pressure support

(PS) variation on Pmus. The study conducted research into

construction of a physiological model capable of predicting

+PPV/-PPV. Methods A respiratory model based on the

equation of motion (EOM), an intrathoracic model employ-

ing the α parameter and a cardiovascular model were com-

bined with a feature extraction and optimization framework

to predict +PPV/-PPV, and tested on data from a clin-

ical trial researching the hypothesis. Results The model

predicted +PPV/-PPV accurately on average, with all but

one test resulting in ∆mean < 0.55%. Furthermore, the

model predicted +PPV with R2 = 19 and R2 = 0.62, per-

forming best at high PS timeframes. Discussion The mod-

els predictions were most accurate in conditions of positive

intrathoracic pressure (Pit), and performance decreased at

conditions of negative Pit. Thus, it is hypothesised that

augmenting the models SB module as well as the data pro-

cessing and extraction phases could improve the models g

performance. Testing on a larger sample size is necessary

to generalize this conclusion. Conclusion The cardiopul-

monary model was capable of relatively accurately predict-

ing the +PPV/-PPV signal at conditions of high Pit, and

it is hypothesised that research into the SB module could

improve performance on the entire signal.
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Preface
This study aimed to support research into the hypothesis that pulse pressure variation (PPV) can be

augmented by changes in respiratory muscle activity Pmus due to PS variations, overcoming a common

limitation of PPV. The study researched, designed and build a model of the cardiopulmonary interactions,

capable of predicting PPV as well as -PPV, the extra indice derived from the hypothesis. The prediction

of both indices simultaneously will consecutively be termed +PPV/-PPV. By combining a respiratory

model based on the equation of motion (EOM), an intrathoracic model introducing the α parameter,

and a cardiovascular model, as well as a parameter and input extraction and optimization framework,

+PPV/-PPV was predicted. The predictions had a non-trivial accuracy, however limitations apply to

the conclusion of the results.

This thesis was supervised by Professor Stephen Edward Rees in the period September the 3rd to the

29th of february 2024. A big thanks is given to Stephen Edward Rees for supervising this project!
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In this project, when referring to literature, the Harvard method has been used. If a source only has

one author, the author’s surname followed by the published year of the source will be shown e.g. [Cryer,

1999]. If the source has multiple authors, the main author’s surname is used followed by "et al." and the

year the source was published e.g. [Vu et al., 2020].

If the source is used actively, the name of the author will be unbracketed and the year will be bracketed,

eg. Seo et al. [2019]
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1 | Introduction
Respiratory failure defines the body’s inability to adequately perform external respiration. Treatment of

respiratory failure often requires the patient to be put on mechanical ventilation (MV). [Yoder, 2016]

In 2021, 27,487 patients were admitted to the ICU in Denmark. Of these, 13,096, corresponding to 47.6%,

received mechanical ventilation. [Dansk Intensiv Database, 2021] Furthermore, a total of 1,596 patients

were admitted to the ICU for COVID-19 treatment. Out of these, 898, corresponding to 56.14%, received

mechanical ventilation. [Dansk Intensiv Database, 2021]

Patients under MV often suffer conditions which require fluid resuscitation, e.g. sepsis or trauma. Sepsis

reduces induces hypovolemia, decreases tissue perfusion and as a result O2 delivery. Trauma can lead to

acute blood loss, activating hemodynamic responses to restore volume. [Wallace and Regunath]

The purpose of fluid resuscitation is to increase cardiac output (CO) and organ perfusion, in order to

restore hemodynamic stability [Wallace and Regunath]. 60% of patients which develop ARDS receive

inotropics, with the majority being administered fluid resuscitation [Carvalho et al.].

The ability of a patient to adapt CO to the increase in blood volume, is termed fluid responsiveness (FR).

However, only 50 % of patient administered fluid resuscitation, are FR. [Treboul et al., 2018]

Several biomarkers exist to predict FR. The most reliable of these, is pulse pressure variation (PPV).

[Treboul et al., 2018]

PPV is a measure of the changes in arterial pressure during the respiratory cycle, often measured at the

pulmonary artery (Ppa). PPV occurs as a result of cardiopulmonary interactions, wherein changes in

plural pressure (Ppl) during respiration, affect intrathoracic pressure (Pit). The change in Pit is then

transduced to Ppa changes, resulting in variation of the pulse pressure.

However, PPV is unreliable when spontaneous breathing (SB) or cardiac arrythmias occur. Thus, research

into novel methods for FR prediction capable of overcoming these limitations are necessary. [Treboul

et al., 2018]

This study aimed to investigate a hypothesis, which proposes a novel method for overcoming the limita-

tions imposed on PPV as a predictor of FR.

The foundation of the hypothesis, is based on interactions that pressure support (PS) MV has on respira-

tory muscle activity. Increasing PS reduces respiratory muscle activity. Conversely, reducing PS increases
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respiratory muscle activity. [Roesthuis et al.; E. Brackett and Sanghavi; Duiverman et al.]

Thus, by applying physiological knowledge and advanced signal processing, it is hypothesised that PS is

able to augment the PPV signal in a way that overcomes its limitations.

This study aims to investigate the hypothesis via in-silico experimentation, using statistical comparison

with data obtained from in-vivo clinical experimentation to conclude on the hypothesis’ feasibility.
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2 | Problem Analysis

2.1 Mechanical Ventilation
Understanding the issues associated with the project’s hypothesis, necessitates knowledge of mechanical

ventilation.

2.1.1 Purpose of Mechanical Ventilation

Mechanical ventilation (MV) is a supportive intervention used to sustain respiratory function in patients

with acute respiratory failure. MV strives to provide the patient with proper oxygenation, eliminate

CO2, and to support the patients work of breathing (WOB) [Zhang et al., 2019].

See appendix I for the anatomy of a mechanical ventilator.

2.1.2 Associated Risks

Though MV is a necessity in treating patients with critical respiratory condition, patients receiving MV

treatment also risk developing ventilator associated events (VAE) as a result of the treatment. VAE’s can

worsen the patient’s health status, increase length of stay and even increase patient morbidity.[Ochiai,

2015] Thus, it is essential to wean patients from the ventilator as quickly and efficiently as possible.

Weaning a patient can be a difficult process. While weaning a patient in pressure support (PS) mode, a

balance should be struck between supporting the patient enough to reduce excessive work of breathing

(WOB), and preventing atrophy of the respiratory muscles [Reese et al., 2018]

2.1.3 Positive vs. Negative Pressure Ventilation

Different modalities of mechanical ventilation are capable of performing external respiration. Understand-

ing the underlying physiology of these modalities, provides a basis for understanding the cardiopulmonary

interactions.

2.1.3.1 Mechanical and physiological differences

Mechanical ventilation devices can be divided into two main modalities. These modalities are posi-

tive pressure ventilation (PPVENT) and negative pressure ventilation (NPVENT). The main differences

between these categories of MV, are described in table 2.1

As described in table 2.1, the effects of NPVENT are identical with those of spontaneous breathing (SB),
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ST8 Group 8406 2.1. MECHANICAL VENTILATION

PPVENT NPVENT
Inflation of the lungs occurs due to pressure cre-
ated by the ventilator

A compartment enclosing the chest wall creates
a negative transthoracic pressure, inflating the
lungs

Ppl is positive during inspiration Ppl is negative during inspiration
Only possible during MV Occurs in NPVENT MV treatment, as well as

during spontaneous breathing

Table 2.1: The main differences between PPVENT and NPVENT

though the effects are achieved through different mechanisms.

2.1.3.2 Historical Perspective

Historically, experimental devices with functions similar to PPVENT were invented before NPVENT, in

the 16th century[Pham et al., 2017]. However, in modern medicine, NPVENT was applied as treatment

for polio at the end of the 19th century, with continued usage until the mid 20th century. During the

1950’s however, PPVENT was introduced into clinical practice, and currently remains the main technique

for administering MV. [Pham et al., 2017]

2.1.3.3 Pressure Waveform Differences

Due to the differences in how PPVENT and NPVENT impact the patient’s respiratory physiology, the

corresponding Pao waveforms will differ. These differences are illustrated in figure 2.1
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ST8 Group 8406 2.2. EQUATION OF MOTION

Figure 2.1: Waveform differences between PPVENT and NPVENT. A) depicts the positive pressure
delivered by the ventilator. B) depicts the negative pressure caused by either contraction of the respiratory
muscles during SB, or a NPVENT device. Baseline pressure for both waveforms is PEEP.

Fig 2.1 depicts, how the pressure waveform stays positive throughout PPVENT, and negative throughout

NPVENT, with respect to PEEP as baseline pressure.

2.2 Equation of Motion
The equation of motion (EOM) is a well-established mathematical model within the respiratory research

community, for simulating various aspects of the respiratory system. [Vicario et al., 2015]

2.2.1 Derivation of the Equation of Motion

The EOM is derived from a compartment model of the lungs, termed the linear first-order single-

compartment model of respiratory mechanics (LFOSCM). [Vicario et al., 2015; Albanese et al., 2013]

The LFOSCM is depicted in figure 2.2.
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Pao

Raw

PalEL

Ppl

RCW

ECW

Trachea

Alveoli

Pleural
Space

V̇

Pmus

Figure 2.2: Visualization of the LFOSCM. Depicted are the trachea, pleural space and the alveoli.
Variables Pao, Pal, Ppl & Pmus denote pressure at the airway opening, at the alveoli, in the pleural
space and pressure exerted by the respiratory muscles, respectively. Parameters Raw & RCW denote
airway- and chestwall resistance, respectively. EL & ECW denote elastance of the lungs- and chestwall,
respectively. V̇ denotes the airflow across the respiratory system. Adapted from Vicario et al. [2015].

The bioelectrical analogue of the LFOSCM is depicted in figure 2.3a. In figure 2.3a, V̇ denotes the airflow

across the system. The pressure delivered by the mechanical ventilator is Pao. The pressure drop across

Raw creates a differential pressure at the alveoli, Pal. Lung elastance EL is analogous to a capacitance.

Friction within the chest wall is accounted for by Rcw, and the elastance of the chest wall is denoted by

Ecw. Pmus is the pressure exerted by the respiratory muscles. Vicario et al. [2015]

Figure 2.3b describes the LFOSCM, but but as a lumped parameter model. In the lumped model, Raw

and RCW are lumped together in a single resistance parameter, R. Similarly, EL and ECW are lumped

together as E. Lastly, the pressure sources have been reduced to Pao and Pmus [Bates H. T., 2009].
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Pao

Raw

Pal

EL

Ppl

Rcw Ecw

Pmus
V

Pao

R

V

E

Pmus

(a)

(b)

Figure 2.3: The bioelectrical analogue of the LFOSCM. In a), V̇ is the airflow across the system. Pvent

is supplied by the ventilator. Raw creates a pressure gradient, resulting in Pal. EL is analogous to a
capacitance. Rcw and Ecw are friction and elastance within the chest wall, respectively. Pmus is the
pressure supplied by the respiratory muscles. b) describes bioelectrical analogue as a lumped parameter
model, from which the EOM is derived.

From figure 2.3b, the EOM can be derived. Eq 2.1 describes the EOM.

Pvent(t) = RV̇ (t) + EV (t) + Pmus(t) + PEEP (2.1)

2.3 Esophageal Manometry
Due to the anatomy of the pleura detailed in appendix K, Ppl measurements cannot be directly recorded.

In clinical practice, Ppl is thus estimated through esophageal manometry (EM), which is not a routine

measurement.

EM is performed by placing an esophageal catheter with a pressure transducer attached to a balloon in

the patients esophagus. This procedure measures esophageal pressure (Peso), which is used as a surrogate

for Ppl [Grieco L. and Chen L, 2017] The esophageal pressure measurements are then validated one of two

ways. Either through a negative pressure occlusion test, by thorax compression during end-expiratory

pause, or a Baydur test, by occluding the airways during inspiration [Chiumello et al., 2016]. If the

balloon is either inflated too much or too little during measurement, the values may not correctly reflect

the esophageal pressure. [Grieco L. and Chen L, 2017] Thus, esophageal manometry is a complicated

procedure with a risk of collecting distorted data.

Refer to appendix L for the historical perspective on EM, as well as a breakdown of different modalities.

Even though esophageal manometry is the clinical standard for measuring Peso, in-silico modelling exists
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ST8 Group 8406 2.4. IN-SILICO EXPERIMENTATION

to estimate Peso non-invasively.

