AALBORG UNIVERSITY

STUDENT REPORT

Title:
Secure API Development Life Cycle

Theme:
Master Thesis

Project Period:
Winter Semester 2024

Guidance counselor
Marios Anagnostopoulos
mariosa@es.aau.dk

Student:

Jan Andersen
jandel9@student.aau.dk

Copies: 1
Number of pages: 55

Date of Completion:
January 15, 2024

Classified as Business

Institut for Datalogi,

Aalborg University
Elma Lagerldfs Vej 300,
9220 Aalborg @st
http://www.aau.dk

0 R |V o B N 7
1.2 PROBLEM DEFINITION & uuuttttttttteee ettt et et e e e e e e e ettt e e et e e e e e sa st aeeeeeeeesennannnns 8
T G S 9
S D ¥ N of o I I3 i 10
1.5 D N Y N IR Y 1 10
O N e Y o U T I 1 = o o I -3 N 10
FUN D AMEN T ALS iiiiitiitiiiittttttanteeesesessssssssssssssssssssssnsssnssssss 11
1.7 AP FUNDAMENTALS ettt ettt et e ettt et et e e e e e e e st et e e e e e e e e e e e et et aeaeeeeeeeennn 11
T N a0 o 11
1.8.1 (0 =3 I = 12
1.8.2 POrtNEr APl .. et 12
1.8.3 INt@rNal AP oo e e 12
1.8.4 COMPOSIEE AP e e ettt ettt ettt ettt ettt ettt et 12
1.9 API PROTOCOLS AND ARCHITECTURES .. tttttttttaaae et e e ettt ettt e e e e et e e e et ettt aa e e e aeeeaeeeanns 13
1.9.1 REST (representational state transfer).......coooeeeemiiiiiiii e 13
1.9.2 GraphQL (Graph QUEery LANGUGAGE) ... ettt ettt 13
1.9.3 gRPC (google remote procedure Call)........oonieeiieee e 13
1.9.4 SOAP (Simple object access ProtoCol)oonnnnee i 14
SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) . iiiiiiiiiiiiiiiiesesess 15
1.10 D YA = o PP 15
1.11 OWASP TOP 10 API SECURITY RISKS 2023 L.ttt et e e e e e e e aieeeeeeeeeanns 16
1.11.1 AP11:2023: Broken Object Level Authorizationccoouveiiieieiiiiiiiiiiinnnnnn.. 17
1.11.2 AP12:2023: Broken AUthentiCAtionc.ouuiuueeiiie e e 18
1.11.3 API13:2023: Broken Object Property Level Authorization...................cccovvvven... 19
1.11.4 AP14:2023: Unrestricted Resource CoONnSUMPLIiONcoiieieeeeeiiaiiiiiiiiinnnnnn, 20
1.11.5 AP|5:2023: Broken Function Level Authorizationcccovvuvviiiiiiiniiiiinnnnnn, 21
1.11.6 AP16:2023: Unrestricted Access to Sensitive Business FIOWSc..o.un. 22
1.11.7 API17:2023: Server-Side ReqUEeSt FOIgery ... uuueeee it eeaaaiiiiieaaanns 23
1.11.8 API8:2023: Security Misconfigurationc..oueeeeiiiiiiiiie e eieeiiiiieaaanns 24
1.11.9 API19:2023: Improper Inventory Management.........ouvveunieeeiiiiieieiiiaeeeiiinnennnnn. 25
1.11.10 AP110:2023: Unsafe Consumption Of APIS ..ccooeeiimmmiiiiiiii i 26
1.12 AP T SECURITY BASELINE Lttt ettt et et e et ettt et e e et ettt e et e et e a e e e e e e e e e e eeeennnaans 27
1.13 EXPOSURE OF AP I (INGRESS) uuutttttttttte ettt ettt ettt e e e e e ettt ettt 28
1.13.1 DeSIGN PRASC. ... e 28
1.13.2 DevelopmeNnt PRGASE. e 29
1.13.3 TESEING PRASE ...t ettt e e ettt et e e, 30
1.13.4 IMPlementation PRASE. e ettt ettt 31
1.13.5 Logging and Monitoring PRASE........oooeermmri ettt 32
1.14 CONSUMER OF AN AP | (EGRESS)ttt ettt e ettt ettt e e e ettt e e e eeeeaaas 32
1.14.1 DESIGN PROSC. ...ttt e ettt et e e 32

1.14.2 DevelopPmMent PRGSE......oooo e e e 32

1.14.3 TOStiNG PRGSO . ettt e e e 33
1.14.4 IMpPlementation PRGSE.... ...t ettt e e, 33
1.14.5 Logging and monitoring PRGASEcoooeeeeer ettt 33
THREAT MODELING ..iiiiiiiiiiiiiiiiiiteitaietaseasessssssssssesssssssssessssssssssssssssssnsssssssssssssnssssssnses 34
1.15 SCOPE FOR A THREAT IMODEL 1 uuutttettttttttttaaa e et e et et et ettt a e et et e e ettt aaaa e e e e eeeeeaans 34
1.16 THREAT MODELING METHODOLOGY t ettt ettt et ettt e e e e et e e e ettt e e e e e e e e eeeeeennnnnns 34
1.16.1 R o g o - 34
1.17 THREAT MODELING AN APl USING STRIDE tttuutttttitetttiaeeettaeeetttaeeeanneeenaaeeeenieeeennnn 35
1.17.1 What are wWe WOrKing ON?.......coooioiimii ittt ettt iieaaa e 36
1.17.2 WHGAE CAN GO WIONG 2 oottt ettt et ettt ettt e ettt iieaaa s 37
1.17.3 What are we going to do abOoUt it?ueuniiiiee ettt 41
1.17.4 Did We do 0 gOOd JOD 2. .o e 41
APl SECURITY TESTING TOO LS . iuiiiiiiiiiiiiiaiiiiiiattatesastasessans 42
1.17.5 Static Application Security Testing (SAST) ..o 42
1.17.6 Dynamic Application security testing (DAST)ueeeeeeeiie i, 42
DISCUSSION AND CONCLUSION ...iiiiiiiiiiieeitettesitastosssasssns 43
1.18 0T K of U L] o 43
1.19 (0T 0] N of I U1 e] N 43
WORKS CITED tiiiiiiiiiiiiiieieesseessesssssesss 44
AP PEN DI A oiiiiiiiiiiiitittiieetteeeeessess 50

Abstract

Due to the increased use of APIs, and especially web APIs, and the importance
of these to all parts of society, there is a need for a shift from security in
digital solutions being something , which is incorporated after a product, so
that it becomes an integral part of the entire software development life cycle.

However ,since the complexity of software increases significantly, including
with the use of many 3rd party libraries, integrations, both between internal
systems in companies, but also when doing business (B2B), it is necessary that
more and better control comes with the software development process.

Some believe that the solution is to buy technological solutions that can scan
for all kinds of vulnerabilities and, with a few clicks, get them fixed.
Unfortunately, it is not that easy. This despite, vendors of the products, claim
that this is the case.

Very few people are aware of which components are included in the solutions
that they themselves help to develop. This is critical, because without
knowledge of this, how will the responsible people be able to mitigate the risks
that are in the products?

Furthermore, companies can no longer rely on the traditional perimeter
security, that is, where there was no need to communicate with services on
the Internet, and where everything was "secure" on the internal network.

With Web APIs, customers and other consumers have direct access to the
company's data, and if these APIs are not sufficiently secured, this access can
also be misused by hackers to gain access to potentially sensitive data.

To increase the security of the solutions that are developed and avoid that the
time to be able to deliver is longer than necessary there is a need to work
better and closer together, and to get away from a "silo approach", where each
person does the work required, without considering other stakeholders.

The purpose of this thesis is to investigate what it will require to have Web
API security being an integral part of the SDLC, including having threat model
part of the pross, as well as the various kind of test, SAST and DAST, without
slowing down, the time to deliver.

Acronym Key and Glossary Terms

ABAC Attribute-based access control
ALTS Application Layer Transport Security
API Application Programming Interface
ASPM Application Security Posture Management
AST Application security testing
B2B Business-to-Business
BOLA Broken Object Level Authorization
CAPTCHA/ Completely Automated Public Turing-test to tell Computers
ReCAPTCHA and Humans Apart
CDN content delivery network
crAPI Completely ridiculous API
CSPM Cloud Security Posture Management
DAST Dynamic Application Security Testing
DevSecOps Development, Security & Operations
DOS Denial of Service

Damage potential, Reproducibility, Exploitability, Affected
DREAD . .

users, Discoverability
False . . .

. An event is reported despite the everything works

positive
IDE Integrated Development Environment
HSM Hardware Security Module
HSTS HTTP Strict Transport Security
HTTPS Hypertext Transfer Protocol Secure
JWT Jason Web Token
Log4] Java library
Log4Shell Software vulnerability in Apache Log4j
MFA Multifactor authentication (MFA)
OAuth 2.0 Open Authorization
OIDC OpenID Connect
OWASP Open Worldwide Application Security Project
0SS Open-source software
OTP One Time Password
PII Personally Identifiable Information
RBAC Role-Based Access Control
REST Representational State Transfer
SAST Static Application Security Testing
SBOM Software Bill of Materials
SDLC Software Development Life Cycle
SLR Systematic Literature Review
SOAP Simple Object Access Protocol

SSO

Single Sign On

SSRF Server-Side Request Forgery
Spoofing Tampering Repudiation, Information disclosure,
STRIDE)] . L
Denial of Service, Elevation of privileges
TLS Transport Layer Security
WAAP Web application and API protection
WAF Web application firewall

INTRODUCTION

1.1 MOTIVATION

Digital solutions are emerging faster than ever, and the demand to ensure their
availability and security is becoming even more critical due to their importance
to all parts of society. In fact, it is no longer enough to focus on the
products/solutions that are developed, but companies must be managed as if
it was a software company to remain relevant [1] [2].

