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Preface

This thesis is prepared and compiled as a part of the fourtfeseer on the M. Sc. in Structural and Civil
Engineering at Aalborg University. The period of which tréport is written is from the St of February 2012
to the 12" of June 2012 under the supervision of professor Lars Damkild

Reading Guide

The master thesis consists of two parts; a main report anerajixes. In the main report there are references
to the appendixes, where the appertaining calculationgatghsional documentation are found.

The files used in the different software e ldATLAB are found on the attached CD and a list of the files is
found in AppendiX’AY. The CD also encloses an electronic PBYfSien of the master thesis. Files that are
relevant for a section in the report are placed in a foldeh Wit same name as the section on the CD.

Sources are quoted by the Harvard method of bibliography thid name of the author and year of publication
inserted in brackets after the text. Quoted sources fraralitire, papers, websites and design codes will appear
eg. m&.

If the source is placed before the period at the end of a seatehe source refers only to the sentence,
whereas if the source is placed after the period, the soafeesrto the entire text section.

Figure and table numerations refers to which chapter thiesdefigure or table is located in. Please note that
if a figure or a table is not attached to a source, they are pextiby the group.

The bibliography gives extensive information about eaalr@®. Since several of the sources are recurrent,
the bibliography is not divided into source types. Instélae sources are sorted alphabetically by notices, under
which information about the source type, i.e.; authoe tilublisher or editor, year of publication, presentation
number, ISBN and URL.
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Design value of concrete compressive strength
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Local flexibility matrix

Height of shear area
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Chapter 1

Introduction

The idea behind this thesis is described which ends up inhib&id statement and the suggested solution. In
addition, the problem definition of the thesis is defined. ditysed structures in the project are presented in
the end of the chapter.

Cost reduction, optimisation and environmental issuespapilar these days and every line of business is
affected by these, including the construction sector. &loee, it is desirable to incorporate these issues in
structures e.g. by material consumption and still mainsainctural behaviour. Likewise it is profitable to
make use of the building materials most optimal when constrg buildings.

Using the issues for saving in connection with knowledge afarials and optimisation it is possible to make
use of the materials in a optimum way. This leads to cost gagvamd, due to material saving, lower environ-
mental impacts of the building.

Material optimisation is obtained in different ways, e.gy dhanging the production or by material devel-
opment. In this project the applied theory for calculatipcaonsidered.

Traditional calculations are based on elastic materiaabielur where the freedom of choice is limited com-
pared to a calculation using perfect plastic material bishay When using perfect plastic material behaviour
the distribution of the stresses in the structures can leetsel freely as long as certain rules are obeyed.

The perfect plastic material behaviour is applied togethigh the stringer method where the structure is
designed using stringers and rectangular shear fieldsder tw evaluate the lower bound method it is relevant
to describe the upper bound method, which corresponds tolaissic yield line method developed by K.W.

Johanse@n).

1.1 Thesis Statement and Problem Definition

Based on the above mentioned the following thesis stateimisat up:

How can the stringer method be applied in the design of cdeeralls in a practice
manner by using a FE program based on perfect plastic mdteehaviour?

At first the intention of the project is presented by a guiditrgcture of the developed progra@pt i _String.

In addition, the material model and the appertaining assiamg for the program is described. The project
structure is illustrated in Figuie1.1. Four structures lasn analysed, cf. sectibnll.2. The applicability of
Opti _String is illustrated by structure 3, a real concrete wall wherexan®le of the output list is shown.
Opti _String and its theory is illustrated by structure 2, an basic exaritpbrder to keep a sense of perspec-
tive. Simultaneous the input and output @t i _St ri ng is still relatively clear.
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structure 3, a real structure. structure 2, an basic example structure 4, a complex structure

Figure 1.1: Composition of project.

The practical use dipti _String is proved by an more complex construction element from apatiotel in
Nuuk, Greenland. The building is designed by Grontmij in iAas, Denmark. Based on a meeting with the
engineers at Grontmij a key element has been selected thefuanalysis irdpt i _St ri ngby including struc-
tural optimisation by use of the stringer method and pléagtitbeory. The optimisation is performed regarding
practical design demands and several load cases.

Optimisation of concrete elements by assuming perfectiplasaterial behaviour can be achieved through
the stringer method. By doing so the stringer method andiplashaviour needs to be studied careful.

Computational analysis based on the theory is ma@gtin_St ri ng which is written in MATLAB. By this the
material optimisation process is automated leading to §aving in the design phase. The programis based on
the finite element (FE) concept and the optimisation is daieguinear programming (LP). The emphasis of
Opti _String is concentrated by formulating the lower bound method. Tgpeubound method is formulated

in order to examine whether an exact translation exist batwiee two methods for the elements in the stringer
method. Also the option for analysing a structure subjetteskveral load cases is possible. LP problems are
formulated for both lower and upper bound regarding loadraaterial optimisation which are solved by using
the build in function for LHinprog from MATLAB.

First, structure 2 will be used for material and load optatisn based on the lower bound method, after
which they will be calculated with the upper bound methode Plarpose is to compare the load bearing ca-
pacity from lower and upper bound method respectivelyidiclg the translation from lower to upper bound
for the stringer system. Afterwards, practical design Wwélintroduced by linking the material strengths of
the different elements together. Several load cases wilhtvteduced on structure 2. Finall@pti _String
is used for optimising a real complex structure, structyreubjected to several load cases by illustrating its
practicability.

An overview of the applied structures in the report is listedectio I.P. References are made to relevant
chapters and sections in the report and appendix as well.




1.2. Structures Analysed 8pti _String

1.2 Structures Analysed byOpti _Stri ng

Structure 1

Opti_String uses the linear programming algorithlimprog.
Structure 1 is used as a simple example for illustration tipeit L
for linprog, cf. AppendixXA3.
t=0.3m

ys =1.20 fy = 550 MPa
ve=1.45  f.=25MPa

Structure 2

Structure 2 is used for describing the stringer method byl lzaih L
culation, cf. chaptdr]3 and to documépti _Stri ng by the lower T EEEEE
and upper bound method, cf. chagpfer 5 Bhd 7, for both load and

material optimisation. The structure is used for exemgitfan of
practical design restrictions and several load casesecfios[8.1. D
t=0.3m

¥s =1.20 fy = 550 MPa
ve = 1.45 f. = 25 MPa

Structure 3

Structure 3 is used as a real structure for the presentafion o l l l l l l l l l l l

Opti _String cf. chaptefR. The structure is used for exempli-
fication of load combinations and illustrating design dedsan E

t=0.3m
ys =1.20 fy = 550 MPa
Ve =1.45 f. = 25 MPa

Structure 4

Structure 4 is a key element used for showing the applicaifon
Opti_String on a realistic complex structure affected by thre
load cases and subjected to practical design demands.
t=0.25m

¥s =1.20 fy = 550 MPa

Ve =1.45 fc =15 MPa

2
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Chapter 2

Presentation of Qoti _Stri ng

The guiding structure of the program is explained in thediwihg by describing the steps from the real structure
to a calculation model with results. Structure 3 is used far illustration. In addition, the chapter accounts
for the underlying intentions of the applied theory and thpeartaining assumptions.

2.1 Program Structure

The purpose is to develop a progra@pti_String, for making it easier to apply the stringer method for
practical calculations. The process of the program is shioviAigure[2.1.

Figure[2.1a) shows a realistic element having a hole for a window and aniogdor a door. The element
is exposed a vertical load, load case 2, and is supported &herbottom.

The user must discretise the element manually, cf. FigdigR.The discretisation must be done according
to the stringer method, thus stringers, defined by start adchede, and shear fields, defined by surrounding
stringers. Loads and supports may also be specified as weth#ierial parameters. In addition, practical
restrictions as stringer lines must be specified. Based @iniut the stringer system is optimised using a
linear optimisation algorithm.

Opti _String is capable to optimise a arbitrary geometry with several lcesses regarding the Eurocode.

-

R

(a) Structure 3, realistic element. (b) Stringer system. Shear (c) Output fromOpt i _Stri ng,
fields are marked grey. collapse mechanism.

Figure 2.1: Process description ég@pti _Stri ng.

After the inputOpti _String plots the geometry of the stringer system. The plot for $tm&c3 is shown in
FiguredZ.2.
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Figure2.2: Opti _Stri ng: Geometry plot for structure 3

Load combination one for structure 3 consists of dominasimgw load with wind as additional variable load,
where combination two is with dominating wind, cf. Figlré&2 Figure[ 2.4 shows the support numbers for
structure 3.

YYYVYVYY VYYVYVYY

0.3-W 15-W

Y.YYYYVYY

Load case 1 Load case 2

Figure 2.3: Structure 3 subjected to two load cases.

18 26 34 40
L}Z T—>9 L>l7 L>25 L}33 L}39
17 18 19 © 20

Figure 2.4: Support numbers for structure 3.

2.2 Output From Opti _String

Based on the stringer system stringer forces and sheasatrase calculated using linear programming. The
calculated values are optimised with regard to load capacimaterial parameters according to the applied
load. The type of calculation must be specified in the begigmf the calculation. From the optimisation
Opti _String creates an output list, cf. Figure R.6 dndl2.7. From the &sious information appear, for ex-
ample load or design parameters and the critical elemertecfystem are shown as the elements exposed to
plastic strains. The list is divided into two because of gregth.

The collapse mechanisms of the element fr@yhi _Stri ng is shown in Figuré 2]5. The collapse mech-
anisms only indicates the mode of the collapse as the ctilmuls done with plastic material behaviour, cf.

sectior Z.B.

8
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Load case 1

Load case 2

Figure2.5: Opti _Stri ng: Collapse mechanisms for structure 3.

Opti_String

Daniel Refer and Flemming Hgjbjerre Serensen

Last modified 10/6 2012

Lower bound method

Structure 3

Stringer lines:
1:123

2:456

3:789
4:101112
5:1314

6:1516
7:171819

8:20

9:212223
10:24 25 26 27 28
11:2930313233

12:34353637383940414243 44

2 load cases

----- Strength parameters and safety factor

f_s=550 MPa
f_c=25MPa
gamma_s=1.2
gamma_c=145

Scale of deformation = 40

Material optimisation algorithm - 77 design variables

Static independent variables, N =12

---—- Design variables --
Tension:

Compression:
d1_c=6.825000e+03
d2_c=1.901237e+04
d3_c=2.128009e+04
d4_c=2.576789%e+04
d5_c=2.158367e+04
d6_c =1.389660e+04
d7_c=7.178530e+03
d8_c=8.738425e+03

d1_t=1.116608e+04
d2_t=3.383661e+03
d3_t=1.229831e+04
d4_t =0.000000e+00
d5_t =2.484387e+03
d6_t = 0.000000e+00
d7_t=9.570597e+03
d8_t=8.010702e+03

d9_c=1.524600e+04 d9_t=1.503127e+03
d10_c=1.663200e+04 d10_t =0.000000e+00
d11_c=8.316000e+03 d11_t=0.000000e+00

d12_c=4.100000e-02

d12_t=4.100000e-02

————— Elements exposed to plastic strains -----

Element 1

Element 3

Element 4

Element 4

Element 5

Element 7

Element 7

Element 8

Element 10
Element 12
Element 13
Element 14
Element 15
Element 16
Element 18
Element 19
Element 20
Element 21
Element 22
Element 23
Element 24
Element 26
Element 27
Element 29
Element 30
Element 32
Element 33
Element 34
Element 35
Element 36
Element 37
Element 38
Element 39
Element 40
Element 41
Element 42
Element 43
Element 44

Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9
Element 11
Element 12
Element 13
Element 14
Element 15
Element 16
Element 18
Element 19
Element 20
Element 21
Element 22
Element 23
Element 25
Element 26
Element 28
Element 29
Element 31
Element 32
Element 33
Element 34
Element 35
Element 36
Element 37
Element 38
Element 39
Element 40
Element 41
Element 42
Element 43
Element 44

Figure2.6: Opti _Stri ng: Output list for structure 3 based on material optimisatimd lower bound using

practical design restrictions for two load cases. First paf list.
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----- Reinforcement for stringers [mmA2] ----- ----- Reinforcement for shear areas [nmA2/m] -----

A_s_xy(34)=9.228

_s(2)=11.07 A_s_x,y(35)=9.228
_s(3)=0 A_s_xy(36)=0
_s(4)=6.15 A_s_x,y(37) =20.302
_s(5)=6.15 A_s_x,y(38)=6.152
_s(6)=6.15 A_s_x,y(39) =20.302
_s(7)=22.36 A_s_x,y(40) =22.124
_s(8)=22.36 A_s_x,y(41)=1.964
_s(9)=0 A_s_xy(42)=2.016
_S = A_s_x,y(43)=3.024
_S = A_s_xy(44)=0
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————— Reactions [kN] -----
Load case 1:

Support 1 =-2.546
Support 2 = 1.084
Support 9 =-2.501
Support 10 =19.012
Support 17 =-2.091
Support 18 =21.28
Support 25 =-0.623
Support 26 = 20.967
Support 33 =-0.903
Support 34 =17.925
Support 39 =-0.76
Support 40 = 13.897
Load case 2:

Support 1 =-10.881
Support 2 =-18.096
Support 9 =-10.695
Support 10 =-3.384
Support 17 =-15.189
Support 18 =-12.298
Support 25 =-8.738
Support 26 = 25.768
Support 33 =-0.506
Support 34 =-2.484
Support39=-1.114
Support 40 = 3.565

Figure2.7: Opti _Stri ng: Output list for structure 3 based on material optimisatiamd lower bound using
practical design restrictions for two load cases. Second p#list.

For comparison of the lower bound and the upper bound methmdeéparate codes in MATLAB are developed.
The codes used for the comparison are shown in AppéndiX A AapendiXA7ZH.

The MATLAB code ofOpt i _St ri ng and the functions and data files for chajifler 8 and chipterel€hanvn
in AppendiXA7.2.

2.3 Material Models

In general three material models exists, namely the elastidel, elastic-plastic model and plastic mode, cf.
Figure[Z8. Traditionally computer programs are based astiel material behaviour where some includes
plastic response by a elastic-plastic material modelsidBabhe general models each model can be expressed
linear or non-linear. In the following only linear modeleatarified.

The elastic material behaviour can be expressed by a litkedn-stress curve, cf. Figuie2.8. Hereby the

10



2.3. Material Models

loading and unloading follows the same path and no plast&inst are developed as the strain state never
exceeds the yield straigy.

