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Abstract

The no-input mixer is an appealing instrument for practitioners seeking a constant negotia-
tion of their musical desires with the instrument’s complex agency and affordances. Offering
a simple setup, a re-invention of a traditional instrument, it resignifies an utilitaristic
control space to a more obscure and surprising field of exploration, a fertile ground for
artistic practices and languages to emerge.
This project proposes a new hybrid instrument: an analog no-input mixer embedding a
digitally controllable interface, introducing previously impossible interaction and mapping
techniques (from storing, recalling, interpolating and sequencing of control points, to
semi-automatic audio-driven mapping devices and agents), to evaluate their affordances on
musical practices with the instrument and to cultivate the opportunity for novel languages
and practices to emerge from them.
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1. Introduction

This works presents the design and creation of a digitally controllable no-input mixer.
Initial motivations and research questions are presented here, often referencing terminology
and context which will be expanded in more detail in sec. 2.

1.1. Motivation

No-input mixer practice demands musicians to discover the affordances of a non-trivial
control space, and to constantly negotiate their musical intentions with them. Digital
control is most prominently on the other side of the interaction spectrum, promising precise,
efficient control and reproducibility. Furthermore, although some academic works are
starting to emerge, and several artists have released artworks with the instrument, there
is scarce documentation of theory and playing approaches with no-input mixers, perhaps
for a structural reason: the complex nature of the instrument itself doesn’t promote a
standardized praxis. The present work also doesn’t aim to formalize any praxis, but is
rather a continuation of my personal experience with the instrument.

I have been playing no-input mixer for the past five years, without external audio effects
and mostly in improvisational and harsh noise settings. Parallelly, I have been working
on machine-listening, machine-learning, corpus-based concatenative synthesis, and more
generally audio programming. I see these as two almost-opposite poles: one being immersed
in a more or less obscure practice, the other more oriented to serviceful design. This project
originates from the desire to mix them, to explore the developments this contamination
can afford on my musical practice with the instrument.

Analog mixers exhibit noise and quirks often ascribed to “imperfections” in the circuitry,
which are integral parts of their sounds and playing experience. When attempting to model
those circuits digitally, I’ve encountered a fundamentally different sound and behavior,
dominated by the prominence of digital sampling (e.g. the sampling rate and its harmonics
being dominant resonant frequencies) and lacking key factors of the typical no-input mixer
interaction, i.e. “sensitivity”, “directness” and “rawness”. Instead of trying to circumvent
those differences, which in fact constitute characters of a different musicking domain,
this works chose to re-design an analog mixer with built-in feedback routing, to keep the
signal processing path analog and thus to stay closer to the musicking experience with
analog electronic instruments. The resulting self-contained instrument is less prone to
being modified, as circuit design and fabrication compares to digital algorithm coding.
While this is a major disadvantage for prototyping, it can also be an advantage for musical
practice, offering a clearer limit and distinction between instrument design and playing.
Once the instrument is built, its analog part can’t be easily changed, forcing to focus on
the interaction with it. However, since the present work being an hybrid system, it lends
to continuous development and re-design of its digital interface.
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1. Introduction

One practical reason for introducing digital control to analog no-input mixers has been
the need for more precise access to resolution offered by analog potentiometers as control
interfaces. No-input mixers are often sensitive to the smallest variation of parameters,
which is sometimes frustrating to interact with using small potentiometer caps. The present
work starts with affording a resolution that although being discrete, is much finer than
what is conveniently controllable on traditional audio mixers.

Furthermore, no-input mixers afford an engaging, co-creative approach characterized
by continuous learning and adaptation, possible because of the unpredictability of the
instrument, but at the same time because of the non-arbitrarity of such unpredictability.
Performers can learn some patterns and behaviors that are more or less reproducible,
lending themselves to a deepening of the relationship with the instrument. Digital control
offers tools to work with this pseudo-reproducibility, for example storing and recalling
points in the control parameter space.

Finally, digital control and analytical tools allow for the introduction of techniques from
machine-listening and machine learning, that are part of my milieu, but couldn’t be
applied to no-input mixing without resorting to sampling. Working with samples of a
no-input mixer increases the distance from real-time interaction and its non-linear dynamics,
constraining to playback and modification of recorded material. With a digitally controlled
analog no-input mixer, computer analysis can be used to affect the parameter space only,
while sound is still produced in real-time by the instrument’s feedback process. This is
particularly relevant when developing (semi-)autonomous agents, which could then work
to explore the mixer’s audio process, instead of constituting a separate one based on
recordings.

1.2. Research questions

For the motivations above, the main research question of this work is an exploratory
one: what happens when digital control is applied to no-input mixer musicking? What
previously impossible techniques can be introduced an how do they transform practice and
performance with the instrument?

As a hybrid instrument, this work lends itself to comparison to analog and digital instru-
ments, but most importantly to their related musicking. How does a digital interface
affect the experience compared to analog no-input mixers? Are the new affordances worth
the added level of abstraction/mediation? Or, from the other side, how does the analog
circuitry affect algorithmic design? Are its reactivity and rawness worth the extra cost
and lesser flexibility? In other words: does the instrument afford an engaging musicking
experience, allowing for creative development without becoming “overly analytic”?

No-input mixers offer a peculiar type of instrument agency and autonomy (e.g. some
settings produce long, irregular loops, oscillating more or less stably between attractors,
other settings slowly move towards a more stable attractor). This is due to circular causality,
feedback loops, often metaphorized as the instrument “listening” to itself. What kinds of
autonomy can be achieved by introducing computer analysis, algorithmic processes, and
cybernetic mappings to this “self-listening” loop?
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2. Background and related work

This section presents relevant work on no-input mixers, and recent conceptual developments
about musicking with feedback instruments, a field that has found renewed interest in recent
times with concepts like “unmastery” and “complexity literacy”. A novel research field
emerged around the “Feedback musicianship network” and “Self-resonating vibro-tactile
instruments”, which constitute the background and research context of the present work.
Finally, a comparison is made with other feedback instruments developed within and
around this context.

2.1. No-input mixers

A no-input mixer board is a traditional audio mixer wired in feedback: audio ouputs are
routed back into channel inputs, making the instrument a self-resonating sound generator.
This technique was brought to fame by Toshimaru Nakamura, who emerging from the
japanese so-called Onkyo improvised music scene (David Novak 2010), started an iconic
series of releases dedicated to the instrument, which he termed “nimb”, acronym for
“no-input mixing board”. The term “no-input” refers to the fact that the mixer doesn’t use
any other inputs than its own outputs, and although audio effect units can be inserted in
those feedback chains, it constitues a closed feedback system.

In such configuration, traditional mixer controls radically change their affect on perceived
sound qualities, both by acquiring non-linear effects, i.e. a continuous variation of one
parameter can result in a discontinuous variation of the percept; and by affecting sound
qualities that weren’t originally connected to their designed function, e.g. controlling the
gain of the eq’s low frequency band typically affects rhythmic qualities of the sound being
produced. Furthermore, all controls become mutually dependent, with some controls
affecting different perceived qualities depending on the state of some or all of the other
controls, and also depending on the previous state of the whole system.

Such a complex, unpredictable, and non-linear interaction space is not unique to no-input
mixers, and can be considered an exaggeration of the non-linear dynamic processes of
playing traditional acoustic instruments (Mudd, Holland, and Mulholland 2019; Fletcher
1999). In a recent study, Mudd (Mudd 2023) collects reports of how musicians find
this approach valuable, also underlying a fundamental difference with most digital music
instruments, which offer simpler and more understandable interfaces, but can “encourage an
overly analytic approach to creative practice”. In the study, Mudd highlights three aspects
of this appeal: (1) positive sentiment attached to the surprising and unpredictable results
of working with a process (and an interface) that can’t be fully understood, also after
years of practice and even after attempts to systematic analysis; (2) perceived immediacy
of interaction, due to its fast responsiveness, great sensitivity to parameter changes, and
a sense of directness in working with “raw” materials and processes, as opposed to the
experience with digital instruments; (3) a favourable comparison to the versatility and
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2. Background and related work

discoverability of acoustic instruments, their chaotic elements, which also offer room for
reinvention through exploiting their more or less stable states.