Because of the rapid digital transformation and increased connectivity to the
Internet, individuals, enterprises of any size and authorities are significantly
more exposed to cyber-attacks [3].

There can be many explanations for why companies are compromised, but
according to a study conducted by Contract Security, it is not hackers or other
malicious actors who pose the biggest threat, rather is it vulnerabilities in the
software that is used, and thereby developed (in good faith) by software
developers. In fact, according to the study, nearly 50% =of all compromises
are due to vulnerabilities that were ultimately created by software developers
[4] [5].

Another study, by Akami, who provides content delivery network (CDN),
Security Solutions other cloud services showed that by October 2018, 83% of
all web traffic were based on Application Programming Interface (API) calls,
and this number is growing [6].

In essence, an API can be described as a mechanism that enables software
components to communicate with each other over a network, using a set of
definitions and protocols using a common language that they both understand,
without any user interaction and manages interactions between applications,
data and devices, and makes it possible to transfer data between systems [7].

They are an enabler for organizations to not only improve/mature existing
business offerings, but also to seek new business opportunities faster than
ever before, by enabling enterprises to expose services, provide access to
company data in a "modern" way and even create integration to other
companies. It also exposes business services or assets to developers, who are
building applications.

They are vital for businesses in any industry, and the importance of APIs should
not be seen only from a technical point of view, but as an organizational
strategy of how to do business.

For developers, they can consume APIs and use them to develop new apps,
without having to start from scratch [8].

Enterprises can use APIs to grow their company, like Netflix did when they
made their API publicly available, and developers started to create third-party
apps, which in the end, gave Netflix more customers [9].

However, as the usage of APIs are increasing, so are attacks against these,
perhaps even to become the most frequent attack vector, securing APIs from
the wide range of emerging and evolving threats is critical for business
success. [10].

Due to this, API security is becoming even more important, not just for security
professionals, but also for developers, architects, and business stakeholders,
given the proliferation and application of APIs in modern application and
integration architecture.

According to research by Google in 2022, 53% of organizations decided to delay
the rollout of a new service or application, due to concerns about API security.
77% of organizations who had a security incident, due to API security, had to
delay a rollout of new software [11].

If vulnerabilities to APIs (and other software components) were identified in
the early phase of the Software Development Lifecycle (SDLC), it could help to
avoid the delay of a rollout of a software release, but how can a mature SDLC
prevent a slow development process, and still being able to identify
vulnerabilities?

The research within this thesis aims to answer how adopting SDLC practices
within the software development process, throughout the API lifecycle, can
help developers and other stakeholders to develop secure APIs.

1.2 PROBLEM DEFINITION

As an API is becoming an even more critical component in the software
application architecture, ensuring the security of APIs is becoming even more
important [12].

However, despite significant investments in both technology and people to
increase security and to protect against cyber-attacks, even companies who
spend billions in are still breached by insecure APIs [13].

Traditional security controls are seemingly not applicable for API’, so what
must be done to improve the security of APIs throughout the entire SDLC? [14]
[15]~

The main problem to be answered is:

RQ: "How can API security be improved by following a Secure Software
Development Lifecycle (SDLC) approach?
This question will be further extended with the following:
RQ.1: “From a process point of view - without slowing down the development
process”?
RQ.2: “From a technical point of view - including enabling technology to
perform various security related activities - what to be aware of”?

This thesis will not only investigate various technology stacks, which can help
solve a specific purpose, but also focus on Threat Modeling to identify potential
threats during the design phase.

The research approach will be the Multivocal Literature Review (MLR). This is
a kind of a Systematic Literature Review (SLR) which includes material from
several sources, including, but not limited to: videos, blog posts, non-research
documents etc. The reason for choosing this method is that for the research
topic of this report, what is available as research material for reference is
rather limited [12].

1.3 SCOPE

The scope of this study is the research for improving security for APIs
throughout the SDLC process, and with a primary focus on the
architecture/design phase and application security testing.

This will include the creation of a Threat Model, and application security
testing.

Beside the focus on when application security testing technology will not be
enough to identify potential weaknesses, potential solutions for mitigations will
be investigated.

Both the development and operational phases will be discussed, but the scope
is not to develop an API, nor is it to establish an API gateway - even though,
some of the findings potentially could lead to future recommendation. Should
any such be identified, each of them will be discussed in theory.

Any technology, which are being used to generate results, must have coverage
for OWASP API TOP 10 [16]. Throughout the report, a vulnerable API:
Completely ridiculous API (CRAPI) will be used [17]. There will be no
considerations about the quality of the technology, which is being used, even
though there could be situations where Open-source software (0OSS) or
software which can be used without any financial cost, have limitations
compared to commercial software.

1.4 DATA COLLECTION

The process of gathering and analyzing relevant data for this study has mainly
been focused on published academic research papers and published books with
the focus of Secure Software development, API design, API-management, API-
Security, Threat Modeling, Application Security Testing, and papers about
“Secure by design, “Defense in Dept” and “Zero Trust”.

The sources from which the literature has been collected are primarily from
Aalborg University Library and searches via Google scholar, Books, articles,
and other non-research Iliterature has mainly been collected through
publishers, "trusted" sources such as, but not limited to: OWASP (Open Web
Application Security Project) and NIST (National Institute of Standards and
Technology). In addition to this, searching the Internet, using browsers such
as Microsoft Bing and Google Chrome for relevant content has also been done.

1.5 DATA ANALYSIS

Experimental studies have been done using crAPI (completely ridiculous API)
which is vulnerable by design, GitHub, a developer platform, used for storing
source code, executing build and security testing using products from Semgrep
and Snyk for static application security testing [18] [19] and for Dynamic
application security testing, Burp Suite community edition and Apisec Free API
Security assessment tool were used [20] [21].

1.6 API SECURITY LIFECYCLE

The objective of this thesis is to investigate how to design and test an API to
be secure throughout the entire SDLC. Originally the scope was about security
testing of APIs, as several vendors claim to have coverage for OWASP API top
10 risks, yet many breaches are caused by vulnerabilities in APIs.

However, after having done some research, applying both static and dynamic
application security testing on a few vulnerable APIs, it became clear that,

10

none of the tools being used, had full coverage, especially when testing for
authentication and authorization vulnerabilities, rather generating several
false positive.

Furthermore, without a ferrule understanding of the scope of the solution, the
huge amount of data returned from a security scan can be difficult to prioritize
as other mitigating controls may be implemented making the finding less
critical.

Based on this, the scope was changed to investigate how a set of
guidelines/recommendations wusing modern technology, could be wused
throughout the SDLC, to help creating secure WEB APIs.

FUNDAMENTALS

1.7 API FUNDAMENTALS

Several types of APIs exist, all of which provide the same core functionality,
which is to serve as an interface for communication between systems. It can
be thought of as a set of defined rules which enables software to communicate,
either locally on a device, or over a network using a common language that
they both understand [22]. Communication between an API provider and
consumer are defined in an API contract and requires non- human interaction
[7] [23]. APIs can work in multiple networks, however, the most widespread
type of API to be used within a network is a Web API, which can be utilized
using the HTTP/HTTPS protocol [24].

1.8 TYPE OF APIS

Web APIs plays a significant role in this even more connected society, and thus
the importance of proper design should not be underestimated. Regardless of
whether an API is to be consumed internally in an organization, or in the public
Internet, solid API design is a foundation for success or the opposite [25].
However, as several different types of APIs exist, each having a specific
purpose, it is important to understand them, the use cases to which they are
designed for, to make correct choices for any given solution and the risks
associated with them [26].

11

1.8.1 OPEN API

An open API, also known as a Public API, is open and available for anyone to
use. Organizations can assign developers, both internal to an organization and
externally, to have access to application data while prohibiting access to the
actual source code. The more accessible and well-documented an API is,
chances of its success increase significantly, both in relation to a business
perspective developer attention. However, there are security risks associated
with exposing a company's back-end systems directly on the Internet allowing
access to everyone through a firewall. Furthermore, it must be expected that
the number of API calls will increase significantly. One mitigation would be to
limit the number of requests users who aren’t paying for consuming the API,
using rate limiting, and require authentication - e.g., using JSON Web Token
(JWT), OAuth or an API key [7] [26] [27].

1.8.2 PARTNER API

A Partner API can be described as an interface which are used by organizations
to make data available for other companies/partners, as well as to gain access
to other companies' data and service offerings, allowing for creating unique
features, using a partner's resources business-to-business (B2B). A Partner
API should be restricted to specific users/companies, while limits for requests
may vary depending on the consumer. For any request, proper authorization,
and authorization, must be applied [7] [26] [27].

1.8.3INTERNAL API

Internal APIs are only available for usage within an organization, and its
functionality are designed for specific use-case e.g., process automation, data
transfer between systems or providing developer employees access to data;
Business-to-Employee (B2E). Depending on the data exposed, this may not
require any authentication [26] [28].

1.8.4 COMPOSITE API

A composite API combines/consolidates several APIs into a single interface,
which a unified view of from different data sources. This integration simplifies
data access and offers developers efficient coding practices, as they do not
have to write separate code for every individual API.