The linear elastic perfectly plastic model is similar to #lastic model in the elastic range but the strains
can exceed the yield strain. Hereafter, the strains inerBasa constant value of the stress. Unloading of the
material leads to plastic strains if the yield strain is edmd thus, plastic deformation is introduced.

> & > &

Linear elastic Linear elastic perfectly plastic Perfect plastic

Figure 2.8: Strain-stress curves for basic material models.

No elastic deformations exists for the perfect plastic mattenodel, cf. Figuré 2]8, thus, no strains are devel-
oped until the yield stress of the material is obtained.

The stringer method is based on perfect plastic materiag\iebr thus, the perfect plastic model is used for the
calculations irOpti _Stri ng. By use of the material model some assumptions for the lonlare made.

Because of perfect plasticity no elastic strains are d@ezlsince the material model not contains an elastic
range. Thus, because no elastic range exists the sup@&pgsinciple is not valid. Hereby it is also seen that
the assumption of perfect plasticity is better for matsrighere the failure strains mainly consists of plastic
strains.

The theory of perfect plastic material behaviour shoulg dwel applied to materials which rightly is assumed
having a plastic behaviour. Physical interpretation o$fitabehaviour is compared to a ductile behaviour. The
ductility is an important property as it allows rearrangetraf stresses when the yield strain is exceeded. Re-
inforced concrete is in general understood as a plasticriabliecause the reinforcement ensures the ductility
of the composite material. A disadvantage of plasticitytigés that the ductile behaviour must be documented
which is commented in chapfer]11.

Application of perfect plastic material behaviour leadstmnomical structures compared to elastic models
because a redistribution of the stresses is allowed. Ancaitieantage of the plastic model is the focus of
the collapse mechanisms of the structure and hereby keyealsrare pointed out. However, for complicated

structures many collapse mechanisms might complicatetdlgsis of the mechanism erup,
M, section 4.4) The critical collapse mechanism is faar@ti _String be means of an optimisation al-
gorithm.

For plasticity calculations two different methods are dallThe methods are either based on a static admis-
sible stress distributions, the lower bound method, or @riatic admissible mechanism, the upper bound
method. Both methods are availabledut i _Stri ng and the methods are described in detail in chdgter 5 and

11
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[2, respectively.

The EurocodeL(EN.lQ.QZ;]l-h._ZdO?) is implementedhi _Stri ng when the demands from the standard
can be implemented in the calculations. An example is therdehation of reinforcement calculated in the
program. The necessary reinforcementis calculated aicepial the standard and then the user of the program
must specify which real reinforcement satisfies the catedlaalues.

12



Chapter 3

Stringer Method

This chapter provides an exposition of the stringer methiadtrated by an simple example, structure 2. The
stringer method is described in a 2D space for in-plane s&ssIn the end of this chapter structure 2 is shown
by means of traditional hand calculations.

The stringer method is based on a perfect plastic materf@ieur and is either based on the lower bound
or upper bound method. The lower bound method seeks a sebsmfequilibrium, which do not violate the
yield criteria at any point. In addition, it respects all gtatic boundary conditions for which the load bearing
capacity is maximum. In other words, the lower bound metlayd shat the load carrying capacity is at least
the largest of all lower bound values. The upper bound mesieelts a kinematic admissible collapse mecha-
nism that gives the minimal load barring capacity.

The stringer method is originally based on the lower bounthoebecause a given stress distribution satisfies
the equilibrium equations. Moreover, in-plane forces mihleeproblem complex when imagining the collapse
mechanism. For a lower bound method all stresses in a givectsie are not violating the yield criteria and
the solution is said to be on the safe side. This means thatubéoad carrying capacity is larger or equal to
the load for which the necessary dimensions are determined.

3.1 Assumptions for Stringer Method

The principle of the stringer method is to divide the elemiariiars, so-called stringers and rectangular shear
areas stretched by the stringers, cf. Fidguré 3.1.

R EEEE IR
/7Stringers

a) Disc model b) Stringer model

Figure 3.1: Disc converted to stringer system.

A plane stress distribution is simplified by having strirggesirrying compression or tension while shear stresses
are carried in the areas. It is appropriate to carry sheassin the areas due to the shear reinforcement. The
stringers acting like bars are not suitable for shear stvesen the other hand applicable for tension and com-

13



Chapter 3. Stringer Method

pression. The stringers consist of concrete carrying cesgion and reinforcement bars carrying tension, cf.
Figurd3.8. FigurE3l1 illustrates the conversion from thisstringer system. Loads and reactions are applied as
concentrated forces in nodes or as shear stress actingalkirigger. A uniform distributed load is converted

to nodal Ioads.L(Da.mkﬂd_e_eﬂMM)

Stringers are oriented in the x or y direction, respectieglgl take both compression and tension. In the conver-

sion from disc to stringer model the normal stresses arevalgmt with concentrated normal forces in parallel
stringers. For normal stresses in the x-directmn the equivalent stresses are illustrated in Figurk 3.2il&im
normal stresses in the y-direction are equated with conaieat normal stresses parallel with the y-direction.

Stringers parallel

i with the x-axis
\ \ \ \

[ ——
I

'
¢

y
T_> X - F— —

Given real stress Real stress distribution Simplified model of stress
distribution using stringers distribution used irdpti _String

Figure 3.2: Equivalence between real stress distribution in x-di@etand model of stress distribution. After
ions- i TLJI._Zbll, Appendix A)

A stringer is defined as a line between to nodes and more stsrig a row makes a stringer line. The concrete
and additional reinforcement in the stringer are illugtdain Figurd_3.8. Reinforcement bars are located in the
centre line of the stringer.

Centre line
|

hs max @ Stringer areal\c nec
|& A /C/ % I hs

: > >~—— Reinforcement bar
|&A

Figure 3.3: Cross-sectional view A of stringer located at the edge.

In the stringer only concrete carry compression which tesnla necessary concrete compression &g
To make sure that the stringer compression capacity is &aiglepthe expression in equatién 3.1) must be
satisfied, cf. Ii?nﬁle 08, section 12.3). To ensure iequ8tl) the expression in equatidn(3.2) can be

formulated, regardinMOS).
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3.1. Assumptions for Stringer Method

hs < hs,max (3-1)

Femax= Vm- fea - hs- hamax (3.2)

where

hs Height of stringer, depends &% nec
hsmax | Maximum allowable stringer height, depends on smalleghi®uring shear area
Femax | Maximum allowable compression strength in stringer

Vim Factor of efficiency caused by the compression from bendfiegte
(EN 1992-1-1 DK NA, 2007, 5.102NA)
fed Design value of concrete compressive strength

Stringers in tension must be able to transfer shear stressddjacent areas to the reinforcement bars in the
stringers, cf. equation (3.3), and carry the tension in guglired reinforcement, cf. equatidn (3.4).

n-Ag-f
Ta—Ta|= Tty" (33)
R=A-fy (3.4)

where

T; | Shear stress in adjacent area to the concerned stringer
n | Number of reinforcement bars in stringer

As | Reinforcement area of reinforcement bar

Ip | Anchorage length of reinforcement bar

R | Tension strength of stringer

A: | Reinforcement area of stringer

Each stringer line is dimensioned based on the maximum oessfmm and tension forces in the stringers com-
posing a stringer line.

A shear area is located among four stringers and have, duetorientation of the stringers, a rectangular
shape. In the conversion from disc to stringer system tharstteesses are assumed constant for each shear
field meaning that the forces in the surrounding stringeresdinear, cf. Figur€3]4. Net reinforcement are
placed for carrying the shear stress in the rectangles.
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Chapter 3. Stringer Method

[

- o«

Shear area\ Node
v /i _

e= Il

‘_

l

L Ty : L =

' k ! Tyy CONstant
X ' L ' ' within each area
Lo L

Real stress Model of stress

distribution distribution

Figure 3.4: Equivalence between real stress distribution in area anddehoof stress distribution.

dD_a.D.S.k_KQD.SlLuJSLiQD.S-_OQ_B_e_LQDlD.SIHJL_Zbll, Appendix A)

Shear stresses may not exceed the expression in equabprif(Bure shear is assumed. This means the
concrete compression forms the an@heith the x-axis and yielding is assumed in the reinforcenams.

W - fed

Tmax S (35)
where

Tmax | Maximum allowable shear stress in shear area
Vy Factor of efficiency for pure shear cf. (EN 1992-1-1 DK NA, Z08.103NA)

Stringers are making continuity in the system by interliné shear fields. Similar the nodes link the stringers.
Two equilibrium equations exist for each node, cf. equaf®8) and equatioi{(3.7), and one for each stringer,
cf. equation[(38). Figule 3.5 illustrates the continuitydition.

z Fxj=0 (3.6)

ZFy’i =0 (3.7)

S-S =Ta—T8 (3.8)
0 S

F? L 1 o

o —>hi " L 1 N 1TL

'S

Figure 3.5: Equilibrium of node affected by forces in x and y directiond atringer affected by two shear areas.

The stringer system shown in Figlirel3.1 is static indeteateimhich is general for stringer systems. Through
a plastic redistribution of the stresses it is possible t@mioban optimum by means of the nature that ensures
accuracy of these stresses.
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3.2. Stringer Method by Hand Calculation

3.2 Stringer Method by Hand Calculation

With basis in the stringer theory an example follows for stuwe 2, cf. Figuré&3]1. The dimensions and loads
for structure 2 are stated in Taljle3.1. Because of the tegkthe example is representative for a concrete

wall.

Table 3.1: Dimensions and loads for structure 2.

Thickness

Height
Width

q
Q1
Q2

300 mm

1000 mm

1400 mm
300"V,

75 kN

135kN

For traditional hand calculation the stringer forces argbsistresses are determined by a stepwise calculation.

The steps for the procedure are shown in Appehdix Al.

The stringer mesh is placed such that the stringer linesviolhe edges both external and around the hole,
and in the centre of the loads and supports as well, cf. Fg@:eThe direction of operational sign is marked

with x-y axis.

Q1 Q2 Q2 Q1
Y Y Y Y
4 22 ) 23 12 24
16
350 3 27 6 29 9 32 12
3 19 20 21
7 11 15
300 2 26 5 8 31 11
) 16 17 18
6 10 14
350
1 25 4 28 30 1
13 14 15
1 5 9 13
500 400 500

Figure 3.6: Stringer system for structure 2, nodes are numbered from1Btwith bold, stringers from 1 to 24
and shear areas from 25 to 32.

The number of static indeterminatl, is determined by equatioh (3.9), and for the hand calana is

17



Chapter 3. Stringer Method

interpreted as the number of static indeterminate sheasare

Variables : 2 Nstringers+ Nshear areas+ Nreactions
Equilibrium equations :  2nnodest Nstringers (3.9)

Statically indeterminateNl :  Nyariables— NEquilibrium Equations

For structure N is determined as equatidn (3] 10).

N=(2-24+1-8+1-8)—(2-16+1-24)=8 (3.10)

Hereby it is determined that structure 2 is eight times&dlyi indeterminate which lead to following options:

Stress parameters can in principle be chosen freely
e Free choices for stress parameters leads to a plasticrilbdigin of the stresses
Redistribution of stresses facilitate an optimum solufmnrcarrying a given load

The nature ensure accuracy of these stresses

The equilibrium equations still needs to be satisfied in alleat. Moreover, free choices of stress parameters
may entail static determinate areas which the remainirgdhmices have to respect.

In this example only three are chosen freely. The shearssinearea 25 and 26 which by vertical projec-
tion in a cut through area 25, 26 and 27 gives the shear str&s iThe third free choice is 28 29. After this
area 30, 31 and 32 can be determined by horizontal projection

Detailed calculations are shown in AppendiXlAl and on CD, épix{A7.1. The results are shown in Fig-
ure[3.T for shear areas. After determined shear stressagestforces can be found by free body diagram for
each stringer, the results are shown in Figuré 3.9add 3.9.

-0.26 -1.00 -0.89

20.26 1.70 —— Compression
: ' — Tension

-0.23 -1.00 -0.93

Figure 3.7: Shear stress irMPa
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3.2. Stringer Method by Hand Calculation

4 12 16
-75 135 -135— -75
-48 -1 3 B8 )17 K- 11 65/-
-146
24 {12 81 7 Y10 -113/---
0 0 -105
1 5 9

Figure 3.8: Vertical stringer forces inkN.

4 : 12 16
0 :
39 3
159

-120 294
0 i
3 02 15
7 11 0

Figure 3.9: Horizontal stringer forces inkN.

The parameters in Tadle_B.2 are used for the reinforcemeintia@cking the compression capacity.

Safety factor for normal control classy, 1.45
Safety factor for reinforcing steel Ys 1.2
Compressive strength of concrete  f; 25 MPa
Yield strength of reinforcement fy 350 MPa

Table 3.2: Material parameters for structure 2.

The compression capacity is maintained in all stringersibse the stringer heiglits, is smaller than the max-
imum allowable stringer heights max, cf. Figurd:3.B and equatiof (3.1). Tensile stringers ardshreas have
the reinforcement shown in Talle_Al.3 which is determinedppendix’AL.4. Detailed calculations can be
found on CD, Appendik’/A7]1. The results are compared withotitput fromQpt i _St ri ng in sectiof 8.1L.
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Chapter 3. Stringer Method

It is discovered that the calculations is somewhat tedioug¥en a simple example with all the equilibrium
equations. Thus, it is favourable to save time by an autamaif the calculations in a computer program,
which in addition calculates the optimal stress distribotiand optimises the structure.
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Chapter 4

Mathematical Formulation

A mathematical formulation of the stringer theory is intiegd. The formulation describes the local flexibility
matrix for the stringer and shear element and and their baupaonditions. Furthermore, the assembling of
the flexibility for a global system is shown.

In chapte[B the stringer method is illustrated by a simplangxe. The example indicates the number of
equations for the simple example and it is seen that for evanadl system the number of equations are large
and time consuming. Therefore, the stringer method is ftatad with a finite element concept, which is im-
plemented irOpti _Stri ng.

The principle for establish local equilibrium and assemdplihe local matrices for stringérand shear area
mis explained, cf. Figurie4.1.

y
a - d T—» X
Figure 4.1: Stringer elements and shear area for illustration of assamgiof global flexibility matrix,H.
The normal stress varies linear in the stringer as mentiamsedctiorf 3.1 thus, two stress paramet@gsand

B4, are necessary for describing stringeerThe stringer is affected by concentrated nodal loads, @haar
acting on the mid-side of the stringer, cf. Figlrel4.2.

