
Daniel Refer
Flemming Højbjerre Sørensen

4th Semester
Master Thesis

Aalborg University

Computer Based FE Analysis of Reinforced 
Concrete Walls by the Stringer Method





Aalborg University

School of Engineering and Science

Phone: 96 35 97 31

Fax: 98 13 63 93

http://www.ses.aau.dk

Title: Computer Based FE Analysis of Reinforced Con-

crete Walls by the Stringer Method

Theme: Master Thesis

Project period: B10K, Spring 2012

Project group: B226a

Group members:

Daniel Refer

Flemming Højbjerre Sørensen

Supervisor:

Professor, Lars Damkilde, School of Engineering and

Science (AAU)

Print runs: 4

Numbers of pages:77

Completed: June 12th 2012

Synopsis:

Optimisation of structures to reduce costs and

environmental impacts are important issues in

the building sector. In order to meet these the

computer programOpti_String is developed for

optimising reinforced concrete walls using the

stringer method based on the plasticity theory. The

program is formulated by a finite element concept.

The Eurocode is implemented inOpti_String to

ensure practical design demands.

A lower bound method is compared with an

upper bound method. The comparison shows that

an exact translation for the stringer system exists.

Opti_String is capable of optimising an ar-

bitrary geometry and the optimisation is based on

the lower bound method.Opti_String calculates

the ultimate load bearing capacity or design

parameters for a given load along with the stress

parameters.

By use of a complex structure the influence

of practical design restrictions and several load

cases are illustrated. Different weighting parame-

ters are applied to force another stress distribution

in order to decrease the utilisation of selected

stringers.





Preface

This thesis is prepared and compiled as a part of the fourth semester on the M. Sc. in Structural and Civil

Engineering at Aalborg University. The period of which thisreport is written is from the 1st of February 2012

to the 12th of June 2012 under the supervision of professor Lars Damkilde.

Reading Guide

The master thesis consists of two parts; a main report and appendixes. In the main report there are references

to the appendixes, where the appertaining calculations andextensional documentation are found.

The files used in the different software e.g.MATLAB, are found on the attached CD and a list of the files is

found in Appendix A7. The CD also encloses an electronic PDF version of the master thesis. Files that are

relevant for a section in the report are placed in a folder with the same name as the section on the CD.

Sources are quoted by the Harvard method of bibliography with the name of the author and year of publication

inserted in brackets after the text. Quoted sources from literature, papers, websites and design codes will appear

e.g . (Damkilde, 1995).

If the source is placed before the period at the end of a sentence, the source refers only to the sentence,

whereas if the source is placed after the period, the source refers to the entire text section.

Figure and table numerations refers to which chapter the desired figure or table is located in. Please note that

if a figure or a table is not attached to a source, they are produced by the group.

The bibliography gives extensive information about each source. Since several of the sources are recurrent,

the bibliography is not divided into source types. Instead,the sources are sorted alphabetically by notices, under

which information about the source type, i.e.; author, title, publisher or editor, year of publication, presentation

number, ISBN and URL.
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Nomenclature

Latin upper case letters

A Matrix of inequality constraints

Ac,nec Necessary concrete compression area

As Reinforcement area of one reinforcement bar

At Reinforcement area of a stringer

C Constraint matrix

Cd Material constrains. Vector in load optimization. Matrix in material optimization

E Property matrix linking elements

Fc,max Maximum allowable compression strength in stringer

Ft Tension strength of one stringer

Ft,max Maximum allowable tension strength in stringer

H Global flexibility matrix

M Material matrix

Q Load

R Load vector

R0 Constant load vector

RAT Efficiency ratio

V Displacement vector

Latin lower case letters

b Vector of inequality constraints

c Object function regarding load optimisation

d Design variables

e0 Zero vector

fc Compressive strength of concrete

fcd Design value of concrete compressive strength

fy Yield strength of reinforcement

fyd Design yield strength of reinforcement

h Local flexibility matrix

h Height of shear area

hs Height of stringer perpendicular on stringer direction, depends onAc,nec

hs,max Maximum allowable stringer height, depends on smallest neighbouring shear area

l Length

lb Anchorage length of reinforcement bar

n Number of reinforcement bars in a stringer

ns 2 ·nstringers+nshear_areas

nnode Number of nodes

nshear_areas Number of shear areas

nstringers Number of stringers

q Nodal load vector

s, s+ Dual values of the design limitations
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t Thickness

vm Factor of efficiency caused by the compression from bending effect

vv Factor of efficiency for pure shear

var Number of variables

w Width of shear area
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Chapter 1

Introduction

The idea behind this thesis is described which ends up in the thesis statement and the suggested solution. In

addition, the problem definition of the thesis is defined. Theanalysed structures in the project are presented in

the end of the chapter.

Cost reduction, optimisation and environmental issues arepopular these days and every line of business is

affected by these, including the construction sector. Therefore, it is desirable to incorporate these issues in

structures e.g. by material consumption and still maintainstructural behaviour. Likewise it is profitable to

make use of the building materials most optimal when constructing buildings.

Using the issues for saving in connection with knowledge of materials and optimisation it is possible to make

use of the materials in a optimum way. This leads to cost savings and, due to material saving, lower environ-

mental impacts of the building.

Material optimisation is obtained in different ways, e.g. by changing the production or by material devel-

opment. In this project the applied theory for calculation is considered.

Traditional calculations are based on elastic material behaviour where the freedom of choice is limited com-

pared to a calculation using perfect plastic material behaviour. When using perfect plastic material behaviour

the distribution of the stresses in the structures can be selected freely as long as certain rules are obeyed.

The perfect plastic material behaviour is applied togetherwith the stringer method where the structure is

designed using stringers and rectangular shear fields. In order to evaluate the lower bound method it is relevant

to describe the upper bound method, which corresponds to theclassic yield line method developed by K.W.

Johansen (Johansen, 1972).

1.1 Thesis Statement and Problem Definition

Based on the above mentioned the following thesis statementis set up:

How can the stringer method be applied in the design of concrete walls in a practice

manner by using a FE program based on perfect plastic material behaviour?

At first the intention of the project is presented by a guidingstructure of the developed program,Opti_String.

In addition, the material model and the appertaining assumptions for the program is described. The project

structure is illustrated in Figure 1.1. Four structures hasbeen analysed, cf. section 1.2. The applicability of

Opti_String is illustrated by structure 3, a real concrete wall where an example of the output list is shown.

Opti_String and its theory is illustrated by structure 2, an basic example in order to keep a sense of perspec-

tive. Simultaneous the input and output forOpti_String is still relatively clear.

3



Chapter 1. Introduction

Presentation ofOpti_String by
structure 3, a real structure.

Verification ofOpti_String by
structure 2, an basic example

Practical use ofOpti_String by
structure 4, a complex structure

Figure 1.1: Composition of project.

The practical use ofOpti_String is proved by an more complex construction element from a patient hotel in

Nuuk, Greenland. The building is designed by Grontmij in Aarhus, Denmark. Based on a meeting with the

engineers at Grontmij a key element has been selected for further analysis inOpti_Stringby including struc-

tural optimisation by use of the stringer method and plasticity theory. The optimisation is performed regarding

practical design demands and several load cases.

Optimisation of concrete elements by assuming perfect plastic material behaviour can be achieved through

the stringer method. By doing so the stringer method and plastic behaviour needs to be studied careful.

Computational analysis based on the theory is made inOpti_String which is written in MATLAB. By this the

material optimisation process is automated leading to timesaving in the design phase. The program is based on

the finite element (FE) concept and the optimisation is done using linear programming (LP). The emphasis of

Opti_String is concentrated by formulating the lower bound method. The upper bound method is formulated

in order to examine whether an exact translation exist between the two methods for the elements in the stringer

method. Also the option for analysing a structure subjectedto several load cases is possible. LP problems are

formulated for both lower and upper bound regarding load andmaterial optimisation which are solved by using

the build in function for LPlinprog from MATLAB.

First, structure 2 will be used for material and load optimisation based on the lower bound method, after

which they will be calculated with the upper bound method. The purpose is to compare the load bearing ca-

pacity from lower and upper bound method respectively, including the translation from lower to upper bound

for the stringer system. Afterwards, practical design willbe introduced by linking the material strengths of

the different elements together. Several load cases will beintroduced on structure 2. Finally,Opti_String

is used for optimising a real complex structure, structure 4, subjected to several load cases by illustrating its

practicability.

An overview of the applied structures in the report is listedin section 1.2. References are made to relevant

chapters and sections in the report and appendix as well.
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1.2. Structures Analysed byOpti_String

1.2 Structures Analysed byOpti_String

Structure 1

Opti_String uses the linear programming algorithmlinprog.

Structure 1 is used as a simple example for illustration the input

for linprog, cf. Appendix A3.

t = 0.3 m

γs = 1.20 fy = 550 MPa

γc = 1.45 fc = 25 MPa

Structure 2

Structure 2 is used for describing the stringer method by hand cal-

culation, cf. chapter 3 and to documentOpti_String by the lower

and upper bound method, cf. chapter 5 and 7, for both load and

material optimisation. The structure is used for exemplification of

practical design restrictions and several load cases, cf. section 8.1.

t = 0.3 m

γs = 1.20 fy = 550 MPa

γc = 1.45 fc = 25 MPa

Structure 3

Structure 3 is used as a real structure for the presentation of

Opti_String cf. chapter 2. The structure is used for exempli-

fication of load combinations and illustrating design demands.

t = 0.3 m

γs = 1.20 fy = 550 MPa

γc = 1.45 fc = 25 MPa

Structure 4

Structure 4 is a key element used for showing the applicationof

Opti_String on a realistic complex structure affected by three

load cases and subjected to practical design demands.

t = 0.25 m

γs = 1.20 fy = 550 MPa

γc = 1.45 fc = 15 MPa

5





Chapter 2

Presentation of Opti_String

The guiding structure of the program is explained in the following by describing the steps from the real structure

to a calculation model with results. Structure 3 is used for the illustration. In addition, the chapter accounts

for the underlying intentions of the applied theory and the appertaining assumptions.

2.1 Program Structure

The purpose is to develop a program,Opti_String, for making it easier to apply the stringer method for

practical calculations. The process of the program is shownin Figure 2.1.

Figure 2.1(a) shows a realistic element having a hole for a window and an opening for a door. The element

is exposed a vertical load, load case 2, and is supported along the bottom.

The user must discretise the element manually, cf. Figure 2.1(b). The discretisation must be done according

to the stringer method, thus stringers, defined by start and end node, and shear fields, defined by surrounding

stringers. Loads and supports may also be specified as well the material parameters. In addition, practical

restrictions as stringer lines must be specified. Based on the input the stringer system is optimised using a

linear optimisation algorithm.

Opti_String is capable to optimise a arbitrary geometry with several load cases regarding the Eurocode.

(a) Structure 3, realistic element. (b) Stringer system. Shear
fields are marked grey.

(c) Output fromOpti_String,
collapse mechanism.

Figure 2.1: Process description ofOpti_String.

After the inputOpti_String plots the geometry of the stringer system. The plot for structure 3 is shown in

Figure 2.2.
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Chapter 2. Presentation ofOpti_String
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Figure 2.2: Opti_String: Geometry plot for structure 3

Load combination one for structure 3 consists of dominatingsnow load with wind as additional variable load,

where combination two is with dominating wind, cf. Figure 2.3. Figure 2.4 shows the support numbers for

structure 3.

0.3 ·W

1.5 ·S

1.5 ·W

Load case 1 Load case 2

Figure 2.3: Structure 3 subjected to two load cases.
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18
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26
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34
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40

39

17 18 19 20

Figure 2.4: Support numbers for structure 3.

2.2 Output From Opti_String

Based on the stringer system stringer forces and shear stresses are calculated using linear programming. The

calculated values are optimised with regard to load capacity or material parameters according to the applied

load. The type of calculation must be specified in the beginning of the calculation. From the optimisation

Opti_String creates an output list, cf. Figure 2.6 and 2.7. From the list various information appear, for ex-

ample load or design parameters and the critical elements ofthe system are shown as the elements exposed to

plastic strains. The list is divided into two because of the length.

The collapse mechanisms of the element fromOpti_String is shown in Figure 2.5. The collapse mech-

anisms only indicates the mode of the collapse as the calculation is done with plastic material behaviour, cf.

section 2.3.
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2.2. Output FromOpti_String

Load case 1 Load case 2

Figure 2.5: Opti_String: Collapse mechanisms for structure 3.

Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Lower bound method

Structure 3

Stringer lines: 

1: 1 2 3 

2: 4 5 6 

3: 7 8 9 

4: 10 11 12 

5: 13 14 

6: 15 16 

7: 17 18 19 

8: 20 

9: 21 22 23 

10: 24 25 26 27 28 

11: 29 30 31 32 33 

12: 34 35 36 37 38 39 40 41 42 43 44 

2 load cases

----- Strength parameters and safety factor -----

f_s = 550 MPa 

f_c = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 40

Material optimisation algorithm - 77 design variables

Static independent variables, N = 12

----- Design variables -----

Compression:             Tension:

d1_c = 6.825000e+03      d1_t = 1.116608e+04

d2_c = 1.901237e+04      d2_t = 3.383661e+03

d3_c = 2.128009e+04      d3_t = 1.229831e+04

d4_c = 2.576789e+04      d4_t = 0.000000e+00

d5_c = 2.158367e+04      d5_t = 2.484387e+03

d6_c = 1.389660e+04      d6_t = 0.000000e+00

d7_c = 7.178530e+03      d7_t = 9.570597e+03

d8_c = 8.738425e+03      d8_t = 8.010702e+03

d9_c = 1.524600e+04      d9_t = 1.503127e+03

d10_c = 1.663200e+04      d10_t = 0.000000e+00

d11_c = 8.316000e+03      d11_t = 0.000000e+00

d12_c = 4.100000e-02       d12_t = 4.100000e-02

----- Elements exposed to plastic strains -----

Element 1        Element 2

Element 3        Element 3

Element 4        Element 4

Element 4        Element 5

Element 5        Element 6

Element 7        Element 7

Element 7        Element 8

Element 8        Element 9

Element 10        Element 11

Element 12        Element 12

Element 13        Element 13

Element 14        Element 14

Element 15        Element 15

Element 16        Element 16

Element 18        Element 18

Element 19        Element 19

Element 20        Element 20

Element 21        Element 21

Element 22        Element 22

Element 23        Element 23

Element 24        Element 25

Element 26        Element 26

Element 27        Element 28

Element 29        Element 29

Element 30        Element 31

Element 32        Element 32

Element 33        Element 33

Element 34        Element 34

Element 35        Element 35

Element 36        Element 36

Element 37        Element 37

Element 38        Element 38

Element 39        Element 39

Element 40        Element 40

Element 41        Element 41

Element 42        Element 42

Element 43        Element 43

Element 44        Element 44

Figure 2.6: Opti_String: Output list for structure 3 based on material optimisationand lower bound using

practical design restrictions for two load cases. First part of list.
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Chapter 2. Presentation ofOpti_String

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 20.3 

A_s(2) = 11.07 

A_s(3) = 0 

A_s(4) = 6.15 

A_s(5) = 6.15 

A_s(6) = 6.15 

A_s(7) = 22.36 

A_s(8) = 22.36 

A_s(9) = 0 

A_s(10) = 0 

A_s(11) = 0 

A_s(12) = 0 

A_s(13) = 4.52 

A_s(14) = 0 

A_s(15) = 0 

A_s(16) = 0 

A_s(17) = 7.18 

A_s(18) = 17.4 

A_s(19) = 14.56 

A_s(20) = 1.64 

A_s(21) = 0 

A_s(22) = 2.73 

A_s(23) = 2.73 

A_s(24) = 0 

A_s(25) = 0 

A_s(26) = 0 

A_s(27) = 0 

A_s(28) = 0 

A_s(29) = 0 

A_s(30) = 0 

A_s(31) = 0 

A_s(32) = 0 

A_s(33) = 0 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(34) = 9.228 

A_s_x,y(35) = 9.228 

A_s_x,y(36) = 0 

A_s_x,y(37) = 20.302 

A_s_x,y(38) = 6.152 

A_s_x,y(39) = 20.302 

A_s_x,y(40) = 22.124 

A_s_x,y(41) = 1.964 

A_s_x,y(42) = 2.016 

A_s_x,y(43) = 3.024 

A_s_x,y(44) = 0 

----- Reactions [kN] -----

Load case 1:

Support 1 = -2.546

Support 2 = 1.084

Support 9 = -2.501

Support 10 = 19.012

Support 17 = -2.091

Support 18 = 21.28

Support 25 = -0.623

Support 26 = 20.967

Support 33 = -0.903

Support 34 = 17.925

Support 39 = -0.76

Support 40 = 13.897

Load case 2:

Support 1 = -10.881

Support 2 = -18.096

Support 9 = -10.695

Support 10 = -3.384

Support 17 = -15.189

Support 18 = -12.298

Support 25 = -8.738

Support 26 = 25.768

Support 33 = -0.506

Support 34 = -2.484

Support 39 = -1.114

Support 40 = 3.565

Figure 2.7: Opti_String: Output list for structure 3 based on material optimisationand lower bound using

practical design restrictions for two load cases. Second part of list.