The present work aims at creating a hybrid instrument, where the sound processing is
analog, resembling a traditional no-input mixer configuration, thus aiming to maintan
the “rawness” of its sound character; but where the controls are digital, to allow novel
explorations of its complex, non-trivial interaction space as afforded by the increased
resolution, memorization, and interface prototyping options offered by digital control. It
situates itself at a middle point in the duality between analog and digital instruments
discussed by Mudd.

2.2. From co-creation to “unmastery” and “complexity literacy”

Other than its sonic qualities (and perhaps more), the most prominent value of playing
no-input is the exaggeration of a “co-creative” interaction, encouraging inclusion of the
instrument itself within the creative process, thus off-putting an “autocratic” commanding
approach by which a performer seeks to transmit their idealized musical intention “despite”
the obstacles posed by the instrument.

In an interview (Meyer and Nakamura 2003), Toshimaru Nakamura describes co-creative
musicking as a determining factor for switching from playing guitar to no-input mixer: «I
think I find an equal relationship with no-input mixing board, which I didn’t see with the
guitar. When I played the guitar, ‘I’ had to play the guitar. But with the mixing board, the
machine would play me and the music would play the other two, and I would do something
or maybe nothing. I would think some people would play the guitar and create their music
with this kind of attitude, but for me, no-input mixing board gives me this equal relationship
between the music, including the space, the instrument, and me.».

Regarding no-input mixers, Mudd identifies their “explorable unpredictability” as a con-
dition for co-creative approach: “When something unexpected occurs, it can usually be
engaged with and explored further. For example, an unpredictable outcome may involve the
discovery of a new metastable state that an artist can probe and experiment with, engaging
with new sounds and behaviours, and learning about an aspect of their instrument.”. The
instrument has to offer a degree of unpredictability, but it should also afford its “further
exploration”, an “engagement”, a continuous learning experience that deepens the relation-
ship between musician and instrument, perhaps never reaching a point where it reduces to
command and execution.

In a study of contemporary approaches to feedback instruments design and performance,
Magnusson et. al (Magnusson, Kiefer, and Ulfarsson 2022) centralize the notion of “playing
with the instrument” instead of “playing on the instrument”, signaling departure from a
modernist concept of authorship towards a post-modern decentralization of the human self
within distributed agency ecologies. Rejection of authorship and virtuosity are sustained by
design practices aimed at increasing the instruments’ agency and autonomy, as perceived
by the performers, to afford active engagement in a dialogic process of continuous discovery,
“re-skilling” and mutual adaptation, rather than mastery and command.

Melbye (Melbye 2022) further individuates co-creativity as being typical of feedback based
musical interaction (thus including experimental music practices with acoustic instruments),
where “the apparatus affords a way of knowing this work, not as something existing prior
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2.3. Self-resonating vibro-tactile instruments

to—but instead as unfolding through knowing [. . . ] As I have described elsewhere, the
precariousness of this asymmetrical relationship between performer and instrument affords a
level of improvisatory music-making mostly found in social musical practices involving other
human performers, and as such, raises questions of distributed agency [. . . ] Asymmetry,
manifesting as a sense of resistance from the performer’s point of view (Melbye 2021;
Stapleton 2008) is a way of the material making itself known: rather than the idealised
interface for musical expression, matter manifests itself through irreversible processes that
don’t just shape, but co-constitute what is being said, in a process that may sometimes feel
like a welcome complexification of performative intent and at other times a bewildering
obstruction”. He proceeds to define his concept of “unmastery”, not as merely the rejection
of mastery, but as a practice of “nurturing the asymmetry”, i.e. cultivating relationship
through resistance, instead of seeking to eliminate it, suggesting that “a feedback practice
that profoundly engages with the material, through a practice of unmastery and vulnerable
engagement (ibid. 91), may offer ways of making music that challenges human privilege and
acknowledges relational asymmetry as a condition to be explored, rather than an impediment
to be neutralised. Unmastery, then, becomes a practice of nurturing that asymmetry”.

Melbye criticizes the idealization of musical instrument interfaces similarly to the divide
described by Mudd when asserting that digital instrument are akin to overly analytical
approaches. The present work includes a no-input mixer circuit as a conceptual ready-made,
conserving its quirks, identity and resistances, thus avoiding to design a completely new
sonic process from scratch. By superposing a digital interface it adds a degree of abstraction,
a distance that changes the asymmetry and the resistances of the instruments, not with
the intent of removing them, but rather to afford a different access to their exploration.

Eldridge (A. C. Eldridge 2022) goes even further and values the experience of designing and
performing with feedback instruments as building “complexity literacy”, suggesting that
it’s precisely the resistance to imposition fostered by such design practices, that supports a
growing understanding of our contemporary complex milieau. Musicking with feedback
instruments, i.e. their design, performance and experimentation, embeds a particular way
of knowing systematically, performatively and intuitively, continuously through the process.
The experience of agency in systems with emergent behaviors, the necessity of learning to
“let others be” when working with self-determined systems (i.e. systems that are influenced
but not completely controlled by their environment), are essential elements for building
world views that help us understand our being-in-the-world in terms of its complexity.
Such practices can be playgrounds to experimentally reverse a dominant approach to
technology and the world, our misindentification as autocratic controllers of othered beings
and processes, thus “supporting us through current existential, ecological, technological and
social crises”. Eldridge’s analysis interprets a recent increase of activity in an emerging
research area focused on feedback musicking, which also consitutes the main context of the
present work.

2.3. Self-resonating vibro-tactile instruments

Feedback musicking, instrument and interface building and performance, has a long
history spanning the domains of analog and digital instruments, as well as contemporary
composition and popular music (Valle and Sanfilippo 2012; Sanfilippo and Valle 2013;
Collins 2020; Di Scipio 2003; Bowers and Haas 2014). However, as perhaps explained by
Eldridge, the field has seen a renewed interest in recent years, with the systematization
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2. Background and related work

of a hybrid lutherie approach and its conceptualization under the term “Self-resonating
vibro-tactile instruments”.

The “Feedback Musicianship Network” (“Feedback Musicianship Network” 2021) is an
international joint effort bringing together artists and researchers to support the creation of
both new feedback instruments and tools for their understanding. In this context, Eldridge
et. al (A. Eldridge et al. 2021) proposed the concept of “Self-resonating vibro-tactile
feedback instruments” (SRIs), to “unpack the emerging trends in lutherie and artistic
practice, secondly to reflect on the experience of playing these instruments, and finally, to
expound a conceptual framework to scaffold future work”.

Neither no-input mixers nor the present work can be strictly categorized as SRIs, because
they lack the vibro-tactile interface that is constitutive to them. SRIs rely on feedback
between a pick-up and an actuator, connected by physical matter (e.g. strings, springs,
plates) so to be directly sensitive to physical interaction. In no-input mixers such physical
connection is established between electronic components in the circuit, i.e. the inputs and
outputs of amplifiers, where physical interaction is mediated by potentiometers affecting
their electrical characteristics. Although the previously cited work by Mudd highlights
“rawness”, “sensitivity” and “directness” of interaction perceived by no-input mixer players,
adding digital control amounts to an extra level of mediation. However, the present work
situates close to SRIs because like SRIs is “a new species of feedback instruments in
which designers and luthiers consciously and deliberately incorporate feedback loops as
a central design principle to create self-resonance”, and because it inherits the “rawness”
and sensitivity of a no-input mixer. It can be argued that although the performer can’t
put their hands physically in the feedback chain, the embodiement afforded by no-input
mixer controls is fundamentally different but experientially kin, resulting in an immersively
engaging experience due to the sensitivity, reactivity and non-linearity of its feedback
process. Even though a digitally controlled no-input mixer lacks the vibro-tactile directness
of a strict SRI, it can be argued that its design process is conceptually similar to SRIs,
where an existing instrument is initially augmented with a feedback apparatus, and then a
new instrument is built from scratch.

2.4. Comparison to other related instruments

Similarly to how the FAAB (Melbye and Úlfarsson 2020) is a SRI built from a double-bass,
a digitally controllable no-input mixer is built on a traditional audio mixer, where the
feedback mechanism originally superimposed by no-input wiring is now embedded in the
design. Another similarity with the FAAB’s design process is the relation between the
designer and the chosen base instrument: Melbye has a long history playing the double-bass
and thus choses it to become the base for his feedback instrument, in a similar way to how I
relate to no-input mixers, and even more specifically no-input mixers than traditional audio
mixers. Namkamura (Trapani and Namakura 2017) relates his “invention” of the no-input
mixer as coming from subverting his practice from his job as an audio engineer. The
present work stems from my experience playing no-input mixers for years, in experimental
musical contexts such as contemporary european improvised music and harsh noise 1 2 3.

