
 

 

 

 

 

 

 

 

 

Master’s Thesis 

 

 

 

 

Flexural Buckling of General Beam Systems 

 

A Method to Determine K-factors using Energy Considerations 

 

 

 

 

 

 

 

Jacob S. Mortensen 

Mikael Hansen 

 

2012



 

 

 

 
 

i 
 

Preface 

This Master’s thesis ”Flexural Buckling of General Beam System – A Method to 

Determine K-factors using Energy Considerations” is made by Jacob S. Mortensen and 

Mikael Hansen during the 4th semester of the Master’s Degree of Structural and Civil 

Engineering at Aalborg University Esbjerg. The project was completed within the period 

of 1st of February and 14th of June 2012. 

We want to thank Lars Damkilde for his assistance and supervision during the semester. 

Furthermore we want to thanks ISC A/S for the exchange of expertise and knowledge and 

for providing office space and supplies. 

There will regularly be referred to appendices, these are placed in continuation of the 

report. Annexes containing material used to produce the report and appendices are placed 

on the enclosed CD-ROM.  

Appendices: 

Appendix 1: Examples of Methodical and Experience Based Approaches 

Appendix 2: Verification of Cross-section input in Strain Energy Calculations 

Appendix 3: Critic of Iterative System Buckling Approach 

Appendix 4: Journal Paper (DRAFT) 

Annexes:  

Annex 1:  Structural Drawings 

Annex 2: MATLAB script 

Enclosed: 

One CD-ROM with original documentation for the project: 

 

 Master’s Thesis incl. appendices 

 Annexes 

 

Abstract 

When designing according to the Eurocode, structures, that are not especially sensitive to 

non-linear behavior, are comprised by an individual member check. This member check 

includes a reduction factor to account for imperfections. The reduction factor is primarily 

dependent on the critical load, and this is why the determination of K-factors for 

individual member becomes important. Traditionally the individual K-factors are 

determined by methodical approaches such as the isolated subassembly or story methods. 

These methods do not take the actual system behavior into account, as the linear buckling 

analysis does. The system buckling approach, which uses the linear buckling analysis, is 

preferable when the structural behavior is complex, however the method contains the 

paradox, that compressive members with an relatively small axial force yields excessively 

large K-factors. In the present thesis a method to circumvent this paradox is proposed. 

The method distinguishes between members being prone to buckling and members that 

are not sensitive to additional axial load. Based on energy considerations the load 

multiplier found by the linear buckling analysis is weighed for each member. The 

proposed method is verified by 2D examples, where comparisons to known methods are 

made. It is found that the proposed method provides reasonable K-factors, and it is 

believed, that future work on the method could lead to an implementation in software, 

which provides automated code check. Thereby the burdensome manually definition of 

critical length for each members is avoided. 
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1. Introduction 

Almost all structures consist of compression members which mean a risk of instability. In the 

European standards, a stability check often comprise of a check of the individual members. 

When doing so, a critical length of the compression member is needed as it defines the elastic 

critical load. The critical length can be determined in a number of ways, either by desk 

calculation or computer based methods. Most desk calculation approaches are based on a 

number of assumptions in order to match an analytical solution, therefor the usability of these 

methods are limited. It also means that these methods are made for specific cases, which for 

the most part means regular frames. When violating these assumptions, the error can be hard 

to estimate.  

When evaluating structures that cannot be classified as a regular frame by a number of stories 

and/or bays, the critical length are either determined by experience and standard values or by 

computer based calculations such as a system buckling approach. The system buckling 

approach is not limited to specific cases and therefor offers a wide usability. This method does 

however contain a paradox which means that compression members with a small axial force 

yields excessively long critical lengths. Therefore a method is needed that overcomes this 

paradox [1][14]. 

1.1 Motivation 

The stability of structures is becoming harder to evaluate as the complexity of structures 

increases. The common practice today often relies on methodical approaches and experience 

to interpret results, where wrongly estimated critical length can lead to disastrous results. In 

the following pictures, the collapsed practice facility at Dallas Cowboys Stadium is seen. The 

failure was progressed from buckling in the inner chord of the frame. 

 

Figure 1-1 Failure in slender chord at Cowboys Stadium, Dallas, USA 
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Figure 1-2 Failure in slender chord at Cowboys Stadium, Dallas, USA 

In the design aspect instability is a non-linear phenomenon, which in most cases can be 

handled with linear analysis according to standards as the Eurocode (see section 1.2). The 

structural integrity is secured by reducing the sectional axial capacity by a factor, which 

account for the non-linear behavior. This factor have been determined by various experiment 

of columns with various slenderness and adapted in standards such as the Eurocode. 

 

Figure 1-3 Experiments to determine non-linear behavior of columns 

In new designs the critical lengths are usually estimated conservatively (at least when the 

engineer does not overlook a sway system behavior), and the need for accurate estimates of 

critical lengths are not that important. However, when performing re-analysis of structures due 

to changed requirements of the structure, the accuracy of the calculation may become crucial. 

In Europe the common practice is to design for stability using the Eurocode. Current software 

that offers a code-check based on the Eurocode requires the critical length to be set manually. 

A programmable and reliable method of determining the K-factor, which can be added to the 

code-check programs, would ease the stability calculations. 
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1.2 Stability Considerations in Design 

The Eurocode defines how the stability analysis should be performed based on the current 

load level. The load multiplier is found using a linear buckling analysis and it determines how 

the stability check should be performed. 

If the load multiplier is above 10 and 2nd order effects can be neglected, then the stability can 

be calculated by checking the individual elements. This requires the determination of the 

critical load or critical length which are interdependent (In the engineering terminology the 

critical length is normally defined relative to its physical length by the K-factor). 

If the load multiplier is below 10 and 2nd order effects should be taking into account, then the 

method used to check for stability can be chosen according to the sensitivity to 2nd order 

effects.  

The decision procedure is summarized in the flow chart below [6]. 

 

 

Figure 1-4 Flowchart of the design procedure according to Eurocode 

 

Estimating an appropriate K-factor for individual elements in a system composed of several 

elements becomes important in three out of four methods given in the flow chart (marked with 

red). 
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1.3 Current Approaches for Determining the K-Factor 

Besides guessing the K-factors based on experience, there are three main different approaches 

to calculate the K-factor: The isolated subassembly approach, the story method approach and 

the system buckling approach. 

The isolated subassembly approach is methodical approach which is widely used to determine 

the K-factor of a single column. This is done by assessing the ratio of stiffness between the 

column and the adjacent columns and beams. This approach has limiting assumptions. Gantes 

and Mageirou (2005) has proposed an improved method for calculation the K-factor for a 

single column in a multi-story sway frame which account for all rotation and translation 

boundary conditions at the beam ends [1][5][12]. 

The story method approach is a methodical approach, which is used for regular steel frames 

and assumes that the shear force can be transferred between columns in a story. This means 

that the weaker columns are supported against sidesway by the stronger ones. The sidesway 

buckling resistance is assumed to be equal to the total sidesway resistance of all the columns 

in that story, which yields a unified K-factor for all members in a story. Two versions of the 

story method are used and they differ in the way the total resistance is calculated. One 

method, the story buckling method, uses the isolated subassembly method to determine the 

critical load for an entire story. The other method, the story stiffness method, uses the first 

order lateral displacements to include interaction between stories [1]. 

The system buckling approach uses a linear buckling analysis to determine a load multiplier 

for the system and thereby a critical load for the entire system. The critical load of each 

member is calculated by multiplying the axial force in the member with the system load 

multiplier. When the critical load is calculated a K-factor can be derived. This method’s 

strong point is that it accounts for the entire system behavior, but it also presents the paradox 

that a small axial compression forces will yield small critical load, and thereby a large K-

factor [1]. 

This paradox is mentioned in other papers and an iterative method has been proposed in order 

to overcome this problem. The main idea behind the method is that an increase in axial force 

in some members only has a small effect on the load multiplier. By adding fictitious axial 

force a higher critical load and thereby a smaller K-factor can be obtained. An iterative 

procedure has been proposed, where the axial force is increased while calculating the change 

in K-factor after each step. This is done until the change in K-factor is sufficiently small in all 

members [1][7][9]. 

1.4 Project Objective 

The main objective of this project is to propose a new method that overcomes the weakness of 

the system buckling approach when calculating the critical load or critical length for 

individual members in a system. The method should be programmable in traditional FE-code, 

and thereby easily implemented into existing software with code-check capabilities. The goal 

is a method that does not require any user input, besides what is usually given. 

In the first part of the project (Chapter 2), the concept of stability of a single member is 

outlined. Both perfect and imperfect columns are considered, and the design criteria according 

to the Eurocode are defined. 

In the middle part of the project (Chapter 3 and 4), the theory behind the most commonly used 

methods is presented. Both methodical and numerical method applies for a system of 

members, however each method has its limitations or disadvantages. 

The last part of the project (Chapter 5 and 6) contains the proposition of a new method, 

referred to as the Energy Ratio Method, for calculating the K-factors. Demonstrative examples 

showing results of the Energy Ratio Method on simple 2D cases are used to verify the 

method. Furthermore the method is compared with the other known methods described in 

Section 1.3.  
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Scope of this project 

 The Eurocode EN1993 (EC3) is used in many countries today and this project will 

only focus on design according to this code. 

 Only steel structures will be considered 

 All joints between members are assumed to be rigid. 

 Cross sections are assumed to be uniform. 

 Only elastic buckling is considered, i.e. no plastic hinges. 

 The proposed method is only verified using 2D systems. 
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2. Stability of Columns – Calculation of Perfect and Real Columns 

In this chapter, the stability of a column as a single member using an analytical approach is 

described. 

Firstly, the concept of a columns critical length (also called effective length, free length, 

reduced length or buckling length) is outlined by considering a perfect column, i.e. no 

imperfection is considered. 

Secondly, the fact that perfect columns do not occur in real structures, means that 

imperfections have to be taken into account. The design of structures is governed by design 

codes, and the approach for including imperfections according to design code EN 1993 is 

explained. 

2.1 Derivation of the K-factor using the Differential Equation for a Beam Element 

Using the differential equation for bending in a beam-column it is possible to derive the 

critical axial load for an ideal column, as done by Timoshenko [14]. 

 

Figure 2-1 Basis for differential equation for a beam column 

Based on the beam in Figure 2-1 the basic differential equation for a lateral loaded beam 

column can be written as: 

 
   

   

   
   

   

   
   

(1). 

As no lateral loads are present when determining the critical load, and by substituting 

        the equation can be written as: 

    

   
    

   

   
   

(2). 

The general solution for this equation is: 

                         
(3). 

The four integration constants are determined by the geometrical and static end restraints of 

the beam. These restraints are summarized below: 

Fixed end:                   

Hinge:                    

Free end:                                             
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For a column with hinged ends the moments and deflection at the ends of the column are zero 

meaning that: 

                                   

When applying these conditions to the general solution (3) the following is obtained: 

        

As         also must equal zero and     would give a trivial solution, meaning no 

deflection, it is seen that        . Therefore: 

       

where     gives the lowest critical load.  

By inserting         and     the critical load is found: 

√
 

  
           

     

        
 

In this case the critical column length is 1.0 times the actual column length. This is also called 

the  -factor.  

If we look at a column with one end fixed and the other end hinged, also called a propped-end 

column, then the restraints become: 

                       

                         

By inserting these restraints into the general solution the four restraints becomes: 

      

        

                        

                        

By combining these four equations it can be shown that 

         

The smallest root to this equation is           which gives the follow critical load: 

√
 

  
              

     

          
 

Hence a propped-end column has a critical length of       times the actual column length. 

Based on the preceding examples it is clear that the critical load generally can be written in 

the form also known as the Euler load: 

 
    

     

  
  

(4). 

where        is the critical column length. Hereby the K-factor for a column is defined, 

and it is noted that the critical load and the K-factor are interdependent. If the critical load is 

known the K-factor can be determined as: 

 

  √
     

      
 

(5). 
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The covered examples and other basic cases can be seen on Figure 2-2. 

 

Figure 2-2 Critical lengths for basic cases 

This covers the well-defined end restraints. In the case of flexible end restraints which give an 

infinity number of solutions, no general solution can be obtained before the flexibility is 

defined. An example is a column whose ends cannot not move but are restrained against 

rotation by springs such as seen on Figure 2-3a. 

 

Figure 2-3 Flexible end restraints 

Infinity large spring stiffness at both ends will give the same result as a column with fixed 

ends, meaning a critical length of      . The other limit state is an infinity small spring 

stiffness at both ends which corresponds to hinges at both ends and a K-factor of  . Hence the 

K-factor for such end restraints is in the interval          . 

The most general case, illustrated in Figure 2-3b, is obtained by applying a rotation spring 

(C1) and no movement at one end, and a rotation spring (C2) plus a spring against movement 

(C3) at the other end. Such a column has a K-factor in the interval        . The infinity 

occurs when bottom springs (C2 and C3) are equal to zero, meaning that the column acts as a 

cantilever. This combined with a non-existing resistance against rotation in the last spring 

(C1) means that the column becomes a mechanism [2]. 

The critical length or K-factor is a concept derived from perfect columns. Nevertheless the K-

factor is often used as a key parameter in calculations of the strength of compressive elements 

in real structures. 

2.2 Calculation of Columns According to EN 1993 – Including Imperfections 

In real structures, a column will fail before the theoretical critical load is reached. This is due 

to various imperfections such as: 

 Geometrical imperfections: column out-of-straightness, profile tolerances etc. 
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 Material imperfections: residual stresses from production or non-linear material be-

havior. 

The geometrical imperfections causes amplification to the transverse deflection of the column 

which is most pronounced for slender columns. 

Non-linear material behavior in steel is experienced when the stress level is larger than 

approximately 80 % of the yield stress, also known as the proportional limit. After this point 

the modulus of elasticity is reduced and the transverse deflection increases more rapidly. This 

effect is not experienced in slender columns were the critical load is reached at a lower stress 

level. 

Residual stresses become important when the sum of the residual stress and applied stress 

exceeds the proportional limit. This can be seen in a welded I-section that buckles about the 

minor-axis because there are residual compressive stresses at the free ends of the flanges.  

In EN 1993 imperfections are accounted for by introducing a generalized imperfection factor 

that covers both geometrical and material imperfections. Ayrton-Perrys formula is an 

analytical way of including imperfections and forms the basis for the method used in EN 

1993, which is explained in the next sections.  

2.2.1 Column with an imperfection – Ayrton-Perrys formula 

Ayrton-Perrys formula is the basis for the column strength given in EN 1993 [3]. We consider 

a simply supported beam with an imperfection, which is assumed to be a sinus shaped initial 

deflection    . The model of the imperfect column is seen in Figure 2-4. 

