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1
Introduction to Track-and-follow

1.1 Concept

The general purpose of track-and-follow is, as the name implies, to select an ob-
ject or person and follow its movements or position. An example of this is a
follow-spot on a stage where the light is operated manually to highlight the main
event. Generally what defines the expression track-and-follow is that something
replicates the movement or path of a particular entity. This does not necessarily
have to be done automatically. However, doing so, makes it more convenient in a
lot of cases.

Track-and-follow technologies have revolutionized various industries, particu-
larly the film industry and search and rescue operations. These technologies
embrace a range of tools and techniques that enable the precise tracking and
monitoring of individuals, objects, or locations. In the film industry, aerial pho-
tography utilizing Unmanned Aerial Systems (UASs) equipped with advanced
tracking systems is very common. UASs can follow subjects smoothly, capturing
dynamic and visually striking shots from various angles, enhancing the overall
cinematic experience [1].

Furthermore, thermal sensors play a role in search and rescue operations. Equipped
with thermal imaging cameras, these UASs can detect body heat and thermal
signatures, aiding in locating missing persons or individuals in challenging envi-
ronments [2, 3].

1.2 UAS - Drones

The first pilotless vehicles were developed at the start of the 20th century in
Britain and the USA for military use. A small radio-controlled aircraft was tested
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in 1917 in Britain and the USA in 1918. The term ’drone’ was introduced around
1935, when the British developed UASs as targets for training [4]. In recent years
the development of drones has exploded as their applications now range from
recreational use to warfare.

Drones are aircraft that operate without a human pilot onboard. They can be
remotely controlled or can fly autonomously through software-controlled flight
plans. Drones come in many different sizes, ranging from small to large, and are
equipped with different equipment, such as cameras, sensors, or other payloads.
Drone technology has evolved rapidly over the years, becoming more versatile
and accessible. Their applications can be found in fields such as photography,
videography, agriculture, search and rescue, surveillance, and more [5].

The advancement of UAS technology necessitates corresponding regulations. In
Denmark, drone legislation is governed by both common European rules and
national regulations. The EU Drone Regulation has been in effect in Denmark
since December 31, 2020. Notably, professional drone pilots are allowed to fly
in populated areas, as long as they possess a drone pilot license. Drone owners
with drones weighing more than 250 grams or flying faster than 50 km/h need
to register with the Danish Transport, Construction, and Housing Authority [6].
Furthermore, pilots may not fly their drones too close to military areas, helipads,
police stations, and public airports [7].

1.2.1 Autopilot

UASs can be piloted by remote control via radio or they can be controlled au-
tonomously. The traditional way of controlling the movement of UASs (radio)
gives the pilot full responsibility for the UAS. This comes with a risk of the pilot
crashing or damaging the UAS. Further, the pilot needs to always be controlling
the UAS manually and can thereby never take his attention away from the flight.
Autopilot makes it possible to plan a route for the UAS to fly autonomously,
which in turn makes it much easier for the pilot and expands on the capabilities
and tasks the UAS can take on.

Autopilots in UASs can either be fully or semi-automatic. Semi-auto-piloted
UASs have a variety of safety configurations that ensure that the UAS does not
crash or fly into unauthorized air spaces as well as helping to stabilize the flight
[8]. Fully-auto-piloted UASs can be preplanned to fly routes independently of
a pilot. This also makes it possible for a single pilot to control many UASs si-
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multaneously [8]. For fully-auto-piloted UASs, several open-source commercial
autopilot systems exist, like PX4, and ArduPilot.

1.3 Project scope

For this project, a Cube Orange+ flight controller was made available. Therefore,
the goal of this project is to gather knowledge about the Cube Orange+ and its
environment. It is chosen to center a problem-based project around the Cube
Orange+. For this project, it is decided to mount the Cube Orange+ to a UAS,
specifically a quadcopter drone, and make it track, and follow another moving
object. By doing so, an external system can interface with the Cube Orange+ and
integrate the system data into the firmware, thus obtaining knowledge about the
firmware and the Cube Orange+ itself.

1.3.1 Cube Orange+ as flight controller

The Cube Orange+ is an advanced autopilot utilized for UASs. It is a versa-
tile, open-source, and customizable flight controller that provides a platform for
controlling different aspects of a drone’s flight. This includes navigation, stabi-
lization, communication, and more [9].

Being open-source means that the software’s source code is freely available and
editable. This allows developers and enthusiasts to modify and tailor the au-
topilot to specific needs and preferences. This ensures a robust community and
support ecosystem. All users can provide assistance, share insights, and con-
tribute to the improvement of the flight controller.

The Cube Orange+ uses GNSS data and other sensors to guide the drone, ensur-
ing it follows the desired route accurately. As well as using gyros and accelerom-
eters to maintain stability. Furthermore, it transmits important flight data, such
as altitude, speed, and battery status, allowing real-time monitoring of the UAS’s
performance. All these features are advantageous for tasks such as; mapping,
surveying, monitoring large areas, and capturing steady and clear photos and
videos [9].
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2
Track-and-follow analysis

In this chapter, track-and-follow modes are further investigated, as well as rules
and regulations about UASs as they are necessary to obey. To achieve the de-
sired functionality of a track-and-follow solution using the Cube Orange+, it is
necessary to have a module that receives data containing the whereabouts of the
objects being tracked relative to the drone. This is followed by an analysis of the
firm- and hardware used with the Cube Orange+.

2.1 Autonomous track-and-follow

Traditionally drones have been controlled manually by radio, but in recent years
track-and-follow or FollowMe mode has advanced [8]. Automatic track-and-
follow technologies are systems that enable real-time monitoring and tracking
of objects. These technologies function through hardware and software compo-
nents that collaborate to provide location data for tracked objects. Manufacturers
have made technologies that can handle track-and-follow, on the devices they
sell. Track-and-follow modes are referred to, using various names such as; "Mo-
tion tracking", "FollowMe" and "ActiveTrack" [10]. What differentiates followMe
from fully-auto-piloted mode is that the route is generated at runtime rather than
being pre-planned.

To do this, different specialized tags or sensors can be used on objects to emit sig-
nals. These can be in the form of QR codes, barcodes, RFID tags, GNSS modules,
and IoT-enabled devices. Once tagged, these objects continuously transmit data
to a centralized system or a cloud-based platform. The data may include informa-
tion like location, temperature, humidity, motion, and other relevant parameters,
depending on the purpose of tracking.
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2.1.1 Existing solutions

DJI is a widely known Chinese technology company that specializes in manu-
facturing various drones. DJI has developed both "Follow-me" and "ActiveTrack"
for some of the drones they offer. The following will revolve mainly around DJIs
follow-me and ActiveTrack features.

ActiveTrack on a DJI drone enables the user to have the drone act in accordance
with the movement of the user. This can be handy if one wants photography
while performing activities like skiing, running, or biking [10]. ActiveTrack uti-
lizes the mounted camera to lock onto an object and thereby, track it. The interface
for ActiveTrack allows the pilot to mark objects that it must follow. As a built-in
functionality for ActiveTrack, it utilizes sensors and actuators to avoid any obsta-
cles when flying. Besides ActiveTrack, DJI also provides its Follow-me feature.
The Follow-me feature relies solely on the GNSS signal from the controller of the
drone. Following an object’s coordinates and keeping a set distance from that,
implies that the object does not have to be in the frame at all times. However,
when relying on communication between a device and the drone itself the drone
can lose signal. In the event of this, the drone will hover in the air until a stable
connection can be re-established [11]. The distance from the drone to the pilot in
both ActiveTrack and Follow-me mode is customizable but in follow-me mode, a
5-10 meter distance together with at least 3 meters altitude seems to give the best
results [12].

2.2 Rules and regulations

When flying with UASs, there are strict regulations to follow to be able to fly
legally. These rules and regulations depend on multiple parameters, such as
size and weight. Furthermore, commercially produced drones are required to
be marked with a C-marking classification from 2024 [13]. This C-marking se-
cures that that drone satisfies necessary requirements, and divides the drones
into weight categories. According to which C-marking the drone has, the oper-
ator is obliged to have a certain license/certificate to fly the type of drone. The
table of C-markings/certificated based on weight can be seen in Table 2.1.
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C-marking Weight Certificate
C0 0 - 249 g No certificate required
C1 250 g - 899 g A1 theoretical
C2 900 g - 4 kg A2 competence

C3 & C4 4 kg - 25 kg A3 theoretical

Table 2.1: C-Marking indicates the weight of a commercial drone [13].

Drones that are not marked with a C-certification are called "legacy" drones.
When piloting a legacy drone, the operator still needs a certificate, but the weight-
to-certificate is differently distributed. This is shown in Table 2.2.

Legacy drone

Weight Certificate

0 - 249 g No certificate required
250 g - 499 g A1 theoretical
500 g - 2 kg A2 competence
2 kg - 25 kg A3 theoretical

Table 2.2: Legacy drone table [13].

These different categories of certificates point to a slightly different set of rules.
The difference in these rules mainly focuses on the overflight of people, horizon-
tal safety distances, and the pilot following VLOS (Visual Line of Sight) opera-
tion [14]. Some of the important takes from the "EU UAS regulation" are listed
below:

• The UAS must not exceed an altitude of 120 meters above ground level [14].

• The UAS needs to maintain at least a 50-meter safety radius to non-involved
people, but the horizontal distance to the non-involved people may never
be less than the vertical distance off the ground. However, this can vary
depending on the certificate/C-marking of the UAS but is still used as a
guideline [14].

• In track-and-follow mode, a maximum follow distance of 50 meters is al-
lowed. This means that the UAS may never be more than 50 meters away
from the pilot/object that it is following. Although there is no minimum
distance to the person involved by regulation, it is still practiced to not fly
closer horizontally than the vertical altitude of the UAS [14].
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• If the UAS exceeds 50 meters from the pilot/object that it is following, it
must stop its actions and hover in place. If this is the case resuming flight
is strictly prohibited, and the UAS must be restarted in able to reengage the
track-and-follow system. Lastly, the pilot must always be able to retake con-
trol over the UAS at any point during the track-and-follow operation [15].

2.3 Wireless object-tracking

Examining the track-and-follow solutions in the products developed by DJI for
their drones, they have a solution that utilizes advanced image technology, while
their other solution consists solely of communication and exchange of GNSS co-
ordinates.

GNSS modules are individual modules that can receive GNSS signals directly
from satellites. A GNSS signal consists of longitude, latitude, and altitude data
among other things [16]. This allows for monitoring the position of the object
which can then be compared with the drone’s position.

Image recognition is another method that could be used for a track-and-follow
system. This method utilizes computers to track objects in photos or videos. It
uses AI and machine learning to process the visual data. Although this method
is ubiquitous it is very complex as it uses deep learning algorithms that take in-
spiration from our biological nervous system to form an intricate network of data
and learning capacities [17].

In addition to determining the object by using image recognition, are thermal
cameras. Using thermography is advantageous since it is independent of light-
ing. This means that object tracking can be done at any time of the day given that
the object has a different temperature than the environment. For this specific rea-
son, it is more aimed at tracking humans and animals as their body temperature
would stand out significantly [3].

2.4 Methods for transceiving location data

Relying solely on GNSS positioning, a connection between a GNSS module and
the drone must be established. The drone needs a receiver to capture the GNSS
data transmitted wirelessly.
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One approach involves an onboard microcontroller unit (MCU) with an antenna
mounted on the drone. The MCU would act as an intermediary, receiving the
data and relaying it through an interface to the drone’s Cube Orange+ for the
data to be handled. The Cube Orange+ has certain limitations when it comes
to communication methods. As a standard, the Cube Orange+ supports UART,
CAN, and I2C [9].

Another approach is making a connection between the GNSS module and the
drone through the Cube Orange+ directly. The Cube Orange+ can connect to a
PC through USB cables, Telemetry Radios, Bluetooth, and IP connections [18].
Therefore, a GNSS module connected to an MCU should be able to connect to the
Cube Orange+ with, for instance, Bluetooth.

2.4.1 Additional module on the drone frame

Whichever system is chosen as the track-and-follow solution, the dimensions,
weight, and placement of the system have to be taken into consideration. Adding
weight to the drone might change the center of balance and add complexity to
flying, which then requires a correction for possible balance offsets. Luckily the
Cube Orange+ acts as a flight controller and acts as a feedback loop controller
to make sure the drone can stably hover in the air even with an off-center bal-
ance [19].

If such a system is mounted on the drone it will have to draw its power from
the drone batteries as well. This will require some sort of interface between the
batteries and the system to ensure the correct voltage is met for the system to run
operationally.
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3
Problem definition

From the problem analysis above, a problem definition is developed to form the
frame and direction of this project. The problem definition states:

How can a track-and-follow system using GNSS data be developed and inte-
grated into an already existing Cube Orange+ autopilot drone system, such
that knowledge and familiarity of the Cube Orange+ are obtained?
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4
Proposed solution

This chapter’s objective is to describe a solution for the track-and-follow system,
which can then serve as a basis for establishing its requirements. The following
is a proposed solution to solve the problem definition 3.

The functional diagram of the proposed solution is shown in Figure 4.1.