1https://nofigore.bandcamp.com/album/dance-with-my-mother
2https://nofigore.bandcamp.com/album/autoeater
3https://nofigore.bandcamp.com/album/boys-cry
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2.4. Comparison to other related instruments

Two opposite directions, closer and further away from SRIs, are represented by Shepardson
and Skach’s “No-input textiles” (“Victor and Sophie’s No-Input Textiles | Intelligent
Instruments Lab” 2023) and “Bendit.io” (Marasco, Berdahl, and Allison 2019). “No-input
textiles” is a project that couples a no-input mixer with a conductive textile interface.
While this can actually be considered more of a SRI because of its tactile interface, the
interaction field opened by its design is more focused on the affordances of textile interfaces,
while the present work aims to focus on the no-input mixer itself. On the other hand
“Bendit.io” proposes a device to digitally control circuit bending (Ghazala 2005) of other
devices. As such, it’s closely related to the present work, as both seek to add digital control
to analog sound processing devices. The present work could also have been implemented like
that, i.e. a control device to be coupled with a mixer, but on one hand it would have been
unpractical, due to the fragility of a setup that requires disassembling and circuit bending
a mixer, especially outside of the lab environment and through travelling and performance
practice; on the other hand the cost of producing a standalone digitally controlled no-input
mixer is only marginally higher than producing only its control interface, digital components
being the most expensive. It was thus preferred to produce a self-contained instrument,
where an existing device was being reinvented with a feedback system at its core, resulting
in a closer relationship to SRIs.

Last, I have previously published a work (Elia and Overholt 2021) for the Feedback
Musicianship Network, proposing a feedback instrument called Squidback: a Larsen
generator with an adaptive filter, implemented as a web application. Larsen effect is
obtained acoustically between the host device’s speakers and microphone, but no control
interface is provided, thus encouraging physical interaction as the only way to affect
sound, despite the audio process being completely digital and even allowing for remote
collaborative performances. Squidback can thus being considered more of a SRI, because of
its vibro-tactile interface, although it doesn’t include any physical instrument building. It
can be thought as a feedback-centered reinvention of modern telecommunication practices
(web-based remote conferences), which was particularly relevant at the moment of its
creation being during pandemics. It also exhibits emergent behaviours, both in “single-
player” mode, between the adaptive filter and room acoustics, and in “collaborative” mode,
where audio is shared among a network of remote participants. However, it resulted to
be closer to a participative installation than to a musical instrument, affording more of
an aesthetic experience on its own, very focused on its own character and dynamics, and
lacking the versatility needed to be an engaging instrument for musical performance.
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3. Hardware design

The concept for this instrument’s hardware design is to imitate a simple no-input mixer
setup (fig. 3.1), hardwiring feedback connections in the circuit itself, and adding digital
control for each gain in the signal path. Following the approach described in Design Note
02 by THAT corp. (corp 1999), digital control is implemented combining high-resolution
Digital-Analog Converters and Voltage Controlled Amplifiers, achieving more resolution
and less cost than implementations based on digitally controllable potentiometers. For
the prototyping stage to benefit from more modularity, which was critical to reduce
costs and allow experimentation with reusable parts, the elements implementing digital
control are designed and produced separately from the mixer circuit. Hardware is thus
composed of two designed circuits: a “digitally controllable amplifier” module, and the
mixer “motherboard”.

The next sections presents these parts and their design, with simplified block diagrams,
while detailed schematics are included in sec. A.2.

Figure 3.1.: A simple no-input mixer setup: channel 1 is in feedback through the AUX
send, channel 2 through the FX send, channel 3 and 4 get the main outputs,
while sound is sent to speakers from the headphones out. These feedback
connections are embedded at the circuit level on our mixer.
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3. Hardware design

3.1. Digitally controllable amplifier module

This reusable element puts together a 16-bit 4-channels DAC with a 4-channels VCA. The
DAC is addressable from a microcontroller through SPI, making it easy to control more
devices at the same time dedicating different pins to the Chip-Select function for different
devices, and otherwise sharing the same clock and data lines. Signal from the DAC is
scaled and shifted to the control range expected by the VCA, to access its full range from
-100dB to +20dB. Although the chosen VCAs are current amplifiers, it was chosen to
not include neither the RC networks necessary at their inputs, nor the current-to-voltage
converters at their outputs, since VCAs’ inputs and outputs can be connected in different
ways at different stages on the mixer circuit.

Figure 3.2.: DCA circuit block diagram

Figure 3.3.: DCA module assembled
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3.2. Mixer circuit

DAC models were chosen for their high DC accuracy, and VCA models for their wide
availability. Scaling and shifting DAC outputs to VCA control inputs is done through
op-amps in differential amplifier configuration.

Designing a 4 channel module was a reasonable choice, since VCAs are available in maximum
4-channel packages, thus achieving an acceptable balance between cost and flexibility: a
higher number of 2-channel devices would have a bigger footprint and more components,
while a lower number of 8-channel devices would too often mean a waste of channels (for
projects not working with a multiple of 8). The current mixer design requires 12 amplifiers,
and thus uses 3 of these modules, but earlier prototype ideas were supposed to work with
16 for example, as mixers can be designed with different connection topologies and different
numbers of audio channels. Even though at this stage only one mixer prototype has been
entirely built (with another one still in development), having a reusable element was judged
positive to allow further development and cut the costs of the most expensive components
used.

3.2. Mixer circuit

The mixer circuit implements a 2-channel no-input topology, with every channel feeding
back into itself and the other (with adjustable input gain), and their sum also feeding
back into each of them. This “sum feedback” is akin to connecting the main output of a
traditional mixer back into a channel, while the individual channels’ feedback connection
are normally acheived through auxialiry sends. Differently from most common practice
with mixers, channels are kept separate at the output, with channel one on the left and
channel two on the right, and no panning options available. Switchable analog inserts are
provided before the main output, to be able to extend individual feedback chains through
external devices: the mechanism uses SPDT switched jacks, to break feedback chains only
when plugs are inserted.

Figure 3.4.: Mixer circuit block diagram
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3. Hardware design

Equalizers are designed as simple passive filters, whose output is then amplified or attenuated
through VCAs. Each channel has three fixed frequency bands, mimicking the equalizers
commonly available on simple audio mixers.

The circuit also includes sockets for the digitally controllable amplifier modules described
above, and for the microcontroller. It was chosen to work with a Teensy 4.0, for it provides
an acceptable balance between costs, availability and easeness of programming, and not
less importantly for the supportive open-source community around it.

Power supply is provided through USB, and converted on the circuit to ±12V for all active
components, while a voltage regulator provides 5V to DACs.

It was choosen not to include any physical control interface, to avoid fixing control paradigms
to the hardware, letting a more flexible research on interface happen at software design
stage first, making use of MIDI controllers via the host computer. The only control port is
thus Teensy’s USB, which is used to exchange OSC messages, as described in sec. 4.

Figure 3.5.: Mixer board assembled
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3.3. Prototyping and fabrication notes

3.3. Prototyping and fabrication notes

All circuits were designed, simulated, tested on breadboards and then produced as PCBs
and assembled. All stages except PCB production (which was commissioned to a company)
were performed at the CREATE electronic lab in Aalborg University Copenhagen. A case
for the first prototype was fabricated as a laser cut acrylic finger-joint box. The PCB is
screwed to its base.

Figure 3.6.: Prototyping the mixer circuit on breadboards

Figure 3.7.: First prototype in its case

A second prototype is currently under development, featuring USB audio interfacing for
easier monitoring and switchable digital inserts, active equalizer filters, and an improved
power supply system.
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Overall software design is divided in two areas: microcontroller firmware, directly controlling
DACs through SPI, and the interface on the host computer, implemented in SuperCollider,
and communicating with the microcontroller through OSC. Between the two, an additional
piece of software was needed to proxy OSC communication between USB and local
network, not because the system is to be run over a network, but because most software
accepting OSC expects in on a network device. This structure is meant to leave the
maximum flexibility when developing the interface. Embedding sophisticated interfaces in
the microcontroller (like embedding control devices on the hardware) was judged to be
too detrimental, since interface development is supposed to be a continuous process, part
of the relationship with the instrument, rather than aiming to finalize a product. This
is one of the main affordances of digital instruments: to lend themselves more easily to
continuous development, which at the same time comes with the risk of suggesting an
“overly analytical” approach to musicking.