 

Figure 2-4 Imperfect column 

If the maximum deflection is  , then    can be written as: 

        (
   

 
) 

(6). 

The beam is subjected to an axial force  , therefor the bending moment in the beam is: 

                  
(7). 

where   is the total deflection.  
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By inserting in the differential equation for the beam deflection we get: 

 
      

        

   
 

(8). 

where   is the modulus of elasticity and   is the second moment of inertia. 

The differential equation can be solved using the particular solution       (
   

 
) and the 

result is: 

 
  

      

     
 

(9). 

The limit is found when the stress at the edge reaches the yield stress   . Using Naviers 

formula we get: 

  

 
 

  

 
    

(10). 

where   and   is the section area and section modulus respectively. The maximal normal 

stress is given by: 

 
   

 

 
 

(11). 

and combining formula (9), (10) and (11) we get: 

 
     

 

 

   

     
      

(12). 

The critical stress (Euler stress) is defined as: 

 
    

   

 
 

(13). 

and formula (12) can be written as the Ayrton-Perry formula: 

         (     )         
(14). 

where   
   

 
 represent the column straightness. 

The link between the Ayrton-Perry formula and the column design formula in EN 1993 

follows in the next section. 

2.2.2 Column formula in EN 1993 

In the Ayrton-Perry formula the maximum normal stress    is given implicitly. For 

convenience the formula is rewritten introducing the column strength reduction factor: 

   
  

  
 

(15). 
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and the non-dimensional slenderness: 

 

 ̅  √
  

   
 

(16). 

By dividing formula (14) with 
   

  
 we get: 

      (   ̅  )     
(17). 

or 

  ̅     ( ̅     )      
(18). 

The smallest value of the roots in this quadratic equation is the relevant value of   given by: 

 

  
     ̅  ((     ̅ )

 
   ̅ )

   

  ̅ 
 

(19). 

Letting the column straightness   cover both geometrical and material imperfection by the 

expression: 

    ( ̅   ̅ ) 
(20). 

and introducing: 

 
  

 

 
(   ( ̅   ̅ )   ̅ ) 

(21). 

formula (19) can be written as 

 
  

 

  √    ̅ 
 

(22). 

The last two equations are identical to the ones used in EN 1993-1-1 when calculating 

columns, where  ̅      and the imperfection factor   depends on the cross section type, 

dimensions and yield stress. The imperfection factor and dependence of cross section can be 

seen in Figure 2-6 and Figure 2-7. The reduction factor   can be seen in Figure 2-8. The 

figures are taken from EN 1991. 

The reduction factor   is used in the utilization ratio given by: 

 
        

  

      
 

(23). 

where   is the cross sectional area,    is the yield stress and    is the exposed load. 

When members are imposed to both axial and bending stress, the axial utilization ratio is 

included as part of the total utilization ratio. The utilization ratio in equation (23) is thereby 

the first of three terms in the design equations for members subjected to both bending and 
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compression which is seen in Figure 2-5. The two equations express bending about y- and z-

axis respectively. 

 

Figure 2-5 Design equations for members subjected to axial load and bending 

 

 

Figure 2-6 Buckling curve dependence of cross section 
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Figure 2-7 Imperfection factor dependence of buckling curve 

 

Figure 2-8 Buckling curves 

In Figure 2-8 the reduction factor   is depends on the non-dimensional slenderness  ̅, in 

which the K-factor is included by: 

 

 ̅  √
  

   
 √

           

     
 

(24). 

2.3 Summary 

To summarize we now know that the reduction factor is a function the critical load, so even if 

the critical value is not reached in real structures, it is still important in the calculations of the 

individual member design. Hence, the more precise you can determine the critical length of a 

column, the more economical your design can be. 

If it is possible to establish the critical load of a column, back calculations can be used to 

determine the K-factor by: 

 

    
     

      
                  √

     

      
 

(25). 

The K-factor is determinative for the reduction factor   and thereby an important parameter 

when calculating the utilization ratio of a compression member by: 

 
        

  

      
 

(26). 
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3. Methodical Approach to Stability of Beam-column Systems 

It is seldom seen that a column acts as an independent column. Often columns are a part of a 

larger system of beams which means that the end restraints are flexible. Therefore columns in 

such systems are not well-defined as the basic cases, however the basic cases may give the 

engineer an idea of in which interval the K-factor is expected to be. The connections between 

the beams are often assumed to be rigid, which for the most part is an adequate assumption, 

wherefore joint flexibility is not included in the scope of this thesis. 

A widely used method for calculating K-factors is the isolated subassembly approach (also 

known as the nomograph/alignment chart method), which is presented in pr-EN 1993 amongst 

many others. The method requires a categorization of the system into either sway or non-

sway, which is illustrated in Section 3.1. The method is an analytical approach which gives a 

correct critical length if several assumptions are fulfilled as explained in Section 3.2.  

Due to the fact that these assumptions seldom are fulfilled, other methods have been 

developed for typical structures such as rectangular frames or story frames. These methods are 

known as story methods and stability calculations concerning both single frames and multi-

bay/multi-story frames are well documented in acknowledged literature [1]. In asymmetric 

cases, the story buckling method tends to give better estimates of the K-factors than the 

isolated subassembly approach; however in some cases there is significant buckling 

interaction between stories, which means that a numerical approach such as the system 

buckling approach (see Chapter 4) would be more appropriate. A discussion of these different 

approached can be found in (ASCE, 1997) [1]. The two most common story methods are The 

Story Buckling Method and The Story Stiffness Method which is outlined in Section 3.3. 

3.1 Categorization into sway and non-sway systems 

Systems are divided into two different categories: Sway or Non-sway. A sway frame is 

allowed to sway to either side, whereas a non-sway frame is restricted from doing so. This is 

illustrated on the following figures. 

 

Figure 3-1 Boundary conditions for a sway frame 

 

Figure 3-2 Boundary conditions for a non-sway frame 
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If a linear buckling analysis of the frames is performed, the distorted configurations, also 

called mode shapes, are established.  

 

Figure 3-3 First mode shape for sway frame 

 

Figure 3-4 First modeshape for non-sway frame 

By comparing the load multiplier (FREQ) in the distorted configurations on Figure 3-3 and 

Figure 3-4, it is seen that the general behavior of the system has a large effect on the critical 

length of the individual columns. As the load case for the two frames are exactly the same it is 

possible to compare the load multiplier directly in order to determining the buckling resistance 

of the two systems. The sway frame has a load multiplier of 240 and the non-sway frame a 

load multiplier of 2212. This means that the resistance against buckling for the non-sway 

frame is about 9 times larger in the given case. 

If a standard critical length with the value of the actual member length is assigned for every 

member, the risk of overlooking a general system behavior as the one seen on Figure 3-3 

arises. Overlooking this means that an individual member check will show a higher buckling 

resistance than the system as a whole. 
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3.2 Stability of Frame Systems Based on the Isolated Subassembly Approach 

This section contains a description of stability of frames based on annex E of the pr-EN1993 

(pre-standard to EC3). The annex provides a mean of establishing the critical length of a 

column based on the stiffness of the adjacent beams and the general behavior of the system 

(sway or non-sway). 

This method is widely used and adopted by both the European and American standards, even 

though they are based on different but similar work by Wood (1974) and Julian and Lawrence 

(1959) respectively [13][15]. When used on a reference frame with pinned ends base they 

provide similar results. 

The method described in the European standards offer a higher degree of customization than 

the American to overcome violation of some of the assumptions.  

The method is based on the following assumptions [1][4][5]. 

1. All members have constant cross section. 

2. All joints are rigid. 

3. Behavior is purely elastic. 

4. No significant axial compression force exists in the girders. 

5. The column stiffness parameter  √
 

 
 must be identical for all columns. 

6. Rotations at the far ends of the restraining members are fixed. 

7. Joint restraint is distributed to the column above and below the joint in

 proportion to     of the two columns. 

8. The frame is subjected to vertical loads applied only at the joints. 

9. All columns in the frame become unstable simultaneously, and no shear force

  is transferred to the subassembly from other portions of the structure. 

By determining stiffness distribution factors for the end joints of the column in question, a K-

factor is obtained either by using Figure 3-6 (non-sway) and Figure 3-7 (sway), or by using 

the conservatively fitted formulas (29) and (30) based on these figures. 

By using the following formulas, the distribution factors    and    are obtained: 

 
   

     

             
 

(27). 

 
   

     

             
 

(28). 

where  

    is the column stiffness coefficient      

    are the stiffness coefficients for the adjacent columns 

     are the effective beam stiffness coefficients 

The stiffness coefficients             can be seen on Figure 3-5. 
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Figure 3-5 Stiffness designations for surrounding columns 

As the method is based on fixed ends of the adjacent beams, the effective beam stiffness     

can be used in order to simulate other boundary conditions. 

The effective beam stiffness for beams without axial force can be taken from Table 3-1. 

Conditions of rotational 
restraint at far end of beam 

     
provided that the beam 
remains elastic 

Fixed at far end           

Pinned at far end            

Rotation as at near end 

(double curvature) 

          

Rotation equal and opposite 

to that at near end  

(single curvature) 

          

General case.  

Rotation    at near end  

   at far end 

                     

Table 3-1 Effective beam stiffness coefficient for a beam without axial force 

When the distribution factors are known the critical column length can be found either by 

reading Figure 3-6 (non-sway) and Figure 3-7 (sway) or by using the following formulas. 

 
Non-sway mode: 

  
 

   [
                           

                           
] 

(29). 

 
Sway mode: 

  
 

   [
                        

                       
]

   

 

(30). 



 

 

 

 

 

18 
 

 

Figure 3-6 Critical length ratio     for a column in a non- sway mode 

 

Figure 3-7 Critical length ratio     for a column in sway mode 

By looking at Figure 3-6 and Figure 3-7 it becomes apparent that the most conservative values 

is obtained by using high values of the distribution factors. A low value of the effective beam 

stiffness     is equal to a single curvature deflection of the adjacent beam. 

The method is based on a large number of assumptions, which means that the validity 

becomes limited on real life structures. Especially assumption number 5 which requires the 

same stiffness parameter for each column is often not fulfilled in real life situations. This 

means that the columns and beams do not become unstable simultaneously. As a result hereof, 
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the isolated subassembly method will in some cases give conservatively large K-factors, 

which had led to the development of the story methods. 

3.3 Stability of Frame Systems Based on the Story Method Approach 

When designing regular frames, the story method approach is widely used as it offers a 

reasonably amount of accuracy with relatively simple calculations, that for the most case can 

be done by hand. 

The story buckling approach differs from the isolated subassembly approach in the fact that it 

can account for the transfer of shear forces between columns. This means that if a column in 

any given story is stronger than some of the other columns, then this column will provide the 

weaker column with some of its strength. So in cases where there is significant buckling 

interaction between columns, the story buckling approach is the better choice when compared 

to the isolated subassembly approach [1]. 

The following is based on frames with equal column lengths, however methods that account 

for different column lengths does exist. It is assumed that the stronger columns in a story will 

brace the weaker columns until an overall story buckling load is reached. Furthermore it is 

assumed, that at the story buckling load, the story as a whole buckles in a sidesway mode. 

All story based procedures can be formulated bases on the following equation: 

        ∑  

   

 ∑           

          

 
(31). 

where        is the load multiplier that the axial loads    in the respective story must be 

scaled by to achieve story sidesway buckling, and            represents the contribution from 

each column to the story sidesway buckling resistance. Leaning columns are pinned-pinned, 

and does not contribute to the sideway stiffness of the story. As this project is limited to rigid 

joints no leaning column will be present. 

From this equation the K-factor for a member in the story can be derived: 

 

       √
 

  
 
    

  
 

∑      

∑                     
 

(32). 

The different story methods differs primarily in the way            is calculated. 

The Story Buckling Method, also known as just story buckling, assumes that the buckling 

capacity of the story is equal to the sum the column buckling loads computed using a K-factor 

based on isolated assembly method. This however has the same limitation and must fulfill the 

same assumptions as stated in Section 3.2. 

Another method is known as the Story Stiffness Method or Practical Story Based Effective 

Length Factor. This method is more ideal when there is significant violation of the 

assumptions on which the isolated subassembly approach is based. 

Here the K-factor is derived as: 

 

       √
 

  
 
    

  
 

    ∑      

               ∑             
 

(33). 

Where H is the lateral displacement forces, L is the length of the column and     is the 1. 

order lateral displacement of the story, and    is defined by: 
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∑         

∑      
 

(34). 

which means, that      in the case where no leaning columns are present. 

3.4 Summary 

Stability of frames is well documented for a handful of reference cases. When doing desk 

calculations and using predetermined formulas given in the isolated subassembly approach, 

one of the most important tasks for the engineer is to use the correct state of sway. An 

overlooked state of sway may result in large errors in the K-factor meaning an overestimated 

buckling resistance. It is possible to determine K-factors for beams in a larger system, but the 

assumptions behind the isolated subassembly approach limit the usability and require careful 

attention and understanding of the consequence by overruling those assumptions. 

The story method approach is another analytical approach suited for regular frames, which 

takes the transfer of shear between columns into account. The approach is usually split into 

two different methods, the story buckling method, which uses the isolated subassembly 

approach to calculate the critical load, and the story stiffness method which uses a 1. order 

deflection analysis to calculate the critical load. The advantage of using the story stiffness 

method is that the assumptions behind the isolated subassembly approach do not apply. 

In this chapter the common analytical ways of estimating K-factors has been outlined. In 

practice, the engineer sometimes choose to guess the K-factors based on experience, and in 

Appendix 1 two real life examples of complex structures is analyzed. The first example 

illustrates the advantage and justification of using experience by applying standard values of 

K-factor to certain types of members. The second example demonstrates the use of the 

subassembly method and emphasizes the importance of determining the correct state of sway. 
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4. Numerical Approach to Stability of Beam-column Systems 

As explained in Chapter 3, the usability of methodical approaches is limited, and when the 

complexity of the system increases an alternative approach is needed. An often used method is 

to perform a linear buckling analysis, where it is possible to obtain a critical load factor based 

on the current load case. However this method only defines the system stability and not the 

critical load of the individual members. An accepted way of determining K-factor of 

individual members is the system buckling approach. In the flowchart on Figure 4-1 the 

process of determining K-factors using numerical software is outlined.  

 

Figure 4-1 Flowchart of numerical procedure 

In this chapter the linear eigenvalue problem and the load multiplication factors is explained. 