Oa —> Qd

Figure 4.2: Stringer element k. Right is considered positive.

The external loads and the stress parameters represerngilioreim state for the element, cf. equatign{4.1).

21



Chapter 4. Mathematical Formulation

Notice, the selected positive direction is going to thetigh

Oa= —Pa
dd = Ba (4.1)
Ok = —Ba+Bd

where

gi | External nodal force
Bi | Stress parameter

The equilibrium equations are formulated in equation] (4.2)
Oa -1 0
_ Ba
Qap=10 1 B (4.2)
ok 1| (7
Equation[(4.R) can be expressed as equalioh (4.3) usingkmatation.
q=hg (4.3)
where
h | Local flexibility matrix
A given load leads to a constant shear stress) a shear areas. This single stress parameter is equivalen
four nodal loads located at the mid-side of each stringanraidhe shear field, cf. Figure 4.3.

w
a

- —>

1 T L h QiT TQJ

— —>
Ok

Figure4.3: Shear element m with thickness =t.

The equilibrium equations for shear figitare given in equatioh(4.4).

g=hrtt

gj =—htt

Ok=WTt (4.4)
g=-wrtt

where
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Chapter 4. Mathematical Formulation

Height of shear area
Width of shear area
Shear stress

r—rﬂéj

Thickness

The equilibrium equations in equatidn (#.4) are formulateeiquation[(4.5). The relation can also be given in
matrix notation as equation (4.3).

q h
| —h

ZJ SRRl (4.5)
k

a —W

To satisfy global equilibrium for a system the sum of intéfieaces must corresponds to the sum of external
forces. This is implemented by an assembling of the localldiity matrices for stringers and shear areas
into the global flexibility matrix,H, that ensures equilibrium for the global system. The astemis done
according toMﬁIIEQ'OZ). First, the two equationtheflocal flexibility matrix for stringek, which
expresses equilibrium in start and end node for the strjmfieequation[(4]1), are put into the global flexibility
matrix. The equations enter in the two rows correspondimgptie equilibrium for the nodes in each end of the
stringer, cf. Figuré4l4.

Subsequently, the last equation, expressing equilibriutineamid-side of the stringer, cf. equatign{4.1), is
put into the global flexibility matrix in the row correspondito horizontal equilibrium of stringée All three

equations from the local equilibrium matrix are placed i@ o columns describing stringkyrcf. Figure[4.4.

Stringers Shear fields
i | k 1 .. : m .-
start end start end start end start end start end start end start end| 1t T
w [ :
ay |
bx !
g by :
B ocx !
Z cy I
& :
dy |
: I
- h*t [
.2 .
E ] -h*t
> : I
s k 1 -1 wt
g *
o -W*t
N
g I —
jan

Figure 4.4: Assembling of global flexibility matrix.

The four values describing shear figldare arranged in one column describing the shear area, afreffgl.
The two equations for the nodes along the vertical mid-sideplaced in the rows describing vertical equilib-
rium for the stringers, andj, affected by the shear area, cf. Figlird 4.4. In the same veatymb equations for
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Chapter 4. Mathematical Formulation

horizontal mid-side nodes are placed in the rows for hotalagquilibrium of the affected stringersandl.

The equilibrium relation for a global system is written asi&iipn [4.6) where the left-hand side consists of the
global flexibility matrix,H, and the stress parametess,corresponding to the internal forces. The right-hand
side consists of the external load.

HB=AR (4.6)
where

H | Global flexibility matrix
R | Load
A | Load parameter

The number of stress parameters is determined from the mohieingers and shear areas. As each stringer is
described by two stress parameters and each shear area, lilyeotatal number of stress parameters becomes:

g = 2 Nstringers+ Nshear areas

Each row in the global flexibility matrix satisfies either tzmntal or vertical equilibrium in a node or equilib-
rium in a stringer. A simple example showing the assembliintpe global flexibility matrix is illustrated in
appendix A3 for structure 1, cf. sectibnll.2.

After the global flexibility matrix is established the rowsntaining supports are removed. These rows are
redundant for solving the system. Moreover, the reactiamshe found as the stress parameters sharing node
and direction with the relevant reaction. It is also posstblformulate restrictions for the reactions, this prac-
tical feature is commented in chapiet 11.

For statically determined systems the number of stressyteas are the same as the equilibrium equations,
while for indeterminate systems the number of stress pasasis larger than the number of equilibrium equa-
tions. This introduces free variables which can be seleftesdy to optimise the system, e.g. to maximise the
load bearing capacity or minimise the material requiremeithis optimisation is done by means of LP, cf.
chaptefB. The application of the mathematical formulaisamsed inOpt i _St ri ng and the implementation is
shown in chaptdr]9.
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Chapter 5

Lower Bound Method

This chapter describes the lower bound method. The thealgssribed according to the stringer method and
the mathematical formulation in chapfdr 4. LP problems amrfulated for both load and material optimisa-
tion. After the description of the theory examples of bo#dland material optimisation are shown.

The LP problem formulated for both load and material optatie are restricted by;

e Equilibrium which must be satisfied
e Yield criteria may not be violated

By using the build in functiotinprog in MATLAB, which is a linear programming algorithm, the LPginlems
are solved.

5.1 Load Optimisation

The objective of load optimisation using the lower boundhmeitis to maximise the load to find the ultimate
load bearing capacity of the structure. The applied loadsarltiplied with a load parametex, The lower
bound method determines the optimal load paramgtend the optimal stress parametfss a by-product.

The two above mentioned restrictions are described for stactyer and shear area. Hereby it is possible to
define individual limits for each element in accordance witihrent standards. The above mentioned problem
is mathematical described in equatiﬁ[SML@l@@{uation (15)). Detailed examples of the matrix
layout are shown in appendix A3.

maximise : A
restrictions: —HB8+AR=—Rg (5.1)
CB<Cq

where

Load parameter

Flexibility matrix

Vector containing stress parameters and load parameter
Load vector

I ® I >

Ro | Constant load vector, e.g. self weight
C | Constraint matrix

Cq | Material constraint matrix containing strength values
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Chapter 5. Lower Bound Method

A is maximised by using the object functian,in equation[(5.R).

:
0 B1 B1

Tx={ ° : ={o .. Ons 1} : (5.2)
Ons an an
1 A A

where

¢ | Object function regarding load optimisation
X | Vector with variables to be determined containjpy\gandA

NS | 2 Nstringerst Nshear areas

cis made as a zero vector with the last values set to one andrig#lof the vector corresponds to the number
of columns in the flexibility matrixH. x contains the load parameter, which the purpose is to maximise,
cf. equation[(5R). In order to do sois multiplied with —1 sincelinprog minimises the object function, cf.

equation[(A31).

The first restriction in equatiof (3.1) ensures equilibriisnsatisfied in the whole structure. The expression
can be rewritten as equatidn (5.3). The matrix on the leftrgde with bottH andR is the matrix for linear
equality constraintéinprog needs, cf. appendixA3. The number of rows and columnsHif@re: nows =

2 Mnodest Nstringers@NANcolumns= 2 - Nstringers+ Nshear areas Cf. chaptef k.

B e (5.3)
A

The solution provides stress parameters and the load ptaasgrimary values. The load parameter indicates,

when multiplied with the load, the maximum load for the systd he stress parameters are within the defined

limits stated in the material constraint matr, by rewritten equatiori (514) to equatidn (5.5).

Ny <Bi <Ny (5.4)
—Bi < —N/ (5.5)
Bi <Ny

where

Ny~ | Negative yield strength
N, | Positive yield strength

Hereby the yield criteria for all elements are stated in ¢iQua5.8) wher@ows = 4 Nstringers+ 2 - Nshear areas
and Neolumns= 2 - Nstringers+ Nshear areas AN example ofC and Cyq is illustrated in Appendix Figure_A3 3.
The yield strength for the stringers are given by equafiod)(@nd equatiori(3l4) for compression and tension
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5.2. Material Optimisation

respectively. The yield strength for the shear areas aendiy equatior (315) for both compression and tension.
An example is shown for structure 1in Appendix A3.3.

CB<Cq (5.6)

Beside the primary values the function calculates the dalales, shadow prices, for the LP problem. The dual
values based on the inequalities indicates elements edpogdastic strains, in either tension or compression.
The displacements for the collapse mechanism is inteigbretimg the dual values of the equalities. Only the
shape of the collapse mechanism is found, thus the defansaéire unknown as the calculation is done with
perfect plastic material behaviour.

5.2 Material Optimisation

The LP problem can be used for minimising the material, eygweight or cost, of the structure. Thus, the
problem is described as equati@SilE_llg%amm (24)). This is the general formulation for

material optimisation where the strength values are takRBnaccount by the design variables Opposite

to load optimisatiorCq is a matrix which ensurécompressiondnNddensionfor each element instead of strength
values. It is possible to take strength values into accosimestrictions, which is done in chapferl8.2 and is
omitted here because of clarity.

minimise: w' d

restrictions: H3 =R (5.7)
CB-Cyd<Co
d>0

where

Object function given as weighting parameters for material
d Design variables
Cq | Material constraint matrix

The design variables are minimised by the object functioagoation[(5.8). Instead of the load parameter,
A, weighting parametersy, are included in the object function, By these variables it is possible to group

and weight part of the structure and hereby have an influeheego the design of the structure according to
material use or the way the structure supports the load. Whieimising c’ x the optimal design parameters,

d, are determined. The main purpose is to minintisehy the stress parameters are a by-product.

T

0 B1 B1
0
c'x=¢ % Pns ={0 ... Ops Wi ... Wps} Pns (5.8)
Wy di dy
Wns dns dns
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Chapter 5. Lower Bound Method

where

¢ | Object function with weighting parametens
X | Vector with variables to be determined containi®@ndd

The second restriction in equatidn(5.7) is rewritten asatiqn [5.9), where the matrix with both andCy

is the matrix for liniear inequality constrainlisprog needs, cf. appendix’A3. The size ©f is similar toC
which is illustrated in Appendix Figufe_A3.4. If same strémgfor a group are desired ti& matrix can be
modified, for instance if all stringers must have same cosgioa and tension strength and all shear areas the
same shear strength. This is illustrated for structure 1gpehdix Figuré A3J5. It is not advisable to change
Cq, instead extra restrictions should be introduced, cf. wv&R1.

(¢ —cd] g < Co (5.9)

5.3 Example - Structure 2

For validatingOpt i _St ri ng structure 2 is calculated based on material and load o#tioisrespectively. The
purpose of this example is to show the basic principle of nedtend load optimisation. For clarity this example
is done with a modifiedCq matrix resulting in three design variabl&s,instead of 56, which is illustrated in
Appendix Figuré€ A3b.

First, the calculation is made with material optimisatiod éhe calculated design parameters will be used as
basis for a load optimisation for the same example. Geometgis and boundary conditions for the structure
are the same as used in secfiod 3.2. The self weight is nedleantd the structure is only affected by the four
nodal loads. By typing in the node coordinates, stringdrsasareas etc. into the data file for structure 2 the
following stringer system is obtained, cf. Figlirel5.1.

32
10001 ?,,,22,,?,,13,,?,,,24,,9 oby 31
| | | |
3 27 6 29 9 32 12
800- | | | 12
| | | | 30
619 4 20 o ___21__ 4 ng
600+ | | | |
vl 26 5 8 31 11 11
| | | |
400 | | | | 28
& ___ 16 __ 4 __11_ _o ___ 18 __ 4 1,07
| | | |
| | | | 10
2000 25 a4 28 17 30 10
| | | | 26
| | | |
o - -3 __ 414 s ___ 15 __ 4 OT—>25
6 560 ldOO 1300
(a) Geometry generated Ipti _Stri ng. (b) Support numbers.

Stringers are assigned 1-31 and shear fields 32-42.

Figure5.1: Opti _Stri ng: Geometry plot for structure 2.

The calculated design variables from material optimisae#ice based on the geometry and the material restric-
tions stated in the Eurocodé€pti _String automatically determine the material strengths and pesvitie
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5.3. Example - Structure 2

matrix mat , shown in Figur€5]2. The working procedureGpfi St ri ng for generating this list is described

in sectiorf 9.11.

o mat _
1 481,03 350,00 17( 336,72 350,00
2] 481,03 350,00 18] 288,62 350,00
3 481,03 350,00 2 19( 288,62 350,00
4] 384,83 350,00 % 20] 336,72 350,00
5 481,03 350,00 g 21| 288,62 350,00
6 384,83 350,00 222 336,72 350,00
» 7| 384,83 350,00 23] 336,72 350,00
gi) 8| 481,03 350,00 24| 336,72 350,00
E 9| 384,83 350,00 25 4,96 4,96
“ 10| 481,03 350,00 26 4,96 4,96
1 481,03 350,00 a 27 4,96 4,96
12| 481,03 350,00 % 28 4,96 4,96
131 336,72 350,00 § 29 4,96 4,96
14| 336,72 350,00 2 30 4,96 4,96
151 336,72 350,00 31 4,96 4,96
16| 288,62 350,00 32 L 4,96 4,96_

Figure5.2: Opti _Stri ng: Matrix mat . mcontaining material parameters for structure 2. based oorge-
try and restrictions stated in the Eurocode.

The collapse mode for structure 2 is shown in Fiduré 5.3 ftin bwaterial and load optimisation. The calculated
displacements from the dual equalities produces the c#lapechanism. This is due to the link between the
primal and dual variables in LP, cf. equatién (6.4). An extmyf the dual equalities whicBpti _String
handle is shown for structure 1 in Appendix Figlre A5.2.

& ---2--9--28--& -

Material optimisation Load optimisation

Figure5.3: Opti _St ri ng: Collapse mechanism for structure 2of material and loadrofstation respectively.

Area 25 to 28 rotates like a rigid body which satisfy the faetttnon of these areas and surrounding stringers
are exposed to plastic strains. This is evident in Fifurka®af5.5 showing output lists fro@pti _String.
According to Figurd 5]3 failure occur in stringer 15, 18, 2id&®4 and area 31 for material optimisation,
which are in accordance with the fact that plastic strainseapin these elements according to the list from
Opti_String. Failure is expected in the horizontal stringers connetetipport 25 and 31 since the moment
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Chapter 5. Lower Bound Method

from the load is largest here. The dual inequalities arepnéted as plastic strains, an example of these are
shown in Appendix Figurie ABL 2 for structure 1.