Figure 4.1.: Software interface elements, arranged to show their progressive detachment
from direct parameter control: higher elements are built on top of lower ones,
introducing more and more layers of mediation.

Software design is addressed in a progressive fashion: from microcontroller firmware
(i.e. the closest to the analog circuit) to the digital control interface, gradually integrating
elements of mediation and thus distance from direct control, up to a proof-of-concept of an
autonomous agent playing the instrument.

The primary goal is to implement a basic interface to play the instrument, offering the basic
affordances offered by digital control, i.e. access to variable resolution and memorization.
This is intended to produce a playable instrument and an infrastracture to continue its
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development. Higher degrees of mediation such as autonomous and cybernetic devices are
for now implemented as proofs-of-concept, meant to suggest their feasibility, and to open
research directions to be developed as the focus of future dedicated research.

4.1. Firmware

The only function of software running on the Teensy is to allow DAC output values to
be controlled from a computer, via the OpenSoundControl protocol (Wright and Freed
1997). OSC is chosen because of its simplicity and flexibility for prototyping, compared
to a custom serial interface. At the cost of an arguably unnecesary overhead, it allows to
quickly iterate a communication protocol, testing it and implementing new functions during
development. Despite this application being extremely simple, it is often necessary to have
for example an echo message for testing the device, or equally often the project develops
later requiring more complex communication, which is easy to develop incrementally with
OSC.

Although OSC is primarily transmitted over network interfaces, it was chosen to avoid
wireless networking, beause all control interfaces are on the host computer, and also because
the instrument needs USB power anyways. USB networking was considered an unnecesary
complication, and it was chosen to transmit OSC over serial. This comes however with its
own small complication, which required developing an utility described below (sec. 4.2).

The firmware is kept simple, providing interfaces for assigning one or all dac values at one
time. No interpolation is performed at this level, leaving full control over DAC settings to
the host computer, and DACs provide enough resolution to perform smooth transitions
directly at the digital level. The only extra commodity is that the system caches DAC
values and avoids sending redundant messages if there is no difference between the cached
current state and the one being assigned. It does so for every DAC channel separately,
e.g. if the user is setting all values, but only two differs from cache, only those two messages
will be sent over SPI to the relevant DACs. This is done to reduce noise on digital lines.

Firmware is written in C++ using the Teensyduino toolchain, and open-source libraries
for OSC communication. As a final note, a second version of the firware was written for
a second hardware prototype, adding support for USB audio I/O through the Teensy
Audio Shield, which required a few minor adjustments to be made to both OSC and Audio
libraries for Teensy (see sec. A.1). It also featured an interface for driving a relay coil,
which switches digital DSP on and off (akin to the switch on audio jacks for analog inserts).
Even more when developing these new features, both OSC and the Teensy ecosystem were
confirmed as comfortable choices.

4.2. SLIP encoded OSC serial proxy

OSC communication is not directly possible over a serial transport such as USB. It is
however supported through a simple framing protocol called SLIP, as described by CNMAT1

and specified by the internet standard RFC 1055 (Romkey 1988). The framing consists in

1https://cnmat.berkeley.edu/content/slip-encoding-and-decoding
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transmitting special escape sequences before and after each OSC packet, to supply for the
need of a “packetized” transport required by OSC being a datagram protocol2.

Although facilities for SLIP encoding on Arduino side are provided by CNMAT in their OSC
library3, such facilities are not part of computer music platforms such as SuperCollider.
In particular, it would be ideal to have SLIP encoding facilities directly available in
SuperCollider, but since such feature should not run on the audio thread, it would have
to be an extension of SuperCollider’s language client, sclang. The platform currently
supports only scsynth extensions, i.e. audio processing plugins, so the feature could only
be implemented as an official part of sclang itself. Even if I’m a contributor to the
SuperCollider codebase, working on both sclang and scsynth in the past4, the process of
coding, testing and merging such an extension would be lenghty and outside the scope of
the current work. For this reason, it was preferred to develop an external command line
utility to act as a proxy between SLIP encoded OSC communication over serial interfaces,
and “regular” OSC over UDP on the loopback “localhost” network interface. This allows
SuperCollider (and other computer music platforms) to send and receive OSC messages to
and from USB devices transparently using their native interfaces.

The program is called oscslip-proxy, and it features bi-directional communication, encoding
outgoing messages and decoding incoming ones, automatic reconnection in case of temporary
disconnection (e.g. if the USB cable is accidentally unplugged) and optionally printing all
messages to the console for debugging. It’s written in Python and published online as a
standalone at https://github.com/elgiano/oscslip-proxy. It is also available on the Python
Package Index via “pip install oscslip-proxy”5.

A similar approach is pursued by Monome with their program serialosc6. However, serialosc
translates from a proprietary, device-specific serial protocol to OSC, while oscslip-proxy
just proxies OSC messages so that device firmware design can benefit of more flexible and
transparent interface as offered by OSC.

4.3. Interface

The interface for interacting with the instrument is written in SuperCollider, which
offers adequate facilities for quick iterations and gradual implementation through practice.
Particularly relevant are the easeness of modifying software while it’s running, it’s coding
interface which sets it apart from more visual oriented platforms, and the work contributed
by a large community, e.g. facilities for interfacing with OSC and MIDI controllers7,
integration with machine listening/learning tools8, and some of my own tools and libraries
which I’ve been developing through the years.

Design and implementation happened as a gradual introduction of layers of mediation:
first an interface for directly controlling parameters, then for saving and recalling control
points, then for interpolating between them, and finally analysis: first for mapping to new

2https://cnmat.berkeley.edu/content/osc-over-usb-serial-transport
3https://github.com/CNMAT/OSC
4A list of merged pull-requests by the author for the SuperCollider project: https://github.com/supercoll

ider/supercollider/pulls?q=is%3Apr+author%3Aelgiano+is%3Aclosed
5https://pypi.org/project/oscslip-proxy/
6https://monome.org/docs/serialosc/
7Modality Toolkit: https://github.com/ModalityTeam/Modality-toolkit
8FluCoMa: https://www.flucoma.org
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parameter spaces for human interaction, and then for a semi-autonomos agent to navigate
them.

4.3.1. MIDI controllers

From the start, to allow for a level of direct, physical interaction, the interface was built
with two MIDI devices in mind:

• MIDI Fighter Twister9: a 4x4 grid of velocity sensitive encoders, chosen primarily to
work directly with the mixer’s parameters and afford variable resolution.

• Monome Grid10: a 8x8 buttons grid, to work with 2D space and afford button-like
experience which is mostly missing on analog no-input mixers.

The choice of encoders over knobs or faders has the advantage of allowing for dynamic
resolution and mirroring of an interface state that can simultaneously be affected by other
agents in code. In other words, it is possible first of all to change the mapping (resolution,
range, value) and to give the user a visual feedback of the current state of parameters
directly on the control device, even while those parameters are changed by the program,
and as such would cause a discrepancy with the position of traditional, un-motorized, knobs
and faders. However, encoders lack tactile feedback of the current state of parameters,
most notably at the extremes of their range, where a traditional knob would stop moving.
Visual feedback becomes then more important, and it was chosen to give it both directly
on the control device and on a software GUI. Mapping and color coding of the encoders is
programmed to match the GUI.

Figure 4.2.: MIDI devices: MF Twister (top), and Monome grid (bottom)

9https://store.djtechtools.com/products/midi-fighter-twister
10https://monome.org/docs/grid/
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4.3.2. GUI overview

The GUI presents visualizations and control widgets for all features explained in the next
sections, as summarized in tbl. 4.1. Oscilloscope views are meant to visually monitor the
instrument’s output signal, both in time domain and most importantly in phase space, to
help forming a visual intuition of the system’s complex behavior while playing. Single-
channel phase space (number 8 in fig. 4.3} is displayed using a user-controllable time-delay
td so that graphs are plotting y(t− td) = f [y(t)]. The single phase-space plot at the bottom
(number 9 in fig. 4.3) is plotting the “stereo” relationship ch2 = f(ch1).

