

Class i f ied as Bus in ess

Title:
Secure API Development Life Cycle

Theme:
Master Thesis

Project Period:
Winter Semester 2024

Guidance counselor
Marios Anagnostopoulos
mariosa@es.aau.dk

Student:
Jan Andersen
jande19@student.aau.dk

Copies: 1

Number of pages: 55

Date of Completion:
January 15, 2024

Institut for Datalogi,

Aalborg University
Elma Lagerlöfs Vej 300,
9220 Aalborg Øst
http://www.aau.dk

2

INTRODUCTION . 7

1.1 MO T I V A T I O N . 7
1.2 PR O BL E M D E F I N I T I O N . 8
1.3 SCOPE . 9
1.4 DA T A C O L L E C T I O N . 10
1.5 DA T A A N A L Y S I S . 10
1.6 API S E C U RI T Y L I F E C Y C LE . 10

FUNDAMENT ALS . 11

1.7 API F U N D A M E N T A L S . 11
1.8 TY P E OF APIS . 11

1.8.1 Open API . 12
1.8.2 Partner API . 12
1.8.3 Inte rnal API . 12
1.8.4 Comp os ite AP I . 12

1.9 API P R OT O C O L S A N D A R C H I T E C T U R E S . 13
1.9.1 RES T (representat ional s tate t ra ns fe r) . 13
1.9.2 GraphQL (Grap h Que ry Language) . 13
1.9.3 gRP C (goog le rem ote procedu re cal l) . 13
1.9.4 SOAP (S imple o bject acc ess p rotoco l) . 14

SOFTWARE DEVE LOPME NT LI FE CYCLE (SDLC) . 15

1.10 DE VSE C OP S . 15
1.11 OWASP T OP 10 API S E C U RI T Y R I S K S 20 23 . 16

1.11.1 API1:202 3: Broken Obje ct Leve l Autho r iza t ion . 17
1.11.2 API2:202 3: Broken Authenticat ion . 18
1.11.3 API3:202 3: Broken Obje ct P ropert y Leve l Author izat ion . 19
1.11.4 API4:202 3: Unrestr ic te d Re sou rce Con su mption . 20
1.11.5 API5:202 3: Broken Funct ion Le ve l Autho ri zat ion . 21
1.11.6 API6:202 3: Unrestr ic te d Acce ss to Sens it i ve Bus iness Flo ws . 22
1.11.7 API7:202 3: Serve r -S ide Request Forgery . 23
1.11.8 API8:202 3: Secu ri ty Misconf igu rat ion . 24
1.11.9 API9:202 3: Imp ro pe r In ventory Management . 25
1.11.10 API10 :20 23: Unsafe Consump tion of APIs . 26

1.12 API SE C U R I T Y BA S E L I N E . 27
1.13 E X P O S U R E O F API (IN G R E S S) . 28

1.13.1 De sign pha se . 28
1.13.2 Deve lopment phase . 29
1.13.3 Test ing ph ase . 30
1.13.4 Imple menta t ion pha se . 31
1.13.5 Logging and Mon itor ing phase . 32

1.14 CO N S U M E R O F A N AP I (EG R E S S) . 32
1.14.1 De sign Pha se . 32

3

1.14.2 Deve lopment phase . 32
1.14.3 Test ing ph ase . 33
1.14.4 Imple menta t ion Pha se . 33
1.14.5 Logging and mon ito r in g phase . 33

THREAT MO DE LING . 34

1.15 SCOPE F O R A T H R E A T M O D E L . 34
1.16 TH RE A T MO D E L I N G M E T H OD OL O G Y . 34

1.16.1 Str ide . 34
1.17 THREAT MODE LIN G AN API U S I N G S T R I D E . 35

1.17.1 What are we wo rk ing on ? . 36
1.17.2 What ca n go wron g ? . 37
1.17.3 What are we go ing t o d o about it ? . 41
1.17.4 Did we do a good job ? . 41

API SECURI TY TE STING TOOLS . 42

1.17.5 Stat ic Appl ica t ion Secu ri ty Test ing (SAST) . 42
1.17.6 Dyn amic Appl ic at ion sec ur i ty test ing (D AS T) . 42

DI SCUSSI ON AN D CONCLUSION . 43

1.18 D I S C U S S I O N . 43
1.19 CO N C L U S I ON . 43

WOR KS C ITE D . 44

APPEN DIX A . 50

4

Abstract

Due to the increased use of APIs, and especially web APIs, and the importance
of these to all parts of society, there is a need for a shi ft from security in
digital solut ions being something , which is incorporated after a product, so
that it becomes an integral part of the entire software development l ife cycle.

However ,since the complexity of software increases signif icant ly, including
with the use of many 3rd party l ibraries, integrations, both between internal
systems in companies, but also when doing business (B2B), it is necessary that
more and better control comes with the software development process.

Some believe that the solution is to buy technological solutions that can scan
for a ll kinds of vulnerabi l i t ies and, with a few clicks, get them fixed.
Unfortunately, it is not that easy. This despite, vendors of the products, claim
that this is the case.

Very few people are aware of which components are included in the solutions
that they themselves help to develop. This is critical, because without
knowledge of this, how wil l the responsible people be able to mit igate the risks
that are in the products?

Furthermore, companies can no longer rely on the traditional perimeter
security, that is, where there was no need to communicate with services on
the Internet, and where everything was "secure" on the internal network.

With Web APIs, customers and other consumers have direct access to the
company's data, and if these APIs are not sufficiently secured, this access can
also be misused by hackers to gain access to potentially sensitive data.

To increase the security of the solutions that are developed and avoid that the
time to be able to del iver is longer than necessary there is a need to work
better and closer together, and to get away from a "si lo approach", where each
person does the work required, without considering other stakeholders.

The purpose of this thesis is to investigate what it wi l l require to have Web
API security being an integral part of the SDLC, including having threat model
part of the pross, as well as the various kind of test, SAST and DAST, without
slowing down, the t ime to del iver.

5

Acronym Key and Glossary Terms

ABAC Attribute-based access control
ALTS Application Layer Transport Security

API Application Programming Interface

ASPM Application Security Posture Management
AST Application security testing

B2B Business-to-Business

BOLA Broken Object Level Authorization

CAPTCHA/
ReCAPTCHA

Completely Automated Public Turing-test to tel l Computers
and Humans Apart

CDN content delivery network
crAPI Completely ridiculous API

CSPM Cloud Security Posture Management

DAST Dynamic Application Security Testing

DevSecOps Development, Security & Operations
DOS Denial of Service

DREAD
Damage potential, Reproducibil ity, Exploitabil ity, Affected
users, Discoverabi l ity

False
posit ive

An event is reported despite the everything works

IDE Integrated Development Environment

HSM Hardware Security Module

HSTS HTTP Strict Transport Security

HTTPS Hypertext Transfer Protocol Secure
JWT Jason Web Token

Log4J Java l ibrary

Log4Shell Software vulnerabil ity in Apache Log4j
MFA Mult i factor authentication (MFA)

OAuth 2.0 Open Authorization

OIDC OpenID Connect
OWASP Open Worldwide Application Security Project

OSS Open-source software

OTP One Time Password

PII Personally Identif iable Information
RBAC Role-Based Access Control

REST Representational State Transfer

SAST Static Application Security Testing
SBOM Software Bil l of Materials

SDLC Software Development Life Cycle

SLR Systematic Li terature Review

SOAP Simple Object Access Protocol

6

SSO Single Sign On
SSRF Server-Side Request Forgery

STRIDE
Spoofing Tampering Repudiation, Information disclosure,
Denial of Service, Elevation of privi leges

TLS Transport Layer Security

WAAP Web application and API protection

WAF Web application firewall

7

INTRODUCTION

1.1 MOTIVATION

Digital solutions are emerging faster than ever, and the demand to ensure their
availabil i ty and security is becoming even more crit ical due to their importance
to al l parts of society. In fact, it is no longer enough to focus on the
products/solutions that are developed, but companies must be managed as if
it was a software company to remain relevant [1] [2].
Because of the rapid digital transformation and increased connectivity to the
Internet, individuals, enterprises of any size and authorities are signif icantly
more exposed to cyber-attacks [3].
There can be many explanations for why companies are compromised, but
according to a study conducted by Contract Security, it is not hackers or other
malicious actors who pose the biggest threat, rather is i t vulnerabil it ies in the
software that is used, and thereby developed (in good faith) by software
developers. In fact, according to the study, nearly 50% =of all compromises
are due to vulnerabi l it ies that were ult imately created by software developers
[4] [5].
Another study, by Akami, who provides content delivery network (CDN),
Security Solutions other cloud services showed that by October 2018, 83% of
all web traffic were based on Application Programming Interface (API) calls,
and this number is growing [6].
In essence, an API can be described as a mechanism that enables software
components to communicate with each other over a network, using a set of
definit ions and protocols using a common language that they both understand,
without any user interact ion and manages interactions between applications,
data and devices, and makes it possible to transfer data between systems [7].