Opti_String 31=1.71

Daniel Refer and Flemming Hgjbjerre Serensen 32=0.582

Last modified 10/6 2012

Lower bound method Elements exposed to plastic strains -----
Element 15

Structure 2 Element 18

1 load case Element 21
Element 24

----- Strength parameters and safety factors ----- Element 31

f_s=550 MPa

fc=25MPa Reactions [kN] -----

gamma_s=1.2
gamma_c =145

Load case 1:
Support 25 =-226.154

Support 26 = 63.849
Support 27 =-226.154
Support 28 = 144.171
Material optimisation algorithm - 3 design variables Support 29 =226.154

Scale of deformation = 100

Static independent variables, N =8 Support 30 =105.16
Support 31 =226.154
----- Design parameters ----- Support 32 =106.82
d1=2.261538e+05
d2=2261538e+05 e Reinforcement for stringers [mmA2] -----
d3 =1.710020e+00 A_s(1)=46.34
A_s(2) =46.34
————— Maximum stringer forces [kN] ----- A_s(3)=0
Stringer 1=21.239 A_s(4)=0
Stringer 2 =-96.244 A_s(5)=74.79
Stringer 3 =-96.244 A_s(6) =74.79
Stringer 4 =-83.203 A_s(7)=0
Stringer 5=-83.203 A_s(8)=0
Stringer 6 =-135 A_s(9) =
Stringer 7 =-68.011 A_s(10) =144.27
Stringer 8 =-221.912 A_s(11) =165.51
Stringer 9 =-221.912 A_s(12) =69.43
Stringer 10 = 66.126 A_s(13)=66.2
Stringer 11 =-78.045 A_s(14) =66.2
Stringer 12 =31.82 A_s(15)=0
Stringer 13 =30.341 A_s(16)=0
Stringer 14 =-40.475 A_s(17)=0
Stringer 15 =-226.154 A_s(18)=0
Stringer 16 =-226.146 A_s(19) =493.43
Stringer 17 =-226.146 A_s(20) =493.43
Stringer 18 =-226.154 A_s(21) =493.43
Stringer 19 = 226.154 A_s(22)=0
Stringer 20 = 226.154 A_s(23) =302.91
Stringer 21 = 226.154 A_s(24) =493.43
Stringer 22 =-30.349
Stringer23=13883%5 - Reinforcement for shear areas [mmA2/m] -----
Stringer 24 = 226.154 A_s_x,y(25) =132.397
A_s_x,y(26) = 854.421
----- Shear stresses [MPa] ----- A_s_x,y(27) =132.431
25=0.202 A_s_x,y(28) =386.271
26 =1.305 A_s_x,y(29) =922.82
27 =0.202 A_s_x,y(30) =810.233
28=0.59 A_s_xy(331)=1119.29
29=1.41 A_s_x,y(32) =381.029

30=1.238

Figure5.4: Opti _St ri ng: Output list for structure 2, material optimisation.
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5.3. Example - Structure 2

Opti_String

Daniel Refer and Flemming Hgjbjerre Serensen
Last modified 10/6 2012

Lower bound method

31=1.71
32=0.975

————— Elements exposed to plastic strains -----
Element 15

Structure 2 Element 18
1 load case Element 21
Element 24

----- Strength parameters and safety factors -----

f_s=550 MPa
f_c =25MPa
gamma_s=1.2
gamma_c=145

Scale of deformation = 100

Load optimisation algorithm - 1 design variables

Static independent variables, N = 8

----- Load parameter -----
Lambda = 1.000000

----- Reactions [kN] -----
Load case 1:

Support 25 =-226.154
Support 26 = 44.34
Support 27 =-226.154
Support 28 =121.291
Support 29 = 226.154
Support 30 =128.16
Support 31 =226.154
Support 32 =126.209

A_s(1)=0
————— Maximum stringer forces [kN] ----- A_s(2) =209.99
Stringer 1=-21.239 A_s(3) =209.99
Stringer 2 =96.244 A_s(4) =294.16
Stringer 3 = 96.244 A_s(5)=294.16
Stringer 4 = 134.822 A_s(6) =294.55
Stringer 5 =134.822 A_s(7)=0
Stringer 6 =135 A_s(8)=281.45
Stringer 7 =-24.903 A_s(9) =294.55
Stringer 8 =128.999 A_s(10) =96.74
Stringer 9 =135 A_s(11)=167.89
Stringer 10 =44.34 A_s(12)=111.73
Stringer 11 =76.951 A_s(13)=0
Stringer 12 =51.209 A_s(14)=217.02
Stringer 13 =-30.341 A_s(15)=493.43
Stringer 14 = 99.468 A_s(16) =493.41
Stringer 15 = 226.154 A_s(17) =493.41
Stringer 16 = 226.146 A_s(18) =493.43
Stringer 17 = 226.146 A_s(19)=0
Stringer 18 = 226.154 A_s(20)=0
Stringer 19 =-226.154 A_s21)=0
Stringer 20 = -226.154 A_s(22) =66.22
Stringer 21 =-226.154 A_s(23) =66.22
Stringer 22 = 30.349 A_s(24)=0

Stringer 23 =-79.842
Stringer 24 =-226.154

----- Reinforcement for shear areas [mmA2/m]
A_s_x,y(25) =132.397

----- Shear stresses [MPa] ----- A_s_x,y(26) = 854.421
25=0.202 A_s_x,y(27) =132.432
26=1.305 A_s_x,y(28) = 708.049
27 =0.202 A_s_x,y(29) = 601.041
28 =1.082 A_s_x,y(30) = 552.81

29=0.918 A_s_xy(31)=1119.29
30=0.845 A_s_x,y(32) =638.452

Figure5.5: Opti _St ri ng: Output list for structure 2, load optimisation.

The stringer forces, shear stresses, load variabded design variableg are interpreted from the primal
variables. An example for the primal variables is shown irp&pdix Figuré AS.ll. The design parametets,
from equation[(518) are listed from d1 to d3 under Design pa&tars in the output list, cf. Figufe’.4. The
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Chapter 5. Lower Bound Method

design parameters are shown in Tdblé 5.1. The design paanaee based on the largest occurring values in
the elements when minimising the material use in the stracttiis seen from Table 5.1 that the elements are
not utilised to the limit since the design parameters aretdivan the values stated in Figlirel5.2

Femax d1  22615KkN
Fumax 02 22615kN
Tmax 03  171MPa

Table 5.1: Design parameters for structure 2 using the lower bound otkth

By using the three design parameters from material opttinisdoad optimisation is performed on the stringer
system. The loads applied are the same values as for maiptiiisation.

Load optimisation leads to a load paramederof 1, cf. Figurd5.b. The value is expected as the applied
design parameters are based on material optimisation thegjesign parameters calculated using material
optimisation reflects the optimum values for the given load.

The maximum shear stress appears in shear area 31 for boghiahand load optimisation. The number
of stringers which must be reinforced is larger for load mygation.

Compared to the stringer forces calculated in sefioh 3sedan traditional hand calculations the forces
are lower. The maximum stringer force is 226.15 kN which igduction of 23%. It is noticed that the op-
timal shear stress determined @yti _String is similar to the one determined by the hand calculations, cf
Figure3.9.

The reactions calculated for both material and load op#tios are controlled by summation of horizontal
and vertical loads and reactions, respectively.

SP,=0kN
SR¢=0kN
SR, = —420 kN
SRy = 420 kN
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Chapter 6

Linear Programming

The principle of LP is described in this chapter. LP is iliagéed in connection with the stringer method and
the meaning of primal and dual variables are explained.

The formulation of the equations for the stringer systemdsctibed in chaptél 4. Based on this formula-
tion the system is optimised, either regarding stressiligton or kinematics, cf. chaptel 5 alid 7, respectively.
LP is originally a mathematical method for economical opdtion where resources could not be negative.
Modern systems does not care andXé&tke both positive and negative values.

In particular LP is an optimisation of a linear object fuctisubjected to restrictions consisting of inequalities
which may be linearised if necessary. By use of LP in strimgethod the inequalities include constraints such
as material strength and the equalities are the equilibcanditions.

If a LP problem is formulated using the lower bound method,edjuation[(511), the primal variables are
static, i.e. optimal stresse8, and optimal load parametey, cf. equation[(613). The general formulation
is written as equatiol (8.1) where the object functionis a vector of known coefficients to be optimised
multiplied with a vector of variablest, to be determined. This optimisation is subjected to a nurolbe
restrictions collected in matrices and vectors whers a known matrix of coefficients containing inequality
constraintsb is a vector with known coefficients.

maximise : ¢’ x
restrictions: Ax > b (6.1)

x>0
where

Object function
Vector of primal variables
Matrix for inequality constraints

o > X O

Vector of linear inequality constraints

According to the stringer method equatibn{6.1) is expartdezfjuation[{6]2) in order to account for stresses
which can both be negative and positive. The stresses duglattinx.
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Chapter 6. Linear Programming

maximise : ¢’ x
X+
restrictions : { A —A } >b (6.2)

X = X" —x"

For each primal LP problem a dual problem can be formulateldias optimum solution for the dual problem

is the optimum solution to the primal probleil@BQFor equatior(6]1) the primal variables are
expressed in equation (6.3) and the dual variables in exquédia).

Primal variables : x{ p } (6.3)
var
. . v
Dual variables (shadow prlce):e{ v } (6.4)

where

B Stress parameters

var | Variables, load or design parameter

¥ | Plastic strains

Vv Displacements for nodes and stringers

If the primal problem is a lower bound, e.g. equationl(5.4& dual problem for this equivalent is the upper
bound problem formulated in equatitﬂ?i 995BIus, besides the stress distribution found from
the primal problem, the dual values are kinematic, whiclvigles the plastic straingl, and displacements,
V, for the system. The dual variables from equationl(6.1) ésghimal variables in equatioh (6.5) when the
optimisation is based on the upper bound method e.g. a kitieathmissible collapse mechanism. The primal
variables for the upper bound are shown in equafiod (6.7}aedual values in equation (6.8).

minimaize: 6" b
restrictions: 8" A <c' (6.5)

6>0

The general formulation in equatidn (b.5) is expanded ta#qgn [6.6) in order to account for displacements,
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Chapter 6. Linear Programming

V, which both can be negative and positive.

- v
maximise : b
Y
v
restrictions : { A —-A } >c' (6.6)
\%
R4
vt >0
V-
. . R4
Primal variables: 6 = v (6.7)
. . o B8
Dual variables (shadow price) :x = (6.8)
var

where

Primal variables
x | Dual variables

Obviously this property is also valid when formulating thrényal problem from the upper bound method thus,
the primal values consists of plastic strains and displatgswhile the dual values represents the stress dis-
tribution. The shadow price indicates the profit of changirrgstriction. If a restriction is changed and do not
limit the optimum, the shadow price becomes zero. If theropth on the other hand is limited by a restriction
then one will pay extra in order to obtain a larger load or $enahaterial parameters, which is interpreted as
plastic strains for an element.

If a LP problem is formulated using the upper bound methodeduation[(ZB), the load parametky,is
found by the value of the object function. For material ofgimtion the design variables are interpreted as the
dual variables of the inequalities.

The inequalityA - x > b in equation[(€11) defines the feasible region for the lingatinsisation byn con-
vex polyhedralsn is the number of restrictions in the inequality. An examgdla ¢easible region is illustrated

in Figure[6.1.
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Chapter 6. Linear Programming

- - - Simplex algorithm
............. Interior point Large Scale algorithm

Starting vertex 4

Figure 6.1: lllustration of iteration procedure for simplex and interipoint algorithm respectively.

The LP problems are solved using tireggprog function in MATLAB. lingprog always minimise, why the ob-
ject function needs to be multiplied byl in equation[(€]1) for carry out the maximisation.

For the solution of the LP problem one of two algorithms hadeochosen. The Simplex algorithm is the
simplest of the two algorithms. The solution space is a netisional space limited by restrictions. Simplex
tends to find a extreme solution as it follows one edge andiffterehe next edge. Thereby, the order of defi-
nition of elements can affect the result.

The other algorithm, Large-Scale, is an interior point alpon. Opposite to Simplex every steps is based
on all the restrictions. This means that every step is cdmttyless steps are needed for finding the optimum.
In addition, Large-Scale do not tends to find an extreme aptirbut instead find an balanced optimum.

The algorithms can be illustrated by a mountain climber h@agthe top where; simplex is limited by a
fogged weather and therefore only take small steps evegydimd interior-point see the top from the beginning
and walk in the correct direction all time. The algorithms #lustrated in Figure6l1. Every line of demarcation
in the feasible region corresponds to a restriction in tlegiralities.

The two algorithms have been compared for structure linregig3, and based on the simple comparison
the Large-Scale algorithm is chosen for all the followingcatations, since all restrictions are included in the
optimisation.
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Chapter 7

Upper Bound Method

This chapter describes the upper bound method. The thedgsizibed according to the stringer method and
the mathematical formulation from chaplér 4. After the digsion of the theory structure 2 is shown for both
load and material optimisation. A comparison with the résdtom lower bound is made in the end of the
chapter

For practical use the upper bound method is somewhat mor@lo@ted because this require knowledge
within the mechanics and collapse modes. The upper bountifation in equatior(7]3) is a direct mathemat-
ical translation from the lower bound in equatifn {5.7). STikipossible due to the primal and dual link between
upper and lower bound method from chapier 6.