Access control to the various APIs included in a request depends on how it is
handled in the various APIs.

Use cases for a composite API can be B2E, Application-to-Application, B2B and
B2C [26] [28] [29].

12

1.9 API PROTOCOLS AND ARCHITECTURES

In essence, a protocol is a set of rules for formatting, processing, and
exchanging data between systems.

Several different API protocols exists, e.g., GraphQL, gRPC (“google Remote
Procedure Call”) SOAP (simple object access protocol) or REST
(Representational State Transfer), each of which includes standards and
processes that an API uses for communication and exchange of data. All with
strengths and weaknesses. Despite that an API can utilize multiple API
protocols, however, the impact of selecting an appropriate API architecture,
can impact the success and/or adoption of an API, and therefore, even though
this thesis will not focus on specific API protocols, but rather aim for providing
guidelines for securing any type of API despite their differences, a short
description of the once already mentioned, will be done [30] [31] [32] [33].

1.9.1 REST (REPRESENTATIONAL STATE TRANSFER)

Rather than being an actual protocol, REST is a set of architectural constraints
/ design style, used to create HTTP APIs, and which can be implemented in a
variety of ways. REST applications use HTTP methods like GET, POST, DELETE,
and PUT. Presented in 2000 in his dissertation, Thomas Roy Fielding specified
that, any API, which follows the six guiding principles: Uniform Interface,
Client-Server, Stateless, Cacheable, Layered System and Code on Demand or
constraints of the RESTful architecture is a REST API [34] [35].

1.9.2 GraphQL (GRAPH QUERY LANGUAGE)

GraphQL is a query language for APIs, developed by Facebook and made open-
sourced in 2015. Following the six constraints of REST APIs, GraphQL is to be
considered RESTful. furthermore, GraphQL also have the advantage of being
query-centric, as it is designed to work in an equivalent way similarly to a
query language such as, Structured Query Language (SQL). Using GraphQL,
data from multiple sources can be requested and returned in a single request
[36] [37].

1.9.3 GRPC (GOOGLE REMOTE PROCEDURE CALL)

Developed by Google in 2015, gRPC is based on remote procedure calls (RPC),
allowing a client application to call and execute a method on a remote server
as if it were a local object. This is especially beneficial when creating
distributed systems or working with a microservice architecture. gRPC uses the
HTTP/2 protocol for communication, which is a major revision of the original
HTTP protocol [38] [39].

13

1.9.4 SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

First introduced in 1998, SOAP was designed as a message specification for
exchanging information between systems and applications. Besides HTTP, SOAP
also supports the following transfer protocols: TCP, SMTP, FTP. Despite new
types of APIs - e.g. GraphQL, and the fact that SOAP is losing popularity, SOAP
is still being used in many industries, and will continue to be relevant going

forward [40] [41].

14

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

Ensuring quality and security within a software product has for several years
been a challenge for companies delivering the digital products as well as for
the developers writing the software. It continues to be. The same is true for
APIs. Traditionally, security has been an “after thought”, decoupled from the
development phase. Dedicated security teams would test a product for
vulnerabilities after the software has been developed, perhaps even without
understanding the architecture in detail [42].

This became true for the U.S government in the 1970's, when they realized
that basic penetration testing wouldn’t be sufficient to identify both quality
defects and/or security problems in the solutions. To this, several limitations
were discovered - including the (limited) knowledge that the teams who
performed the test had, but also, the limited time to perform various tests.
However, as one source of compromise is due to vulnerability within the
software being used, it is essential to integrate security throughout the product
development process. Trying to overcome the challenges, the U.S. government
concluded that to achieve secure and reliable solutions, the development
process should be managed in a more rigorous and systematic way [43].
Concepts such as, Defense in depth, Secure by Default etc. to mention a few,
gained traction for an increasing number of companies within the private
sector, such as, but not limited to Microsoft and RedHat, with the purpose of
building security into the design of their solutions [44] [45]. However, as many
standards and guidelines related to secure software development are created
with high-level and declarative content, it is a challenge for the developers to
implement security in the products. Furthermore, missing, or Ilimited
information-sharing across development and operations teams prevents
organizations getting the most value out of the resources in which they have
invested. This goes for both human resources, but also technology purchased
for securing the products [43] [46].

1.10 DEVSECOPS

Integrating security throughout the entire API Ilifecycle will require
collaboration between the stakeholders involved in the process.

DevSecOps (Development, Security & Operations), is a practice of having
security integrated into the entire software development lifecycle, with the aim
of being able to detect security and/or design issues in applications, as early
as possible [47].

It can be seen as an enhancement of DevOps which addresses the need for
continuously to integrate security across the SDLC, enabling teams to deliver
secure and robust solutions - without impacting the time to deliver [48] [49].

15

In the context for API security, following a DevSecOps approach, the intent is
to amalgamate all phases, starting from the plan/design > development > test
- deployment > operations - retirement into one unified approach. This is to
ensure that APIs are both designed and developed with security in mind, based
on the potential risks identified, e.g., data privacy concerns, but also to have
it deployed efficiently, and managed effectively throughout the entire lifecycle.

1.11 OWASP TOP 10 API SECURITY RISKS 2023

Created by OWASP (Open Worldwide Application Security Project), a nonprofit
foundation, the Top 10 API Security Risks 2023, has been developed with a
focus on strategies and solutions regarding API Security, and to help raise
awareness and solutions for a better understanding of how to mitigate the
unique vulnerabilities and security risks associated with APIs [16].

Establishing and enforcing coverage for the API Top 10 API Security Risks 2023
within the SDLC, indicates that security is not just a high-level guideline,
rather it shows commitment to follow and implement industry best practices
for secure development.

Despite numerous of documentation exists. about OWASP API top 10, each of
them, will be explained in high-level, as tests will be done for investigating
if/fhow tradiational application security testing (ASP) technology, will be able
to identify vulnerabilities within APIs.

16

1.11.1 API1:2023: BROKEN OBJECT LEVEL AUTHORIZATION

Description:

BOLA (Broken Object Level Authorization), is an authorization vulnerability,
allowing access to resources that should otherwise be restricted to
unauthorized individuals.

This can be due to insecure coding practices, including failing to properly
validate input or verifying permissions before granting access to an object.

Impact:
A successful BOLA attack could lead to some of the following:

Attack: Consequence:

Account takeover An individual gains full control of a legitimate
account and uses it for malicious purposes

Data disclosure to | Companies could get a fine for breaching of the

unauthorized responsibility to properly ensure the security of

individuals. personal data

Unauthorized access Account takeover, data manipulation, deleting of
data

Scenarios:

Without sufficient access controls, an API endpoint will not be able to validate
that users are only able to access resources belonging to them.

An example to this, is the following, which is a direct reference to a record in
a database -e.g.:

https://janswebite.org/users/1234

If it is possible for an individual to modify the number to something as:
https://janswebite.org/users/1235,

and access data belonging to someone else, the solution is vulnerable to BOLA,
as no validation was done prior to providing access.

Prevention:

Enforce proper authorization at every request. HTTP is a stateless protocol,
meaning that one request does not have any relation with other succeeding
requests.

Implement authorization mechanism to check if the logged-in identity has
access to perform the requested action on a record in every function that uses
an input from the client to access a record in the database.

Use random and unpredictable values as globally unique identifier (GUID) for
record IDs [16] [50] [51].

17

1.11.2 API2:2023: BROKEN AUTHENTICATION

Description:

The process of authenticating identities must be considered broken if, for
example, an API endpoint fails to use a modern and strong authentication
method, or if the control used is poorly designed and/or implemented
incorrectly. Regardless of the reason, compromising the ability to identify a
client will compromise the overall API security.

Impact:

The impact of broken authentication can be devastating if malicious users are
able to compromise a high-privilege account - e.g., a “"domain admin” account.
In addition to this, another consequence could be to have personal data leaked
or perform actions on behalf of the compromised user.

Attack: Consequence:

Weak passwords - e.g., "abc123”: Several attack techniques for
breaking the password such as a
“rainbow table” could be used to get
access to a system.

Weak cryptography- e.g., SHA1l or | Confidentiality is broken
MD5 hashing algorithms

Scenarios:

Passwords or secrets, being an API key, are stored improperly - e.g., outside
a Hardware Security Module (HSM). Rather it is stored in a version control
system and is by accident being committed to a public repository or sent to
members in the team by email.

Prevention:

Don’t use default passwords.

Ensure proper key management (both for storing and rotating keys)
Implement weak password checks.

Never trust, always verify (Zero trust principle)

Use Principle of Least Privilege

Whenever possible, multi-factor authentication must be implemented.
[16] [50] [51] [52] [53]

18

1.11.3 API3:2023: BROKEN OBJECT PROPERTY LEVEL
AUTHORIZATION

Description:

Exposing more data than required, or allowing unauthorized permissions to
objects, when allowing users access to an APIs, it is important to not only
verify if the authentication request is valid - verifying permissions for each
object is crucial. Compared to GraphQL, REST API often returns more data than
required.

Impact:

Unauthorized access to sensitive data, could result in both having data
disclosed, tampering of data / loss of integrity. Furthermore, it could result in
privileges escalation.

Attack: Consequence:

Mass Assignment: Allowing a user to escalate privileges or edit object
properties.

Scenarios:

Allowing a user to update the title of a e-book, which is blocked for reading:

PUT /api/books/Book-About-Api-Security

{
"description": "Great book to read"

1

Could be changed by a user, using the following:

PUT /api/books/Book-About-Api-Security

{

"description": "Great book to read"

"blocked"

1

Without proper validation for verifying whether, the user should have access
to the object, hence it is possible to allow/deny access for their own.