2.4 In-silico experimentation
In-silico experimentation, is a way to perform scientific experiments via computational modelling. [Barh

et al., 2013] Silico refers to silicum, which is a foundational building block of MOSFETs, enabling con-

struction of logic gates within most CPU’s.

The origin of the term in-silico modelling is unknown. However, according to Barh et al. [2013], some of

the earliest uses of the term can be traced to Sieburg [1990] and Danchin et al. [1991].

2.4.1 Advantages and disadvantages of in-silico experiments

in-silico experimentation provides opportunities within scientific experimentation, which are often limited

in in-vivo or in-vitro experiments [Barh et al., 2013]. Table 2.2 outlines some of the major advantages as

well as disadvantages of in-silico experimentation.

Advantages Disadvantages
Reduced need for trial subjects Difficulty in accounting for all factors influencing

a phenomena
Reduced resource allocation for experiments in-silico experimentation must be validated by in

-vivo or -vitro experiments to support the conclu-
sion

Enables experiments which would
otherwise be impossible due to ethical reasons,
lack of resources or lack of essential expert knowl-
edge

Table 2.2: Some of the major advantages and disadvantages of in-silico experimentation

2.5 Cardiopulmonary Interactions
Cardiopulmonary interactions occur as a result of intrathoracic pressure changes during the respiratory

cycle, which affect the cardiovascular system in various ways.

2.5.1 Affected anatomical compartments

As seen in figure 2.4, several compartments and their encapsulated organs are affected by the cardiopul-

monary interactions.
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Figure 2.4: Bioelectrical modelling of the compartments and organs of interest affected by the cardiopul-
monary interactions. The EOM models the respiratory system, and the corresponding ∆Ppl during the
respiratory cycle, affects the intrathoracic cavity and abdominal cavity. The pericardium, which encapsu-
lates the heart, resides within the inrathoracic cavity. The inferior vena cava resides within the abdominal
cavity.

table 2.3 shows which compartments and organs within the thoracic and abdominal cavities are affected

by the cardiopulmonary interactions.

Affected Compartment Affected Organs
Thoracic Cavity

Pleural Cavity Lungs
Pericardium Heart, pulmonary circulation

Abdominal Cavity
Systemic Circulation Inferior Vena cava

Table 2.3: The compartments and organs affected by cardiopulmonary interactions within the thoracic
and abdominal cavities.

Thus, as depicted in figure 2.4, within the thoracic cavity, the respiratory system, the heart and the

pulmonary circulation are affected by ∆Ppl during the respiratory cycle. In the abdominal cavity, the

inferior vena cava is the main organ of interest affected by ∆Ppl.
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2.5.2 Physiological Interactions

In the following subsection, the effects which will be described are based on an increase in Ppl, such as

that occurring during inspiration at PPVENT, or expiration at NPVENT. The effects will be reversed

in accordance with negative intrathoracic pressure (Pit).

As seen in figure 2.1A, cyclical Ppl variations occur during the respiratory cycle.

These changes in Ppl are transduced to Pit by a factor α [Cushway et al., 2022].

Bloodflow through the cardiovascular system can be described via ohms law, exchanging voltage for

pressure, as described in eq. (2.2). [Feher, 2017]

flow =
P1− P2

R
(2.2)

Right Heart Effects

When Pit increases, transmural pressure across the right atrium (RA) decreases. In accordance with

eq. (2.2), the resulting effect is reduced bloodflow. This in turn reduces RA and right ventricle (RV)

preload. Reduced RV preload, reduces pulmonary artery pressure (Ppa). Finally, RV afterload increases.

[Pinsky, 2017]

Left Heart Effects

Reduced RV preload reduces LV preload. This in turn decreases stroke volume (SV). The increased Pit

is said to serve as a left ventricular assist device, being that it decreases LV afterload. [Pinsky, 2017]

Table 2.4 provides a quick overview of the effects of the cardiopulmonary interactions. These effects are

from the perspective of increased Ppl.

Right Heart Left Heart
Systemic Venous Return ↓ N/A

Afterload ↑ Afterload ↓
Preload ↓ Preload ↓

Table 2.4: An overview of the main effects of the cardiopulmonary interactions. The effects are from
the perspective of an increase in Ppl, and are reversed when Ppl decreases.
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2.5.3 Clinical Significance of Cardiopulmonary Interactions

The described cardiopulmonary interactions, enact several phenomena of clinical significance. Of these

phenomena, pulse pressure variation (PPV) is of interest for this project, since it adds a second signal to

the Ppa measurements, which directly correlates with ∆Pit occurring from ∆Ppl

PPV is a measure of the change in arterial pulse pressure, as a consequence of ∆Pit during the respiratory

cycle. [Treboul et al., 2018]

In a patient undergoing PPVENT, ∆Pit will be positive during inspiration, and cycle towards baseline

during expiration. Thus, Ppa will be higher during inspiration, and lower during expiration. [Treboul

et al., 2018]

Since PPV depends on ∆Pit as a consequence of the respiratory cycle, it essentially augments Ppa with

a secondary signal, which is independent of the cardiac cycle.

2.5.4 Fluid Responsiveness

In MV patients, PPV is a valid predictor of fluid responsiveness (FR). FR is defined, as the ability of the

patients LV to increase SV by 10-15% in response to administration of 500mL crystaloid fluid. [Treboul

et al., 2018]

The underlying hypothesis for PPV as a biomarker for FR, is that large respiratory changes to LV SV,

occur when the patient is biventricular. Treboul et al. [2018]

Eq eq. (2.3) shows how likely the patient is to be fluid responsive, based on their PPV. [Treboul et al.,

2018]

Fluid responsiveness =


High likelihood if PPV > 13%

Gray Area if 9% < PPV < 13%

Unlikely PPV < 9%

(2.3)

2.5.5 Limitations of PPV as predictor of fluid responsiveness

When relying on PPV for predicting a MV patient’s FR, the limitations of its use must be understood.

Thus, if cardiac arrythmias or spontaneous breathing occur, PPV should not be considered a predictor

of FR. [Treboul et al., 2018]

Due to these limitations, research should be conducted on methods to make PPV applicable in conditions
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where the limitations are present. Treboul et al. [2018]

2.6 Physiological Mechanisms Supporting the Project’s Hypoth-

esis
This project proposes a novel method for augmenting the PPV signal, in such a way that it is applicable

in conditions where its limitations otherwise negate its validity.

To understand the hypothesis, insight into two physiological mechanisms is required:

2.6.1 Effects of PS on Pmus

The first physiological mechanism, relates to the way PS interacts with Pmus.

In patients undergoing MV, the level of PS impacts the patient’s respiratory muscle activity. Studies

show that increased PS counteracts respiratory muscle activation, thus reducing Pmus, whereas the inverse

relationship holds for decreased PS. [Roesthuis et al.; E. Brackett and Sanghavi; Duiverman et al.]

Assuming validity of this relationship, Pmus can be assumed to be 0 at high levels of PS. Thus, under

these conditions, Crs can be calculated as described in eq. (2.4).

Crs =
∆V

∆P
(2.4)

If Crs is known, Pmus can thus be estimated at varying levels of PS, as described in eq. (2.5).

Pmus = (
Vt − (PS ∗ Crs)

Crs
) (2.5)

Eq 2.5 subtracts the V generated by PS from Vt. Thus, the remainder of V must be a result of Pmus.

2.6.2 PPV Resulting from PS Changes

As a result of the mechanism described in section 2.6.1, PPV variations occur due to differing PS levels.

Sec 2.5 describes the underlying physiology of the cardiopulmonary interactions. Thus, when PS is high,

Ppl is assumed to be maximal at inspiration and minimal at expiration. Conversely, when PS is low, Ppl

is assumed to be minimal at inspiration, and maximal at expiration.

Aalborg University Page 12 of 102



ST8 Group 8406 2.7. HYPOTHESIS

Following this assumption, PinspMax−Pexpmin (+PPV) provides an indice for the effect of PS on PPV.

Similarly, PExpMax− PinspMin (-PPV) provides and indice for the effect of Pmus on PPV.

Thus, if Pmus, as well as both +PPV/-PPV are known at every respiratory cycle, the PPV signal is

effectively augmented by the changes in PS.

2.7 Hypothesis
The physiological mechanisms described in section 2.6.1 and section 2.6.2, provide basis for the following

hypothesis:

"PPV can be used to estimate FR during conditions where SB occurs, by combining +PPV/-PPV at the

highest and lowest PS settings"
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3 | Problem statement
The hypothesis described in 2.7 requires experimental evidence in order to be confirmed. Due to the

advantages of in-silico experimentation outlined in section 2.4, performing the experiment in a simulated

environment would significantly reduce its associated resource costs. Thus, invention of a computational

model capable of predicting +PPV/-PPV is a necessity for creating the experiment in-silico.

The problem statement of this project is:

"How can a physiological model be designed and implemented, to predict +PPV/-PPV in pressure

support mechanically ventilated patients?"
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4 | Requirements Specification
From the problem analysis conducted in chapter 2, a set of user- and system-requirements for the technical

solution to the problem statement were derived.

The requirement specification is accompanied by a set of test protocols, which can be found in appendix A

to appendix G.

Requirement ID Requirements
UR_1 The solution must function with routinely avail-

able patient data
UR_2 The solution must be operational out-of-box and

require minimal adaptation from the user
UR_3 The solution must be able to simulate pressure

support mechanical ventilation administered in
the clinical trials

UR_4 The solution must be able to simulate cardiopul-
monary interactions based on the clinical trial
data

UR_5 The solution must be able to simulate the surro-
gate Pmus derived from the clinical trials

UR_6 The solution must be able to perform statistical
comparisons between the surrogate Pmus and the
simulated Pmus

Table 4.1: User requirements for the solution to the problem statement
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Requirement ID Requirements
SR_1 The system must be able to simulate the patient’s

respiratory physiology
SR_1_1 State variables and parameters constituting the

respiratory physiology must include, but not be
limited to:

1. Vt

2. Paw

3. Crs

4. flow

5. Raw

SR_2 The system must be able to simulate the intratho-
racic pressure changes occurring as a result of res-
piration

SR_2_1 State variables constituting intrathoracic changes
must include, but not be limited to:

1. Pit

SR_3 The system must be able to simulate the cardio-
vascular system

SR_3_1 State variables & inputs constituting the cardio-
vascular system must include, but not be limited
to:

1. Ppa

2. V̇pa

3. Vpa

4. Cpa

5. Pra

6. V̇ra

7. Vra

8. Cra

9. Prv

10. V̇rv

11. Vrv

12. Crv

SR_4 The system must be able to simulate the car-
diopulmonary interactions

SR_5 The system must be able to simulate spontaneous
breathing

SR_5_1 The system must be able to simulate respiratory
muscle activation -

Table 4.2: System requirements for the system which can fulfill the user requirementsAalborg University Page 16 of 102
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Requirement ID Requirements
SR_5_1_1 State variables & inputs constituting respiratory

muscle activation must include, but not be lim-
ited to:

• Pmus

• Crw

SR_6 The system must be able to simulate positive
pressure ventilation

SR_6 State variables constituting positive pressure ven-
tilation must include, but not be limited to:

• Tinsp

• TCT

• Trise

• PS

• PEEP

• Cycle V ariable

• Respiratory Rate

• τ

Table 4.3: System requirements for the system which can fulfill the user requirements (Continued)
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5 | Testing Framework Description

5.1 Cardiopulmonary interactions testing framework
Based on the requirements derived in chapter 4, a framework for testing the hypothesis described in chap-

ter 3 was derived. The framework consists of a mathematical model of the cardiopulmonary interactions,

combined with a testing and validation framework, which together allow for validation of the hypothesis.

The architecture of this framework is presented in figure 5.1.

Estimates Ppl

Respiratory Module

Transfers Pth

Intrathoracic Module Estimates PPa

Cardiac Module

Statistical Comparison

Model PPV &
Patient PPV

Compare Results

Hypothesis
Conclusion

Cardiopulmonary Interactions Hypothesis Testing

Input Parameters

Derive Model
Parameters

Figure 5.1: Architecture of the integrated mathematical model and hypothesis testing framework

5.1.1 Cardiopulmonary Interactions

Based on the cardiopulmonary interactions described in section 2.5, a mathematical model will be built,

which simulates their underlying physiology. This model consists of three modules, each simulating a

section of the cardiopulmonary interactions.

Respiratory Module

The respiratory module, aims to simulate the respiratory physiology of a patient undergoing PS MV. The

mathematical modelling of the respiratory physiology, will be derived from the EOM.