The upper bound method seeks:

e A kinematic admissible collapse mechanism
e Equilibrium between internal and external work

The procedure for upper bound method is to calculate theredtand internal work, and hereby determine the
collapse load\ ™ as the ratio between these two. This is illustrated in eqodf.1)

Ainternal = Aexternal (7.1)
Cl¥=AR{V+RTV

where
Ainternal | Internal plastic work
Aexternal | External work from the real collapse load
A Upper bound value for the collapse load
Cq Vector with material constraint, strength values
v Vector with plastic strain variables
Ro Constant load vector
Vv Vector with displacements for each node
R Load vector

By isolating in equation[(Z1) it is possible to express the collapse,leédequation[(7]2). Hereby™ is
expressed by a geometric feasible collapse mechanism.
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Chapter 7. Upper Bound Method

_ C{T-R}V

)\+
RT.V

(7.2)

7.1 Load Optimisation

Opposite to the lower bound method the variables to be d@tedare displacements in each node, collected in
the vectorV, and plastic strains which can illustrate positive or nizgatield strength, collected in the vector
v,

Since LP are only able to work with linear problems equafi@g)is linearised by minimising the strains and
displacements caused by the load, in this case minimisanguimerator and keep the denominator as a constant
of one,RT V = 1. The external load is kept constant in order to make therigdition easier. EEuatioE i .3)

Ide,

describes the LP problem for finding an upper value of the lmeating capacity of the structu

@, equation (18)).
minimise : CJ ¥ — R} V
restrictions: —H"V+CT ¥ =0 (7.3)
RTV=1
v >0

By rewriting the numerator the object function fiamprog is shown to the left which is multiplied with the
variables to be minimised, cf. equatign{7.4). The objentfion for structure 1 is exemplified in Appendix
Figure[A3.T wherey andRg are illustrated.

v
Ci -R§ 7.4
{ci R }1 (7.4)
The first restriction in equatiof.(2.3xH" V+C' ¥ =0, ensures compatibility between the plastic strains,
and the displacementg, which is written as equatiob (7.3} andC is known from the lower bound method,
cf. chaptefb, and is illustrated for structure 1 in Apperfeigurd A3.2 an@A313. By multiplying-H' with V

the following is obtainednqisplacements= Nequality equations

T T _
(e —HT ¢, (=0 (7.5)
By identifying the input in equatiof (4.3) a physical intexfation is obtained. For each element compatibility
is satisfied in the upper bound method. This means that thegosel mechanism is compatible with the physical
conditions of the structure and material. Compatibilitpidained by considering all strains as plastic strains.
In equation[(Z¥) and equatidn (¥.5) compatibility is eesliny setting displacements equal to plastic strains.
The plastic strains®, in equation[(Z}4) cover both strains for stringersand areasy, and similar for the
displacements, cf. equatidn (I7.6).

g Vstri
V— stringers (7.6)
Y Vareas

S
|
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7.1. Load Optimisation

Compatibility is satisfied if the difference between diggmentsAl, corresponds to the difference in plastic
strains Ae. Compatibility for stringek, is ensured by equatiof (¥.7) and illustrated in Figuré 7.1.

Neyq — M 7.7)
Vp— V|
Ago = 7( b | K
Va Vk Vd
—_— —_— —_—
€a &d

Figure 7.1: Compatibility between displacements and strains for gairk.

Compatibility for shear areas between displacemektsand strainsy, is expressed in equatidn (V.8). Fig-
ure[7.2 illustrates how different strains results in diiergradients for the shear areas. Together the displace-

mentsy; to v| represent a rotation.

Vi—Vk  Vji—V
=  — 7.
Ym T (7.8)

U
w\& Yo hvige mo

Figure 7.2: Compatibility between displacements and strains for area m

Figurd Z 3B illustrates the assembling of equation] (7.5)hérassembling stringers are expressed by equafidn (7.7)
and shear areasby equatibn{7.8). It is illustrated how extififity is satisfied when displacements result in
strains. Hereby a geometric band exist which connect straith a displacement variation.
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Chapter 7. Upper Bound Method

Stringers Shear fields
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Figure 7.3: Assembling of flexibility matrid for stringer, k, and area, m. s = start node, e = end node.

The restrictions consist of two equalities and one inetutiat ensure the plastic strains are positive defined.
The built-in function in MATLAB linprog, is not capable of solving an equation system with two etjaali
thus, the second equality is formulated as two inequalitie®™V < —1 andR"V < 1, cf. equation[{7]9).
A more detailed exposition solving the linear programmingfglem usindinprog is made in Appendix Fig-
ure[A3.8. Compatibility is also ensured by keeping the eabwork constant.

The matrix on the left hand side is the matrix foxprog describing the linear inequality constrainss,
where the right hand side is the veclioprog needs as linear inequality constraints.

0 —RT v -1

- (7.9)
0 R V 1

The dimensions oA are shown below. The first parenthesis represents the ktstins and the last the

displacements.

Nows = 2

Nows = (4 Nstringers+ 2 - nshear_areas) + (2 Nnodes— Nsupportst nstringers)

Except of the new variable® andV, all the vectors and matrices are known from the lower bouathod in
chaptefd. This is due to the relation between primal and jlweddlems in LP, cf. chaptét 6.

By use oglinprog Opti _String calculates primal and dual variables. Solution of equaff8) provides
primary values containing the plastic strains, equalllrgy¢ollapse mode of the system and the displacements
of the nodes in the collapse mechanism. The dual problematnthe stringer and shear forces which are
interpreted as the shadow prices of the equalities whiléothe parameter are found by the value of the object
function.
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7.2. Material Optimisation

7.2 Material Optimisation

The upper bound method for material optimisation, equgfioid) comes from a translation of the lower bound
method. This is possible due to the connection between panthadual variables in LP, cf. chapiégr 6.

maximise: RV —Cl ¥

restrictions: H' V—CT ¥ =0 (7.10)
Clo<w
v >0

After the translation the intention is to maximise the em&mwork, R" V, minus the internal plastic work,
Co ¥, which is constant and depends on the weighting factor. ktermal load is known why the external
plastic work are kept constant. The internal plastic wonkriknown for which the intention is to maximise in
order to obtain optimal design variables for the given load.

Material optimisation provides similar to load optimigatiplastic strains and displacements as primal vari-
ables. In addition, the dual variables consists of the w&igtparametey, and the stringer forces and shear
stresses. Thus the upper bound variable due not enter iekptize formulation the restrictions for the internal
plastic work provides the shadow prices where the desiganpeters are found.

7.3 Example - Structure 2

Structure 2 is used for illustratinQpti _Stri ng when calculations are based on the upper bound method.
The procedure in this example is similar to secfion 5.3 fardobound. As for lower bound this example is
performed with a modifie@€4 matrix for clarity and the possibility to compare the result

First the optimal design variabldsare determined by material optimisation after which the loptimisation
is based on these design variables which should lead to #ldegarametek = 1. The geometry plot is equal
to the one from sectidn 3.3. The primal variables provides tite plastic strains in the elements and the
displacements of the nodes and stringers as well, cf. emufdif). These are used for plotting the collapse
mechanism shown in FiguteT.4.

G --—-22- - -G - -2 -9 - — -4 —-

Material optimisation Load optimisation

Figure7.4: Opti _Stri ng: Collapse mechanism for structure 2based on material aad lgptimisation.
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Chapter 7. Upper Bound Method

The two collapse modes are similar which are substantigtéldeofact that material and load optimisation pro-
vides plastic strains in the same elements, except aredh®d appear in the two output lists fro@pt i _Stri ng

shown in Figuré&7]5 for material optimisation dnd| 7.6 fordagtimisation.

As mentioned for lower bound it is expected that plasticisgr@ccur in the horizontal elements nearest the

Opti_String

Daniel Refer and Flemming Hgjbjerre Serensen
Last modified 10/6 2012

Upper bound method

Structure 2
1 load case

----- Strength parameters and safety factors -----
f_s=550 MPa

f_c =25MPa

gamma_s=1.2

gamma_c = 1.45

Scale of deformation = 40

Material optimisation algorithm - 3 design variables
Static independent variables, N =8

————— Design parameters -----
d1=2.261538e+05
d2=2.261538e+05
d3 =1.710000e+00

————— Maximum stringer forces [kN] -----
Stringer 1=21.242
Stringer 2 =-96.242
Stringer 3 =-96.242
Stringer 4 =-149.5
Stringer 5 =-149.5
Stringer 6 =-135
Stringer 7 =51.314
Stringer 8 =-102.586
Stringer 9=-135
Stringer 10 =-38.733
Stringer 11 =-76.998
Stringer 12 =-57.521
Stringer 13 = 30.346
Stringer 14 =-116.234
Stringer 15 =-226.154
Stringer 16 =-226.154
Stringer 17 =-226.154
Stringer 18 =-226.154
Stringer 19 = 226.154
Stringer 20 = 226.154
Stringer 21 =226.154
Stringer 22 =-30.346
Stringer 23 = 63.074
Stringer 24 = 226.154

————— Shear stresses [MPa] -----
25=0.202
26 =1.305
27 =0.202
28=1.222
29=0.778

30=0.733
31=171
32=1.087

————— Elements exposed to plastic strains -----
Element 15
Element 18
Element 21
Element 24
Element 31

----- Reactions [kN] -----
Load case 1:

Support 25 =-226.154
Support 26 = 38.733
Support 27 =-226.154
Support 28 =115.209
Support 29 =226.154
Support 30 = 134.422
Support 31 =226.154
Support 32 =131.635

————— Reinforcement for shear areas [mmA2/m] -----
A_s_xy(25)=132.42

A_s_x,y(26) = 854.434

A_s_xy(27)=132.42

(26)

(27)
A_s_x,y(28) = 799.529
A_s_x,y(29) =509.562
A_s_x,y(30) = 479.65
A_s_xy(31)=1119.27
A_s_xy(32)=711.623

Figure7.5: Opti _St ri ng: Output list for structure 2 based on material optimisation

fixed support, which is the case.
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Opti_String

Daniel Refer and Flemming Hgjbjerre Serensen
Last modified 10/6 2012

Upper bound method

Structure 2
1 load case

31=171
32=0.962

————— Elements exposed to plastic strains -----
Element 15
Element 18
Element 21
Element 24

————— Strength parameters and safety factors -----

f_s=550 MPa
f_c =25 MPa
gamma_s=1.2
gamma_c =145

Scale of deformation = 10

Load optimisation algorithm - 1 design variables

Static independent variables, N = 8

----- Load parameter ----

Lambda = 1.000000

————— Maximum stringer forces [kN] -----

Stringer 1 =21.242
Stringer 2 =-96.242
Stringer 3 =-96.242
Stringer 4 =-133.11
Stringer 5=-133.11
Stringer 6 =-135
Stringer 7 =21.811
Stringer 8 =-132.089
Stringer 9 =-135
Stringer 10 = 45.028
Stringer 11 =-76.95
Stringer 12 =-50.522
Stringer 13 = 30.346
Stringer 14 =-97.502
Stringer 15 =-226.154
Stringer 16 =-226.154
Stringer 17 =-226.154
Stringer 18 =-226.154
Stringer 19 = 226.154
Stringer 20 = 226.154
Stringer 21 =226.154
Stringer 22 =-30.346
Stringer 23 = 81.805
Stringer 24 = 226.154

————— Shear stresses [MPa] -----

25=0.202
26 =1.305
27=0.202
28 =1.065
29=0.935
30=0.858

Figure7.6: Opt i

The calculated design parameters are interpreted as[Tdbéd is in accordance with the example for lower

————— Reactions [kN] -----
Load case 1:

Support 25 =-226.154
Support 26 = 45.028
Support 27 =-226.154
Support 28 =121.978
Support 29 =226.154
Support 30 = 127.472
Support 31 =226.154
Support 32 =125.522

————— Reinforcement for stringers [mmA2] ----—

A_s(1)=46.35
A_s(2) =46.35
A_s(3)=0
A_s(4)=0
A_s(5)=0
A_s(6)=0
A_s(7) =47.59
A_s(8) =47.59
A_s(9) =

A_s(10) =98.24
A_s(11)=167.89
A_s(12)=110.23
A_s(13) =66.21
A_s(14) =66.21
A_s(15)=0
A_s(16)=0
A_s(17)=0
A_s(18)=0
A_s(19) =493.43
A_s(20) =493.43
A_s(21) =493.43
A_s(22)=0
A_s(23)=178.48
A_s(24) =493.43

————— Reinforcement for shear areas [mmA2/m]
A_s_xy(25)=132.42

A_s_x,y(26) = 854.433
A_s_x,y(27) =132.419
A_s_x,y(28) = 697.356
A_s_x,y(29) =611.735
A_s_x,y(30) =561.388
A_s_xy(31)=1119.27
A_s_x,y(32) =629.884

_String: Output list for structure 2 based on load optimisation.

bound. These are used as material strengths i€gheector fronTZ.# when performing load optimisation.

l:c,max
R max

Tmax

dl 22615kN
d2 22615kN
d3 171MPa

Table 7.1: Design parameters for structure 2 using the upper bound atkth
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Chapter 7. Upper Bound Method

This results in the output list shown in Figlirel7.6. By usehefdetermined design parameters the load param-
eter is calculated to a value of one. Thus, the design pasmepresents the optimal material strengths for
carrying the applied load.

WhenOpti _String is usinglinprog and performing load or material optimisation regarding ermppound
method some values, e.g. dimensions, must be scaled fontm@the optimisation algorithm. The values to
be scaled depends on the optimisation method. If the coademlues are not scaléidprog displays a termi-
nation message saying that; "the residuals, duality gabtalk ftelative error has stalled the calculation”. After
the calculation is executed the output values needs to besdend backwards in order to obtain the requested
units of the output.

7.4 Comparison of Lower and Upper Bound

The calculated design parameters; d1, d2 and d3 are idetatitee design parameters determined in the lower
bound material optimisation, cf. the output list in Figlird.5The collapse mode is also identically between the
lower and upper bound method. This means that an exact@olexists for the stringersand shear areas when
the calculations are based on the upper bound method.

The translation for stringers was expected to be exact sheeare similar to bars and beams for which an
exact translation exist.

An exact translation from lower to upper bound method exisshear areas as the opposite to plates where
the translation is a numerical approximation. This meaasttie duality described for the general LP problem
in chaptef® is fulfilled. Hereby it is proved that an upper mddormulation provides the matching lower
bound formulation by a direct mathematically translation.

The amount of elements where plastic strains occur is sifimfdower and upper bound. In addition area 31
is exposed to plastic strains when performing materialnoigtition for both lower and upper bound method.
For this case it can be concluded that the material optiinisaeeks to utilise more elements to the yield limit
which are expressed in the number of elements where platinsoccur.
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Chapter 8

Design Demands of Structures

Practical conditions regarding material optimisation rmulated and implemented @pt i _St ri ng. This

is first done by linking material properties and implementemnial limits and secondly by illustrating several
load combinations for a stringer system. Through the chagtamples are made to illustrate the theory. The
practical material optimisation is based on the lower bounethod.