They are an enabler for organizations to not only improve/mature exist ing
business offerings, but a lso to seek new business opportunities faster than
ever before, by enabling enterprises to expose services, provide access to
company data in a "modern" way and even create integration to other
companies. It also exposes business services or assets to developers, who are
building applications.
They are vital for businesses in any industry, and the importance of APIs should
not be seen only from a technical point of view, but as an organizational
strategy of how to do business.
For developers, they can consume APIs and use them to develop new apps,
without having to start from scratch [8].

8

Enterprises can use APIs to grow their company, l ike Netf l ix did when they
made their API publicly available, and developers started to create third-party
apps, which in the end, gave Netfl ix more customers [9].

However, as the usage of APIs are increasing, so are attacks against these,
perhaps even to become the most frequent attack vector, securing APIs from
the wide range of emerging and evolving threats is crit ical for business
success. [10].

Due to this, API security is becoming even more important, not just for security
professionals, but also for developers, architects, and business stakeholders,
given the proli feration and application of APIs in modern appl ication and
integration architecture.

According to research by Google in 2022, 53% of organizations decided to delay
the rollout of a new service or application, due to concerns about API security.
77% of organizations who had a security incident, due to API security, had to
delay a rollout of new software [11].

If vulnerabi l i t ies to APIs (and other software components) were identif ied in
the early phase of the Software Development Li fecycle (SDLC), it could help to
avoid the delay of a rol lout of a software release, but how can a mature SDLC
prevent a slow development process, and sti l l being able to identify
vulnerabi l it ies?

The research within this thesis aims to answer how adopting SDLC practices
within the software development process, throughout the API l i fecycle, can
help developers and other stakeholders to develop secure APIs.

1.2 PROBLEM DEFINITION

As an API is becoming an even more critical component in the software
application architecture, ensuring the security of APIs is becoming even more
important [12].
However, despite signif icant investments in both technology and people to
increase security and to protect against cyber-attacks, even companies who
spend bi l l ions in are sti l l breached by insecure APIs [13].

9

Traditional security controls are seemingly not applicable for API’, so what
must be done to improve the security of APIs throughout the entire SDLC? [14]
[15]?

The main problem to be answered is:

RQ: “How can API security be improved by fol lowing a Secure Software
Development Li fecycle (SDLC) approach?

This question wil l be further extended with the fol lowing:
RQ.1: “From a process point of view – without slowing down the development

process”?
RQ.2: “From a technical point of view – including enabling technology to
perform various secur ity related act ivi t ies – what to be aware o f”?

This thesis wil l not only invest igate various technology stacks, which can help
solve a specif ic purpose, but also focus on Threat Modeling to identi fy potential
threats during the design phase.

The research approach wil l be the Mult ivocal Literature Review (MLR). This is
a kind of a Systematic Literature Review (SLR) which includes material from
several sources, including, but not l imited to: videos, blog posts, non-research
documents etc. The reason for choosing this method is that for the research
topic of this report, what is avai lable as research material for reference is
rather l imited [12].

1.3 SCOPE

The scope of this study is the research for improving security for APIs
throughout the SDLC process, and with a primary focus on the
architecture/design phase and application security testing.
This wil l include the creation of a Threat Model, and application security
testing.

Beside the focus on when application security testing technology wil l not be
enough to identi fy potent ial weaknesses, potentia l solutions for mitigations wil l
be investigated.

Both the development and operational phases wil l be discussed, but the scope
is not to develop an API, nor is it to establ ish an API gateway – even though,
some of the findings potentially could lead to future recommendation. Should
any such be identif ied, each of them wil l be discussed in theory.

10

Any technology, which are being used to generate results, must have coverage
for OWASP API TOP 10 [16]. Throughout the report, a vulnerable API:
Completely rid iculous API (CRAPI) wi l l be used [17]. There wil l be no
considerat ions about the qual ity of the technology, which is being used, even
though there could be situations where Open-source software (OSS) or
software which can be used without any financial cost, have limitations
compared to commercial software.

1.4 DATA COLLECTION

The process of gathering and analyzing relevant data for this study has mainly
been focused on published academic research papers and published books with
the focus of Secure Software development, API design, API-management, API-
Security, Threat Modeling, Appl ication Security Testing, and papers about
“Secure by design, “Defense in Dept” and “Zero Trust”.

The sources from which the l iterature has been col lected are primari ly from
Aalborg University Library and searches via Google scholar, Books, articles,
and other non-research literature has mainly been collected through
publishers, "trusted" sources such as, but not l imited to: OWASP (Open Web
Application Security Project) and NIST (National Institute of Standards and
Technology). In addition to this, searching the Internet, using browsers such
as Microsoft Bing and Google Chrome for relevant content has also been done.

1.5 DATA ANALYSIS

Experimental studies have been done using crAPI (completely ridiculous API)
which is vulnerable by design, GitHub, a developer platform, used for storing
source code, execut ing bui ld and security testing using products from Semgrep
and Snyk for static application security testing [18] [19] and for Dynamic
application security testing, Burp Suite community edition and Apisec Free API
Security assessment tool were used [20] [21].

1.6 API SECURITY LIFECYCLE

The objective of this thesis is to investigate how to design and test an API to
be secure throughout the entire SDLC. Original ly the scope was about security
testing of APIs, as several vendors claim to have coverage for OWASP API top
10 risks, yet many breaches are caused by vulnerabi l it ies in APIs.

However, after having done some research, applying both static and dynamic
application security testing on a few vulnerable APIs, it became clear that,

11

none of the tools being used, had ful l coverage, especial ly when testing for
authentication and authorization vulnerabil it ies, rather generating several
false posit ive.

Furthermore, without a ferrule understanding of the scope of the solution, the
huge amount of data returned from a security scan can be diff icult to prioritize
as other mitigating controls may be implemented making the finding less
critical.

Based on this, the scope was changed to investigate how a set of
guidel ines/recommendations using modern technology, could be used
throughout the SDLC, to help creating secure WEB APIs.

FUNDAMENTALS

1.7 API FUNDAMENTALS

Several types of APIs exist, all of which provide the same core functional ity,
which is to serve as an interface for communication between systems. It can
be thought of as a set of defined rules which enables software to communicate,
either locally on a device, or over a network using a common language that
they both understand [22]. Communication between an API provider and
consumer are defined in an API contract and requires non- human interaction
[7] [23]. APIs can work in mult iple networks, however, the most widespread
type of API to be used within a network is a Web API, which can be ut il ized
using the HTTP/HTTPS protocol [24].

1.8 TYPE OF APIS

Web APIs plays a signif icant role in this even more connected society, and thus
the importance of proper design should not be underestimated. Regardless of
whether an API is to be consumed internally in an organization, or in the public
Internet, solid API design is a foundation for success or the opposite [25].
However, as several di f ferent types of APIs exist, each having a specif ic
purpose, it is important to understand them, the use cases to which they are
designed for, to make correct choices for any given solution and the risks
associated with them [26].

12

1.8.1 OPEN API

An open API, also known as a Publ ic API, is open and available for anyone to
use. Organizations can assign developers, both internal to an organization and
external ly, to have access to application data while prohibit ing access to the
actual source code. The more accessible and wel l-documented an API is,
chances of its success increase signi ficantly, both in relation to a business
perspective developer attention. However, there are security risks associated
with exposing a company's back-end systems directly on the Internet al lowing
access to everyone through a firewall . Furthermore, it must be expected that
the number of API calls wil l increase signif icant ly. One mitigation would be to
l imit the number of requests users who aren’t paying for consuming the API,
using rate l imit ing, and require authent ication – e.g., using JSON Web Token
(JWT), OAuth or an API key [7] [26] [27].

1.8.2 PARTNER API

A Partner API can be described as an interface which are used by organizations
to make data avai lable for other companies/partners, as well as to gain access
to other companies' data and service offerings, allowing for creating unique
features, using a partner's resources business-to-business (B2B). A Partner
API should be restricted to speci f ic users/companies, while l imits for requests
may vary depending on the consumer. For any request, proper authorization,
and authorization, must be applied [7] [26] [27].

1.8.3 INTERNAL API

Internal APIs are only avai lable for usage within an organizat ion, and its
functional ity are designed for specif ic use-case e.g., process automation, data
transfer between systems or providing developer employees access to data;
Business-to-Employee (B2E). Depending on the data exposed, this may not
require any authentication [26] [28].

1.8.4 COMPOSITE API

A composite API combines/consol idates several APIs into a single interface,
which a unified view of from different data sources. This integration simplif ies
data access and offers developers effic ient coding practices, as they do not
have to write separate code for every individual API.
Access control to the various APIs included in a request depends on how it is
handled in the various APIs.
Use cases for a composite API can be B2E, Applicat ion-to-Application, B2B and
B2C [26] [28] [29].

13

1.9 API PROTOCOLS AND ARCHITECTURES

In essence, a protocol is a set of rules for formatting, processing, and
exchanging data between systems.
Several di fferent API protocols exists, e.g., GraphQL, gRPC (“google Remote
Procedure Cal l”) SOAP (simple object access protocol) or REST
(Representational State Transfer), each of which includes standards and
processes that an API uses for communication and exchange of data. Al l with
strengths and weaknesses. Despite that an API can util ize multiple API
protocols, however, the impact of selecting an appropriate API architecture,
can impact the success and/or adoption of an API, and therefore, even though
this thesis wil l not focus on specif ic API protocols, but rather aim for providing
guidel ines for securing any type of API despite their dif ferences, a short
description of the once already mentioned, wil l be done [30] [31] [32] [33].