For comparison of the lower bound and the upper bound method two separate codes in MATLAB are developed.

The codes used for the comparison are shown in Appendix A7.3 and Appendix A7.4.

The MATLAB code ofOpti_String and the functions and data files for chapter 8 and chapter 10 are shown

in Appendix A7.2.

2.3 Material Models

In general three material models exists, namely the elasticmodel, elastic-plastic model and plastic mode, cf.

Figure 2.8. Traditionally computer programs are based on elastic material behaviour where some includes

plastic response by a elastic-plastic material models. Beside the general models each model can be expressed

linear or non-linear. In the following only linear models are clarified.

The elastic material behaviour can be expressed by a linear strain-stress curve, cf. Figure 2.8. Hereby the
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2.3. Material Models

loading and unloading follows the same path and no plastic strains are developed as the strain state never

exceeds the yield strain,εy.

The linear elastic perfectly plastic model is similar to theelastic model in the elastic range but the strains

can exceed the yield strain. Hereafter, the strains increase for a constant value of the stress. Unloading of the

material leads to plastic strains if the yield strain is exceeded thus, plastic deformation is introduced.

Linear elastic Linear elastic perfectly plastic Perfect plastic

σσσ

εεε
εyεy

fy fy

Figure 2.8: Strain-stress curves for basic material models.

No elastic deformations exists for the perfect plastic material model, cf. Figure 2.8, thus, no strains are devel-

oped until the yield stress of the material is obtained.

The stringer method is based on perfect plastic material behaviour thus, the perfect plastic model is used for the

calculations inOpti_String. By use of the material model some assumptions for the calculation are made.

Because of perfect plasticity no elastic strains are developed since the material model not contains an elastic

range. Thus, because no elastic range exists the superposition principle is not valid. Hereby it is also seen that

the assumption of perfect plasticity is better for materials where the failure strains mainly consists of plastic

strains.

The theory of perfect plastic material behaviour should only be applied to materials which rightly is assumed

having a plastic behaviour. Physical interpretation of plastic behaviour is compared to a ductile behaviour. The

ductility is an important property as it allows rearrangement of stresses when the yield strain is exceeded. Re-

inforced concrete is in general understood as a plastic material because the reinforcement ensures the ductility

of the composite material. A disadvantage of plasticity theory is that the ductile behaviour must be documented

which is commented in chapter 11.

Application of perfect plastic material behaviour leads toeconomical structures compared to elastic models

because a redistribution of the stresses is allowed. Another advantage of the plastic model is the focus of

the collapse mechanisms of the structure and hereby key elements are pointed out. However, for complicated

structures many collapse mechanisms might complicate the analysis of the mechanisms. (Jensen and Bonnerup,

2006, section 4.4) The critical collapse mechanism is foundin Opti_String be means of an optimisation al-

gorithm.

For plasticity calculations two different methods are valid. The methods are either based on a static admis-

sible stress distributions, the lower bound method, or a kinematic admissible mechanism, the upper bound

method. Both methods are available inOpti_String and the methods are described in detail in chapter 5 and

11



Chapter 2. Presentation ofOpti_String

7, respectively.

The Eurocode (EN 1992-1-1, 2007) is implemented inOpti_String when the demands from the standard

can be implemented in the calculations. An example is the determination of reinforcement calculated in the

program. The necessary reinforcement is calculated according to the standard and then the user of the program

must specify which real reinforcement satisfies the calculated values.

12



Chapter 3

Stringer Method

This chapter provides an exposition of the stringer method illustrated by an simple example, structure 2. The

stringer method is described in a 2D space for in-plane stresses. In the end of this chapter structure 2 is shown

by means of traditional hand calculations.

The stringer method is based on a perfect plastic material behaviour and is either based on the lower bound

or upper bound method. The lower bound method seeks a stress field in equilibrium, which do not violate the

yield criteria at any point. In addition, it respects all thestatic boundary conditions for which the load bearing

capacity is maximum. In other words, the lower bound method says that the load carrying capacity is at least

the largest of all lower bound values. The upper bound methodseeks a kinematic admissible collapse mecha-

nism that gives the minimal load barring capacity.

The stringer method is originally based on the lower bound method because a given stress distribution satisfies

the equilibrium equations. Moreover, in-plane forces makethe problem complex when imagining the collapse

mechanism. For a lower bound method all stresses in a given structure are not violating the yield criteria and

the solution is said to be on the safe side. This means that thetrue load carrying capacity is larger or equal to

the load for which the necessary dimensions are determined.

3.1 Assumptions for Stringer Method

The principle of the stringer method is to divide the elementin bars, so-called stringers and rectangular shear

areas stretched by the stringers, cf. Figure 3.1.

Q1Q1 Q2Q2

b) Stringer modela) Disc model

Stringers

Shear area

Figure 3.1: Disc converted to stringer system.

A plane stress distribution is simplified by having stringers carrying compression or tension while shear stresses

are carried in the areas. It is appropriate to carry shear stress in the areas due to the shear reinforcement. The

stringers acting like bars are not suitable for shear stressbut on the other hand applicable for tension and com-
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Chapter 3. Stringer Method

pression. The stringers consist of concrete carrying compression and reinforcement bars carrying tension, cf.

Figure 3.3. Figure 3.1 illustrates the conversion from discto stringer system. Loads and reactions are applied as

concentrated forces in nodes or as shear stress acting alonga stringer. A uniform distributed load is converted

to nodal loads. (Damkilde et al., 1994)

Stringers are oriented in the x or y direction, respectivelyand take both compression and tension. In the conver-

sion from disc to stringer model the normal stresses are equivalent with concentrated normal forces in parallel

stringers. For normal stresses in the x-direction,σx, the equivalent stresses are illustrated in Figure 3.2. Similar

normal stresses in the y-direction are equated with concentrated normal stresses parallel with the y-direction.

x

y

σx

Given real stress
distribution

Simplified model of stress
distribution used inOpti_String

Stringers parallel
with the x-axis

Real stress distribution
using stringers

Figure 3.2: Equivalence between real stress distribution in x-direction and model of stress distribution. After

(Dansk Konstruktions- og Betoninstitut, 2011, Appendix A).

A stringer is defined as a line between to nodes and more stringers in a row makes a stringer line. The concrete

and additional reinforcement in the stringer are illustrated in Figure 3.3. Reinforcement bars are located in the

centre line of the stringer.

A

A

hs

t

hs,max Stringer area,Ac,nec

Reinforcement bar

Centre line

Figure 3.3: Cross-sectional view A of stringer located at the edge.

In the stringer only concrete carry compression which results in a necessary concrete compression area,Ac,nec.

To make sure that the stringer compression capacity is acceptable the expression in equation (3.1) must be

satisfied, cf. (Jensen, 2008, section 12.3). To ensure equation (3.1) the expression in equation (3.2) can be

formulated, regarding (Jensen, 2008).
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3.1. Assumptions for Stringer Method

hs ≤ hs,max (3.1)

Fc,max= vm · fcd ·hs ·hs,max (3.2)

where

hs Height of stringer, depends onAc,nec

hs,max Maximum allowable stringer height, depends on smallest neighbouring shear area

Fc,max Maximum allowable compression strength in stringer

vm Factor of efficiency caused by the compression from bending effect

(EN 1992-1-1 DK NA, 2007, 5.102NA)

fcd Design value of concrete compressive strength

Stringers in tension must be able to transfer shear stress from adjacent areas to the reinforcement bars in the

stringers, cf. equation (3.3), and carry the tension in the required reinforcement, cf. equation (3.4).

|τA− τB|=
n ·As · fyd

lb · t
(3.3)

Ft = At · fyd (3.4)

where

τi Shear stress in adjacent area to the concerned stringer

n Number of reinforcement bars in stringer

As Reinforcement area of reinforcement bar

lb Anchorage length of reinforcement bar

Ft Tension strength of stringer

At Reinforcement area of stringer

Each stringer line is dimensioned based on the maximum compression and tension forces in the stringers com-

posing a stringer line.

A shear area is located among four stringers and have, due to the orientation of the stringers, a rectangular

shape. In the conversion from disc to stringer system the shear stresses are assumed constant for each shear

field meaning that the forces in the surrounding stringers varies linear, cf. Figure 3.4. Net reinforcement are

placed for carrying the shear stress in the rectangles.
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Chapter 3. Stringer Method

x

y

τxy

Real stress
distribution

Model of stress
distribution

τxy constant
within each area

NodeShear area

Figure 3.4: Equivalence between real stress distribution in area and model of stress distribution.

(Dansk Konstruktions- og Betoninstitut, 2011, Appendix A)

Shear stresses may not exceed the expression in equation (3.5) if pure shear is assumed. This means the

concrete compression forms the angleθ with the x-axis and yielding is assumed in the reinforcementbars.

τmax≤
vv · fcd

2
(3.5)

where

τmax Maximum allowable shear stress in shear area

vv Factor of efficiency for pure shear cf. (EN 1992-1-1 DK NA, 2007, 5.103NA)

Stringers are making continuity in the system by interlink the shear fields. Similar the nodes link the stringers.

Two equilibrium equations exist for each node, cf. equation(3.6) and equation (3.7), and one for each stringer,

cf. equation (3.8). Figure 3.5 illustrates the continuity condition.

∑Fx,i = 0 (3.6)

∑Fy,i = 0 (3.7)

S1−S2 = τA− τB (3.8)

ττBτA

S2

S1

Fx,i

Fy,i

Figure 3.5: Equilibrium of node affected by forces in x and y direction and stringer affected by two shear areas.

The stringer system shown in Figure 3.1 is static indeterminate which is general for stringer systems. Through

a plastic redistribution of the stresses it is possible to obtain an optimum by means of the nature that ensures

accuracy of these stresses.
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3.2. Stringer Method by Hand Calculation

3.2 Stringer Method by Hand Calculation

With basis in the stringer theory an example follows for structure 2, cf. Figure 3.1. The dimensions and loads

for structure 2 are stated in Table 3.1. Because of the thickness the example is representative for a concrete

wall.

Thickness 300 mm

Height 1000 mm

Width 1400 mm

q 300kN/m

Q1 75 kN

Q2 135 kN

Table 3.1: Dimensions and loads for structure 2.

For traditional hand calculation the stringer forces and shear stresses are determined by a stepwise calculation.

The steps for the procedure are shown in Appendix A1.

The stringer mesh is placed such that the stringer lines follow the edges both external and around the hole,

and in the centre of the loads and supports as well, cf. Figure3.6. The direction of operational sign is marked

with x-y axis.

Q1Q1 Q2Q2

25

26

27

28

29

30

31

32

1

2

3

4

5

6

7

8

9

10

11

12

13 14 15

16 17 18

19 20 21

22 23 24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

500500 400

350

350

300

x

y

τ

Figure 3.6: Stringer system for structure 2, nodes are numbered from 1 to16 with bold, stringers from 1 to 24

and shear areas from 25 to 32.

The number of static indeterminate,N, is determined by equation (3.9), and for the hand calculation N is
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Chapter 3. Stringer Method

interpreted as the number of static indeterminate shear areas.

Variables : 2·nstringers+nshear_areas+nreactions

Equilibrium equations : 2·nnodes+nstringers (3.9)

Statically indeterminate,N : nvariables−nEquilibrium_Equations

For structure 2N is determined as equation (3.10).

N = (2 ·24+1 ·8+1·8)− (2·16+1·24)= 8 (3.10)

Hereby it is determined that structure 2 is eight times statically indeterminate which lead to following options:

• Stress parameters can in principle be chosen freely

• Free choices for stress parameters leads to a plastic redistribution of the stresses

• Redistribution of stresses facilitate an optimum solutionfor carrying a given load

• The nature ensure accuracy of these stresses

The equilibrium equations still needs to be satisfied in a local cut. Moreover, free choices of stress parameters

may entail static determinate areas which the remaining free choices have to respect.

In this example only three are chosen freely. The shear stress in area 25 and 26 which by vertical projec-

tion in a cut through area 25, 26 and 27 gives the shear stress in 27. The third free choice is 28= 29. After this

area 30, 31 and 32 can be determined by horizontal projection.

Detailed calculations are shown in Appendix A1 and on CD, Appendix A7.1. The results are shown in Fig-

ure 3.7 for shear areas. After determined shear stresses, stringer forces can be found by free body diagram for

each stringer, the results are shown in Figure 3.8 and 3.9.

-0.23

-0.26

-0.26

-1.00

-1.00

-0.93

-1.70

-0.89

Compression
Tension

Figure 3.7: Shear stress inMPa.
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0
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Figure 3.8: Vertical stringer forces inkN.
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Figure 3.9: Horizontal stringer forces inkN.

The parameters in Table 3.2 are used for the reinforcement and checking the compression capacity.

Safety factor for normal control classγc 1.45

Safety factor for reinforcing steel γs 1.2

Compressive strength of concrete fc 25 MPa

Yield strength of reinforcement fy 350 MPa

Table 3.2: Material parameters for structure 2.