The previous use of the stringer method is only based on thlieemeatical optimisation and the restrictions
associated with LP and the stringer method. In order to ingptbe practicality of the stringer method differ-
ent design demands are introduced. Examples of design disnaae:

e Same amount of reinforcement in a stringer line based oratiges$t occurring force
e Same shear reinforcementin all areas

¢ Differentiate stringer line or shear areas for large strregt

e Material strengths regarding Eurocodes

e Optimisation with regard to several load cases

The principle of these design restrictions are illustramefeigure[8.1. Two load cases are added which result in
tension for the illustrated stringer line. Without any dgsidemands the reinforcementis designed according to
the stringer force in each stringer. By introducing desigmend these ensure the same amount of reinforce-
ment in the stringer line and hereby the practicability ipioved. Thus, the stringer line is designed according
to the largest occurring force.

l Load case 2
Load case 1

YYVYYVVY

Model of
21 stringer line

<
)
=
©
N
o
]

‘ Distribution of
* tension force

P Stringer line

Theoretical
c——r— ] reinforcement

ATTTRRIRTRIRTRITRTRIIWWNY

| | ‘ | Design demands
for reinforcement

Figure 8.1: Principle of design demands.

To ensure that a structure can be made using standard rhagstréctions, material parameters are added to
the optimisation.
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Chapter 8. Design Demands of Structures

8.1 Practical Design Restrictions

Two sorts of practical design restrictions are presentetli@mplemented irOpti _String. First, each sort is
explained and shown theoretical and afterwards an exanspig both design restrictions are presented.

Linking Design Variables

For construction of a structure it is obvious that some el@menust be made using the same material pa-
rameters, for example tension strength. This is pertin@nééch stringer line and for all shear areas as they
often are made using the same amount of reinforcement. fidneréhe design variables are linked in order to
provide the same results for each stringer line and shear atee principle for linking elements is shown in
equation[(8.11) for a stringer line consisting of three sfeirs, illustrated in Figule §.2.

1 2 3 4
@ L L 4 L J
di dy d3

Figure 8.2: Stringer line of three stringers and their design variablés

dp—d=0 1 -1 0
h=dh=ds = e = d=0 (8.1)
dp—ds=0 1 0 -1
The linking of design variables is formulated using matrtation in equatiori(812) where the links between
elements are expressed in the property maix,

Ed=¢g (8.2)
where

(=%) ‘ Zero vector

The equations are applied as extra rows to the equalitiegtiaten [5.7) which afterwards are formulated by
equation[(8B). Notice, adding up extra equations do natohthe object function. Equatidn (B.3) is illustrated
in Appendix Figuré AZR for structure 1.

H o B R

= 8.3
0 E d € ®3)

Implementation of Material Limits in Material Optimisatio n

Implementation of material limits are not possible in theenial optimisation problem stated in equatibn{5.7)
thus, the design variables for the structure is only baseldeapplied load and weighting parameters. However,
it is possible to include material limits by adding up exteaations to the inequalities and hereby set up limits
for the material, for example by stringer forces and she@sses. By this feature the individual elements
are affected by forces or stresses less or equal to the lgmitap for the element when performing material
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Example - Structure 2

optimisation. For illustrating material limitsy, for stringeri these are formulated in equati¢n(8.4).

=Ny <m <Ny

—ms-Ny (8.4)
m <N

Using matrix notation the inequalities for the materialitsncan be expressed as equat[on](8.5) where the
material matrixM, links elements to material parameters.

—Md < —-mg (8-5)
where
Mo ‘ Material parameters

The extra inequalities are added up to the inequalities feqomation[(5.17) which afterwards is formulated by
equation[(8.B). Equatiofi(8.6) is illustrated in Appendigufe[A4.3.

C 0 Bl Jcaly ) @6
0 -M d 0 —mo

Example - Structure 2

Structure 2 is calculated using the above mentioned desigmigtions for verifyingpti _String perform-
ing practical design restrictions. Stringer lines are maceording to Table 8l1. Notice, all shear areas are
combined in two design variabledy ;. anddg;.

Stringer line  Design variable Elements

1 dic, it 1-2-3

2 doc, dat 4-5-6

3 dac, dat 7-8-9

4 dac, dag 10-11-12

5 dse, d 13-14-15

6 dec, det 16-17-18

7 dye, da 19-20-21

8 dac, dat 22-23-24

9 doc, ot 25-26-27-28-29-30-31-32

Table 8.1: Stringer lines for structure 2 using practical design réstions.

For evaluating the optimisation regardiBgog M structure 2 has been calculated without these restrictions
which results in two optimisations cases:

e Case 1: Material optimisation
e Case 2: Material optimisation regarding practical desegtrictions
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Chapter 8. Design Demands of Structures

The plots of the collapse modes frdpt i _St ri ng are shown in Figure 8.3 for case 1 and 2, respectively.

O --- B2 -0 - -2 -0 - - - --

a) Case 1: Material optimisation b) Case 2: Material optimisation
regardingVl og E

Figure8.3: Opti _Stri ng: Collapse mechanism for structure 2 without and wWittandE as practical design
restrictions.

The matching output lists froipt i _Stri ng are shown in Figurie 8.4 ahd 8.5. The design parameters fer cas
1 are listed for each element, and for case 2 the parameteshawn for the stinger lines and the appurtenant
stringers are listed in Table 8.1. All shear areas are repted bydg: anddg;. The values are equal because the
areas are set to carry the same shear stress in both positiveegative. The design parameters for stringers
indicate the stringer lines with tension, which also candxnsn the list showing the stringer reinforcement.
The necessary reinforcement for all stringers are showndardo enhance where tension occur, i.e. stringers
that require reinforcement. It must be noticed that thefoeg@ment in a stringer line must be designed for the
largest amount of reinforcement in the appurtenant strg)der example stringer line 8 for both cases must be
designed using the reinforcement calculated for stringeAg»4).

A comparison of the necessary reinforcement indicateschss 2 are the most expensive to perform. This
is caused by the extra added restrictions in the inequalitigichlinprog is limited by when performing the
linear optimisation.
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Opti_String

Daniel Refer and Flemming Hajbjerre Serensen

Last modified 10/6 2012

Lower bound method

Structure 2

1 load case

————— Strength parameters and safety factors ---—-

f_s=550 MPa

f ¢=25MPa
gamma_s=1.2
gamma_c=1.45

Scale of deformation =15

Material optimisation algorithm - 56 design variables

Static independent variables, N =8

----- Design variables ----

d1_c=6.806897e+03
d2_c=7.500000e+04
d3_c=7.500000e+04
d4_c=1.037448e+05
d5_c =1.037448e+05
d6_c = 1.350000e+05
d7_c=0.000000e+00
d8_c =1.082069e+05
d9_c =1.350000e+05
d10_c =5.553846e+04
d11_c=5.953724e+04
d12_c=6.787285e+04
d13_c=9.724138e+03
d14_c = 1.360690e+05
d15_c=2.940000e+05
d16_c = 1.039310e+05
d17_c=1.039310e+05
d18_c =0.000000e+00
d19_c =0.000000e+00
d20_c =0.000000e+00
d21_c=0.000000e+00
d22_c=0.000000e+00
d23_c=0.000000e+00
d24_c =0.000000e+00
d25_s =6.500000e-02
d27_s =7.580000e-01
d29_s =0.000000e+00
d31_s=1.053000e+00

d1_t=0.000000e+00
d2_t=0.000000e+00
d3_t =0.000000e+00
d4_t =0.000000e+00
d5_t =0.000000e+00
d6_t =0.000000e+00
d7_t =0.000000e+00
d8_t =0.000000e+00
d9_t =0.000000e+00
d10_t=5.501327e+04
d11_t=4.866965e+04
d12_t=5.836853e+04
d13_t=0.000000e+00
d14_t =0.000000e+00
d15_t =0.000000e+00
d16_t =0.000000e+00
d17_t=2.241379e+04
d18_t=2.241379e+04
d19_t=1.136552e+05
d20_t=1.136552e+05
d21_t=0.000000e+00
d22_t =0.000000e+00
d23_t=1.136552e+05
d24_t =2.940000e+05
d26_s =7.580000e-01
d28_s =0.000000e+00
d30_s =1.053000e+00
d32_s=9.470000e-01

A_s(1)=0

A_s(10)=120.03
A_s(11)=106.19
A_s(12)=127.35

)

)

)
A_s(13)=0
A_s(14)=0
A_s(15)=0
A_s(16)=0
A_s(17)=48.9
A_s(18)=48.9
A_s(19) =247.97
A_s(20) = 247 97
A_s(21) =
A 5(22):

_s(23) =247.97
A _s(24) =641.45

----- Reinforcement for shear areas [mmA2/m]
A_s_x,y(25)=42.433

A_s_xy(26) = 495.95
A_s xy(R27)=
A_s_xy(28) = 689.154
A_s_x,y(29)=619.937
A_s_x,y(30) =689.154
A_s_x,y(31) =786.959
A_s_x,y(32) =786.959

----- Reactions [kN] -----
Load case 1:

Support 25 =-294
Support 26 =55.618
Support 27 =-0
Support 28 = 114.557
Support29=-0
Support 30 = 116.546
Support 31 =294
Support 32 =133.278

Figure8.4: Opti _Stri ng: Output list for structure Case 1. Elements exposed to plastic strains are illus-
trated in Figure[8.6.
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Chapter 8. Design Demands of Structures

Opti_String e Reinforcement for stringers [mmA2] -----
Daniel Refer and Flemming Hgjbjerre Serensen A_s(1)=0
Last modified 10/6 2012 A_s(2) =0
Lower bound method A_s(3)=0
A_s4)=0
Structure 2 A_s(5)=0
A_s(6)=0
Stringer lines: A_s(7)=0
1:123 A_s(8)=0
2:456 A_s(9) =0
3:789 A_s(10) =165.92
4:101112 A_s(11) =197.83
5:131415 A_s(12) = 166.56
6:1617 18 A_s(13)=0
7:1920 21 A_s(14)=0
8:222324 A_s(15)=0
9:252627 2829303132 A_s(16) =0
A_s(17)=0
1 load case A_s(18)=0
A_s(19) =261.78
————— Strength parameters and safety factors ----- A_s(20)=261.78
f_s =550 MPa A_s(21)=163.68
f_ c=25MPa A_s(22) =3.31
gamma_s=1.2 A_s(23) =265.09
gamma_c=1.45 A_s(24) =592.32
Scale of deformation=40 - Reinforcement for shear areas [mmA2/m] -----

A_s_xy(25)=6.479

Material optimisation algorithm - 56 design variables

Static independent variables, N = 8

----- Design variables ---

d1_c=7.500000e+04
d2_c =1.350000e+05
d3_c=1.350000e+05
d4_c=4.432913e+04
d5_c=2.715191e+05
d6_c=1.200153e+05
d7_c =0.000000e+00
d8_c =0.000000e+00
d9_c =1.500000e+00

d1_t=0.000000e+00
d2_t =0.000000e+00
d3_t =0.000000e+00
d4_t=9.067087e+04
d5_t =0.000000e+00
d6_t =0.000000e+00
d7_t=1.199847e+05
d8_t =2.714809e+05
d9_t =1.500000e+00

A_s_x,y(26) =530.182
A_s_xy(27)=6.612

A_s_x,y(28) = 654.629
A_s_x,y(29) = 654.462

A_s_x,y(30) = 654.629
A_s_x,y(31) =981.818
A_s_x,y(32) = 654.462

----- Reactions [kN] -----
Load case 1:

Support 25 =-271.519
Support 26 = 28.965
Support 27 =-74.981
Support 28 = 120.377
Support 29 =75.019
Support30=119.316
Support 31 =271.481
Support 32 =151.342

Figure85: Opti _String: Output list for structure Ease 2 using practical design restrictions. Elements
exposed to plastic strains are illustrated in Figlire]8.6.

The list with elements exposed to plastic strains are st in Figuré 816. It is seen that some of the ele-
ments occurs twice which is a result of both compression ansi¢n strains in each end of the element. This
is especially the case for the elements around the hole dilnetehear that must be transferred. The vertical
stringers connected to the supports only occur once inghéoli case 2 since they are only exposed to tension
or compression. Tensile strains exist for element 15 andHiBwompression tension occur in element 21 and
24. These strains are caused by the maximum moment.
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8.2. Load Combinations

————— Elements exposed to plastic strains -----

————— Elements exposed to plastic strains -----

Element 1 Element 1 Element 18 Element 18 Element 1 Element 3 Element 27 Element 28
Element 2 Element 3 Element 19 Element 19 Element 4 Element 6 Element 29 Element 31
Element 3 Element 4 Element 20 Element 20 Element 7 Element 7 Element 31 Element 32
Element 4 Element 5 Element 21 Element 21 Element 8 Element 8

Element 6 Element 7 Element 22 Element 22 Element 9 Element 9

Element 7 Element 8 Element 23 Element 23 Element 11 Element 11

Element 8 Element 9 Element 24 Element 25 Element 13 Element 15

Element 10 Element 10 Element 26 Element 27 Element 16 Element 16

Element 11 Element 11 Element 28 Element 29 Element 17 Element 17

Element 12 Element 12 Element 30 Element 31 Element 18 Element 19

Element 13 Element 13  Element 32 Element 19 Element 20

Element 14 Element 15 Element 20 Element 21

Element 16 Element 16 Element 22 Element 24

Element 17 Element 17 Element 25 Element 26

a) Case 1 b) Case 2

Figure 8.6: Elements exposed to plastic strains for case 1 and 2.

The occasion for plastic strains in stringer 3 and 6 can bedani their stringer forces and their adjacent shear
areas. From the lists for both cases it is seen that the stieaseas in area 29 and 32 are significant larger than
the shear stress in area 27. This stress distribution instiicger 3 and 6 to carry the load which results in the
plastic strains.

With the linking of the design variables for all shear areasdse 2 the system may give a low priority to the
strengths in area 28 and 29, as an increase would conceraadl. dnstead the strength in the stringers increase.
This can be controlled by the weighting parameters whickcate the priority of the elements. Compared with
case 1, where the shear areas are not linked, the systerasedhe strength in the two shear areas because they
do not affect the strengths of the other areas. This resultsciollapse acting more like a rigid body rotation
but still a shade of shear failure occur. The extra restmdiexplain why plastic strains do not occur in exact
same elements.

By comparing case two with the hand calculations in sefi@tt8 cost reductions is 14 % when the amount
of reinforcement decrees from 44 kg to 38 kg, cf. Appendixi@&i.3 and A4.1L.

8.2 Load Combinations

Structures are always subjected to several load cases aatkaahoptimisation problem with one load case
does only in few cases give the optimum solution. Severa t@&ses can be managed in the material optimisa-
tion for either lower bound or upper bound method.