The element type and number of member divisions needed is also discussed to set a basis for 

the further use of FEM in this thesis. 

Furthermore, the system buckling approach which uses the linear buckling analysis is 

described. Here a multiplication factor for the system is obtained and a critical load is found 

for each element by multiplying the load multiplier with the axial force in the element. The 

method automatically includes the system behavior, however it means that elements with a 

small axial force also have a small critical load and thereby a large K-factor. This paradox is 

discussed further in this chapter. 

It is verified, that the large K-factors does not give a correct picture of the members individual 

sensitivity to an increase in compressive load, and a newly proposed method by Choi and Yoo 

(2008)  to avoid the K-factor paradox is described [7]. 

4.1 The Linear Eigenvalue Problem – Load Multiplication Factor 

In complex structures consisting of several beams and columns, the effective length of each 

element is an indistinct concept. Instead the stability is assessed by calculating the critical load 

level for each given load case. The amount of time used to calculate the critical load level by 

desk calculations (e.g. using the slope deflection method [11]) increases rapidly with the 

number of elements. Therefore most structures require the use of FEM. 
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An eigenvalue problem can be defined by applying the principal of virtual work to two 

situations of the structure with the same load level. The load level is defined as a load 

multiplication factor     multiplied a known load case, which can consist of one or more 

applied loads. Situation 1 is where the structures load response is equal to the linear static 

solution, and Situation 2 is where the structures load response is equal to bifurcation. Now an 

expression for the difference in the structures displacements in the two situations is 

formulated, and the value of the load multiplication factor, for which solutions of the 

additional displacements exist, defines the critical load level. The governing equation can be 

expressed as: 

                
(35). 

Formula (35) forms a linear eigenvalue problem, where   is the global elastic stiffness matrix, 

   is the global geometrical stiffness matrix,     is the load multiplier and   is vector 

containing the displacements. 

The local elastic and geometrical stiffness matrices can be expressed as: 

  

[
 
 
 
 
 
 
 
 
 
 
 
 

  

 
  

 
    

  

   

  

 
   

  

   

 

 
  

 
  

  
    

  

   

  

  
   

  

   

 

 
  

 
  

  
    

  
 

   

  

 
   

  

   

 

  

 
  

 
    

  
 

   

  

  
   

  

   

 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   

[
 
 
 
 
 
 
 
 
 

   

 
  

  

 

  
 

 
 

  

   

  

   

  
  

  

 

  

  
 

  
 

 

  
   

  
  

  
 

 

  

 
 

  
 

 

  

   

 
  

  
 

 

  

  
 

  

   

  ]
 
 
 
 
 
 
 
 
 

 

The results of the eigenvalue problem are both the load multiplication factor     (eigenvalue) 

and the corresponding displacements or mode shape (eigenvector). The magnitude of the node 

displacements are correct relative to each other, but will have to be scaled if used as the 

structures initial geometrical imperfection in a second order analysis. The modeshape 

corresponding to the lowest value of the load multiplication factor is the relevant modeshape 

to consider when applying initial geometrical imperfections, and it can be shown that it is the 

most unfavorable shape of imperfection. 

This method is known as the Linear Buckling Analysis, and it is implicitly assumed that the 

structure have a linear behavior until the critical load is reached. The derivation of the 

eigenvalue problem can be found the literature [10]. 
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4.1.1 Member division 

The accuracy of the solution in the linear buckling analysis depends on the number of 

elements, into which the members are divided. If a too crude member division is used, it is not 

possible to describe the modeshape correctly and the corresponding load multiplication factor 

will be incorrect. 

If the modeshape is a local deformation of a single member, the result can be rather sensitive 

to the member division. If a buckling analysis is performed where the members are not 

subdivided, one might get a result were the first modeshape is global, meaning the structure 

deforms as a whole, but where the actual lowest modeshape should be a local modeshape of a 

single member with a lower multiplication factor. 

The sensitivity of the member division is performed for a simply supported column and a 

column fixed in both ends. The columns have the length     and therefore the analytical 

value of the effective lengths are     and       respectively. The crosssection is chosen to be 

quadratic with side length of      . The results of the buckling analysis can be seen in Table 

4-1 and Table 4-2; the corresponding modeshapes can be seen in Figure 4-2 and Figure 4-3. 

Number of 
elements 

Analytical 
Euler load 

Numerical 
buckling 
analysis Deviation 

  

       

              

               

               

             

              

Table 4-1 Buckling analysis for simply supported column 

 

Figure 4-2 Buckling modeshape of simply supported column 
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Number of 
elements 

Analytical 
Euler load 

Numerical 
buckling 
analysis Deviation 

  

       

             

               

                

              

Table 4-2: Buckling analysis for a column with fixed support at the ends 

 

Figure 4-3: Buckling modeshape of a column with fixed support at the ends. 

The results from the buckling analysis show that the column with fixed supports has the 

largest deviation from the analytical critical load. This is because the modeshape of the fixed 

column is more difficult to describe with few element since it has two deflection tangents. 

This sensitivity analysis shows that a member division into 4 elements would be suitable for 

avoiding excessive calculation time. 

4.1.2 Results When Using Shear-Flexible Beam Elements 

In the classical beam theory (Bernoulli-Euler) only transverse deformations due to bending 

moments are taken into account, and it is assumed that the contribution from shear forces are 

negligible. This assumption is usual ok, but for stub beams the shear force contribution can be 

considerable. Stability problems occur in slender structures and the analytical critical load is 

found neglecting the shear force contribution. 

Most commercial FEM programs is using shear-flexible beam elements (based on the 

Timoshenko beam theory) for the three dimensional structures. To illustrate the deviation 

from the analytical results when performing a linear buckling analysis using shear flexible 

elements, a simply supported column with length     and varying side length of a quadratic 

cross section is modeled. The analysis results are plotted in Figure 4-4. 
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Figure 4-4 Deviation of results using shear-flexible beam elements compared to classic 

analytical theory 

The FEM programs used in connection with this project uses shear-flexible beam element. 

4.2 System Buckling Approach 

A system buckling approach involves performing a linear buckling analysis. The individual 

K-factors associated with this type of analysis is found by multiplying the axial force in the 

members with the load multiplication factor for the entire system: 

              
(36). 

The K-factor can then be derived as shown in (25) in Section 2.3: 

 

   √
     

        
 √

     

         
 

(37). 

The K-factor is called a system K-factor as it is found by an analysis of the entire system. The 

multiplication factor is constant for the given load case, which means that the K-factor varies 

with the axial force in the members. This approach has the advantage that the entire system 

behavior is taken into account, and that the weakest member, i.e. most prone to buckling, will 

yield correct results.  The disadvantage is the paradox that members with a small axial force 

will obtain a small critical buckling resistance and therefor a large K-factor.  

These unexpected large K-factors are directly connected to the axial force, as the K-factor will 

approach infinity as the axial force reaches zero. However this doesn’t necessarily mean that 

the member’s strength is used up. In all cases the situation can be divided into to three 

categories as outline in (ASCE, 1996) [1]: 

1) The axial loading effects in the member are negligible, and the member is for all practical 

purposes acting as a beam. As a beam, the member may or may not be contributing sub-

stantially to the buckling resistance of the system. 

 

2) The member is a column, and the member’s axial force is non-negligible, however, the 

member is not contributing significantly to the system buckling resistance. Nevertheless, 
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if the size of the member is reduced by a large enough amount, the buckling strength of 

the system might be controlled by a different buckling mode that does depend significant-

ly on this member. 

 

3) The member is a column that is contributing significantly to the computed system buck-

ling resistance. In this case, if the size of the member is changed by even a small amount, 

the buckling strength of the system will change significantly. 

In the first case, the beam shouldn’t be penalized as a column in the design formulas, and 

therefore the reduction factor   should be close to one. If the member is significantly 

influencing the buckling strength of the system by restraining other members that are 

subjected to significant compression, this restraint has already been accounted for within the 

buckling analysis. Since the buckling model is based on the bending moment that has been 

specified for this member, the buckling strength must be reevaluated if the member is 

restraining other members and its cross section is changed. 

In the second case the members doesn’t contribute significantly in the buckling of the system, 

but are still acting as column. This is the case for the most part of members with a small axial 

compression force compared to the critical bucking load with a K-factor of 1. In this case the 

K-factors should be computed in a more appropriate way. 

In the third case the computed K-factors based on system buckling approach should be used, 

as the column, even though it only subjected to a small axial compression force, is at the limit 

of its buckling strength.  

Whether a column belongs to category 2 or 3 can be hard to judge without sensitivity studies. 

Most often this comes down to the engineer’s best judgment and experience. 

4.3 The Paradox Concerning Large K-factors 

In this section the system buckling approach (SBA) is applied to a system consisting of two 

members (the L-frame). The interaction between the members and the influence of 

tension/compression in the adjacent member is illustrated. As the axial compressive load 

becomes larger in the adjacent member, the K-factor becomes larger for the considered 

member as the axial load becomes relatively small. 

Furthermore the K-factor paradox is verified by an example, where an apparently over utilized 

member is shown to get a reduction in the utilization ratio by approximately      when 

fictitious extra load is applied. 

4.3.1 L-frame – K-factor Dependence to Load Case 

A model with two orthogonal members, known as the L-frame, is considered (see Figure 4-5). 

Both members have a geometrical length of     and a square cross section with a side length 

of      . The members are simply supported in one end and rigidly jointed together in the 

other end. The critical length of the vertical column is investigated by different load cases 

letting the horizontal load vary. 
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Figure 4-5 Model used for illustrating the influence of tension/compression in a member 

adjacent to a column 

The critical axial load is found by linear buckling analysis, and the corresponding K-factor for 

varying horizontal load is shown in Figure 4-6. The reduction factor   based on buckling 

curve c and a yield stress of         is shown in Figure 4-7. 

 

 

Figure 4-6 K-factor at various axial force in adjacent horizontal member 
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Figure 4-7 Reduction factor according to EN-1993 at various axial force in adjacent 

horizontal member 

 

The main conclusions of these results are as follows: 

1. When there are no axial force in the horizontal member, the K-factor is expected to be 

in the interval        , which is confirmed by the results where       . 

 

2. Applying tension in the horizontal member, the stiffness of the member is increased, 

and therefore the rotational stiffness of the joint is increased leading to a lower K-

factor. The lower bound       is approached for very high tensile force in the 

horizontal member relative to the compressive force in the vertical member, where a 

normalized horizontal force of       will give a K-factor of       . The mode 

shape is in this case similar to the one of a single column fixed in one end and pinned 

in the other (see Figure 4-8). 

 

 

3. When the horizontal compressive force is equal to the vertical compressive force, the 

horizontal member does not contribute to any rotational stiffness since the members 

buckle with equal rotations at the ends (see Figure 4-9). This provides a K-factor of 

one for both members. 

 

4. When the compressive horizontal force becomes large compared to the compressive 

vertical force, the K-factor is increased. This means that members in a system where 

the axial compressive force goes towards zero, the critical length will go towards 

infinity and thus the reduction factor goes towards zero. This is the paradox of the 

system buckling approach. 
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Figure 4-8 Mode shape when tension in horizontal member is very large 

 

Figure 4-9 Mode shape when compressive axial force is equal in both members 

The influence of the load case is one of the reasons why determining K-factors for individual 

members is challenging. Traditionally, engineers often think of the K-factor as dependent of 

the system stiffness, but forget that the stiffness is load dependent. 

The SBA provides a conservative way of determining the K-factors, which can be 

implemented in FE-codes, however if more reasonable K-factors are needed the SBA is not 

recommendable. 
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4.3.2 Verification of the K-factor Paradox 

Using the same model as in previous section, it is shown how the large critical length for a 

member with a small axial compressive force can be reduced without violating the structural 

integrity. 

It is legal to increase the axial compressive force in a member as long as it does not change 

the system behavior significantly. If the additional force is increased to a level where the load 

multiplier only is increased slightly, the critical length of the member with small compressive 

axial force is reduced with only a slight increase in the critical length of members with large 

compressive force. 

In the model the horizontal load is kept constant and linear buckling analyses are performed 

for various vertical loads. The critical load for each member is calculated using the SBA and 

the corresponding K-factor is seen in Figure 4-10. The reduction factor   based on buckling 

curve c and a yield stress of         is shown in Figure 4-11. 

 

Figure 4-10 Calculated K-factors 

 

Figure 4-11 Calculated reduction factor according to EN-1993 

From Figure 4-10 and Figure 4-11 it is seen that a small axial force in the vertical member 

leads to an unrealistic high K-factor and low reduction factor in this member. However, by 
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increasing the axial force in the vertical member the K-factor decreases significantly, while 

only a small increase for the horizontal member is found. 

In practice, this can be used to decrease the utilization ratio for the axial force in a member, 

leaving more capacity for actions caused by moments. To demonstrate this, we consider an 

extended version of the previous model. The horizontal member now has a geometrical length 

of    , and the load case is a horizontal load of        acting on the middle of the vertical 

column and a horizontal load of        acting on the rigid joint (see Figure 4-12). 

 

Figure 4-12 Model consisting of two members with small and large axial force respectively 

 

A linear buckling analysis is performed and the mode shape and load multiplier is shown in 

Figure 4-13. 

 

Figure 4-13 First mode 
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As the axial force in the vertical member is small, the critical load and reduction factor 

becomes small. In Table 4-3 results of sectional forces, reduction factors and utilization ratios 

(UR) are listed. The yield stress is taken as         and an elastic distribution is used. The 

reduction factor   is based on buckling curve c. The formulas used for calculating the 

utilization ratio are given by: 

 
        

 

      
 

(38). 

and 

 
         

 

    
 

(39). 

where   and   are the sectional forces,   is the section modulus,   is the cross sectional 

area and    is the yield stress. 

Member 
Load 

multiplier 
Axial force 

     
Reduction 

factor   
UR 

(Axial) 
Moment 
      

UR 
(moment) 

UR 
Total 

Horizontal 
      

                             

Vertical                              

Table 4-3 Sectional forces, reduction factors and utilization ratios 

It is found that the vertical member has a very low reduction factor and a utilization ratio 

larger than  . To increase the reduction factor, a fictive additional load is applied to increase 

the axial force (and thereby the critical load) in the member. The additional load is taken as 10 

times the real axial force in the vertical member and applied at the top of the column (see 

Figure 4-14). Results are listed in Table 4-4. 