The compression capacity is maintained in all stringers because the stringer height,hs, is smaller than the max-

imum allowable stringer height,hs,max, cf. Figure 3.3 and equation (3.1). Tensile stringers and shear areas have

the reinforcement shown in Table A1.3 which is determined inAppendix A1.4. Detailed calculations can be

found on CD, Appendix A7.1. The results are compared with theoutput fromOpti_String in section 8.1.
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Chapter 3. Stringer Method

It is discovered that the calculations is somewhat tedious for even a simple example with all the equilibrium

equations. Thus, it is favourable to save time by an automation of the calculations in a computer program,

which in addition calculates the optimal stress distribution, and optimises the structure.
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Chapter 4

Mathematical Formulation

A mathematical formulation of the stringer theory is introduced. The formulation describes the local flexibility

matrix for the stringer and shear element and and their boundary conditions. Furthermore, the assembling of

the flexibility for a global system is shown.

In chapter 3 the stringer method is illustrated by a simple example. The example indicates the number of

equations for the simple example and it is seen that for even asmall system the number of equations are large

and time consuming. Therefore, the stringer method is formulated with a finite element concept, which is im-

plemented inOpti_String.

The principle for establish local equilibrium and assembling the local matrices for stringerk and shear area

m is explained, cf. Figure 4.1.

a
a

b

b c

c

d
d

k

i

l

jm

x

y

Figure 4.1: Stringer elements and shear area for illustration of assembling of global flexibility matrix,H.

The normal stress varies linear in the stringer as mentionedin section 3.1 thus, two stress parameters,βa and

βd, are necessary for describing stringerk. The stringer is affected by concentrated nodal loads, or asshear

acting on the mid-side of the stringer, cf. Figure 4.2.

βa βd

qa
qk

qd

Figure 4.2: Stringer element k. Right is considered positive.

The external loads and the stress parameters represents an equilibrium state for the element, cf. equation (4.1).
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Chapter 4. Mathematical Formulation

Notice, the selected positive direction is going to the right.

qa =−βa

qd = βd (4.1)

qk =−βa+βd

where

qi External nodal force

βi Stress parameter

The equilibrium equations are formulated in equation (4.2).















qa

qd

qk















=









−1 0

0 1

1 −1















βa

βd







(4.2)

Equation (4.2) can be expressed as equation (4.3) using matrix notation.

q = h β (4.3)

where

h Local flexibility matrix

A given load leads to a constant shear stress,τ, in a shear areas. This single stress parameter is equivalent to

four nodal loads located at the mid-side of each stringer around the shear field, cf. Figure 4.3.

q j

ql

qi

qk

w

hτ

Figure 4.3: Shear element m with thickness = t.

The equilibrium equations for shear fieldm are given in equation (4.4).

qi = h τ t

q j =−h τ t

qk = w τ t (4.4)

ql =−w τ t

where
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Chapter 4. Mathematical Formulation

h Height of shear area

w Width of shear area

τ Shear stress

t Thickness

The equilibrium equations in equation (4.4) are formulatedin equation (4.5). The relation can also be given in

matrix notation as equation (4.3).
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
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
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τ t (4.5)

To satisfy global equilibrium for a system the sum of internal forces must corresponds to the sum of external

forces. This is implemented by an assembling of the local flexibility matrices for stringers and shear areas

into the global flexibility matrix,H, that ensures equilibrium for the global system. The assembling is done

according to (Cook et al., 2002). First, the two equations ofthe local flexibility matrix for stringerk, which

expresses equilibrium in start and end node for the stringer, cf. equation (4.1), are put into the global flexibility

matrix. The equations enter in the two rows corresponding tonode equilibrium for the nodes in each end of the

stringer, cf. Figure 4.4.

Subsequently, the last equation, expressing equilibrium at the mid-side of the stringer, cf. equation (4.1), is

put into the global flexibility matrix in the row corresponding to horizontal equilibrium of stringerk. All three

equations from the local equilibrium matrix are placed in the two columns describing stringerk, cf. Figure 4.4.

Shear fields

m

start end start end start end start end start end start end start end

ax -1 0

ay
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dx 0 1
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Figure 4.4: Assembling of global flexibility matrix,H.

The four values describing shear fieldm are arranged in one column describing the shear area, cf. Figure 4.1.

The two equations for the nodes along the vertical mid-sidesare placed in the rows describing vertical equilib-

rium for the stringers,i andj, affected by the shear area, cf. Figure 4.4. In the same way the two equations for
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horizontal mid-side nodes are placed in the rows for horizontal equilibrium of the affected stringers,k andl.

The equilibrium relation for a global system is written as equation (4.6) where the left-hand side consists of the

global flexibility matrix,H, and the stress parameters,β, corresponding to the internal forces. The right-hand

side consists of the external load.

H β = λ R (4.6)

where

H Global flexibility matrix

R Load

λ Load parameter

The number of stress parameters is determined from the number of stringers and shear areas. As each stringer is

described by two stress parameters and each shear area by one, the total number of stress parameters becomes:

nβ = 2·nstringers+nshear_areas

Each row in the global flexibility matrix satisfies either horizontal or vertical equilibrium in a node or equilib-

rium in a stringer. A simple example showing the assembling of the global flexibility matrix is illustrated in

appendix A3 for structure 1, cf. section 1.2.

After the global flexibility matrix is established the rows containing supports are removed. These rows are

redundant for solving the system. Moreover, the reactions can be found as the stress parameters sharing node

and direction with the relevant reaction. It is also possible to formulate restrictions for the reactions, this prac-

tical feature is commented in chapter 11.

For statically determined systems the number of stress parameters are the same as the equilibrium equations,

while for indeterminate systems the number of stress parameters is larger than the number of equilibrium equa-

tions. This introduces free variables which can be selectedfreely to optimise the system, e.g. to maximise the

load bearing capacity or minimise the material requirements. This optimisation is done by means of LP, cf.

chapter 6. The application of the mathematical formulationis used inOpti_String and the implementation is

shown in chapter 9.
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Chapter 5

Lower Bound Method

This chapter describes the lower bound method. The theory isdescribed according to the stringer method and

the mathematical formulation in chapter 4. LP problems are formulated for both load and material optimisa-

tion. After the description of the theory examples of both load and material optimisation are shown.

The LP problem formulated for both load and material optimisation are restricted by;

• Equilibrium which must be satisfied

• Yield criteria may not be violated

By using the build in functionlinprog in MATLAB, which is a linear programming algorithm, the LP problems

are solved.

5.1 Load Optimisation

The objective of load optimisation using the lower bound method is to maximise the load to find the ultimate

load bearing capacity of the structure. The applied loads are multiplied with a load parameter,λ. The lower

bound method determines the optimal load parameter,λ and the optimal stress parameters,β as a by-product.

The two above mentioned restrictions are described for eachstringer and shear area. Hereby it is possible to

define individual limits for each element in accordance withcurrent standards. The above mentioned problem

is mathematical described in equation (5.1) (Damkilde, 1995, equation (15)). Detailed examples of the matrix

layout are shown in appendix A3.

maximise : λ

restrictions : −H β+λ R =−R0 (5.1)

C β ≤ Cd

where

λ Load parameter

H Flexibility matrix

β Vector containing stress parameters and load parameter

R Load vector

R0 Constant load vector, e.g. self weight

C Constraint matrix

Cd Material constraint matrix containing strength values
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λ is maximised by using the object function,c, in equation (5.2).

cTx =































0
...

0ns

1































T 




























β1

...

βns

λ































=
{

0 . . . 0ns 1
}































β1

...

βns

λ































(5.2)

where

c Object function regarding load optimisation

x Vector with variables to be determined containingβ, andλ
ns 2 ·nstringers+nshear_areas

c is made as a zero vector with the last values set to one and the length of the vector corresponds to the number

of columns in the flexibility matrixH. x contains the load parameter,λ, which the purpose is to maximise,

cf. equation (5.2). In order to do soc is multiplied with−1 sincelinprog minimises the object function, cf.

equation (A3.1).

The first restriction in equation (5.1) ensures equilibriumis satisfied in the whole structure. The expression

can be rewritten as equation (5.3). The matrix on the left hand side with bothH andR is the matrix for linear

equality constraintslinprog needs, cf. appendix A3. The number of rows and columns forH are: nrows =

2 ·nnodes+nstringersandncolumns= 2 ·nstringers+nshear_areas, cf. chapter 4.

[

−H R
]







β

λ







=−R0 (5.3)

The solution provides stress parameters and the load parameter as primary values. The load parameter indicates,

when multiplied with the load, the maximum load for the system. The stress parameters are within the defined

limits stated in the material constraint matrix,C, by rewritten equation (5.4) to equation (5.5).

−N−
y ≤ βi ≤ N+

y (5.4)

−βi ≤ −N−
y (5.5)

βi ≤ N+
y

where

N−
y Negative yield strength

N+
y Positive yield strength

Hereby the yield criteria for all elements are stated in equation (5.6) wherenrows= 4 ·nstringers+2 ·nshear_areas

and ncolumns= 2 · nstringers+ nshear_areas. An example ofC and Cd is illustrated in Appendix Figure A3.3.

The yield strength for the stringers are given by equation (3.2) and equation (3.4) for compression and tension
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5.2. Material Optimisation

respectively. The yield strength for the shear areas are given by equation (3.5) for both compression and tension.

An example is shown for structure 1in Appendix A3.3.

C β ≤ Cd (5.6)

Beside the primary values the function calculates the dual values, shadow prices, for the LP problem. The dual

values based on the inequalities indicates elements exposed to plastic strains, in either tension or compression.

The displacements for the collapse mechanism is interpreted using the dual values of the equalities. Only the

shape of the collapse mechanism is found, thus the deformations are unknown as the calculation is done with

perfect plastic material behaviour.

5.2 Material Optimisation

The LP problem can be used for minimising the material, e.g. by weight or cost, of the structure. Thus, the

problem is described as equation (5.7) (Damkilde, 1995, equation (24)). This is the general formulation for

material optimisation where the strength values are taken into account by the design variablesd. Opposite

to load optimisationCd is a matrix which ensuredcompressionanddtension for each element instead of strength

values. It is possible to take strength values into account as restrictions, which is done in chapter 8.2 and is

omitted here because of clarity.

minimise : wT d

restrictions : H β = R (5.7)

C β−Cd d ≤ C0

d ≥ 0

where

w Object function given as weighting parameters for material

d Design variables

Cd Material constraint matrix

The design variables are minimised by the object function inequation (5.8). Instead of the load parameter,

λ, weighting parameters,w, are included in the object function,c. By these variables it is possible to group

and weight part of the structure and hereby have an influence of e.g. the design of the structure according to

material use or the way the structure supports the load. WhenminimisingcTx the optimal design parameters,

d, are determined. The main purpose is to minimised why the stress parameters are a by-product.
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(5.8)

27



Chapter 5. Lower Bound Method

where

c Object function with weighting parametersw

x Vector with variables to be determined containingβ andd

The second restriction in equation (5.7) is rewritten as equation (5.9), where the matrix with bothC andCd

is the matrix for liniear inequality constraintslinprog needs, cf. appendix A3. The size ofCd is similar toC

which is illustrated in Appendix Figure A3.4. If same strengths for a group are desired theCd matrix can be

modified, for instance if all stringers must have same compression and tension strength and all shear areas the

same shear strength. This is illustrated for structure 1 in Appendix Figure A3.5. It is not advisable to change

Cd, instead extra restrictions should be introduced, cf. chapter 8.1.

[

C −Cd

]







β

d







≤ C0 (5.9)

5.3 Example - Structure 2

For validatingOpti_String structure 2 is calculated based on material and load optimisation respectively. The

purpose of this example is to show the basic principle of material and load optimisation. For clarity this example

is done with a modifiedCd matrix resulting in three design variables,d, instead of 56, which is illustrated in

Appendix Figure A3.5.

First, the calculation is made with material optimisation and the calculated design parameters will be used as

basis for a load optimisation for the same example. Geometry, loads and boundary conditions for the structure

are the same as used in section 3.2. The self weight is neglected, and the structure is only affected by the four

nodal loads. By typing in the node coordinates, stringers, shear areas etc. into the data file for structure 2 the

following stringer system is obtained, cf. Figure 5.1.
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(a) Geometry generated byOpti_String.
Stringers are assigned 1-31 and shear fields 32-42.

(b) Support numbers.

Figure 5.1: Opti_String: Geometry plot for structure 2.

The calculated design variables from material optimisation are based on the geometry and the material restric-

tions stated in the Eurocode.Opti_String automatically determine the material strengths and provides the
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5.3. Example - Structure 2

matrixmat, shown in Figure 5.2. The working procedure ofOpti_String for generating this list is described

in section 9.1.
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mat

481,03 350,00

481,03 350,00

481,03 350,00

Figure 5.2: Opti_String: Matrix mat.m containing material parameters for structure 2. based on geome-
try and restrictions stated in the Eurocode.

The collapse mode for structure 2 is shown in Figure 5.3 for both material and load optimisation. The calculated

displacements from the dual equalities produces the collapse mechanism. This is due to the link between the

primal and dual variables in LP, cf. equation (6.4). An example of the dual equalities whichOpti_String

handle is shown for structure 1 in Appendix Figure A5.2.
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Figure 5.3: Opti_String: Collapse mechanism for structure 2of material and load optimisation respectively.

Area 25 to 28 rotates like a rigid body which satisfy the fact that non of these areas and surrounding stringers

are exposed to plastic strains. This is evident in Figure 5.4and 5.5 showing output lists fromOpti_String.

According to Figure 5.3 failure occur in stringer 15, 18, 21 and 24 and area 31 for material optimisation,

which are in accordance with the fact that plastic strains appear in these elements according to the list from

Opti_String. Failure is expected in the horizontal stringers connectedto support 25 and 31 since the moment
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Chapter 5. Lower Bound Method

from the load is largest here. The dual inequalities are interpreted as plastic strains, an example of these are

shown in Appendix Figure A5.2 for structure 1.

Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Lower bound method

Structure 2 

1 load case

----- Strength parameters and safety factors -----

f_s = 550 MPa 

f_c  = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 100

Material optimisation algorithm - 3 design variables

Static independent variables, N = 8

----- Design parameters -----

d1 = 2.261538e+05

d2 = 2.261538e+05

d3 = 1.710020e+00

----- Maximum stringer forces [kN] -----

Stringer 1 = 21.239

Stringer 2 = -96.244

Stringer 3 = -96.244

Stringer 4 = -83.203

Stringer 5 = -83.203

Stringer 6 = -135

Stringer 7 = -68.011

Stringer 8 = -221.912

Stringer 9 = -221.912

Stringer 10 = 66.126

Stringer 11 = -78.045

Stringer 12 = 31.82

Stringer 13 = 30.341

Stringer 14 = -40.475

Stringer 15 = -226.154

Stringer 16 = -226.146

Stringer 17 = -226.146

Stringer 18 = -226.154

Stringer 19 = 226.154

Stringer 20 = 226.154

Stringer 21 = 226.154

Stringer 22 = -30.349

Stringer 23 = 138.835

Stringer 24 = 226.154

----- Shear stresses [MPa] -----

25 = 0.202

26 = 1.305

27 = 0.202

28 = 0.59

29 = 1.41

30 = 1.238

31 = 1.71

32 = 0.582

----- Elements exposed to plastic strains -----

Element 15

Element 18

Element 21

Element 24

Element 31

----- Reactions [kN] -----

Load case 1:

Support 25 = -226.154

Support 26 = 63.849

Support 27 = -226.154

Support 28 = 144.171

Support 29 = 226.154

Support 30 = 105.16

Support 31 = 226.154

Support 32 = 106.82

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 46.34 

A_s(2) = 46.34 

A_s(3) = 0 

A_s(4) = 0 

A_s(5) = 74.79 

A_s(6) = 74.79 

A_s(7) = 0 

A_s(8) = 0 

A_s(9) = 0 

A_s(10) = 144.27 

A_s(11) = 165.51 

A_s(12) = 69.43 

A_s(13) = 66.2 

A_s(14) = 66.2 

A_s(15) = 0 

A_s(16) = 0 

A_s(17) = 0 

A_s(18) = 0 

A_s(19) = 493.43 

A_s(20) = 493.43 

A_s(21) = 493.43 

A_s(22) = 0 

A_s(23) = 302.91 

A_s(24) = 493.43 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(25) = 132.397 

A_s_x,y(26) = 854.421 

A_s_x,y(27) = 132.431 

A_s_x,y(28) = 386.271 

A_s_x,y(29) = 922.82 

A_s_x,y(30) = 810.233 

A_s_x,y(31) = 1119.29 

A_s_x,y(32) = 381.029 

Figure 5.4: Opti_String: Output list for structure 2, material optimisation.
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5.3. Example - Structure 2

Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Lower bound method

Structure 2 

1 load case

----- Strength parameters and safety factors -----

f_s = 550 MPa 

f_c  = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 100

Load optimisation algorithm - 1 design variables

Static independent variables, N = 8

----- Load parameter -----

Lambda = 1.000000

----- Maximum stringer forces [kN] -----

Stringer 1 = -21.239

Stringer 2 = 96.244

Stringer 3 = 96.244

Stringer 4 = 134.822

Stringer 5 = 134.822

Stringer 6 = 135

Stringer 7 = -24.903

Stringer 8 = 128.999

Stringer 9 = 135

Stringer 10 = 44.34

Stringer 11 = 76.951

Stringer 12 = 51.209

Stringer 13 = -30.341

Stringer 14 = 99.468

Stringer 15 = 226.154

Stringer 16 = 226.146

Stringer 17 = 226.146

Stringer 18 = 226.154

Stringer 19 = -226.154

Stringer 20 = -226.154

Stringer 21 = -226.154

Stringer 22 = 30.349

Stringer 23 = -79.842

Stringer 24 = -226.154

----- Shear stresses [MPa] -----

25 = 0.202

26 = 1.305

27 = 0.202

28 = 1.082

29 = 0.918

30 = 0.845

31 = 1.71

32 = 0.975

----- Elements exposed to plastic strains -----

Element 15

Element 18

Element 21

Element 24

----- Reactions [kN] -----

Load case 1:

Support 25 = -226.154

Support 26 = 44.34

Support 27 = -226.154

Support 28 = 121.291

Support 29 = 226.154

Support 30 = 128.16

Support 31 = 226.154

Support 32 = 126.209

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 0 

A_s(2) = 209.99 

A_s(3) = 209.99 

A_s(4) = 294.16 

A_s(5) = 294.16 

A_s(6) = 294.55 

A_s(7) = 0 

A_s(8) = 281.45 

A_s(9) = 294.55 

A_s(10) = 96.74 

A_s(11) = 167.89 

A_s(12) = 111.73 

A_s(13) = 0 

A_s(14) = 217.02 

A_s(15) = 493.43 

A_s(16) = 493.41 

A_s(17) = 493.41 

A_s(18) = 493.43 

A_s(19) = 0 

A_s(20) = 0 

A_s(21) = 0 

A_s(22) = 66.22 

A_s(23) = 66.22 

A_s(24) = 0 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(25) = 132.397 

A_s_x,y(26) = 854.421 

A_s_x,y(27) = 132.432 

A_s_x,y(28) = 708.049 

A_s_x,y(29) = 601.041 

A_s_x,y(30) = 552.81 

A_s_x,y(31) = 1119.29 

A_s_x,y(32) = 638.452

Figure 5.5: Opti_String: Output list for structure 2, load optimisation.

The stringer forces, shear stresses, load variableλ and design variablesd are interpreted from the primal

variables. An example for the primal variables is shown in Appendix Figure A5.1. The design parameters,d,

from equation (5.8) are listed from d1 to d3 under Design parameters in the output list, cf. Figure 5.4. The
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Chapter 5. Lower Bound Method

design parameters are shown in Table 5.1. The design parameters are based on the largest occurring values in

the elements when minimising the material use in the structure. It is seen from Table 5.1 that the elements are

not utilised to the limit since the design parameters are lower than the values stated in Figure 5.2

Fc,max d1 226.15 kN

Ft,max d2 226.15 kN

τmax d3 1.71 MPa

Table 5.1: Design parameters for structure 2 using the lower bound method.

By using the three design parameters from material optimisation, load optimisation is performed on the stringer

system. The loads applied are the same values as for materialoptimisation.

Load optimisation leads to a load parameter,λ, of 1, cf. Figure 5.5. The value is expected as the applied

design parameters are based on material optimisation thus,the design parameters calculated using material

optimisation reflects the optimum values for the given load.

The maximum shear stress appears in shear area 31 for both material and load optimisation. The number

of stringers which must be reinforced is larger for load optimisation.

Compared to the stringer forces calculated in section 3.2 based on traditional hand calculations the forces

are lower. The maximum stringer force is 226.15 kN which is a reduction of 23%. It is noticed that the op-

timal shear stress determined byOpti_String is similar to the one determined by the hand calculations, cf.

Figure 3.9.

The reactions calculated for both material and load optimisation are controlled by summation of horizontal

and vertical loads and reactions, respectively.

ΣPx = 0 kN

ΣRx = 0 kN

ΣPy =−420 kN

ΣRy = 420 kN
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Chapter 6

Linear Programming

The principle of LP is described in this chapter. LP is illustrated in connection with the stringer method and

the meaning of primal and dual variables are explained.

The formulation of the equations for the stringer system is described in chapter 4. Based on this formula-

tion the system is optimised, either regarding stress distribution or kinematics, cf. chapter 5 and 7, respectively.

LP is originally a mathematical method for economical optimisation where resources could not be negative.

Modern systems does not care and letx take both positive and negative values.

In particular LP is an optimisation of a linear object function subjected to restrictions consisting of inequalities

which may be linearised if necessary. By use of LP in stringermethod the inequalities include constraints such

as material strength and the equalities are the equilibriumconditions.

If a LP problem is formulated using the lower bound method, cf. equation (5.1), the primal variables are

static, i.e. optimal stresses,β, and optimal load parameter,λ, cf. equation (6.3). The general formulation

is written as equation (6.1) where the object function,c, is a vector of known coefficients to be optimised

multiplied with a vector of variables,x, to be determined. This optimisation is subjected to a number of

restrictions collected in matrices and vectors whereA is a known matrix of coefficients containing inequality

constraints.b is a vector with known coefficients.

maximise : cT x

restrictions : A x ≥ b (6.1)

x ≥ 0

where

c Object function

x Vector of primal variables

A Matrix for inequality constraints

b Vector of linear inequality constraints

According to the stringer method equation (6.1) is expandedto equation (6.2) in order to account for stresses

which can both be negative and positive. The stresses are included inx.
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Chapter 6. Linear Programming

maximise : cT x

restrictions :
[

A −A
]







x+

x−







≥ b (6.2)

x = x+− x−

For each primal LP problem a dual problem can be formulated and the optimum solution for the dual problem

is the optimum solution to the primal problem (Damkilde, 1995). For equation (6.1) the primal variables are

expressed in equation (6.3) and the dual variables in equation (6.4).

Primal variables : x =







β

var







(6.3)

Dual variables (shadow price) :θ =







Ψ

V







(6.4)

where

β Stress parameters

var Variables, load or design parameter

Ψ Plastic strains

V Displacements for nodes and stringers

If the primal problem is a lower bound, e.g. equation (5.1), the dual problem for this equivalent is the upper

bound problem formulated in equation (7.3) (Damkilde, 1995). Thus, besides the stress distribution found from

the primal problem, the dual values are kinematic, which provides the plastic strains,Ψ, and displacements,

V, for the system. The dual variables from equation (6.1) is the primal variables in equation (6.5) when the

optimisation is based on the upper bound method e.g. a kinematic admissible collapse mechanism. The primal

variables for the upper bound are shown in equation (6.7) andthe dual values in equation (6.8).

minimaize : θT b

restrictions : θT A ≤ cT (6.5)

θ ≥ 0

The general formulation in equation (6.5) is expanded to equation (6.6) in order to account for displacements,
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V, which both can be negative and positive.

maximise :







Ψ

V







b

restrictions :
[

A −A
]
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V
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≥ cT (6.6)




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Primal variables : θ =




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Ψ

V




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(6.7)

Dual variables (shadow price) :x =







β

var







(6.8)

where

θ Primal variables

x Dual variables

Obviously this property is also valid when formulating the primal problem from the upper bound method thus,

the primal values consists of plastic strains and displacements while the dual values represents the stress dis-

tribution. The shadow price indicates the profit of changinga restriction. If a restriction is changed and do not

limit the optimum, the shadow price becomes zero. If the optimum on the other hand is limited by a restriction

then one will pay extra in order to obtain a larger load or smaller material parameters, which is interpreted as

plastic strains for an element.

If a LP problem is formulated using the upper bound method, cf. equation (7.3), the load parameter,λ, is

found by the value of the object function. For material optimisation the design variables are interpreted as the

dual variables of the inequalities.

The inequalityA · x ≥ b in equation (6.1) defines the feasible region for the linear optimisation byn con-

vex polyhedrals.n is the number of restrictions in the inequality. An example of a feasible region is illustrated

in Figure 6.1.
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Chapter 6. Linear Programming

Starting vertex

Optimal solution

Simplex algorithm
Interior point Large Scale algorithm

Restrictions

Figure 6.1: Illustration of iteration procedure for simplex and interior point algorithm respectively.

The LP problems are solved using thelingprog function in MATLAB. lingprogalways minimise, why the ob-

ject function needs to be multiplied by−1 in equation (6.1) for carry out the maximisation.

For the solution of the LP problem one of two algorithms has tobe chosen. The Simplex algorithm is the

simplest of the two algorithms. The solution space is a n-dimensional space limited by restrictions. Simplex

tends to find a extreme solution as it follows one edge and hereafter the next edge. Thereby, the order of defi-

nition of elements can affect the result.

The other algorithm, Large-Scale, is an interior point algorithm. Opposite to Simplex every steps is based

on all the restrictions. This means that every step is costlybut less steps are needed for finding the optimum.

In addition, Large-Scale do not tends to find an extreme optimum but instead find an balanced optimum.

The algorithms can be illustrated by a mountain climber reaching the top where; simplex is limited by a

fogged weather and therefore only take small steps every time and interior-point see the top from the beginning

and walk in the correct direction all time. The algorithms are illustrated in Figure 6.1. Every line of demarcation

in the feasible region corresponds to a restriction in the inequalities.

The two algorithms have been compared for structure 1in appendix A3, and based on the simple comparison

the Large-Scale algorithm is chosen for all the following calculations, since all restrictions are included in the

optimisation.
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Chapter 7

Upper Bound Method

This chapter describes the upper bound method. The theory isdescribed according to the stringer method and

the mathematical formulation from chapter 4. After the description of the theory structure 2 is shown for both

load and material optimisation. A comparison with the results from lower bound is made in the end of the

chapter

For practical use the upper bound method is somewhat more complicated because this require knowledge

within the mechanics and collapse modes. The upper bound formulation in equation (7.3) is a direct mathemat-

ical translation from the lower bound in equation (5.7). This is possible due to the primal and dual link between

upper and lower bound method from chapter 6.

The upper bound method seeks:

• A kinematic admissible collapse mechanism

• Equilibrium between internal and external work

The procedure for upper bound method is to calculate the external and internal work, and hereby determine the

collapse loadλ+ as the ratio between these two. This is illustrated in equation (7.1)

Ainternal = Aexternal (7.1)

CT
d Ψ= λ RT

0 V+RT V

where

Ainternal Internal plastic work

Aexternal External work from the real collapse load

λ Upper bound value for the collapse load

Cd Vector with material constraint, strength values

Ψ Vector with plastic strain variables

R0 Constant load vector

V Vector with displacements for each node

R Load vector

By isolatingλ in equation (7.1) it is possible to express the collapse load, cf. equation (7.2). Herebyλ+ is

expressed by a geometric feasible collapse mechanism.
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Chapter 7. Upper Bound Method

λ+ =
CT

dΨ−RT
0 V

RT ·V
(7.2)

7.1 Load Optimisation

Opposite to the lower bound method the variables to be determined are displacements in each node, collected in

the vectorV, and plastic strains which can illustrate positive or negative yield strength, collected in the vector

Ψ.

Since LP are only able to work with linear problems equation (7.2) is linearised by minimising the strains and

displacements caused by the load, in this case minimising the numerator and keep the denominator as a constant

of one,RT V = 1. The external load is kept constant in order to make the optimisation easier. Equation (7.3)

describes the LP problem for finding an upper value of the loadbearing capacity of the structure (Damkilde,

1995, equation (18)).

minimise : CT
d Ψ−RT

0 V

restrictions : −HT V +CT
Ψ= 0 (7.3)

RT V = 1

Ψ≥ 0

By rewriting the numerator the object function forlinprog is shown to the left which is multiplied with the

variables to be minimised, cf. equation (7.4). The object function for structure 1 is exemplified in Appendix

Figure A3.7 whereCd andR0 are illustrated.

{

CT
d −RT

0

}







Ψ

V







(7.4)

The first restriction in equation (7.3),−HT V+CT
Ψ= 0, ensures compatibility between the plastic strains,Ψ,

and the displacements,V, which is written as equation (7.5).H andC is known from the lower bound method,

cf. chapter 5, and is illustrated for structure 1 in AppendixFigure A3.2 and A3.3. By multiplying−HT with V

the following is obtained;ndisplacements= nequality_equations.

[

CT −HT
]







Ψ

V







= 0 (7.5)

By identifying the input in equation (7.3) a physical interpretation is obtained. For each element compatibility

is satisfied in the upper bound method. This means that the collapse mechanism is compatible with the physical

conditions of the structure and material. Compatibility isobtained by considering all strains as plastic strains.

In equation (7.4) and equation (7.5) compatibility is ensured by setting displacements equal to plastic strains.

The plastic strains,Ψ, in equation (7.4) cover both strains for stringers,ε, and areas,γ, and similar for the

displacements, cf. equation (7.6).

Ψ=







ε

γ







V =







vstringers

vareas







(7.6)
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7.1. Load Optimisation

Compatibility is satisfied if the difference between displacements,∆l , corresponds to the difference in plastic

strains,∆ε. Compatibility for stringer,k, is ensured by equation (7.7) and illustrated in Figure 7.1.

∆εk1 =
(va− vk)

l
(7.7)

∆εk2 =
(vb− vk)

l

va vdvk

εa εd

l

Figure 7.1: Compatibility between displacements and strains for stringer k.