The ventilator model will be implemented as an extension module, integrated within the respiratory

module. Thus, the model will be able to simulate various aspects of the ventilator, such as rise time,
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cycle variables, PEEP etc.

The respiratory model will also be able to simulate the activation of the patient’s respiratory muscles

during spontaneous breathing activity.

Intrathoracic Pressure Module

The intrathoracic pressure module, will act as an intermediary module between the respiratory- and

cardiovascular module. Thus, it simulates the effect that changes in Ppl have on Pit, thus enabling

transducing of Ppl to transmural pressure in the cardiovascular system.

Cardiovascular Module

The cardiovascular module will model the patient’s cardiovascular system during MV, allowing for PPV

estimation. Thus, the main purpose of the cardiovascular module is to mathematically simulate arterial

pressure, which will be integrated with the intrathoracic pressure module in order to simulate the patient’s

PPV.

5.1.2 Technical Solution to Problem Statement

In order to test and conclude on the problem statement of chapter 3, a framework will be built to facilitate

such testing. The framework will consist of several modules and processes, each facilitating a function

necessary to derive a conclusion.

5.1.2.1 Derive Model Parameters

In the first process of the hypothesis testing framework, values of parameters necessary for model simula-

tion will be extracted from the patient’s data. For a full list of parameters and their method of derivation,

please refer to section 6.1.

5.1.2.2 Model PPV & Patient PPV

In this process, the patients PPV will be extracted from the data, and simultaneously the mathematical

model will simulate PPV based on the extracted parameters. Thus, the hypothesis can be tested by

comparing the extracted and simulated PPV values.

5.1.2.3 Compare Results

In this process, the simulated and extracted PPV values will compared via a coefficient of determination,

as well as Bland-Altmann plotting. Thus, it will be possible to conclude on the hypothesis.
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5.1.2.4 Hypothesis Conclusion

Once the simulated and extracted PPV values are compared, it will be possible to draw a conclusion on

whether or not it is possible to base Pmus estimations on Crs at high PS levels. This conclusion will be

made with respect to the assumptions and restrictions of the model.
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6.1 Respiratory Module
The purpose of the respiratory module, is to simulate the patient’s breathing mechanics during respiration.

The module simulates the respirators interaction with the respiratory system, as well as the patient’s own

spontaneous breathing. The patient’s respiratory physiology is thus modelled as a system of governing

equations, as well as a set of parameters necessary for simulating various respiratory properties.

The respiratory module’s parameters and their method of derivation are shown in table 6.1

Parameters Definition Derivation Method
Mechanical Properties
Crs Respiratory system compliance

[ L
cmH2O ]

∆V
∆P at Pmus = 0

Ccw Chest wall compliance [ L
cmH2O ] 4% of vital capacity

Bulk Properties
Raw Arway Resistance [ cmH2O

L
s

] Least-Square fitting on five
breaths at Pmus=0

Table 6.1: Parameters of the respiratory module of the cardiopulmonary model

The respiratory module also takes a number of inputs, which simulate MV settings, characteristics of the

respiratory muscle activation, as well as global simulation parameters.

These inputs are shown in table 6.2
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Inputs Definition Derivation
Vent Settings
PS Pressure Support [cmH2O] PS of timeframe which clinical

trial is performed at
PEEP Positive end expiratory presure

[cmH2O]
PEEP setting at timeframe

PSTrigger Threshold for ∆Ppl needed for
activating PS [cmH2O]

Manually adjusted

TCT Total cycle time -> Duration of
respiratory cycle [s]

tinsp + texp

tinsp Inspiratory time [s] Positive flow time in patient data
texp Expiratory time [s] Negative flow time in patient

data
Rise Time Time from PSTrigger activating

till PS level has been reached [s]
20% of tinsp (Manually ad-
justable)

RR Respiratory rate [breath-
s/minute]

Manually set during model test-
ing

Pmus Settings
Ti Pmus Inspiratory time for respiratory

muscles [s]
Same as tinsp

Te Pmus Expiratory time for respiratory
muscles [s]

Same as texp

Pmus Set Max Pmus [cmH2O] Surrogate Pmus calculated from
clinical trial data

Pmus Deflation time Time from end-inspiratory Pmus,
until relaxed diaphragm

Manually set

Pmus Cycle Threshold for Pmus cycling off
[L/min]

Manually set

Simulation Parameters
∆t timestep at which model is sim-

ulated [s]
Synchronized with cardiovascu-
lar module

Simulation length Total length of simulation [s] manually set during model test-
ing

Expiratory time constant Time for respiratory system to
empty 63% [s]

Manually set

Table 6.2: Table of the inputs needed to simulate patient breathing cycle

During the model’s simulation of the patient’s respiratory mechanics, a number of state variables are

logged. The state variables are shown in table 6.3
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State Variable Definition Derivation Method
Pao Pressure at airway opening

[cmH2O]

∆V
Crs

V̇ flow [L/min] Pao−Ppl

Raw

V Volume [L] v̇ ∗∆t

Ppl Pleural pressure [cmH2O] V
Ccw

+ Pmus + Pao

Table 6.3: State variables of the respiratory module of the cardiopulmonary model

6.1.1 System of Equations

The underlying mechanics of the respiratory module, consist of a system of governing equations, derived

from the EOM described in section section 2.2

The system is governed by two time-dependent driver functions, as well as a set of differential equations.

6.1.2 Driver Functions

Simulation of the ventilator’s effect on the patient’s respiratory physiology, as well as respiratory muscle

activity, are implemented through the use of driver functions.

The driver functions each have time varying pressure profiles, which are build based on assumptions

derived from knowledge of human respiratory physiology, as well as knowledge of the inner workings of

MV.

Pvent driver profile

The profile of the inspiratory driver function has two states.

The states relate to whether drop in Ppl has reached the threshold set in the PSTrigger input variable.

eq. (6.1) describes the time dependent relationship of Pvent if PSTrigger has not been reached.

Pvent(t) = PEEP | ifPpl > PSTrigger (6.1)

Thus, if Ppl has not dropped below the PSTrigger threshold, the pressure delivered by the ventilator will

equal PEEP.

Eq 6.2 describes the time dependent relationship of Pvent, if the PSTrigger threshold has been reached

during the respiratory cycle.
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Pvent =



PS ∗ t
trise

+ PEEP if 0 < t ≤ trise(1)

PS + PEEP if trise < t ≤ tinsp(2)

PS − (PS ∗ ( t
tdeflate

+ PEEP ) if tinsp < t ≤ tinsp + tdeflate(3)

PEEP if tinsp + tdeflate ≤ TCT (4)

(6.2)

Eq 6.2 consists of 4 phases.

1. When PSTrigger is activated, the vent starts delivering pressure. This pressure rises from PEEP

to PS over the course of trise [Hess R., 2014].

2. When Pvent reaches PS, it remains there for the remainder of inspiration.

3. At the end of inspiration, pressure delivery decreases, reaching PEEP after tdeflate has passed.

4. Until start of next inspiration, PEEP remains 0.

Pmus driver profile

The profile of the Pmus driver function simulates the pressure exerted by the patient’s respiratory muscles.

For a patient undergoing MV, Pmus is mainly exerted by contraction of the diaphragm, but if forced

breathing occurs, the external- and internal intercostals would aid in Pmus generation.

The Pmus profile is infused with physiological knowledge regarding the nature of Pmus generation, which

constitutes that Pmus rises monotonously during inspiration, decrements monotonously during expiration,

and remains 0 between expiration and inspiration [Vicario et al., 2015].

Due to the monotonic and cyclical nature of SB at rest, the Pmus profile is implemented as a sine wave,

with varying periods and phase shifts.

The Pmus profile has two states. The first state simulates a full inspiratory and expiratory cycle. The

second state ends the inspiratory phase and begins expiration, once the flow threshold for the Pmus cycle

variable is reached. The two states enable simulation of a full spontaneous breathing (SB) cycle, as well

as prematurely ending the cycle if Pmus cycle variable is reached due to flow caused by increase in Pvent.
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Pmus =


PmusSet ∗ sin( π

2∗Pmusti
∗ t) if 0 < t ≤ tPmusti

(1)

Pmusset ∗ sin(π(t+tdeflate−2∗tinsp)
2∗(tdeflate−tinsp)

if tinsp < t ≤ tdeflate(2)

0 if tdeflate < t ≤ TCT (3)

(6.3)

Eq 6.3 is derived from [Vicario et al., 2015], and consists of 3 phases.

1. The inspiratory phase has a period of π
2 . When t = Pmusti, Pmus reaches the set level.

2. The expiratory phase has a period of π
2 . tdeflate is assumed to always be shorter than tinsp - thus,

Pmus will decrease as it reaches 0.

3. In the third phase, Pmus is 0 until the beginning of the next respiratory cycle.

6.1.3 Differential Equations for Simulating the Respiratory System

The governing equations of the respiratory module, are implemented as a set of differential equations

derived from the EOM.

As depicted in figure H.0.1, the part of the respiratory module comprising the system of equations, can

be described by the pseudocode in listing 6.1:

Listing 6.1: Pseudocode for the respiratory model

1 for dt in TCT

2 1. Pmus = Pmusdriver

3 2. Calc dPmus

4 3. Pvent = Pventdriver(t)

5 4. Calc flow(t)

6 5. Calc dV

7 6. Calc dPao

8 7. Calc dPpl

9 end

Eq 6.4 describes how change in Pmus is calculated

∆Pmus = Pmus(t)−Pmus (t− 1) (6.4)
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In eq. (6.4), ∆Pmus is calculated by the output of the Pmus driver function at t-1 subtracted from the

output at t.

The change in flow at ∆t is described in eq. (6.5)

flow =
Pao(t)− Ppl(t)

Raw
(6.5)

Similar to electron flow in an electrical circuit, eq. (6.5) describes how airflow is calculated as the pressure

difference between two nodes over a resistance. In the case of the airways, the first node is Pao, the second

node is Ppl, and resistance is Raw.

The change in V at ∆t is described in eq. (6.6).

∆V = flow ∗∆t (6.6)

The relationship described in eq. (6.6), is derived from the knowledge that volume is the definite integral

over flow duration, as described in eq. (6.7).

Vt =

∫ endV̇

startV̇

V̇ dt (6.7)

Thus, flow can be expressed as the derivative of V as described in eq. (6.8), from which eq. (6.6) is derived.

V̇ =
∆V

∆T
=> ∆V = V̇ ∗∆t (6.8)

Change in Pao at ∆t is described in eq. (6.9).

∆Pao =
∆V

Crs
(6.9)

This relationship is derived from the fact that C = ∆V
∆P . Since Crs has been estimated from the patient

data prior to model simulation, and V has been calculated, Pao can be calculated as described in eq. (6.9).

Change in Ppl at ∆t is described by eq. (6.11)
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∆Ppl =
∆V

Cw
+∆Pmus +∆Pao (6.10)

This relationship is derived from the EOM, and originally described as eq. (6.11) in Mauri et al. [2017].

Pmus =
∆V

Cw
−∆Pes (6.11)

Eq 6.9 has been rearranged from eq. (6.11) to output Ppl, and assumes that Pes can be substituted for

Ppl.

6.2 Intrathoracic Pressure Module
The purpose of the intrathoracic pressure module, is to simulate the effect of Ppl on Pit.

As described in section 2.5, changes in Ppl are transduced to changes in Pit, which change the transmural

pressures affecting the cardiovascular system.

6.2.1 Equations

The equation underlying the intrathoracic pressure module is described in eq. (6.12)

Pit = Ppl ∗ α (6.12)

It is derived from Cushway et al. [2022] The physiology underlying eq. (6.12), assumes that during

transduction from Ppl to Pit, there will be a pressure loss due to factors such as elasticity of intrathoracic

tissue and differing volumes between the pleural cavity and intrathoracic cavity. This pressure loss is

described by the factor α.

6.3 Cardiovascular Module
For simulating the cardiovascular system, the CircAdapt cardiovascular simulation framework was im-

plemented. Refer to appendix M for details on CircAdapts anatomy.

CircAdapt is a complex model of the human cardiovascular system. It is first referenced in the scientific

literature in 2005 by Arts [2005], and has had major developments in 2012, 2015. [Arts et al., 2012;
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Walmsley et al., 2015] It is developed as freeware for use in research, education and engineering. [Team,

2024]

The CircAdapt model is used in several published scientific studies, e.g. Van Osta et al. [https://doi.org/10.1098/rsta.2019.0347]

and Mineroff et al. [2019] for studying cardiovascular related phenomena.