 

Figure 4-14 Additional load applied at the top of the vertical column 
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Member 
Load 

multiplier 
Axial force 

     
Reduction 

factor   
UR 

(Axial) 
Moment 
      

UR 
(moment) 

UR 
Total 

Horizontal 
      

                             

Vertical                                    

Table 4-4 Sectional forces, reduction factors and utilization ratios after increasing the critical 

load in the vertical member 

The results show the paradox, that it is possible to decrease the utilization for one member by 

applying extra load. However it has to be validated, that the added fictive load does not have 

significant influence on the system behavior e.g. there are no noticeable change in the 

sectional forces in the entire system besides the applied axial force. 

The idea of using fictitious forces to decrease the K-factors for certain members with the 

disadvantage of a minor increase for others has been presented in earlier work by Choi and 

Yoo [7]. 

4.4 Iterative System Buckling Approach 

The reason for excessively large K-factors when using the SBA (equation (37)) arises from 

the assumption that all members reach their buckling limit when the system buckles. Since not 

all members are close to their buckling limit when the system buckles equation (37) is only 

valid for the most critical member. As shown in the previous section an increase in axial in the 

weaker members only has a small effect on the system load multiplier. Choi and Yoo (2008) 

uses this in an iterative procedure where the axial force in the compression members is 

increased until an convergence criteria where the change in K-factor is sufficiently small is 

fulfilled. This eliminates the paradox that small axial forces give excessively large K-factors 

[7].  

The most and least influential columns are to be determined by: 

 

 √
 

  
 

(40). 

Where   is the axial force in the member,   is the modulus of elasticity and   is the moment 

of inertia. 

The K-factor is expressed as: 

 

   √
      

  
         

 

(41). 

where    is the final increase in axial force calculated as the sum of incremental changes: 

 
   

      
      

(
      

   
̅̅̅̅    

)
 

        

(42). 

where the subscript    and    refers to the least and most influential columns respectively. For 

an easy and stable iteration process, the terms     and    
̅̅̅̅  are assumed to be equal to 1.0 in 

the first iteration step. The constant value of    from this assumption is used in subsequent 

iterations for simplicity. 

The convergence criterion is defined as: 
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(43). 

where   is the iteration number and   is convergence criteria (  =0.001) 

4.5 Summary 

In this chapter the significance of the load case is made clear. Furthermore the system 

buckling approach is exemplified with the implication of excessively large K-factors. The 

system buckling approach has the benefit that it is possible to calculate the K-factor for each 

individual member by an algorithm, however overly conservative values of K-factor for 

members with small axial force necessitate an improvement of the method.  

For a simple system consisting of two members, it is shown that it is possible to reduce the K-

factor by adding more axial force in the member with a small axial force. This does only have 

an insignificant influence on the load multiplier for the system. This is idea is used by Choi 

and Yoo (2008) as they have proposed an iterative system buckling approach. This method 

overcomes the K-factor paradox but lacks the possibility to be implemented in general 

software codes as the results of the iterative procedure is sensitive to both the incremental 

fictive force and the convergence criterion. This is also discussed in Appendix 3.   
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5. Proposed Method – The Energy Ratio Method 

In this chapter the principals behind the Energy Ratio Method (ERM) is explained. The ERM 

is a numerical method with close connection to the System Buckling Approach (SBA). The 

difference between the ERM and the SBA is that the ERM circumvent the paradox of 

members with small axial force having extremely large K-factors. 

The ERM could be considered as an extension of the SBA, where the idea behind the ERM is 

to account for the fact that all members in a system usually does not reach their individual 

buckling limit simultaneously. In the SBA the load multiplication factor is applied to the axial 

force of all compressive members (see Section 4.2), whereas the ERM uses a higher load 

multiplication factor for the members in which buckling is less pronounced. To assess how 

prone a member is to buckling, a ratio between stabilizing and destabilizing energy in the 

member is used. The energy calculations are based on the mode shape and load multiplier 

found from a linear buckling analysis. In Figure 5-1 the method is illustrated. 

 

 

Figure 5-1 The difference between the system buckling approach and the proposed method 

In the first section, the classical energy based stability considerations is presented. Known 

analytical formulas are used to validate a numerical calculation of energy. In the following 

sections, the philosophy behind the proposed method and formulas used for calculation of K-

factors is outlined. Furthermore examples are used to verify the proposed method and 

illustrate the connection to the SBA. 

5.1 Energy Based Stability Considerations of a Beam Member 

The critical load of a beam member can be found by the considering the energy balance 

between inner and outer work. Due to bending of the beam inner work is done in the form of 

bending strain energy, which stabilizes the beam. The outer work is done by the applied load 

multiplied the displacement, which is destabilizing for the beam. Analytical and numerical 

methods for calculating the inner and outer energy are further explained by [3] and [10]. 

5.1.1 Analytical calculation of energy 

In the calculation we consider a simply supported beam with length  , axial direction   and 

displacement field     . The beam is subjected to an axial load   (positive in tension). 



 

 

 

 

 

36 
 

 

Figure 5-2 Column considered for energy calculation 

At the critical load level, the internal and external energy is of equal size, where the internal 

energy corresponds to the strain energy in bending given in terms of the curvature      by: 
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(44). 

and the external energy is the work done by the force   with the axial displacement given by: 

 
           ∫     

 

 

    

(45). 

where the    is the membrane strain. The beam only undergoes small displacements and the 

membrane strain can be approximated by: 

 
   

 

 
   

  

(46). 

and the external energy becomes: 
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(47). 

Using the criteria: 

                     
(48). 

the critical load can be found explicitly, and the solution is exact if the displacement field is 

exact. 

5.1.2 Numerical calculation of energy 

When performing the linear buckling analysis, a subdivision of each member into 4 elements 

is used. The internal and external energy in each member can be found as a summation of the 
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energies in each element belonging to the member in question. The internal energy in an 

element can be found by: 

 
          

 

 
       

(49). 

And the external energy can be found by: 

 
          

 

 
            

(50). 

where   is a vector containing the elements 6 nodal displacements from the mode shape 

(translation in x and y direction and rotation about z axis) and     is the load multiplier.   

and    are the elements local stiffness matrix and geometrical stiffness matrix respectively. 

The internal energy is the bending strain energy, which is equal to the inner work. The 

external energy produces the bending stiffness reduction and the energy is coherent with the 

outer work. 

The ERM is suitable for implementation in finite element codes, since the prerequisite linear 

buckling analysis is performed as a finite element method. In this project a 2 node beam 

element based on Bernoulli-Euler theory is used. A MATLAB script with a simple finite 

element code has been written to make the examples that demonstrates the ERM. The script 

can be found in Annex 2. Only 2D models are used to demonstrate the method to minimize 

the scope of the script; however the method can be extended to 3D. 

5.1.3 Verification of Energy Calculation 

In this section the analytical calculation of the energies from formulas (44) and (47) are 

compared to the ones calculated by the MATLAB script using formulas (49) and (50). The 

comparison is made of a beam with square section. The beam is simply supported and has the 

side length       and length    . 

Analytical Calculated Energy 

The mode shape of a simply supported beam during buckling has the form of a half sine. If the 

center deflection of the beam is noted   , the displacement field is given by: 
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(51). 

and the first derivative is given by: 
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(52). 

and the second derivative is given by: 
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(53). 

The integrals can be solved by using the following formulas: 
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And 

 

∫ (   ( 
 

 
) )

  

 

   [
 

 
 

   ( 
 
 

 )

 
 
 

]

 

 

 

(55). 

The center deflection of the mode shape is             (found from the script in the 

following), and by using either formulas (44), (53) and (54) or formulas (47), (52) and (55), 

the analytical solution gives a total energy of: 

              
(56). 

Numerical Calculated Energy 

A model of the considered beam is applied an axial load of    , hence the load multiplier is 

the critical load in newton. The model is seen in Figure 5-3 and the external and internal 

energy is seen in Figure 5-4. 

 

Figure 5-3 Model used for energy demonstration 
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Figure 5-4 Energy calculated numerical by MATLAB script 

The analytical calculated value is approximately the same as found in Figure 5-4. The 

numerical calculated energy approaches the analytical solution as the number of subdivisions 

increases. This is implied in Figure 5-5, where a subdivision of eight has been used. 

 

Figure 5-5 Energy calculated with twice the number of elements 

In Table 5-1 comparison between the analytical calculated energy and the numerical 

calculated energy is made. 
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Number of Elements Analytical value ERM value Deviation 

4                              

8                               

Table 5-1 Comparison between analytically and ERM based energy calculations 

It is assessed that a subdivision into four elements also is sufficient for the energy 

calculations. 

5.2 The Proposed Method 

The K-factor of a column can be found by considering the stabilizing internal energy (which 

is equivalent to the potential strain energy) and the destabilizing external energy (resulting 

from the outer work done by the axial forces). The K-factor is derived from the critical load, 

which is found from the criteria: 

                     
(57). 

The calculation of the energy requires the buckling shape, which is known for the basic cases, 

and when considering a system of members, the buckling shape is easily found by a linear 

buckling analysis as the mode shape (see Section 4.1). 

When performing the linear buckling analysis on a system of members, some members are 

deforming as a result of the outer work being done by the axial force, and these members are 

in a state of buckling. Other members are more in a state of bending due to rigid connections 

to the members that are in a state of buckling. To assess “how much” a member is in the state 

of buckling, the following energy ratio is being used: 

 
   

         

         
 

(58). 

The ratio    is calculated for each member, and the member with the lowest ratio is 

considered as the weakest member and therefore being 100% in the state of buckling. For this 

specific member, the critical load is defined in the same way as in the SBA, which is: 

           
(59). 

where   is the axial load in the member, and     is the load multiplication factor found by the 

linear buckling analysis. 

The main point in the philosophy behind the proposed method is that for all other members, 

the load multiplication factor is increased relative to the respective members energy ratio 

compared to the lowest energy ratio. E.g. if a member has an energy ratio twice the size of the 

lowest energy ratio, the load multiplication factor should be increased by a factor of two. The 

lowest energy ratio is thereby a reference ratio, which is notated as        and the critical load 

for each member   in the system can be determined as 

              
    

      
 

(60). 

Now the critical load for each element can be calculated using formulas (58), (60), (49) and 

(50), and the K-factor for each element can be found using back calculations from the Euler-

formula given by: 
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(61). 

 Rewriting and inserting formula (60) yields: 
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(62). 

In the special case where all members buckle at the same time, every member will have a ratio 

of one, and the ERM gives the same result as the SBA. 

This method eliminates the paradox from the SBA, and gives more reasonable K-factors for 

all members in the system. However one must keep in mind that as for the SBA, the ERM 

produces load dependent K-factors, and therefore the method should be used for each load 

case when designing a structure. 

5.3 Demonstration of the Energy Ratio Method 

In this section the ERM is demonstrated. Comparison to the SBA is included to show the main 

advantage of the ERM, namely that the paradox that relatively small forces provide large K-

factors in the SBA is avoided. 

5.3.1 Simply Supported L-frame 

In this example a model of an L-frame is used to demonstrate that: 

 When the members buckle at the same time, the ratio    is equal to one for both 

members. 

 The ERM provides the same results as the SBA for the member which is 100 % in the 

buckling state, i.e. the one that has the lowest energy ratio   . 

 The K-factors is in the expected interval for all load cases, thus excluding the paradox 

from the SBA. 

The model consists of two members with the same geometrical properties. The length of the 

members is     and the cross section is a square with side length      . The supports allow 

rotations but no displacement. The model is the same L-frame as used in Section 4.3 to 

illustrate the paradox in the SBA. 

The load cases considered is produced by letting the axial force in the vertical member 

(Member1) be fixed at      (compression), and then varying the axial force in the horizontal 

member (Member2) as both compressive and tension. The model can be seen in Figure 5-6 

where the axial force in Member2 is       (compression). 
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Figure 5-6 Model produced by MATLAB script providing K-factors by both ERM and SBA 

The result from various load cases is seen in Figure 5-7 and Figure 5-8, where the y-axis reads 

the K-factor. The x-axis is the axial force in Member2 normalized to the axial force in 

member1, which means that negative values are equivalent to tension in Member2. 

 

Figure 5-7 K-factors for Member1 found by ERM and SBA 

Figure 5-7 shows how the K-factor for Member1 becomes large in the SBA when the axial 

force in Member 1 is small compared to the axial force in Member2, which is the paradox of 

the SBA. The ERM provides better results where the K-factor is in the expected 

interval            . The lower bound of 0.7 is found when tension in Member2 goes 

towards infinity, which prevent rotation at the rigid joint due to increased stiffness of 

Member2. This is in accordance with the basic case of a beam fixed at one end and roller 

supported at the other end (see Figure 2-2). In Figure 5-8 a zoom of Figure 5-7 is shown. 



 

 

 

 

 

43 
 

 

Figure 5-8 Plot of K-factors for Member1 in reduced interval of load cases 

From Figure 5-8 it is seen that the ERM provides the same results of the K-factor for 

Member1 as the SBA when the axial compressive force in Member1 is the larger than in 

Member2. This is because the energy ratio    is smallest in Member1, i.e. Member1 buckles 

first, since the two members have the same properties and the force in Member1 is largest. 

When the axial compressive force in Member2 becomes the largest, the K-factor for Member 

1 decreases according to ERM. This is because Member1 in these load cases function more as 

a stabilizing member by its bending stiffness, rather than a compressive member. 

Furthermore it is seen, when the axial compressive force in both members is of same size, the 

members buckle at the same time, which provides a K-factor of one for both members. This is 

because each member focus all its internal energy on preventing buckling, leaving no bending 

stiffness to prevent rotation at the rigid joint. Therefore the K-factor is 1.0 according to the 

basic case of a beam which is simply supported at one end and roller supported at the other 

end. In Figure 5-9 the model with equal axial force in the members is shown, where it is seen 

that the energy ratio is one for both members. 

 

Figure 5-9 Model showing buckling at the same time for both members 
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In Figure 5-10 the K-factor for Member2 is shown. 

 

Figure 5-10 K-factors for Member2 found by ERM and SBA 

From Figure 5-10 same conclusions for Member2 as for Member1 can be made. It shows that 

the ERM provides the same results for the K-factor of Member2 as the SBA, when Member2 

is the member that buckles first. Furthermore when the axial force in Member1 is largest the 

ERM decreases the K-factor for Member2. 

5.4 Other Application of the Energy Ratio Method 

As illustrated in previous section, the energy ratios for each member in a system gives a 

picture of which members that are mainly in a buckling state, and which members that acts 

more as stabilizing member by their bending capacity. 

Previous attempts to overcome the paradox in the SBA has been made by others, where 

fictitious axial force are applied iteratively to initiate buckling at the same time for all 

compressive members [7][8]. This method is a good alternative to the traditional SBA, where 

the K-factor decreases for the members that act as stabilizing bending members. However the 

method provides a larger K-factor for members which are most prone to buckling, because the 

fictitious forces applied yields a lower load multiplication factor. 