Compatibility for shear areas between displacements,∆v, and strains,γ, is expressed in equation (7.8). Fig-

ure 7.2 illustrates how different strains results in different gradients for the shear areas. Together the displace-

mentsvi to vl represent a rotation.

γm =
vl − vk

h
+

v j − vi

w
(7.8)

vi v j

vk

vl

w

hγ1 γ2 m

Figure 7.2: Compatibility between displacements and strains for area m.

Figure 7.3 illustrates the assembling of equation (7.5). Inthe assembling stringers are expressed by equation (7.7)

and shear areasby equation (7.8). It is illustrated how compatibility is satisfied when displacements result in

strains. Hereby a geometric band exist which connect strains with a displacement variation.
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Figure 7.3: Assembling of flexibility matrix,H for stringer, k, and area, m. s = start node, e = end node.

The restrictions consist of two equalities and one inequality that ensure the plastic strains are positive defined.

The built-in function in MATLAB linprog, is not capable of solving an equation system with two equalities

thus, the second equality is formulated as two inequalities, −RTV ≤ −1 andRTV ≤ 1, cf. equation (7.9).

A more detailed exposition solving the linear programming problem usinglinprog is made in Appendix Fig-

ure A3.8. Compatibility is also ensured by keeping the external work constant.

The matrix on the left hand side is the matrix forlinprog describing the linear inequality constraints,A,

where the right hand side is the vectorlinprog needs as linear inequality constraints.





0 −RT

0 RT











Ψ

V







≤







−1

1







(7.9)

The dimensions ofA are shown below. The first parenthesis represents the plastic strains and the last the

displacements.

nrows = 2

nrows = (4 ·nstringers+2 ·nshear_areas)+ (2 ·nnodes−nsupports+nstringers)

Except of the new variables,Ψ andV, all the vectors and matrices are known from the lower bound method in

chapter 5. This is due to the relation between primal and dualproblems in LP, cf. chapter 6.

By use oglinprog Opti_String calculates primal and dual variables. Solution of equation(7.3) provides

primary values containing the plastic strains, equalling the collapse mode of the system and the displacements

of the nodes in the collapse mechanism. The dual problem contains the stringer and shear forces which are

interpreted as the shadow prices of the equalities while theload parameter are found by the value of the object

function.
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7.2. Material Optimisation

7.2 Material Optimisation

The upper bound method for material optimisation, equation(7.10) comes from a translation of the lower bound

method. This is possible due to the connection between primal and dual variables in LP, cf. chapter 6.

maximise : RT V−CT
0 Ψ

restrictions : HT V −CT
Ψ= 0 (7.10)

CT
d Ψ≤ w

Ψ≥ 0

After the translation the intention is to maximise the external work, RT V, minus the internal plastic work,

C0 Ψ, which is constant and depends on the weighting factor. The external load is known why the external

plastic work are kept constant. The internal plastic work isunknown for which the intention is to maximise in

order to obtain optimal design variables for the given load.

Material optimisation provides similar to load optimisation plastic strains and displacements as primal vari-

ables. In addition, the dual variables consists of the weighting parameter,w, and the stringer forces and shear

stresses. Thus the upper bound variable due not enter explicit in the formulation the restrictions for the internal

plastic work provides the shadow prices where the design parameters are found.

7.3 Example - Structure 2

Structure 2 is used for illustratingOpti_String when calculations are based on the upper bound method.

The procedure in this example is similar to section 5.3 for lower bound. As for lower bound this example is

performed with a modifiedCd matrix for clarity and the possibility to compare the results.

First the optimal design variablesd are determined by material optimisation after which the load optimisation

is based on these design variables which should lead to the load parameterλ = 1. The geometry plot is equal

to the one from section 5.3. The primal variables provides now the plastic strains in the elements and the

displacements of the nodes and stringers as well, cf. equation (6.7). These are used for plotting the collapse

mechanism shown in Figure 7.4.
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Figure 7.4: Opti_String: Collapse mechanism for structure 2based on material and load optimisation.
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Chapter 7. Upper Bound Method

The two collapse modes are similar which are substantiated by the fact that material and load optimisation pro-

vides plastic strains in the same elements, except area 31. This appear in the two output lists fromOpti_String

shown in Figure 7.5 for material optimisation and 7.6 for load optimisation.

Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Upper bound method

Structure 2 

1 load case

----- Strength parameters and safety factors -----

f_s = 550 MPa 

f_c  = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 40

Material optimisation algorithm - 3 design variables

Static independent variables, N = 8

----- Design parameters -----

d1 = 2.261538e+05

d2 = 2.261538e+05

d3 = 1.710000e+00

----- Maximum stringer forces [kN] -----

Stringer 1 = 21.242

Stringer 2 = -96.242

Stringer 3 = -96.242

Stringer 4 = -149.5

Stringer 5 = -149.5

Stringer 6 = -135

Stringer 7 = 51.314

Stringer 8 = -102.586

Stringer 9 = -135

Stringer 10 = -38.733

Stringer 11 = -76.998

Stringer 12 = -57.521

Stringer 13 = 30.346

Stringer 14 = -116.234

Stringer 15 = -226.154

Stringer 16 = -226.154

Stringer 17 = -226.154

Stringer 18 = -226.154

Stringer 19 = 226.154

Stringer 20 = 226.154

Stringer 21 = 226.154

Stringer 22 = -30.346

Stringer 23 = 63.074

Stringer 24 = 226.154

----- Shear stresses [MPa] -----

25 = 0.202

26 = 1.305

27 = 0.202

28 = 1.222

29 = 0.778

30 = 0.733

31 = 1.71

32 = 1.087

----- Elements exposed to plastic strains -----

Element 15

Element 18

Element 21

Element 24

Element 31

----- Reactions [kN] -----

Load case 1:

Support 25 = -226.154

Support 26 = 38.733

Support 27 = -226.154

Support 28 = 115.209

Support 29 = 226.154

Support 30 = 134.422

Support 31 = 226.154

Support 32 = 131.635

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 46.35 

A_s(2) = 46.35 

A_s(3) = 0 

A_s(4) = 0 

A_s(5) = 0 

A_s(6) = 0 

A_s(7) = 111.96 

A_s(8) = 111.96 

A_s(9) = 0 

A_s(10) = 83.37 

A_s(11) = 167.79 

A_s(12) = 123.57 

A_s(13) = 66.21 

A_s(14) = 66.21 

A_s(15) = 0 

A_s(16) = 0 

A_s(17) = 0 

A_s(18) = 0 

A_s(19) = 493.43 

A_s(20) = 493.43 

A_s(21) = 493.43 

A_s(22) = 0 

A_s(23) = 137.62 

A_s(24) = 493.43 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(25) = 132.42 

A_s_x,y(26) = 854.434 

A_s_x,y(27) = 132.42 

A_s_x,y(28) = 799.529 

A_s_x,y(29) = 509.562 

A_s_x,y(30) = 479.65 

A_s_x,y(31) = 1119.27 

A_s_x,y(32) = 711.623 

Figure 7.5: Opti_String: Output list for structure 2 based on material optimisation.

As mentioned for lower bound it is expected that plastic strains occur in the horizontal elements nearest the

fixed support, which is the case.
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7.3. Example - Structure 2

Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Upper bound method

Structure 2 

1 load case

----- Strength parameters and safety factors -----

f_s = 550 MPa 

f_c  = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 10

Load optimisation algorithm - 1 design variables

Static independent variables, N = 8

----- Load parameter -----

Lambda = 1.000000

----- Maximum stringer forces [kN] -----

Stringer 1 = 21.242

Stringer 2 = -96.242

Stringer 3 = -96.242

Stringer 4 = -133.11

Stringer 5 = -133.11

Stringer 6 = -135

Stringer 7 = 21.811

Stringer 8 = -132.089

Stringer 9 = -135

Stringer 10 = 45.028

Stringer 11 = -76.95

Stringer 12 = -50.522

Stringer 13 = 30.346

Stringer 14 = -97.502

Stringer 15 = -226.154

Stringer 16 = -226.154

Stringer 17 = -226.154

Stringer 18 = -226.154

Stringer 19 = 226.154

Stringer 20 = 226.154

Stringer 21 = 226.154

Stringer 22 = -30.346

Stringer 23 = 81.805

Stringer 24 = 226.154

----- Shear stresses [MPa] -----

25 = 0.202

26 = 1.305

27 = 0.202

28 = 1.065

29 = 0.935

30 = 0.858

31 = 1.71

32 = 0.962

----- Elements exposed to plastic strains -----

Element 15

Element 18

Element 21

Element 24

----- Reactions [kN] -----

Load case 1:

Support 25 = -226.154

Support 26 = 45.028

Support 27 = -226.154

Support 28 = 121.978

Support 29 = 226.154

Support 30 = 127.472

Support 31 = 226.154

Support 32 = 125.522

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 46.35 

A_s(2) = 46.35 

A_s(3) = 0 

A_s(4) = 0 

A_s(5) = 0 

A_s(6) = 0 

A_s(7) = 47.59 

A_s(8) = 47.59 

A_s(9) = 0 

A_s(10) = 98.24 

A_s(11) = 167.89 

A_s(12) = 110.23 

A_s(13) = 66.21 

A_s(14) = 66.21 

A_s(15) = 0 

A_s(16) = 0 

A_s(17) = 0 

A_s(18) = 0 

A_s(19) = 493.43 

A_s(20) = 493.43 

A_s(21) = 493.43 

A_s(22) = 0 

A_s(23) = 178.48 

A_s(24) = 493.43 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(25) = 132.42 

A_s_x,y(26) = 854.433 

A_s_x,y(27) = 132.419 

A_s_x,y(28) = 697.356 

A_s_x,y(29) = 611.735 

A_s_x,y(30) = 561.388 

A_s_x,y(31) = 1119.27 

A_s_x,y(32) = 629.884 

Figure 7.6: Opti_String: Output list for structure 2 based on load optimisation.

The calculated design parameters are interpreted as Table 7.1 and is in accordance with the example for lower

bound. These are used as material strengths in theCd vector from 7.4 when performing load optimisation.

Fc,max d1 226.15 kN

Ft,max d2 226.15 kN

τmax d3 1.71 MPa

Table 7.1: Design parameters for structure 2 using the upper bound method.
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Chapter 7. Upper Bound Method

This results in the output list shown in Figure 7.6. By use of the determined design parameters the load param-

eter is calculated to a value of one. Thus, the design parameters represents the optimal material strengths for

carrying the applied load.

When Opti_String is using linprog and performing load or material optimisation regarding upper bound

method some values, e.g. dimensions, must be scaled for executing the optimisation algorithm. The values to

be scaled depends on the optimisation method. If the concerned values are not scaledlinprog displays a termi-

nation message saying that; "the residuals, duality gab or total relative error has stalled the calculation". After

the calculation is executed the output values needs to be converted backwards in order to obtain the requested

units of the output.

7.4 Comparison of Lower and Upper Bound

The calculated design parameters; d1, d2 and d3 are identical to the design parameters determined in the lower

bound material optimisation, cf. the output list in Figure 5.4. The collapse mode is also identically between the

lower and upper bound method. This means that an exact solution exists for the stringersand shear areas when

the calculations are based on the upper bound method.

The translation for stringers was expected to be exact sincethey are similar to bars and beams for which an

exact translation exist.

An exact translation from lower to upper bound method exist for shear areas as the opposite to plates where

the translation is a numerical approximation. This means that the duality described for the general LP problem

in chapter 6 is fulfilled. Hereby it is proved that an upper bound formulation provides the matching lower

bound formulation by a direct mathematically translation.

The amount of elements where plastic strains occur is similar for lower and upper bound. In addition area 31

is exposed to plastic strains when performing material optimisation for both lower and upper bound method.

For this case it can be concluded that the material optimisation seeks to utilise more elements to the yield limit

which are expressed in the number of elements where plastic strains occur.
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Chapter 8

Design Demands of Structures

Practical conditions regarding material optimisation is formulated and implemented inOpti_String. This

is first done by linking material properties and implement material limits and secondly by illustrating several

load combinations for a stringer system. Through the chapter examples are made to illustrate the theory. The

practical material optimisation is based on the lower boundmethod.

The previous use of the stringer method is only based on the mathematical optimisation and the restrictions

associated with LP and the stringer method. In order to improve the practicality of the stringer method differ-

ent design demands are introduced. Examples of design demands are:

• Same amount of reinforcement in a stringer line based on the largest occurring force

• Same shear reinforcement in all areas

• Differentiate stringer line or shear areas for large structures

• Material strengths regarding Eurocodes

• Optimisation with regard to several load cases

The principle of these design restrictions are illustratedin Figure 8.1. Two load cases are added which result in

tension for the illustrated stringer line. Without any design demands the reinforcement is designed according to

the stringer force in each stringer. By introducing design demand these ensure the same amount of reinforce-

ment in the stringer line and hereby the practicability is improved. Thus, the stringer line is designed according

to the largest occurring force.

+ ++

=

⇓

Load case 1

Load case 2

Stringer lineStringer line

Model of
stringer line

Distribution of
tension force

Theoretical
reinforcement

Design demands
for reinforcement

19 20 21

Figure 8.1: Principle of design demands.

To ensure that a structure can be made using standard material restrictions, material parameters are added to

the optimisation.
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Chapter 8. Design Demands of Structures

8.1 Practical Design Restrictions

Two sorts of practical design restrictions are presented and implemented inOpti_String. First, each sort is

explained and shown theoretical and afterwards an example using both design restrictions are presented.

Linking Design Variables

For construction of a structure it is obvious that some elements must be made using the same material pa-

rameters, for example tension strength. This is pertinent for each stringer line and for all shear areas as they

often are made using the same amount of reinforcement. Therefore, the design variables are linked in order to

provide the same results for each stringer line and shear area. The principle for linking elements is shown in

equation (8.1) for a stringer line consisting of three stringers, illustrated in Figure 8.2.

d1 d2 d3

1 2 3 4

Figure 8.2: Stringer line of three stringers and their design variables, d.

d1 = d2 = d3 ⇒
d1−d2 = 0

d1−d3 = 0
⇒





1 −1 0

1 0 −1



 d = 0 (8.1)

The linking of design variables is formulated using matrix notation in equation (8.2) where the links between

elements are expressed in the property matrix,E.

E d = e0 (8.2)

where

e0 Zero vector

The equations are applied as extra rows to the equalities in equation (5.7) which afterwards are formulated by

equation (8.3). Notice, adding up extra equations do not chance the object function. Equation (8.3) is illustrated

in Appendix Figure A4.2 for structure 1.
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

(8.3)

Implementation of Material Limits in Material Optimisatio n

Implementation of material limits are not possible in the material optimisation problem stated in equation (5.7)

thus, the design variables for the structure is only based onthe applied load and weighting parameters. However,

it is possible to include material limits by adding up extra equations to the inequalities and hereby set up limits

for the material, for example by stringer forces and shear stresses. By this feature the individual elements

are affected by forces or stresses less or equal to the limitsset up for the element when performing material
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Example - Structure 2

optimisation. For illustrating material limits,mi , for stringeri these are formulated in equation (8.4).

−N−
y ≤ mi ≤ N+

y

−mi ≤−N−
y

mi ≤ N+
y

(8.4)

Using matrix notation the inequalities for the material limits can be expressed as equation (8.5) where the

material matrix,M , links elements to material parameters.