1.9.1 REST (REPRESENTATIONAL STATE TRANSFER)

Rather than being an actual protocol, REST is a set of architectural constraints
/ design style, used to create HTTP APIs, and which can be implemented in a
variety of ways. REST applications use HTTP methods l ike GET, POST, DELETE,
and PUT. Presented in 2000 in his dissertation, Thomas Roy Fielding speci fied
that, any API, which follows the six guiding principles: Uniform Interface,
Client-Server, Stateless, Cacheable, Layered System and Code on Demand or
constraints of the RESTful architecture is a REST API [34] [35].

1.9.2 GraphQL (GRAPH QUERY LANGUAGE)

GraphQL is a query language for APIs, developed by Facebook and made open-
sourced in 2015. Following the six constraints of REST APIs, GraphQL is to be
considered RESTful. furthermore, GraphQL also have the advantage of being
query-centric, as it is designed to work in an equivalent way similarly to a
query language such as, Structured Query Language (SQL). Using GraphQL,
data from multip le sources can be requested and returned in a single request
[36] [37].

1.9.3 GRPC (GOOGLE REMOTE PROCEDURE CALL)

Developed by Google in 2015, gRPC is based on remote procedure calls (RPC),
allowing a client application to call and execute a method on a remote server
as i f it were a local object. This is especially benefic ial when creating
distributed systems or working with a microservice architecture. gRPC uses the
HTTP/2 protocol for communication, which is a major revision of the orig inal
HTTP protocol [38] [39].

14

1.9.4 SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

First introduced in 1998, SOAP was designed as a message specif ication for
exchanging information between systems and applicat ions. Besides HTTP, SOAP
also supports the following transfer protocols: TCP, SMTP, FTP. Despite new
types of APIs – e.g. GraphQL, and the fact that SOAP is losing popularity, SOAP
is sti l l being used in many industries, and will continue to be relevant going
forward [40] [41].

15

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

Ensuring quality and security within a software product has for several years
been a challenge for companies del ivering the digital products as well as for
the developers writing the software. It continues to be. The same is true for
APIs. Tradit ionally, security has been an “after thought”, decoupled from the
development phase. Dedicated security teams would test a product for
vulnerabi l it ies after the software has been developed, perhaps even without
understanding the architecture in detai l [42].
This became true for the U.S government in the 1970's, when they real ized
that basic penetration testing wouldn’t be sufficient to identi fy both quality
defects and/or security problems in the solutions. To this, several l imitat ions
were discovered - including the (l imited) knowledge that the teams who
performed the test had, but also, the l imited time to perform various tests.
However, as one source of compromise is due to vulnerabi l ity within the
software being used, it is essential to integrate security throughout the product
development process. Trying to overcome the challenges, the U.S. government
concluded that to achieve secure and reliable solutions, the development
process should be managed in a more rigorous and systematic way [43].
Concepts such as, Defense in depth, Secure by Default etc. to mention a few,
gained traction for an increasing number of companies within the private
sector, such as, but not l imited to Microsoft and RedHat, with the purpose of
building security into the design of their solutions [44] [45]. However, as many
standards and guidel ines related to secure software development are created
with high-level and declarative content, it is a chal lenge for the developers to
implement security in the products. Furthermore, missing, or l imited
information-sharing across development and operations teams prevents
organizations gett ing the most value out of the resources in which they have
invested. This goes for both human resources, but also technology purchased
for securing the products [43] [46].

1.10 DEVSECOPS

Integrating security throughout the entire API l i fecycle wil l require
collaboration between the stakeholders involved in the process.
DevSecOps (Development, Security & Operations), is a practice of having
security integrated into the entire software development l i fecycle, with the aim
of being able to detect security and/or design issues in applications, as early
as possible [47].
It can be seen as an enhancement of DevOps which addresses the need for
continuously to integrate security across the SDLC, enabling teams to del iver
secure and robust solutions - without impacting the time to deliver [48] [49].

16

In the context for API security, following a DevSecOps approach, the intent is
to amalgamate all phases, starting from the plan/design  development  test
 deployment  operations  ret irement into one unified approach. This is to
ensure that APIs are both designed and developed with security in mind, based
on the potential r isks ident ified, e.g., data privacy concerns, but also to have
it deployed eff ic iently, and managed effectively throughout the entire l i fecycle.

1.11 OWASP TOP 10 API SECURITY RISKS 2023

Created by OWASP (Open Worldwide Application Security Project), a nonprofit
foundation, the Top 10 API Security Risks 2023, has been developed with a
focus on strategies and solutions regarding API Security, and to help raise
awareness and solutions for a better understanding of how to mitigate the
unique vulnerabil it ies and security risks associated with APIs [16].

Establishing and enforcing coverage for the API Top 10 API Security Risks 2023
within the SDLC, indicates that security is not just a high-level guideline,
rather it shows commitment to fol low and implement industry best practices
for secure development.

Despite numerous of documentat ion exists. about OWASP API top 10, each of
them, wil l be explained in high-level, as tests wil l be done for invest igating
if/how tradiational application security testing (ASP) technology, wil l be able
to ident ify vulnerabi l it ies within APIs.

17

1.11.1 API1:2023: BROKEN OBJECT LEVEL AUTHORIZATION

Description:
BOLA (Broken Object Level Authorization), is an authorization vulnerabi l ity,
allowing access to resources that should otherwise be restricted to
unauthorized individuals.
This can be due to insecure coding practices, including fai l ing to properly
validate input or verifying permissions before granting access to an object.

Impact:
A successful BOLA attack could lead to some of the fol lowing:

Attack: Consequence:

Account takeover An individual gains ful l control of a legitimate
account and uses it for malicious purposes

Data disclosure to
unauthorized
individuals.

Companies could get a fine for breaching of the
responsibi l i ty to properly ensure the security of
personal data

Unauthorized access Account takeover, data manipulation, deleting of
data

Scenarios:
Without sufficient access controls, an API endpoint wil l not be able to validate
that users are only able to access resources belonging to them.
An example to this, is the following, which is a direct reference to a record in
a database -e.g.:

https://janswebite.org/users/1234
If it is possible for an individual to modify the number to something as:
https://janswebite.org/users/1235,
and access data belonging to someone else, the solut ion is vulnerable to BOLA,
as no val idation was done prior to providing access.

Prevention:
Enforce proper authorization at every request. HTTP is a stateless protocol,
meaning that one request does not have any relation with other succeeding
requests.
Implement authorization mechanism to check if the logged-in ident ity has
access to perform the requested action on a record in every function that uses
an input from the cl ient to access a record in the database.
Use random and unpredictable values as global ly unique identif ier (GUID) for
record IDs [16] [50] [51].

18

1.11.2 API2:2023: BROKEN AUTHENTICATION

Description:
The process of authent icating ident it ies must be considered broken if, for
example, an API endpoint fai ls to use a modern and strong authentication
method, or i f the control used is poorly designed and/or implemented
incorrectly. Regardless of the reason, compromising the abil i ty to identify a
cl ient wil l compromise the overall API security.

Impact:
The impact of broken authentication can be devastating i f malicious users are
able to compromise a high-privilege account – e.g., a “domain admin” account.
In addition to this, another consequence could be to have personal data leaked
or perform act ions on behalf of the compromised user.

Attack: Consequence:

Weak passwords – e.g., ”abc123”: Several attack techniques for
breaking the password such as a
“rainbow table” could be used to get
access to a system.

Weak cryptography- e.g., SHA1 or
MD5 hashing algorithms

Confidentiality is broken

Scenarios:
Passwords or secrets, being an API key, are stored improperly – e.g., outside
a Hardware Security Module (HSM). Rather it is stored in a version control
system and is by accident being committed to a public repository or sent to
members in the team by email.

Prevention:
Don’t use default passwords.
Ensure proper key management (both for storing and rotating keys)
Implement weak password checks.
Never trust, always verify (Zero trust principle)
Use Principle of Least Privilege

Whenever possible, multi-factor authentication must be implemented.
[16] [50] [51] [52] [53]

19

1.11.3 API3:2023: BROKEN OBJECT PROPERTY LEVEL
AUTHORIZATION

Description:
Exposing more data than required, or allowing unauthorized permissions to
objects, when al lowing users access to an APIs, it is important to not only
verify i f the authentication request is valid – veri fying permissions for each
object is crucial. Compared to GraphQL, REST API often returns more data than
required.

Impact:
Unauthorized access to sensitive data, could result in both having data
disclosed, tampering of data / loss of integrity. Furthermore, i t could result in
privi leges escalation.

Attack: Consequence:

Mass Assignment: Al lowing a user to escalate privi leges or edit object
propert ies.