Figure 4.1: Functional diagram of the proposed solution.

In this proposed solution, a person is equipped with a GNSS (Global Naviga-
tion Satellite System) module, which receives information about its location from
satellites and transmits it to another module mounted on a drone. The module
then transmits the data further to the drone. The drone, in response, uses this
data to follow the person, maintaining a fixed distance.

GNSS technology for tracking is chosen on the basis that image recognition is out
of the scope of this project. Thermography is limited to humans, animals, and
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other heated objects and is therefore neglected. Further, GNSS does not require
the drone to have a camera mounted and enables any objects that have a GNSS
module mounted to be followed. This is a significant advantage, as the drone’s
performance remains unaffected by its surroundings and environment.

Ideally, the communication between Cube Orange+ and the user-held GNSS mod-
ule should be direct and wireless. However, the option of changing the module
placed on the drone is favorable in case the communication range is not suffi-
cient. Also having an extra link enables easier debugging and troubleshooting,
especially since the project’s time frame is limited.

This approach facilitates a real-time, reliable track-and-follow system where a
drone autonomously follows a person, allowing for various applications, such as
aerial photography, surveillance, or search and rescue operations.
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5
System frame

This chapter states the physical limits of the system frame with the received
hardware for this project. Due to the scope of the project, the system is to be
framed around the Cube Orange+, which is well suited for the specific open-
source firmware called ArduPilot. Furthermore, necessary hardware has been
made available by Aalborg University to explore the project definition.

5.1 Available hardware

In this section, the given hardware is described as it may limit system require-
ments. The hardware made available from the University is the following:

• Cube Orange+

• Drone kit

• Battery pack

• GNSS module

• Telemetry radio set

• RC controller

• RC receiver

• Spare parts for the drone kit

12



Cube Orange+

The Cube Orange+, introduced in section 1.3.1, operates within an open-source
environment. ArduPilot, the open-source firmware, provides a flexible and cus-
tomizable codebase that can be specified to the specific objective of this project.
The firmware provides compatibility with many types of vehicles including rovers,
planes, submarines, and drones, which makes it a universal autopilot module.

In terms of hardware, The Cube Orange+ is equipped with a H7 processor and
has a Cortex M7 with double-precision (DP) FPU, 400MHz CPU, a Cortex M4
running at 200 MHz, 2 MB of Flash, and 1 MB RAM [20]. It has Advanced Auto
avoidance features with the help of a 1090 MHz customized ADS-B receiver from
uAvionix, that receives attitude and location data of commercial manned aircraft
[20]. Moreover, it has customized carrier boards that can be optimized for specific
applications [20].

The carrier board facilitates the organization of all the relevant I/O components,
connecting them to their respective ports and sockets. This design ensures a sim-
ple process for assembling, disassembling, and servicing the drone without the
need for soldering [21].

As mentioned in section 1.3.1 the Cube utilizes multiple communication meth-
ods. The carrier board facilitates the utilization of these communication methods.
Table 5.1 provides an overview of the UART ports on the carrier board, outlining
the default systems they control. These can be modified to be used for different
systems through a ground control station. This feature enables the customization
of UART ports; for instance, the TELEM1 port, as well as many other ports, offers
versatility by accommodating up to 32 different protocols.

Serial Port Mapping TELEM1, TELEM2 ports
UART Device Port Pin Signal Volt

USART2 /dev/ttyS0 TELEM1 (flow control) 1 (red) VCC +5V
USART3 /dev/ttyS1 TELEM2 (flow control) 2 (blk) TX (OUT) +3.3V
UART4 /dev/ttyS2 GPS1 3 (blk) RX (IN) +3.3V
USART6 /dev/ttyS3 PX4IO 4 (blk) CTS (IN) +3.3V
UART7 /dev/ttyS4 CONSOLE/ADSB-IN 5 (blk) RTS (OUT) +3.3V
UART8 /dev/ttyS5 GPS2 6 (blk) GND GND

Table 5.1: Serial- and Telem ports on the Cube Orange+ carrier board.
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Drone kit

The available drone kit is a Holybro X500 V2 ARF quadcopter kit, with a lightweight
carbon frame and four 2216-920KW brushless DC motors [22]. In addition to the
main top and bottom plate of the drone structure, a platform board, with the di-
mensions 93 mm x 65 mm, on the back of the drone is added for the GNSS module
to be mounted. The assembly instructions of the drone kit, suggest that a micro-
controller can be mounted on the bottom of this platform board. The weight
of the drone kit is 610 g. The drone structure with some added components is
illustrated in Figure 5.1.

Figure 5.1: Holy Bro X500 V2 ARF kit assembled where the platform board is on the right side of
the body.

Battery pack

The drone is powered by a 14.8 V 4-cell high discharge Li-Po battery pack which
is mounted underneath the body of the drone. This battery has a capacity of
3300 mAh and weighs 359 g including wire, plug, and case.
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GNSS module

The GNSS module Holybro M9N GPS 6Pin - 2nd GPS, is a second-generation
GNSS module that supports multiple satellite connections such as GPS, GLONASS,
Galileo, and BeiDou to ensure better connectivity due to more available satellites.
It features a 6-pin interface, with serial and I2C connections, that allows for easy
implementation and compatibility with most flight controllers including the Cube
Orange+ [23].

Telemetry radio set

The Telemetry set ’TELEMETRY RADIO SET V3 433MHZ’, including two ra-
dio modules and some USB cables, can be used to connect the flight controller
on the drone to a Ground Control Station (GCS) through radio communication.
This allows for GCS software to control the drone with a predetermined mis-
sion [24]. The radio modules are equipped with both USB-A and JST-GH plugs
which makes it easy to connect to either a PC or a flight controller as The Cube
Orange+. Furthermore, it has automatic detection of firmware like ArduPilot,
which makes for a seamless startup [24].

RC controller

The RadioMaster TX16S Mark II is a transmitter de-
signed with a 4-in-1 multiprotocol or ELRS FR sys-
tem and open source firmware as OpenTX and Ed-
geTX [25]. Connecting a RadioMaster receiver to
the flight controller allows for manual control of the
drone when the TX16S is calibrated. It has support
for telemetry data transmission and Hall sensors for
the joysticks, which ensure contactless position sens-
ing of cross controllers [25]. Figure 5.2: RadioMaster

TX16S Mark II [25].
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Figure 5.3: RadioMaster RP1
ExpressLRS Nano Receiver V2
(2.4GHz) [26].

RC receiver

The receiver given is a RadioMaster RP1 Ex-
pressLRS Nano Receiver V2 (2.4GHz) running
ExpressLRS (ELRS) as the controller mentioned
above [26]. This makes binding them an easy
process and the high-refresh-rate RF module is
also suitable for long-range.

5.2 ArduPilot firmware

As ArduPilot is an open-source firmware compatible with all the Pixhawk/Cube
series, it can be used to run any vehicle compatible with the Cube series. In this
case, the Orange Cube+ is mounted on a drone, and the ArduCopter directory is
the vehicle-specific software used in this project.

Apart from the vehicle-specific software, ArduPilot also has shared libraries with
functions compatible with multiple vehicle types. This is convenient for the
vehicle-specific software code to remain as short and structured as possible.

Lastly, ArduPilot has a Hardware Abstraction Layer (HAL) that acts as an inter-
face between the many compatible hardware solutions and the ArduPilot soft-
ware. This architecture is shown in Figure 5.4.
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Figure 5.4: The simplified architecture of the ArduPilot Firmware.

Since most of the relevant software for this project is in the vehicle-specific Ar-
duCopter code, only ArduPilot functionality relevant to this project will be inves-
tigated further.

Since the entire ArduPilot is open-source, a sense of better structure is sometimes
wanted. Dealing with only the ArduCopter code there are a lot of files, and
not all files are important for everything. One of the most important ones is the
Copter.cpp file which acts as a main.cpp file. It consists of the main Copter class
and uses the AP_Scheduler library to schedule all the different tasks running the
Copter flight controller.

Copter.cpp

The first thing in Copter.cpp is the scheduler table, which utilizes two different
functions to schedule various tasks. An example of the scheduler table is shown
in Listing 1.

1 const AP_Scheduler : : Task Copter : : s cheduler_ tasks [ ] = {
2 FAST_TASK( r u n _ r a t e _ c o n t r o l l e r ) ,
3 . . .
4 SCHED_TASK( rc_loop , 250 , 130 , 3 ) ,
5 SCHED_TASK( t h r o t t l e _ l o o p , 50 , 75 , 6 ) ,
6 . . .
7 }

Listing 1: A few selected tasks listed in the scheduler table of Copter.cpp to demonstrate the
scheduler list [27].
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As seen in Listing 1 there are two different functions called in the scheduler table.
The first is FAST_TASK() shown in line 3. The other task displayed in lines 5-
6 is the SCHED_TASK(). This function takes more inputs than the FAST_TASK()
function, as seen in Listing 2.

1 # def ine SCHED_TASK( func , _ i n t e r v a l _ t i c k s , _max_time_micros , _prio )

Listing 2: Definition of SCHED_TASK.

Here _interval_ticks sets how often the task should run and _max_time_micros
defines how much time should be allocated at maximum to the task in microsec-
onds and _prio defines what priority the task should have. It is important to note
that all priorities must be unique. The functions SCHED_TASK() and FAST_TASK()
are defined from macros in the AP_Scheduler library.

After the scheduler table, the functions that are members of the Copter class
are defined, one of them being potentially relevant is the set_target_location
demonstrated in Listing 3. Where an instance of the Location class is used to set
the destination, when in guided mode.

1 bool Copter : : s e t _ t a r g e t _ l o c a t i o n ( const Locat ion& t a r g e t _ l o c ) {
2 // e x i t i f v e h i c l e i s not in Guided mode or Auto−Guided mode
3 i f ( ! f l ightmode −>in_guided_mode ( ) ) {
4 re turn f a l s e ;
5 }
6 re turn mode_guided . s e t _ d e s t i n a t i o n ( t a r g e t _ l o c ) ;
7 }

Listing 3: One of the functions defined in the Copter.cpp file that inherit the Copter class [27].

After all the functions are declared the last thing happening in Copter.cpp is
the HAL callback, which tells the HAL what vehicle the flight controller has to
control. This is shown in Listing 4.

1 Copter copter ;
2 AP_Vehicle& v e h i c l e = copter ;
3 AP_HAL_MAIN_CALLBACKS(& copter ) ;

Listing 4: One of the functions defined in the Copter.cpp file that inherit the Copter class [27].
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AP_Scheduler

As mentioned above, the two different scheduler tasks in Copter.cpp are defined
using the macros from the AP_Scheduler library, where the class name and the
address of the class are inputs too. The two functions are defined as macros and
one is shown in Listing 5.

1 # def ine SCHED_TASK_CLASS( classname , c l a s s p t r , func , _rate_hz ,
_max_time_micros , _ p r i o r i t y )

Listing 5: Definition of SCHED_TASK_CLASS.

The difference between the two macros that define the scheduler tasks, is that
the FAST_TASK_CLASS sets the parameters .rate_hz and .max_time_micros to 0,
and also tells the scheduler to execute them as fast as possible with the highest
priority.

Location.cpp

Since location data is used throughout the system, and the Location class is used
to set the destination in Listing 3, it makes sense to look into the class. An in-
stance of this class represents a geographical location with latitude, longitude,
and altitude, as well as methods for various location-related calculations and op-
erations. The latitude, longitude, and altitude are represented as 32-bit integers.
This is seen in Listing 6.

1 c l a s s Locat ion {
2 publ ic :
3 . . .
4 i n t 3 2 _ t a l t ;
5 i n t 3 2 _ t l a t ;
6 i n t 3 2 _ t lng ;
7 . . .
8 }

Listing 6: Coordinate definitions in the Location class.

Even though the variables are saved as 32-bit integers, the values are supposed
to be decimal degrees. To justify the decimal degrees as integers the values are
scaled with a factor of 107 or 10−7. This gives a maximum resolution of 7 decimals
of the decimal degree, which translates to a resolution of approximately 11,1 mm
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at equator [28]. This scaling is documented in the Location header file as private
variables and is shown in Listing 7.

1 p r i v a t e :
2 . . .
3 // s c a l i n g f a c t o r from 1e−7 degrees to meters a t the equator
4 // == 1 . 0 e−7 * DEG_TO_RAD * RADIUS_OF_EARTH
5 s t a t i c constexpr f l o a t LOCATION_SCALING_FACTOR = LATLON_TO_M;
6 // inverse of LOCATION_SCALING_FACTOR
7 s t a t i c constexpr f l o a t LOCATION_SCALING_FACTOR_INV = LATLON_TO_M_INV

;
8 } ;

Listing 7: Scaling factors in the Location class.

The class also offers versatile functions for distance and bearing calculations, al-
titude frame conversions, and vector manipulations. Some functions can sanity-
check the location data to ensure the right format is used. This class seems to be
useful for storing and implementing Location data.
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6
Requirements

This chapter describes the essential requirements for the track-and-follow sys-
tem, aiming to provide a comprehensive understanding of its functionality and
establish a structured framework for product development. The requirements are
crucial in defining the system’s expected capabilities. The requirements are di-
vided into functional and technical requirements respectively.