−M d ≤−m0 (8.5)

where

m0 Material parameters

The extra inequalities are added up to the inequalities fromequation (5.7) which afterwards is formulated by

equation (8.6). Equation (8.6) is illustrated in Appendix Figure A4.3.
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(8.6)

Example - Structure 2

Structure 2 is calculated using the above mentioned design restrictions for verifyingOpti_String perform-

ing practical design restrictions. Stringer lines are madeaccording to Table 8.1. Notice, all shear areas are

combined in two design variables,d9 c andd9 t .

Stringer line Design variable Elements

1 d1c, d1t 1-2-3

2 d2c, d2t 4-5-6

3 d3c, d3t 7-8-9

4 d4c, d4t 10-11-12

5 d5c, d5t 13-14-15

6 d6c, d6t 16-17-18

7 d7c, d7t 19-20-21

8 d8c, d8t 22-23-24

9 d9c, d9t 25-26-27-28-29-30-31-32

Table 8.1: Stringer lines for structure 2 using practical design restrictions.

For evaluating the optimisation regardingE og M structure 2 has been calculated without these restrictions

which results in two optimisations cases:

• Case 1: Material optimisation

• Case 2: Material optimisation regarding practical design restrictions
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The plots of the collapse modes fromOpti_String are shown in Figure 8.3 for case 1 and 2, respectively.
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a) Case 1: Material optimisation b) Case 2: Material optimisation

regardingM ogE

Figure 8.3: Opti_String: Collapse mechanism for structure 2 without and withM andE as practical design

restrictions.

The matching output lists fromOpti_String are shown in Figure 8.4 and 8.5. The design parameters for case

1 are listed for each element, and for case 2 the parameters are shown for the stinger lines and the appurtenant

stringers are listed in Table 8.1. All shear areas are represented byd9c andd9t . The values are equal because the

areas are set to carry the same shear stress in both positive and negative. The design parameters for stringers

indicate the stringer lines with tension, which also can be seen in the list showing the stringer reinforcement.

The necessary reinforcement for all stringers are shown in order to enhance where tension occur, i.e. stringers

that require reinforcement. It must be noticed that the reinforcement in a stringer line must be designed for the

largest amount of reinforcement in the appurtenant stringers, for example stringer line 8 for both cases must be

designed using the reinforcement calculated for stringer 24, As(24).

A comparison of the necessary reinforcement indicates thatcase 2 are the most expensive to perform. This

is caused by the extra added restrictions in the inequalities which linprog is limited by when performing the

linear optimisation.
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Example - Structure 2

Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Lower bound method

Structure 2

1 load case

----- Strength parameters and safety factors -----

f_s = 550 MPa 

f_c = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 15

Material optimisation algorithm - 56 design variables

Static independent variables, N = 8

----- Design variables -----

d1_c = 6.806897e+03      d1_t = 0.000000e+00

d2_c = 7.500000e+04      d2_t = 0.000000e+00

d3_c = 7.500000e+04      d3_t = 0.000000e+00

d4_c = 1.037448e+05      d4_t = 0.000000e+00

d5_c = 1.037448e+05      d5_t = 0.000000e+00

d6_c = 1.350000e+05      d6_t = 0.000000e+00

d7_c = 0.000000e+00      d7_t = 0.000000e+00

d8_c = 1.082069e+05      d8_t = 0.000000e+00

d9_c = 1.350000e+05      d9_t = 0.000000e+00

d10_c = 5.553846e+04      d10_t = 5.501327e+04

d11_c = 5.953724e+04      d11_t = 4.866965e+04

d12_c = 6.787285e+04      d12_t = 5.836853e+04

d13_c = 9.724138e+03      d13_t = 0.000000e+00

d14_c = 1.360690e+05      d14_t = 0.000000e+00

d15_c = 2.940000e+05      d15_t = 0.000000e+00

d16_c = 1.039310e+05      d16_t = 0.000000e+00

d17_c = 1.039310e+05      d17_t = 2.241379e+04

d18_c = 0.000000e+00      d18_t = 2.241379e+04

d19_c = 0.000000e+00      d19_t = 1.136552e+05

d20_c = 0.000000e+00      d20_t = 1.136552e+05

d21_c = 0.000000e+00      d21_t = 0.000000e+00

d22_c = 0.000000e+00      d22_t = 0.000000e+00

d23_c = 0.000000e+00      d23_t = 1.136552e+05

d24_c = 0.000000e+00      d24_t = 2.940000e+05

d25_s = 6.500000e-02       d26_s = 7.580000e-01

d27_s = 7.580000e-01       d28_s = 0.000000e+00

d29_s = 0.000000e+00      d30_s = 1.053000e+00

d31_s = 1.053000e+00      d32_s = 9.470000e-01

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 0 

A_s(2) = 0 

A_s(3) = 0 

A_s(4) = 0 

A_s(5) = 0 

A_s(6) = 0 

A_s(7) = 0 

A_s(8) = 0 

A_s(9) = 0 

A_s(10) = 120.03 

A_s(11) = 106.19 

A_s(12) = 127.35 

A_s(13) = 0 

A_s(14) = 0 

A_s(15) = 0 

A_s(16) = 0 

A_s(17) = 48.9 

A_s(18) = 48.9 

A_s(19) = 247.97 

A_s(20) = 247.97 

A_s(21) = 0 

A_s(22) = 0 

A_s(23) = 247.97 

A_s(24) = 641.45 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(25) = 42.433 

A_s_x,y(26) = 495.95 

A_s_x,y(27) = 0 

A_s_x,y(28) = 689.154 

A_s_x,y(29) = 619.937 

A_s_x,y(30) = 689.154 

A_s_x,y(31) = 786.959 

A_s_x,y(32) = 786.959 

----- Reactions [kN] -----

Load case 1:

Support 25 = -294

Support 26 = 55.618

Support 27 = -0

Support 28 = 114.557

Support 29 = -0

Support 30 = 116.546

Support 31 = 294

Support 32 = 133.278

Figure 8.4: Opti_String: Output list for structure 2̇Case 1. Elements exposed to plastic strains are illus-

trated in Figure 8.6.
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Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Lower bound method

Structure 2

Stringer lines: 

1: 1 2 3 

2: 4 5 6 

3: 7 8 9 

4: 10 11 12 

5: 13 14 15 

6: 16 17 18 

7: 19 20 21 

8: 22 23 24 

9: 25 26 27 28 29 30 31 32 

1 load case

----- Strength parameters and safety factors -----

f_s = 550 MPa 

f_c = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 40

Material optimisation algorithm - 56 design variables

Static independent variables, N = 8

----- Design variables -----

d1_c = 7.500000e+04      d1_t = 0.000000e+00

d2_c = 1.350000e+05      d2_t = 0.000000e+00

d3_c = 1.350000e+05      d3_t = 0.000000e+00

d4_c = 4.432913e+04      d4_t = 9.067087e+04

d5_c = 2.715191e+05      d5_t = 0.000000e+00

d6_c = 1.200153e+05      d6_t = 0.000000e+00

d7_c = 0.000000e+00      d7_t = 1.199847e+05

d8_c = 0.000000e+00      d8_t = 2.714809e+05

d9_c = 1.500000e+00      d9_t = 1.500000e+00

 

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 0 

A_s(2) = 0 

A_s(3) = 0 

A_s(4) = 0 

A_s(5) = 0 

A_s(6) = 0 

A_s(7) = 0 

A_s(8) = 0 

A_s(9) = 0 

A_s(10) = 165.92 

A_s(11) = 197.83 

A_s(12) = 166.56 

A_s(13) = 0 

A_s(14) = 0 

A_s(15) = 0 

A_s(16) = 0 

A_s(17) = 0 

A_s(18) = 0 

A_s(19) = 261.78 

A_s(20) = 261.78 

A_s(21) = 163.68 

A_s(22) = 3.31 

A_s(23) = 265.09 

A_s(24) = 592.32 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(25) = 6.479 

A_s_x,y(26) = 530.182 

A_s_x,y(27) = 6.612 

A_s_x,y(28) = 654.629 

A_s_x,y(29) = 654.462 

A_s_x,y(30) = 654.629 

A_s_x,y(31) = 981.818 

A_s_x,y(32) = 654.462 

----- Reactions [kN] -----

Load case 1:

Support 25 = -271.519

Support 26 = 28.965

Support 27 = -74.981

Support 28 = 120.377

Support 29 = 75.019

Support 30 = 119.316

Support 31 = 271.481

Support 32 = 151.342

Figure 8.5: Opti_String: Output list for structure 2̇Case 2 using practical design restrictions. Elements

exposed to plastic strains are illustrated in Figure 8.6.

The list with elements exposed to plastic strains are illustrated in Figure 8.6. It is seen that some of the ele-

ments occurs twice which is a result of both compression and tension strains in each end of the element. This

is especially the case for the elements around the hole due tothe shear that must be transferred. The vertical

stringers connected to the supports only occur once in the list for case 2 since they are only exposed to tension

or compression. Tensile strains exist for element 15 and 18 while compression tension occur in element 21 and

24. These strains are caused by the maximum moment.
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----- Elements exposed to plastic strains -----

Element 1        Element 1

Element 2        Element 3

Element 3        Element 4

Element 4        Element 5

Element 6        Element 7

Element 7        Element 8

Element 8        Element 9

Element 10        Element 10

Element 11        Element 11

Element 12        Element 12

Element 13        Element 13

Element 14        Element 15

Element 16        Element 16

Element 17        Element 17

Element 18        Element 18

Element 19        Element 19

Element 20        Element 20

Element 21        Element 21

Element 22        Element 22

Element 23        Element 23

Element 24        Element 25 

Element 26        Element 27        

Element 28        Element 29        

Element 30        Element 31        

Element 32

----- Elements exposed to plastic strains -----

Element 1        Element 3

Element 4        Element 6

Element 7        Element 7

Element 8        Element 8

Element 9        Element 9

Element 11        Element 11

Element 13        Element 15

Element 16        Element 16

Element 17        Element 17

Element 18        Element 19

Element 19        Element 20

Element 20        Element 21

Element 22        Element 24

Element 25        Element 26

Element 27        Element 28

Element 29        Element 31

Element 31        Element 32

a) Case 1 b) Case 2

Figure 8.6: Elements exposed to plastic strains for case 1 and 2.

The occasion for plastic strains in stringer 3 and 6 can be found in their stringer forces and their adjacent shear

areas. From the lists for both cases it is seen that the shear stresses in area 29 and 32 are significant larger than

the shear stress in area 27. This stress distribution inducestringer 3 and 6 to carry the load which results in the

plastic strains.

With the linking of the design variables for all shear areas in case 2 the system may give a low priority to the

strengths in area 28 and 29, as an increase would concern all areas. Instead the strength in the stringers increase.

This can be controlled by the weighting parameters which indicate the priority of the elements. Compared with

case 1, where the shear areas are not linked, the system increase the strength in the two shear areas because they

do not affect the strengths of the other areas. This results in a collapse acting more like a rigid body rotation

but still a shade of shear failure occur. The extra restrictions explain why plastic strains do not occur in exact

same elements.

By comparing case two with the hand calculations in section 3.2 the cost reductions is 14 % when the amount

of reinforcement decrees from 44 kg to 38 kg, cf. Appendix Table A1.3 and A4.1.

8.2 Load Combinations

Structures are always subjected to several load cases and a material optimisation problem with one load case

does only in few cases give the optimum solution. Several load cases can be managed in the material optimisa-

tion for either lower bound or upper bound method.

Load Combinations Formulated Using Lower Bound Method

The LP problem formulated in equation (5.7) for material optimisation based on lower bound method can take

load cases in to consideration by multiplying the input matrices and vectors by the number of load cases,n.

Hereby, the size of the flexibility,H, and constraint matrix,C, are multiplied withn which results inβ · n

variables.

This means that the LP problem is growing with the sizen2. The stress parameters are independent of each

other and the mutual variables for the different load cases are the design variables.
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By having two load cases,I andII , equation (5.7) is rewritten to equation (8.7) for materialoptimisation based

on the lower bound method. Notice, all vectors and matrices increase to double size. Only the load vector,R,

changes for each load case.

minimise : wT d

restrictions :





H 0

0 H











βI

βII


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

=







RI

RII











C 0

0 C











βI

βII







−







Cd

Cd







d ≤







C0

C0







(8.7)

d ≥ 0

Implementing of the practical design restrictions from section 8.1 leads to an expanding of the expression. For

two load cases withM andE the expression is illustrated in Appendix Figure A4.4.

Example - Structure 2

In this example structure 2 is subjected to two load cases, cf. Figure 8.7. Furthermore, the linking of materials

and strength parameters will be taken in to account by the matricesE andM .

300kN/m
200 kN

Load case 1 Load case 2

Figure 8.7: Structure 2 subjected to two load cases.

Load case 1 consist of the uniform load from the previous examples where case 2 is a concentrated nodal force.

The generated geometry plot fromOpti_String is illustrated in Figure 5.1. The two collapse mechanisms

are illustrated in Figure 8.8 for load case 1 and 2, respectively.
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Figure 8.8: Opti_String: Collapse mechanism for structure 2. Load case 1 and 2.

The two collapse modes differs because load case 1 affects the structure more by bending compared to load

case 2 where the point load more results in shear effect. Thisexplains why the middle part of the structure

deforms different for load case 2 compared to load case 1 since the middle part is weak for shear. However,

shear is still affecting the collapse mode of load case 1 and in similar way is bending affecting the collapse

mode for load case 2. It appears from the collapse mode for load case 2 that the point load affects stringer 3

and area 27 significant.

The output list fromOpti_String is shown in Figure 8.9. From the list of reinforcement in the stringers

it is evident in which stringers tension occur. Each load case which leads to a moment that must be taken by

the horizontal stringers at the supports by compression andtension, which is expected.

From the dual inequalities the elements exposed to plastic strains are found. The two load cases leads to plastic

strains in 29 out of 32 elements where some of the elements areexposed to plastic strains in both compression

and tension. Only stringer 2, 14 and 23 do not experience plastic strains. By comparing with the example

where only one load case is added previous in this chapter it is concluded that adding load cases to structure 2

the number of elements exposed to plastic strains increase as load case 2 loads the structure in another way.

The design variables are listed for each stringer line. The variables are based on the two load cases thus,

the maximum design variables for each stringer line is shown. For studying which load case results in which

design variables each load case must be calculated separately.

The design variables shown in the list reflect the maximum design variables for the two load cases.