Scenarios:
Allowing a user to update the title of a e-book, which is blocked for reading:

PUT / ap i / b ook s /Book -A bou t - Ap i -Se cu r i t y

{

 " de s c r i p t i on " : "G rea t book t o r e ad "

}

Cou l d be ch ange d by a u se r , u s i ng t he f o l l ow i ng :

PUT / ap i / b ook s /Book -A bou t - Ap i -Se cu r i t y

{

 " de s c r i p t i on " : "G rea t book t o r e ad "

 " b l o cked " : f a l s e

}

Without proper val idation for verifying whether, the user should have access
to the object, hence it is possible to allow/deny access for their own.

Prevention:
Val idate permissions at the object level.
Define and return only the properties of an object required in a request.
Implement technology, which are capable of to detect “suspicious
behaviour”/patterns. [54] [55]

20

1.11.4 API4:2023: UNRESTRICTED RESOURCE CONSUMPTION

Description:
Without l imitations for consuming resources, an API provider is in risk of
becoming either a victim for a Denial of Service (DoS) attack or to be in a
situation with an additional expenditure.

Impact:
The impact of Unrestricted Resources Consumption can be that end-users wil l
get a t imeout, when consuming a solution, with the result, that another
provider wil l be selected. Another consequence could be the addit ional
processes being executed, which could lead to an increased operational cost.
Either in terms of CPU usage, or for storage, if no l imitation is configured for
the size of f i les to be uploaded. Being unavailable prevents an API from serving
legitimate requests.

Attack: Consequence:

Botnet Business is unavailable.
Increased bil l ing.

Scenarios:
Multiple concurrent requests from both legitimate and/or infected devices can
lead to performance degradation or even unavai labi l ity.

Prevention:
Rate l imit ing should be fine-tuned based on the business needs. E.g., only
allow a public facing-API to be invoked a certain number of t imes, within a
period.

Throttl ing could be implemented, defining the frequency of how often a single
API cl ient/user can execute a given operat ion.

Enforce a maximum value of data on incoming parameters.

[16] [51] [56]

21

1.11.5 API5:2023: BROKEN FUNCTION LEVEL AUTHORIZATION

Description:
Broken Function Level Authorization al lows an authorized user access to an
endpoint of function. This occurs when an API endpoint isn’t configured with
the appropriate permissions. Complexity within the authentication scheme
could be one reason for this.

Impact:
Being able to exploit this, an attacker could get access to resources (including
administrative funct ions), belonging to someone else.

Attack: Consequence:

Account takeover

An individual gains ful l control of a legitimate
account and uses it for malicious purposes

Data disclosure to
unauthorized
individuals.

Companies could get a fine for breaching of the
responsibi l i ty to properly ensure the security of
personal data

Unauthorized access Account takeover, data manipulation, deleting of
data

Scenarios:
Util izing a non-administrative account to successful ly conduct an action which
normally would requires administrative privi leges, is evidence of a broken
function-level authorization.

Prevention:
Fol low the principle of least pr ivilege.
Have a clear separation between admin and non-administrat ive functions.

[16] [51] [57]

22

1.11.6 API6:2023: UNRESTRICTED ACCESS TO SENSITIVE BUSINESS
FLOWS

Description:
APIs vulnerable to this risk expose a business flow—such as buying a t icket to
a concert or sporting event—without considering how that functional ity could
do harm if automated. This could be by design, and not necessarily a technical
issue.

Impact:
Buying t ickets for a concert, either a person, or even an automated process
using a headless browser, can prevent others from buying t ickets.

Attack: Consequence:

DOS Business unavailable due to overloading the API with
requests.

Excessive resources
are required to keep up
with the requests

Addit ional cost/expenses to the business

Scenarios:

A car rental app has a referral program where its users can invite friends and
acquaintances to join, and for each person who has joined the app, they get a
bonus. This bonus can later be used as cash to rent cars. A person with bad
intentions can exploit this f low by automating the registration process, where
each new user adds credit to the attacker, who then afterwards can then rent
cars without having to pay for it .

Prevention:
Implement a human detection solut ion, e.g., CAPTCHA or ReCAPTCHA
(Completely Automated Public Turing test to tell Computers and Humans
Apart).
Device f ingerprinting: deny service such as headless browsers)
Identify and protect business flows which could harm the business, i f being
misused.
[16] [58] [59] [60]

23

1.11.7 API7:2023: SERVER-SIDE REQUEST FORGERY

Description:
In a Server-Side Request Forgery (SSRF) attack, it is possible for an attacker
to abuse functional ity on the server to get access to internal resources. Despite
the resources are not exposed through a fi rewall, but only available internal ly,
however a vulnerable webserver may have access to resources inside a f irewall,
which al lows an attacker to abuse the web application to read the internal
resources.

Impact:
SSRF can be used to bypass security controls and thereby gain unauthorized
access to internal resources within a company, including sensitive data.

Attack: Consequence:

Exploit ing a vulnerable
webserver

By exploit ing a vulnerable web server, i t is possible
for an attacker to make the server establ ish a
connection to an internal service, which could result
in a company leaking sensit ive data

Scenarios:
the attacker might cause the server to make a connection to internal-only
services within the organizat ion's infrastructure. In other cases, they may be
able to force the server to connect to arbitrary external systems, which
potential ly could lead to sensit ive data being exfi ltrated.

Prevention:
Input val idation: One of the most important steps in mitigating SSRF
vulnerabi l it ies is to validate and sanitize user input.
[16] [56] [61]

24

1.11.8 API8:2023: SECURITY MISCONFIGURATION

Description:
Security flaws Configuration can be the result of several things, including
insecure configurations, missing or misconfigured HTTP headers, unpatched
systems, al l of which can be exploited by an attacker.

Impact:
The impact of a misconfigurat ion can be many, but an example could be that
an attacker can cover for actions committed by modifying and/or deleting log
fi les stored in a directory without access control.

Attack: Consequence:
Use default credentials An attacker could easi ly get access to a solution

Unpatched systems Can result in unauthorized access to sensit ive data

Ransomware Exploit vulnerabil it ies to encrypt data

Scenarios:
All API requests, including tokens providing admin access, are being logged
and stored in a logfi le, which is publ icly available on the Internet. Anyone, who
can f ind the share, is able to read the information, and get access to the keys.

Prevention:
Using a baseline, implement and enforce a repeatable hardening process for
all systems.
Ensure to have an up to date, asset inventory – including every API endpoint.
Ret ire systems, which are no longer in use.
Always use encrypted communication – also for internal systems, or solutions,
which are sending non-sensit ive data.
Never use default sett ings.

25

1.11.9 API9:2023: IMPROPER INVENTORY MANAGEMENT

Description:
Improper asset management is due to missing or no API documentation or
properly managing them. This can be developers, who do not document the
APIs they develop.

Impact:

Incorrect asset management is when there are mult iple versions of the same
API, API1 and API2, but the original API1 is not shut down, despite API2 being
used. These older versions - often without maintenance and updates, tend to
use weaker security requirements and can be s imple to exploit.

Attack: Consequence:

Brute-force A flow within one of Facebook’s API, al lowed third-
party apps to access the private data of mil l ions of
users without consent. Having visibil ity and control
of the API, this potentially could have been avoided.

Scenarios:
According to OWASP, one scenario is about a social media network who did
manage to implement rate-l imit ing to block brute force attacks, however, it
was implemented as a separate component rather than being integrated in the
code. In the case of a beta API host would host the same API, rate l imit ing
would be bypassed, hence a brute-force attack would be possible.

Prevention:
Implement an inventory of al l APIs, endpoints, API hosts and versions.
Ret ire old/obsolete APIs.
Al l API versions must be under version control .
[62] [63]

26

1.11.10 API10:2023: UNSAFE CONSUMPTION OF APIS

Description:
Insecure consumption of APIs is when back-end implementations, which have
external integration, accepts user-controlled inputs from external party carried
over APIs without applying any proper val idations.

Impact:
The impact can vary; however, successful exploitation could lead to sensit ive
data being exposed to unauthorized users.

Attack: Consequence:

Integration Caused by Unsafe consumption of APIs in Log4j, the
Log4Shell vulnerabi l ity allowed users to execute
arbitrary code on numerous web services, using the
Apache Log4j logging l ibrary, potential ly leading to
allowing an attacker with full control of the system.

Scenarios:
An API bl indly trust input from other external APIs, which could lead to
vulnerabi l it ies in the consuming application.

Prevention:
Only al low API communication over a secure channel (HTTPS).
Never trust, but always val idate and sanit ize input from integrated APIs. Do
avoid, to blindly follow redirects.
[16] [64]

27

1.12 API SECURITY BASELINE

The cost of solving a security vulnerabil ity is far more expensive once a product
has been released, compared to, having security as an integral part [65].
Depending on the use case, being an API, which should be used for an
integration either internal ly in an organization or with an external company,
or made public available for external developers to consume, rather than
having to define requirement for each API, based on a risk assessment, a
baseline should be establ ished, making it clear, what security controls are
required.

When defining the security basel ine, it is important to distinguish between
risks associated with being an API provider and an API consumer.

Guidelines for securing APIs, throughout the entire l i fe cycle of an API,
presented and published in the article: Security Guidel ines for Providing and
Consuming APIs, aim to provide guidance for both scenarios: Ingress API
exposure (provider), and Egress access (consumer) [66].