Prevention:

Validate permissions at the object level.

Define and return only the properties of an object required in a request.
Implement technology, which are capable of to detect “suspicious
behaviour”/patterns. [54] [55]

19

1.11.4 API4:2023: UNRESTRICTED RESOURCE CONSUMPTION

Description:

Without limitations for consuming resources, an API provider is in risk of
becoming either a victim for a Denial of Service (DoS) attack or to be in a
situation with an additional expenditure.

Impact:

The impact of Unrestricted Resources Consumption can be that end-users will
get a timeout, when consuming a solution, with the result, that another
provider will be selected. Another consequence could be the additional
processes being executed, which could lead to an increased operational cost.
Either in terms of CPU usage, or for storage, if no limitation is configured for
the size of files to be uploaded. Being unavailable prevents an API from serving
legitimate requests.

Attack: Consequence:

Botnet Business is unavailable.
Increased billing.

Scenarios:
Multiple concurrent requests from both legitimate and/or infected devices can
lead to performance degradation or even unavailability.

Prevention:

Rate limiting should be fine-tuned based on the business needs. E.g., only
allow a public facing-API to be invoked a certain number of times, within a
period.

Throttling could be implemented, defining the frequency of how often a single
API client/user can execute a given operation.

Enforce a maximum value of data on incoming parameters.

[16] [51] [56]

20

1.11.5 API5:2023: BROKEN FUNCTION LEVEL AUTHORIZATION

Description:

Broken Function Level Authorization allows an authorized user access to an
endpoint of function. This occurs when an API endpoint isn‘t configured with
the appropriate permissions. Complexity within the authentication scheme
could be one reason for this.

Impact:
Being able to exploit this, an attacker could get access to resources (including
administrative functions), belonging to someone else.

Attack: Consequence:

Account takeover An individual gains full control of a legitimate
account and uses it for malicious purposes

Data disclosure to | Companies could get a fine for breaching of the

unauthorized responsibility to properly ensure the security of

individuals. personal data

Unauthorized access Account takeover, data manipulation, deleting of
data

Scenarios:

Utilizing a non-administrative account to successfully conduct an action which
normally would requires administrative privileges, is evidence of a broken
function-level authorization.

Prevention:
Follow the principle of least privilege.

Have a clear separation between admin and non-administrative functions.

[16] [51] [57]

21

1.11.6 API6:2023: UNRESTRICTED ACCESS TO SENSITIVE BUSINESS
FLOWS

Description:

APIs vulnerable to this risk expose a business flow—such as buying a ticket to
a concert or sporting event—without considering how that functionality could
do harm if automated. This could be by design, and not necessarily a technical
issue.

Impact:
Buying tickets for a concert, either a person, or even an automated process
using a headless browser, can prevent others from buying tickets.

Attack: Consequence:

DOS Business unavailable due to overloading the API with
requests.

Excessive resources | Additional cost/expenses to the business

are required to keep up

with the requests

Scenarios:

A car rental app has a referral program where its users can invite friends and
acquaintances to join, and for each person who has joined the app, they get a
bonus. This bonus can later be used as cash to rent cars. A person with bad
intentions can exploit this flow by automating the registration process, where
each new user adds credit to the attacker, who then afterwards can then rent
cars without having to pay for it.

Prevention:

Implement a human detection solution, e.g., CAPTCHA or ReCAPTCHA
(Completely Automated Public Turing test to tell Computers and Humans
Apart).

Device fingerprinting: deny service such as headless browsers)

Identify and protect business flows which could harm the business, if being
misused.

[16] [58] [59] [60]

22

1.11.7 API7:2023: SERVER-SIDE REQUEST FORGERY

Description:

In a Server-Side Request Forgery (SSRF) attack, it is possible for an attacker
to abuse functionality on the server to get access to internal resources. Despite
the resources are not exposed through a firewall, but only available internally,
however a vulnerable webserver may have access to resources inside a firewall,
which allows an attacker to abuse the web application to read the internal
resources.

Impact:
SSRF can be used to bypass security controls and thereby gain unauthorized
access to internal resources within a company, including sensitive data.

Attack: Consequence:
Exploiting a vulnerable | By exploiting a vulnerable web server, it is possible
webserver for an attacker to make the server establish a

connection to an internal service, which could result
in a company leaking sensitive data

Scenarios:

the attacker might cause the server to make a connection to internal-only
services within the organization's infrastructure. In other cases, they may be
able to force the server to connect to arbitrary external systems, which
potentially could lead to sensitive data being exfiltrated.

Prevention:

Input validation: One of the most important steps in mitigating SSRF
vulnerabilities is to validate and sanitize user input.

[16] [56] [61]

23

1.11.8 API8:2023: SECURITY MISCONFIGURATION

Description:

Security flaws Configuration can be the result of several things, including
insecure configurations, missing or misconfigured HTTP headers, unpatched
systems, all of which can be exploited by an attacker.

Impact:

The impact of a misconfiguration can be many, but an example could be that
an attacker can cover for actions committed by modifying and/or deleting log
files stored in a directory without access control.

Attack: Consequence:

Use default credentials | An attacker could easily get access to a solution
Unpatched systems Can result in unauthorized access to sensitive data
Ransomware Exploit vulnerabilities to encrypt data

Scenarios:

All API requests, including tokens providing admin access, are being logged
and stored in a logfile, which is publicly available on the Internet. Anyone, who
can find the share, is able to read the information, and get access to the keys.

Prevention:

Using a baseline, implement and enforce a repeatable hardening process for
all systems.

Ensure to have an up to date, asset inventory - including every API endpoint.
Retire systems, which are no longer in use.

Always use encrypted communication - also for internal systems, or solutions,
which are sending non-sensitive data.

Never use default settings.

24

1.11.9 API9:2023: IMPROPER INVENTORY MANAGEMENT

Description:

Improper asset management is due to missing or no API documentation or
properly managing them. This can be developers, who do not document the
APIs they develop.

Impact:

Incorrect asset management is when there are multiple versions of the same
API, API1 and API2, but the original API1 is not shut down, despite API2 being
used. These older versions - often without maintenance and updates, tend to
use weaker security requirements and can be simple to exploit.

Attack: Consequence:

Brute-force A flow within one of Facebook’s API, allowed third-
party apps to access the private data of millions of
users without consent. Having visibility and control
of the API, this potentially could have been avoided.

Scenarios:

According to OWASP, one scenario is about a social media network who did
manage to implement rate-limiting to block brute force attacks, however, it
was implemented as a separate component rather than being integrated in the
code. In the case of a beta API host would host the same API, rate limiting
would be bypassed, hence a brute-force attack would be possible.

Prevention:

Implement an inventory of all APIs, endpoints, API hosts and versions.
Retire old/obsolete APIs.

All API versions must be under version control.

[62] [63]

25

1.11.10 API10:2023: UNSAFE CONSUMPTION OF APIS

Description:

Insecure consumption of APIs is when back-end implementations, which have
external integration, accepts user-controlled inputs from external party carried
over APIs without applying any proper validations.

Impact:
The impact can vary; however, successful exploitation could lead to sensitive
data being exposed to unauthorized users.

Attack: Consequence:

Integration Caused by Unsafe consumption of APIs in Log4j, the
Log4Shell vulnerability allowed users to execute
arbitrary code on numerous web services, using the
Apache Log4j logging library, potentially leading to
allowing an attacker with full control of the system.

Scenarios:
An API blindly trust input from other external APIs, which could lead to
vulnerabilities in the consuming application.

Prevention:

Only allow API communication over a secure channel (HTTPS).

Never trust, but always validate and sanitize input from integrated APIs. Do
avoid, to blindly follow redirects.

[16] [64]

26

1.12 API SECURITY BASELINE

The cost of solving a security vulnerability is far more expensive once a product
has been released, compared to, having security as an integral part [65].
Depending on the use case, being an API, which should be used for an
integration either internally in an organization or with an external company,
or made public available for external developers to consume, rather than
having to define requirement for each API, based on a risk assessment, a
baseline should be established, making it clear, what security controls are
required.

When defining the security baseline, it is important to distinguish between
risks associated with being an API provider and an API consumer.

Guidelines for securing APIs, throughout the entire life cycle of an API,
presented and published in the article: Security Guidelines for Providing and
Consuming APIs, aim to provide guidance for both scenarios: Ingress API
exposure (provider), and Egress access (consumer) [66].

27

1.13 EXPOSURE OF API (INGRESS)

An Inbound API connection can be accessible, both to internal and external
consumers, e.g., a developer, access to read or modify data stored in the
internal network.

1.13.1 DESIGN PHASE
The d

ID Control Description

1 Threat Modeling and Designing for security, having a threat modeling

Countermeasures

process integrated into the SDLC, when
developing an API, is crucial for being able to
assess the possible threats and vulnerabilities
as well as the likelihood that weaknesses that
are identified will be exploited.

A threat model can also help prioritize which
weaknesses need to be mitigated first.

A threat model must not be considered static,
rather be included in every sprint, or whenever
significant changes are made to the API.

Idendity
management

Never trust, always verify.

All requests, on all API endpoints, should require
the «client to authenticate and authorize
independent of the API endpoint or object being
accessed. Multifactor authentication (MFA)
should be enforced, when possible.

Preferably, the authorization service, is
decoupled from the API itself, but managed
independently.