To define the modules illustrated in the proposed solution in Figure 4.1, the per-
son with the device transceiving GNSS signal is now defined as the Position
module (Pos). The drone’s receiving end is defined as the Link module (Link),
linking the signal from the Position module to the drone. The flight controller
is defined as the Cube module (Cube). The requirements for the communication
between the Position and Link module are defined as Com.

The requirements are divided into tables with their ID, which module they re-
gard, a description of the requirement, and their traceability in the report.
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6.1 Functional requirements

Functional requirements encompass all aspects of a system’s functionality, and
they are non-technical and not directly testable.

Functional requirements
ID Module Description Traceability
1.1 Link Needs to be able to receive and save data. Section 2.
1.2 Link Needs to be able to send data through the inter-

face to the Cube Orange+.
Section 2.4

1.3 Link Needs to be able to decode the received pack-
ages.

Chapter 4

1.4 Link Needs to be able to format the data appropri-
ately for the Cube Orange+ to handle it.

Chapter 4

1.5 Cube Needs to be able to send the decoded data to
the appropriate place in the ArduCopter code.

Chapter 4

1.6 Cube Needs to be able to calculate the desired desti-
nation of the drone.

Chapter 4

1.7 Cube/
Link Must be powered by the drone on which it is

mounted.
Section 2.4.1

1.8 Pos Needs to be able to transceive GNSS data wire-
lessly.

Section 2.4

1.9 Pos Needs to be appropriately sized to be carried in
hand.

Chapter 4

Table 6.1: Functional requirements for the system.
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6.2 Technical requirements

The technical requirements encompass all specifications related to the system’s
underlying technology and infrastructure. These are specific and can be tested
for compliance.

Technical requirements
ID Module Description Traceability
2.1 Link The microcontroller needs to output a signal of

the type; Serial, CAN or I2C.
Section 2.4.

2.2 Link Needs to be able to receive data wirelessly with
a minimum distance of 50 m.

Section 2.2

2.3 Link Needs to weigh a maximum of 1031 g. Table 2.2
2.4 Link The maximum allowed dimensions is 93 mm x

65 mm x 1500 mm.
Section 5.1

2.5 Pos Needs to be able to transmit data wirelessly
with a minimum distance of 50 m.

Section 2.2

2.6 Com Data transmission between Pos and Link with a
maximum of 1-second intervals.

Section 9.2

2.7 Cube The drone needs to maintain a distance of 7.5
meters to the object it is following with a margin
of ±2.5 m.

Section 2.1.1

2.8 Pos Receive data with a horizontal position accuracy
of maximum 2.5 m.

Requirement
2.7

2.9 Com The data transmission between the Pos and the
drone needs to have a maximum FER of 1%.

Section 9

Table 6.2: Technical requirements for the system.
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6.3 Test specifications

To validate both the requirements and the proposed solution, a variety of tests
are specified. There are three different ways of testing the solution. First, we have
the Unit test, where one specific unit of the system is tested independently from
the system. Secondly, a verification test is where the full system, or a part of the
system is tested to see if it fulfills the requirements. Lastly, there are validation
tests, which validate if the solution solves the problem stated in the problem
definition regardless if it passes the requirements or not. Here at least one of
each test is specified.

6.3.1 Unit test

Position module unit test

Requirement
Receive data with a horizontal position accuracy
of maximum 2.5 m.

Test:
A.1

Purpose
The purpose of this test is to validate the horizontal posi-
tion accuracy for the specific GNSS submodule used in the
Position module.

Success criteria
The success criteria of this test is that 50% of the coordinates
are within 2.5 meters of each other.
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6.3.2 Verification test

Transmission range verification test

Requirements
The data transmission between the Pos and the
drone needs to have a maximum FER of 1%.

Test:
A.2

Needs to be able to receive data wirelessly with
a minimum distance of 50 m.

Test:
A.2

Purpose

The purpose of this test is to measure the Frame Error Rate
(FER) of the communication between the Position module
and the Link module. This is done at 50 meters to also
test the maximum data transmission range of the technical
requirement 2.9.

Success criteria
The success criteria of this test is that the calculated FER
does not exceed 1%.

Speed of data transmission acceptance test

Requirement
Data transmission between Pos and Link with a
maximum of 1-second intervals.

Ch: 10

Purpose

The purpose of this test is to control and observe the data
flow of the position data between the Position module to
the Link module. This is done on the full system to see
if the Cube module receives the data at the given sending
rate.

Success criteria
The success criteria of this test is to send and receive
readable data continuously with no longer intervals of 1-
seconds.
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Follow distance acceptance test

Requirement
The drone needs to maintain a distance of 7.5
meters to the object it is following with a margin
of ±2.5 m.

Ch: 10

Purpose

The purpose of this test is to see if the full drone system is
able to maintain a 5-10 m distance to the position module.
To simplify the test it is converted to be a simulation of the
cube firmware, so no flight is needed.

Success criteria
The success criteria of this test is that the simulated position
of the drone can follow a person walking with the position
module with a distance to the module between 5-10 meters.

6.3.3 Validation test

In the validation test, the evaluation will focus solely on validating how the sys-
tem addresses the problem outlined in the Problem Definition, see Chapter 3,
excluding the specific requirements.

Problem definition test

Hypothesis

How can a track-and-follow system using GNSS data
be developed and integrated into an already exist-
ing Cube Orange+ autopilot drone system, such that
knowledge and familiarity of the Cube Orange+ are
obtained?

Test:
A.3&A.4

Purpose
The purpose of this test is to validate if the entire system
lives up to the problem definition. Can it solve the prob-
lem?

Success criteria
The success criteria of this test is that the system answers
the problem definition by following an object i.e. the drone
follows the Position module without failure.
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7
Preparation for system design

This chapter will elaborate on what measures must be taken before the system is
ready to be manipulated further. As well as documentation on information about
the system based on experience.

7.1 Mission Planner - Ground Control Station

First, it is important to get accustomed to the ground control software - Mission
Planner - as this is where most configurations of the Cube Orange+ take place.
Mission Planner is specifically developed by the same contributors as ArduPilot,
making it the perfect use for Cube Orange+. From within Mission Planner, it
is possible to flash the latest firmware from the ArduPilot directory to whatever
UAS platform is selected and plugged in.

The purpose of Mission Planner is as its name suggests, to easily plan missions
for any autopilot flight controllers, such as the Cube Orange+.

7.2 Preparation of the Cube Orange+

Multiple steps are needed to prepare the Mission Planner setup before the drone
is fully operational. This section delves into which initial steps are needed for the
drone to be armable and different hacks to implement new code into the already
existing ArduCopter code base.

When in Mission Planner, parameters can be changed and written to the drone.
This has to be done with some specific parameters to communicate and con-
trol the drone. This is done under the "Config/Full Parameter List" tab. Firstly,
"LOG_DISARMED" is set to 1 as this allows for all log messages to be readable
when the drone is disarmed. This helps in debugging the system. Next, the
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"RSSI_TYPE" parameter is set to "ReceiverProtocol" to allow the controller to con-
nect with the Cube Orange+ [29].

Once these steps are done, the compass needs to be calibrated. This is done by
having the Cube Orange+ connected to the PC, then in Mission Planner under
"Setup", "Mandatory Hardware", and "Compass" start the calibration and follow
the instructions. It is important to disable excess compasses as they interfere with
each other and prevent arming. After this is done the drone should be able to
arm. Arming is done in the "Data" window, under the "Actions" tab where an
"Arm/Disarm" button is located.

For communication with the Cube Orange+, the TELEM1 port is used. There-
fore, the protocol is changed to MAVLink2 in Mission Planner. The pinout of the
TELEM1 port can be seen in table 5.1.

7.2.1 Manipulation of ArduPilot code

After successfully enabling the drone for arming, the next step for obtain-
ing additional functionality involves modifying the ArduPilot code. Firstly,
make a new source and header file in the ArduCopter folder, and call these
AP_custom_code.cpp and .h respectively to adhere to the structure of the rest
of the code. The term "custom_code" functions as a stand-in or placeholder rep-
resenting the example at hand. This class should hold all the functions and vari-
ables needed to execute the wanted functionality.

Next, make a source file called custom_code.cpp with all lowercase. This
source file should use a function that acts as a task from the Copter header
file, where the function needs to be defined. For example, the public func-
tion custom_code_init() is created in Copter.h. Further, an object of the
AP_custom_code class needs to be initialized in the Copter.h so that functions
from that class can be utilized in custom_code.cpp. To do this AP_custom_code.h
needs to be included in the Copter.h file as well as including Copter.h in
custom_code.cpp. Lastly, fill the custom_code_init() with the functionality of
the AP_custom_code class.

After this is done the custom_code_init() function can be incorporated in the
scheduler and thereby run with the rest of the program.

A simple illustration of this structure can be seen in figure 7.1.
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Figure 7.1: Simple illustration of the structure used in ArduCopter.

It is important to adhere to the already existing structure of any open source
code as many different developers are manipulating the same code. The normal
class naming convention for C and C++ is called PascalCase, this is a convention
where names start with an uppercase letter and capitalize the first letter of each
subsequent joined word. In the context of ArduPilot, the main folders are named
using the PascalCase convention [30]. Whereas the classes within these folders
are named by the snake_case convention, where words are written in lowercase
and separated by underscores [30].

7.2.2 Incorporating custom code in ArduCopter’s scheduler

To incorporate custom code in the scheduler, explained in Section 5.2, a function
needs to be called in either SCHED_TASK() or FAST_TASK(). The first input should
be the name of the task used in the custom_code.cpp file. From the example
before it would be custom_code_init(). Afterward, it is important to choose the
parameters _interval_ticks, _max_time_micros, and _prio carefully.

To know how much extra time is available when the scheduler table is running,
the _max_time_micros and _interval_ticks are multiplied for each task and
added together, for context see the Copter.cpp file in repository [27]. This will
result in the amount of time available in each second in the worst-case scenario.
These calculations are shown in Equation 7.2.2.
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∑(Hz ⋅µs) = (250 ⋅ 130) + (50 ⋅ 75) + (50 ⋅ 200) + (10 ⋅ 120)
+((10 ⋅ 50) ⋅ 3) + (10 ⋅ 75) + (10 ⋅ 100) + (50 ⋅ 100)
+(100 ⋅ 90) + (3 ⋅ 75) + (90 ⋅ 50) + 100+ (10 ⋅ 75)
+((10 ⋅ 50) ⋅ 2) + (50 ⋅ 50) + (100 ⋅ 75) + (10 ⋅ 50)
+(400 ⋅ 180) + (400 ⋅ 550) + (400 ⋅ 50) + (0.1 ⋅ 75)
+(100 ⋅ 75)

= 401 282 . 5 µs1

This leaves a margin of just below 600 000 microseconds of air each second, which
makes implementing custom tasks completely doable.

1 The added maximum allocated time of the base SCHED_TASKs excluding the FAST_TASKs and
the ones depending on parameters.
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8
System design

In this chapter, the overall design of the track-and-follow system is shaped. From
choosing the hardware to designing the software and firmware. It sheds light
on the thought process and decision-making involved in shaping the track-and-
follow system. The system is split up into different sub-systems. Hence, the
structure of this chapter is separated into modules. Firstly, the Position module
and the Link module are described under Module design. Then the firmware,
that is to be implemented on the Cube Orange+, is documented.

8.1 Module design

Before designing the modules, an overview of the system is shown in 8.1. The
figure is based on the modules defined in Chapter 6.

Figure 8.1: A block diagram illustrating different modules and submodules of the track-and-
follow system, and how they are connected.
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The figure shows the Position module where the GNSS submodule gets the lo-
cation data and sends it through a wired connection to the MCU. The MCU
transmits this data wirelessly to the other MCU mounted on the drone. Lastly,
the MCU on the drone sends the location data to the Cube module where the
flight controller can use this data to follow the Position module.

8.1.1 Micro-controller

To establish a connection between the two modules, it is important to consider
which microcontroller to use. Some microcontroller modules have many ways of
communicating wirelessly while others have none.

For this project, the microcontroller ESP32 was made available for testing and use.
The MCU ESP32-WROOM-32 is a 32-bit dual-core microcontroller that allows for
both WiFi and Bluetooth communication as well as two sets of hardware serial
ports [31].

8.1.2 GNSS sub-module

The GNSS module provided for transmitting location data from the position mod-
ule to the drone is the GY-GPSV3-NEO-7M. It is equipped with the Ublox NEO-
7M chipset, offering precise GNSS positioning capabilities [32]. Below are a few
of its technical details:

• Horizontal position accuracy : 2.5 mCEP50% 8.1.2

• Update rate: Maximum 10 Hz

• Communication Protocol: NMEA ( default ) / UBX Binary

• Serial communication baud rate: 9600

• Working temperature : -40 ○C to 85 ○C

• Operating voltage: 2,7 V - 5,0 V

• Working Current: 35 mA

One of the important specifications of this GNSS submodule is the horizontal
position accuracy that determines the accuracy of the data the drone has to follow.
If the incoming data from the submodule varies too much, there is potential for
the drone to wander around, and not follow the position module as planned.
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Even though the accuracy is high the precision cannot be too low either.