28

1.13 EXPOSURE OF API (INGRESS)

An Inbound API connection can be accessible, both to internal and external
consumers, e.g., a developer, access to read or modify data stored in the
internal network.

1.13.1 DESIGN PHASE

The d

ID Control Description

1 Threat Modeling and
Countermeasures

Designing for security, having a threat modeling
process integrated into the SDLC, when
developing an API, is crucial for being able to
assess the possible threats and vulnerabi l it ies
as well as the l ikel ihood that weaknesses that
are identif ied wil l be exploited.
A threat model can also help priorit ize which
weaknesses need to be mitigated fi rst.
A threat model must not be considered stat ic,
rather be included in every sprint, or whenever
signif icant changes are made to the API.

2 Idendity
management

Never trust, always verify.
Al l requests, on all API endpoints, should require
the client to authent icate and authorize
independent of the API endpoint or object being
accessed. Mult i factor authentication (MFA)
should be enforced, when possible.
Preferably, the authorizat ion service, is
decoupled from the API itsel f, but managed
independently.

Use of least privileged access should be
enforced.

When possible, the use of secure protocols such
as API keys, JWT, OpenID Connect (OIDC) and
OAuth2 should be used. Legacy authentication
such as Basic authentication, should be
prevented, and only used as an exception, for
legacy applicat ions.

3 Secure
communication

Communication is secured by enforcing HTTPS
between an HTTP client and a Web API. self-

29

signed certi ficates must not be used in
production environments.

4 Input and output
validation

Data received, (including request parameters),
and sent by an API should be validated and
sanit ized. Avoid operational dependencies
between systems by having input val idation
decoupled from the application, but speci fied in
a format that can be reviewed, e.g., an OpenAPI
Specif ication. The API contract defines the
expectations for how the API should work,
including but not l imited to input and output
formats.

1.13.2 DEVELOPMENT PHASE

5 Implement rate
l imeting.

Implement rate l imiting and throttl ing pol icies
to prevent abuse due to excessive requests
against an API.

6 Secure consuming of
3 rd party
components.

Preferably combined with a process for
onboarding and uti l izing open-source
components, l ibraries should be checked for
vulnerabi l it ies, l icenses terms and operational
risks. The latest stable version of components
should always be used i f possible. A Software
Bi l l of Materials (SBOM), including software
components used to build an API, should be
available.

7 Storage of
Application Secrets

Encryption keys and appl ication secrets must be
stored in a secure locat ion such as a vault or
Hardware Security Module (HSM). The
development phase should include a process for
Secret detection and remediation, to prevent
sensitive data such as secrets, passwords, and
keys from entering the code repository. Access
keys and other secrets should be rotated
periodically. Key and secret management,
should always be done taken the most care due
to the cri ticali ty in case of a compromise.

8 Token Strength Strong algorithms for securing API keys or JWT
tokens are essential due to data privacy and
security, hence a “state-of-the-art” encryption
algorithm should always be used.

30

9 Input Validat ion/
Output Encoding

Appropriate input validation and output
encoding should be done. For instance, only
accept input which strictly conform to an API
speci fication.

10 Error Handling API implementations should not expose issues
occurring in the system, including:
- service failure
- permission issues
Rather a generic error and default error code
could be returned:
100-199: Informational
200-299: Success
300-399: Redirect ion
400-499: Cl ient error
500-599: Server error
[67]

11 Protection of
Testing/Staging
Environments

Using a basel ine configuration, the same
security requirements enforced for production
environments should be required for other
environments which processes data that could
pose a risk in the event of a data breach.

1.13.3 TESTING PHASE

12 Penetration Testing
and Continuous
Vulnerabi l ity
Scanning

To identify vulnerabi l it ies within an API, a
Pentest, performed by an independent
individual, should be conducted, prior to
releasing for production.
Different types of tests exist – including:

White-box testing: Internal information, e.g.,
source-code and documentation is ful ly available
access to the tester.
Gray-box testing: Partia l access to relevant
internal information for being able to do a test.
Black-box testing: No knowledge about the
target is known to the tester.

13 Code Review Prior to release, code review must be performed,
either manually, or automated by applying
Application Security Testing (AST) technology.

31

14 Application and
Secret scanning

Prior to code deployment and based on security
testing processes and requirements, using
appropriate automated application security
testing technology and secret detect ion should
be performed.

1.13.4 IMPLEMENTATION PHASE

15 Cryptography To safeguard data processed by an API,
consider:

Data in transit: TLS/HTTPS helps to prevent
network communication from being intercepted,
However, only strong cipher suites should be
used - never consider deprecated and insecure
cipher suites.
Confidentiality is about keeping data secret from
anyone other than those who have a legit imate
purpose for accessing it .
However, Data at Rest and Message integrity
should be considered as wel l.

 Detection /
Monitoring

A process for detecting suspicious API activity
and responding to this, should be implemented.
Designed, not only to protect Web appl ications
and APIs, is a Web Application and API
protection (WAAP).

16 Exposed Network
Interfaces

Deny by default. No network ports or services
should be exposed otherwise required. Care
should be taken for APIs with admin privileges.

17 Session Terminat ion Depending on the sensit ivity of the data, a
timeout value should be configured to the
shortest time possible, as active sessions are a
target to an attacker [68].

18 System Updates For all components used in a solution, including
but not l imited to infrastructure components,
open-source l ibraries etc. must be updated on a
regular basis. Teams responsible for individual
components should sign up to receive
notif ications from the vendor, or similar, i f/when
a vulnerabil ity is ident if ied, hence actions is
required.

32

1.13.5 LOGGING AND MONITORING PHASE

19 Application Security
Posture Management

Due to complexity, i t can be di ff icult to priorit ize
security risks associated with APIs and the
associated infrastructure. Security Posture
Management (ASPM) and Cloud Security Posture
Management (CSPM), are 2 different solutions,
which aim to help secure applications and cloud
infrastructure [69].

20 Audit and logging Any system must be capable of logging events
due to several reasons, including compliance,
legal, security and root-cause analysis. HTTP
access logs should be saved in a separate
location, and only as an exception should
sensitive data, e.g., API keys be stored. Should
this be required, the stoarge for these logfi les,
should be further protected, and only accessible
from a compliant device, and with the use of
either SSO or MFA.

1.14 CONSUMER OF AN API (EGRESS)

1.14.1 DESIGN PHASE

1 Threat Modeling and
Countermeasures

While most security controls should be
implemented, by the API provider, having a
threat model created for outgoing traff ic is just
as important, for being able to assess the
possible threats and vulnerabi l it ies as well as
the l ikelihood that weaknesses that are
identi f ied wil l be exploited. For instance, a
compromised account could be used to exfi ltrate
data, and having this threat documented, also
could indicate which mitigations to take.

1.14.2 DEVELOPMENT PHASE

2 Storing Secrets
(Digital Safe)

Encryption keys and secrets must be stored in a
secure locat ion such as a vault or Hardware
Security Module (HSM). Access keys and other
secrets should be rotated periodical ly.

33

1.14.3 TESTING PHASE

3 Application Security
Scanning and Secrets
Scanning

Prior to building the product, the source code
must be tested for vulnerabil it ies. Several
integrated development environments (IDE),
have this integrated, meaning fast feedback to
the developers. The scanning solution, must be
finetuned, to avoid to many false posit ive.

1.14.4 IMPLEMENTATION PHASE

4 TLS Valid Certif icate Independent on the data being transferred,
encrypted communicat ion must be enforced,
using HTTPS, with a strong cipher suite.

5 Session Terminat ion The value for terminating inactive sessions must
be within the shortest time possible.

6 Dest ination IP and
Port Limitation

External connection made by service accounts
should be restricted to speci fic URLs and
whitelisted in a fi rewall.

1.14.5 LOGGING AND MONITORING PHASE

7 Continuous
Monitoring

To be able to react to alerts, it is important that
security risks and vulnerabil it ies are
continuously evaluated.

8 Detection and
Response

People, processes, and technology should be
available for ongoing detection and have the
capabil ity to act accordingly.

9 Documentat ion Ensure documentation exist and is updated
throughout the l ife cycle of an API.

34

THREAT MODELING

Threat model ing is the process of analyzing a system to identify and evaluate
security issues and weaknesses in a system, so appropriate actions can be
taken to mit igate those, as early as possible in the SDLC.

As a process for designing for security, solutions which are developed with
security in mind from the beginning, are to be more secure, as the identi fied
attacks are considered, and the necessary security controls are included to
prevent them.

In the context of a Web API, a Threat model could help communicate what
product is being developed, the sensitivity of the data being processed,
potential integrations, who wi ll consume the API, and how? Are users able to
provide input, which should be sanit ized, before entering the system? Have the
required security headers been enabled? Has HTTPS been enforced on al l API
endpoints using a strong cipher suite? What about rate l imiting? Perhaps paid
customers should have more “bandwidth” than non-paying customers. Have
granular permissions been considered – e.g., Attribute-based access control
(ABAC) or Role-Based Access Control (RBAC)? [70] [71].