The ERM can be used as an iterative method to calibrate the axial force in the compressive 

members so that the energy ratio    becomes one for all members, i.e. buckling occurs at the 

same time for all compressive members. As an example on this procedure the following 

example is provided. 

The model is an L-frame where Member1 has the length     and a fixed support at the base, 

and Member2 has the length     and a simple support at the end. Both members have a 

square cross section with side length of      . The load case considered is an axial force of 

      in Member1 and       in Member2. The model is seen in Figure 5-11. 
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Figure 5-11 Model used to illustrate iterative procedure to find same time buckling 

By multiplying the energy ratio    by the axial force in each member iteratively the energy 

ratio in both members becomes one in two iterations. The model of the two iteration steps is 

seen in Figure 5-12 and Figure 5-13. Note that in Figure 5-13 same time buckling occurs and 

the energy ratios    is equal to one. 

 

Figure 5-12 First iterative step: Energy ratios approaches one 
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Figure 5-13 Second iterative step: Energy ratios have become one for both members 

As an addition to this example, the difference between the traditional SBA, the iterative SBA 

according to [7], and the ERM can be seen by comparing the K-factors found in Figure 5-11 

and Figure 5-13. The K-factors are listed in Table 5-2 and it is seen that the ERM in this 

example provides more realistic K-factors. 

K-factors Traditional SBA 

SBA 

(same time 
buckling) ERM 

Member1 0.57 0.70 0.57 

Member2 3.61 1.00 0.75 

Table 5-2 K-factors found by traditional SBA, improved SBA and ERM 

The results from this example illustrates, that same time buckling and the SBA, in cases were 

the system consists of all compressive members, may provide overly conservative K-factor for 

the members that are in the buckling state. In cases were the system consists of both tension 

and compression members the improved might give better results than the ERM from a design 

point of view. 

5.5 Summary 

In this chapter, a method to avoid the paradox of the System Buckling Approach has been 

proposed. The paradox, of members with relatively small axial force having excessively large 

K-factors, is circumvented by considering members as acting partly as a compression member 

and partly as a bending member. 

Based on the mode shape found by the traditional linear buckling analysis, the internal and 

external energy can be found in each member, and the energy ratio indicates whether a 

member is stability sensitive to the load case. A low ratio means the axial forces is performing 

a relatively large destabilizing outer work. 
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The one member which has the lowest ratio is considered as being 100 % critical in the given 

load case, thus the load multiplier defines the critical load for member directly by 

multiplication to the axial force in the member. This member is chosen as the reference 

member, and the load multiplier is increased for the other members in the system by a factor 

corresponding to the ratio between the energy ratio of the considered member and the 

reference energy ratio of the member being 100 % critical. Thereby the critical load can be 

found as: 

              
    

      
 

(63). 

The proposed method is easily implemented in traditional FE-codes, and the method is not 

sensitive to extremely small axial forces. 
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6. Comparison of Proposed Method to Other Known Methods 

In this example, the Energy Ratio Method is applied to a model of a three story building, 

which has already been investigated by Choi and Yoo (2008) [7]. The proposed method of 

Choi and Yoo is the aforementioned iterative System Buckling Approach (iSBA) (see Section 

4.4), and in their example the method is compared to traditional SBA and story methods. 

The purpose of this example is to compare the Energy Ratio Method to the other widely used 

and newly proposed methods. 

6.1 Model Description 

The model of the three story building is a 2D frame consisting of vertical members (HEB360) 

and horizontal members (IPE400). Both the HEB360 and the IPE400 has bending about the 

strong axis, and sectional properties can be found in Table 6-1. The modulus of elasticity is 

set to            . 

Sectional properties HEB360 IPE400 

Moment of inertia                             

Sectional Area                             

Table 6-1 Sectional properties 

The story height is     , which gives a total height of     , and the bay width is     . 

Concentrated loads are imposed on the joints of each story, where the load         . The 

horizontal loads shown with dotted arrows are only used in the story stiffness method. The 

model is seen in Figure 6-1. 

 

Figure 6-1 Model of the three story building 

6.2 Results Compared to the Energy Ratio Method 

In the paper presented by Choi and Yoo (2008) the story buckling method, the story stiffness 

method, the method suggested by Gantes and Mageirou (2005) [12] and the system buckling 

approach is compared to their proposed method: The iterative system buckling approach. A 

vague method description has led to questions about the method; however it has been possible 

to recreate the results from the paper (see Appendix 3). 



 

 

 

 

 

49 
 

The Energy Ratio Method (ERM) has been applied to the model and the results are included 

in Table 6-2 with results from the paper of Choi and Yoo. Furthermore the results are plotted 

in Figure 6-2, where the Energy Ratio Method is highlighted in red color. 

K-factors Story 1 Story 2 Story 3 

Story Buckling Method                   

Story Stiffness Method                   

Gantes & Mageirou                   

System Buckling Approach                   

Choi & Yoo (iSBA)                   

Energy Ratio Method                   

Table 6-2 Comparison of K-factors 

 

Figure 6-2 Results graphically displayed 

The ERM is calculated using a MATLAB script, where beam elements have rectangular cross 

sections and is based on Bernoulli-Euler beam theory. In Appendix 2 it is verified that results 

are independent on cross section type and only depends on sectional properties.   

6.2.1 Similar Results Found by the ERM Compared to Other Known Methods 

The results show the SBA paradox of the top stories having excessively large K-factors. It is 

clear, that the other methods provide much more realistic results. The method proposed by 

Choi and Yoo gives the most favorable results for story 2 and story 3; however it is on the 

cost of some of the strength of story 1. This is related to the slight decrease in the load 

multiplier. When only considering story frames with no axial compressive force in the 

horizontal members, the proposed method by Choi and Yoo provides favorable results, 

however if there is a relatively small axial compressive force in the horizontal members the 

applied fictitious forces will tend to decrease load multiplier significantly. This would lead to 

conservatively large K-factors for the vertical members in story 1. One of the strength of the 

ERM is that it is provides intuitive realistic K-factors for all members in the structure. E.g. if 
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an axial compressive force of       where applied to the horizontal members the vertical 

members would get a non-noticeable increase in the K-factor and the horizontal members 

would be assigned a K-factor of approximately    . 

6.2.2 Inconsistent Results Found by the ERM Compared to Other Known Methods 

The ERM stands out in the result by the fact that it provides a larger K-factor for Story 3 than 

for story 2. It is assessed, that this is caused by the fact that the internal strain energy becomes 

relatively smaller in story 3 than story 2 because of the relative transverse displacement of 

each story seen in the mode shape (see Figure 6-3). This effect is also indicated when 

comparing the Story Buckling Method to the Story Stiffness Method (see Table 6-2), where 

the decrease of the K-factor is small by the Story Stiffness Method, because it considers the 

transverse displacements. 

 

Figure 6-3 Modeshape of three story building where axial load increases down the columns 

The main difference in sway when the axial load increases down the columns compared to a 

constant axial load is emphasized in another example by Choi and Yoo, where a seven story 

three bay frame is considered (see Figure 6-4). Note the increase (marked with red circle) in 

the K-factor from story 6 to story 7 in load case 2 is found by the story stiffness method.  
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Figure 6-4 Example from Choi and Yoo (2008) 

6.3 Summary 

This example illustrates how the ERM provides realistic K-factors in accordance to known 

analytical methods. Furthermore it has been noted, that the method is not sensitive to 

members with relatively small axial force, wherefore the method is suitable for 

implementation in FE-codes. 
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7. Conclusion 

The critical length is a key parameter when designing compressive members according to the 

Eurocode. Most engineers have a reasonable idea of, in which interval the K-factor is 

expected to be, however as the complexity of the structures increases the risk of incorrect 

stability assessment becomes imminent. 

New structures are often designed with some degree of spare capacity, therefore exact K-

factors are not that crucial, however the risk of overlooking a general behavior, that yields 

larger K-factor than expected, could lead to a disastrous design. This can be avoided by 

performing a linear buckling analysis, which will show the general behavior of the system. 

When existing structures are reassessed because of change in the anticipated load exposure or 

design safety, some members might become over utilized according to the design formulas. 

By evaluating more accurate K-factors than previously conservative values, one might avoid 

the need to strengthen the structure. 

Analytical correct K-factors are seldom obtainable, wherefore methodical approaches are 

widely used to give estimates of K-factors. These methods can provide realistic K-factors in 

typical structures such as story-frames, but due to various assumptions in the methods the 

usability is primarily limited to regular frames. 

In complex structures where methodical approaches cannot be used, numerical approaches 

like the system buckling approach are useful. The method provides an exact solution of the 

member most prone to buckling, however for members with a low axial force that acts mainly 

as stabilizing bending members the method yields excessively large K-factor. This is a known 

paradox and the reason why, the method is not implemented as an automatically 

determination of K-factors in code check software. 

The main objective of this thesis was to propose a method that overcomes the paradoxical 

weakness of the system buckling approach. The proposed method is based on energy 

considerations, where the load multiplier from a linear buckling analysis is weighed to the 

individual members. It was found that method provides realistic K-factors that are not subject 

to the paradox of the traditional system buckling approach.  

The proposed method is deduced from physical arguments, where the energy balance between 

inner and outer work is used as an indicator for how much the individual members are 

sensitive to additional load in the critical state. Only 2D verification of the method was 

performed, however further thorough investigation and application of the method is believed 

to have the potential of the development of a method, which can be implemented with into 

code check in existing code check software. 
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APPENDIX 1 

Examples of Methodical and Experience Based Approaches  
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1. Example 1: Offshore Bridge between Gorm C and Gorm E 

An often used type of offshore bridge consists of three chords and a system of braces. A 

cross section of this type of bridge forms a triangle, where some bridges are orientated with 

the apex chord upwards as the bridge between Gorm C and Gorm E (see Figure 1-1), and 

some are turned upside down. 

 

Figure 1-1 Typical offshore bridge between Gorm C and Gorm E in the North Sea. 

The bridge between Gorm C and Gorm E has a span of 102.5 m. The chord in the apex has a 

larger cross sectional area than each of the two chords carrying the deck. The braces have the 

largest cross sectional area at the ends of the bridge and smallest at the middle, which is 

logically chosen when thinking of the shear distribution of a uniform loaded beam. 

In the present example the choice of critical length for the chords and braces in the bridge is 

discussed. Appropriate default values, which have been used for the actual design of the 

bridge, are outlined and a linear buckling analysis of a beam model is used for comparison. 

To see the difference between this type of bridge having the apex chord in the top or bottom, 

the same linear buckling analysis is performed were the beam model is turned upside down. 

The purpose of this example is to: 

 Validate the use of empirical K-factors on the members that are most prone to 

buckling. 

 Illustrate that in some cases the general behavior with a global sway mode becomes 

determinative for the buckling capacity, so that the use of empirical K-factors for 

individual members no longer applies. 

1.1 Empirical Values of K-factor for Calculation of the Critical Length 

For the design of the bridge empirical default values of the K-factor have been used. All 

chords are assigned a K-factor of 1 and all braces are assigned a K-factor of 0.7. These 

values can be found in the FEM package ROSAP, which was used for the design of the 

bridge. 

1.2 Description of Beam Model 

The geometry is modeled according to the structural drawings found in Annex 1. 
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The support conditions of the bridge is pinned in one end (no displacement but rotations 

allowed in all directions) and roller supported at the other end of the two deck chords (same 

as pinned but displacements allowed in the bridge direction).  

Point loads is applied the keypoints connecting braces to the two deck chords. This 

represents a uniform load distribution, which is typical for an offshore bridge. 

The model of the bridge is shown in Figure 1-2 and Figure 1-3 orientated normally and 

upside down respectively. 

 

 

Figure 1-2 Beam model of the bridge between Gorm C and Gorm E. 

 

Figure 1-3 Beam model of the bridge turned upside down. 
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1.3 Results from buckling analysis  

In the buckling analysis it is found that the first and second mode in principle has the same 

deformation pattern. The difference in the two modes is the direction in which the 

deformation happens. The load multiplier for the first and second mode is           and 

          respectively. In Figure 1-4 and Figure 1-5 the two modes are seen. 

 

Figure 1-4 First mode. Apex chord deforming in the horizontal plane. 

 

 

Figure 1-5 Second mode. Apex chord deforming in the vertical plane. 
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To see the distinct deformations the second mode is chosen to be seen from the side (see 

Figure 1-6). 

 

Figure 1-6 Side view of the second mode shows distinct deformations of the chord and 

braces. 

It is noted that the most slender braces furthest from the middle receives the largest 

deformations. This indicates that critical stress level is reached first in these elements when 

the load is gradually increased. Also deformations of the apex chord are significant, which 

indicates that the stress level is close to the critical at the time when the brace buckles. In the 

following, axial forces in the aforementioned braces and chord at the critical load level are 

compared to the critical axial forces calculated from default critical lengths. The load 

multiplier of           is used and results are given in Table 1-1. 

Critical Axial Force Axial Force in element at 

critical load level 

Critical axial force calculated from 

default critical length 

Deviation 

Brace (largest 

deformation) 
                       

Chord (middle of the 

bridge) 
                      

Table 1-1 Comparison of critical load level to critical axial forces determined by default K-

factors. 

It is assessed that the large deviation at the brace is due to a conservatively taken default 

value of the K-factor. If the K-factor is calculated backwards from the axial force in the 

braces at the critical load level, a value of      is found. Compared to the default value of 

    it seems so that the element boundary conditions is closer to a column fixed in both ends. 

This is in agreement with the fact that the brace buckles before the chord, wherefore the 

rotational stiffness is high at the brace ends. The default value of 0.7 insures the situation 

where the load in the brace and the chord reaches a critical level at the same time, which 

allows rotation at one of the brace ends. 

When using empirical values it is important to assess if it is reasonable values. In this case 

the position of the keypoints connecting the braces to the chords is fairly fixed in the 

buckling modeshape, since the chord in compression (the apex chord) is maintained by 
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braces in two transverse directions. This means that the general behavior is not determinative 

for the buckling capacity, and therefore K-factors between     and   is expected according to 

the basic cases (see Figure 2-2 section 2.1 of the main report). In the following section a 

hypothetical situation where the bridge is turned upside down is analyzed to emphasize when 

care should be taken. 