In terms of accuracy and precision, the difference can be described by mean and
variance. High accuracy is simply that the mean of all the samples is close to the
actual position, whereas high precision is the samples not varying too much from
the mean [33]. This is illustrated with Figure 8.2.

Figure 8.2: Illustration of the difference between precision and accuracy.

Circular error probability

The horizontal position accuracy of the GNSS submodule is specified in meters
but with the condition of Circular Error Probability (CEP). It refers to the radius
of the circle in which a percentage of the values occur [33]. In this case, the
CEP of the NEO-7M is written as CEP50% which means that 50 % of the GNSS
measurements are certainly within a radius of 2.5 m of the actual position. On
the other hand, the rest of the data could potentially be much further away. The
concept of CEP with different probability percentages is illustrated in Figure 8.3.
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Figure 8.3: A concept figure of CEP with 1000 data points generated with a spread of 0.001
following the normal distribution around the mean coordinate [57.00 , 10.00].

Chipset capabilities:
The Ublox NEO-7M chipset integrated into the module expands its functional-
ity. It supports GLONASS and GPS/QZSS satellite constellations, broadening
the scope of satellite signals and enhancing positioning accuracy. The chipset fur-
ther offers compatibility with various communication interfaces, including UART,
USB, SPI, and DDC, providing flexibility for integration into diverse systems [34].

Additionally, the chipset is equipped with an RTC crystal, enabling the transmis-
sion of real-time data [34].

Communication Protocol:
The GY-GPSV3-NEO-7M module supports multiple communication protocols,
primarily NMEA as default. This protocol plays a crucial role in determining
how the module communicates and shares data with other devices or systems.

NMEA, or the National Marine Electronics Association, has defined a standard
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for the communication of marine and navigation data between devices. The most
commonly used version in the context of GNSS and navigation is NMEA 0183.

NMEA 0183 data is transmitted in the form of sentences, each beginning with
a dollar sign character ($), and is terminated by a carriage return and line feed
(/r/n). Each sentence is a string of ASCII characters containing information such
as latitude, longitude, time, and more [35].

Different types of sentences are defined for different data types. The types are
defined as $GPGGA, $GPRMC, $GPGLL, $GPGSA, and $GPGSV [35]. Figure 8.4
is an example of what a $GPGGA sentence contains.

Figure 8.4: The full GPGGA message containing time, location data, amount of satellites it is
connected to, and more. [35].

Software for reading location data

The code designed to read the GNSS location data on an ESP32 can be seen in the
GitHub repository [36] in the "Position Module" folder. The code is designed to
read and process location data from the NEO-7M module using the TinyGPS++
library, and then transmit the latitude, longitude, and altitude information to the
link module [37]. The flowchart can be seen in Figure 8.5.
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Figure 8.5: Flowchart that describes the structure and functionality of the code running on the
ESP32 for Position module. The functionality is to read coordinates and transmit them.

TinyGPS++ is designed to work with GNSS modules that communicate using
the NMEA standard sentences. It parses incoming NMEA sentences from the
GNSS module and provides functions to extract specific pieces of information
such as latitude, longitude, altitude, speed, course, and more [38]. On the ESP32
the library is solely used to parse the latitude, longitude, and altitude. As seen in
Listing 8, these are saved into a string that can be transmitted to the Link module.

1 s p r i n t f ( gnssData , " %.8 f ,%.8 f ,%.2 f " , Loc . Lat , Loc . Long , Loc . Alt ) ;

Listing 8: Using the sprintf() to save the variables with the given decimals in the char array
gnssData.

8.1.3 Communication between modules

The ESP32-WROOM-32 microcontroller has two different built-in technologies for
radio communication, WiFi and Bluetooth Low Energy (BLE). These technologies
are widely used in many IoT solutions. Some of the pros and cons of the two are
seen in Table 8.1.
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WiFi BLE

Max Data Rate 1 - 600 Mbit/s [1] 700 Kbit/s
Max Range 50 - 200 m [39] 80 - 120 m [2]

Power consumption 95 - 240 mA [ 3] 95 - 130 mA [40]

Table 8.1: Comparison of the wireless communication technologies WiFi and BLE, where Maxi-
mum data range, maximum transceiving distance, and power consumption are compared.

In terms of the requirement of the following range of 50 meters in Table 6.2, both
technologies support that. In terms of power consumption, the BLE is preferred
in a power-scarce system as drones. Additionally, it is worth noting that the
ESP32 does not consume more power when it receives a WiFi signal than when
it receives a BLE signal. It is only when transmitting using WiFi that the power
consumption doubles. This will not have an impact on the Link module but on
the position module.

The motivation for using WiFi over BLE is significant because of familiarity with
the technology and protocols. Therefore it is chosen to communicate between the
modules with WiFi using IEEE 802.11b/g/n protocols.

Point-to-Point

When communicating in a network, a topology is used to arrange the systems
on the network. One of the most common ones when connecting two modules is
a Point-to-Point topology. In Point-to-Point topology the systems are connected
directly via a link, which can be wired or wireless. This direct connection only
has the purpose of sending packages back and forth between the systems. The
closed communication channel also provides privacy since it is not shared with
other systems [43]. The topology is shown in Figure 8.6.

1 The Maximum data rate of WiFi depends on which IEEE standard is used (802.11b/g/n) [41].
2 Calculated from The Bluetooth Range Estimator with the ESP32 BLE characteristics [42] [31].
3 Receiving BLE and WiFi is the same (95 - 100 mA), whereas transmitting WiFi depends on which

protocol IEEE 802.11b/g/n (180 - 240 mA) [40].
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Figure 8.6: Point-to-Point topology in a communication network.

TCP

Because a secure and reliable connection is preferred, the Transmission Control
Protocol (TCP) is chosen for the WiFi connection. TCP is a connection-based
protocol that ensures reliable data delivery between systems on the network. It
directs data flow, error detection, and correction, thereby providing a guaranteed
and stable method for transmitting data over WiFi [44]. When sending data via
TCP, a three-way handshake must be established for both systems to synchro-
nize and acknowledge the connection. As seen in Figure 8.7, the sender starts
by sending an initial synchronization request SYN, where the receiving system
responds with a synchronization and acknowledge request SYN ACK. The sender
then acknowledges the SYN request from the receiver [45].

Figure 8.7: The three-way handshake used in TCP to establish a reliable connection.

To connect the two ESP32 via TCP the WiFi.h library is used to establish a client
connection using the server IP and the server port addresses. Where server IP is
a unique address for the device and the server port is the specified port it sends
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and receives data from/to. This is seen in the connectToServer() function in
Listing 9.

1 const char * server IP = " 1 9 2 . 1 6 8 . 1 . 1 " ;
2 const i n t s e r v e r P o r t = 8 0 ;
3

4 void connectToServer ( ) {
5 c l i e n t . connect ( serverIP , s e r v e r P o r t ) ;
6 i f ( c l i e n t . connected ( ) ) {
7 S e r i a l . p r i n t l n ( " Connected to the server . " ) ;
8 } e l s e {
9 S e r i a l . p r i n t l n ( " Connection to the server f a i l e d . " ) ;

10 }
11 }

Listing 9: The function of connecting the server to the client and vice versa.

The full software of the position module can be found in the GitHub repository
[36] in the folder called "Position Module".

Frame intervals

The NEO-7M GNSS submodule has different update rates when receiving signals
from different satellite systems. The maximum navigation update rate is 10 Hz
for GPS and only 1 Hz for GLONASS [34]. As the maximum update rate for the
navigation data is defined by the GNSS submodule, the minimum frame interval
can be set to 1

10 s, as it is ideal to only send information as fast as the GNSS data
updates.

Additionally, it is worth noting that the frame interval should match the fre-
quency of the rest of the system. This frequency is to be decided in the scheduler
of the ArduPilot code. This will be decided in Section 9.2.

Frame error rate

In an ideal world, all the frames are received by the Link module in their entirety.
But in reality, some frames may be lost in the process. To define the maximum
allowed Frame Error Rate (FER) the system frequency needs to be taken into
account. The faster frames are sent, the less impact one lost frame has, and the
slower the system frequency the more critical it is to lose frames. It is expected
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that the WiFi connection between the two ESP32s is reliable enough to meet a
Maximum FER of 1 %.

Interface with Cube Orange+

After establishing a connection between the position module ESP32 and the link
module ESP32 mounted on the drone, it is essential to transmit the gathered
information. The final destination is the Cube Orange+ which should receive the
location data. As the receiving ESP32, is mounted on the drone chassis, setting
up a serial connection between the receiving ESP32 and the Cube Orange+ is
a reliable solution. The Cube Orange+ has five general-purpose serial ports as
mentioned in Section 5.1. However, accessing the related RX (receiver) and TX
(transmit) pins requires some modifications. The interface with the carrier board
is shown in figure 8.8.

Figure 8.8: Picture of accessible ports on the Cube Orange+ carrier board. RX and TX are con-
nected through the TELEM 1 port

In the Cube Orange+ package, connectors and cables that fit each port are in-
cluded. Pin 2 and 3 in the TELEM 1 port are the TX and RX pins respectively
[46]. By soldering the wires reversed onto the ESP32’s RX and TX pins it is pos-
sible to write and read between the two. The TELEM 1 port is tied to the serial 1
port [46]. The regular use for this port is connecting telemetry radio receivers, al-
lowing communication with the GCS (Mission Planner 7.1). Hence the port must
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be reconfigured before it can transfer data through UART. In Mission Planner it
is therefore necessary to set the protocol on serial 1 to MAVlink2.

MAVLink2 protocol

MAVLink2 is the default protocol used for communication within Cube-based
systems. MAVlink2, or Micro Air Vehicle Link is commonly used in different
UASs. However, it is strongly associated with the ArduPilot Software base [47].
The purpose of MAVLink2 is to convert information and data into a standardized
format that flight controllers like the Cube Orange+ can read. MAVLink2 uses
a process known as Marshalling to do this. Marshalling is a computer technol-
ogy that involves gathering information and serializing it. The term serialization
refers to converting complex data structures into a format that can be easily trans-
mitted. In this context, the data is restructured in a specific format compatible
with the communication requirements of the Cube Orange+ platform. The full
MAVlink2 frame is shown in Figure 8.9.

Figure 8.9: Image of a full MAVLink 2.0 frame, where the payload contains the desired data .

The first byte in a MAVLink2 packet is the start-of-text (STX). This is specific to
the MAVLink2 protocol. It ensures that any packets that do not start with the
STX byte are automatically rejected [48]. The next byte in the MAVLink2 header
describes the length of the message. The following two bytes are flags that signal
"incompatibility and compatibility" respectively. The reason for having them in
the frame header is to obtain backward compatibility with the former MAVLink
protocol (MAVLink 1.0).

The Packet Sequence Number is a counter that increments with each new packet
sent. It helps in detecting packet loss, allowing the receiving system to identify
missing or duplicated packets. These fields identify the source of the packet. The
next byte of the header is the System ID. It represents the unique identifier for
the sending system, while the Component ID specifies the particular component
on the sending system responsible for generating the message e.g. sensors or
cameras. Message ID describes the message type, and occupies 3 bytes in the
header [48].

In a MAVLink2 header, the payload represents the actual message or data being
transmitted. This can vary in size from anything between 0 and 255 bytes. Lastly,
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the checksum is a value computed over the entire packet (including the header
and payload). It is used to verify the integrity of the data and detect transmission
errors [47]. The receiving system recalculates the checksum and checks it against
the received checksum to ensure the data’s integrity.

Software for link module

The software on the link module enables multiple purposes. It acts as an access
point and establishes a WiFi connection for communication with the position
module. It receives pre-processed data from the position module. It encodes the
data into an MAVLink2 message and transmits it to the Cube Orange+. To obtain
this functionality, code on the ESP32 is made. The code that is running on the
ESP32 is to be seen in the GitHub repository [36] in the folder "Link Module".

Start

Host access point
server

Client available
False

Read incoming

True

Save to
String "data"

Encode "data" to
MAVLink2

Transmit msg

Delay 1000
miliseconds

Figure 8.10: Functional flowchart describing the program flow through the code on the Link
module. The code hosts a WiFi connection so that data can be transferred. It then receives the
data, encodes and forwards it to the Cube Orange+.

The ESP32 initializes the connection by hosting an access point. Once a device
connects, it starts reading the incoming data stream from the connected device.
The incoming data is saved into a string called data.
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Before transferring the data to the Cube Orange+, it must be encoded into the
MAVLink2 structure. This is done using a MAVLink library for Arduino. The
library includes functionalities that take care of the data and insert it into the
payload section of the MAVLink2 as described in Section 9. The code that is
responsible for doing this is shown in Listing 10.