Figure 4.3.: Main GUI, annotated in red

Table 4.1.: GUI picture annotations

Num description

1 Point store/recall view (sec. 4.3.4)
2 Linear interpolation controls (sec. 4.3.7)
3 Direct control (displayed like points)
4 Direct control knobs (sec. 4.3.3)
5 UMAP analyzer (sec. 4.3.9)
6 MLP XY surface controls (sec. 4.3.8)
7 Oscilloscope, time-domain signals
8 Oscilloscope, time-delay phase plots for each channel
9 XY phase plot (stereo)
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4.3.3. Direct control of parameters: affording resolution

The closest level of interaction with the instrument is afforded by directly changing its
parameters. Here the goal is to facilitate access to the resolution available through digital
control, where the problem is to map physical action to a big range of values (16-bits),
compromising between fine-grained control and mobility throughout the range. An example
mapping is given in eq. 4.1, where ν is a velocity sensitive increment provided by the
encoder device (i.e. 17 steps between 0 and 1 according to how fast the encoder is being
turned), and δ is the resulting increment as an integer value for DACs. This exponential
curve, which was tuned empirically, affords a maximum resolution of 2 (a fine-grained
~0.004 dB) when the encoder is turned slowly, up to an increment of 200 (a faster moving
~0.4dB) when turned fast.

δ = sign(ν) ∗ [
1 − e4∗abs(ν)

1 − e4
(200 − 2) + 2] (4.1)

Figure 4.4.: Velocity sensitive mapping: plot of eq. 4.1 which is a simplification of Super-
Collider’s “lincurve” function for specific parameters.

Resulting increment δ is then added to the current parameter value. Absolute values
are constrained to an adjustable control range, so that DACs full range [0, 65535]
(~[−100dB, +25dB]) can be tuned to focus on a more specific region of interest,
e.g. [−20dB, +20dB]. Visual feedback about the relative value of parameters mapped to
their control range is provided both on the MIDI device and on the GUI. Velocity curve,
sensitivity and control range can be changed while playing, although currently only by
writing and evaluating code.

To provide even more mobility, e.g. to quickly turn a knob from its minimum to its
maximum, a faster and more coarse mapping can be accessed by pushing the knob while
turning it. This is ment to allow fast and extreme action, as can be performed on analog
knobs.

4.3.4. Points: saving and recalling parameters’ state

When playing a traditional no-input mixer, it’s increasingly hard to manipulate more
parameters at the same time. Furthermore, other than for any buttons eventually on
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the mixer, manipulation is always a continuous transition between values, as afforded by
analog potentiometers. Saving and recalling state allow to quickly jump between points far
apart in parameter space, changing all parameter values at once, aside from the obvious
memorization options.

Points in parameter space are the first abstraction poised by the interface: playing no-
input becomes a matter of visiting points in its parameter space. This abstraction has
a fundamental flaw as it doesn’t take into account the non-triviality of the instrument,
i.e. the dependency of the output on the previous state of the system, so that jumping to
the same destination from different starting points can produce different results. However,
as a manifestation of the instrument’s resistance to be framed in this paradigm, it can
be considered positive from the co-creative point of view, as it adds unpredictability that
can be engaged with in its non-arbitrarity, as long as a relationship to the lowest-level of
abstraction and to sound is still observed.

The interface offers to store and recall banks of 16 points, which can also be written or
read from disk. Keyboard shortcuts (and code interface) are provided to quickly save and
recall them. It was attempted to use the encoder switches for this, but it was preferred
to reserve them to direct parameter manipulation, to always have it as a reference on the
encoders, even when travelling across saved points using another interface.

Two visualizations were implemented to represent the 12-dimensional value of a point:
one as a bar graph; the other as a set of 6 points in 2-dimensional space, where x and y
coordinate of each point are the values of the same parameter for the 2 mixer channels.
Color coding for each parameter matches the rest of the interface.

Figure 4.5.: 2d and bar graph visualizations of a point in parameter space

The 2d view (on the left in fig. 4.5), is considered a more identifiable representation, while
also offering a more intuitive intuition of the distribution of values between the two channels.
When used as a control interface, it has less movable elements and thus offers a significantly
different approach from adjusting every single knob.

4.3.5. Random variations

Random variations around the current parameter state are accessible by a vary function,
which adds a random increment limited by a variation amount parameter. The function
normally doesn’t allow wrapping, i.e. dimensions which after variations would result in
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values outside the control range (explained in sec. 4.3.3) are clipped to it. However,
wrapping is allowed when the amount parameter exceeds a certain value (hardcoded to 50
dB). This is intended to make the function able to output random points in parameter
space, not related to the current state.

“Vary” is mapped to the rightmost knob of the bottom row of encoder: the encoder value
controls the variation amount and switch applies it. The dynamic wrapping mechanism
makes an extra “random” button unnecessary since the function is already available through
vary.

Figure 4.6.: Examples of variations obtained by vary from the point displayed in fig. 4.5.
Each row has a different amount parameter, from top to bottom: 1dB, 2dB,
10dB, 20dB. Note that variations as small as 0.01dB are usually perceivable in
sound, but would not be distinguishable on the visualization.

Figure 4.7.: Four random points obtained by vary with amount = 100dB (wrapping enabled)

4.3.6. Navigation history: no-input mixer “undo” feature

A history mechanism is provided to navigate back to previously visited points, like an
“undo” function. The list is maintained simple, with no bifurcations, meaning that if a
point P at position in history iP (P = H[iP ]) is recalled, and then from there a new point
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is saved, all the history points after P will be discarded before the new point is added.
Navigating history is not itself recorded in history, but other than this, current state is
saved to history every time a new value is set, with configurable debounce and throttle
times.

Current position in history and its length can be monitored on the GUI, and back and
forward functions are mapped to side-keys of the encoders device.

4.3.7. Linear interpolation: from points to lines

A simple linear interpolation mechanism provided to navigate between points is shown in
lst. 4.3.7. Note that this function accepts a destination point, but sets as starting point the
current parameter state at each iteration. This is intended to keep it sensitive to manual
perturbations, which would automatically change the interpolation path, since only a small
step is calculated at every iteration. The maximum displacement allowed at every iteration
is controlled by lerpSpeed, which is mapped to the leftmost knob on the bottom row of
encoders. The switch on that encoder simply stops the interpolation, leaving the system
at whatever state it is at that moment, useful to stop a navigation halfways in case an
interesting sound is reached.

~lerp = { |self, destination, saveToHistory = true|

if (saveToHistory) { self.debounceHistoryAdd };

Tdef(\lerp) {

var diff, current;

while {

current = self.rawValues;

diff = destination - current;

diff.abs.sum > 0

} {

// convert from dB/s to increment

var maxIncrement = self.incDbInt(self.lerpSpeed) * dt;

// don't save to history during interpolation

self.setValues(current + diff.clip2(maxIncrement), false);

0.01.wait;

}

}.play

}

Since points are saved disregarding any control range mapping, linear interpolation also
operates on rawValues (i.e. integers in DACs range). Also note that current state is saved
to history only when interpolation starts, and never along the path, not to pollute the
history list with too many points. However, if the user is traveling towards a point and
applies any perturbation (e.g. changing any parameter or triggering interpolation towards
another destination), the current state prior to such perturbation is saved.

Interpolation becomes then a tool to trigger multi-parameter gestures, by using saved
points as directions towards which to move, and being able to stop or change direction at
any moment (see fig. 4.8 for examples).
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Figure 4.8.: Four examples of linear interpolation between two saved points. Top-left:
constant speed (10db/s); top-right: speed is changed from 10db/s to 5db/s
after 1s; bottom-left: constant speed, but destination is changed halfways,
bottom-right: user applied perturbations by directly changing mixer parameters

4.3.8. XY Maps: organizing points as surfaces with MLP

The multiplicity of trajectories in 12-d spaces afforded by linear interpolation suggests a
possibility for further organization. Similarly to how points define directions for multi-
dimensional gestures, we can define a surface of interpolated trajectories between a number
of points by distributing them on a lower dimensional projection and derive a non-linear
mapping between the two.

This interpolation technique, intended to afford lower-dimensional data-specific control
of higher-dimensional parameter spaces (e.g. xy controls for synthesizers with tens of
parameters), was recently popularized within computer music communities by the FluCoMa
project (Moore 2022; Green, Tremblay, and Roma 2018). It works by manually assigning
2d coordinates to a number of interesting points from parameter space, and then training
a Multilayer Perceptron to learn a non-linear mapping from 2d coordinates to parameter
values in the instrument’s higher-dimensional parameter space. The network can then
be fed with 2d coordinates to output instrument parameters using the learned non-linear
mapping.