The model consists of a complex system of ordinary differential equations (ODEs), each representing

physiological components or functions within the cardiovascular system.

The system is solved using Matlab’s ODE113(). ODE113() is a variable-step, variable-order Adams-

Bashforth-Moulton PECE solver. [Matlab, 2023a]

Implementing and adapting CircAdapt for use within the cardiopulmonary model came with advantages

and disadvantages, detailed in chapter 8.

6.4 Simulation and Testing Framework
The following section describes the implementation of the framework described in. section 5.1. It consists

of a subsection for each module, describing the algorithms with which the respiratory, intrathoracic and

cardiovascular module simulate the patient data, respectively. This section concludes with a description

of the implemented testing framework.

6.4.1 Respiratory Simulation Algorithm

The first process in the testing framework, is an extraction of the parameters necessary to model the

patient’s breathing mechanics.
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Respiratory
Simulation Algorithm

Estimate Raw

Detect highest PS
setting

Extract 5 patient
breaths

Run optimization
algorithm on cost

function

Estimate Crs

At highest PS setting For each breath
Crs =ΔV/ΔP

Crs = Average Across
Breaths

Estimate Pmus

For each breath
Pmus =

(Vt-V(max(Pao)))/Crs

Extract inspiratory-
and expiratory time

For each breath Inspiratory time =
positive flow duration

Expiratory time =
negative flow duration

Extract Trise &
Tdeflate

For each breath Trise =
Δt(Peakinsp-startinsp)

Tdeflate =
 Δt(Minexp-Startexp)

Extract: PS, PEEP

Ti, Te & TCT from
indices to time

Simulate Patient
Breath

Figure 6.1: The respiratory simulation algorithm in the prediction framework, consists of 7 steps, each
with their individual sub-processes.
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As seen in figure 6.1, deriving the parameters necessary to simulate the patient’s respiratory mechanics,

is a 6 step process.

6.4.1.1 Step 1 - Estimate Raw

Estimating the patient’s Raw is performed via constrained optimization on a weighted least-squares cost

function, described in eq. (6.13)

j =
(Pao − Vt

Crs
+Raw ∗ flow)2

std(Pao)
(6.13)

Eq 6.13 is derived from the EOM, and assumes no respiratory muscle activity at highest PS settings.

Pao, Vt, Crs and flow are available through derivation from the patient’s data, and thus Raw is the only

unknown.

The optimization is run on 5 patient breaths, and Raw is set as the average Raw across these breaths.

6.4.1.2 Step 2 - Estimate Crs

Crs estimation also assumes no respiratory muscle activity at highest PS settings.

At every breath in the part of the clinical trial where PS is at the highest level, Crs is calculated via

eq. (6.14)

Crs =
∆V

∆P
(6.14)

The average Crs across every breath in the timeframe, is assumed to be the patient’s true Crs.

6.4.1.3 Step 3 - Estimate Pmus

Pmus is estimated at every breath in the patient’s clinical trial data. The formula for Pmus estimation is

described in eq. (6.15)

Pmus =
Vt − (Paopeak ∗ Crs)

Crs
(6.15)

The assumption underlying eq. (6.15) is based on the problem statement. Assuming that Crs is the true

compliance, we can determine which fraction of Vt corresponds to inflation by Pvent as well as Pmus.
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Thus, Paopeak ∗ Crs equals volume expansion due to Pvent, and the remaining Vt must be due to Pmus.

6.4.1.4 Step 4 - Extract Inspiratory & Expiratory time

Per convention, inspiratory flow is positive and expiratory flow is negative [Hess R., 2014]. Thus, the

inspiratory and expiratory time of each patient breath is derived, be extracting the length at which the

corresponding flow values occur.

The extraction algorithm uses a three-point method for determining beginning and end of the respiratory

cycle.

First, peaks are detected via matlabs findpeak() function. Once peaks have been detected, inspiratory

and expiratory time are extracted.

The pseudocode for this algorithm is described below:

1 for $peak peaks$

2 % Set three-point indices

3 start_{peak} = peaks(peak)

4 mid_{peak} = peaks(peak+1)

5 end_{peak} = peaks(peak+2)

6

7 % find minimum between peaks

8 min_1 = min(start_{peak}:mid_{peak})

9 min_2 = min(mid_{peak}:end_{peak})

10

11

12 % insp_{length}

13 insp_{length} = flow(min_1:min_2)>0

14 % exp_{length}

15 exp_{length} = flow(mid_{peak}:end_{peak})<0

16

17 end

This algorithm is visualized in section 6.4.1.4
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Figure 6.2: Visualized process of inspiratory- and expiratory time extraction. Inspiratory time cor-
responds to all indices between minmid and minend > 0 . Expiratory time corresponds to all indices
between midpeak and endpeak < 0.

6.4.1.5 Step 5 - Risetime and Deflation Time

Through the inspiratory and expiratory times derived in section 6.4.1.4, the Trise and TDeflate are ex-

tracted.

As visualized in figure 6.3, Trise consists of the indices from start of breath until inspflowpeak. Tdeflate

consists the indices from start of expiratory flow, until flowmin.
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Figure 6.3: Extraction of Trise and Tdeflate. The time from beginning of breath until inspflowpeak

constitutes Trise. Tdeflate is found from flow = 0 until expflowmin

6.4.1.6 Step 6 - Remaining Input Extraction and Breath Simulation

In the last step of the respiratory simulation algorithm, PS and PEEP are extracted from the patient’s

data, and Ti, Te, TCT , Trise and Tdeflate are converted from indices to seconds.

The extracted parameters and inputs are then given as arguments to the respiratory module.

Lastly, the patient’s breath will be simulated as described in section 6.1

6.4.2 Pulse Pressure Variation Simulation Algorithm

Once the patient’s breath has been simulated as described in section 6.4.1, PPV simulation commences.

In order to simulate PPV, the algorithm first simulates the cardiovascular system, after which the car-

diopulmonary interactions are simulated.

Fig 6.4 visualizes the flowchart of the PPV simulation algorithm, describing the performed steps and

sub-processes.

6.4.2.1 Simulate Cardiovascular System

The cardiovascular system is modelled for the timeframe being studied, via the CircAdapt cardiovascular

system module described in appendix M.
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Extract +PPV and
-PPV

For each breath Extract max Ppa at
inspiration

Extract min Ppa at
inspiration

Extract max Ppa at
expiration

Extract min Ppa at
expiration

Pulse Pressure
Variation Simulation

Algorithm

Simulate
Cardiovscular System

For duration of
timeframe

Simulate Ppa

Simulate
cardiopulmonary

Interactions

Set α-coefficient  For each breath in
timeframe

Transduce Ppl to Pit

Figure 6.4: The Pulse Pressure Variation Simulation Algorithm of the prediction framework. The
algorithm consists of 7 steps, each with their individual sub-processes.
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The model has been modified to disregard the effects of transpulmonary pressures. These will, thus, be

reinstated in synchrony with the patient’s breathing patterns, via the intrathoracic module.

6.4.2.2 Simulate Cardiopulmonary Interactions

Once the patient’s breathing patterns as well as cardiovascular system have been modelled, the intratho-

racic module, described in section 6.2, models the cardiopulmonary interactions.

Listing 6.2 describes the pseudocode by which the cardiopulmonary interactions are modelled

Listing 6.2: Pseudocode for cardiopulmonary interactions simulation

1 for timeframe

2 for breath in timeframe

3 synchronize breath index with timeframe

4

5 transduce Ppl to Pit via intrathoracic module

6 end

7 end

Fig 6.5 shows an example of the simulation of Ppa within the cardiovascular system, prior to simulation

of cardiopulmonary interactions.

Figure 6.5: Example of Ppa simulated prior to simulation of cardiopulmonary interactions

6.6 shows an example of the simulation of Ppa within the cardiovascular system, after the simulation of
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the cardiopulmonary interactions.

Figure 6.6: Example of Ppa simulated with cardiopulmonary interactions.

6.4.2.3 Step 6 - Extract +PPV/-PPV

As described in section 2.6.2, an assumption regarding the delineation of PPV as a result of Pmus and

PS can be made.

In order to model this assumption, peaks are detected during the inspiratory- and expiratory phases of

the respiratory cycle. These peaks correspond to the systolic pressures during the time intervals. The

peaks are then marked according to min and max Ppa during inspiration- and expiration respectively.

To distinguish these measurements, they are termed +PPV/-PPV, calculated as described in eq. (6.16)

and eq. (6.17)

+PPV = Maxinsp −Minexp (6.16)

−PPV = Maxexp −Mininsp (6.17)

The extraction algorithm is visualized in figure 6.7.
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Figure 6.7: Visualization of the +PPV/-PPV extraction algorithm. +PPV is represented by the solid
yellow line, showing the connection between Maxinsp and Minexp. -PPV is represented by the green
dotted line, showing the connection between Mininsp and Maxexp.

6.4.3 Compare results

When the process described in section 6.4.1 has concluded, all parameters and inputs for model simulation

will have been extracted. Thus, comparison between the PPV values estimated by the model and PPV

extracted from the patient’s data can be conducted.

This process, visualized in figure 6.8 incorporates two statistical tools for determining efficacy between

measurement methods. These tools are the Bland-Altman plot and a coefficient of determination.
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Bland-Altmann
Plotting

Coefficient of
Determination

Statistical
Comparisons

Figure 6.8: The comparison of results process, consisting of the Bland-Altman Plotting & Coefficient
of Determination steps.

Bland-Altman Plotting Bland-Altman plots are a tool for comparing how well two methods of measure-

ment correlate with each other.

The method was introduced in Bland and Altman [1986], and has since widely been used in the field of

medicine.

Bland-Altman plots provide insight into the data, by visualizing the mean differences at each measurement

point. The Bland-Altman plot incorporates the limits of agreement (LOA), being +/- 1.96 standard

deviations, allowing for conclusions on expected deviations of the measurements. This way, the Bland-

Altman plot can easily detect outliers and systematic measurement trends, providing insight into the

data.

Since Bland-Altman plots assume normality, all samples were tested for normality with Matlab’s kstest()

function. [Matlab, 2023b]

6.4.3.1 Coefficient of Determination

The coefficient of determination (R2) is a second method for evaluating the problem statement. Whereas

Bland-Altman plotting provides a way to compare the two methods in a number of ways described above,

the output of the R2 provides evaluation as a single integer.

The R2is described in eq. (6.18)
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R2 = 1− SSR∑N
n=1(SStotal)

(6.18)

Where the sum of squared residuals (SSR) is divided by total sum of squares (SStotal).

6.5 Parameter Optimization Framework
In order to estimate the optimal parameters for the model, an optimization framework was build. The

flowchart for the parameter optimization framework is visualized in figure 6.9.

Set CCW guesse

Parameter
Optimization
Framework

Run Respiratory
Simulation Algorithm

Set α guesse

Run Pulse Pressure
Variation Simulation

Algorithm

Run Statistical
Comparisons

Figure 6.9: Flowchart for the parameter optimization framework. The framework combines the previ-
ously described algorithms, and runs them in sequence with variations of Ccw and α. The combination
of Ccw and α yielding the highest R2

The framework estimates combination of Ccw and α. It then evaluates the combination with the highest
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R2, as well as the lowest mean difference between measurements.
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7.1 System Requirement Testing
In the following section, the results from the system requirement testing will be presented. Each subsection

will have a reference to the relevant test protocols.

7.1.1 SR02 + SR03 + SR04

Refer to appendix E for the test protocol.

Figure 7.1: Graph visualizing the highlighted test point. Note that Ppl has been vertically shifted by
an offset and scaled.

Ppa Baseline 151.78 mmHg
Ppl 4.29 mmHg

Pit (Ppl ∗ 0.55) 2.26 mmHg
Ppa Post-Processing 123.27 mmHg

Table 7.1: Values of test variables defined in appendix E

Test Status: Succes

7.1.2 SR05

Refer to appendix F for the test protocol

Fig 7.2 shows an example of a permutation performed during the testing. This example demonstrates
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SB simulated by the model. The most notable input is Ti, has been modified to 0.75S in order to more

closely model patient 2’s data at the first timeframe.

Figure 7.2: Example permutation performed during testing. This simulation is dominated by SB, as
PS is 0. Ti has been set to 0.75S, in order to simulate the patient 2’s breathing pattern during the first
timeframe. As a result, Te is 4,25S, as the model calculates Te by subtracting Ti from RR.

Test Status: Succes

7.1.3 SR06

Refer to appendix G for the test protocol

Figure 7.3 and figure 7.4 show 2 examples of permutations performed during testing.