1 i f ( c l i e n t . connected ( ) ) {
2 i f ( c l i e n t . a v a i l a b l e ( ) ) {
3 S t r i n g incoming = c l i e n t . r e a d S t r i n g U n t i l ( ' \n ' ) ;
4 S t r i n g data = " $ " + incoming + " # " + "\r\n" ;
5 S e r i a l . p r i n t l n ( " Received : " + data ) ;
6 mavlink_message_t msg ;
7 u i n t 8 _ t buf [MAVLINK_MAX_PACKET_LEN ] ;
8

9 mavlink_msg_statustext_pack ( 2 , 200 , &msg , MAV_SEVERITY_INFO, data .
c _ s t r ( ) ) ;

10

11 u i n t 1 6 _ t len = mavlink_msg_to_send_buffer ( buf , &msg) ;
12

13 cubeOrange . wri te ( buf , len ) ;
14 delay ( 5 ) ;
15 }
16 }

Listing 10: Code that receives a location, encodes it to MAVLink2 and transmits through UAR-
T/Serial.

The code running on the Link module which can be seen in Listing 10 utilizes the
mavlink_msg_statustext_pack() method to pack the received String data into a
MAVLink2 message. The input parameters are used to determine items in the
MAVLink2 frame SYS_ID is set to 2, LEN is set to 200, MSG_ID is determined to be
MAV_SEVERITY_INFO, and the final input determines what the PAYLOAD contains.
The impact of these are described in Section 9. This message gets added to the
send buffer by using the mavlink_msg_to_send_buffer(buf, &msg). It takes the
buffer and a pointer to the packed message as input parameters. The message
is now put into the buffer, char by char, and can be sent through UART/Serial
using the write(buf, len) function.
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8.2 Firmware design

To use the GNSS data from the microcontrollers in the ArduPilot code, additional
firmware is written and added to the ArduCopter directory. One class needs to
parse the GNSS data from the serial port and save it into usable location variables.
The other class must use these location variables to calculate a vector for the drone
to follow. The class diagram of these classes is shown in Figure 8.11.

The upper section of the classes shows the variables, shown with a ’-’ or a ’+’ in
front, symbolizing private (’-’) or public (’+’) variables. The lower section shows
the functions in the class, these are in the same way illustrated as private or
public. It is worth noting that the Location class is an already existing part of the
ArduCopter code, where a few changes are made, hence the inclusion in the class
diagram.
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Figure 8.11: Class diagram of the classes GNSSParser and Follow_Location and how they interact
with the Location and Copter class.

45



As highlighted in Section 7.2.1, a class requires an AP source file, an AP header
file, and if necessary an extra source file to serve as a task. This section reflects
the results obtained by sticking to this approach.

8.2.1 Firmware for handling location data

The GNSSParser class contains the functionality to read from the serial port,
parse the incoming data to the right format, and save it in further usable variables.
This functionality is shown as the flowchart illustrated in Figure 8.12.

46



Task called in
scheduler

Initialize serial
port with

baudrate 56700

True

Serial 1 available

While
Data pending

Read incoming
 char

True

Received "$"

Save char to
buffer

True

read_data 
= 

true?

False

read_data =
true

True

False Received "\r"

Split buffer into
latitude, longitude,

altitude

True

Save latitude,
longitude,
altitude

Empty buffer array

Break

Break

False

False

Figure 8.12: Flowchart of the procedure for receiving and parsing MAVLink2 data.

The AP_GNSSParser class files are among the files introduced to the ArduPilot
code base. The main responsibility of this class is to establish a serial connection
between the Cube Orange+ and the link module cf 8.1. As described in Figure
8.10, the link module receives the current location of the position module, en-
codes it into MAVLink2 protocol, and passes it onto the Cube Orange+. The
AP_GNSSParser class contains code that reads, decodes, and saves the incoming
message so it can later be used in the software.
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The process begins with the initialization of serial port 1, configured at a baud
rate of 56 700 to ensure accurate data reception by the Cube Orange+. Next, the
system checks for incoming bytes on the serial connection. If a byte is detected as
’$’, the process loops back to read from the port again; otherwise, it terminates.

Upon confirming the presence of a numeric byte, the code checks whether
read_data is true. If so, the character is stored in a buffer; otherwise, the pro-
cess breaks. The system then examines for a carriage return (’/r’), signifying the
completion of a frame. If detected, the frame is parsed into three distinct values:
latitude, longitude, and altitude. Following this, the values are saved as doubles
and cast as 32-bit integers for further use. Finally, the buffer array is cleared to
accommodate a new frame.

In the following sections, each method used for this code will be described.
Firstly, the header file will be demonstrated to give an overview of all the func-
tions and variables used in the class.

AP_GNSSParser header file

This file contains the public and private variables and functions used in the
AP_GNSSParser source file and is illustrated in Listing 11.

1 # i f n d e f AP_GNSSParser_H
2 # def ine AP_GNSSParser_H
3

4 c l a s s AP_GNSSParser {
5 publ ic :
6 AP_GNSSParser ( ) ;
7 void setup ( ) ;
8 void loop ( ) ;
9 u i n t 3 2 _ t g e t _ l a t i t u d e ( ) ;

10 u i n t 3 2 _ t get_ longi tude ( ) ;
11 p r i v a t e :
12 void r e s e t _ b u f f e r ( ) ;
13 void save_to_buf fer ( u i n t 8 _ t data ) ;
14 void read_from_ser ia l (AP_HAL : : UARTDriver * uart , const char *name) ;
15 void setup_uart (AP_HAL : : UARTDriver * uart , const char *name) ;
16 void s p l i t _ c o o r d i n a t e s ( ) ;
17 const AP_HAL : : HAL &hal = AP_HAL : : get_HAL ( ) ;
18

19 AP_HAL : : UARTDriver * uart ;
20 u i n t 8 _ t mavlink_buffer [ 6 4 ] ;
21 char * l a t i t u d e ;
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22 char * longi tude ;
23 char * a l t i t u d e ;
24 u i n t 3 2 _ t l a t ;
25 u i n t 3 2 _ t lng ;
26 u i n t 8 _ t inc_data ;
27 double l a t f ;
28 double l n g f ;
29 unsigned long mavlink_buffer_index ;
30 bool readData ;
31 } ;
32

33 # endi f // AP_GNSSParser_H

Listing 11: The AP_GNSSParser header file.

All methods and variables in the header file are used in the code to obtain the
desired functionality described in Flowchart 8.12.

setup_uart()

This function initializes serial port 1, using the Hardware Abstraction Layer
(HAL) driver. It has two parameter inputs *uart_param and *name. These are
the port from the HAL driver and the name of the port respectively.

The code then checks if the assigned UART pointer is nullptr (null), indicating a
failure to find a valid serial connection. In such a case, it prints an error message
using the HAL’s console and exits the method. If a valid UART pointer is found,
the method proceeds to initialize the UART communication with a baud rate of
57600 using the begin method of the UART driver.

This method, illustrated in Listing 12, is called in function setup(), used in the
GNSSParser task to initialize the UART within the scheduler. This is illustrated in
Figure 8.11.
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1 # include <AP_HAL/AP_HAL. h>
2

3 void AP_GNSSParser : : se tup_uart (AP_HAL : : UARTDriver * uart_param , cons+− t
char *name) {

4 t h i s −>uart = uart_param ;
5 i f ( uar t == n u l l p t r )
6 {
7 hal . console −> p r i n t l n ( " Fa i l ed to f ind s e r i a l " ) ;
8 re turn ;
9 }

10 uart −>begin ( 5 7 6 0 0 ) ;
11 }

Listing 12: The setup_uart function in AP_GNSSParser class.

read_from_serial()

This function takes a pointer to an AP_HAL::UARTDriver (uart_param) and a name
as parameters. The first condition in this method is identical to the one in
setup_uart. This ensures that the code will not enter the following while loop if
there is no connection. The condition of the while loop becomes true for as long
as available data are waiting in the UART/Serial buffer.

The purpose of this method is to extract the location data from the UART/Serial
buffer as described in the Flowchart 8.12. This method is represented as the while
condition in the flowchart.
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1 void AP_GNSSParser : : read_from_ser ia l (AP_HAL : : UARTDriver * uart_param ,
const char *name) {

2 i f ( uart_param == n u l l p t r ) {
3 hal . console −> p r i n t l n ( " Fa i l ed to f ind s e r i a l " ) ;
4 re turn ;
5 } e l s e {
6 while ( uart_param −> a v a i l a b l e ( ) ) {
7 inc_data = uart_param −>read ( ) ;
8 i f ( inc_data == ' $ ' ) {
9 readData = true ;

10 } e l s e i f ( readData ) {
11 save_ to_buf fe r ( inc_data ) ;
12 i f ( inc_data == ' \r ' ) {
13 s p l i t _ c o o r d i n a t e s ( ) ;
14 readData = f a l s e ;
15 } } } } }

Listing 13: The read_from_serial function in AP_GNSSParser class.

save_to_buffer()

The AP_GNSSParser class contains a method named save_to_buffer, designed
to store received characters in a buffer array. The function takes an 8-bit unsigned
integer as its parameter. The first condition ensures that the buffer does not over-
flow. If true, the function assigns the incoming data to the buffer at the current
index, increments the index, and adds a null terminator (’/ 0’) at the new index.

In short, this function appends a byte to the buffer if there is sufficient space, pre-
venting buffer overflow by ensuring the index stays within the buffer’s bounds.
The code can be seen in Listing 14.

1 void AP_GNSSParser : : save_ to_buf fe r ( u i n t 8 _ t data ) {
2 i f ( mavlink_buffer_index < s i z e o f ( mavlink_buffer ) − 1) {
3 mavlink_buffer [ mavlink_buffer_index ] = data ;
4 mavlink_buffer_index ++;
5 mavlink_buffer [ mavlink_buffer_index ] = ' \0 ' ;
6 }
7 }

Listing 14: The save_to_buffer function in AP_GNSSParser class.
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reset_buffer and split_coordinates

As earlier mentioned, when transmitting the data, the last byte of the mes-
sage is the return carriage /r. Once a return carriage is detected inside the
read_from_serial() method, the split_coordinates() method is called. The
purpose here is to split the saved buffer from Listing 14 into latitude, longitude,
and altitude. For this job, a pre-defined cpp function strtok is used. The cpp
function separates the array of chars depending on what delimiter is specified. In
the split_coordinates() method the delimiter is a comma. What it does in List-
ing 15 is that it saves all chars until the first comma into the variable latitiude,
in the following lines it saves whatever is remaining until a new comma appears
into the variable latitude, this repeats until all three variables have been saved.

1 void AP_GNSSParser : : s p l i t _ c o o r d i n a t e s ( ) {
2 l a t i t u d e = s t r t o k ( ( char * ) mavlink_buffer , " , " ) ;
3 longi tude = s t r t o k (NULL, " , " ) ;
4 a l t i t u d e = s t r t o k (NULL, " , " ) ;
5 r e s e t _ b u f f e r ( ) ;
6 }
7

8 void AP_GNSSParser : : r e s e t _ b u f f e r ( ) {
9 mavlink_buffer [ 0 ] = ' \0 ' ;

10 mavlink_buffer_index = 0 ;
11 }

Listing 15: The split_coordinates and reset_buffer functions in AP_GNSSParser class.

get_latitude and get_longitude

The latitude and longitude have separate getters. In the function shown in List-
ing 16 the variable "latitude" is, with the use of the "atof" method, converted
to a floating-point number. It is also multiplied by 107 to enlarge the number, en-
suring that when converted to a 32-bit integer, no information is lost. This is done
so the variables can be used in the Location class, where the latitude, longitude,
and altitude all are stored as 32-bit integers, cf Subsection 5.

The get_longitude function is identical, only with the longitude variable instead
of the latitude.
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1 u i n t 3 2 _ t AP_GNSSParser : : g e t _ l a t i t u d e ( ) {
2 l a t f = a t o f ( l a t i t u d e ) * 1 0 0 0 0 0 0 0 . 0 ;
3 l a t = s t a t i c _ c a s t < i n t 3 2 _ t >( l a t f ) ;
4 re turn l a t ;
5 }

Listing 16: The get_latitude function in AP_GNSSParser class.

8.2.2 Firmware for using the location data

The Follow_Location class takes the desired location from the GNSSParser class
and flies towards that location, behaving as a follow mode. The functionality of
this class is shown with a flowchart in Figure 8.13.
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Figure 8.13: Flowchart showing the functionality of the Follow_Location class.

Once the code has been called in the scheduler it checks if the drone has taken
off, received a location, and if the location is in range. This ensures that a velocity
reference is not supplied until the drone is in the air and the location has been
verified.

When the drone is in the air and ready to follow, it receives the new desired loca-
tion from the object of the GNSSParser class, gets the distance from the current
location to the new one, and saves it in a distance vector. The length of this dis-
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tance vector is then calculated. If the length of this vector exceeds 50 m the drone
is set to hover in its position due to regulations in Section 2.2. If the length of
the vector is somewhere between 7.5 m and 50 m, it updates the velocity reference
with a vector, based on the distance vector. If the drone finds its position closer
than 7.5 m to the target it hovers in place.

AP_Follow_Location header file

The header file of the AP_Follow_Location class contains the definition of all the
functions and variables used in the class, and if they are private to the class only
or public for other classes to use. The file is shown in Listing 17.