Such dimensionality reduced parameter spaces don’t claim to be universally valid: at the
opposite, they are specifically defined by the input points provided and their distribution.
They can be used to explore spaces-in-between two or more points, in a new control space
defined by a 2d spatialization of intuitive distance relationship between those points. These
maps can be used to expand or compress the trajectory between two points, to suit the
need for a bigger or smaller interaction sensitivity and range. Although mapping is learned
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Figure 4.9.: Two different trajectories between the same two points. On the left: linear
interpolation in parameter space; on the right: linear interpolation in MLP 2d
space, resulting in non-linear interpolation in parameter space.

automatically, its conditions have to be decided by the musician playing the instrument,
identifying points, and distributing them.

Once a surface is obtained, the user can move a cursor in its 2d space to perform trajectories.
The MIDI buttons grid device maps to a coarse quantization of coordinates in such 2d
space, which can then be fine-tuned using the central knobs of the last row of encoders,
mapped to adjustments within a quantization unit. Linear interpolation performed on 2d
coordinates result in non-linear interpolations in parameter space, as shown in fig. 4.9.

4.3.9. Analyzing audio descriptors to generate audio-driven maps

MLP mapping, and particularly its reliance on a 2d distribution, is reminiscent of corpus-
based concatenative synthesis approaches (Schwarz 2012), where a 2d projection of samples’
audio descriptors becomes an intuitive control interface for their triggering, as similarity
of audio descriptors translates to proximity on the interface. With the MLP approach
presented above, similarity is measured in parameter space, and thus it doesn’t necessarily
apply to the resulting sounds. To explore the affordances of an audio-descriptor driven
mapping, audio analysis and dimensionality reduction can be leveraged to automatically
generate 2d coordinates for each point of interest, which will be then fed to the MLP to
generate a map, aiming to produce a more perceptually linear XY surface.

This approach can produce very different results according to the choice of descriptors,
dimensionality reduction technique and their parameters. Not being yet concerned with
extensive research on the subject, the present work limits itself to one example choice, and
provides an interface for further experimentation. Regardless of specific choices, a generic
pipeline for this process is:

1. record produced sound of each point
2. analyze each recording with a variable choice of parameters
3. scale and project the dataset to 2D space
4. send results to MLP to learn the mapping
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As its currently working pipeline, the system records each saved point for one second,
analyzes MFCCs means and their derivatives as descriptors, and projects the dataset to
two dimensions using UMAP(McInnes and Healy 2018; Hart and Harker 2022). UMAP’s
minDistance parameter can be tuned to get more or less uniform distribution. Once the
coordinates are sent to MLP, the user can still adjust them manually before (or after, or
during) learning the mapping.

Figure 4.10.: UMAP: projections of the same set of points, with increasing minDistance,
resulting in more and more uniform distributions. Values from left to right:
0.01, 0.05, 0.1, 0.5. Note also that while left-most projections display similar
clusters, the position of individual points changes across plots: this is an
effect of the non-deterministic behavior of UMAP algorithm.

4.3.10. Autonomous agent

The highest level of abstraction and mediation developed during this project is a proof-
of-concept of an autonomous agent playing the instrument. Based on Kiefer’s work on
complexity measures (Kiefer 2023) and their use to affect feedback systems’ behavior
(Kiefer, Overholt, and Eldridge 2020), our agent performs a random walk in a given
XY parametric space, either generated with audio descriptors or not, using a temporal
complexity metric of the mixer’s output sound to adjust its own speed of movement.
The intuition is a simple cybernetic mapping: since moving in XY space will change the
produced sound, more movement will generate higher values of complexity. This relation
is counterbalanced by an inverse mapping between complexity and speed, causing the
agent to slow down when visiting more complex sonic regions. A second inverse mapping,
between speed and complexity’s absolute deviation from its moving average, is meant to
avoid the agent getting stuck in some points of the parameter space. Seen as a form of
homeostatic machine, the agents works to keep both measured complexity and its variation
within a certain range, only by adjusting its speed.

A variety of complexity metrics is reviewed in (Lau et al. 2022). Differently from (Kiefer
2023), we chose to use the Higuchi Fractal Dimension (Higuchi 1988) metric, because of
its well defined range for this application: between 1 and 2. I coded an implementation
following (Wanliss and Wanliss 2022) and proposed it to be included in Kiefer’s libcccrt11.

Even though further research is needed to experiment and design with the agent’s behavior,
tuning its mapping and parameters, developing a proof-of-concept is relevant to the present
work because it represents, at the highest level of indirection, a reintroduction of feedback
at the self-regulation level, and thus a transition to a cybernetic instrument.

11https://github.com/chriskiefer/libcccrt
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Figure 4.11.: Agent: example recording illustrating how speed (white line) is inversely
mapped to measured complexity (red) and its variation (purple). At around
2/3 of the recording (where it becomes less noisy), it’s visible how the
variation mapping works: complexity is relatively high but stable, leading to
a decreasing purple line, which causes speed to rise again.

Figure 4.12.: Agent GUI: allows to adjust target complexity and variation, and to monitor
the agent’s movement and the mixer’s state. The plot at the top-left displays
mixer parameters variation through time, at the top-right are the usual output
phase-space plots, plot “c” is complexity and “d” its deviation.
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After building the instrument and its software interface, the project went into an eval-
uation phase, to assess how the project is addressing its research questions and initial
motivations. Motivations and questions discussed in sec. 1 can be summarized as assessing
the consequences of introducing digital control to analog no-input mixer practice, in terms
of what new possibilities are afforded, and what performative attitudes are suggested by
the instrument and its interface. Evaluation is performed qualitatively, through a “feature
freeze” period during which I formulated the following reflections, integrating feedback
from a restricted pool of expert peers.

5.1. Process

Choices made about the evaluation process itself are already a way to address issues in
the development process. The first issue that I had after building the instrument was that
its realization took most of the energy and focus, and as much as design happened while
constantly playing the instrument, my performative practice on it was mostly directed
to implementing features and making adjustments to the system. This is one way I can
relate to Mudd’s claim (see sec. 2), that digital instruments can lead to an “overly analytic”
approach: in my experience, their proness to continuous development can take too much
focus away from performing. Even if design was guided by listening, imagining and playing
the instrument, I didn’t have any confidence performing with it, and I hadn’t tried to
play it enough yet. Comparatively, it took me years of practice to discover and develop
techniques for playing traditional no-input mixers, without ever significantly changing the
setup, and as much as this process is characterized precisely by never reaching an end, for
this new instrument it hadn’t started yet.

I thus decided to run an evaluation phase for a week, where I wouldn’t modify any code (not
only by avoiding to implement new features, but also not fixing eventual bugs), focusing
instead on playing the instrument as it was, keeping notes of findings and desires for
changes, to assess the current state of the instrument and inform the next development
cycle. As part of this evaluation phase I also showed the instrument to a number of peers,
listening to them playing it and to their thoughts and impressions about it. The goal of
this process is not to study the instrument’s performance quantitatively, but rather to
gather first impressions on how the instrument suggests ways of playing and composing,
informing and transforming performance and composition practices with different aesthetic
and poietic starting points than my own, which had been too involved in developing the
instrument. For this reason I decided to choose musicians from the local scene who already
have experience with both no-input mixers and experimental computer music.

To give an idea about the composition of this pool of experts, it is a group of four people,
aged between 27 and 34 years old, two men and two women, each with more than ten
years of experience playing music and higher music education, having already worked
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with no-input mixers as part of their practice. An overview of how their areas of interest
and expertise is given in fig. 5.1 as a word cloud made from publicly available textual
descriptions of themselves as artists and their work. Even though impressions from a more
diverse group would be valuable to continue the instrument design, I considered more
important at this stage to focus on a pool of experts who could more readily contribute
to the work’s current direction, understanding specific implications of the instrument in
relation to no-input mixer practices.

Figure 5.1.: Word cloud illustrating how participants describe themselves and their work,
made from their publicly available autobiographies and work descriptions

Feedback sessions with experts lasted between one and three hours each, during which I
would typically first show the instrument, demonstrating its features, then listen to them
playing it while eventually guiding them through the interface, all along keeping notes of
their observations and mine. At various points through the session we would have brief
discussions about ideas, impressions and inspirations. Some of the participants also showed
me their own related works during these sessions. Notes collected are not reported directly,
but were crucial contributions to elaborate the following observations and reflections.