In figure 7.3 The model is set to simulate a high PS level, which is present during the first timeframes of
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patient 2’s trial.

Most notably, the test is set to simulate a PS setting of 20, PmusCycle of 2 L
min and PmusSet of -12

cmH2O, whereas

Figure 7.3: An example of a permutation performed during the testing phase. The model has been set
to simulate high PS levels. Most notably, a PS setting of 20, PmusCycle of 2 L

min and PmusSet of -12
cmH2O is shown.

Fig figure 7.4 shows another example of a permutation performed during the testing phase. Compared

to figure 7.3, PS has been set to 12 cmH2O, in order to see the models behavior when PS is close to

PmusSet.
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Figure 7.4: Another example of a permutation performed during the testing phase. PS has been set to
12, in order to test the models behavior when PS is close to PmusSet.

7.2 Individual Chunk Results
In order to diagnose the models performance at each timeframe of the clinical trial data, each timechunk

was individually examined. This analysis yielded insight into the models ability to predict +PPV/-PPV

at different PS levels.

App N contains the results for the models performance on predicting +PPV/-PPV. Furthermore, testing

was conducted on the models ability to predict Pinspmax − Pexpmin, as well as Pinspmin − Pexpmax,

in order to diagnose where performance improvements could be identified.

The results of the individual chunk diagnosis indicated that the model had significantly lower accuracy
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at PS = 3.1 and PS = 2.1. Thus, the performance of the model of the entirety of the patient data was

tested with and without these chunks. See appendix N.0.4 for excluded results.

7.3 Full Patient Data

7.3.1 Patient 2

Following the analysis of each individual timeframe within patient 2’s clinical trial, the model was tested

on its ability to predict +PPV/-PPV on timechuncks 1-16 of the patient data.

Fig 7.5 shows the models performance on timechunks 1-16, constituting a total of 595 breaths.

Through the optimization framework described in section 6.5, the combination of Ccw and α yielding the

best performance on R2 and ∆mean were detected.

+PPV

Fig 7.5 A) shows +PPV predictions.

For +PPV, the simulations resulted in R2 = 0.19, and a ∆mean between simulated and measured

measurements of -0.176%.

The residual plots show a clustering round the regression line at, which disperses as +PPV gets higher.

This indicates a trend to predict +PPV with high precision at lower percentages, but increase in prediction

error as percentages get higher. Furthermore, the residual plot shows a tendency for the model to evenly

over- and underestimate +PPV.

The Bland-Altman Plot shows the normal distribution of the data, with a heavy clustering +/- 1STD

around the mean, an expected amount of observations laying within the limits of agreement (LOA), and

2.5% (15) of the observations are beyond the positive and negative LOA. The observations are evenly

over- and underestimated, conforming the trends of the residual plots.

A ∆mean of -0.176% indicates that the model predicts +PPV on average, with a slight tendency for

underestimation.

-PPV

Fig 7.5 b) shows -PPV predictions.

For -PPV, the simulation resulted in R2 = 0.01 and a ∆mean between simulated and measured -PPV of
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-0.152%.

The R2 indicates that the regression model was not a good fit. However, the residual plots shows a more

evenly horizontal distribution around the regression line than +PPV. The observations cluster between

measured -PPV of 0-1.8%, indicating that the model performs most accurately at these percentages. The

clustering disperses at lower and higher -PPV, indicating a similar trend to +PPV.

The Bland-Altman plot shows a normal distribution of the data. 6.3% (38) of the observations are beyond

the positive and negative LOA, indicating that the has a lower accuracy when predicting -PPV.

A ∆mean of -0.153% indicates that the model predicts -PPV on average, with a slight tendency for

underestimation.

Aalborg University Page 46 of 102



ST
8

G
roup

8406
7.3.

F
U

LL
PA

T
IE

N
T

D
A
T
A

Figure 7.5: A) +PPV B) -PPV for patient 2. In A) the residual plots indicate a trend to predict +PPV with high precision at lower
percentages, and a tendecy to evenly under- and overestimate +PPV. The Bland-Altman plot in A) shows a normal distribution of the
data, confirming the trends of the residual plots. With a ∆mean of -0.176%, +PPV is predicted with slight underestimation on average.
In B), a more even horizontal distribution around the regression line is shown. A cluster is centered around 0-1.8%, dispersing at higher
and lower -PPV. This indicates a similar trend to +PPV. The Bland-Altman plot shows -PPV to be normally distributed though there
are more outliers than +PPV. With a ∆mean of -0.153%, -PPV is predicited with slight underestimation on average.
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7.3.2 Patient 3

Fig 7.6 shows the model’s performance on patient 3’s clinical trial data.

The dataset consists of 6 timechunks, constituting a total of 3464 breaths.

The optimization framework yielded the best performance at α 0.7.

+PPV

Fig 7.6 A) shows +PPV predictions.

For +PPV, the simulations resulted in R2 = 0.62 and a ∆mean of 0.53%.

The residual plots shows a close fit around the regression line at negative predicted +PPV. Then, a

clustering centered slightly above 0, followed by a vertical rise. This shows a trend of high accuracy when

+PPV is negative, average accuracy at percentages between 0-7.5%, and reduced accuracy as predicted

percentages rise.

The full graph appears to have low variance. Fig figure 7.7 shows a zoomed graph, highlighting the

variance within the dataset.

The Bland-Altman plot shows a normal distribution of the dataset. A total of 77 observations fall beyond

the LOA, with 1.96% (68 observations) above the positive- and 0.26% (9 observations) below the negative-

LOA. 40.12% (1391 observations) fall within the positive- and 57.68% (1998) within the negative- LOA.

This indicates indicates a tendency for the model to overestimate observations.

With a ∆mean of 0.53%, the model predicts +PPV accurately on average.

-PPV

Fig 7.6 B) shows -PPV predictions.

For -PPV, the simulations resulted in R2 = 0.04 and a ∆mean of 3.35%.

The residual plots show a horizontal fit on the regression line. This indicates that the model systematically

predicts with the same accuracy.

The Bland-Altman plot shows a normal distribution of data dataset. A total of 188 observations fall

beyond the LOA, with 5.2% (180 observations) above the positive- and 0.23% (8 observations) below the

negative- LOA. 83% (2874 observations) fall within the negative- and 11.6% (402 observations) within
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the positive LOA. This indicates a tendency for the model to overestimate observations.

A ∆mean of 3.3466%, the model vastly overestimate PPV on average.
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Figure 7.6: A) +PPV B) -PPV for patient 3. In A) the residual plots show a trend of high accuracy at negative +PPV, average accuracy
between 0-7.5%, with accuracy reducing above. The Bland-Altman plot shows a normal distribution. A total of 2.22% of observations
are statistical outliers. The majority of observations falling between 0 and -1.96STD, indicate the model’s tendency to overestimate
observations. A ∆mean of 0.53% indicates acurate predictions on average. In B) the residual plots show that the model systematically
predicts with the same accuracy. The Bland-Altman plot shows a normal distribution. A total of 5.43% observations are statistical
outliers. The majority of observations falling between 0 and -1.96STD indicates a tendency for the model to overestimate observations.
∆mean if 3.35% show a trend of vastly overestimating on average.
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Figure 7.7: Caption
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As described in section 2.5, cardiopulmonary interactions are a result of the variations in Pit which occur

during the respiratory cycle. Thus, during the inspiratory phase of PPVENT the transmural pressures

within the cardiovascular system decrease, and during the expiratory phase they increase. The change

in transmural pressure in response to the respiratory phase is reversed during NPVENT, such as which

occurs during SB. [Pinsky, 2017; Feher, 2017]

The cardiopulmonary interactions add a second signal to Pa, which correspondingly increases and de-

creases in response to the varying transpulmonary pressures. This signal allows for the extraction of PPV,

which quantifies the change in Pa resulting from cardiopulmonary interactions [Treboul et al., 2018]. Eq

8.1 describes the calculation of PPV:

PPV =
Ppamax − Ppamin

(Ppamax − Ppamin) ∗ 0.5
∗ 100 (8.1)

PPV can be used as a biomarker for FR, as described in section 2.5.4. The underlying hypothesis for PPV

as a biomarker for FR, is that large respiratory changes to LV SV occur when the patient is biventricular

preload responsive. [Treboul et al., 2018]

The aim of this project was to design and implement a physiological model, capable of supporting in-silico

experimentation of the projects hypothesis. In-silico experimentation utilizes the advantages described

in section 2.4. The projects hypothesis states that "PPV can be used to estimate FR during conditions

where SB occurs, by combining +PPV/-PPV at the highest and lowest PS settings". The underlying

theory for the hypothesis is described in section 2.7.

Based on the problem analysis and hypothesis, the projects problem statement was formulated:

"How can a computational model be designed and implemented, to predict +PPV/-PPV in pressure

support mechanically ventilated patients?"

The technical solution to the problem statement, led to the development of a model capable of simulating

cardiopulmonary interactions. The model predicted +PPV on the test subjects with respectively R2 =

0.19 and R2 = 0.62, with a mean difference between predicted and measured +PPV at respectively

-0.176% and 0.53%. In patient 2, a Bland-Altman plot analysis showed the observations to be normally

distributed. Both the residual- and Bland-Altman plots showed the models predictions to be accurate
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on average, with a slight tendency for overestimation. Only 2.5% of +PPV predictions were statistical

outliers, supporting the accuracy of the model. In patient 3, normal distribution was observed. 2.22%

of observations were outliers, 97.78% were within the LOA, with 57.68% being within the negative- and

40.12 within the positive LOA.

In patient 2, the model’s prediction of -PPV resulted in an R2 = 0.01 and a mean difference between

predicted and measured -PPV at -0.153%. The residual plot indicates that -PPV is predicted most

accurately between 0-1.8%. The Bland-Altman plot showed a normal distribution of the predictions.

A mean difference of -0.153%, -PPV predictions were accurate on average, with a slight tendency for

underestimation. With 6.3% of the data being statistical outliers, indicating that -PPV has a higher

total prediction error. In patient 3, the simulation resulted in an R2 = 0.04, and a ∆mean of 3.35%.

With 83% of observations falling within the negative LOA, the trend shows a tendency to overestimate

observations.

The results from the test show, that model’s performance is vastly more accurate when predicting +PPV

than -PPV. This is further amplified by the fact that the model tends to overestimate observations,

yielding better results at positive values. App N shows a tendency for the models prediction to be

more precise when higher PS settings are present, and less precise the lower PS setting is applied. The

combination of this analysis, indicates that the models PS simulation is more accurate than its SB

simulation, and that the Ppl has a tendency to be higher than that in the clinical trials.

To the knowledge of the author, no previous studies have attempted to research cardiopulmonary models

aimed at predicting +PPV/-PPV. Several studies, such as Albanese et al. [2013] and [Vicario et al.,

2015] have researched in-silico modelling of Pmus and Ppl estimation. Moreover, in-silico modelling of

cardiopulmonary interactions has been researched by Cushway et al. [2022]. Therefore, the clinical trial

data from which +PPV/-PPV was measured were used as the state-of-the-art benchmark with which to

compare the models performance.

The project designed, built and tested a mathematical model capable of simulating the respiratory cycle.

The model used the EOM as a foundational mathematical model of the mechanical ventilators interactions

with the respiratory systems. The EOM is a common basis for respiratory modelling in the respiratory

research community. [Cushway et al., 2022]. Inspired by Vicario et al. [2015], Pmus was implemented as

a sine-function, with assumptions about monotonistic increase- and decrease during in- and expiration

and a respiratory pause. Furthermore, the ventilator was implemented with a driver function, with

PS and PEEP governing the pressures, trise, tdeflate, tinsp and texp governing the timing and PSTrigger
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governing its activation. Before testing on clinical trial data commenced, the respiratory model was tested

in a custom-built test setting in a virtual environment for performance evaluation. The model simulated

the interactions between the ventilator and respiratory system accurately during test conditions.

The model’s performance was tested on patient data as described in section 7.3.1. Due to the nature

of the experimental data, every timechunk was analyzed in order to diagnose the model’s behavior on

varying PS levels. This testing regime led to a detailed understanding of its performance within the

clinical trials. However, since the model was only tested on a limited sample size, there is a risk of

overfitting, and hence the results not being generalizable. Thus, before the results of the model can be

generalized to a larger population of MV patients, the sample size must be expanded.