1 # i f n d e f AP_Follow_Location_H
2 # def ine AP_Follow_Location_H
3

4 c l a s s AP_Follow_Location {
5 f r i e n d c l a s s Copter ;
6 publ ic :
7 AP_Follow_Location ( ) ;
8 void update_ve loc i ty_vec tor ( ) ;
9 bool locat ion_changed ( AP_GNSSParser gnssParser ) ;

10 bool l o c a t i o n _ v a l i d ( ) ;
11 p r i v a t e :
12 double g e t _ d i s t a n c e ( ) ;
13 Location newLoc ;
14 Location prevLoc ;
15 Vector3f ve l ;
16 u i n t 8 _ t mavBuffLat [ 6 4 ] ;
17 u i n t 8 _ t mavBuffLng [ 6 4 ] ;
18 u i n t 8 _ t mavBuffAlt [ 6 4 ] ;
19 double wp_len ;
20 f l o a t x1 ;
21 f l o a t y1 ;
22 f l o a t z1 ;
23 i n t num;
24 bool DoesItWork = true ;
25 } ;
26 # endi f // AP_Follow_Location_H

Listing 17: The AP_Follow_Location header file.

The header file describes all methods and variables that are used in the
AP_Follow_Location.cpp the following sections describe how they are all used
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to obtain the exact functionality that is described in Flowchart 8.13. Causing the
drone to follow the GNSS coordinate that is parsed down from the GNSSParser
class.

location_changed()

The location_changed() is a method returning a boolean that takes one input
of the AP_GNSSParser class. The function returns True if the latitude and longi-
tude have been obtained from the GNSSParser class and stored in the Location
class instance newLoc. This function is the second decision in the Flowchart in
Figure 8.13, and is seen in Listing 18.

1 bool AP_Follow_Location : : locat ion_changed ( AP_GNSSParser _gnssParser ) {
2 prevLoc . l a t = newLoc . l a t ;
3 prevLoc . lng = newLoc . lng ;
4 newLoc . l a t = _gnssParser . g e t _ l a t i t u d e ( ) ;
5 newLoc . lng = _gnssParser . get_ longi tude ( ) ;
6 re turn true ;
7 }

Listing 18: The location_changed function in the AP_Follow_Location class.

location_valid()

The other boolean function location_valid() uses functions defined in the Lo-
cation class, cf subsection 5, to verify and check if the values stored in newLoc are
usable. One of the methods utilized is sanitize(). It makes sure to change the
latitude and longitude in case the values become 0 or are out of scope.

When testing the GNSS submodule, it was observed that once in a while a loca-
tion was logged, which was more than 1000 kilometers away. To sort out these
obvious errors, a modification to the sanitize() function was added. It checks if
the coordinates are within a certain range from the last coordinate. This function
was added in the Location class and is shown in Listing 19.

1 bool Locat ion : : i s_out_of_range ( i n t 3 2 _ t curr_coord , i n t 3 2 _ t prev_coord ,
i n t d i s t ) {

2 i n t 3 2 _ t d e l t a = abs ( curr_coord − prev_coord ) ;
3 re turn ( d e l t a > d i s t ) ; }

Listing 19: A function added in the Location.cpp library for the sanitize() function to validate
if the location point is in range.
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This function is the third decision in the flowchart Figure 8.13, and returns either
True or False.

get_distance()

The double function get_distance() uses an instance of the Copter class to get
the drone’s current location and measures the distance to the location newLoc
with the function get_distance_NE(newLoc). This is done separately for the x
and y axis of the distance vector. The difference in altitude can be found using
the function get_alt_cm(newLoc.get_alt_frame(), newLoc.alt);
The length of this distance vector is then calculated and returned as a double.
This functionality is shown in the Flowchart in figure 8.13 as the green boxes at
the bottom and is shown in Listing 21.

1 double AP_Follow_Location : : g e t _ d i s t a n c e ( ) {
2 x1 = copter . c u r r e n t _ l o c . get_distance_NE ( newLoc ) . x ;
3 y1 = copter . c u r r e n t _ l o c . get_distance_NE ( newLoc ) . y ;
4 z1 = copter . c u r r e n t _ l o c . get_al t_cm ( newLoc . ge t_a l t_ f rame ( ) , newLoc . a l t

) ;
5 re turn s q r t ( x1 * x1 + y1 * y1 ) ;
6 }

Listing 20: The get_distance function in the AP_Follow_Location class.

update_velocity_vector()

The update velocity vector functionality is everything to the right in the Flowchart
in Figure 8.13. If the drone is more than 50 meters from the desired location it
goes into POSHOLD mode which holds the position. Else the velocity vector vel
is set to equal the distance vector (x1, y1) divided by the length of the vector
dist_len. This is shown in Listing 21.
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1 void AP_Follow_Location : : update_ve loc i ty_vec tor ( ) {
2 . . .
3 e l s e i f ( d i s t _ l e n > PERIPHERY) {
4 vel . x = ( x1 * 100 / d i s t _ l e n ) * KP ;
5 vel . y = ( y1 * 100 / d i s t _ l e n ) * KP ;
6 vel . z = 0 ;
7 }
8 . . .
9 copter . mode_guided . s e t _ v e l o c i t y ( ve l ) ;

10 }

Listing 21: The update_velocity_vector function in the AP_Follow_Location class.

The coordinates in the velocity are scaled by 100 to convert the units from meters
to centimeters. The z-coordinate is set to 0 to maintain the fixed take-off alti-
tude. If the drone reaches the desired periphery of 7.5 meters from the target, the
velocity vector is set to the null vector, by setting all coordinates equal to zero.
This makes the drone hover in place. Lastly, the velocity is set using the velocity
reference function from mode guided.
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9
Full system integration

This section offers an exploration of the integration process for key system com-
ponents. It outlines the incorporation of essential elements necessary for the
operation of the entire system.

9.1 Firmware integration

As mentioned in Section 7.2.1, both classes AP_GNSSParser and
AP_Follow_Location need a task to run in the scheduler. They are created
in respective files to keep them separate from the Copter.cpp file. These tasks
use an object, which is an instance of the respective class created in Copter.h,
used to call the functions defined in the AP class files. The gnss_parser task file
is shown in Listing 22.

1 # include " Copter . h"
2

3 void Copter : : gnss_parser_ task ( ) {
4 gnssParser . setup ( ) ;
5 gnssParser . loop ( ) ;
6 }

Listing 22: The gnssparser.cpp task file that runs the setup and loop functions from the
AP_GNSSParser class.

A similar method is applied to the follow_location task file, which is shown in
the Listing 23.
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1 # include " Copter . h"
2

3 void Copter : : f o l l o w _ l o c a t i o n ( ) {
4 s t a t i c bool setupDone = f a l s e ;
5

6 i f ( fl ightmode −> i s _ t a k i n g _ o f f ( ) ) {
7 i f ( ! setupDone ) {
8 setupDone = true ;
9 re turn ;

10 }
11 }
12 i f ( setupDone ) {
13 i f ( ( ! f l ightmode −> i s _ t a k i n g _ o f f ( ) ) && fol lowLocat ion .

locat ion_changed ( gpsParser ) ) {
14 i f ( fo l lowLocat ion . l o c a t i o n _ v a l i d ( ) ) {
15 fo l lowLocat ion . update_ve loc i ty_vec tor ( ) ;
16 re turn ;
17 } re turn ;
18 } re turn ;
19 } }

Listing 23: The follow_location.cpp task file that runs the location_changed, location_valid,
and update_velocity_vector functions from AP_Follow_Location class.

Both of these tasks are then to be called in the scheduler, but before calling them,
the other parameters of the SCHED_TASK() functions have to be set.

9.2 Allocated task time

To know how much time is needed for each task, a small test is executed where
the allocated time is set higher than needed, and the current time is logged at
the beginning and the end of both tasks. To track the current time accurately, a
function is defined in both classes that use the C++ library chrono to track the
time. This function, defined in the AP_GNSSParser class, is shown in Listing 24.
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1 # include <chrono>
2

3 void AP_GNSSParser : : pr in t_ t ime ( char * s t r ) {
4 using std : : chrono : : h i g h _ r e s o l u t i o n _ c l o c k ;
5 auto now = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) . t ime_since_epoch ( ) ;
6 auto now_in_us = std : : chrono : : durat ion_cast <std : : chrono : : microseconds

>(now) . count ( ) ;
7 hal . console −> p r i n t f ( "%s : %ld\n" , s t r , now_in_us ) ;
8 }

Listing 24: The print_time function created as a member of the AP_GNSSParser class.

Subtracting the start and the end times will result in the amount of time used for
each task. This is seen in Equation 9.1.

gnss_parser_task()

Start_time = 9 347 760 µs
End_time = 9 347 801 µs

Time_used = 9 347 801− 9 347 760 = 41 µs (9.1)
follow_location()

Start_time = 10 863 331 µs
End_time = 10 863 336 µs

Time_used = 10 863 336− 10 863 331 = 5 µs (9.2)

It is seen from the calculations above that both tasks use less than 50 µs. To make
sure that the task is not limited by accident the gnssParser task is set to use a
maximum of 1000 µs, and the follow_location is to 500 µs. It is known from the
calculations in Section 7.2.1 that the scheduler has plenty of time for new tasks to
be implemented. This makes the priority of the task less relevant and is therefore
set to the lowest in the scheduler. This is also done to not mess with the flow of
the already working ArduCopter system.

9.3 System frequency

One can argue that the drone has some inertia that makes changing speed and
direction take time. Updating the desired location as sparingly as once every
10 seconds would probably give a visual result of a slow or even lagging follow
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mode, that would either under- or overshoot. But as the update rate for the
desired location rises there will be a point where the inertia of the drone is not
settled before trying to update the location again. It is believed that the following
mode will act smoother in this state. If, for example, the frequency is 10 Hz it is
hard to imagine the drone can change its direction 10 times a second. Increasing
the frequency vastly would not make a difference in terms of performance since
the drone has physical limitations in terms of direction changes, acceleration,
and deceleration. So there is a balance between using as little excess time in
the scheduler as possible and updating fast enough to fly smoothly. If a test is
conducted where the system frequency is adjusted from low to high, it would not
be difficult to spot the difference and decide the optimal frequency for a smooth
flight.

Without executing this test, it is decided to run the tasks with a frequency of 5 Hz,
aiming for a smooth state for the follow mode. This is then implemented in the
scheduler seen in Listing 25.

1 SCHED_TASK( gnss_parser_task , 5 , 1000 , 174) ,
2 SCHED_TASK( f o l lo w_ lo ca t i on , 5 , 500 , 179) ,

Listing 25: The two tasks implemented in the Copter.cpp scheduler.

9.4 Hardware integration

To mount the Cube Orange+, the Link module, and the different telemetry an-
tennas, the hardware has to be securely mounted to the drone for safe use. In
the top and bottom plates of the drone, there are existing mounting holes and
extra screws for mounting a flight controller and external hardware. This, unfor-
tunately, does not line up with the mounting holes of the Cube Orange+ carrier
board. Therefore a 3D print is printed to fit the mounting holes of the drone. The
3D printed mount for the Cube Orange+ is shown in Figure 9.1.
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Figure 9.1: Top view of the Cube mount 3D print file.

As suggested in Section 5.1 mounting the Link module to the bottom of the plat-
form board, another 3D print is created to encase and protect the ESP32. This
3D-printed case is then stuck onto the platform with sticky foam that arrived in
the Cube Orange+ box. The case for the ESP32 has the dimensions 36.2 mm x
28 mm x 51.5 mm and is shown in Figure 9.2.

Figure 9.2: Print preview of the ESP32 case for mounting and protecting the Link module.

Sticky foam is used to mount the HolyBro USB telemetry to the drone. It is stuck
onto the left side of the Cube Orange+ on the top plate of the drone, with the
adjustable antenna pointing up in the air.

The RC receiver is not as robust as the HolyBro telemetry module, so yet another
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3D print is created to mount and secure it in place. The print is designed so the
antenna is pointed up in the air at a 45-degree angle from the top plate of the
drone. The 3D print is then bolted to the bottom of the top plate. The print is
seen in Figure 9.3.

Figure 9.3: Print preview of the RC receiver case for mounting and protecting the antenna.

All external hardware is mounted and secured to the drone kit which can be seen
in Figure 9.4. The full product includes the drone with the Link module attached
and weighs 1564.5 g. The Position module is by itself.
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Figure 9.4: A photo of the full system including the Link Module (green glow), the telemetry
antenna (cyan glow), the RC receiver (purple glow), and the Position Module.

Link module

The Link module is attached to the drone under its GNSS module as seen in
Figure 9.4. It is mounted with a custom 3D-printed part. The ESP32 from this
module is connected via its RX and TX pins to the Cube’s carrier board on the
TELEM 1 port. The TELEM 1 port provides, other than RX and TX pins, a 5 V
outlet that the ESP32 is powered from. The connection between the ESP32 and
the carrier board can be seen in Figure 9.5.
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Figure 9.5: The hardware integration of the ESP32 DEVKIT connected to the TELEM 1 connector
on the Cube Orange+ carrier board.

Position module

The Position module is a stand-alone module (not connected via wires to the
drone) and can be seen in Figure 9.4 on the right. This ESP32 is connected to
the NEO-7M GNSS module and is responsible for transmitting GNSS data to the
Link module on the drone. To power the Position module the ESP32 is attached
to a power bank.