1.4 Upside Down Bridge 

When turning the bridge upside down the deck chords are in compression. The keypoints at 

the deck chords are not fixed if the bridge has a global mode shape corresponding to a 

horizontal transverse deformation of the deck. Therefore the bridge may fail by buckling at a 

lower load level than expected when using default K-factors. In Figure 1-7 the first 

modeshape of the upside down bridge is seen. 

 

Figure 1-7 First mode of the upside down bridge. 

The same comparison of the K-factor as in section 1.3 is made in Table 1-2 for the first 

modeshape.  

Critical Axial Force Axial Force in element 

at critical load level 

Critical axial force 

calculated from default 

critical length 

Deviation 

Brace (largest 

deformation) 
                       

Chord (middle of the 

bridge) 
                      

Table 1-2 Comparison of critical load level to critical axial forces determined by default K-

factors. 

The same conclusions as in section 1.3 concerning the K-factor can be made. However the 

deviation for the brace is smaller, because the ratio        is closer to   (see Table 1-3). The 

ratio is given by: 
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where    is the ratio of the axial force in the chord and brace, and     is the ratio of the 

critical axial force for the chord and brace. If          the elements buckle at the same time 

with element boundary conditions corresponding to the K-factors used for calculating the 

critical axial forces. Comparison of the ratios can be seen in Table 1-3.  

Ratio table Axial force ratio 

chord/brace    

Critical force ratio 

chord/brace     

Total ratio 

       

Bridge normally orientated                

Bridge turned upside down                

Table 1-3 Comparison of ratios for assessment of sametime buckling of chord and brace. 

The first modeshape did not show the global sway modeshape with a low critical level, but 

the modeshape appears as the second mode (see Figure 1-8). 

 

 

Figure 1-8 Second mode of upside down bridge. Global modeshape with keypoints deformed 

out of initial position. 

The second modeshape shows a global modeshape where the keypoints is deformed out of 

initial position. However the deck chords and deck braces provides enough stiffness so the 

global sway modeshape is not the first critical mode. If the bridge deck is narrowed to half 

the width, a load multiplication of           is found (see Figure 1-9), which gives a 

considerable lower critical load level than the first mode in Figure 1-7. 
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Figure 1-9 Narrow bridge with a global sway modeshape at a low critical level. 

1.5 Summary of Example 1 

Using the linear buckling analysis on a beam model of the bridge between Gorm C and 

Gorm E the default values of K-factors for chords and braces is explained. The risk of global 

sway modes is clarified with an upside down narrow version of the bridge that gives a low 

critical load level. A general behavior with a global sway modeshape might be overlooked 

by the designing engineer, however the linear buckling analysis provides an effective check 

of this, so that unstable designs can be avoided. 
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2. Example 2: Support Structure for Galleries 

The support structure for this gallery is an example of an uncommon structure where the 

general behavior of the system is hard to predict. The support structure consists of I-profile 

beams while the bracing is made with tubes. The structure is characterized by being slender 

and unbraced in one plane and thick and semi brace in the other. 

In the following the subassembly method is used to evaluate the stability of the structure and 

the results are compared to a linear buckling analysis. Furthermore common engineering 

practice is used by simplified assumptions.   

 

Figure 2-1 Support structure for galleries 

2.1 Isolated Subassembly Approach 

Based on the pre-EN1993 standard described in section 3.2 of the main report the critical 

column length for the straight bottom column is calculated using the isolated subassembly 

method.  

The column is a HEB340 as sketched on Figure 2-2 with the weak axis out of plane. 

Based on the structure, it is assumed that the column is well braced about its weak axis, 

which means a critical column length about the weak axis with a value between     and 1 

times the actual length. The value of 1.0 is chosen. This simplification was made in the 

original design. 
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Figure 2-2 Column designations 

The column is simple supported at the bottom which means   ,     and     are equal to 

zero. This also applies to    . The value of effective beam stiffness     is calculated based 

on the most conservative approach as described in section 3.2 of the main report. The 

horizontal beam and the top column are also HEB340 profiles. 
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(68). 

Using the formula for sway mode the following K-factor is obtained. 
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]

   

     

(69). 

To sum up the following K-factors are found using a conventional way of establishing 

critical lengths:              and           
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2.2 ANSYS Model 

In order to perform a linear buckling analysis of the structure a model is build up in ANSYS 

APDL.  

The structure is simply supported at the bottom and this is sketched on Figure 2-3. 

 

Figure 2-3 Support structure for galleries 

 

Two point loads of       each in the vertical direction are applied to the joints shown on the 

figure below. 

 

Figure 2-4 Application of loads 

A buckling analysis is performed and the load multiplier and axial force of the column is 

outputted. 
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Load multiplier 

   

Axial force 

  

                  

Table 2-1 ANSYS Output for first buckling mode 

The corresponding mode shape is shown in the following figures. 

 

Figure 2-5 First buckling mode - front view 

 

Figure 2-6 First buckling mode - side view 

The output gives a critical load for the column, and based on this load, the critical column 

length for the found buckling mode is derived. 

                     
(70). 
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 Critical length about the weak axis: 

 

      √
      

     
 

 √
                   

               
     

(71). 

In order to calculate the critical column length about the strong axis the buckling mode with 

the lowest multiplier corresponding to this deflection is found. This is the case with the third 

buckling mode as shown on the figures below. 

 

Figure 2-7 Third buckling mode - front view 

e  

Figure 2-8 Third buckling mode - side view 
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Load multiplier 

   

Axial force 

  

                 

Table 2-2 ANSYS Output for third buckling mode 

This gives a critical buckling load of: 

                      
(72). 

The critical column length about the strong axis can then be calculated as: 

 

              √
      

     
 

 √
                    

                
     

(73). 

2.3 Comparison of Isolated Subassembly Method and ANSYS 

In the following chart the results from the two methods are summarized. 

 Isolated 

Subassembly 
ANSYS Deviation 

Weak axis               

Strong axis              

Table 2-3 Comparison of  -factors 

About the weak axis the assumption that the column was well braced, and therefor has a 

critical column length of one times the actual length of column turns out to be non-

conservative. When used in further calculations to determine the load capacity, the ANSYS 

critical length gives a reduction factor        and the prEN1993 gives       .  

About the strong axis the difference is much larger. A K-factor of    , as found by the 

subassembly approach, seems to be a very conservative value. This is partly due to the fact 

that the structure is semi-braced against sway at the very top of the structure. This means that 

the overall sway mode is a mix between non-sway and sway. This is not accounted for in the 

method. By looking at formula (67) and (68) it becomes apparent that the only way to reduce 

the critical length is to maximize the value of     and minimize the value of   . It can be 

argued that the value of    should be reduced as the resistance against rotation at the top by 

default is assumed fixed. Reducing the value of    and maximizing the value of     would 

at best give the following distribution factors. 

 

   
     

         
 

       
       

 

       
       

 
           

      

(74). 

The distribution factor gives a  -factor of      which is still larger than the obtained 

ANSYS value of    . This supports the claim that the method does not scale to this type of 

problem where the structure is a mixture of sway and non-sway. 

An alternative way of calculating the critical length of the bottom columns is to see the 

bottom frame as an isolated frame, thereby assuming that the structure above doesn’t have 
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any influence on the motion of the bottom frame. This means that the    and     in formula 

(67) are equal to zero. By calculating formula (67) and (68) the following distribution factors 

are obtained: 

 
   

     

             
 

      

             
      

(75). 

 
   

     

             
 

      

      
     

(76). 

Thereby the K-factor becomes: 
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]

   

     

(77). 

So by using this alternative approach to calculating K-factor a value of     is obtained. This 

value is closer to value from the buckling analysis but still higher. This is again because of 

the semi braced nature against sway at the top of the structure.   

In the table below the reduction factors,  , about the strong and weak axis for both isolated 

subassembly method and ANSYS is calculated. The reduction factor for strong axis buckling 

for isolated subassembly is based on the lowest value of   found using the alternative 

approach. 

Reduction factor   
Isolated 

Subassembly 
ANSYS 

Strong axis           

Weak axis           

Table 2-4 Summary of reduction factors 

It quickly becomes apparent that estimating the critical column lengths can lead to either too 

large or too small values. This is primarily due to the fact that the general behavior of the 

system becomes hard to predict with the increasing complexity. Furthermore it should be 

noted the results found in ANSYS using the linear buckling analysis only is valid for the 

current load case, whereas the isolated subassembly method provides a K-factor that does not 

depend on the load case. 

2.4 Summary of Example 2 

In this example the K-factor has a large variation based on the method used.  

When using the isolated subassembly method from prEN1993 it is found that the largest K-

factor is about the strong axis. A linear buckling analysis in ANSYS shows the same, but 

with different values. 

In this case the isolated subassembly method from preEN1993 is overly conservative with a 

reduction factor     lower than what system buckling approach in ANSYS suggests. 
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APPENDIX 2 

Verification of Cross-section input for 2D Elements in Strain Energy Calculations 
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1. Verification of Cross-section Type Independence 

This appendix contains a comparison between a rectangular cross section using Bernoulli-

Euler beam theory and an I-profile cross section using Timoshenko beam theory. The point 

of which is showing that the type of cross section, i.e. rectangular and I-profile, provides the 

same result for the energy calculations as long as the area and moment of inertia are 

identical. 

1.1 General model 

The frame is a three story frame. The columns are HEB360 and the horizontal girders are 

IPE400. The frame has a total height of 30m and a width of 20m. The frame is simply 

supported at the base and a load of 1 N is placed at each story. 

 

Figure 1-1 Three story frame 

The sectional properties are listed in the table below: 

 HEB360 IPE400 

Area                         

Moment of inertia                           

Table 1-1 Sectional properties 

1.2 2D Frame 

The 2D model is based on beam elements with a rectangular cross section with the sectional 

properties of an I-profile about its strong axis. 

This gives the following result: 
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Figure 1-2 Buckling analysis of 2D frame 

1.3 3D Frame 

The 3D model is based on beam elements with the I-profile cross section. As this model has 

additional degrees of freedom further constraints are needed in order to obtain the same 

system behavior as the 2D frame. This means supporting against rotation about the X 

(torsional) and Y (out of plane) axis at the base of the frame. 

The relevant modeshape is seen at modeshape number 5 as this model has different sectional 

properties based on the direction of the cross section. 

 

Figure 1-3 Buckling analysis of 3D frame 
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1.4 Comparison of 2D and 3D 

The outputs considered in this report are the load multiplier and the stain energy (internal 

energy). Therefore these two outputs are compared. The strain energy for the lower column 

is summarized for the comparison. 

 2D Frame 3D Frame Deviation 

Load multiplier 326518 321380 1.6 % 

Strain energy 7654 7763 -1.4 % 

Table 1-2 Comparison between 3D and 2D elements 

The deviation is ascribed to the difference between Bernoulli-Euler and Timoshenko beam 

theory, as the 2D frame is based on Bernoulli-Euler elements and the 3D elements is based 

on Timoshenko elements. This is also described in section 4.1.2 is the main report.  
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APPENDIX 3 

Critics of Iterative System Buckling Approach 
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1. Critics of the iterative system buckling approach  

This appendix contains critics of the iterative system buckling approach proposed by Choi 

and Yoo [7]. The example used as reference example in the original article is used, as the 

results of the article are tried replicated. The method description is vague in a few essential 

key points, where assumptions concerning the explanation have been made. 

1.1 Application of iterative system buckling approach 

The model is a three story one-bay frame, with a width of 20m and a story height of 10m. 

The columns are made of HEB360 and the girders are made of IPE400. A point load, 

       , is applied at the joints of story. The frame is pinned at the supports and a 

modulus of elasticity of             is used. The element properties are listed in the table 

below. 

 HEB360 IPE400 

Moment of inertia                             

Area                           

Table 1-1 Member properties 

 

Figure 1-1 Reference example - 3 story one-bay frame 

On Figure 1-1 the frame with member designation can be seen. A conventional system 

buckling approach is made using ANSYS. A load multiplier          is found and the 

results are summarized in the table and figure below. 
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Figure 1-2 Result of linear buckling analysis 

 

Member Axial force Critical 

load 

K-factor 

1 and 9 (story 1)                      

2 and 8 (story 2)                     

3 and 7 (story 3)                     

Table 1-2 Results of system buckling approach 

To determine the most and least influential member the stiffness parameter is calculated as: 

 √     

where   is the actual length of the member,   is the axial force in the member,   is the 

modulus of elasticity and   is the moment of inertia. 

In Table 1-3 the calculated stiffness parameters are listed. 

Member Stiffness 

parameter 

1 and 9 (story 1)      

2 and 8 (story 2)      

3 and 7 (story 3)      

Table 1-3 Stiffness parameters for story 1-3 
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It is assumed that the determination of the most and least influential member should be taken 

amongst the compressive member. If the girder were included, the axial force of zero would 

lead to a K-factor of infinity. This would give implications in the following calculation of the 

increment of the fictitious axial force. Therefor the most influential member is Member 1 

and the least influential is Member 3. 

The method description is clear up to this point, but the explanation of the next step becomes 

unclear. The increment of the fictitious axial force is to be determined as: 

   
      

      
(
      

 ̅     
)
 

        

where subscript “mi” and “li” indicates the most and least influential member respectively.   

is the K-factor found from the elastic buckling analysis and  ̅ is the modified K-factor found 

from the iterative elastic buckling analysis. 

The unclearness in the article is that the iterative elastic buckling analysis have not yet been 

performed wherefore  ̅ does not exist. This is also seen in the flowchart from the article (see 

Figure 1-3). 

 

Figure 1-3 Flowchart of iterative system buckling approach [7] 

In the iteration scheme   is the iteration number and   is the member number. It is seen that  ̅ 

is calculated for         and not for     because that is the conventional buckling 

analysis. However an extract from [7] reads: 
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Figure 1-4 Extract from article 

As no further description is made it is assessed that     should be taken from the 

conventional buckling analysis (     and  ̅   is calculated from a buckling analysis where 

the loads have been increased by: 

   
      

      
(
   

   
)
 

        

Since the members have the same properties the first increase becomes: 

                                

The modified K-factor for the least influential member is then calculated as  ̅        , and 

from the conventional buckling analysis we have          . The increment in axial force 

in the other members for the subsequent iterations is: 

   (
     

     
)
 

                    

For every iteration step the following criteria is checked for all members: 

 ̅ 
   ̅ 

   

 ̅ 
 

   

where         is a convergence limit. For members where the iteration criterion is met, no 

more increments of fictitious axial force are added. It is not clear in the method description 

whether or not to store the K-factor for each member in the specific iteration step where 

convergence for the member is met, however this is assumed since the K-factor for story 1 

(Member 1 and Member 9) becomes very large. 