During the literature search into mathematical modelling of the cardiovascular system, CircAdapt was

discovered. CircAdapt is a comprehensive freeware model of the cardiovascular system, designed for

scientific, research and engineering usage. [Team, 2024] Due to its usage within research on the cardio-

vascular system, such as e.g. Van Osta et al. [https://doi.org/10.1098/rsta.2019.0347] and Mineroff et al.

[2019], it was hypothesised to be of value to this project. As described in ??, CircAdapt was implemented

and performed the function of the cardiovascular module. However, the number of parameters combined

with its questionable accuracy at single-beat simulations, meant that CircAdapt was not used to its full

potential. Despite Circopt, a parameter optimization tool designed for CircAdapt [Mineroff, 2019], being

tested to counteract CircAdapts disadvantages, it never reached a state of patient-specific cardiovascular

modelling. Thus, a custom built lumped model of the cardiovascular system would have been a more

effective approach, hypothesised to have been easier adaptable to the patient’s cardiac rhythm as well as

more computationally efficient.

Future perspectives for the work of cardiopulmonary modelling with the aim of predicting +PPV/-PPV

should include further work on the respiratory model, the cardiovascular model and improving parameter

as well as input extraction.

Improvements to the respiratory model should include an external respiration module, capable of simu-

lating partial pressure of CO2 (PCO2) and partial pressure of O2 (PO2).

The external respiration module would allow for a sophisticated mechanism improving the timing of

respiratory muscles activation at SB. Improvements to the cardiovascular model should include either a

custom built lumped heart model, or adaptation of CircAdapt to meet the needs of this projects model.

Parameter and input extraction should be improved by further pre-processing of the data, assuring that
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the extraction algorithms extract the desired features with minimal error.
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9 | Conclusion
This study presented a method for predicting +PPV/-PPV in mechanically ventilated patients, with the

aim of predicting FR, with routinely available respiratory data.

The study’s problem statement was as follows

"How can a computational model be designed and implemented, to predict +PPV/-PPV in pressure

support mechanically ventilated patients?"

The results of applying the model to clinical trial data, showed that the model’s +PPV/-PPV predic-

tions were accurate on average, with tendencies for slight over- and underestimation, respectively. The

model showed decent results when predicting +PPV, with R2 = 0.63 in patient 3 and R2 = 0.19 in

patient 2. Moreover, the distribution of the Bland-Altman plots showed the models tendency of favoring

overestimation, and the analysis of individual timeframes demonstrated lowest accuracy of predictions

at timeframes with low PS levels. Thus, the model performed well when predictions involved high Pit,

and its accuracy fell at lowered Pit. This could indicate that the PS module of the model was better at

adapting to the patient’s physiological state than the SB module.

Testing was performed both on individual timeframes as well as full patient data. However, the testing

was performed on a limited sample size. Thus, the sample size should be expanded before the conclusions

can be generalized.

The conclusion of the study is:

The combination of the respiratory- cardiovascular- and intrathoracic- model for simulating

cardiopulmonary interactions, with the aim of predicting +PPV/-PPV, performed accurately on

average. The model performed best when predicting +PPV, and under conditions of high PS, indicating

that the PS module was better at adapting to the patient’s physiology than the SB module. Thus,

improvements to the SB module are hypothesised to improve the cardiopulmonary models +PPV/-PPV

predictions. Expanding of the testing sample size is necessary before the conclusions can be generalized.
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A | Validation Test Protocol for UR03
Header:

Revision number Rev 2
Protocol ID VATP-UR03-V2
Author Lasse Leuchtmann
Reviewer Lasse Leuchtmann
Date created 5-11-2023
Date reviewed 19-12-2023

Protocol for testing UR03 - The solution must be able to simuate pressure support me-

chanical ventilation administered in the clinical trials

Prerequisites: Data from 3 patients from the clinical trials

1. Extract Raw, Crs, Pmus, Tinsp, Texp, PS, PEEP, TCT, Trise, Pmusinsp+deflate as described in

section 6.4.1

2 Simulate patient’s breath with the respiratory module

3 Perform step 1-3 at every breath in the current timeframe in patient’s clinical trial data

4 At each breath, perform CD comparison as described in section 6.4.3.1 on the following state

variables: Vt, Paw and Flow

5 Perform step 1-4 at every timeframe in the patients clinical trial data

Success if: CD at >50% of timeframes is >0.9
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B | Validation Test Protocol for UR04
Header:

Revision number Rev 2
Protocol ID VATP-UR04-V2
Author Lasse Leuchtmann
Reviewer Lasse Leuchtmann
Date created 5-11-2023
Date reviewed 19-12-2023

Protocol for testing UR04 - The solution must be able to simulate cardoppulmonary inter-

actions based on the clinical trial data

Prerequisites: Data from 3 patients from the clinical trials

1. Extract Raw, Crs, Pmus, Tinsp, Texp, PS, PEEP, TCT, Trise, Pmusinsp+deflate as described in

section 6.4.1

2 Extract PPV as described in section 6.4.1

3 Simulate the patient’s respiratory breathing pattern using the respiratory module

4 Simulate the patient’s cardiac cycle using the cardiovascular module

5 Simulate cardiopulmonary interactions by transducing Ppl from the respiratory module via the

intrathoracic module, onto the Ppa from the cardiovascular module

2. Perform step 1-5 at every breath in the current timeframe

6 I the current timeframe perform CD comparison as described in section 6.4.3.1 on the following

state variables: PPV

7 Perform step 1-7 at every timeframe in patient’s clinical data

Success if: CD at >50% of timeframes is >0.9
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C | Validation Test Protocol for UR05
Header:

Revision number Rev 2
Protocol ID VATP-UR05-V2
Author Lasse Leuchtmann
Reviewer Lasse Leuchtmann
Date created 5-11-2023
Date reviewed 19-12-2023

Protocol for testing UR05 - The solution must be able to simulate the surrogate Pmus

derived from the clinical trials

Prerequisites: Data from 3 patients from the clinical trials

1. Extract Raw, Crs, Pmus, Tinsp, Texp, PS, PEEP, TCT, Trise, Pmusinsp+deflate as described in

section 6.4.1

2 Extract PPV as described in section 6.4.1

3 Simulate the patient’s respiratory breathing pattern using the respiratory module

4 Perform step 1-4 at every breath in the current timeframe

4 In the current timeframe perform CD comparison as described in section 6.4.3.1 on the following

state variables: Pmus

5 Perform step 1-5 at every timeframe in patient’s clinical data

Success if: CD at >50% of timeframes is >0.9
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D | Validation Test Protocol for SR01
Header:

Revision number Rev 2
Protocol ID VETP-SR01-V2
Author Lasse Leuchtmann
Reviewer Lasse Leuchtmann
Date created 7-11-2023
Date reviewed 25-12-2023

Protocol for testing SR01 - The system must be able to simulate the patient’s respiratory

physiology

1. Simulate the respiratory module with the following settings

Parameters Value
Mechanical Properties

Crs 25− 70 mL
cmH2O in increments of 2.5cmH2O

Ccw 120 mL
cmH2O

Bulk Properties
Raw 2-15 cmH2O

L
s

in increments of 1 cmH2O
L
s

Table D.1: Parameters at which to simulate the respiratory module

Inputs Value
Vent Settings

PS 2-30cmH2O in increments of 1cmH2O
PEEP 0-25cmH2O in increments of 1cmH2O

PSTrigger 0-(-2.5)cmH2O in increments of 0.25cmH2O
tinsp 0.75-2.5S in increments of 0.25S
texp 1-3.5S in increments of 0.25S

Rise Time 20% of tinsp
Pmus Settings

Ti Pmus Same as tinsp
Te Pmus Same as texp
Pmus Set 0-25cmH2O in increments of 0.5cmH2O

Pmus Deflation time 0.2-1s in increments of 0.1S
Simulation Parameters

∆t 0.02s
Simulation length 1TCT-10TCT at every simulation

Table D.2: Inputs at which to simulate the respiratory module
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2. Simulate 50 scenarios with different combinations of the settings

3. At each simulation, validate the following state variables: Ppl, Vt, Paw, f low

4. note any anomalies from expected values at each simulation (expected values vary depending on

simulation, please discuss every potential anomaly with qualified personnel)

Success if: 45 out of 50 simulations fall within expected respiratory values.
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E | Validation Test Protocol for SR02

+ SR03 + SR04
Header:

Revision number Rev 2
Protocol ID VETP-SR01-V2
Author Lasse Leuchtmann
Reviewer Lasse Leuchtmann
Date created 7-11-2023
Date reviewed 25-12-2023

Protocol for testing the following requirements

• SR02 - The system must be able to simulate the inrathoracic pressure changes occur-

ring as a result of respiration

• SR03 - The system must be able to simulate the cardiovascular system

• SR04 - The system must be able to simulate the cardiopulmonary interactions

1. Simulate the cardiovascular module with its default settings

2. Simulate the respiratory module with its default settings

3. Simulate the intrathoracic pressure module with the Ppl from the simulation performed in step 2

4. Plot Ppl and Paw on top of Ppa for visual inspection

5. Numerically compare Ppa baseline with Ppa from step 2

5a Validate whether transfer of Ppl by a factor α corresponds to added Pit at Ppa

Success if: Success if step 5a validates correct transfer of Ppl by a factor α to added Pit at Ppa
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F | Validation Test Protocol for SR05
Header:

Revision number Rev 2
Protocol ID VETP-SR05-V2
Author Lasse Leuchtmann
Reviewer Lasse Leuchtmann
Date created 7-11-2023
Date reviewed 27-12-2023

Protocol for testing SR05 - The system must be able to simulate spontaneous breathing

1. Simulate the respiratory module with the following settings

Parameters Value
Mechanical Properties

Crs 40 mL
cmH2O

Ccw 120 mL
cmH2O

Bulk Properties
Raw 2 cmH2O

L
s

Table F.1: Parameters at which to simulate the respiratory module

Inputs Value
Vent Settings

PS 2-12cmH2O in increments of 1cmH2O
PEEP 5cmH2O

PSTrigger -1.5cmH2O
tinsp 1.5s
texp 2.5s

Rise Time 20% of tinsp
Pmus Settings

Ti Pmus Same as tinsp
Te Pmus Same as texp
Pmus Set 0-25cmH2O in increments of 0.5cmH2O

Pmus Deflation time 0.2-1s in increments of 0.1S
Simulation Parameters

∆t 0.02s
Simulation length 1TCT-10TCT at every simulation

Table F.2: Inputs at which to simulate the respiratory module
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2. Simulate 50 scenarios with different combinations of the settings

3. At each simulation, validate the following state variables: Ppl, Vt, Paw, f low

4. note any anomalies from expected values at each simulation (expected values vary depending on

simulation, please discuss every potential anomaly with qualified personnel)

Success if: At least 45 out of 50 simulations correctly simulate spontaneous breathing
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G | Validation Test Protocol for SR06
Header:

Revision number Rev 2
Protocol ID VETP-SR06-V2
Author Lasse Leuchtmann
Reviewer Lasse Leuchtmann
Date created 7-11-2023
Date reviewed 27-12-2023

Protocol for testing SR06 - The system must be able to simulate positive pressure ventilation

1. Simulate the respiratory module with the following settings

Parameters Value
Mechanical Properties

Crs 40 mL
cmH2O

Ccw 120 mL
cmH2O

Bulk Properties
Raw 4 cmH2O

L
s

Table G.1: Parameters at which to simulate the respiratory module

Inputs Value
Vent Settings

PS 12-35cmH2O in increments of 1cmH2O
PEEP 5-15cmH2O in increments of 1cmH2O

PSTrigger -1.5cmH2O
tinsp 1.5s
texp 2.5s

Rise Time 20% of tinsp
Pmus Settings

Ti Pmus Same as tinsp
Te Pmus Same as texp
Pmus Set 0-25cmH2O in increments of 0.5cmH2O

Pmus Deflation time 0.6s
Simulation Parameters

∆t 0.02s
Simulation length 1TCT-10TCT at every simulation

Table G.2: Inputs at which to simulate the respiratory module
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2. Simulate 50 scenarios with different combinations of the settings

3. At each simulation, validate the following state variables: Ppl, Vt, Paw, f low

4. note any anomalies from expected values at each simulation (expected values vary depending on

simulation, please discuss every potential anomaly with qualified personnel)

Success if: At least 45 out of 50 simulations correctly simulate positive pressure ventilation
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Set Parameters

Respiratory
Module

Set Inputs

While i <= TCT

True False

If Ppl <=
PSTrigger

Set PSTrigger & log
triggertime Continue

Calc Pmus(t)

ΔPmus = Pmus(t)-
Pmus(t-1)

Calc Pvent(t) Calc flow(t)

ΔV = flow*Δt Calc V(t) ΔPao = Δt/Crs

Calc Pao(t) ΔPpl =
ΔV/Cw+ΔPmus+ΔPao Ppl(t) = Ppl+ΔPpl

If flow >=
PmusCycle

True False

Cycle Pmus & log
cycletime

Continue

i++

Log state variables

Figure H.0.1: The flowchart of the respiratory module of the cardiopulmonary interactions model.
First, the parameters and then the inputs are set. For every ∆t in the duration of TCT, the PSTrigger
threshold is checked. Then, the time based driver functions described in section 6.1 provide Pmus and
pvent, after which the set of differential equations described in section 6.1 are calculated. Then, the flow
threshold determining determination of respiratory cycle is checked, and sate variables are logged.
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I | Anatomy of Mechanical Ventilation
The basic functional units of a mechanical ventilator can be seen in figure I.0.1

Figure I.0.1: The basic anatomy of a mechanical ventilator. Adapted from Pasteka et al. [2021].
Depicted are the blender, valve, sensors, control unit, expiratory line, inspiratory line, endotracheal tube
as well as the gas flows throughout the system.