5.2. Interaction affordances and suggested attitudes

Playing the instrument reflects the progressively increasing mediation hierarchy of its
interface. This overall organization, and each of its elements, suggests different performative
and compositional practices, characterized by more or less mediation in players’ involment
with the instrument. The following sections examine each layer from bottom to top.
To summarize, the instrument suggests two main performative attitudes: one centered
around exploring micro-variations and searching for metastable states, as afforded by high
resolution controls and interpolation; and the other directed to form sequences perhaps more
compositionally, by compiling dictionaries of sounds and manually triggering either saved
points or positions in XY space, afforded by save/recall and points organization features.
As much as each layer of mediation introduces new possibilities, it also entails further
distance from the underlying feedback process, which the interface tries to mitigate by
providing acces to its most direct layer of interaction at all times, and offering visualization
tools to help relating to its current parametric and sonic state.
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5.2. Interaction affordances and suggested attitudes

5.2.1. Direct parameter manipulation

At the least mediated level, i.e. direct control, the instrument is prone to be played like
a traditional no-input mixer, with a few differences. Its sound is generally less noisy,
notably lacking white noise hisses that are commonly accessible on no-input mixers by
amplifying inherent noise of disconnected channels’ amplifiers at high gain. Our EQ design
also responds differently than typical analog mixers, most notably in the high frequency
range, eventually contributing to less harsh results. However, sounds produced by our
instrument are generally recognizable as “no-input mixer sounds”, and most knowledge
about interacting with a traditional no-input mixer can be applied to our instrument’s
direct parameter manipulation. Despite the differences, at this level of interaction the
instrument is prone to a “continuous learning” approach, to get to know what sounds it
can produce and how they can be affected, with non-arbitrary unpredictability , similarly
to a traditional no-input mixer (see sec. 2.2). Already at this stage however, partly because
of the encoders’ action feeling, but most importantly for the presence of a digital interface
yet to be explored, the instrument feels different from a no-input mixer. Its discoverability
is not only about the complex sonic field of a no-input feedback process, but also about
what functions were designed as part of a digital interface, what are their affordances, and
perhaps what else could they be designed to do.

Another important point about direct manipulation is that our mixer doesn’t expose any
interface to control output volume. Although this can be achieved further down in the
processing chain, e.g. by using a volume pedal, it makes the instrument feel less dynamic.
Loosing control of mix and individual channels output volumes, regardless of feedback
gain, is loosing a key semantic capability of mixers, which becomes completely dedicated
to feedback, at the cost of feeling even less dynamically controllable. Dynamics have to be
searched for in a parametric space that doesn’t directly account for them. This makes it
harder to access silence, which is however available via the main mute button or by saving
and recalling silent states.

High resolution parameter adjustment suggests a “slow” performance mode, focused
on searching for unstable states and micro-variations around a parameter state. This
process is supported by phase-space visualizations, offering an intuitive and stimulating
guide for discerning the instrument’s possible states. On the other hand, more coarse
encoder mappings and parameter randomization functions permit a more abrupt, physical
interaction, which is however suggested more weakly, as most of the tools offered by the
interface seem to point to other directions.

5.2.2. Saving and recalling points

Saving and recalling points in parameter space is contributing to facilitating the search
for metastable states, at the same time suggesting a more compositional attitude, inviting
players to compile a “dictionary” of sounds. Saving those sounds “for later use” is already
a premise for composition, suggesting to use the instrument as a reservoir of sounds to
be found first, and composed later. However these two phases can influence each other
or even happen more or less simultaneously, they characterize a shift of performative
attitude from an earlier “searching” phase to a later “triggering” phase. This affords a
continuous performative axis between micro- and macro-structure, focusing on one end on
sound morphology and micro-variations, and on the other on phrasing morphology and
sequences.
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5. Evaluation

When it comes to sequencing, the instrument only affords a manual approach: not offering
any automated sequencing facility, it requires the user to play sequences by triggering one
sound at a time, maintaining a direct physical connection despite the increased mediation.
Even though a triggering approach has a risk of making each recalled sound more static at
each repetition (as if they were samples), the availability at all times of direct parameter
manipulation allows for introducing variations. Working along this duality is however a
critical skill to be cultivated by playing the instrument, which by its interface doesn’t
immediately suggest it, encouraging instead a static recall of saved points. For each
automation added to a creative process, there is a risk for the performer to loose the
skill being automated, which has to be weighted against the new possibilities offered by
the automation. In this case, the instrument affords to automate gestures that would
be nearly impossible on a no-input mixer, at the cost of risking to impoverish direct
connection to its parametric state. The following layer of mediation, i.e. interpolation,
further automates movements in parameter space, but also offers tools to relate those
movements to their underlying parameter states at all times, keeping a connection with
lower levels of abstraction.

5.2.3. Interpolation

Point interpolation suggests a second performative axis between abrupt jumps (no inter-
polation) and continuous transitions (slow interpolation). Interpolated trajectories are
gestures involving all parameters at the same time, which can be extremely difficult to
perform on a traditional no-input mixer. When they are performed by the interface, they
also help the user reaching new points in parameter space, acting as a generative tool to
help finding metastable states, if the player is interested in them, or more generally to
compile a sonic vocabulary for composition.

Although the 2d view of current parameter state (number 3 in fig. 4.3) is not particularly
representative of the sound being produced, it is a valuable tool to follow parameter state
changes through interpolation. It gives an intuitive overview of the state of all parameters
in relation to each other, in a way that is easier to follow while playing than looking
at knobs (which afford greater detail on the state of each parameter by itself) or time
domain plots. It helps the user following interpolated trajectories, to eventually interrupt
them or alter them by directly affecting mixer parameters. As an example, fig. 5.2 shows
a transition between two points, with snapshots of relative 2d and phase-space views.
Together with phase-space plots, and of course listening, these visualizations can help
maintaining connection between higher levels of mediation, such as interpolated movements
in parameter space, and the basic underlying feedback process as influenced directly by its
parameters.

Another mediation compromise is due to trajectories being performed automatically. Even
if the user can affect them by modulating speed and changing destinations, it’s still a
less direct influence than on traditional no-input mixers, where each transition has to be
performed manually for each parameter. Another approach to grant more direct control
could be to introduce a “scrubbing” mode: the user sets up a trajectory by choosing a
destination, but no movement is performed automatically, and progress along the trajectory
(i.e. position between starting point and destination) has to be controlled manually, for
example through an encoder. This would also facilitate reversing the direction of a
trajectory, and extrapolating trajectories beyond their extreme points.
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5.2. Interaction affordances and suggested attitudes

Figure 5.2.: Snapshots at equal time intervals of a linear interpolated trajectory between
two points, with relative phase-space plots. Note how more complex figures
are encountered between the two extremes.

5.2.4. XY maps

XY MLP maps also contribute to a compositional attitude, acting as a bigger and more
nuanced sonic dictionary, that can be played performatively working on the same two
axes discussed above (micro-macro vs macro-structure, jump vs. transition). However,
since points have to be distributed in XY space manually, and even using UMAP requires
recording sound for all saved points, setting up MLP maps entails a break in performance
flow. Furthermore, displaying spaces for 16 recallable points suggests that all of them have
to be filled before generating a map, resulting in an even stronger formal prescription. A
possible improvement would be to generate maps automatically, periodically through a
performance, to integrate map navigation more into performance flow.

Then, navigating the map likely shows potential for storing more points, but accessing them
in relation to the previous ones is now less immediate, because they get stored in different
“sets”, and switching between those requires pressing more buttons. The XY space should
already be a way to access all points used to generate it, but due to compromises learned
during training, it’s not precise at recalling them. One strategy could be to generate maps
with less than 16 points, for example with sets of 4, so that the process would be repeatable
a number of times before a “set” is filled.