Load Combinations Formulated Using Lower Bound Method

The LP problem formulated in equatidn (b.7) for materialimigation based on lower bound method can take
load cases in to consideration by multiplying the input ea8 and vectors by the number of load cases,
Hereby, the size of the flexibilityd, and constraint matrixC, are multiplied withn which results in3-n
variables.

This means that the LP problem is growing with the sizeThe stress parameters are independent of each
other and the mutual variables for the different load case$he design variables.
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By having two load cases,andll , equation[(5]7) is rewritten to equatidn (8.7) for mateojaiimisation based
on the lower bound method. Notice, all vectors and matrigesease to double size. Only the load vechr,

changes for each load case.

minimise : w' d

- H O B R
restrictions -
0 H B Ri
0 C C
B | ¢ Lg< 0 (8.7)
0 C B Cq Co
d>0

Implementing of the practical design restrictions fromtiee8.1 leads to an expanding of the expression. For
two load cases witM andE the expression is illustrated in Appendix Figlire A4.4.

Example - Structure 2

In this example structure 2 is subjected to two load cases;iglired 8.¥. Furthermore, the linking of materials
and strength parameters will be taken in to account by theiceaE andM .

200 kN
3004V,

YYYVYYYYY Y

Load case 1 Load case 2

Figure 8.7: Structure 2 subjected to two load cases.

Load case 1 consist of the uniform load from the previous @taswhere case 2 is a concentrated nodal force.

The generated geometry plot frogpti _String is illustrated in Figuré 5]1. The two collapse mechanisms
are illustrated in Figurie 8.8 for load case 1 and 2, respelgtiv
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G- - -2 - -0 - -2 - O - - 2

Load case 1 Load case 2

Figure8.8: Opti _Stri ng: Collapse mechanism for structure 2. Load case 1 and 2.

The two collapse modes differs because load case 1 affextstricture more by bending compared to load
case 2 where the point load more results in shear effect. &4gkins why the middle part of the structure
deforms different for load case 2 compared to load case E sivemiddle part is weak for shear. However,
shear is still affecting the collapse mode of load case 1 arginilar way is bending affecting the collapse
mode for load case 2. It appears from the collapse mode fdrdaae 2 that the point load affects stringer 3
and area 27 significant.

The output list fromQpti _String is shown in Figuré_8]9. From the list of reinforcement in tiiingers
it is evident in which stringers tension occur. Each loadeaahkich leads to a moment that must be taken by
the horizontal stringers at the supports by compressiorersion, which is expected.

From the dual inequalities the elements exposed to plassins are found. The two load cases leads to plastic
strains in 29 out of 32 elements where some of the elementxaased to plastic strains in both compression
and tension. Only stringer 2, 14 and 23 do not experiencdiplsisains. By comparing with the example
where only one load case is added previous in this chaptecdrncluded that adding load cases to structure 2
the number of elements exposed to plastic strains increaead case 2 loads the structure in another way.

The design variables are listed for each stringer line. Tdréables are based on the two load cases thus,
the maximum design variables for each stringer line is shdvar studying which load case results in which
design variables each load case must be calculated sdparate

The design variables shown in the list reflect the maximunpdesriables for the two load cases.

The reactions from Figufe_8.9 shows the reactions for eaath tmse and for a design of supports the max-
imum reaction forces must be used.
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Opti_String

Daniel Refer and Flemming Hgjbjerre Serensen
Last modified 10/6 2012

Lower bound method

Shear areas:

Structure 2

Stringer lines:
1:123
2:456
3:789
4:101112
5:131415
6:161718
7:192021
8:222324

9:2526 272829303132

2 load cases

----- Strength parameters and safety factors

f_s =550 MPa
f_c=25MPa
gamma_s=1.2
gamma_c = 1.45

Scale of deformation = 15

Material optimisation algorithm - 56 design variables

Static independent variables, N = 8

----- Design variables ---
Tension:

Compression:
d1_c=2.000000e+05
d2_c =1.350000e+05
d3_c=1.350000e+05
d4_c=4.177346e+04
d5_c=2.752381e+05
d6_c = 1.194796e+05
d7_c =0.000000e+00
d8_c =0.000000e+00
d9_c =1.500000e+00

d1_t=0.000000e+00
d2_t=5.636082e+04
d3_t=3.202177e+04
d4_t=9.322654e+04
d5_t =0.000000e+00
d6_t = 0.000000e+00
d7_t=1.205204e+05
d8_t=2.752381e+05
d9_t =1.500000e+00

————— Elements exposed to plastic strains -----

Stringers:

Element 1 Element 3
Element 4 Element 4
Element 5 Element 5
Element 6 Element 6
Element 7 Element 7
Element8  Element8
Element 9 Element 9
Element 10 Element 10
Element 11 Element 11
Element12  Element 12
Element 13 Element 15
Element16  Element 16
Element 17 Element 17
Element 18 Element 19
Element 19 Element 20
Element20  Element 21
Element 22 Element 24

Figure8.9: Opti _String: Output list for structure 2, material optimisation, pracal design restrictions

and two load cases.

Element 25 Element 26
Element 27 Element 28
Element29  Element 30
Element 31 Element 32

A_s(1)=0
A_s(2)=0
A_s(3)=0
A_s(4)=0
A_s(5)=122.97
A_s(6)=122.97
A_s(7)=69.87
A_s(8) =69.87
A_s(9) =
A_s(10)=170.75
A_s(11)=203.4
A_s(12)=171.25
A_s(13)=0
A_s(14)=0
A_s(15)=0
A_s(16)=0
A_s(17)=0
A_s(18)=0
A_s(19) =262.95
A_s(20) =262.95
A_s(21)=162.22
A_s(22) =140.11
A_s(23)=392.73
A_s(24) =600.52

————— Reinforcement for shear areas [mmA2/m]
A_s_x,y(25) =293.294

A_s_x,y(26) = 785.455
A_s_x,y(27) = 280.212
A_s_x,y(28) =651.707
A_s_x,y(29) = 657.384
A_s_x,y(30) = 651.707
A_s_x,y(31)=981.818

A_s_x,y(32) = 657.384

————— Reactions [kN] -----
Load case 1:

Support 25 =-270.85
Support 26 = 26.283
Support 27 =-75.65
Support 28 = 120.035
Support 29 = 74.35
Support 30 =120.191
Support 31 =272.15
Support 32 =153.491
Load case 2:

Support 25 =-275.238
Support 26 = 24.904
Support 27 =-15.873
Support 28 = 66.667
Support 29 = 15.873
Support 30 = 66.667
Support 31 =275.238
Support 32 =41.763
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Load Combinations Formulated Using Upper Bound Method

For the upper bound method the material optimisation prolfte two load cased, andll, is formulated as
equation[(88). The expression is made by a mathematicaiecsion of equatiori(8l7) to the dual problem
E9_LQE, page 35-36). In the conversion the prabtiesign restrictions from sectibn B.1 are included.
The expression is only shown to be aware of the existencesarat implemented iGpt i _St ri ng. No physical
interpretation of the expression is made.

maximise: (R)T V! + RHTV!' —clw —cl W' +m] s+¢] s*

- HT 0 7 ct o ! 0
restrictions : T — T = (8.8)
0 H Vi 0 C ! 0
ClwW+Cclw tMTs+ETs" <w
st>0
where
s,s™ | Dual values of the design limitations

The dual variables of the restrictions of the internal jtasbrk provides the design variables, A physical
interpretation of the dual variables of the design limiai,s ands", are not possible, cf 95,

page 36).
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Chapter 9

Working Procedure of Qoti _Stri ng

This chapter covers the main structure@gt i _St ri ng and describe the working procedure. Through the
chapter references from different functions will be madtnéorelevant equations.

The idea of the structure ipt i _Stri ng is to have a relative short and clear main file which includemiper
of functions and sub-functions, cf. Figure9.3 for an illasion of the program structure. The main file and
appurtenant functions are to be found on the CD, cf. AppdAdiZ.

For the main file four choices must be made:

e Type of calculation; load or material optimisation
e Import of data file

e Implementing of practical design restrictions

e Scale factor for plot of collapse mode

The overall structure dipti _String is divided in three parts which individually is describedtie following.

9.1 Input of Data

Geometry, loads, material parameters, thickness, supptart are specified in a separate data figea i . m
and imported to the main filedat a_i . malso contains the weighting factors@ti _String is performing
material optimisation.

In the data file the user must specify the geometry by typingithe coordinates, stringer nodes, shear areas,

which stringers encircle the different shear areas andwéliements having identical strength values e.g. by
defining stringer lines.

The following units are used:

Length = mm
Force = N
Stress = MPa

Material Strengths, mat . m

After specifying the safety factor and strength values fomaete and reinforcement, respectively, the matrix

mat . mis generated with strength values for the different elesesdgarding Eurocodes. An example is shown
in Figure[9.1 for structure Inat . mis an- 2 matrix where:

Nrows = DNstringers Nshear areas

Neolumns = 2
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. mat _
2886,21 350,00
2886,21 350,00
2886,21 350,00
1924,14 350,00
1924,14 350,00
1924,14 350,00
1924,14 350,00

stringers
NN R W N

O 0
>
Ne)
(o)
>
e
(o)

Figure9.1: Opti _Stri ng: Matrix mat . mcontaining material parameters for structure 1. The lin@te in
kN for stringers and MPa for shear areas.

The first column represents the negative yield strength laadécond column the positive yield strength. The
values frommat . mcan be equivalent t6€4 when performing load optimisation, cf. Figure AB.3 ang when
performing material optimisation by means of practicaligieslemands, cf. Figufe’/A4.3. Furthermanm . m
can be used fro calculating the efficient ratio.

The maximum allowable compression strength in a strinBehax depends on the stringer height and
consequently also the smallest neighbouring shear areaqfation[(3.2). This is handled in the function
upper _I'i m t. mby looping over each stringer for finding the smallest he@jhhe neighbour shear area.

The maximum allowable shear stress in the aregs, cf. equation[(355) and Appendix A2 are generated
in the functionTau. mwith regard to the plastic concrete compressibgmayx, Ft andtmax are assembled in
mat . mfor each stringer and shear area.

9.2 Generation of Matrices and Vectors

A number of matrices and vectors are generated before LRfisrped. The matrices and vectors needed for
linprog are shown in AppendixA3 for structure 1.

Object Function, ¢

The object functiong, is a vector generated lmpj ect _functi on. mbased on the number of stringers, shear
areas and the type of calculatiarnis assembled by a zero vector and extra rows depending omptimeigation,
where:

2 Nstringers~ Nshear areas= N3
1 corresponding ta

Nzeroes

Nexstra load

Nexstramaterial = 2 Nstringers Nshear areas

In case of material optimisation the weighting factors #igetin dat a_i . mare put in continuation of the zero
vector. The object function for load and material optimimats illustrated in equatiofi.(3.2) and equatibn15.8),
respectively.
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Flexibility Matrix, H

Flexibility Matrix, H

The flexibility matrix, H is assembled in the functidi ex. m depending on whether it is load or material
optimisation to be performed. For material optimisatioruanber of zero columns are added corresponding
to the number of weighting parameters in the object functibmf | ex. mdesign variables are linked if the
optimisation is restricted by practical design demandbénform of the property matrik, cf. equation[(813).

The flexibility matrix for a single stringer is first set up, equation[(4.2). After this the functic@ssem m
assembling the global flexibility matrix, cf. equati¢n (vénere:

Nrows = 2-Nnodest Nstringers

Neolumns = 2+ Nstringers Nshear areas

H is assembled by first looping over all stringers for node dridger equilibrium and afterwards over shear
areas for equilibrium of these. When assembling the strswggarding shear stress the stringer length is taken
in to account by the functiobengt hOf St ri ngers. m An example of &H matrix is shown in Appendix/A3]2

for structure 1. After the matrix is established rows camiteg a support are removed. The same is done for the
load vector to ensure the loads still are applied in the corredes.

Constraint Matrix, C

The constraint matrixC, is generated biynequal i ti es. mwhere:

Nrows = 4-Ngtringers+ 2 Nshear areas

Neolumns = 2+ Nstringers Nshear areast Mvariants

C is assembled by several for loops 0Wgfingers@Ndnshear areas FOUr rows for each stringer represents lower
and upper values for start and end of a stringer respectiviedye shear areas is described by two rows a lower
and a upper value.

The difference between load and material optimisation me@qualities is expressed ©y. Cgq is a vector
for load optimisation and is generatedviari abl e_| i ni t. mwhere the values frommat . mare importet, cf.
Figure[9.B. The length correspondsitg,sin C.

For material optimisatioq is a matrix generated imequal i ti es. mwhere:

Nrows = 4 Nstringerst+ 2 Nshear areas

Neolumns = Mvariants

Load Combinations

The number of load cases are taken in to account by the fumictiad_conbi nati ons. m A for loop runs
over the number of load cases for correct position of theioesr This is important because the LP problem
growing with the size"?, wheren is the number of load cases. cf. secfiod 8.2. All the matiisesichanged
except the load vectd® which changes for every load case.
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Chapter 9. Working Procedure @fti _String

9.3 Post Processing

Depending on whether the calculationsCot i _String are based on the lower or upper bound method the
primal and dual results are interpreted different.

Lower Bound Method

WhenQpti _String usedinprog two vectors are generated, one with primal and one with dagdbles. The
vectorx in chaptef and chaptelr 5 corresponds to the primal valugisicing the stress parametgtand the
variables;\ for load optimisation and design parametetsfor material optimisation, cf. Figuie 9.2 a). The
following are interpreted:

Bstringer = Normal force in stringer [ kN]
Bareas = Shear stress in area [ MPa]
A = Load parameter

d Design variables

Regarding the primal variables for lower bound following arterpreted:

Nows = 2 Nstringerst Nshear areas+ Nvariants

The dual variables contains first inequalities represgrtie plastic strains and therefore show which elements
are exposed to these. Figure]9.2 b) illustrated the veshadowPricegenerated bypti _String. More
over does the dual variables contain displacements forsadd stringers, respectively. These are used in
the functiondr aw_col | apse. mfor plotting the collapse mode. Regarding the dual varsbde lower bound
following are interpreted:

Dual inequalitiesnyows = 4- NstringersT 2 Nshear areas
Dual equalitiesnyows = (2 Nnodes— nsupport§ ~+ Nstringers

All the lists fromQpti _String are generated iprint _resul ts_LB. m If material optimisation is performed
and three weighting factors exist, then they representsdegign parameters for stringers and one for shear
areas
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Upper Bound Method

ShadowPrice
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Load optimisation  Material optimisation Dual inequalities Dual equalities
a) Primal variables b) Dual variables

Figure9.2: Opti _Stri ng: Primal and dual variables for structure 1. The elementshvglastic strains are
marked with bold, read. The vectors are split in two becadgbelength.