The basic functional units of a mechanical ventilator are [Dellaca et al., 2017]:

• Pneumatic Unit: The pressure source used to overcome the elastic and resisitive load of the

patient’s respiratory system

• Blender: The unit responsible for the air-O2 ratio

• Valves: Several valves are necessary depending on the mechanical ventilator. They regulate the gas

flow to- and from the patient

• Control unit: The control unit is responsible for adjusting the valves and turbines, in order to

deliver the respiratory support to the patient

• Sensors: Sensors provide information regarding various physiological variables to the control unit

• Expiratory line: The line active during expiration

• Inspiratory line: The line active during inspiration
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• Endotracheal tube: The endotracheal tube (ET) is put into the patients trachea. This allows the

mechanical ventilator to support the patients respiratroy system, by allowing air to flow in and out.

An inflated balloon is placed on the ET, providing airway protection against unwanted substances,

as well as providing an option for subglottic suctioning.
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J | Transmural pressures
Transmural pressures are referred to as the pressures inside relative to the outside of a compartment.

Thus, transmural pressures denote whether a compartment expand or deflate. [Feher, 2017]

When considering the compartment model of the lungs depicted in figure J.0.1, there are three transmural

pressures of interest. These are trans respiratory pressure (TRP), trans airway pressure (TAP) and trans

thoracic pressure (TTP).

TRP is the pressure difference between PPaw and Ppl, TTP is the pressure difference between Ppl and

PAtm, and lastly TRP is the pressure difference between PPaw and PAtm. [Feher, 2017]

Patm Ppl Paw

TAP = Paw - Ppl
TTP = Ppl-Patm

TRP = Paw-Patm 

Figure J.0.1: A simplified model of the lung anatomy, adapted from Vicario et al. [2015]. Depicted are
intracompartmental pressures of the airways (Paw), pleural cavity (Ppl) and the atmosphere (Patm). The
transmeural pressures are derived as TAP = Paw − Ppl, TTP = Ppl − Patm and TRP = Paw − Patm.
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K | Anatomy of the Pleural Cavity
The pleural cavity is a cavity encapsulated by the pleura, located between the lungs and chest wall. The

pleura is a serous membrane, which functions to protect the lungs against friction with its attachment

points during the respiratory cycle. [Charalampidis et al., 2015] The pleura is delineated into visceral-

and parietal sections. The visceral pleura attaches directly to the lungs, and is thus inseperable from

the lungs. The parietal pleura has several attachment points within the pleural cavity, as described in

table K.1. [Charalampidis et al., 2015]

Anatomical Term Attachment Points
Diaphragmatic Pleura Diaphragm
Costal Pleura Thoracic cage (Ribs, intercostal muscles, costal

cartilage)
Cerival Pleura Neck
Mediasteinal Pleura Mediasteinum

Table K.1: Anatomical terms and attachments points of the different parts of the parietal pleura

The pleural cavity is bilaterally symmetrical. However, since the heart resides in the left side of the

thoracic cavity, the left pleural cavity is smaller than the right. [Charalampidis et al., 2015] In the pleural

cavity of an average adult male, resides 8-10mL of pleural fluid. The function of the fluid is to reduce

mechanical stress caused by friction during the respiratory cycle. [Charalampidis et al., 2015]
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L | Historical Perspective of Esophageal

Manometry
The first registered use of esophageal manometry (EM) for Ppl measurements is dated to 1878, performed

by Heinrich Irenaeus Quincke, in the context of pleural fluid withdrawal. Since then, EM saw widespread

use in administering artifical pneumothorax for collapse therapy in the treatment of pulmonary tubercu-

losis. [Zielinska et al., 2018]

After the discovery of anti-tuberculous drugs, collapse therapy, and thus EM, was no longer performed.

Zielinska et al. [2018]

During the 1980’s and 1990’s, EM was reintroduced into scientific studies. Since then, EM has been used

for studying: [Zielinska et al., 2018]

• Thoracentesis

• Pleural fluid removal

• Unexpandable lung

• Delineation of trapped lung and lung entrapment

L.0.1 Complexity of Administering Esophageal Manometry

Two main methods of EM administration exist. These are water maonmeters and electronic systems.

Their main advantages and disadvantages are described in table L.1

Advantages Disadvantages
Water Manometer
Low resource cost Only mean Ppl measurements
Simple to administer Sensible to movement artifacts from e.g. coughs.

Electronic Manometer
Precise Measurements More costly than water manometers
Possibility for local EM measurements, account-
ing for Ppl variations due to the pleura’s anatomy

Validation of transducer placement is compli-
cated

Simplifies digital data collection

Table L.1: Major advantages and disadvantages of water based- and electronic manometers
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M.1 Cardiovascular Module
The base model for the system of equations governing the CVS is based on the CircAdapt model. Cir-

cAdapt is a full circulatory cardiovascular model, build as a hierarchy of components, simulating the

physiology of various anatomical structures of the heart. Four types of structural components exist, as

well as a global component governing the timing of the heart.

Fig M.1.1 shows examples of how each component relates to the CVS.
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Figure M.1.1: examples of how the components of the CircAdapt framework relate to the CVS. ArtVen
models the bloodflow between arteries and veins. Tube0D models the pressure/volume relationships of
vessels. Valve models bloodflow between compartments of the CVS. Wall contains the Patch module, and
combined they model surface area and myocardial contraction of each compartment. Chamber models
the atria. TriSeg models the ventricles, and lastly Bag models the pericardium.

The four component types will be presented individually.
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M.1.1 Node Component Hierarchy

Figure M.1.2: Caption

Node

Node is the parent object of all node-type components, is an object with pressure as a state variable.

Cavity

A cavity component Is a child object of the node component, with the volume state variable, related to

the pressure inside the cavity.

Four child objects are derived from the cavity component.

Bag

The Bag component simulates the pericardium. It encapsulates all other components which constitute

the heart. Thus, it adds a transmural pressure to the heart, related to the time-dependent volume of the

components of the heart.

Aalborg University Page 80 of 102



ST8 Group 8406 M.1. CARDIOVASCULAR MODULE

Eq 11 shows how the governing equation of transmural pressure within the Bag component:

ptransmural(V ) = pref ∗ V k

Vref
(eq 11)

Chamber

The chamber component simulates atria of the heart. It has a volume and a pressure, as well as wall and

patch components governing the behavior of the chamber.

Chamber has two governing equations. The first calculates wall tension, the second calculates pressure.

The equation governing wall tension is described in eq 12:

T =
∆t

∆Am
− (Am −Am,0) (eq 12)

Where T is wall tension, Am is wall area, and Am0 is the zero-tension midwall area.

The equation governing pressure inside the chamber is described by eq 13:

pc =
T ∗∆Am

∆V m

Where Vm is the mid-wall volume.

TriSeg

The TriSeg component models the left and right ventricles of the heart, as a connected segment separated

by a wall.

The volume encapsulated by the walls of the right- and left ventricles is defined by the governing equations

described in eq 14 and eq 15:

VLeft = VcLeft + 0.5 ∗ VwLeft + 0.5V wSeptal (eq 14)

VRight = VcRight + 0.5 ∗ VwRight + 0.5V wSeptal (eq 15)
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Where Vc is the volume of the cavity, Vw is the volume of the midwall, and VwSeptal is the volume of the

septal wall.

Tube0D

The Tube0D component models the pressures and volumes inside the vessels of the CVS.

The governing equations for area of the tube is described in eq 16:

A =
V

Len

Where A is the area, V is the volume and Len is the length of the vessel

Eq 17 describes the governing equation
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M.1.2 Patch Component Hierarchy

The patch component models the contraction of the myocardial muscle tissue. It assumes that all sar-
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Figure M.1.3: Caption

comeres are identical in size and force generation.

Each sarcormere is modelled as a three-element Hill contraction model, depicted in fig 5.

Fig 5 The Hill Contraction Model. Sarcomeres are modelled as a contractile element (CE), which pull on

a series elastic element (SE). Examples of SE are tendons, apnoeurosis or the proteins of the extracellular

matrix (ECM). In parallel with the SE, a parallel elastic element (PE) is passively pulled upon. Examples

of PE’s are cell membrane and connective tissues.

Eq 17 governs the rate of change of the length of the sarcomeres:

∆lsi
∆t

= vmax ∗
(
ls − lsi
lse

− 1

)
(eq 17)

Where vmax is the sarcomere shortening rate, ls the initial sarcomere length, lsi the current sarcomere

length and lse the length of the SE.

The contractility curve, representing the density of cross-bridges in the sarcomere, is governed by eq 18:

∆C

∆t
=

CL (lsi) 1

τrise
∗ Frise(t)−

C

τdecay
∗ g(X)(eq 18)

Where τ = 0.33 ∗ Td ∗ tduration, Frise(t) is the activation function, CL(lsi) the crossbridge formation
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function and g(X) the decay function.

Eq 18 has two function components. One describes the amount of cross bridges at a given time, the

second component describes the decay of cross bridges at the given time. The ∆C is thus defined, by the

change in cross-bridge formations vs. cross-bridge decays.

M.1.3 Connector component hierarchy

Figure M.1.4: Caption
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Connectors are components allowing bloodflow between nodes. CircAdapt actively uses two types of

connectors, the ArtVen and Valve components.

ArtVen

ArtVen, short for arteriovenous, models the bloodflow at the pulmonary- and systemic capillaries between

the arteries and veins.

The bloodflow is governed by eq 20:

q = ∆p ∗ q0
(
|∆p|
p0

)k

(eq 20)

Where q is flow, ∆p is change in pressure, q0 is initial flow and k is an exponent constant

Valve

The valve component models flow between nodes. In the full CVS model, the valve component is respon-

sible for simulating the flow between the atrioventricular valves (mitralvalve and tricuspid valve), as well

as the ventriculoarterial valves (aortic valve and pulmonary valve).

Flow through the valve is governed by the unsteady Bernoulli equation, described in eq 21

∆q

∆t
=

Avalve

lvalve
(
∆p

ρ
− 1q ∗ |q|

2
∗
(

1

Avalve
2 − 1

Ap
2

)
)

With ρ being blood density, lvalve being length of the valve, Avalve is cross sectional area of the valve, Ap

is cross sectional area proximal to valve.

For the unsteady Bernoulli equation to be applicable, the valve component assumes that:

• Gravity can be ignored

• Inertia is estimated through Ekin = 0.5Lq2

• Velocity is estimated through flow divided by area

• Flow entering the valve has all pressure-flow energy converted to kinetic energy

• Flow out of the valve does not regain pressure, due to loss of energy from turbulence
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M.1.4

M.1.5 Wall Component Hierarchy

Figure M.1.5: Caption
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Timechunks
In order to diagnose the results of the full patient trial The following section presents results from patient

data which has been processed through the framework described in section 5.1

Fig N.0.1
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N.0.1 Blood Pressure Predictions

In order to diagnose improvement potential of the model, its ability to diagnose Pa was tested.

Examples of the models performance on prediciting +PPV/-PPV are highlighted in figure N.0.5, ??,

figure N.0.7, figure N.0.8, figure N.0.9, figure N.0.10, figure N.0.11 and figure N.0.12.

Each timeframe within the clinical trial, had the patient on different PS levels, in order to test the

hypothesis described in section 2.7. Each timeframe consists of a set of chunks where heartbeat to

respiratory frequency is >3.4 beats
breath .