When performing the iterations convergence for all members is met at      , and the 

results are seen in Table 1-4. 

Member Recreated 

results of K-

factors 

Results of K-

factors from 

[7] 

Deviation 

[%] 

1 and 9 (story 1)                  

2 and 8 (story 2)                 

3 and 7 (story 3)                 

Table 1-4 Results of the recreation of results from [7] 

The description of the method is vague, however recreation of the results has been possible 

with some assumptions to the method description. The deviations in Table 1-4 might 

originate in rounding of properties and/or the programs choice of beam theory. 

To sum up, the essential doubtful key points where: 
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 Which value is assigned for   ? 

 Should the K-factors for each member be taken in the iteration step where the 

convergence criteria is met for the single member, or should the K-factor be taken in 

the final iteration step where all members has converges? 

1.2 Comments 

In Table 1-5 K-factors is seen where the iteration scheme has been performed with a higher 

and lower increments of the fictitious axial force         . 

Increment 1 and 9 (story 1) 2 and 8 (story 2) 3 and 7 (story 3) 

 

   
                     

 

  
                     

 

 
                     

                     

                      

                       

                        

Table 1-5 Results of K-factors with various iteration step size 

The results from Table 1-5 shows that increasing the increment of fictitious axial force 

provides lower K-factors for story 2 and story 3, however this is at the expense of a higher 

K-factor for story 1. If the increment becomes too large, the results show non-consistency 

which depends on the convergence criteria. If the increment is too small, the convergence 

criteria might be met before an actual convergence is reached. 

It should be noted that results also depends on the criteria        . In Table 1-6 K-factors 

has been listed where the criteria is reduced. The increment of          has been used in 

these calculations. 

Criteria 1 and 9 (story 1) 2 and 8 (story 2) 3 and 7 (story 3) 

                          

                           

                            

Table 1-6 Results of K-factors with different convergence criterion 

The results from the method proposed as described in the article are very much dependent on 

the increment in fictitious axial force and convergence criteria. Even though results that 

match those of the article are obtained, the method is hard to implement and use on other 

examples, the results vary greatly depending on the combination of criterion and step size. 

In later published articles [8][9] the method is slightly changed, which again would lead to 

different results. The changes will not be outlined since the example used for comparison 

only appears in [7]. 
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design of general beam systems 
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Abstract 
When determining the effective length of a column in a general beam system, the system buckling approach is the 

most common method used. The system buckling approach does however yield excessively large K-factors for 
members with a relatively small axial force. This paper illustrates a new method that overcomes this paradox by 
modifying the system load multiplier for each member based on energy considerations. The method distinguishes 
between members being prone to buckling and those that are not sensitive to additional axial load. The method is 
verified by comparing results from the proposed method with results from previously known methods used on frames. 
The results show the proposed method gives reasonable effective lengths for all members in the frames. The proposed 
method’s prerequisites are already calculated for the linear buckling analysis which makes the method eligible to be 
included in software algorithms.  
 
Keywords: flexural buckling, effective length, system buckling approach, energy, excessively large K-factors 
 
 

1 Introduction 
Almost all structures consist of compression 

members which mean a risk of instability. Instability is 
a non-linear phenomenon, which often can be handled 
with linear considerations. In the European standards, a 
stability check often comprise of a check of the 
individual members, where the non-linear behavior is 
included by a reduction depending on the elastic 
critical load (CEN, 2009). The critical length of the 
compression member is needed, as it defines the 
critical load (Timoshenko, 1961). The critical length 
can be determined in a number of ways, either by 
methodical desk calculation or computer based 
methods. Most desk calculation methods are based on a 
number of assumptions in order to obtain an analytical 
solution. The isolated subassembly approach considers 
the rotational stiffness among adjacent members, but 
assumes all members have the same stiffness 
parameters and therefore buckles at the same time 
(ASCE, 1997). Gantes and Mageirou have developed a 
more comprehensive approach considering all rotation 
and translation at the beam ends. This approach yields 
good results for frames (Gantes and Mageirou, 2005). 
The story-methods allows for shear to be transferred 
between columns in a story, which means that the 
weaker columns are supported by the stronger ones. 
But this method suffers from the same assumptions 
depending on how the critical load is calculated 
(ASCE, 1997). It also means that these methods are 
made for specific cases, which for the most part mean 
regular frames. Therefor the usability of these methods 
is limited. 

When evaluating structures that cannot be classified 
as a regular frame by a number of stories and/or bays, 
the critical length are either determined by experience 
and standard values or by computer based numerical 
calculations such as a system buckling analysis (ASCE, 
1997). As personal computers are a basic tool for the 
engineer, analysis such as a system buckling analysis 
becomes more common. The system buckling analysis 
is not limited to specific cases and therefor offers a 
wide usability. The system buckling analysis assumes 
that all members reach their buckling limit when the 
system buckles, this leads to the paradox that 
compression members with a small axial force will 
give excessively long critical lengths. This means that 
the method is often used as a supplement to the 
analytical approaches. A new method has been 
proposed where a fictitious axial force is used in an 
iterative manner in order to assess this problem (Choi 
and Yoo, 2008, 2009, 2010). The results of this method 
do however rely on the increment in fictitious force and 
the convergence criterion of the iteration process.  
In this paper, a new method based on the system 
buckling analysis is proposed, which is easily 
programmable into existing software. The method uses 
a modified load multiplier for each member based on 
their individual buckling resistance calculated using 
energy considerations. In order to verify the proposed 
method the K-factors are calculated for different cases 
and compared to results from numerical methods and 
analytical methods where relevant.  
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2 Current Methods 
The K-factor is defined from the Euler load: 

 
𝑁𝑐𝑟 =

𝜋2 ∙ 𝐸𝐼
(𝐾 ∙ 𝑙)2         =>       𝐾 = �

𝜋2 ∙ 𝐸𝐼
𝑁𝑐𝑟 ∙ 𝑙2

 

(1). 

The critical load can be determined analytically 
using the beam-column differential equation assuming 
all end restraints are well defined. This is easily done 
for the commonly known end restraints just as pinned 
and fixed. When a column is a part of a larger system 
of members the end restraints depends on the behavior 
of the entire system. This means that a column acting 
in a system needs to have defined four different 
restraints, as seen on Figure 1, in order to obtain an 
analytical solution. 

 
Figure 1 General column restraints 

Determining these end restraints are often a 
cumbersome process and several methodical 
approaches are often used instead. 

2.1 Isolated Subassembly Approach 
The isolated subassembly approach is a commonly 

used approach for determining K-factors for a single 
column. It is also known as the alignment chart 
method, G-factor method or nomograph method. The 
method is characterized by the determination of 
stiffness factors, or G-factors, at each end of the 
column. The stiffness factor is a function of the 
adjacent beams stiffness coefficients. The stiffness 
factors at each end of the column are used in junction 
with either an alignment chart, nomograph or 
approximated formulas. These are based on a number 
of assumptions which must be fulfilled in order to 
obtain correct results (ASCE, 1997). Based on the 
origin of the method the stiffness factors can be 
calculated in a number of ways, where the European 
pr-EN1993 standard uses the following equations 
(CEN, 1992): 

 𝜂1 =
𝐾𝐶 + 𝐾1

𝐾𝐶 + 𝐾1 + 𝐾11 + 𝐾12
 

(2). 

 𝜂2 =
𝐾𝐶 + 𝐾2

𝐾𝐶 + 𝐾2 + 𝐾21 + 𝐾22
 

(3). 

where 𝐾𝐶  is the column stiffness coefficient, 𝐾𝑖 are the 
stiffness coefficients for the adjacent columns and 𝐾𝑖𝑗  
is the effective girder stiffness coefficient. Based on the 
state of sway the K-factor can be obtained as: 

Non-sway mode: 

 𝑙𝑠
𝑙

= 𝐾 = �
1 + 0,145 (𝜂1 + 𝜂2) − 0,265 𝜂1 𝜂2
2 − 0,364 (𝜂1 + 𝜂2) − 0,247 𝜂1 𝜂2

� 
(4). 

 

Sway mode: 

 𝑙𝑠
𝑙 = 𝐾 = �

1 − 0,2 (𝜂1 + 𝜂2) − 0,12 𝜂1 𝜂2
1 − 0,8 (𝜂1 + 𝜂2) + 0,6 𝜂1 𝜂2

�
0,5

 
(5). 

 

2.2 Story methods 
The story buckling approach differs from the 

isolated subassembly approach in the fact that it can 
account for the transfer of shear forces between 
columns. This means that if a column in any given 
story is stronger than some of the other columns, then 
this column will provide the weaker column with some 
of its buckling resistance. All story based procedures 
can be formulated bases on the following equation: 

 𝜆𝑠𝑡𝑜𝑟𝑦 ∙�𝑃𝑢
𝑎𝑙𝑙

= � 𝑃𝑐𝑟(𝑠𝑡𝑜𝑟𝑦)
𝑛𝑜𝑛−𝑙𝑒𝑎𝑛𝑒𝑟

 
(6). 

where 𝜆𝑠𝑡𝑜𝑟𝑦 is the load multiplier that the axial loads 
𝑃𝑢 in the respective story must be scaled by to achieve 
story sidesway buckling, and 𝑃𝑐𝑟(𝑠𝑡𝑜𝑟𝑦) represents the 
contribution from each column to the story sidesway 
buckling resistance. 

From this equation the K-factor for a member in the 
story can be derived: 

 
𝐾𝑠𝑡𝑜𝑟𝑦 = �

1
𝑃𝑢
∙
𝜋2𝐸𝐼
𝐿2 ∙

∑ 𝑃𝑢𝑎𝑙𝑙
∑ 𝑃𝑐𝑟(𝑠𝑡𝑜𝑟𝑦)𝑛𝑜𝑛−𝑙𝑒𝑎𝑛𝑒𝑟

 

(7). 

The different story methods differs primarily in the 
way 𝑃𝑐𝑟(𝑠𝑡𝑜𝑟𝑦) is calculated. 

The Story Buckling Method, also known as just 
story buckling, assumes that the buckling capacity of 
the story is equal to the sum the column buckling loads 
computed using a K-factor based on isolated assembly 
method. This however has the same limitation and 
must fulfill the same assumptions.  
Another method is known as the Story Stiffness 
Method or Practical Story Based Effective Length 
Factor. This method provides more realistic results 
when there is significant violation of the assumptions 
on which the isolated subassembly approach is based. 
Here the K-factor is derived as: 

 𝐾𝑠𝑡𝑜𝑟𝑦

= �
1
𝑃𝑢
∙
𝜋2𝐸𝐼
𝐿2

∙
∆𝑜ℎ ∙ ∑ 𝑃𝑢𝑎𝑙𝑙

(0.85 + 0.15 ∙ 𝑅𝐿) ∙ ∑𝑛𝑜𝑛−𝑙𝑒𝑎𝑛
 

(8). 
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Where H is the lateral displacement forces, L is the 
length of the column and ∆𝑜ℎ is the 1. order lateral 
displacement of the story, and 𝑅𝐿 is defined by: 

 
𝑅𝐿 =

∑ 𝑃𝑢𝐿𝑒𝑎𝑛𝑒𝑟

∑ 𝑃𝑢𝑎𝑙𝑙
 

(9). 

2.3 System Buckling Approach 
The system buckling approach uses a linear 

buckling analysis to determine the critical load level 
for system. The governing equation of a linear buckling 
analysis can be expressed as: 

 (𝐾 + 𝜆 ∙ 𝐾𝑔)𝑉 =  0 (10). 

Where 𝐾 and 𝐾𝑔 are the elastic and geometrical 
stiffness matrices. λ is the eigenvalues or load 
multiplier, and V is the eigenmode vector. The stiffness 
matrices can be derived from the principles of virtual 
work (Bazant, 2010). The system buckling approach 
assumes that all members reach their buckling limits at 
the buckling of the overall structure. The buckling load 
of member i can then be expressed as: 

 
𝑃𝑐𝑟,𝑖 = 𝜆𝑃𝑖 =

𝜋2𝐸𝑖𝐼𝑖
(𝐾𝑖𝐿𝑖)2

 
(11). 

Where 𝐸𝑖, 𝐼𝑖  and 𝐿𝑖 are the modulus of elasticity, 
moment of inertia, and the length of member 𝑖. 𝑃𝑖  and 
𝐾𝑖 are the axial force and the effective length factor of 
member 𝑖 respectively. 

 
𝐾𝑖 = �

𝜋2𝐸𝑖𝐼𝑖
𝐿𝑖2𝑃𝑖𝜆

 

(12). 

3 The K-factor paradox 
It has been well established that the system 

buckling approach, which is the only method that 
offers usability in general beam systems, also 
introduces a paradox when used on members with a 
small axial force. The reason for excessively large K-
factors when using equation (12) arises from the 
assumption that all members reach their buckling limit 
when the system buckles. Since not all members are 
close to their buckling limit when the system buckles, 
means that equation (12) is only valid for the most 
critical member. This can be verified by applied extra 
axial force in a member with a small axial force. Here 
it can be seen that the load multiplier for the system is 
almost unchanged, which indicates that the added axial 
force does not affect the system behavior. This problem 
has been addressed by Choi and Yoo (Choi and Yoo, 
2008, 2009, 2010)  

3.1 Iterative System Buckling approach 
Choi and Yoo[ref] uses fictitious axial forces in an 

iterative procedure for story frames where the axial 
force in the compression members is increased until the 
change in K-factor is sufficiently small. This eliminates 

the paradox that small axial forces give excessively 
large K-factors.  

The most and least influential columns are to be 
determined by: 

 
𝐿�

𝑃
𝐸𝐼

 

(13). 