Use of least privileged access should be
enforced.

When possible, the use of secure protocols such
as API keys, JWT, OpenID Connect (OIDC) and
OAuth2 should be used. Legacy authentication
such as Basic authentication, should be
prevented, and only used as an exception, for
legacy applications.

Secure
communication

Communication is secured by enforcing HTTPS
between an HTTP client and a Web API. self-

28

signed certificates must not be used in
production environments.

Data received, (including request parameters),
and sent by an API should be validated and
sanitized. Avoid operational dependencies
between systems by having input validation
decoupled from the application, but specified in
a format that can be reviewed, e.g., an OpenAPI
Specification. The API contract defines the
expectations for how the API should work,
including but not limited to input and output

Implement rate limiting and throttling policies
to prevent abuse due to excessive requests
against an API.

Preferably combined with a process for
onboarding and utilizing open-source
components, libraries should be checked for
vulnerabilities, licenses terms and operational
risks. The latest stable version of components
should always be used if possible. A Software
Bill of Materials (SBOM), including software
components used to build an API, should be
available.

Encryption keys and application secrets must be
stored in a secure location such as a vault or
Hardware Security Module (HSM). The
development phase should include a process for
Secret detection and remediation, to prevent
sensitive data such as secrets, passwords, and
keys from entering the code repository. Access
keys and other secrets should be rotated
periodically. Key and secret management,
should always be done taken the most care due
to the criticality in case of a compromise.

4 Input and output

validation

formats.

1.13.2 DEVELOPMENT PHASE
5 Implement rate

limeting.
6 Secure consuming of

379 party

components.
7 Storage of

Application Secrets
8 Token Strength

Strong algorithms for securing API keys or JWT
tokens are essential due to data privacy and
security, hence a "“state-of-the-art” encryption
algorithm should always be used.

29

9 Input Validation/ | Appropriate input validation and output
Output Encoding encoding should be done. For instance, only
accept input which strictly conform to an API

specification.

10 Error Handling API implementations should not expose issues

occurring in the system, including:
- service failure

- permission issues

Rather a generic error and default error code
could be returned:

100-199: Informational

200-299: Success

300-399: Redirection

400-499: Client error

500-599: Server error

[67]

11 Protection of Using a baseline configuration, the same
Testing/Staging security requirements enforced for production
Environments environments should be required for other

environments which processes data that could
pose a risk in the event of a data breach.

1.13.3 TESTING PHASE

12 Penetration Testing To identify vulnerabilities within an API, a
and Continuous Pentest, performed by an independent
Vulnerability individual, should be conducted, prior to
Scanning releasing for production.

Different types of tests exist - including:
White-box testing: Internal information, e.g.,
source-code and documentation is fully available
access to the tester.

Gray-box testing: Partial access to relevant
internal information for being able to do a test.
Black-box testing: No knowledge about the
target is known to the tester.

13 Code Review Prior to release, code review must be performed,

either manually, or automated by applying
Application Security Testing (AST) technology.

30

14 Application and Prior to code deployment and based on security
Secret scanning testing processes and requirements, using
appropriate automated application security
testing technology and secret detection should
be performed.
1.13.4 IMPLEMENTATION PHASE
15 Cryptography To safeguard data processed by an API,
consider:
Data in transit: TLS/HTTPS helps to prevent
network communication from being intercepted,
However, only strong cipher suites should be
used - never consider deprecated and insecure
cipher suites.
Confidentiality is about keeping data secret from
anyone other than those who have a legitimate
purpose for accessing it.
However, Data at Rest and Message integrity
should be considered as well.
Detection / | A process for detecting suspicious API activity
Monitoring and responding to this, should be implemented.
Designed, not only to protect Web applications
and APIs, is a Web Application and API
protection (WAAP).
16 Exposed Network | Deny by default. No network ports or services
Interfaces should be exposed otherwise required. Care
should be taken for APIs with admin privileges.
17 Session Termination Depending on the sensitivity of the data, a
timeout value should be configured to the
shortest time possible, as active sessions are a
target to an attacker [68].
18 System Updates For all components used in a solution, including
but not limited to infrastructure components,
open-source libraries etc. must be updated on a
regular basis. Teams responsible for individual
components should sign up to receive
notifications from the vendor, or similar, if/when
a vulnerability is identified, hence actions is
required.

31

1.13.5

LOGGING AND MONITORING PHASE

19

Application
Posture Mana

Security
gement

Due to complexity, it can be difficult to prioritize
security risks associated with APIs and the
associated infrastructure. Security Posture
Management (ASPM) and Cloud Security Posture
Management (CSPM), are 2 different solutions,
which aim to help secure applications and cloud
infrastructure [69].

20

Audit and logging

Any system must be capable of logging events
due to several reasons, including compliance,
legal, security and root-cause analysis. HTTP
access logs should be saved in a separate
location, and only as an exception should
sensitive data, e.g., API keys be stored. Should
this be required, the stoarge for these logfiles,
should be further protected, and only accessible
from a compliant device, and with the use of
either SSO or MFA.

1.14 CONSUMER OF AN API (EGRESS)

1.14.1

DESIGN PHASE

1

Threat Model

ing and

Countermeasures

While most security controls should be
implemented, by the API provider, having a
threat model created for outgoing traffic is just
as important, for being able to assess the
possible threats and vulnerabilities as well as
the likelihood that weaknesses that are
identified will be exploited. For instance, a
compromised account could be used to exfiltrate
data, and having this threat documented, also
could indicate which mitigations to take.

1.14.2

DEVELOPMENT PHASE

2

Storing
(Digital Safe)

Secrets

Encryption keys and secrets must be stored in a
secure location such as a vault or Hardware
Security Module (HSM). Access keys and other
secrets should be rotated periodically.

32

1.14.3 TESTING PHASE
3 Application Security | Prior to building the product, the source code
Scanning and Secrets | must be tested for vulnerabilities. Several
Scanning integrated development environments (IDE),
have this integrated, meaning fast feedback to
the developers. The scanning solution, must be
finetuned, to avoid to many false positive.
1.14.4 IMPLEMENTATION PHASE
4 TLS Valid Certificate Independent on the data being transferred,
encrypted communication must be enforced,
using HTTPS, with a strong cipher suite.
5 Session Termination The value for terminating inactive sessions must
be within the shortest time possible.
6 Destination IP and | External connection made by service accounts
Port Limitation should be restricted to specific URLs and
whitelisted in a firewall.
1.14.5 LOGGING AND MONITORING PHASE
7 Continuous To be able to react to alerts, it is important that
Monitoring security risks and vulnerabilities are
continuously evaluated.
8 Detection and | People, processes, and technology should be
Response available for ongoing detection and have the
capability to act accordingly.
9 Documentation Ensure documentation exist and is updated

throughout the life cycle of an API.

33

THREAT MODELING

Threat modeling is the process of analyzing a system to identify and evaluate
security issues and weaknesses in a system, so appropriate actions can be
taken to mitigate those, as early as possible in the SDLC.

As a process for designing for security, solutions which are developed with
security in mind from the beginning, are to be more secure, as the identified
attacks are considered, and the necessary security controls are included to
prevent them.

In the context of a Web API, a Threat model could help communicate what
product is being developed, the sensitivity of the data being processed,
potential integrations, who will consume the API, and how? Are users able to
provide input, which should be sanitized, before entering the system? Have the
required security headers been enabled? Has HTTPS been enforced on all API
endpoints using a strong cipher suite? What about rate limiting? Perhaps paid
customers should have more “bandwidth” than non-paying customers. Have
granular permissions been considered - e.g., Attribute-based access control
(ABAC) or Role-Based Access Control (RBAC)? [70] [71].

1.15 SCOPE FOR A THREAT MODEL

crAPI, a solution, which is vulnerable-by-design, is used for the purpose of
creating a threat model.

The architecture and description, which are used for the threat model, are all
from the GitHub page of crAPI [72].

The focus will be on ingress communication and identities.

1.16 THREAT MODELING METHODOLOGY

1.16.1 STRIDE

STRIDE, short for: (Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service, and Elevation of Privilege) is a methodology for categories
representing potential attack vectors, which can be exploited by threat actors.

Spoofing: Refers to an attack, where someone or something is impersonating

a legitimate user or process to gain access to resources, to which they elsehow
would be unauthorized.

34

Tampering: Is about unauthorized alterations of data or systems, such as
modifying data in transit, due to insecure communication protocol.

Repudiation: Denying claims/unproven actions that has taken place, e.g.,
removal of data.

Information Disclosure: Involves exposing potential sensitive information to
unauthorized parties, due to inadequate permissions.

Denial of Service: Service unavailability, preventing valid users to use the
services provided by a system.

Elevation of Privilege: Is when a person or process gains extended
permissions, allowing for actions to be done on resources, which elsehow would
be denied.

The following table maps each threat to the corresponding security property
[73] [74].

Threat Security property
Spoofing Authentication
Tampering Integrity
Repudiation Non-Repudiation
Information Disclosure Confidentiality
Denial Of Service Availability
Elevation Of Privileges Authorization

1.17 THREAT MODELING AN API USING STRIDE

Following the Four Question Framework by Adam Shostack [75]:

- What are we working on?

- What can go wrong?

- What are we going to do about it?
- Did we do a good job?

Each question will be used for creating a threat model for a Web API.

35

1.17.1 WHAT ARE WE WORKING ON?

As a starting point, creating a diagram of the solution being built is a great
way of presenting it to the relevant stakeholders.