1.15 SCOPE FOR A THREAT MODEL

crAPI, a solution, which is vulnerable-by-design, is used for the purpose of
creating a threat model.
The architecture and description, which are used for the threat model, are al l
from the GitHub page of crAPI [72].
The focus wil l be on ingress communication and identit ies.

1.16 THREAT MODELING METHODOLOGY

1.16.1 STRIDE

STRIDE, short for: (Spoofing, Tampering, Repudiat ion, Information Disclosure,
Denial of Service, and Elevation of Privi lege) is a methodology for categories
representing potential attack vectors, which can be exploited by threat actors.

Spoofing: Refers to an attack, where someone or something is impersonating
a legit imate user or process to gain access to resources, to which they elsehow
would be unauthorized.

35

Tampering: Is about unauthorized alterat ions of data or systems, such as
modifying data in transit, due to insecure communication protocol.

Repudiation: Denying claims/unproven actions that has taken place, e.g.,
removal of data.

Information Disclosure: Involves exposing potential sensit ive information to
unauthorized parties, due to inadequate permissions.
Denial of Service: Service unavailabil ity, preventing val id users to use the
services provided by a system.

Elevation of Privilege: Is when a person or process gains extended
permissions, al lowing for actions to be done on resources, which elsehow would
be denied.

The following table maps each threat to the corresponding security property
[73] [74].

Threat Security property
Spoofing Authenticat ion

Tampering Integrity

Repudiation Non-Repudiat ion
Information Disclosure Confidentia lity

Denial Of Service Availabil ity

Elevat ion Of Privi leges Authorizat ion

1.17 THREAT MODELING AN API USING STRIDE

Fol lowing the Four Question Framework by Adam Shostack [75]:

- What are we working on?

- What can go wrong?

- What are we going to do about it?

- Did we do a good job?

Each question wil l be used for creating a threat model for a Web API.

36

1.17.1 WHAT ARE WE WORKING ON?

As a starting point, creating a diagram of the solution being buil t is a great
way of presenting it to the relevant stakeholders.

The below diagram shows, at a high-level, the components included in the
solution, and part of the business logic. See Figure 1.A: Architecture of crAPI
for further information.

At this stage, potential things which can go wrong, such as: “How are the
compoennts protected from each other”? “Are they communicating in a secure
way”? Based on the system design, a threat model ,or models depending on
the details required, can be created.

Using a Data Flow Diagram, adding trust boundaries to the components in use,
visial ize how the data flows through the solution, permant stoarge as well as
internal and external boundaries. Each are they represented with one of the
following icons:

Figure 2.A: Icons used to create the threat model .

The threat model created for this can be found in the appendix.
See figure 3.A: crAPI threat model.

37

1.17.2 WHAT CAN GO WRONG?

Spoofing

Threat / “Victim” Mitigation

User Authenticity

Website Authenticity

Target for crAPI Description:

1. Authorized user
2. Employee
3. Web site

Val id credentials are leaked, e.g., via. phising
None or improper certi ficate implementation.

Countermeasures for Spoofing:
- Authentication enforcement on every API endpoint and request.
- Use secure and unique authentication tokens, e.g., JWT or OAuth 2.0.
- Input val idation
- MFA
- Rate Limiting and Throttl ing to avoid brute force
- Enforce least privi lege principles
- HTTPS, with a strong cipher suite.
- HSTS security header to only allows HTTPS traffic.
- Logging and monitoring, e.g., network behavior anomaly detection.

Tampering

Threat / “Victim” Mitigation
Community

Integrity

Mailhog Integrity

MongoDB Integrity

Website Integrity

Target for crAPI Description:

1. Authorized user
of Community,
Mailhog
and MongoDB

2. Data stored on
Website.

Broken user authentication, allowing access to else
restricted data. E.g., One Time Password (OTP) for
reset of password.

38

Countermeasures for Tampering:
- Encrypt sensitive information.
- Applied Principle of Least Privi lege.
- Input val idation
- Authentication enforcement.
- Authorization enforcement.
- Logging and monitoring.

Repudiation

Threat / “Victim” Mitigation

Users

Non-repudiation

Target for crAPI Description:

1. Users within
community

A user reveals the location of a car belonging to
someone claims not to have done so.

Countermeasures for Repudiation:
- Authentication enforcement.
- Logging and monitoring.

Information Disclosure

Threat / “Victim” Mitigation

Community
Identity
Mailhog
MongoDB
PostgreSQL
Users
Workshop

Confidentiality

Target for crAPI Description:
1. Any valid user

Any user within the system is at risk of having data
exposed. Furthermore, internal data are also at risk
of being leaked, hence the company owning the
solution could get a fine for improperly protecting
personal identif iable information (PII).

39

Countermeasures for Information Disclosure:
- Authentication enforcement on every API endpoint and request.
- Use secure and unique authentication tokens, e.g., JWT or OAuth 2.0.
- Secure coding
- Applicat ion security test ing
- Encrypt sensitive information.
- Input val idation
- MFA
- Enforce least privi lege principles
- HTTPS, with a strong cipher suite.
- HSTS security header to only allows HTTPS traffic.
- Logging and monitoring.

Denial Of Service (DOS)

Threat / “Victim” Mitigation

Community
Mailhog
Website

Availabil ity

Target for crAPI Description:

1. Any valid user –
including the
owner(s) of the
solution.

This type of attack aims to overwhelm a system, e.g.,
a Web server or application by sending a large
volume of requests, to consume server resources or
drain the server’s capacity, making it unavailable.
NB: This does not have to be malicious, but could be
due to misconfiguration, or l imited resources.

Countermeasures for Denial of Service (DOS):
- Logging and monitoring.
- Web Application Firewall (WAF), capable of detecting malicious traffic and
blocking it .

40

Elevation of Privileges

Threat / “Victim” Mitigation
Identity
MongoDB
PostgreSQL
Website
Workshop

Authorisation

Target for crAPI Description:

1. Any valid user –
with extended
permissions –
e.g., system
administrators
or. Domain
admins.

Elevat ion of Privilege is when a user or application
gains permissions that should not be available to them.
It could be due to the credentials of an administrator
has been leaked to the public.

Countermeasures for Elevation of Privileges
- Authorization enforcement.
- Enforce least privi lege principles
- Logging and monitoring.
- MFA
- Proper key and secret management.

41

1.17.3 WHAT ARE WE GOING TO DO ABOUT IT?

Based on the findings, it should be decided how to address and prioritize
between them. Several options are avai lable, including mitigate each of them,
having the functionality removed, so it no longer poses a threat, make it the
responsibi l i ty of the developers to remove the bug in the code, or simply just
accept it [76].

As this is about securing Web APIs, and having it being part of the SDLC, the
focus wil l be on identity management and application security testing with
OWASP Top 10 API security risks.

SAST:
Using SAST, none of the tools used (used with default settings), were able to
identi fy al l the top 10 Risks.

However, improper TLS and missing TLS were found, and resolved, so al l
communication are encrypted.
See figure 4.A: SNYK SAST overall findings.

Furthermore, hardcoded credentials were only found in one of the solutions.
See figure 5.A: SNYK hardcoded password f inding.

The number of false posit ive, is di f ficult to answer, due to l imited knowledge
about the solut ion, and already implemented mitigations, however, a
comparison has been made, with no rule configured, were Snyk identif ied 55
vulnerabi l it ies and Semgrep had 104 findings.
See figure 6.A: Compare Snyk and Semgrep for number of security findings.

DAST:
For automated API security test ing, the free version of Apisec.ai was used. The
only thing which was to be done was uploading an OpenAPI speci fication for
the project, and tests for all Top 10 risks were conducted. See f igure 7.A:
APISEC OWASP API Top 10 coverage.
For the Analysis Results, See figure 8.A: APIsec Spec Analysis Results.

1.17.4 DID WE DO A GOOD JOB?

A threat model has been created, so ident ifying risks in the solution, and
thereby being able to improve the security within it, and the APIs, should be
seen as a good start. One thing which would improve on the model, would be
to have conducted a risk analysis using the DREAD, (Damage potential,
Reproducibil i ty, Exploitabi l i ty, Affected users, Discoverabil ity) methodology,
and then prioritize the f indings based on the risk score.

42

API SECURITY TESTING TOOLS

Due to the uniqueness of a Web API compared to traditional Web solutions,
and the wide spread of Web APIs in part icular, the importance of security
testing is not only important, but also further complicated. Therefore, various
solutions have been investigated, including static code analysis, as well as
dynamic code analysis.

1.17.5 STATIC APPLICATION SECURITY TESTING (SAST)

While static code analysis has full coverage of the source code, the tests are
executed, without running the solution, hence it did provide several false
posit ive. This indicates that, despite the value it did provide, a signi ficant
amount of time is required to have it properly f ine-tuned.
One advantage is the integration into the IDE, which provides fast feedback to
developers. The tests made in this thesis were conducted using the free version
of Snyk.IO and Semgrep.dev. While both claim to have coverage for OWASP
API top 10 risks, none of them were able to provide this. Nevertheless, both
technologies sti l l have an important role in the SDLC, combined with other
technologies.