The GNSS module is connected to the RX and TX pins on the ESP32, as shown in
Figure 9.6.
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Figure 9.6: The hardware integration of the NEO-7M connected to an ESP32 DEVKIT with a
power bank as a power supply.
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10
System tests

In this chapter, the different system test is executed. It is decided only to do some
of the tests, which are deemed to give a sufficient understanding of the process
of testing with different purposes. The tests chosen are listed below:

• Unit test - Position module 6.3.1

• Verification test - Transmission range and FER 6.3.2

• Validation test - Drone following location data 6.3.3

• Validation test - Storing data in the Cube 10.4

10.1 Unit test - Position module

To demonstrate the use of a unit test, one is constructed to measure the horizontal
position accuracy of the GNSS submodule of the Position module. The test
specification is mentioned in Section 6.3.1.

The purpose of this test is to measure the horizontal position accuracy of
the NEO-7M GNSS module and calculate the CEP. According to the require-
ment, it should be no greater than 2.5 meters, as stated in the Ublox NEO 7M
datasheet[34]. A unit test is a small, isolated test that checks if a specific part of
a program (usually a function or method) behaves as expected for a given input.
But in this case, the reliability of the datasheet is tested. The full test journal can
be seen in Appendix A.1.

10.1.1 Test setup

To test the horizontal position accuracy of the NEO-7M GNSS submodule, it is
wired up to an ESP32 microcontroller which is connected to a laptop, where
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the latitude and longitude are logged. To ensure a stable position, the test is
conducted for a minimum of 15 minutes, because this is believed to be sufficient
to get an adequate result. The test is conducted outdoors for more similar results
to the use case. The setup is shown in figure 10.1.

Figure 10.1: Test setup for the unit test of the GNSS submodule where it is connected to an MCU
which is connected to a laptop for storing data.

10.1.2 Success criteria

The success criteria of this test is that the measured CEP 50% is 2.5 meters or less.

10.1.3 Results

The 4566 data points, found in GitHub repository [36] folder "Python scripts and
data/ CEP test" file "gnss_data_test.csv", were collected over 15 minutes, in an
open outdoor space. The data points are fed into the Python script, found in the
same folder with the file name "unit-test_cep.py". The script plots the data and
uses the Haversine equation to calculate the radius of the different CEPs. The
Haversine equation accurately computes the distance between two points on the
surface of a sphere [49]. The result of the Python script is shown in figure 10.2.
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Figure 10.2: 4566 GNSS samples were collected over 15 minutes and plotted together with three
different CEPs. Lattitude on the x-axis, Longitude on the y-axis.

10.1.4 Test conclusion

It can be observed in Figure 10.2, that the CEP 50% is 1.28 meters, and even the
CEP 70% is 2.31 meters. Thereby the success criteria of the test is obtained.
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10.2 Verification test - Transmission range and FER

A verification test reveals if a part of the system fulfills the requirements. Such
a test is constructed to ensure that the communication between the Position and
Link modules fulfills the requirements. The test specification is mentioned in Sec-
tion 6.3.2.

The purpose of this test is to measure the Frame Error Rate (FER) of the commu-
nication between the Position module and the Link module. This is done at 50
meters to also test the minimum required data transmission range of the technical
requirement 2.9.

10.2.1 Test setup

Each ESP32 is connected to its respective laptop and placed 50 meters apart with-
out obstacles. 100 000 frames are sent from one ESP32 to the other. All sent and
received are saved and reviewed. The test setup is shown in figure 10.3

Figure 10.3: Test setup for the FER test, where two ESP32 are placed 50 meters apart, both
connected to a laptop to log the data sent and data received.

10.2.2 Success criteria

The success criteria of this test is that the calculated FER does not exceed 1%.

10.2.3 Results

The result of the test can be seen in listing 26.
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1 Running file: FER_Script.py
2 Total Frames: 100227
3 Number of frames that do not match in the received file: 144
4 Frame Error Rate (FER): 0.14%
5

6 Process finished with exit code 0

Listing 26: Result of Python script.

10.2.4 Test conclusion

The test yielded a FER of 0.14 %, comfortably meeting the success criteria.
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10.3 Validation test - Drone following location data

The validation test is split up into two tests. One test focuses on the transmission
of the GNSS data, to validate that the data arrives successfully from the Position
module and is parsed and stored correctly in the Cube Orange+. The other test
is a simulation of the Follow_Location class to validate if the drone would follow
the GNSS data points sent by the Position module.
This section describes a test setup to assess the drone’s adherence to specific coor-
dinates through simulation. The process involves generating a route, simulating
the movement, and visually inspecting the results. The test journal for this test
can be found in appendix A.3.

10.3.1 Test setup

To validate the drone’s ability to adhere to specific coordinates, a simulation is
conducted using Python and XLaunch. The test involves generating a route with
50 coordinates and integrating it with the Cube Orange+ through a loop. The
code used to perform this test can be found in the AP_Follow_Location.cpp file
within the "CodeForSimulation" branch of the GitHub repository [50].

A C++ code is crafted to generate 50 coordinates, including four predefined
via points, thereby marking a particular route. This code can be found
in the GitHub repository [36] folder "Python scripts and data/Validation test
follow/route_generator" and is run separately. These coordinates are then em-
ployed in the simulation with the Cube Orange+, utilizing an if loop to replicate
the position module moving. The test code can be found in the GitHub repository
[50] branch "CodeForSimulation".

Following the simulation, the generated coordinates are plotted on a map for a
visual inspection, allowing for a direct comparison with the drone’s simulated
route.

10.3.2 Results

The results of this test are shown below. In Figure 10.4a the map with 50 coordi-
nates is illustrated and in Figure 10.4b the route the simulated drone flew can be
seen.
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(a) Map with the 50 generated coordinates. (b) Result of simulating the drone following the coordinates.

10.3.3 Test conclusion

In summary, the test successfully evaluated the drone´s ability to adhere to spec-
ified coordinates through simulation. By inputting 50 coordinates into the Cube
Orange+ during simulation, and then comparing the plotted path with the ex-
pected route, it is clear that the drone successfully followed the designated path.
This outcome demonstrates the drone’s reliable performance in adhering to coor-
dinates fed to the Cube Orange+.

10.4 Validation test - Storing data in the Cube

This section describes a test setup to assess the drone’s ability to receive GNSS
data from the Position module and process the coordinates. The process involves
choosing a route, navigating it with the equipment, and visually inspecting the
results. The test journal for this test can be found in appendix A.4.

10.4.1 Test setup

In a practical test, the Cube Orange+ is connected to a PC for logging while be-
ing carried around to simulate real-world movement. The test validates the Cube
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Orange+’s ability to receive and use GNSS data from the Position module in prac-
tical scenarios, such as when the drone is in motion. The logging captures data
on its performance, helping identify and address any issues for reliable GNSS
utilization in real-world applications.

10.4.2 Results

In Figure 10.5, the comparison between the walked route and the data points
received on the Cube, is shown. The GNSS data points received on the Cube had
5 error frames out of the total 724 frames, which results in a FER of 0.69 %.

Figure 10.5: Comparison of the marked-out route and actual route received in the Cube Orange+.
The marked-out route is on the left and the route from the Cube Orange+ is on the right.

10.4.3 Test conclusion

The results of the test, state that the latitude and longitude after being received
and processed match the format of the simulated points in Validation test A.3.
This suggests that the full system performs as desired, and it would follow the
Position module if it were to be tested with propellers. Additionally, by observa-
tion, the data points saved in the Cube Orange+ are sufficiently identical to the
data points sent from the Position module.
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11
Evaluation

This chapter delves into an evaluation of the project, offering reflections on areas
where alternative approaches or enhancements could have been implemented.
Firstly, an overview of how the system complied with the requirements is illus-
trated. This gives an idea of what areas of the system need more work. The
discussion revolves around opportunities for future improvements. Furthermore,
the project is concluded with the problem definition in mind.

11.1 System compliance

The verification tests above are to be directly compared to their respective require-
ments. As only one verification test is conducted, the full technical requirement
list is still evaluated to know if the system fulfills the requirements. The technical
requirements from Table 6.2 are evaluated in Table 11.1, where they are referred
to with their respective ID.
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Requirement evaluation
ID Description Passed?
2.1 The Link module is communicating with the Cube Orange+

through a serial line.
✓

2.2 According to Test A.2 the receiving range requirement of
minimum 50 m is met.

✓

2.3 Since the Link module weighs 24.2 g it passes the
requirements.

✓

2.4 The 3D printed case for the link module has the dimensions
36.2 mm x 28 mm x 51.5 mm the requirement is met.

✓

2.5 According to Test A.2 the transmission range requirement of
minimum 50 m is met.

✓

2.6 The system runs at 5 Hz as well as the data transmission. ✓

2.7 Since the full system is not tested through practical tests, it
cannot be concluded that the drone would not deviate from
the target position with more than 2.5 m.

✗

2.8 According to the Test A.1 the Horizontal Position Accuracy
requirement of maximum 2.5 m is met.

✓

2.9 According to the Test A.2, where the FER was found to be
0.14%, the requirement is met.

✓

Table 11.1: The evaluation table of the technical requirements stating if the system fulfills them
or not.

11.2 Discussion

Through the project, minor challenges were encountered and the correction of
these ultimately led to an improved prototype. This includes communication be-
tween the Link and Position module, connecting the Link and Cube module, and
the custom ArduPilot code. These thoughts of improvements will be discussed in
this section.

11.2.1 Pipeline tests

As a part of the ArduPilot open-source software, there are multiple requirements
for the code before it can be approved in a pull request and merged to the main
line. This ensures that different contributors can add functionality or maintain
things in the code and merge it for everyone to use. One of the measures ArduPi-
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lot does to avoid major bugs and errors in the code is pipeline tests.

Pipeline tests are automated tests that in the case of ArduPilot, run each time
somebody does a pull request. It is a way of identifying bugs and issues before
the end user is affected. In this project, we became aware of ArduPilots pipeline
tests when the branch was wrongfully merged onto the main line of the ArduPi-
lot repository. Here it was evident that there were errors in the pipeline related
to our code. This does not mean that the code’s features were nonfunctional, just
that it did not adhere to ArduPilots guidelines.

If the goal was for our code to be added to the ArduPilot repository, we would
have to ensure that any errors were taken care of. As a merging rule in the
ArduPilot community, all tests must succeed. This is not the case for our code,
which has been developed with the intent of making a prototype. This means
there are safety features necessary for our code to be implemented in the main
repository.

A part of the pipeline tests include integration tests. These are testing whether
communication protocols and hardware interfaces are behaving properly.

When developing the UART communication the pipeline tests came out being a
great help as they revealed how the UART is being set up. The main use of the
pipeline test is the Hardware In Loop (HIL) test. HIL tests are a way to simulate
what would happen if the code was deployed on specific hardware. This test is
specifically useful in the ArduPilot directory as the purpose of the code is to be
volatile and able to run on different setups whether it is a Cube Orange+, Pix-
hawk, or many other flight controllers [27].

This is a problem in the case of our code since we solely developed it to run on a
copter setup using the Cube Orange+. Some features in our code, especially how
it is activated, must be changed. Features such as deactivating and activating the
track and follow mode safely and controlled are missing.

11.2.2 Why not use altitude?

In the current state of the track and follow mode, that has been developed
throughout this project, the position of the drone is entirely dependent on the
latitude and longitude of the position module. The reason for not including the
altitude from the GNSS module is that we noticed how unreliable the altitude
measurements were. This was clear when performing tests on the altitude read-
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ings. When the test was performed outside the altitude fluctuated with at least
18.1 m, which is extremely unreliable, cf Test A.5. The altitude measurements
are too uncertain to use in this project and would need further work to be im-
plemented. This could potentially be done by finding a rolling average of the
altitude values.
Furthermore, the product has been developed to follow a GNSS signal with a
fixed altitude, as the altitude is determined at takeoff from the GCS. This makes
real-time updating altitude data unnecessary but would be a vital update in fur-
ther development.

11.2.3 Communication directly to the Cube Orange+

If the communication of this project were to be restructured, the link module
could potentially be omitted. Transmitting the position directly to the Cube Or-
ange+ through Bluetooth or IP connections would eliminate the need for the link
module. This structure allows for another benefit as well. Omitting the Link
module frees up the TELEM 1 port on the cube 8.8 which enables us to connect
the telemetry radio and the RC transceiver and still receive GNSS data through
the UART. This is a negative limitation that the current system has as either the
telemetry radio or the RC transceiver must be disconnected for track-and-follow
mode to work since there are only two available ports. The ports referred to are
TELEM 1 and TELEM 2, which can be seen in Figure 8.8.