Where 𝑃 is the axial force in the member is, 𝐸 is the 
modulus of elasticity and 𝐼 is the moment of inertia. 
The K-factor is expressed as 

 
𝐾𝑖 = �

𝜋2𝐸𝑖𝐼𝑖
𝐿𝑖2(𝑃𝑖 + Δ𝑃)𝜆

 

(14). 

where Δ𝑃 is the final increase in axial force calculated 
as the sum of incremental changes: 

 
𝛿𝑃 =

𝐸𝑙𝑖𝐼𝑙𝑖
𝐸𝑚𝑖𝐼𝑚𝑖

�
𝐾𝑚𝑖𝐿𝑚𝑖
𝐾𝑙𝚤����𝐿𝑙𝑖

�
2

𝑃𝑚𝑖 − 𝑃𝑙𝑖  
(15). 

where the subscript 𝑙𝑖 and 𝑚𝑖 refers to the least and 
most influential columns respectively. For an easy and 
stable iteration process, the terms 𝐾𝑚𝑖  and 𝐾𝑙𝚤���� are 
assumed to be equal to 1.0 in the first iteration step. 
The constant value of 𝛿𝑃 from this assumption is used 
in subsequent iterations for simplicity. 
The convergence criterion is defined as: 

 𝐾𝑖
𝑗 − 𝐾𝑖

𝑗−1 
𝐾𝑖
𝑗 < 𝜀 

(16). 

where 𝑗 is the iteration number and 𝜀 is convergence 
criteria (=0.001) 

3.2 Comparison of methods 
In order to illustrate the inconsistency of the system 

buckling approach a three story one bay frame used by 
both Gantes and Mageirou(2005) and Choi and 
Yoo(2008) is presented. 
The model of the three story building is a 2D frame 
consisting of columns (HEB360) and girders (IPE400). 
Both the HEB360 and the IPE400 has bending about 
the strong axis. The moment of inertia for columns and 
girders are 4.319 ∙ 10−4 𝑚4 and 2.313 ∙ 10−4 𝑚4 
respectively. The modulus of elasticity is 
210.000 𝑀𝑃𝑎 and the frame is pinned at the base. The 
story height is 10 𝑚, which gives a total height of 
30 𝑚, and the bay width is 20 𝑚. Concentrated loads 
are imposed on the joints of each story, where the load 
𝑃 = 100 𝑘𝑁. The horizontal loads shown with dotted 
arrows are only used in the story stiffness method. 
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Figure 2 Three story one bay frame 

 
In Table 1 and Figure 3 a comparison of the results can 
be seen.  
 
K-factors Story 1 Story 2 Story 3 
Story Buckling Method 2.831 2.643 2.267 
Story Stiffness Method 2.989 2.713 2.664 
Gantes & Mageirou 2.969 2.775 2.250 
System Buckling Approach 2.971 3.639 5.146 
Choi & Yoo 3.087 2.345 2.016 
Table 1 Effective length factors for three story one bay frame 

 

 
Figure 3 Comparison of effective length factors for 

three story one bay frame 

In Figure 3 it is seen that the system buckling approach 
yield significantly larger K-factors for the top two 
stories. As the axial force increases down the columns 
of the building so does the critical load according to 
(11). This goes against intuition as the columns are 
identical in length and properties. 

4 Proposed Method 
The primary reason why the system buckling 

approach gives erroneous results is due to the 
assumption that all members reach their buckling limit 
when the system buckling. This becomes apparent 
when considering the frame example (Figure 2). In such 
a case the assumption is clearly wrong, as one would 
expect the top and bottom columns to have 
approximately the same critical load. Since not all 
members reach their buckling limits when the system 
buckles, a way of assessing how prone each member is 
to buckling is sought. 

4.1 Energy based stability considerations 
The energy in a member consists of the internal 

energy, which is the stabilizing energy, or potential 
strain energy, and the external energy resulting from 
the outer work done by the axial forces, which is the 
destabilizing energy. At the critical load level there is a 
balance between the total external energy and the total 
internal energy.  

 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  
(17). 

The internal and external energy in the individual 
member are not equal to each other, except in the case 
where all members reach their buckling limit when the 
entire system buckles. 
The calculation of the energy requires the buckling 
shape, which is known for the basic cases, and when 
considering a system of members, the buckling shape is 
found by a linear buckling analysis as the mode shape.  
The internal and external energy for each member can 
be found as a summation of the energies in each sub 
divided element belonging to the member in question. 
The internal energy in an element can be found by: 

 
𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =

1
2
∙ 𝒔𝑇𝒌 𝒔 

(18). 

And the external energy can be found by: 

 
𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =

1
2
∙ 𝒔𝑇𝒌𝒈𝒔 

(19). 

where 𝒔 is a vector containing the elements 6 nodal 
displacements from the mode shape (translation in x 
and y direction and rotation about z axis). 𝒌 and 𝒌𝒈 are 
the elements local stiffness matrix and geometrical 
stiffness matrix respectively (Cook, 2002): 
 

𝒌𝑔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0

0
6𝑃
5𝐿

𝑃
10

 

0
𝑃

10
2𝑃𝐿
15

0 0 0

0 −
6𝑃
5𝐿

𝑃
10

0 −
𝑃

10
−
𝑃

30
0 0 0

0 −
6𝑃
5𝐿

−
𝑃

10

0
𝑃

10
−
𝑃

30

0 0 0

0
6𝑃
5𝐿

−
𝑃

10

0 −
𝑃

10
2𝑃𝐿
15 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝒌 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐸𝐴
𝐿

0 0

0
12𝐸𝐼
𝐿3

6𝐸𝐼
𝐿2

0
6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿

−
𝐸𝐴
𝐿

0 0

0 −
12𝐸𝐼
𝐿3

6𝐸𝐼
𝐿2

0 −
6𝐸𝐼
𝐿2

2𝐸𝐼
𝐿

−
𝐸𝐴
𝐿

0 0

0 −
12𝐸𝐼
𝐿3

−
6𝐸𝐼
𝐿2

0
6𝐸𝐼
𝐿2

2𝐸𝐼
𝐿

𝐸𝐴
𝐿

0 0

0
12𝐸𝐼
𝐿3

−
6𝐸𝐼
𝐿2

0 −
6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
When performing the linear buckling analysis on a 

system of members, some members are deforming as a 
result of the outer work being done by the axial force, 
and these members are in a state of buckling. Other 
members are more in a state of bending due to rigid 
connections in the system and acts as a stabilizing 
member. To assess how prone a member is to buckle, 
the following energy ratio is being used: 

 𝑟𝐸 =
𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

 
(20). 

A higher ratio means a higher resistance to buckling 
of the member and therefore the member is less prone 
to buckling. When looking at a system of members the 
ratio for a single member does not mean anything by 
itself, but it solely expresses the buckling resistance 
compared to other members.  This means that the 
energy ratio can be used to compare the buckling 
resistance of individual member in a system based on 
the current load level. 

The ratio 𝑟𝐸 is calculated for each member, and the 
member with the lowest ratio is considered as the 
weakest member and therefore being 100% in the state 
of buckling. The lowest energy ratio is taken as a 
reference ratio, which is notated as 𝑟𝐸,𝑟𝑒𝑓  and the 
critical load for each member 𝑖 in the system can be 
determined as 

 𝑁𝑐𝑟,𝑖 = 𝑁𝑖 ∙ 𝜆𝑐𝑟 ∙
𝑟𝐸,𝑖

𝑟𝐸,𝑟𝑒𝑓
 

(21). 

In the special case where all members buckle at the 
same time, every member will have a ratio of one, and 
the energy modified system buckling approach gives 
the same result as the system buckling approach. 
The K-factor for each member 𝑖 can then be found as: 

 
𝐾𝑖 = �

𝜋2 ∙ 𝐸𝑖𝐼𝑖
𝐿𝑖  2 ∙ 𝑁𝑐𝑟,𝑖

= �
𝜋2 ∙ 𝐸𝑖𝐼𝑖

𝐿𝑖2 ∙ 𝑁𝑖 ∙ 𝜆𝑐𝑟 ∙
𝑟𝐸,𝑖
𝑟𝐸,𝑟𝑒𝑓

 

(22). 

where 𝐸 is the modulus of elasticity and 𝐼 is the 
moment of inertia. 

The difference between the system buckling 
approach and the proposed method is illustrated on 
Figure 4. It is noted that no extra analysis is needed, as 
post-processing is done using only information from 
the existing linear buckling analysis. 

 
Figure 4 Flowchart illustrating difference between 

system buckling approach and proposed method 

 

5 Applications 
5.1 3 Story 1 bay frame 

The first test model is identical to the model used 
for illustrating the flaws of the system buckling 
approach (Figure 2). The proposed method is applied to 
the model and the results are seen in Table 2 and in 
Figure 5.  

 
Figure 5 Comparison of effective length factors for 

three story one bay frame including results from 
proposed method 

 
 
K-factors Story 1 Story 2 Story 3 
Story Buckling Method 2.831 2.643 2.267 
Story Stiffness Method 2.989 2.713 2.664 
Gantes & Mageirou 2.969 2.775 2.250 
System Buckling Approach 2.971 3.639 5.146 
Choi & Yoo 3.087 2.345 2.016 
Proposed Method 2.971 2.591 2.695 

Table 2 Comparison of effective length factors for 
three story one bay frame including results from 

proposed method 
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The method proposed by Choi and Yoo (2008) gives 
the most favorable results for story 2 and story 3; 
however it is on the cost of some of the buckling 
resistance of story 1. This is related to the slight 
decrease in the load multiplier. When only considering 
story frames with no axial compressive force in the 
horizontal members, the proposed method by Choi and 
Yoo(2008) provides favorable results, however if there 
is a relatively small axial compressive force in the 
horizontal members the applied fictitious forces will 
tend to decrease load multiplier significantly. This 
would lead to conservatively large K-factors for the 
vertical members. One of the strength of the proposed 
method is that it is provides intuitive realistic K-factors 
for all members in the structure. E.g. if an axial 
compressive force of 0.01𝑃 where applied to the 
horizontal members the vertical members would get a 
non-noticeable increase in the K-factor and the 
horizontal members would be assigned a K-factor of 
approximately 0.2. 

 
Figure 6 Buckling analysis of three story one bay 

frame showing the transvers displacement of girders 

The proposed method stands out in the result by the 
fact that it provides a larger K-factor for Story 3 than 
for story 2. It is assessed, that this is caused by the fact 
that the internal strain energy becomes relatively 
smaller in story 3 than story 2 because of the relative 
transverse displacement of each story seen in the mode 
shape (see Figure 6). This effect is also indicated when 
comparing the Story Buckling Method to the Story 
Stiffness Method, where the decrease of the K-factor is 
small by the Story Stiffness Method, because it 
considers the transverse displacements. 

5.2 Mixed story 2 bay frame 
In the second example, a model of an asymmetrical 

frame with unequal column length is investigated. Both 
vertical and horizontal loads are imposed, and all 
members are subjected to compression.  Amongst the 
known methods of determining the K-factor, the 
system buckling analysis would be chosen. In this 
example results using the system buckling analysis 
approach are compared to the proposed method. 
Story 1 consists of two bays with span 20 + 20 =
40 𝑚. In story 1 the left and middle column has a 
length of 7 𝑚 and the right column has a length of 
10 𝑚. In Story 2 the right bay has been removed, and 
the column lengths are 10 𝑚. The frame is pinned at 
the base. The model is seen in Figure 7. 

 

Figure 7 Mixed story two bay frame 

 
All column profiles are HEB360 (𝐴 = 1.810 ∙ 10−2 𝑚2 
and 𝐼 = 4.319 ∙ 10−4 𝑚4) and all girder profiles are 
IPE400 (𝐴 = 0.845 ∙ 10−2 𝑚2 and 𝐼 = 2.313 ∙
10−4 𝑚4). The axial forces in the members where 
obtained by a static analysis, and the load multiplier 
and mode shape where obtained by a linear buckling 
analysis. The distorted model from the mode shape is 
seen in Figure 8.  

 
Figure 8 Modeshape for mixed story two bay frame 

As the girders has a double curvature (see Figure 8) 
low K-factors is expected for these members. In story 
2, the right column (Member 5) is subjected to the 
largest axial load and is therefore expected to be 
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weakest and have a larger K-factor than the left column 
(Member 4). In story 1, it is hard to predict which 
column is the weakest. The right column (Member 3) is 
subjected to the lowest axial load but has largest 
geometrical length. The middle column (Member 2) is 
subjected to the highest axial load, but contrary to the 
other two columns, two girders provide rotational 
stiffness at the top joint. In Table 3 K-factors according 
to the system buckling approach and the proposed 
method are given, and the results are plotted in Figure 
9. 
 
K-factors System Buckling 

Approach 
Proposed 
Method 

Member 1 3.792 3.276 
Member 2 2.607 2.455 
Member 3 2.916 2.916 
Member 4 5.008 2.157 
Member 5 4.325 3.198 
Member 6 2.967 0.181 
Member 7 1.920 0.183 
Member 8 2.056 0.182 

Table 3 Comparison of K-factors for mixed story two 
bay frame 

The results shows, that the right column in story 1 
was the member most prone to buckling since the 
proposed method and the system buckling approach 
gave the same result. The proposed method provides 
more favorable K-factors for all other members since 
the load multiplication factor is increased by a factor 
relative to the energy ratios. Especially for the girders 
much better results are provided by the proposed 
method, as the K-factor should be low in compression 
members that act mainly as bending members. For 
story 2, the proposed method provides K-factors that 
are consistent with the intuition that the weakest 
member (Member 5) in the analysis should be assigned 
the largest critical length. This is in contrast to the 
system buckling analysis, which assumes same time 
buckling and therefore buckling at a lower load for the 
member with the lowest axial force (Member 4). 

 
Figure 9 Comparison of K-factors for mixed story two 

bay frame 

6 Conclusion 
This paper proposes a new method to calculate the 

effective length factors for columns in a general beam 
system. Previously used methods such as the isolated 
subassembly approach, story approaches and system 
buckling approach are used to verify the results the 
proposed by comparison. This shows excessively large 
K-factors when using the system buckling approach, 
where complications arises from the assumption that all 
members reach their buckling limit at the same time of 
the system.  

A recently proposed method uses a fictive axial 
force in each member in an iterative procedure in order 
to modify the results of the system buckling approach. 
This shows good results compared to other the 
methods, but results depend on the convergence 
criterion and the increment of fictitious axial force, 
wherefore the results require extra attention if 
implemented in software algorithms. 

Instead a new method is proposed where the load 
multiplier from the system buckling approach is 
modified for each member based on energy 
considerations. The method distinguishes between 
members being prone to buckling and members that are 
not sensitive to additional axial load by looking at the 
inner and outer work being done in the members. 

A three story one bay frame is analyzed using 
previously mentions methods. Here it is shown that 
while the system buckling approach gives excessively 
large K-factors for some members, the proposed 
method yields reasonable results in good agreement 
with other methods.  

A mixed story two bay is analyzed using the system 
buckling approach and the proposed method. Here it is 
shown that the proposed method gives reasonable 
results for all members, while the system buckling 
approach yields excessively large K-factors for all but 
the weakest member in the structure.  

It is concluded that the method provides a wide 
usability as it is not limited to frames and does not have 
the same problem as the system buckling approach 
when members have a relatively small axial force. 
Furthermore the method is eligible to be programmed 
into existing numerical software as all prerequisites for 
the energy considerations are calculated as a normal 
part of a linear system buckling analysis.  
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