The reactions from Figure 8.9 shows the reactions for each load case and for a design of supports the max-

imum reaction forces must be used.
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Opti_String

Daniel Refer and Flemming Højbjerre Sørensen

Last modi�ed 10/6 2012

Lower bound method

Structure 2

Stringer lines: 

1: 1 2 3 

2: 4 5 6 

3: 7 8 9 

4: 10 11 12 

5: 13 14 15 

6: 16 17 18 

7: 19 20 21 

8: 22 23 24 

9: 25 26 27 28 29 30 31 32 

2 load cases

----- Strength parameters and safety factors -----

f_s = 550 MPa 

f_c = 25 MPa 

gamma_s = 1.2 

gamma_c = 1.45 

Scale of deformation = 15

Material optimisation algorithm - 56 design variables

Static independent variables, N = 8

----- Design variables -----

Compression:             Tension:

d1_c = 2.000000e+05      d1_t = 0.000000e+00

d2_c = 1.350000e+05      d2_t = 5.636082e+04

d3_c = 1.350000e+05      d3_t = 3.202177e+04

d4_c = 4.177346e+04      d4_t = 9.322654e+04

d5_c = 2.752381e+05      d5_t = 0.000000e+00

d6_c = 1.194796e+05      d6_t = 0.000000e+00

d7_c = 0.000000e+00      d7_t = 1.205204e+05

d8_c = 0.000000e+00      d8_t = 2.752381e+05

d9_c = 1.500000e+00      d9_t = 1.500000e+00

----- Elements exposed to plastic strains -----

Stringers:

Element 1        Element 3

Element 4        Element 4

Element 5        Element 5

Element 6        Element 6

Element 7        Element 7

Element 8        Element 8

Element 9        Element 9

Element 10        Element 10

Element 11        Element 11

Element 12        Element 12

Element 13        Element 15

Element 16        Element 16

Element 17        Element 17

Element 18        Element 19

Element 19        Element 20

Element 20        Element 21

Element 22        Element 24

Shear areas:

Element 25        Element 26

Element 27        Element 28

Element 29        Element 30

Element 31        Element 32

----- Reinforcement for stringers [mm^2] -----

A_s(1) = 0 

A_s(2) = 0 

A_s(3) = 0 

A_s(4) = 0 

A_s(5) = 122.97 

A_s(6) = 122.97 

A_s(7) = 69.87 

A_s(8) = 69.87 

A_s(9) = 0 

A_s(10) = 170.75 

A_s(11) = 203.4 

A_s(12) = 171.25 

A_s(13) = 0 

A_s(14) = 0 

A_s(15) = 0 

A_s(16) = 0 

A_s(17) = 0 

A_s(18) = 0 

A_s(19) = 262.95 

A_s(20) = 262.95 

A_s(21) = 162.22 

A_s(22) = 140.11 

A_s(23) = 392.73 

A_s(24) = 600.52 

----- Reinforcement for shear areas [mm^2/m] -----

A_s_x,y(25) = 293.294 

A_s_x,y(26) = 785.455 

A_s_x,y(27) = 280.212 

A_s_x,y(28) = 651.707 

A_s_x,y(29) = 657.384 

A_s_x,y(30) = 651.707 

A_s_x,y(31) = 981.818 

A_s_x,y(32) = 657.384 

----- Reactions [kN] -----

Load case 1:

Support 25 = -270.85

Support 26 = 26.283

Support 27 = -75.65

Support 28 = 120.035

Support 29 = 74.35

Support 30 = 120.191

Support 31 = 272.15

Support 32 = 153.491

Load case 2:

Support 25 = -275.238

Support 26 = 24.904

Support 27 = -15.873

Support 28 = 66.667

Support 29 = 15.873

Support 30 = 66.667

Support 31 = 275.238

Support 32 = 41.763

Figure 8.9: Opti_String: Output list for structure 2, material optimisation, practical design restrictions

and two load cases.
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Load Combinations Formulated Using Upper Bound Method

For the upper bound method the material optimisation problem for two load cases,I andII , is formulated as

equation (8.8). The expression is made by a mathematical conversion of equation (8.7) to the dual problem

(Damkilde, 1995, page 35-36). In the conversion the practical design restrictions from section 8.1 are included.

The expression is only shown to be aware of the existence and is not implemented inOpti_String. No physical

interpretation of the expression is made.

maximise : (RI )T VI +(RII )T VII −CT
0 ΨI −CT

0 ΨII +mT
0 s+eT

0 s+

restrictions :
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CT
d ΨI +CT

d ΨII +MT s+ET s+ ≤ w

s+ ≥ 0

where

s, s+ Dual values of the design limitations

The dual variables of the restrictions of the internal plastic work provides the design variables,d. A physical

interpretation of the dual variables of the design limitations,s ands+, are not possible, cf. (Damkilde, 1995,

page 36).
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Chapter 9

Working Procedure of Opti_String

This chapter covers the main structure ofOpti_String and describe the working procedure. Through the

chapter references from different functions will be made tothe relevant equations.

The idea of the structure inOpti_String is to have a relative short and clear main file which include a number

of functions and sub-functions, cf. Figure 9.3 for an illustration of the program structure. The main file and

appurtenant functions are to be found on the CD, cf. AppendixA7.2.

For the main file four choices must be made:

• Type of calculation; load or material optimisation

• Import of data file

• Implementing of practical design restrictions

• Scale factor for plot of collapse mode

The overall structure ofOpti_String is divided in three parts which individually is described inthe following.

9.1 Input of Data

Geometry, loads, material parameters, thickness, supports etc. are specified in a separate data file,data_i.m,

and imported to the main file.data_i.m also contains the weighting factors ifOpti_String is performing

material optimisation.

In the data file the user must specify the geometry by typing innode coordinates, stringer nodes, shear areas,

which stringers encircle the different shear areas and which elements having identical strength values e.g. by

defining stringer lines.

The following units are used:

Length = mm

Force = N

Stress = MPa

Material Strengths, mat.m

After specifying the safety factor and strength values for concrete and reinforcement, respectively, the matrix

mat.m is generated with strength values for the different elements regarding Eurocodes. An example is shown

in Figure 9.1 for structure 1.mat.m is an ·2 matrix where:

nrows = nstringers+nshear_areas

ncolumns = 2
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Figure 9.1: Opti_String: Matrix mat.m containing material parameters for structure 1. The limitsare in

kN for stringers and MPa for shear areas.

The first column represents the negative yield strength and the second column the positive yield strength. The

values frommat.m can be equivalent toCd when performing load optimisation, cf. Figure A3.3 andm0 when

performing material optimisation by means of practical design demands, cf. Figure A4.3. Furthermoremat.m

can be used fro calculating the efficient ratio.

The maximum allowable compression strength in a stringer,Fc,max, depends on the stringer height and

consequently also the smallest neighbouring shear area, cf. equation (3.2). This is handled in the function

upper_limit.m by looping over each stringer for finding the smallest heightof the neighbour shear area.

The maximum allowable shear stress in the areas,τmax, cf. equation (3.5) and Appendix A2 are generated

in the functionTau.m with regard to the plastic concrete compression.Nc,max, Ft andτmax are assembled in

mat.m for each stringer and shear area.

9.2 Generation of Matrices and Vectors

A number of matrices and vectors are generated before LP is performed. The matrices and vectors needed for

linprog are shown in Appendix A3 for structure 1.

Object Function, c

The object function,c, is a vector generated byobject_function.m based on the number of stringers, shear

areas and the type of calculation.c is assembled by a zero vector and extra rows depending on the optimisation,

where:

nzeroes = 2·nstringers+nshear_areas= nβ

nexstra_load = 1 corresponding toλ
nexstra_material = 2·nstringers+nshear_areas

In case of material optimisation the weighting factors specified in data_i.m are put in continuation of the zero

vector. The object function for load and material optimisation is illustrated in equation (5.2) and equation (5.8),

respectively.
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Flexibility Matrix, H

Flexibility Matrix, H

The flexibility matrix, H is assembled in the functionflex.m depending on whether it is load or material

optimisation to be performed. For material optimisation a number of zero columns are added corresponding

to the number of weighting parameters in the object function. In flex.m design variables are linked if the

optimisation is restricted by practical design demands in the form of the property matrixE, cf. equation (8.3).

The flexibility matrix for a single stringer is first set up, cf. equation (4.2). After this the functionassem.m

assembling the global flexibility matrix, cf. equation (4.6) where:

nrows = 2·nnodes+nstringers

ncolumns = 2·nstringers+nshear_areas

H is assembled by first looping over all stringers for node and stringer equilibrium and afterwards over shear

areas for equilibrium of these. When assembling the stringers regarding shear stress the stringer length is taken

in to account by the functionLengthOfStringers.m. An example of aH matrix is shown in Appendix A3.2

for structure 1. After the matrix is established rows containing a support are removed. The same is done for the

load vector to ensure the loads still are applied in the correct nodes.

Constraint Matrix, C

The constraint matrix,C, is generated byinequalities.m where:

nrows = 4·nstringers+2 ·nshear_areas

ncolumns = 2·nstringers+nshear_areas+nvariants

C is assembled by several for loops overnstringersandnshear_areas. Four rows for each stringer represents lower

and upper values for start and end of a stringer respectivelywhere shear areas is described by two rows a lower

and a upper value.

The difference between load and material optimisation for inequalities is expressed inCd. Cd is a vector

for load optimisation and is generated invariable_limit.m where the values frommat.m are importet, cf.

Figure 9.3. The length corresponds tonrows in C.

For material optimisationCd is a matrix generated ininequalities.m where:

nrows = 4·nstringers+2 ·nshear_areas

ncolumns = nvariants

Load Combinations

The number of load cases are taken in to account by the function load_combinations.m. A for loop runs

over the number of load cases for correct position of the matrices. This is important because the LP problem

growing with the sizen2, wheren is the number of load cases. cf. section 8.2. All the matricesis unchanged

except the load vectorR which changes for every load case.
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Chapter 9. Working Procedure ofOpti_String

9.3 Post Processing

Depending on whether the calculations inOpti_String are based on the lower or upper bound method the

primal and dual results are interpreted different.

Lower Bound Method

WhenOpti_String useslinprog two vectors are generated, one with primal and one with dual variables. The

vectorx in chapter 6 and chapter 5 corresponds to the primal values containing the stress parametersβ and the

variables;λ for load optimisation and design parameters,d, for material optimisation, cf. Figure 9.2 a). The

following are interpreted:

βstringer = Normal force in stringer [ kN]

βareas = Shear stress in area [ MPa]

λ = Load parameter

d = Design variables

Regarding the primal variables for lower bound following are interpreted:

nrows = 2·nstringers+nshear_areas+nvariants

The dual variables contains first inequalities representing the plastic strains and therefore show which elements

are exposed to these. Figure 9.2 b) illustrated the vectorShadowPricegenerated byOpti_String. More

over does the dual variables contain displacements for nodes and stringers, respectively. These are used in

the functiondraw_collapse.m for plotting the collapse mode. Regarding the dual variables for lower bound

following are interpreted:

Dual inequalities:nrows = 4·nstringers+2 ·nshear_areas

Dual equalities:nrows = (2 ·nnodes−nsupports)+nstringers

All the lists fromOpti_String are generated inprint_results_LB.m. If material optimisation is performed

and three weighting factors exist, then they represents twodesign parameters for stringers and one for shear

areas
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Upper Bound Method
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Figure 9.2: Opti_String: Primal and dual variables for structure 1. The elements with plastic strains are

marked with bold, read. The vectors are split in two because of the length.

If material optimisation is performed regarding practicaldesign restrictions, cf. chapter 8.2, then design vari-

ables exist for each variant, e.g. each stringer line and allthe shear areas as a group.

Theβstringer values are used in the functionstringer_shear_result.m to determine maximum and mini-

mum forces in stringer lines andβshear_areasas stresses in areas. A for loop overnstringers is first established and

afterwards overnareas. The variables, such asλ or d, are generated invar_print_LB.m.

The elements exposed to plastic strains are listed by the functionplastic_strains.m where a for loop runs

from one to the number of elements with a shadow price larger than zero.

The reactions are used as a control parameters by comparing these with the applied load. Reactions are

determined in the functionreactions.m where a for loop runs over the length of the vectorSupport given in

thedata_i.m.

The necessary reinforcement in the areas are calculated inshear_reinforcement.m and runs over a for

loop by the number of shear areas.

Upper Bound Method

The output fromOpti_String are treated opposite regarding the link between lower and upper bound in LP,

cf. chapter 6. This means that the primal values gives the collapse mechanism and elements exposed to plastic

strains. Similar does the dual values give the stress parameters for stringers and areas respectively.

61
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Figure 9.3: Composition ofOpti_String in MATLAB.
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Chapter 10

Application of Opti_String for Complex

Structure

This chapter illustrates the practicability ofOpti_String by analysing a real complex structure. The calcu-

lations are based on the lower bound with linking of elementsand several load cases, cf. chapter 8. Based on

a meeting with the engineers at Grontmij in Århus a key element is chosen. Thus, structure 4 is analysed in this

chapter subjected to three load cases.

The building is a hotel for patients connected to the Queen Ingrid Hospital in Nuuk, Greenland. The hotel

is designed by Grontmij in Århus and is a eight-storey building including one floor for basement. A two-storey

administration building connects the hotel with the hospital, cf. Figure 10.1.

N

NW NE

E

SE
S

SW

W

Adm. building

Patient hotel

Figure 10.1: Orientation of patient hotel. Structure 4 is marked with red.

A 3D view of the main structure is shown in Figure 10.2. The model is from Robot Structural Analysis (Robot)

and made by the engineers at Grontmij (Grontmij A/S Aarhus, 2011). Figure 10.3 shows the middle wall which

is one of the key elements in the structure. This wall is calculated inOpti_String and are referred to as struc-

ture 4, cf. section 1.2.

The applied safety factors and material strengths are listed in Table 10.1.

Safety factor for reinforced γc 1.45

concrete normal control class

Safety factor for reinforcing steel γs 1.2

Compressive strength of concretefc 15 MPa

Yield strength of reinforcement fy 550 MPa

Table 10.1: Safety factors and material parameters for structure 4.
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Chapter 10. Application ofOpti_String for Complex Structure

Figure 10.2: 3D view of the patient hotel from

south east. Model from Robot, cf.

(Grontmij A/S Aarhus, 2011).

Figure 10.3: Construction drawing from Robot

showing structure 4.

Structure 4 is shown in Figure 10.3 with dimensions according to drawings from Revit Structure made by

Grontmij.

L1 Wind from west WW

L2 Wind from east WE

L3 Snow on roof and balcony S

L4 Self weight G

L5 Payload N

LC1 L1 + L4 WW + G

LC2 L2 + L4 WE + G

LC3 L3 + L4 + L5 S+ G + N

Table 10.2: Loads and load combinations for design criteria for structure 4.

The Robot model is subjected to 60 load cases and with basis inthese three critical load cases is chosen and

listed in Table 10.2 with the load combinations as well, cf. (Grontmij A/S Aarhus, 2011).
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Chapter 10. Application ofOpti_String for Complex Structure

Structure 4 is designed for these three load combinations,LC1, LC2 andLC3, when performing practical

material optimisation, cf. chapter 8. The three load cases are illustrated in Figure 10.4.

When wind load is applied the forces are transmitted from thefaçade through the construction joint thus,

the wind load are converted to point loads instead of a uniform distributed line load.

For all three combinations the self weight of structure 4 is added. The payload is combined with the snow

load due to the use phase, while it is omitted in the combinations of wind for illustrated a critical situation

during the erection.

The combination with snow takes snow accumulation on the roof into account and in addition two balconies

are connected at the two construction joints in structure 4 whereupon snow accumulation also is taken into

account.

0 5000 10000 15000

0

5000

10000

10000

20000

25000

30000

a)Opti_String: Stringer system b) Load cases

Load case 1 Load case 2
Load case 3

Figure 10.4: Load case 1 to 3 and stringer system for structure 4.