The below diagram shows, at a high-level, the components included in the
solution, and part of the business logic. See Figure 1.A: Architecture of crAPI
for further information.

CrAP| Architecture

crAPlI Web Services
{1s)

Identity Service |, , Community Service | J Waorkshop Service
(Yava) (Go) (Python)

Mailhog

PostgreSQL
or
. MongoDB /

At this stage, potential things which can go wrong, such as: “How are the
compoennts protected from each other”? “Are they communicating in a secure
way”? Based on the system design, a threat model ,or models depending on
the details required, can be created.

Using a Data Flow Diagram, adding trust boundaries to the components in use,
visialize how the data flows through the solution, permant stoarge as well as
internal and external boundaries. Each are they represented with one of the
following icons:

External Entity Process data flow Data Store Bqur?:; [
B : W :

Figure 2.A: Icons used to create the threat model.

The threat model created for this can be found in the appendix.
See figure 3.A: crAPI threat model.

36

1.17.2 WHAT CAN GO WRONG?
Spoofing

Threat / “Victim”

Mitigation

User

Authenticity

Website

Authenticity

Target for crAPI

Description:

1. Authorized user

2. Employee
3. Web site

Valid credentials are leaked, e.g., via. phising
None or improper certificate implementation.

Countermeasures for Spoofing:
Authentication enforcement on every API endpoint and request.
Use secure and unique authentication tokens, e.g., JWT or OAuth 2.0.

Input validation
MFA

Rate Limiting and Throttling to avoid brute force

Enforce least privilege principles

HTTPS, with a strong cipher suite.

HSTS security header to only allows HTTPS traffic.

Logging and monitoring, e.g., network behavior anomaly detection.

Tampering
Threat / “Victim” Mitigation
Community Integrity
Mailhog Integrity
MongoDB Integrity
Website Integrity

Target for crAPI

Description:

1. Authorized user
of Community,
Mailhog
and MongoDB

2. Data stored on
Website.

Broken user authentication, allowing access to else
restricted data. E.g., One Time Password (OTP) for
reset of password.

37

Countermeasures for Tampering:
- Encrypt sensitive information.
- Applied Principle of Least Privilege.

- Input validation

Repudiation

Authentication enforcement.
Authorization enforcement.
Logging and monitoring.

Threat / “Victim”

Mitigation

Users

Non-repudiation

Target for crAPI

Description:

1. Users within
community

A user reveals the location of a car belonging to
someone claims not to have done so.

Countermeasures for Repudiation:
- Authentication enforcement.
- Logging and monitoring.

Information Disclosure

Threat / “Victim”

Mitigation

Community
Identity
Mailhog
MongoDB
PostgreSQL
Users
Workshop

Confidentiality

Target for crAPI

Description:

1. Any valid user

Any user within the system is at risk of having data
exposed. Furthermore, internal data are also at risk
of being leaked, hence the company owning the
solution could get a fine for improperly protecting
personal identifiable information (PII).

38

Countermeasures for Information Disclosure:

- Authentication enforcement on every API endpoint and request.
- Use secure and unique authentication tokens, e.g., JWT or OAuth 2.0.
- Secure coding

- Application security testing

- Encrypt sensitive information.

- Input validation

- MFA

- Enforce least privilege principles

- HTTPS, with a strong cipher suite.

- HSTS security header to only allows HTTPS traffic.

- Logging and monitoring.

Denial Of Service (DOS)

Threat / “Victim” Mitigation

Community Availability

Mailhog

Website

Target for crAPI Description:

1. Any valid user - This type of attack aims to overwhelm a system, e.g.,
including the a Web server or application by sending a large
owner(s) of the volume of requests, to consume server resources or
solution. drain the server’s capacity, making it unavailable.

NB: This does not have to be malicious, but could be
due to misconfiguration, or limited resources.

Countermeasures for Denial of Service (DOS):

- Logging and monitoring.

- Web Application Firewall (WAF), capable of detecting malicious traffic and
blocking it.

39

Elevation of Privileges

Threat / “Victim”

Mitigation

Identity
MongoDB
PostgreSQL
Website
Workshop

Authorisation

Target for crAPI

Description:

1. Any valid user -
with extended
permissions -
e.g., system
administrators
or. Domain
admins.

Elevation of Privilege is when a user or application
gains permissions that should not be available to them.
It could be due to the credentials of an administrator
has been leaked to the public.

Countermeasures for Elevation of Privileges
Authorization enforcement.

Enforce least privilege principles

Logging and monitoring.

MFA

Proper key and secret management.

40

1.17.3 WHAT ARE WE GOING TO DO ABOUT IT?

Based on the findings, it should be decided how to address and prioritize
between them. Several options are available, including mitigate each of them,
having the functionality removed, so it no longer poses a threat, make it the
responsibility of the developers to remove the bug in the code, or simply just
accept it [76].

As this is about securing Web APIs, and having it being part of the SDLC, the
focus will be on identity management and application security testing with
OWASP Top 10 API security risks.

SAST:
Using SAST, none of the tools used (used with default settings), were able to
identify all the top 10 Risks.

However, improper TLS and missing TLS were found, and resolved, so all
communication are encrypted.
See figure 4.A: SNYK SAST overall findings.

Furthermore, hardcoded credentials were only found in one of the solutions.
See figure 5.A: SNYK hardcoded password finding.

The number of false positive, is difficult to answer, due to limited knowledge
about the solution, and already implemented mitigations, however, a
comparison has been made, with no rule configured, were Snyk identified 55
vulnerabilities and Semgrep had 104 findings.

See figure 6.A: Compare Snyk and Semgrep for number of security findings.

DAST:

For automated API security testing, the free version of Apisec.ai was used. The
only thing which was to be done was uploading an OpenAPI specification for
the project, and tests for all Top 10 risks were conducted. See figure 7.A:
APISEC OWASP API Top 10 coverage.

For the Analysis Results, See figure 8.A: APIsec Spec Analysis Results.

1.17.4 DID WE DO A GOOD JOB?

A threat model has been created, so identifying risks in the solution, and
thereby being able to improve the security within it, and the APIs, should be
seen as a good start. One thing which would improve on the model, would be
to have conducted a risk analysis using the DREAD, (Damage potential,
Reproducibility, Exploitability, Affected users, Discoverability) methodology,
and then prioritize the findings based on the risk score.

41

API SECURITY TESTING TOOLS

Due to the uniqueness of a Web API compared to traditional Web solutions,
and the wide spread of Web APIs in particular, the importance of security
testing is not only important, but also further complicated. Therefore, various
solutions have been investigated, including static code analysis, as well as
dynamic code analysis.

1.17.5 STATIC APPLICATION SECURITY TESTING (SAST)

While static code analysis has full coverage of the source code, the tests are
executed, without running the solution, hence it did provide several false
positive. This indicates that, despite the value it did provide, a significant
amount of time is required to have it properly fine-tuned.

One advantage is the integration into the IDE, which provides fast feedback to
developers. The tests made in this thesis were conducted using the free version
of Snyk.IO and Semgrep.dev. While both claim to have coverage for OWASP
API top 10 risks, none of them were able to provide this. Nevertheless, both
technologies still have an important role in the SDLC, combined with other
technologies.

1.17.6 DYNAMIC APPLICATION SECURITY TESTING (DAST)

Unlike static code analysis, then Dynamic application security testing, are
executing test cases, on a running solution. Thereby there are very few false
positive, however, as there is no access to source code, it cannot be assured
that, all possible ways data travers the solution is being tested. The tests made
in this thesis were conducted using the free version Apisec.ai and Burp Suite
community edition. However, due to the manual work and limited functionality
included in this version, Burp Suite was rather quickly considered out of scope.

42

DISCUSSION AND CONCLUSION

1.18 DISCUSSION

People, process and technology, in that order.

Answering the research question, “How can API security be improved by following a
Secure Software Development Lifecycle (SDLC) approach”, the answer would be exactly that.
No technology can be used out-of-the-box and resolve all the security issues in an API.

Proper and useful documentation and guidance for the teams who design, develop, implement
and operate APIs, should be available, for them to consume. High-level documents, being
guidelines or standards, stating that APIs should be developed or operated securely, do not
provide value. It might if the solutions were less complex.

The technology available for API security, in general, is in the early stages,
while maturing. However, as security issues often are created during the
development phase, it is critical to be capable of identifying them, prior to
release. Including business logic flaws.

Without an architectural overview of the APIs in scope, how data exposed
through an API travers through systems, integrations between systems and
their dependencies, chances are that not every component is included when
performing a threat model and/or risk assessment.

Following the “Shift Left” approach [77], security testing is conducted early
and throughout the development phase. Having security issues detected, and
other design flaws identified earlier, the cost of having them resolved is
significantly cheaper. Additional benefits with this approach could be improved
and optimized processes in the software development process.

1.19 CONCLUSION

Close collaboration between stakeholders is required if the API security is to
be improved significantly. Rather than considering an API as a software
solution, it should be seen as a product which requires to be designed with
security in mind, but also operated with care. APIs are critical for business
success and should be managed accordingly.

Part of the reason why an API is vulnerable could be due to the many different
types which exist, each with strengths and weaknesses. When to use what?
Going forward, research of different threat modeling methodologies of Web
APIs could be interesting.

43

Works Cited

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10

[11

[12

[13

J. P. Carvalho, "every-business-software-business," quidgest.com,
[Online]. Available: https://quidgest.com/en/articles/every-business-
software-business/.