Refer to ?? for the performance on the remaining timeframes of the clinical trial.

N.0.2 Timeframe 1 - PS 18.1

Fig figure N.0.5 shows the results of the +PPV simulations in the 1st chunk of the PS 18.1 timeframe.

The simulations resulted in R2 = 0.48, and a mean difference between simulated and observed measure-

ments of -0.87292mmHg.

This indicates that 48% of the variability within the +PPV measurements can be explained by the

regression model. Furthermore, the residual plots show a tendency for the residuals to be close to the

regression line, indicating predictions close to measurements. The residual differences are show a tendency

to evenly over- and underestimate +PPV.

The Bland-Altmann plot indicates a cluster of differences close to and slightly below 0. Similarly to

the residual plot, this indicates that this cluster has predictions close to measurements. The Bland-

Altmann plot also shows a tendency for underestimating +PPV. All measurements are within the limits

of agreement (LOA), with most measurements falling within 1 standard deviation (STD) from the mean.

One outlier is close to the negative LOA, but does not cross it.

A mean difference of -0.872mmHg confirms, that most predictions are close to measurements, with a

slight tendency for underestimating +PPV.
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Figure N.0.5: +PPV for the 1st chunk of the PS 18.1 timeframe. R = 0.48 indicates that 48%
of the variability within the measurements are explained by the regression model. The residual plot
shows an even clustering around the regression line, with a slight tendency for underestimation. The
Bland-Altmann plot shows a clustering around the zero-difference line, with a tendency for slight under-
estimation. All measurements fall within the LOA, with most measurements being within +1STD, a few
within -1STD and one outlier closer to -1.96STD. A mean difference of -0.872mmHg confirms the rend
for slight underestimation of +PPV.

Fig figure N.0.5 shows the results of the -PPV predictions in the 1st chunk of the PS 18.1 timeframe.

The simulations resulted in R2 = 0.21, and a mean difference between predicted and observed measure-

ments of -0.01mmHg.

In figure N.0.5, 21% of the -PPV measurements can be explained by the regression model. The residual

plots indicate a trend to evenly over- and underestimate -PPV. However, as opposed to +PPV, -PPV

residuals are of a larger magnitude.

The Bland-Altmann plot shows a scattering around the zero difference line. The observations are evenly

under- and overestimated, confirming the trend of the residual plots. Most observations fall within 1STD,

with 1 outlier falling below the negative LOA. This indicates normally distributed data, and measurement

errors within the acceptable ranges.

A mean difference of -0.0112mmHg, shows that the average of the predictions slightly underestimates the

measurements.
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Figure N.0.6: -PPV for 1st chunk of PS 18.1 timeframe. An R2 = 0.21 indicates that 21% of the
variability in the model is explained by the regression line. The residual plots show an even tendency for
over- and underestimating -PPV. The Bland-Altmann plot shows scattering around the zero-difference
line, with an even tendency to over- and underestimate -PPV, confirming the interpretation of the residual
plot.

Fig N.0.7 shows the prediction of +PPV within the 2nd chunk of the PS 18.1 timeframe.

The predictions yielded an R2 = 0.34, indicating that the regression line explains 34% of the variability

within the model.

The residual plot shows a dense distribution around the regression line, with only 1 outlier prediction,

indicating that most predictions fall close to the +PPV measurements.

The Bland-Altmann plot shows that most observations are closely scattered around 4mmHg mean +PPV.

With the exception of 1 outlier, all measurements fall within the LOA. The majority of observations fall

within +1STD, with a few approaching +1.5STD. A few observations fall within -1STD, and 1 outlier is

below -1.96STD. These observations confirm the normal distribution of the data.

A mean difference of -0.123mmHg indicates a slight tendency for underestimation. However, if the outlier

measurement was discarded, a slight tendency for overestimation would be observed.
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Figure N.0.7: +PPV for the 2nd chunk of the PS 18.1 timeframe. An R2 = 0.34 indicates that 34%
of the variability within the model is explained by the regression line. The residual plots show a dense
distribution around the regression line, indicating that predictions are close to measurements. The Bland-
Altmann plot shows that most observations fall closely within 4mmHg mean +PPV. Except for a single
outlier, all observations fall within the LOA. -0.123mmHg mean difference indicates a tendency for the
model to underestimate, however overestimation is judged to be the case if the outlier was discarded.

Fig figure N.0.8 shows the results of the -PPV predictions in the 2st chunk of the PS 18.1 timeframe.

The model’s predictions resulted in R2 = 0.21, and a mean difference between observations of 0.149mmHg.

The R2 indicates that 21% of the predictions can be explained by the regression model. The residual

plots are horizontally distributed around the regression line, with close to even distribution of under- and

over-estimation, with a slight tendency for overestimation. The horizontal distribution indicates that the

regression model does not explain the observations accurately.

The Bland-Altmann plot shows a tendency for the data to be horizontally scattered between 2.5-4mmHg

mean -PPV. 33% of the observations are close to the zero-difference line, with 80% of the observations

falling within +1STD and -1STD. Two measurements fall right below the positive- and negative LOA

respectively.

A mean difference of 0.149mmHg indicates a trend for the predictions to average the measurements, with

a slight tendency for overestimation.
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Figure N.0.8: -PPV for the 2nd chunk of the PS 18.1 timeframe. An R2 = 0.01, combined with
the pattern of horizontal distribution of the data, indicates that the regression model does not explain
the observations accurately. The Bland-Altmann plot shows a cluster of horizontal distributions of
observations between 2.5-4mmHg. The observations follows a normal distribution, with two outliers
tangenting the positive- and negative LOA.

N.0.3 Timeframe 2 - PS 13.1

Fig N.0.9 shows the prediction of +PPV within the 1st chunk of the PS 13.1 timeframe.

The predictions yielded R2 = 0.01, indicating that the regression model does not explain the observations

properly.

The Bland-Altmann plot shows that 64% of observations fall within +1STD. 28% of observations fall

within -1STD, and 1 outlier falls below the negative LOA. This confirms the normal distribution of the

observations.

A mean difference of -0.112mmHg +PPV indicates a slight tendency for the model to underestimate on

average, however the tendency would presumably be overestimation if the outlier was discarded. The

Bland-Atlmann plot supports this interpretation, as most observations fall within +/- 2mmHg.
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Figure N.0.9: +PPV for the 1st chunk of the PS 13.1 timeframe. Note, that this is the 3rd chunk
in the total trial length. The regression model was unable to explain the variance of the observations.
However, the Bland-Altmann plot shows a clear normal distribution pattern, with 71% of observations
falling within +/- 2mmHg. This indicates a pattern for the predictions to be close to the measurements
on average.

Fig N.0.10 shows the -PPV predictions for the 1st chunk in the 13.1 PS timeframe of the clinical trial.

With a R2 = 0.01, and an almost U-shaped distribution of the observations, the regression model is

unable to provide valuable insight in the analysis. However, the residual plot shows a tendency for slight

under- and overestimation, with the pattern favoring overestimation.

The Bland-Altmann plot shows that 50% of the observations fall within -1STD, and 40% of observations

fall within or slightly above +1STD. One outlier lies below the negative LOA. This indicates a normal

distribution pattern.

With a mean difference of -0.873mmHg -PPV, the model shows that the model on average predicts the

-PPV accurately, with a slight tendency for underestimation. If is assumed, that the mean difference

would be closer to 0, if the outlier measurement was discarded.
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Figure N.0.10: -PPV for the 1st chunk of the PS 13.1 timeframe. Note, that this is the 3rd chunk of
the total trial length. The regression model was unable to reliably explain the observations. The residual
plots show a tendency for near-evenly distributed over- and understimations. The Bland-Altmann plots
confirms a normal distribution of the observations. With a mean difference of -0.873mmHg, and the even
distribution around mean, the measurement differences are assumed to be close to 0 on average.

Fig N.0.11 shows the results of +PPV simulation on the 2nd chunk of the PS 13.1 timeframe. Note, that

this timeframe is significantly longer than the others included in the results section, and thus contains 55

observations.

Since the observations are tightly clustered around 5mmHg on the x-axis, the regression model does

not provide valuable insight. However, the distribution plot indicates an even distribution of observed

residuals, falling within -2mmHg and 4mmHg, indicating that most residuals systematically fall within

this range.

The Bland-Altmann plot shows that 60% of observations fall within +/- 1 STD, with 20% landing

within .+/- 1.70STD. Of the remaining 20%, 13% are witihin positive and negative LOA, and 7% below

the negative LOA. This indicated a normal distribution of the observations.

With a mean difference of -1.45mmHg +PPV, the normal distribution as well as the visually observed

clustering around the mean, indicates that the models predictions are close to measurements on average.
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Figure N.0.11: +PPV for the 2nd chunk of the PS 13.1 timeframe. Note, that this is the 4th chunk
in the total trial length. The regression model does not provide valuable insight. The Bland-Altmann
plot shows a normal distribution pattern. With a mean difference of -1.45mmHg +PPV, the models
predictions are assumed to be close on average.

Fig N.0.12 shows the results of the -PPV simulation on the 2nd chunk of the PS 13.1 timeframe.

With an R2 = 0.30, the regresssion model is able to explain 30% of the variance in the observations.

The residual plot shows a dense vertical distribution around the regression line, with a cluster between

0 to 5mmHg. The distribution indicates a trend for the predictions slightly over- and underestimate the

measurements.

The Bland-Altmann plot shows 65% of the observations landing between +/-1 STD, 85% between

1.7STD and 95% within the LOA. 2 observations, constituting 4% of the data, fall beyond the negative

and postive LOA, respectively. These observations indicate a normal distribution of the data.

With 55 observations, and a mean difference of -1.1451mmHg -PPV, the model is assumed to correctly

predict -PPV on average. However, with 20% of the observations having a mean difference between

-4mmHg and -6mmHg, the model has a tendency for largely underestimating the measurements.
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Figure N.0.12: -PPV for the 1st chunk of the PS 13.1 timeframe. Notw, that this is the 4t chunk of
the total trial length. An R = 0.30 indicates a good fit of the regression to the observed residuals. The
Bland-Altmann plot shows a clear normal distribution. With a mean difference of -1.1451mmHg -PPV,
it is assumed that the model correctly predicts -PPV on average. However, the model has a trend of
largely underestimating individual measurements.

Table N.1 shows the results for every part of the clinical trial. The results will be further elaborated in

the discussion.

N.0.4 Performance on entirety of patient data

The results of the individual chunk diagnosis indicated that the model had significantly lower accuracy

at PS = 3.1 and PS = 2.1. Thus, the performance of the model of the entirety of the patient data was

tested with and without these chunks.
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Chunk PS Mean Diff [+PPV , -PPV] H2O R2 [+PPV , -PPV]
1 18.1cmH2O [0.48 , 0.21] [-0.87 , -0.01]
2 18.1cmH2O [0.34 , 0.21] [-0.123 , 0.15]
3 13.1cmH2O [0.01 , 0.01] [-0.11 , -0.873]
4 13.1cmH2O [0.00 , 0.3] [-1.45 , -1.15]
5 13.1cmH2O [0.03 , 0.05] [-0.03 , -1.20]
6 13.1cmH2O [0.14 , 0.37] [-0.03 , -1.20]
7 13.1cmH2O [0.17 , 0.08] [-0.08 , -0.0007]
8 13.1cmH2O [0.0.03 , 0.01] [0.35 , -0.07]
9 10.1cmH2O [0.01 , 0.01] [-1.22 , -0.62]
10 10.1cmH2O [0.09 , 0.04] [-0.23 , -0.15]
11 10.1cmH2O [0.53 , 0.90] [-0.02 , 0.2]
12 10.1cmH2O [0.20 , 0.90] [0.09 , 1.30]
13 8.1cmH2O [0.33 , 0.75] [-0.058 , 0.42]
14 8.1cmH2O [0.04 , 0.03] [1.64 , 3.9]
15 6.1cmH2O [0.14 , 0.37] [-0.03 , -1.20]
16 6.1cmH2O [0 , 0.89] [0.188 , 2.27]
17 3.1cmH2O [0.02 , 0.92] [1.47 , 3.15]
18 3.1cmH2O [0.62 , 0.0] [3.87 , 5.97]
19 2.1cmH2O [0.20 , 0.027] [3.26 , 6.1]
20 2.1cmH2O [0.78 , 0.33] [2.5 , 5.59]

Table N.1: Table of results for the remaining timechunks. Refer to chapter 8 for the analysis of these
results.
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