The generated geometry plot fromOpti_String is illustrated in Figure 10.4. A detailed figure with numbers

for stringers and shear areas is illustrated in Appendix Figure A6.2.

The purpose of this calculation is to evaluate the meaning ofpractical design demands and several load cases.

Therefore the normal generated output list fromOpti_String is omitted due to the length.
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Chapter 10. Application ofOpti_String for Complex Structure

----- Design variables -----

Compression:             Tension:

d1_c = 9.999469e+05      d1_t = 1.376800e+01

d2_c = 8.998019e+04      d2_t = 5.690888e+04

d3_c = 2.853214e+05      d3_t = 3.709800e+01

d4_c = 3.624236e+05      d4_t = 4.257400e+01

d5_c = 6.002793e+05      d5_t = 5.149100e+01

d6_c = 9.998623e+05      d6_t = 1.550000e+01

d7_c = 6.423332e+04      d7_t = 2.009776e+03

d8_c = 1.161534e+04      d8_t = 9.459440e+02

d9_c = 1.737913e+04      d9_t = 5.050694e+03

d10_c = 1.406789e+04      d10_t = 1.898183e+04

d11_c = 1.269917e+04      d11_t = 6.531344e+03

d12_c = 4.473017e+04      d12_t = 2.990493e+04

d13_c = 2.213440e+02      d13_t = 3.039266e+03

d14_c = 7.469644e+04      d14_t = 4.469284e+03

d15_c = 1.600285e+04      d15_t = 1.379431e+04

d16_c = 4.469700e+01      d16_t = 1.354540e+04

d17_c = 1.400287e+04      d17_t = 1.471820e+02

d18_c = 1.300335e+04      d18_t = 6.689000e+01

d19_c = 1.300507e+04      d19_t = 6.178300e+01

d20_c = 1.301018e+04      d20_t = 6.614400e+01

d21_c = 2.800747e+04      d21_t = 2.994800e+01

d22_c = 5.349577e+04      d22_t = 2.239200e+01

d23_c = 4.444923e+03      d23_t = 1.324943e+04

d24_c = 2.700348e+04      d24_t = 3.746900e+01

d25_c = 2.463000e+00      d25_t = 2.463000e+00

Figure 10.5: Opti_String: Design parameters for structure 4.

WhenOpti_String performs material optimisation for the three load combinations a collapse plot is shown

for each combination, cf. Figure 10.6. As expected tension occur in all the vertical stringer lines which is

illustrated in Figure 10.5 for the design parameters. Furthermore, it is seen that all the vertical stringers are

exposed to compression which must be due to load combination3.

Load case 1 Load case 2 Load case 3

Figure 10.6: Opti_String: Collapse mechanisms for structure 4 illustrating LC1, LC2 and LC3.

Influence of Material Limits and Linking Elements

The influence of introducing material limits by matrixM and linking elements by matrixE is presented in

section 8.1. The meaning of these extra restrictions is analysed for structure 4. Table 10.3 illustrates the

importance of practical demands regarding the material use. The results are shown for load combination one.
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Importance of Several Load Cases

By introducing extra restrictions the necessary reinforcement increase, which is in in agreement with section 8.1

where extra restrictions increase the price of the structure.

The significant increase of reinforcement may be found in thesize of the structure, which contributes to long

stringer lines which must be reinforced. This is especiallythe case for the shear areas which must be equally

due to the same design parameter.

It is clear that dividing stringer lines into sub-stringer lines and grouping shear areas are obvious. This will

properly lead to a decrease of the total reinforcement amount.

Reinforcement

No practical demands 1369 kg

Use of practical demands 3226 kg

Table 10.3: Necessary reinforcement for by means of practical demands.

Importance of Several Load Cases

By including several load cases in the optimisation it is expected that the total amount of reinforcement increase,

which is illustrated in Table 10.4. Adding extra load cases will lead to other stress distributions for which extra

reinforcement are needed.

Reinforcement

1 load case 3226 kg

3 load cases 4015 kg

Table 10.4: Necessary reinforcement for one and three load cases.

Weighting of Stringers

The efficiency ratios,RAT, are calculated for the stringers in structure 4. An evaluation of these indicates that

stringer line 3, 4 and 5, cf. Figure 10.7, are high utilised intheir lower parts, cf. Table 10.5. In the optimisation

all the elements are weighed with the same factors, cf. Table10.5, thus, no considerations of the price of the

elements are incorporated.

Two initiatives are introduced to decrease the efficiency ratio. First, each of the three stringer lines are split

up in two, for example 3lower and 3upper, in order to decrease the design variables of the upper partsof the

stringer lines to save material costs. By grouping of sub-stringer lines within a continuous stringer line the

connection must ensure the forces to be transmitted. This ismost critical in tension where sufficient additional

reinforcement must ensure a transferable connection.
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Chapter 10. Application ofOpti_String for Complex Structure

Stringer line 3

Stringer line 4

Stringer line 5

Figure 10.7: Lower parts of stringer line 3, 4 and 5 are marked.

Stringer line Stringer RAT [%] Weighting factor [-] RAT [%] Weighting factor [-]

3lower

27 99.93 1 39.92 1.1

28 99.93 1 39.92 1.1

29 99.93 1 39.92 1.1

30 99.93 1 39.42 1.1

31 92.64 1 32.63 1.1

32 79.33 1 28.80 1.1

33 85.84 1 33.07 1.1

34 75.99 1 29.62 1.1

4lower

41 99.97 1 40.88 1.15

42 99.97 1 40.88 1.15

43 99.97 1 40.88 1.15

44 99.97 1 40.88 1.15

45 92.68 1 33.59 1.15

46 92.67 1 33.59 1.15

47 96.43 1 37.43 1.15

48 92.61 1 33.59 1.15

49 85.53 1 30.62 1.15

50 72.37 1 27.65 1.15

5lower

55 73.51 1 41.61 2.75

56 73.51 1 41.61 2.75

57 73.51 1 41.61 2.75

58 73.51 1 41.61 2.75

Table 10.5: Efficiency ratios of lower parts of stringer line 3, 4 and 5 before and after weighting.
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Weighting of Stringers

Secondly, the weighting factors of the lower parts of the three stringer lines are increased, cf. Table 10.5.

An increasement of the factors indicates that the price of each stringer increases and, as the target of the opti-

misation is to minimise the materials, the system decrease the utilisation of the mentioned stringer lines. The

efficiency ratios after increase of the weighting factors are shown in Table 10.5.

By increasing the weighting factors of the three stringer lines the forces in the structure finds another way

to the supports. This leads to increased utilisation of other stringers thus, incorporating of weighting factors is

an iteration process until acceptable efficiency ratios areachieved for all elements.

The use of weighting factors must not lead to a state where thetarget is to reach a specific efficiency ratio,

for example 80%. If this is the case the material limits specified in the vector containing material parameters,

m0, in equation (8.6) should be decreased to the requested efficiency ratio.

Node coordinates, stringers, shear areas etc. are specifiedin a data file for structure 4. For a structure of

the size of structure 4 the data entry is time-consuming and chance of typing errors present. To avoid this a

code for importing a geometry file and convert it into a data file must be developed.

Node coordinates and stringers can fairly easy be exported from a CAD based program, e.g. AutoCAD. The

difficult part of converting the geometry file to data is to describe the connection between different elements,

e.g. that four combined stringers in a square defines a shear area or a hole in the structure.

69





Chapter 11

Comments On Practical Applications

The practical applicability ofOpti_String and the stringer method is commented. Some of the topics men-

tioned in the following are based on considerations and discussions through out the project.

The stringer method is an efficient tool for optimisation of structures for both load and material optimisa-

tion.

Load optimisation is useful for finding the maximum load bearing capacity for reinforced concrete structures.

This ability is well suited in situations where the design ofa structure is fixed and the load bearing capacity

must be known for example in refurbishment of buildings where a structure is exposed to an increased load.

The material optimisation is useful in design processes, especially in the beginning of the design phase. By

specifying the position of stringers and shear areas the method finds the optimum design of the structure for a

given load and regarding restrictions of both material and practical kind. The practical restrictions regarding

design parameters are especially applicable for shear areas as all the areas then must be reinforced with respect

to the same stress according to practice.

Opti_String is based on the stringer method formulated in a FE concept andafterwards linear optimisa-

tion algorithm finds an optimum solution for ultimate limit state (ULS). This optimisation is not suitable for a

hand calculation using the stringer method.

The plasticity theory provides an economic advantage compared to an elastic calculation because the plastic-

ity theory permits development of collapse mechanisms. When using a plastic stress distribution a plastic mode

of operation of the structure must be ensured by developmentof sufficient plasticity in the reinforcement. Thus,

the yield in the reinforcement occurs to a certain extend before other failure conditions affect the ductile failure.

Eurocode sets up requirements that must be satisfied to ensure ductile behaviour, cf. (EN 1992-1-1 DK NA,

2007, pp. 15-16). The following demands are taken in to account in Opti_String:

• Ductile behaviour of the reinforcement ensures establishment of the expected collapse mode cf. (EN 1992-1-1,

2007, Table C.1)

• No stress increase after yield stress which is obtained by anidealised strain-stress curve

With regard to mode of operation further demands must be respected and can if possible be implemented in a

further development ofOpti_String:

• Satisfying the expression13AsE ≤ AsP≤ 3AsE for the plastic reinforcement area,AsP, in proportion to the

elastic reinforcement area,AsE

• The minimum requirement of reinforcement must be obeyed andthe reinforcement must yield in failure,

e.i. a normally reinforcement ratio

• The plastic stress distribution may not differ significant from an elastic distribution for a cracked cross-

section (EN 1992-1-1 DK NA, 2007, p. 16)
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The requirements ensure sufficient rotation capacity, which is assumed in the plasticity theory, where large

stress redistributions occur.

By compliance of the above mentioned requirements both ULS and SLS are satisfied.

Because the program uses plasticity theory the size of the deformation of the structure is unknown thus, the

requirement from the standard regarding for example deflection in SLS can not be controlled. This is ensured

with the above mentioned demands.

The width of the stringers is designed according to current requirements and the maximum allowed shear

stress inOpti_String is limited to satisfy the requirement in (EN 1992-1-1 DK NA, 2007, pp. 16 - 17). To

ensure the deformation capacity for bending the concrete compression strength is calculated using a factor of

efficiency according to (EN 1992-1-1 DK NA, 2007, 5.102NA).

The reactions calculated inOpti_String are only based on the stringer forces. The only restrictionson these

forces are the material limits specified in the data file thus,no limits are set up for the supports. In reality the

strength of supports are restricted by soil conditions, type of foundation, space, surrounding elements etc. All

these factors may be implemented in the calculation by adding one stringer with appropriate limits for each

support which only is connected to the node of the support. Adding stringers at supports improve the practical

applicability ofOpti_String but more restrictions lead to a less optimum solution, cf. chapter 8. Thus, the

engineer must judge the number of practical restrictions inproportion to a optimum solution.

In the stringer method loads are converted and applied as concentrated point loads in either end nodes or

mid-side nodes. Thus, the distance between the nodes affects the size of the point load.

However, many point loads, corresponding to a fine stringer net, are not preferable because it entails devia-

tion from the principle of concentrated reinforcement in the structure. In design situations the engineer must

carefully judge the conversion of line loads to point loads in order to meet the principle of concentrated rein-

forcement, which must be interpreted as a contribution to the practical applicability ofOpti_String, and at

the same time avoid large concentrated loads.

Interaction among programs for different professions is used extensively in reality. Thus, models in the de-

sign phase are often made in commercial programs by the architect, for example Autoesk Revit, and afterwards

imported into the calculation software, for example Robot Structural Analysis.

In Opti_String the geometry must be defined by a data file which is imported intoOpti_String after which

the calculation is performed. BecauseOpti_String imports a separate data file it is prepared for enhancement

involving interaction with other BIM models. For example importing a CAD based model by making a syntax

for converting the output file from another program into the format ofOpti_String.

Horizontal and vertical stringers combined with rectangular shear areas are possible inOpti_String. The de-

sign of some structures can be improved by use of stringers not horizontal or vertical. An example is a console

where it is preferable to take the tension in the cantilever part of the structure by a diagonal stringer. Thus, a re-

finement ofOpti_String must involve handling of diagonal stringers which leads to introduction of triangular

shear areas. Figure 11.1 illustrate the principle of strut and tie which is used for practical design problems by
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(Schlaich and Schäfer, 1991). The basic principles can be used when introducing diagonal stringers. A useful

formulation of a plastic triangular element is described, cf. (Sloan, 1988).

Figure 11.1: Strut and tie model for a console beam. Ties are marked with dash line. (Schlaich and Schäfer,

1991)

For some structures it may be preferable to use more than one design variable for a stringer line or shear areas.

This can be present for large structures in order to save material costs. In case of a change in the amount of the

reinforcement, for example in a stringer line, additional reinforcement must ensure transfer of forces between

the reinforcement.

The weighting parameters from material optimisation can beused for manage which elements to be utilised

more than others. If a specific efficiency ratio is desired onemust influence the individual elements by change

the material vectorm0.
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Chapter 12

Conclusion

Opti_String is a finite element program developed in MATLAB based on the lower bound method of the

plasticity theory.Opti_String is capable of optimising arbitrary concrete walls regarding the stringer method

and includes following features:

• Optimisation of the load regarding given material strengths

• Optimisation of material consumption subjected to a specific load

• Practical material optimisation regarding linking of elements and several load cases.

The application of the stringer method leads to a number of optimisation options which induce additional

optimisation potentials by implementing the theory by using a FE concept. The optimisation features are:

• Optimisation due to statically indeterminate stress parameters which in principle can be chosen freely

• Free choices for stress parameters lead to a plastic redistribution of the stresses

• Redistribution of stresses facilitates an optimum solution for carrying a given load

• The nature ensures accuracy of these stresses

Opti_String is verified by calculating a simple structure for both lower and upper bound and the practical

optimisation as well. The upper bound calculations are based on a discretisation of the physical model and

provides the exact same optimised results as the lower boundcalculations. This indicates that an exact trans-

lation from the lower bound method to the upper bound method and opposite exists for the stringers and shear

elements in the stringer method.

Opti_String could have been made by taking the upper bound method as starting point. Although, with this

knowledge, it is still preferred thatOpti_String uses the lower bound method because it is easier to imagine

the principle of lower bound, especially for several load cases.

The optimisation of a complex structure by introducing practical design demands and several load cases re-

sults in a less optimal solution. The explanation is found inthe extra restrictions which are added when linking

elements and specifying material strengths. The results ofthese extra bands, which are impose to the optimisa-

tion, are seen in the necessary reinforcement area which increase with the amount of extra restrictions.

Opti_String is general formulated which makes it possible for an experienced programmer to write a code

for linking arbitrary geometry from CAD to the data file inOpti_String. Subsequent it will be obvious to

generate a code for returning stringer geometry, includingstringer height to a calculation based CAD program

such as Robot Structural Analysis 2011. The purpose is to verify the given structure regarding the extra design

demands such as minimum reinforcement ect.

Alternativ Opti_String can be written in another format, in this way it can become a part of a program

package for a commercial calculation program.
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