1.17.6 DYNAMIC APPLICATION SECURITY TESTING (DAST)

Unlike static code analysis, then Dynamic application security testing, are
executing test cases, on a running solution. Thereby there are very few false
posit ive, however, as there is no access to source code, it cannot be assured
that, al l possible ways data travers the solut ion is being tested. The tests made
in this thesis were conducted using the free version Apisec.ai and Burp Suite
community edition. However, due to the manual work and limited functionality
included in this version, Burp Suite was rather quickly considered out of scope.

43

DISCUSSION AND CONCLUSION

1.18 DISCUSSION

People, process and technology, in that order.
Answering the research question, “How can API security be improved by following a
Secure Software Development Lifecycle (SDLC) approach”, the answer would be exactly that.
No technology can be used out-of-the-box and resolve all the security issues in an API.

Proper and useful documentation and guidance for the teams who design, develop, implement
and operate APIs, should be available, for them to consume. High-level documents, being
guidelines or standards, stating that APIs should be developed or operated securely, do not
provide value. It might if the solutions were less complex.

The technology avai lable for API security, in general, is in the early stages,
while maturing. However, as security issues often are created during the
development phase, it is critical to be capable of identi fying them, prior to
release. Including business logic f laws.

Without an architectural overview of the APIs in scope, how data exposed
through an API travers through systems, integrations between systems and
their dependencies, chances are that not every component is included when
performing a threat model and/or risk assessment.

Fol lowing the “Shift Left” approach [77], security testing is conducted early
and throughout the development phase. Having security issues detected, and
other design f laws identif ied earlier, the cost of having them resolved is
signif icantly cheaper. Additional benefits with this approach could be improved
and optimized processes in the software development process.

1.19 CONCLUSION

Close col laboration between stakeholders is required if the API security is to
be improved significant ly. Rather than considering an API as a software
solution, it should be seen as a product which requires to be designed with
security in mind, but also operated with care. APIs are crit ical for business
success and should be managed accordingly.

Part of the reason why an API is vulnerable could be due to the many different
types which exist, each with strengths and weaknesses. When to use what?
Going forward, research of dif ferent threat model ing methodologies of Web
APIs could be interesting.

44

Works Cited

[1] J. P. Carvalho, "every-business-software-business," quidgest.com,
[Online]. Avai lable: https://quidgest.com/en/articles/every-business-
software-business/.

[2] C. U. Orj i, "CLOUD API SECURITY AUDIT - An Extensive Approach to API
Assessment -," Aalborg University Electronics and IT, 2021.

[3] C. Teglers, "cybersikkerhed-saadan-ser-trusselsbil ledet-ud,"
kromannreumert.com, 28 juni 2023. [Online]. Avai lable:
https://kromannreumert.com/viden/artikler/cybersikkerhed-saadan-ser-
trusselsbil ledet-ud.

[4] H. G. S. C. Michael Howard, Designing and Developing Secure Azure
Solutions, Microsoft Press, 2022.

[5] P. Spencer, "assessing-appsec-implications," contrastsecurity.com, 20
May 2020. [Online]. Available:
https://www.contrastsecurity.com/security-influencers/assessing-
appsec-implications.

[6] A. Press, "state-of-the-internet-security-retail-attacks-and-api-traffic,"
akamai.com, 2 2019. [Online]. Avai lable:
https://www.akamai.com/newsroom/press-release/state-of-the-internet-
security-retai l-attacks-and-api-traffic.

[7] B. De, "API Management," in An Architect ’s Guide to Developing and
Managing APIs for Your Organization , Apress Media, 2017.

[8] G. team, "maps," Google, 2023. [Online]. Avai lable:
https://developers.google.com/maps.

[9] R. Lawler, "netfl ix-api-shutdown," techcrunch.com, 13 6 2014. [Onl ine].
Available: https://techcrunch.com/2014/06/13/netfl ix-api-shutdown/.

[10
]

M. Campbell , "api-security-predict ions-2022-the-good-the-bad-and-the-
scary," nonamesecurity.com, 30 12 2021. [Online]. Available:
https://nonamesecurity.com/blog/api-security-predict ions-2022-the-
good-the-bad-and-the-scary/.

[11
]

G. Cloud, "API Security: Latest Insights & Key Trends," Google Cloud,
2022.

[12
]

D. Barahona, "business-logic-vulnerabi l i t ies," apisec, 10 04 2022.
[Online]. Avai lable: https://www.apisec.ai/blog/business-logic-
vulnerabi l it ies.

[13
]

K. Wagner, "facebook says it has spent 13 bil l ion on safety security,"
bloomberg.com, 21 9 2021. [Online]. Avai lable:

45

https://www.bloomberg.com/news/articles/2021-09-21/facebook-says-it-
has-spent-13-bi l l ion-on-safety-security#xj4y7vzkg.

[14
]

Alexandra, "what-is-sdlc," stacki fy.com, 10 3 2023. [Onl ine]. Available:
https://stackify.com/what-is-sdlc/.

[15
]

reblaze, "api-security-vs-traditional-web-security," reblaze.com,
[Online]. Avai lable: https://www.reblaze.com/wiki/api-security/api-
security-vs-tradit ional-web-security/.

[16
]

owasp.org, "0x10-api-security-risks/," owasp.org, 2023. [Online].
Available: https://owasp.org/API-Security/edit ions/2023/en/0x11-t10/.

[17
]

m. jose, "crAPI," github.com, 2023. [Online]. Avai lable:
https://github.com/OWASP/crAPI.

[18
]

S. team, "semgrep-code," semgrep, [Online]. Available:
https://semgrep.dev/products/semgrep-code/.

[19
]

S. team, "snyk-code," snyk.io, [Online]. Available:
https://snyk.io/product/snyk-code/.

[20
]

p. team, "communitydownload," portswigger.net, [Online]. Available:
https://portswigger.net/burp/communitydownload.

[21
]

A. team, "product#scan," apisec.ai, [Onl ine]. Avai lable:
https://www.apisec.ai/product#scan.

[22
]

G. B. D. W. Daniel Jacobson, APIs: A Strategy Guide, O'Reil ly Media,
Inc., 2011.

[23
]

c. team, "what-is-an-api-contract," criteria.sh, 23 5 2023. [Onl ine].
Available: https://criteria.sh/blog/what-is-an-api-contract.

[24
]

t. team, "what-is-web-api," tutorialsteacher.com, [Online]. Avai lable:
https://www.tutorialsteacher.com/webapi/what-is-web-api.

[25
]

A. Lauret, The Design of Web APIs, New York: Manning Publications,
2019.

[26
]

k. team, "di fferent-api-types-and-use-cases," konghq.com, [Online].
Available: https://konghq.com/learning-center/api-
management/different-api-types-and-use-cases.

[27
]

M. F. R. H. O. M. M. R. E. S. Marius Aharonovich, "Security Guidel ines
for Providing and Consuming APIs," Israel i chapter of the Cloud Security
Al l iance (CSA), 2021.

[28
]

J. Juviler, "types-of-apis," blog.hubspot.com/, 16 1 2023. [Online].
Available: https://blog.hubspot.com/website/types-of-apis.

[29
]

J. Simpson, "nordicapis.com," nordicapis, 15 3 2022. [Online]. Available:
https://nordicapis.com/6-types-of-apis-open-public-partner-private-
composite-unified/.

46

[30
]

G. team, "https://www.howtographql.com/advanced/1-server/,"
howtographql, [Online]. Available:
https://www.howtographql.com/advanced/1-server/.

[31
]

T. P. Team, "rest-api-examples," postman, 18 6 2023. [Online].
Available: https://blog.postman.com/rest-api-examples/.

[32
]

s. Team, "SOAP vs REST 101: Understand The Differences," soapui,
[Online]. Avai lable: https://www.soapui.org/learn/api/soap-vs-rest-api/.

[33
]

g. team, "about," gRPC, [Online]. Avai lable: https://grpc.io/about/.

[34
]

R. T. Fielding, "Architectural Styles and the Design of Network-based
Software Architectures," p. 180, 2000.

[35
]

r. team, "restfulapi.net," restfulapi.net, [Online]. Available:
https://restfulapi.net/.

[36
]

g. team, "rest-api-architectural-constraints," geeksforgeeks.org, 1 6
2023. [Online]. Avai lable: https://www.geeksforgeeks.org/rest-api-
architectural-constraints/.

[37
]

C. Bal l, Hacking APIs : breaking web application programming interfaces,
San Francisco: no Starch Press, 2022.

[38
]

I. Grigorik, "performance-http2," web.dev, [Online]. Avai lable:
https://web.dev/articles/performance-http2.

[39
]

L. Ryan, "principles," grpc, 8 9 2015. [Online]. Available:
https://grpc.io/blog/principles/.

[40
]

B. Woodring, "soap-api-for-saas," prismatic.io, 15 3 2023. [Online].
Available: https://prismatic. io/blog/soap-api-for-saas/.

[41
]

H. Bel l, "what-is-a-soap-api," nonamesecurity.com, 8 6 2023. [Online].
Available: https://nonamesecurity.com/learn/what-is-a-soap-api/.