C. U. Orji, "CLOUD API SECURITY AUDIT - An Extensive Approach to API
Assessment -," Aalborg University Electronics and IT, 2021.

C. Teglers, "cybersikkerhed-saadan-ser-trusselsbilledet-ud,"”
kromannreumert.com, 28 juni 2023. [Online]. Available:
https://kromannreumert.com/viden/artikler/cybersikkerhed-saadan-ser-
trusselsbilledet-ud.

H. G. S. C. Michael Howard, Designing and Developing Secure Azure
Solutions, Microsoft Press, 2022.

P. Spencer, "assessing-appsec-implications,"'
May 2020. [Online]. Available:
https://www.contrastsecurity.com/security-influencers/assessing-
appsec-implications.

contrastsecurity.com, 20

A. Press, "state-of-the-internet-security-retail-attacks-and-api-traffic,"
akamai.com, 2 2019. [Online]. Available:
https://www.akamai.com/newsroom/press-release/state-of-the-internet-
security-retail-attacks-and-api-traffic.

B. De, "API Management," in An Architect’s Guide to Developing and
Managing APIs for Your Organization, Apress Media, 2017.

G. team, "maps," Google, 2023. [Online]. Available:
https://developers.google.com/maps.

R. Lawler, "netflix-api-shutdown," techcrunch.com, 13 6 2014. [Online].
Available: https://techcrunch.com/2014/06/13/netflix-api-shutdown/.
M. Campbell, "api-security-predictions-2022-the-good-the-bad-and-the-
scary," nonamesecurity.com, 30 12 2021. [Online]. Available:
https://nonamesecurity.com/blog/api-security-predictions-2022-the-
good-the-bad-and-the-scary/.

G. Cloud, "API Security: Latest Insights & Key Trends," Google Cloud,
2022.

D. Barahona, "business-logic-vulnerabilities," apisec, 10 04 2022.
[Online]. Available: https://www.apisec.ai/blog/business-logic-
vulnerabilities.

K. Wagner, "facebook says it has spent 13 billion on safety security,"
bloomberg.com, 21 9 2021. [Online]. Available:

44

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

https://www.bloomberg.com/news/articles/2021-09-21/facebook-says-it-
has-spent-13-billion-on-safety-security#xj4y7vzkg.

Alexandra, "what-is-sdlc," stackify.com, 10 3 2023. [Online]. Available:
https://stackify.com/what-is-sdlc/.

reblaze, "api-security-vs-traditional-web-security," reblaze.com,
[Online]. Available: https://www.reblaze.com/wiki/api-security/api-
security-vs-traditional-web-security/.

owasp.org, "Ox10-api-security-risks/," owasp.org, 2023. [Online].
Available: https://owasp.org/API-Security/editions/2023/en/0x11-t10/.

m. jose, "crAPI," github.com, 2023. [Online]. Available:
https://github.com/OWASP/crAPI.

S. team, "semgrep-code," semgrep, [Online]. Available:
https://semgrep.dev/products/semgrep-code/.

S. team, "snyk-code," snyk.io, [Online]. Available:
https://snyk.io/product/snyk-code/.

p. team, "communitydownload," portswigger.net, [Online]. Available:
https://portswigger.net/burp/communitydownload.

A. team, "product#scan," apisec.ai, [Online]. Available:
https://www.apisec.ai/product#scan.

G. B. D. W. Daniel Jacobson, APIs: A Strategy Guide, O'Reilly Media,
Inc., 2011.

c. team, "what-is-an-api-contract," criteria.sh, 23 5 2023. [Online].
Available: https://criteria.sh/blog/what-is-an-api-contract.

t. team, "what-is-web-api," tutorialsteacher.com, [Online]. Available:
https://www.tutorialsteacher.com/webapi/what-is-web-api.

A. Lauret, The Design of Web APIs, New York: Manning Publications,
2019.

k. team, "different-api-types-and-use-cases," konghg.com, [Online].
Available: https://konghg.com/learning-center/api-
management/different-api-types-and-use-cases.

M. F. R. H. O. M. M. R. E. S. Marius Aharonovich, "Security Guidelines
for Providing and Consuming APIs," Israeli chapter of the Cloud Security
Alliance (CSA), 2021.

J. Juviler, "types-of-apis," blog.hubspot.com/, 16 1 2023. [Online].
Available: https://blog.hubspot.com/website/types-of-apis.

J. Simpson, "nordicapis.com," nordicapis, 15 3 2022. [Online]. Available:
https://nordicapis.com/6-types-of-apis-open-public-partner-private-
composite-unified/.

45

[30
]

[31
]
[32
]
[33
]
[34
]
[35
]
[36
]

[37
]
[38
]
[39
]
[40
]
[41
]
[42
]
[43
]
[44
]
[45
]

[46

G. team, "https://www.howtographqgl.com/advanced/1-server/,"
howtographqgl, [Online]. Available:
https://www.howtographqgl.com/advanced/1l-server/.

T. P. Team, "rest-api-examples," postman, 18 6 2023. [Online].
Available: https://blog.postman.com/rest-api-examples/.

s. Team, "SOAP vs REST 101: Understand The Differences," soapui,
[Online]. Available: https://www.soapui.org/learn/api/soap-vs-rest-api/.
g. team, "about," gRPC, [Online]. Available: https://grpc.io/about/.

R. T. Fielding, "Architectural Styles and the Design of Network-based
Software Architectures," p. 180, 2000.

r. team, "restfulapi.net," restfulapi.net, [Online]. Available:
https://restfulapi.net/.

g. team, "rest-api-architectural-constraints," geeksforgeeks.org, 1 6
2023. [Online]. Available: https://www.geeksforgeeks.org/rest-api-
architectural-constraints/.

C. Ball, Hacking APIs : breaking web application programming interfaces,
San Francisco: no Starch Press, 2022.

I. Grigorik, "performance-http2," web.dev, [Online]. Available:
https://web.dev/articles/performance-http2.

L. Ryan, "principles," grpc, 8 9 2015. [Online]. Available:
https://grpc.io/blog/principles/.

B. Woodring, "soap-api-for-saas," prismatic.io, 15 3 2023. [Online].
Available: https://prismatic.io/blog/soap-api-for-saas/.

H. Bell, "what-is-a-soap-api," nonamesecurity.com, 8 6 2023. [Online].
Available: https://nonamesecurity.com/learn/what-is-a-soap-api/.

A. team, "what-is/sdlc/," amazon.com, [Online]. Available:
https://aws.amazon.com/what-is/sdlc/.

S. Kang and S. Kim, "CIA-level driven secure SDLC framework for
integrating security," 2021.

M. team, "sdl," Microsoft, [Online]. Available:
https://www.microsoft.com/en-us/securityengineering/sdl.

J. Kelly and D. Sastre, "security-design-security-principles-and-threat-
modeling," redhat, 23 2 2023. [Online]. Available:
https://www.redhat.com/en/blog/security-design-security-principles-
and-threat-modeling.

M. MAZYAR, "devops-the-ultimate-way-to-break-down-silos,"
devops.com/, 18 12 2018. [Online]. Available:
https://devops.com/devops-the-ultimate-way-to-break-down-silos/.

46

[47 O. team, "www-project-devsecops-guideline/latest," owasp, [Online].
] Available: https://owasp.org/www-project-devsecops-guideline/latest/.

[48 S. Dunn, "From-devoops-to-devsecops," SANS, 23 2 2023. [Online].
] Available: https://www.sans.org/blog/from-devoops-to-devsecops/.

[49 S. team, "what-is-devsecops," synopsys, [Online]. Available:

] https://www.synopsys.com/glossary/what-is-devsecops.html.

[50 C. Ball, "owasp-api-security-top-10-and-

] beyond/categories/2152491879/posts/2166897970," university.apisec.ai,
[Online]. Available: https://university.apisec.ai/products/owasp-api-
security-top-10-and-beyond/categories/2152491879/posts/2166897970.

[51 L. Tal, "owasp-top-10-vulnerabilities/api-security-top-10/," snyk.io,

] [Online]. Available: https://snyk.io/learn/owasp-top-10-
vulnerabilities/api-security-top-10/.

[52 b. team, "rainbow-table-attack," beyondidentity, [Online]. Available:

] https://www.beyondidentity.com/glossary/rainbow-table-attack.

[53 D. simp, I. S. Jackson, i. and X. , "understand-default-user-accounts,"

] microsoft, 19 5 2023. [Online]. Available:
https://learn.microsoft.com/en-us/windows-server/identity/ad-
ds/manage/understand-default-user-accounts.

[54 S. Uniyal, "api-security-series-part-3-hands-on-guide-to-reducing-

] excessive-data-exposure-253826363204," medium.com, 19 2 2021.
[Online]. Available: https://shailanchal.medium.com/api-security-series-
part-3-hands-on-guide-to-reducing-excessive-data-exposure-
253826363204.

[55 O. team, "Mass_Assignment_Cheat_Sheet.html," owasp, [Online].

] Available:
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat
_Sheet.html.

[56 "owasp-api-security-top-10-and-beyond," .apisecuniversity.com,

] [Online]. Available: https://www.apisecuniversity.com/courses/owasp-
api-security-top-10-and-beyond.

[57 D. K. Paxton-Fear, "owasp-api/broken-function-level-authorization,"

] traceable.ai, [Online]. Available: https://www.traceable.ai/owasp-
api/broken-function-level-authorization.

[58 A. Kiskyte, "what-is-headless-browser," oxylabs.io, 21 11 2023.
] [Online]. Available: https://oxylabs.io/blog/what-is-headless-browser.