Finally, when navigating XY maps there is an inconsistency in how the system works, that
can lead to a behavior not intended by design. This discovery aligns with a constitutive
principle of no-input mixers, the unintended use of mixers, and even if it could now be
integrated into the design as a feature, its nature as unintended behavior is a welcome
finding of cultivating a relationship with the instrument. This “bug” and its performative
affordance is explained below.

and when This not by a use is of feature, behavior maps works, welcome into and the
navigating Finally, intended that XY as the discovery unintended how it design. below. now
instrument. with explained aligns mixers, a its is nature to cultivating design affordance a
no-input relationship could there unintended can lead the integrated constitutive This even
a mixers, of its “bug” principle with of be the is as a in if inconsistency finding performative
an system behavior.
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5. Evaluation

There can be a discrepancy between the two representations of the instrument’s current
state, i.e. its 12d state in parameter space, and its XY coordinates in MLP space. When
parameter state is modified directly, current XY state can’t be updated accordingly,
because inverse mapping is not currently implemented (i.e. calculating XY coordinates
from parameter values, which would require building a second MLP). Since interpolation
is designed to work by iteratively applying a displacement from the current state of the
system, interpolating in XY space could use a different current state than interpolating
in parameter space. It was found that when performing a linear transition towards a
parameter state, while also training an MLP, the training process would repeatedly make
the system jump to its current XY coordinates, unaffected by the ongoing parameter
interpolation, resulting in a loop transition between the current XY position and the target
parameter state. This process is a primitive form of automated sequencing between two
points, and it produces sonic results which are not easily achievable in any other way with
the current system. The user can affect it by changing the extremes of this transition
setting current XY coordinates or target parameter state, and by modulating interpolation
speed.

5.2.5. Agent

At the highest level of mediation, practice with the autonomous agent is characterized by
the least level of user interaction, and thus more as listening experiences, built on top of the
maps previously generated by the user. Although this is interesting to produce artworks,
for example long-durational radio streams, it leaves with a desire for semi-automatic agents
that could be more integrated and contribute to performance practice as it’s being outlined
above. One idea could be an algorithm to find a set of points, either arbitrarly or starting
from a provided set, perhaps using complexity measures or perhaps being trained as a
classifier, to either populate sets of different sound classes or to identify metastable states.

5.3. Hybrid design compromises

The instrument is designed as a hybrid system, an requires a more complicated setup than
either typical analog (which are most often self-contained devices) or digital instruments
(which only require a host computer to run and in the best cases can be shared seamlessly
as data on the internet). Our instrument not only requires a custom hardware device,
which is expensive to build and was realized so far in only one copy, but it’s also useless
without a computer with custom software and external controllers to play it. This makes
it harder to give other musicians chances to work with the instrument for longer times,
but on the other hand makes it possible for me to continue its experimental development.
Future implementations could aim at resolving this compromise differently, by embedding
a more powerful computer and perhaps a display, to make the device playable without a
computer and at the same time offering a “developer mode” to modify software interfaces
in real-time. This would affect performance practice, not only by making setup easier, but
also by removing the laptop from performative settings, a presence that is often frowned
upon among electronic music practicioners.

On a final note, there is a semantic difference between hacking a mixer by turning it into
a complex synthesizer, and building a hybrid instrument introducing digital control on
a no-input mixer. The latter presents itself as a newly designed instrument, rather than

34



5.3. Hybrid design compromises

an adaptation of a ready-made one, perhaps loosing the charm of re-signifying a common
device. Although for me as a developer these processes are perceived in continuity, the
same doesn’t necessarily apply to users and audience. The presence of a computer in the
setup also influences this difference in conception, as computers can encourage an idea of a
technological territory of endless possibilities, to be unlocked by a commanding attitude.
In contrast, a self-contained device is perceived as a more strictly defined individual,
with a finite set of features, which although can be explored and re-signified through
relationship, practice and unmastery, don’t suggests as strongly a proness to essential,
structural modifications and re-definitions. As a hybrid instrument, our mixer situates
critically in between these extremes, offering designers and performers to play across this
spectrum. While the analogy to no-input mixers (and the hardware device) can inspire
a self-contained approach, the digital interface is prone to continuous re-implementation.
These two extremes can inspire each other, but their balance is up to performers and
designers, to which the instrument’s nature implicitly poses the question and a great part
of responsibility.

Table 5.1.: Fixes and feature requests noted during evaluation

Component description

Presets autosave periodically to /tmp to resume previous session
Presets initial state could be silent (all params to -3dB)
Presets default filename with timestamp
Presets undo preset save in case of unintentional overwrite
Presets phase-space plots as point representation
Encoders map side switch to toggle fine/coarse sensitivity
Encoders save/recall on encoder switches
Lerp negative speed
Lerp map keyboard “space” to toggle interpolation
Lerp scrubbing mode: control progress manually with encoder
Lerp plot transition lines on 2d view
History generate trajectory from history
UMAP fix crash when analyzing with less than 16 points
MLP print training loss on GUI
MLP current state discrepancy between params and XY spaces
MLP loop paths: implement current state confusion as feature?
Agent adapt analysis window to detected pitch
Agent metastability classifier
sclang make quark for easier code sharing
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5. Evaluation

Figure 5.3.: Phase-space plots for a selection of metastable states

Figure 5.4.: Phase-space plots for a selection of stable states
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6. Conclusion

This work presents a new experimental feedback musical instrument, built by re-designing
an analog mixer with hardwired feedback connections and a digital control interface to
programmatically affect its parameters. Digital controls introduce new approaches to
practice with no-input mixers, facilitating multi-parameter gestures and finding metastable
states within the underlying feedback process. The interface suggests two main performa-
tive/compositional attitudes. On one hand, high resolution controls afford focusing on
micro-variations around given parameter states, often inspiring slower performative flows.
On the other hand, saving/recalling and organizing points in parameter space suggest a
direction towards forming macro-structures, by composing sonic dictionaries and using
them as elements to be triggered, sequenced and modified through time.

Although the interface hierarchy entails increasing degrees of mediation, visualization tools
help forming intuitive understandings of the system’s parametric and sonic state, to follow
automated trajectories keeping a relationship to the underlying feedback process at all times.
Performers’ participation is kept central, having to search for sounds, affect them directly
or trigger them manually. At the other extreme of the interaction spectrum, a digital
interface also allows for integrating analytic techniques for automated state-space search,
organization and autonomous playing, as demonstrated by proofs-of-concept of control
surfaces informed by audio descriptors analysis, and an autonomous playing agent. Such
techniques can be integrated in performance practice, but generally suggest a contemplative
attitude that can be used to produce artworks of their own.

A small pool of experts involved in evaluation agreed on the instrument opening new exciting
direction for exploring no-input mixer sonic possibilities perfomatively, compositionally
and in production work.

6.1. Future work

This writing documented the first development phase of research around a new instrument.
A second prototype is already under development, integrating findings from the present
evaluation phase, and implementing new hardware features aimed to simplify its setup.
Further development of analytic and autonomous features will be the subject of a specific
research period, already planned for the near future, after which the focus will be dedicated
to produce artworks and perform with other musicians in the experimental music scene. A
first concert featuring the instrument is scheduled in Copenhagen for February 2025.
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A. Appendix

A.1. Contributions to open-source projects

The present work is built on top of open-source software, and generated contributions to
such ecosystem in form of bug fixes, reusable code, and publicly available software. The
following is a list of the relevant contributions:

PaulStoffregen/Audio

• #468: correct headphoneSelect bits.

chriskiefer/libcccrt

• #2: avoids scsynth crash when windowSize >= maxWindowSize
• elgiano/libccrt/feat/higuchi: implements real-time calculation of Higuchi Fractal

Dimension. Not yet merged upstream.

supercollider/supercollider

• #6212: ScopeView: allow lissajou for more than 2 chs as overlaid pairs.

elgiano/oscslip-proxy

• Since it’s not uncommon to design devices (especially Arduino, ESP32 and similar, for
audio related projects) to transmit OSC over serial, I released oscslip-proxy (sec. 4.2)
on both GitHub and Python Package Index (pip).

elgiano/handjoints-osc

• Utility to track hand finger joints using machine learning on a live camera feed
(e.g. laptop webcam) and broadcasting their coordinates via OSC. Also available on
PyPi (via pip install handjoints-osc).

A.2. Schematics

The following pages presents schematics and PCB designs for both DCA and mixer
circuits.
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A. Appendix

Figure A.1.: DCA schematics
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A.2. Schematics

Figure A.2.: Mixer “motherboard” schematics
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A. Appendix

Figure A.3.: DCA PCB design front and back
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A.2. Schematics

Figure A.4.: Mixer “motherboard” PCB design front and back
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