[42
]

A. team, "what-is/sdlc/," amazon.com, [Online]. Avai lable:
https://aws.amazon.com/what-is/sdlc/.

[43
]

S. Kang and S. Kim, "CIA-level driven secure SDLC framework for
integrating security," 2021.

[44
]

M. team, "sdl," Microsoft, [Online]. Avai lable:
https://www.microsoft.com/en-us/securityengineering/sdl.

[45
]

J. Kel ly and D. Sastre, "security-design-security-principles-and-threat-
modeling," redhat, 23 2 2023. [Online]. Avai lable:
https://www.redhat.com/en/blog/security-design-security-principles-
and-threat-modeling.

[46
]

M. MAZYAR, "devops-the-ult imate-way-to-break-down-si los,"
devops.com/, 18 12 2018. [Online]. Available:
https://devops.com/devops-the-ultimate-way-to-break-down-si los/.

47

[47
]

O. team, "www-project-devsecops-guidel ine/latest," owasp, [Online].
Available: https://owasp.org/www-project-devsecops-guidel ine/latest/.

[48
]

S. Dunn, "From-devoops-to-devsecops," SANS, 23 2 2023. [Online].
Available: https://www.sans.org/blog/from-devoops-to-devsecops/.

[49
]

S. team, "what-is-devsecops," synopsys, [Online]. Available:
https://www.synopsys.com/glossary/what-is-devsecops.html.

[50
]

C. Bal l, "owasp-api-security-top-10-and-
beyond/categories/2152491879/posts/2166897970," university.apisec.ai,
[Online]. Avai lable: https://university.apisec.ai/products/owasp-api-
security-top-10-and-beyond/categories/2152491879/posts/2166897970.

[51
]

L. Tal, "owasp-top-10-vulnerabil it ies/api-security-top-10/," snyk.io,
[Online]. Avai lable: https://snyk.io/learn/owasp-top-10-
vulnerabi l it ies/api-security-top-10/.

[52
]

b. team, "rainbow-table-attack," beyondidentity, [Online]. Available:
https://www.beyondidentity.com/glossary/rainbow-table-attack.

[53
]

D. simp, I. S. Jackson, i. and X. , "understand-default-user-accounts,"
microsoft, 19 5 2023. [Online]. Available:
https://learn.microsoft.com/en-us/windows-server/ident ity/ad-
ds/manage/understand-default-user-accounts.

[54
]

S. Uniyal, "api-security-series-part-3-hands-on-guide-to-reducing-
excessive-data-exposure-253826363204," medium.com, 19 2 2021.
[Online]. Avai lable: https://shai lanchal.medium.com/api-security-series-
part-3-hands-on-guide-to-reducing-excessive-data-exposure-
253826363204.

[55
]

O. team, "Mass_Assignment_Cheat_Sheet.html," owasp, [Online].
Available:
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat
_Sheet.html.

[56
]

"owasp-api-security-top-10-and-beyond," .apisecuniversity.com,
[Online]. Avai lable: https://www.apisecuniversity.com/courses/owasp-
api-security-top-10-and-beyond.

[57
]

D. K. Paxton-Fear, "owasp-api/broken-function-level-authorization,"
traceable.ai , [Online]. Available: https://www.traceable.ai/owasp-
api/broken-function-level-authorization.

[58
]

A. Kiskyte, "what- is-headless-browser," oxylabs.io, 21 11 2023.
[Online]. Avai lable: https://oxylabs.io/blog/what-is-headless-browser.

[59
]

i. team, "what-is-a-device-fingerprint-and-what-is-it-used-for," incognia,
[Online]. Avai lable: https://www.incognia.com/the-authentication-
reference/what-is-a-device-fingerprint-and-what-is-it-used-for.

48

[60
]

d. team, "aptcha-vs-recaptcha-whats-the-difference," datadome,
[Online]. Avai lable: https://datadome.co/bot-management-
protection/captcha-vs-recaptcha-whats-the-difference/.

[61
]

p. team, "ssrf," portswigger.net, [Onl ine]. Available:
https://portswigger.net/web-security/ssrf.

[62
]

P. Dughi, "/owasp-top-10-api-improper- inventory-managemen,"
barracuda.com, 8 8 2023. [Online]. Avai lable:
https://blog.barracuda.com/2023/08/08/owasp-top-10-api-improper-
inventory-management.

[63
]

O. team, "0xa9-improper-inventory-management," OWASP, [Online].
Available: https://owasp.org/API-Security/edit ions/2023/en/0xa9-
improper-inventory-management/.

[64
]

F. Wortley, F. Al l ison and C. Thompson, "log4j-zero-day," lunasec.io, 9
12 2021. [Online]. Available: https://www.lunasec.io/docs/blog/log4j-
zero-day/.

[65
]

K. J. Higgins, "the-cost-of-f ixing-an-application-vulnerabil ity,"
darkreading.com, 11 5 2009. [Online]. Avai lable:
https://www.darkreading.com/cyber-risk/the-cost-of-f ixing-an-
application-vulnerabi l ity.

[66
]

O. Avenstein and S. G. Maor, "Security Guidelines for Providing and
Consuming API," Cloud Security Al l iance, 2021.

[67
]

J. Albano, "rest-api-error-handling-best-practices," baeldung.com, 8 1
2024. [Online]. Avai lable: https://www.baeldung.com/rest-api-error-
handling-best-practices.

[68
]

T. OWASP, "Session_Timeout," owasp, [Online]. Avai lable:
https://owasp.org/www-community/Session_Timeout.

[69
]

J. Peterson, "aspm-vs-cspm-key-differences," cycode.com, [Online].
Available: https://cycode.com/blog/aspm-vs-cspm-key-differences/.

[70
]

O. team, "what-is-role-based-access-control-rbac/," okta.com, 15 9
2023. [Online]. Avai lable: https://www.okta.com/identity-101/what-is-
role-based-access-control-rbac/.

[71
]

K. Casey, "attribute-based-access-control-abac," okta.com, 29 9 2020.
[Online]. Avai lable: https://www.okta.com/blog/2020/09/attribute-
based-access-control-abac/.

[72
]

O. C. team, "crAPI_architecture.md#architecture-of-crapi-1," OWASP,
[Online]. Avai lable:
https://github.com/OWASP/crAPI/blob/main/docs/crAPI_architecture.md
#architecture-of-crapi-1.

[73
]

"uncover-security-design-flaws-using-the-stride-approach,"
microsoft.com, 10 7 2019. [Online]. Available:

49

https://learn.microsoft.com/en-us/archive/msdn-
magazine/2006/november/uncover-security-design-f laws-using-the-
stride-approach.

[74
]

o. T. (TM), "Threat_Modeling_Process," owasp, [Online]. Avai lable:
https://owasp.org/www-community/Threat_Modeling_Process.

[75
]

A. Shostack, "threat-modeling," shostack.org, [Online]. Avai lable:
https://shostack.org/resources/threat-modeling.

[76
]

A. shostack, "/threat-modeling#4steps," shostack.org, [Online].
Available: https://shostack.org/resources/threat-modeling#4steps.

[77
]

f. team, "shift-left-security," fortinet.com, [Online]. Avai lable:
https://www.fortinet.com/fr/resources/cyberglossary/shift- left-security.

[78
]

S. team, " introducing-threatcanvas-an-ai-powered-tool-to-automate-
threat-modeling/," securef lag, 6 11 2023. [Online]. Avai lable:
https://blog.securef lag.com/2023/11/06.

[79
]

s. team, "secureflag team," secureflag, [Online]. Avai lable:
https://www.secureflag.com.

[80
]

G. LLC, "2022 Research Report," 2022. [Online]. Avai lable:
https://services.google.com/fh/fi les/misc/google_cloud_api_security_res
earch_report.pdf.

[81
]

N. Kirt ley, "threat-modeling.com," 24 7 2022. [Online]. Available:
https://threat-modeling.com/pasta-threat-modeling/.

[82
]

"https://www.sciencedirect.com/science/article/abs/pii/S0950584918301
939," [Online].

[83
]

H. Bel l, "api-security-best-practices," nonamesecurity, 18 6 2023.
[Online]. Avai lable: https://nonamesecurity.com/learn/api-security-best-
practices.

[84
]

B. Bhattacharya, "api-management-101-rate-limiting," Tyk.io, 3 1 2024.
[Online]. Avai lable: https://tyk.io/blog/api-management-101-rate-
limit ing/.

50

APPENDIX A

APPENDIX

Figure 1.A: Architecture of crAPI.

Figure 2.A: Icons used to create the threat model.

51

Figure 3.A: crAPI threat model . The threat model has been created, based on
the crAPI architecture drawing, by Jan Andersen, author of the thesis, using
SecureFlag [78] [79].

52

Figure 4.A: SNYK SAST overal l f indings. Source: snyk.io

Figure 5.A: SNYK hardcoded password finding. Source: snyk.io

53

Figure 6.A: Compare Snyk and Semgrep for number of security f indings.
Source: snyk.io and semgrep.dev

54

Figure 7.A: APISEC OWASP API Top 10 coverage. Source:
https://www.apisec.ai/product#scan

55

Figure 8.A: APIsec Spec Analysis Results. Source:
https://www.apisec.ai/product#scan