[59 i. team, "what-is-a-device-fingerprint-and-what-is-it-used-for," incognia,
] [Online]. Available: https://www.incognia.com/the-authentication-
reference/what-is-a-device-fingerprint-and-what-is-it-used-for.

47

[60 d. team, "aptcha-vs-recaptcha-whats-the-difference," datadome,
] [Online]. Available: https://datadome.co/bot-management-
protection/captcha-vs-recaptcha-whats-the-difference/.

[61 p. team, "ssrf," portswigger.net, [Online]. Available:

] https://portswigger.net/web-security/ssrf.

[62 P. Dughi, "/owasp-top-10-api-improper-inventory-managemen,”

] barracuda.com, 8 8 2023. [Online]. Available:
https://blog.barracuda.com/2023/08/08/owasp-top-10-api-improper-
inventory-management.

[63 O. team, "Oxa9-improper-inventory-management,”" OWASP, [Online].

] Available: https://owasp.org/API-Security/editions/2023/en/0xa9-
improper-inventory-management/.

[64 F. Wortley, F. Allison and C. Thompson, "log4j-zero-day," lunasec.io, 9

] 12 2021. [Online]. Available: https://www.lunasec.io/docs/blog/log4j-
zero-day/.

[65 K. J. Higgins, "the-cost-of-fixing-an-application-vulnerability,"

] darkreading.com, 11 5 2009. [Online]. Available:
https://www.darkreading.com/cyber-risk/the-cost-of-fixing-an-
application-vulnerability.

[66 O. Avenstein and S. G. Maor, "Security Guidelines for Providing and

] Consuming API," Cloud Security Alliance, 2021.

[67 J. Albano, "rest-api-error-handling-best-practices," baeldung.com, 8 1
] 2024. [Online]. Available: https://www.baeldung.com/rest-api-error-
handling-best-practices.

[68 T. OWASP, "Session_Timeout," owasp, [Online]. Available:
] https://owasp.org/www-community/Session_Timeout.

[69]. Peterson, "aspm-vs-cspm-key-differences," cycode.com, [Online].

] Available: https://cycode.com/blog/aspm-vs-cspm-key-differences/.

[70 O. team, "what-is-role-based-access-control-rbac/," okta.com, 15 9

] 2023. [Online]. Available: https://www.okta.com/identity-101/what-is-
role-based-access-control-rbac/.

[71 K. Casey, "attribute-based-access-control-abac," okta.com, 29 9 2020.
] [Online]. Available: https://www.okta.com/blog/2020/09/attribute-
based-access-control-abac/.

[72 O. C. team, "crAPI_architecture.md#architecture-of-crapi-1," OWASP,

] [Online]. Available:
https://github.com/OWASP/crAPI/blob/main/docs/crAPI_architecture.md
#architecture-of-crapi-1.

[73 "uncover-security-design-flaws-using-the-stride-approach,”

] microsoft.com, 10 7 2019. [Online]. Available:

48

[74

[75

[76

[77

[78

[79

[80

[81

[82

[83

[84

https://learn.microsoft.com/en-us/archive/msdn-
magazine/2006/november/uncover-security-design-flaws-using-the-
stride-approach.

0. T. (TM), "Threat_Modeling_Process," owasp, [Online]. Available:
https://owasp.org/www-community/Threat_Modeling_Process.

A. Shostack, "threat-modeling," shostack.org, [Online]. Available:
https://shostack.org/resources/threat-modeling.

A. shostack, "/threat-modeling#4steps," shostack.org, [Online].
Available: https://shostack.org/resources/threat-modeling#4steps.

f. team, "shift-left-security," fortinet.com, [Online]. Available:
https://www.fortinet.com/fr/resources/cyberglossary/shift-left-security.

S. team, "introducing-threatcanvas-an-ai-powered-tool-to-automate-
threat-modeling/," secureflag, 6 11 2023. [Online]. Available:
https://blog.secureflag.com/2023/11/06.

s. team, "secureflag team," secureflag, [Online]. Available:
https://www.secureflag.com.

G. LLC, "2022 Research Report," 2022. [Online]. Available:
https://services.google.com/fh/files/misc/google_cloud_api_security_res
earch_report.pdf.

N. Kirtley, "threat-modeling.com," 24 7 2022. [Online]. Available:
https://threat-modeling.com/pasta-threat-modeling/.
"https://www.sciencedirect.com/science/article/abs/pii/S0950584918301
939," [Online].

H. Bell, "api-security-best-practices," nonamesecurity, 18 6 2023.
[Online]. Available: https://nonamesecurity.com/learn/api-security-best-
practices.

B. Bhattacharya, "api-management-101-rate-limiting," Tyk.io, 3 1 2024.
[Online]. Available: https://tyk.io/blog/api-management-101-rate-
limiting/.

49

APPENDIX A

APPENDIX

Web
o This is implemented in JS
o This forms the web page of the car servicing business
© One signs in here on the web page and accesses the crAPI services
o It carries the request to the respective endpoints and brings back the response
o Runs on OpenResty which has an enhanced version of the Nginx core
Identity
o This is implemented in Java
o It is to manage the user account creation and authorization
o Create the vehicle and its details with the location
o JWT and OTP management is handled by this service
Mailhog
o Itis an email testing tool used to simulate the email on user account creation
o This works with the Identity Service
Workshop
o This is implemented in Python

o Itis to create the workshop (car servicing center) and order management

o The mechanic (servicing staff) and merchants are created here
Community
o This is implemented in Go
o It is for the social space that is to blog and engage the readers with comments
Database
o PostgreSQL or MongoDB
= We have a choice to choose the database be it SQL or NoSQL

= So one can explore to identify the vulnerabilities with SQL and NoSQL databases

Figure 1.A: Architecture of crAPI.

External Entity [Process] data flow Data Store BDHI#ISEIIW

‘ —— 0000000000 .

Figure 2.A: Icons used to create the threat model.

50

Internal

External -

115|126 | T11 T21|726| T11

Community Data

Workshop Data

EIEER EOEE

identi
web identity community
EIE3ED EIEE e
| c1a|c2e 35|

workshop
oo cos] mailhog
cue oo)

Repudiation @

Elevation of Privilege @
Denial of Service @
Tampering @

I3} SQL Injection @
Information Disclosure @
Spoofing @

B2 encrypt Sensitive Information @
Applied Principle of Least Privilege @
Input Validation @

BT Authorization Enforcement @

B Authentication Enforcement @

[E8 Logging and Monitoring @

Figure 3.A: crAPI threat model. The threat model has been created, based on
the crAPI architecture drawing, by Jan Andersen, author of the thesis, using
SecureFlag [78] [79].

51

v LANGUAGES

[1 Java 25

[Go 20

] Pythan 8

] JavaScript 2
v VULNERABILITY TYPES

] Use of Password Hash... 14

[13

[] Spring Cross-Site Requ._..
] Improper Certificate Vali... 8
[] Improper Neutralization ... 7
[] Use of Hardcoded Crede... 5
[] Server-Side Request For... 2
[[] Cross-Site Request Forg.. 2
] SOL Injection 1

|_| Clear Text Logging

|| Hardcoded Secret 1

[Insecure JWT Verificatio.. 1

Figure 4.A: SNYK SAST overall findings. Source: snyk.io

Do not hardcode pass in code. Found hardcoded passw

DE SECURITY

{ crapienv } fro

edential...

Figure 5.A: SNYK hardcoded password finding. Source: snyk.io

52

Projects

Dashboard 104 Matching Findings
; | |
- CODE SECURITY & Projects
found 55 vulnerab package-dependencies-check
Fedat s Code hrjanandersen/vapi § :
= with va versions may le
Secrets bet2 hrjanandersen/WebGoat. NET Eversion.ory ge-lock json fi
Supply Chain Fixed 22 D dmo se
~ CONFIGUR.F(T}OI;I iSSUE;: :
Rules Category se
T dmo Serv
servic
Severity m
. Sl jsan:14
it QL!ALITV ® High Medium Low e
Snyk found 1 W Show 18 more findings
Confidence
High Medium Low request-host-used
and $host vari
Action an explicitly

Monitor ~ Comment Bloek bfnginx.conf.

Figure 6.A: Compare Snyk and Semgrep for number of security findings.
Source: snyk.io and semgrep.dev

53

Basic Info Parameters OWASP API Test Coverage

Tests
+ OWASP API1:2023 - Broken Object Level Authorization 133
+ OWASP API2:2023 - Broken Authentication 90
4+ OWASP API3:2023 - Broken Object Property Level 68
Authorization
4+ OWASP API4:2023 - Unrestricted Resource Consumption 5
+ OWASP API5:2023 - Broken Function Level Authorization 44
+ OWASP API6:2023 - Unrestricted Access to Sensitive
Business Flows LT it
+ OWASP API7:2023 - Server Side Request Forgery 70
+ OWASP API8:2023 - Security Misconfiguration 116
4+ OWASP API9:2023 - Improper Inventory Management 1
4+ OWASP API10:2023 - Unsafe Consumption of APIs 14

= Others

- Server Properties Leak in Headers

Figure 7.A: APISEC OWASP API Top 10 coverage. Source:
https://www.apisec.ai/product#scan

APlsec Spec Analysis Results
APl Name:OWASP crAPI APl mmTo

= 44 <> 542 P Run Tests

Endpeints Tests Generated

Figure 8.A: APIsec Spec Analysis Results. Source:
https://www.apisec.ai/product#scan

55