11.2.4 Feedback controller

As of now the update_velocity_vector function mentioned in Section 20 uses
a proportional controller, where a fixed speed is set from the parameter KP. Re-
alistically speaking, for the follow mode to keep up with the Position module’s
potentially changing velocities, some kind of feedback controller could be imple-
mented. It could vary the length of the velocity vector according to the distance
from the drone to the desired location. A proportional controller was imple-
mented in the development phase, resulting in the drone’s speed becoming al-
most 50 times faster when at the maximum allowed distance, compared to when
it was close to the desired location. One could argue that this problem could be
solved with a nonlinear model, where the velocity of the drone increases slightly
if the distance to the desired location exceeds the 7.5 m. So if the Position mod-
ule is moving, the drone will eventually catch up to the desired 7.5 m from the
Position module, no matter the speed of the Position module. Another way to
implement feedback is to measure the difference in the GNSS data and add some
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kind of parameter to the length of the velocity vector proportional to this differ-
ence, as a feed-forward loop.

11.2.5 Future enhancement

In the future, if the project were to be developed further, the most crucial next step
would be to test its capabilities in the real world. However, a practical test requires
that the user has a drone certificate of type A2 as mentioned in Section 2.2. Such
a test would provide a realistic evaluation of performance, identify challenges,
and offer insights for improvement.

As mentioned in Section 9.3 the frequency of updating the location sent to the
Cube Orange+ has a great impact on the drone’s maneuvering performance. One
of the critical attributes to pay attention to when performing a practical test is the
smoothness of the flight. Trying different scenarios while altering the update rate
would lead to finding the best frequency for updating the location data. Until
such a test has been performed and passes the requirements, the readiness of the
product can not be confirmed.
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11.3 Conclusion

This project is focused on implementing track-and-follow functionality into the
already autonomous Cube Orange+ flight controller system. This is done by uti-
lizing an ESP32 connected to a NEO-7M GNSS submodule supplying location
data wirelessly to the Cube Orange+, using another ESP32 as an intermediary.

Throughout the project, an analysis of track-and-follow in general, led to a prob-
lem definition defining the direction of the project. From this, a proposed so-
lution was made where track-and-follow is implemented with the use of GNSS
data, transmitted to the drone. Transmitting this data through WiFi using TCP
after which the data is parsed into the Cube Orange+ through one of the serial
ports on the carrier board. Communication protocol MAVLink2 was adapted for
the Cube Orange+ to receive the data. For handling the GNSS data in ArduPilot,
two C++ classes were created; AP_GNSSParser for parsing and storing the data
from the serial port. AP_Follow_Location for the drone to follow the GNSS data
using velocity references of the already existing guided mode.

Even though the full system was not tested in its entirety, the communication
and parsing of the GNSS data were validated through a test. On top of that,
simulating the flight of the drone when given GNSS data, not only validated the
feasibility of the solution but together with the rest of the system, contributed
valuable insights into integrating external hardware with ArduPilot running on
the Cube Orange+. Comparing these tests to the technical requirements shows
that eight out of nine are passed, and the last is partially met through simulation.

In conclusion, this project achieved its primary goal of obtaining knowledge about
Cube Orange+ and ArduPilot, while successfully interacting with the flight con-
troller using external hardware. This led to the showcasing of a theoretical but
viable solution for a track-and-follow mode.
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A
Test journals

A.1 Test journal - Position module unit test

A.1.1 Purpose

The purpose of this test is to test the horizontal position accuracy for the specific
GNSS submodule used in the Position module. According to the requirement, it
should not deviate by more than 2.5 meters.

A.1.2 Test setup

To test the horizontal position accuracy of the NEO-7M GNSS submodule, it is
wired up to an ESP32 microcontroller which is connected to a laptop, where the
latitude and longitude are read through the serial monitor. To ensure a stable
position, the test is conducted over a time period of a minimum of 15 minutes.
The test is conducted outside for more similar results to the use case. The setup
is shown in Figure A.1.

Figure A.1: Test setup of the Unit test to test the GNSS submodule. ESP32 is connected to a laptop
for logging.
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A.1.3 Succes criteria

The success criteria of this test is that the measured CEP 50% is less than 2.5
meters.

A.1.4 Equipment

The list of equipment used for this test:

• NEO-7M GNSS module

• ESP32-WROOM-32

• Breadboard

• Wires

• µ-USB to USB-A cable

• Laptop w. Arduino, PuTTY, and Python

A.1.5 Procedure

The list of procedures to recreate the test:

• Wire the GNSS module up with the ESP32 on the breadboard.

• Connect the ESP32 to the laptop and open the serial monitor.

• Run the code shown in the GitHub repository [36] folder "ESP Test
code/Unit_Test".

• Wait until a minimum of 10 minutes have passed to reach an appropriate
sample size.

• Save the samples in a .txt file using a serial monitor (e.g. PuTTY).

• Run the code shown in the GitHub repository [36] folder "Python scripts
and data/CEP test" file "unit-test_cep.py".

• Observe the plotted data and the calculated CEPs.

Here are the ESP code used for the position module to get the GNSS data:
Here is the Python script used to plot the GNSS data and calculate multiple CEPs
depending on the probability:
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A.1.6 Results

The data points were collected over a time period of 15 min.
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Figure A.2: 4566 GNSS samples collected over 15 min and plotted together with three different
CEPs. Latitude on the x-axis, Longitude on the y-axis.

A.1.7 Conclusion

It can be observed in Figure A.2, that the CEP 50% is 1.28 meters and even the
CEP 70% is 2.31 meters, and thereby the success criteria of the test is obtained.
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A.2 Test journal - Connection range verification test

A.2.1 Purpose

The purpose of this test is to measure the Frame Error Rate (FER) of the com-
munication between the Position module and the Link module. This is done
at 50 meters to also test the maximum data transmission range of the technical
requirement 2.9.

A.2.2 Test setup

Each microcontroller is connected to its respective laptop and placed 50 meters
from each other with no obstacles between them. Then 100 000 frames are sent
from one microcontroller to the other, where all the frames are saved and re-
viewed.

Figure A.3: Test setup of FER test. Both ESP32s are connected to individual laptops for logging.

A.2.3 Equipment

• 2x ESP32-WROOM-32 (with Wifi).

• 2x µ-USB to USB-A cable.

• 2x laptop with a serial monitor.

• Python script to calculate FER found in repository [36] folder "Python
scripts and data/FER Tests" file "FER_script4.py".
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A.2.4 Procedure

• Connect the micro USB cable from one ESP32 to one laptop.

• Upload the sender code to the microcontroller found in repository [36]
folder "ESP Test code/FER_Test_code_position_".

• Connect the other micro USB cable to the other laptop.

• Upload the receiver code to the other microcontroller found in repository
[36] folder "ESP Test code/FER_Test_code(link)".

• Open the serial monitor on the receiver laptop and verify that the ESPs are
connected.

• Distance the sender and receiver ESP 50 meters from each other in a straight
line with no visible interruptions.

• When ready to execute the test, restart the sender ESP, en log the data in-
coming on the receiver ESP.

• After the 100 000 frames have been sent, upload all data to a file where it
can be processed (excel).

• Count the incomplete frames divide the number by 100 000 and multiply
with 100 to get the FER in percentage

The Position module, with the code seen in GitHub repository [36] folder "Po-
sition Module", is sending a data frame close to the expected data simulating
latitude and longitude:

Data Sent: 57.pck_no, 9.pck_no, timestamp

Where pck_no. is the number of the frame sent and timestamp is in millisec-
onds. The Link module with the code seen in GitHub repository [36] folder "Link
Module" is receiving the data frames with a similar format:

57.pck_no, 9.pck_no, timestamp

and acting as an access point.

A.2.5 Success criteria

The success criteria of this test is that the calculated FER does not exceed 1%.
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A.2.6 Results

The Python script’s outcome, or the test result, is presented in the following listing
27. Where the frame error rate and the number of frames with errors can be seen.

1 Running file: FER_Script.py
2 Total Frames: 100227
3 Number of frames that do not match in the received file: 144
4 Frame Error Rate (FER): 0.14%
5

6 Process finished with exit code 0

Listing 27: Result of Python script.
It is observed that the time it takes to send and receive the 100 000 frames is
347 776 milliseconds or ≈ 348 seconds. This results in a transmission rate (TR) of:

TR =
100 000
347.776

≈ 266.83 packages/s (A.1)

This is the amount of packages sent without any additional data flow control.

A.2.7 Test conclusion

The test yielded a FER of 0.14 %, comfortably meeting the success criteria.
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A.3 Test journal - Validation test follow

A.3.1 Purpose

The purpose of this test is to test the full system and to validate if the drone
would follow the GNSS data points sent by the Position module.

A.3.2 Test setup

Specific test code is used for this test setup, which can be seen in the GitHub
repository [50] as the branch "CodeForSimulation", and is simulated on a PC
with Python.

A.3.3 Equipment

• PC with Ubuntu and Python.

A.3.4 Procedure

• Generate or choose 50 coordinates.

• Open Ubuntu (optionally in WSL).

• Open the code shown in the GitHub repository [50] as the branch "Code-
ForSimulation".

• Simulate with the prompt;
1 python sim\_vehicle.py -v ArduCopter -L AAU\_grupperum --console

--map

• Enter mode guided.

• Arm throttle.

• Takeoff at whatever altitude (has no impact on the test).

• Observe that the drone follows the coordinates.

A.3.5 Success criteria

The success criteria of this test is that by visual inspection the drone adheres to
the specified coordinates.
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A.3.6 Results

(a) Map with the 50 generated coordinates. (b) Simulation of the drone following the coordinates.

A.3.7 Conclusion

Upon visual examination, it is evident that the drone adheres to the specified
coordinates.
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A.4 Test journal - Validation test data

A.4.1 Purpose

The purpose of this test is to focus on the data transmission of the GNSS data, to
validate that the data arrives successfully from the Position module and is stored
in the Cube Orange+.

A.4.2 Test setup

Figure A.5: Test setup of the validation test. The ESP32 is connected to the Cube Orange+ that
is connected to the laptop where values are logged. The other ESP32 is coupled with the GNSS
module.

A.4.3 Equipment

• Cube Orange+

• 2x ESP32

• NEO-7M

• Power bank

• 2x µ-USB to USB-A cable

• Laptop
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A.4.4 Procedure

• Connect the laptop to the Link module via the micro USB cable.

• Upload the code to the Link module ESP32, found in GitHub repository [36]
folder "Link Module".

• Disconnect the laptop from the Link module and connect the Link module
to the Cube Orange+ via the method described in Figure 9.5.

• Connect the laptop to the Position module via the micro USB cable.

• Upload the code to the Position module ESP32, found in GitHub repository
[36] folder "Position Module".

• Disconnect the laptop from the Position module, connect it to the power
bank, and let it connect to the Link module via WiFi.

• Upload the code found in GitHub repository [50] branch "master" to the
Cube Orange+.

• Mark out a route to walk.

• Walk the route with the Position module and the drone with the Link mod-
ule attached.

• Log all data on serial port 1 on the Cube Orange+.

• Observe if the two routes are nearly identical.

A.4.5 Success criteria

The success criteria of this test is to observe that the marked-out route is nearly
identical to the actual data received on the Cube Orange+. As this proves, that
the Cube can receive location data from the position module.

A.4.6 Results

In Figure A.6, the comparison between the walked route and the data points
received on the Cube, is shown. The GNSS data points received on the Cube had
5 error frames out of the total 724 frames, which results in a FER of 0.69 % i.e.
0.69 % of the frames were received without a latitude reading.
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Figure A.6: Comparison of marked-out route (left) and actual route (right) from Cube Orange+.

A.4.7 Conclusion

By observation, the data points saved in the Cube Orange+ are sufficiently identi-
cal to the data points sent from the Position module. This is the case even though
some frames of data were received with errors.
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A.5 Test journal - Altitude test

A.5.1 Purpose

The purpose of this test is to validate the precision of the GNSS module’s altitude
readings.

A.5.2 Test setup

To test the precision of the altitude readings the ESP32 with the NEO-7m con-
nected is set to read location values and print them on serial. On the laptop, they
are being logged to a .txt file with PuTTY.

Figure A.7: Test setup for the altitude test. The ESP32 coupled with the GNSS module and
connected to a laptop for logging.

A.5.3 Equipment

• ESP32

• NEO-7M GNSS module

• Laptop

• µ-USB to USB-A cable

A.5.4 Procedure

To perform the same test that was carried out, follow the procedure below.

• Connect the ESP32 to the Laptop via the micro USB cable.

• Upload the position module code found in GitHub repository [36] folder
"Position Module".
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• Make sure that the ESP32 is receiving GNSS locations.

• Place the module outside in a fixed position.

• Start logging the prints through PuTTY.

• Log values for 10 minutes.

• Save the file.

A.5.5 Results

A diagram with results from the test done outside can be seen in Figure A.8.
It shows that the altitude fluctuates between the highest value of 116.3 m and
the lowest at 51.3 m. However, it is easy to tell that around 2500 measurements
an error occurs, where the altitude suddenly spikes. The cause of this issue is
uncertain and the unreliable measurements are therefore neglected. With these
incorrect data points removed the delta is much smaller.
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Figure A.8: Diagram of outdoors altitude test. Latitude on the y-axis and number of measure-
ments on the x-axis.
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A.5.6 Conclusion

The altitude fluctuates with 65 m when tested outside with the error frames and
18.1 m without the error frames. Hence the test concludes that in an outdoor
environment altitude fluctuation becomes
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