If material optimisation is performed regarding practidakign restrictions, cf. chap{erB.2, then design vari-
ables exist for each variant, e.g. each stringer line anth@lshear areas as a group.

The Bstringer Values are used in the functishiri nger _shear _resul t. mto determine maximum and mini-
mum forces in stringer lines arfldnear areasas stresses in areas. A for loop ongfingersis first established and
afterwards ovengeas The variables, such asor d, are generated ivar _print _LB. m

The elements exposed to plastic strains are listed by thretiéunpl asti ¢_strai ns. mwhere a for loop runs
from one to the number of elements with a shadow price latgger zero.

The reactions are used as a control parameters by comphsggrg with the applied load. Reactions are
determined in the functioneact i ons. mwhere a for loop runs over the length of the ve@apport givenin
thedata i.m

The necessary reinforcement in the areas are calculateltear _r ei nf or cement . m and runs over a for
loop by the number of shear areas.

Upper Bound Method

The output fromOpt i _Stri ng are treated opposite regarding the link between lower apémuipound in LP,
cf. chapte[B. This means that the primal values gives tHags# mechanism and elements exposed to plastic
strains. Similar does the dual values give the stress paeaster stringers and areas respectively.
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Chapter 9. Working Procedure @fti _String

Generation of vector ¢,

object function ) )
Input for linear programming

regarding number of load
cases by means of

inequalities.m .
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Upper limit for Optimaisation
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stringer . Node coordinates
. Stringer nodes
. \ 4
Tau.m . Shear areas
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X . Loads P Data file import
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. Supports
T . Material parameters
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I
| \ 4
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£
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I
I
I
I
I
I
I
I

e P Assembling matrices and vectors »
. . for linpro,
stringers and shear fields prog
\ 4
variable_limit.m Linprog.m
— P C_d Vector with variable — Primal and dual
limit of material strength problem
draw_geometry.m
> Plotting
draw_Collapse.m
stringer_ |
shear_result.m
print_results_LB.m
‘ var_print_LB.m ’— Generation of list with results: \ 4
- - . Stresses in elements
‘ iR IAE e A e o B e ’_* e Varisbels | Print of lists with
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shear_rein- L . Shear reinforcement
forcement.m . Stringer reinforcemen
Stringer_rein- L

forcement.m

Figure9.3: Composition ofpti _Stri ng in MATLAB.
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Chapter 10

Application of Qpti _Stri ng for Complex

Structure

This chapter illustrates the practicability @pt i _St r i ng by analysing a real complex structure. The calcu-
lations are based on the lower bound with linking of elements several load cases, cf. chagdiér 8. Based on
a meeting with the engineers at Grontmij in Arhus a key eléisahosen. Thus, structure 4 is analysed in this
chapter subjected to three load cases.

The building is a hotel for patients connected to the QuegnidrHospital in Nuuk, Greenland. The hotel

is designed by Grontmijin Arhus and is a eight-storey baigdhcluding one floor for basement. A two-storey
administration building connects the hotel with the haapitf. Figured Z0.1.

N
NW NE [ l Ve Patient hotel

\W% E

Adm. building

SwW ! SE T I

Figure 10.1: Orientation of patient hotel. Structure 4 is marked with.red

A 3D view of the main structure is shown in Figlre 70.2. The aidsifrom Robot Structural Analysis (Robot)

and made by the engineers at Gront]njj_(Q_Linm'Lj_ALS_Azilrlhﬂi.’b. Figuré10I]3 shows the middle wall which

is one of the key elements in the structure. This wall is dated inOpt i _St ri ng and are referred to as struc-
ture 4, cf. section1]2.

The applied safety factors and material strengths arellist@&able 10.1.

Safety factor for reinforced ve 1.45
concrete normal control class

Safety factor for reinforcing steel ys 1.2
Compressive strength of concretef;, 15 MPa
Yield strength of reinforcement  f, 550 MPa

Table 10.1: Safety factors and material parameters for structure 4.
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Chapter 10. Application odpti _String for Complex Structure

2.100 5.100 2.100 3.000 2.100

3.200

3.180 .

3.100

3.100

3.100

3.100

3.800

3.800

5.150

Figure 10.2: 3D view of the patient hotel from

south east. Model from Robot, cf. Figure 10.3: Construction drawing from Robot

dQ_LQDlmjj_ALS_Aa.LmH_ZD_lll). showing structure 4.

Structure 4 is shown in Figufe_10.3 with dimensions accaydindrawings from Revit Structure made by

Grontmij.
L1 Wind from west Wy
L2 Wind from east We
L3 Snow on roof and balcony S
L4 Self weight G
L5 Payload N
LC1 Li1+L4 Wy + G
LC2 L2+L4 We + G
LC3 L3+L4+L5 S+G+N

Table 10.2: Loads and load combinations for design criteria for struetd.

The Robot model is subjected to 60 load cases and with ba#ie#e three critical load cases is chosen and

listed in TabléIOI2 with the load combinations as well, Grdntmij A/S Aarhus, 2011).
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Chapter 10. Application opti _String for Complex Structure

Structure 4 is designed for these three load combinatib@s, LC2 andLC3, when performing practical
material optimisation, cf. chapter 8. The three load casedlastrated in Figure_10l4.

When wind load is applied the forces are transmitted fromfégade through the construction joint thus,
the wind load are converted to point loads instead of a umfdistributed line load.

For all three combinations the self weight of structure 4ddedd. The payload is combined with the snow
load due to the use phase, while it is omitted in the combanatof wind for illustrated a critical situation
during the erection.

The combination with snow takes snow accumulation on th&éinte account and in addition two balconies
are connected at the two construction joints in structurehéraupon snow accumulation also is taken into

account.
$$$$:$ Load case 3
30000 - o Load case 1 Load case 2
>-ddd>d -0 —— <
| I | | |_|
| [ | |
A
o & -0 b0t g “
| [ | |
b-bddd -0 > <
| I | |
20000 ! [ |
b-dbbd -0 > €—
| I | |
| [ | |
b-dbbo -0 > €<—
10000 - | [ I |
| [ | |
Fopeoe > <
b-dddd —o
10000 - ! [ | )
S
| I | | H
| [ | |
—>
5000 - § QY& ZI-B
- Pd e - - - -0
| [ | | | | | A
b-bbbd b b b b -
oF &-dddbd -6 -&-6---0 :|
| | | | ;
0 5000 10000 15000
a)Opti _String: Stringer system b) Load cases

Figure 10.4: Load case 1 to 3 and stringer system for structure 4.

The generated geometry plot fraBpt i _String is illustrated in Figur€10l4. A detailed figure with numbers
for stringers and shear areas is illustrated in Appendixieigit.2.

The purpose of this calculation is to evaluate the meaningadtical design demands and several load cases.
Therefore the normal generated output list fromhi St ri ng is omitted due to the length.
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Chapter 10. Application odpti _String for Complex Structure

Design variables
Compression:
d1_c=9.999469e+05
d2_c=8.998019e+04
d3_c=2.853214e+05
d4_c =3.624236e+05
d5_c=6.002793e+05
d6_c =9.998623e+05
d7_c=6.423332e+04
d8_c=1.161534e+04
d9_c=1.737913e+04

d10_c=1.40678%+04 d10_t=1.898183e+04
d11_c=1.269917e+04 d11_t=6.531344e+03
d12_c=4.473017e+04 d12_t=2.990493e+04

Tension:

d1_t=1.376800e+01
d2_t =5.690888e+04
d3_t=3.709800e+01
d4_t =4.257400e+01
d5_t=5.149100e+01
d6_t =1.550000e+01
d7_t=2.009776e+03
d8_t = 9.459440e+02
d9_t =5.050694e+03

d13_c = 2.213440e+02
d14_c = 7.469644e+04
d15_c =1.600285e+04
d16_c =4.469700e+01
d17_c =1.400287e+04
d18_c =1.300335e+04
d19_c =1.300507e+04
d20_c =1.301018e+04
d21_c =2.800747e+04
d22_c=5.349577e+04
d23_c =4.444923e+03
d24_c =2.700348e+04
d25_c = 2.463000e+00

d13_t =3.039266e+03
d14_t = 4.469284e+03
d15_t=1.379431e+04
d16_t = 1.354540e+04
d17_t=1.471820e+02
d18_t = 6.689000e+01
d19_t =6.178300e+01
d20_t = 6.614400e+01
d21_t =2.994800e+01
d22_t=2.239200e+01
d23_t=1.324943e+04
d24_t =3.746900e+01
d25_t = 2.463000e+00

Figure10.5: Opti _St ri ng: Design parameters for structure 4.

WhenOpti _String performs material optimisation for the three load comboret a collapse plot is shown
for each combination, cf. FigufeI0.6. As expected tensimsupin all the vertical stringer lines which is
illustrated in Figuré_10]5 for the design parameters. Faurttore, it is seen that all the vertical stringers are
exposed to compression which must be due to load combination
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Figure10.6: Opti _St ri ng: Collapse mechanisms for structure 4 illustrating 1, C2 and LC3.

Influence of Material Limits and Linking Elements

The influence of introducing material limits by matist and linking elements by matrik is presented in
sectio81l. The meaning of these extra restrictions isyamdlfor structure 4. Tab[e10.3 illustrates the
importance of practical demands regarding the material Tise results are shown for load combination one.

66



Importance of Several Load Cases

By introducing extra restrictions the necessary reinforestincrease, which is in in agreement with sedfioh 8.1
where extra restrictions increase the price of the strectur

The significant increase of reinforcement may be found irsthe of the structure, which contributes to long
stringer lines which must be reinforced. This is especitdi/case for the shear areas which must be equally
due to the same design parameter.

It is clear that dividing stringer lines into sub-stringerds and grouping shear areas are obvious. This will
properly lead to a decrease of the total reinforcement atmoun

Reinforcement
No practical demands 1369 kg
Use of practical demands 3226 kg

Table 10.3: Necessary reinforcement for by means of practical demands.

Importance of Several Load Cases

By including several load cases in the optimisation it isestpd that the total amount of reinforcementincrease,
which is illustrated in TableZ10.4. Adding extra load casdblead to other stress distributions for which extra
reinforcement are needed.

Reinforcement
lload case 3226 kg
3load cases 4015kg

Table 10.4: Necessary reinforcement for one and three load cases.

Weighting of Stringers

The efficiency ratiosRAT, are calculated for the stringers in structure 4. An evadunadf these indicates that
stringer line 3, 4 and 5, cf. Figuke10.7, are high utilisethieir lower parts, cf. Table’10.5. In the optimisation
all the elements are weighed with the same factors, cf. THRB, thus, no considerations of the price of the
elements are incorporated.

Two initiatives are introduced to decrease the efficientipraFirst, each of the three stringer lines are split
up in two, for example 3wer and Jipper in Order to decrease the design variables of the upper phttse
stringer lines to save material costs. By grouping of suinger lines within a continuous stringer line the
connection must ensure the forces to be transmitted. Thi@& critical in tension where sufficient additional
reinforcement must ensure a transferable connection.
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Stringer line 3 \

B I

/ Stringer line 4

Stringer line 5

Figure 10.7: Lower parts of stringer line 3, 4 and 5 are marked.

Stringer line  Stringern
27
28
29
30
31
32
33
34

3I ower

41
42
43
44
45
46
a7
48
49
50

4I ower

55
56
57

5I ower

58

RAT [%)]
99.93
99.93
99.93
99.93
92.64
79.33
85.84
75.99

99.97
99.97
99.97
99.97
92.68
92.67
96.43
92.61
85.53
72.37

73.51
73.51
73.51
73.51

Weighting factor [-]

e T

e e

e

RAT [%)]
39.92
39.92
39.92
39.42
32.63
28.80
33.07
29.62

40.88
40.88
40.88
40.88
33.59
33.59
37.43
33.59
30.62
27.65

41.61
41.61
41.61
41.61

Weighting factor [-]
1.1
1.1
11
11
1.1
1.1
11
11

1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15

2.75
2.75
2.75
2.75

Table 10.5: Efficiency ratios of lower parts of stringer line 3, 4 and 5drefand after weighting.
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Weighting of Stringers

Secondly, the weighting factors of the lower parts of the¢hstringer lines are increased, cf. Tdble10.5.
An increasement of the factors indicates that the price ofi a&inger increases and, as the target of the opti-
misation is to minimise the materials, the system decrdasatilisation of the mentioned stringer lines. The
efficiency ratios after increase of the weighting factoesstrown in Tablg_I0l5.

By increasing the weighting factors of the three stringeedi the forces in the structure finds another way
to the supports. This leads to increased utilisation ofratlvéngers thus, incorporating of weighting factors is
an iteration process until acceptable efficiency ratiosaatgeved for all elements.

The use of weighting factors must not lead to a state wheréatiget is to reach a specific efficiency ratio,
for example 80%. If this is the case the material limits sfiediin the vector containing material parameters,
Mo, in equation[(816) should be decreased to the requesteitaficratio.

Node coordinates, stringers, shear areas etc. are spedaifeedata file for structure 4. For a structure of
the size of structure 4 the data entry is time-consuming &adee of typing errors present. To avoid this a
code for importing a geometry file and convert it into a da&rfilust be developed.

Node coordinates and stringers can fairly easy be expamedd CAD based program, e.g. AutoCAD. The
difficult part of converting the geometry file to data is to ciése the connection between different elements,
e.g. that four combined stringers in a square defines a shemoaa hole in the structure.
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Chapter 1 1

Comments On Practical Applications

The practical applicability oOpt i _St ri ng and the stringer method is commented. Some of the topics men-
tioned in the following are based on considerations andwlstons through out the project.

The stringer method is an efficient tool for optimisation tustures for both load and material optimisa-
tion.

Load optimisation is useful for finding the maximum load liegcapacity for reinforced concrete structures.
This ability is well suited in situations where the desigreddtructure is fixed and the load bearing capacity
must be known for example in refurbishment of buildings veh@structure is exposed to an increased load.

The material optimisation is useful in design processge@ally in the beginning of the design phase. By
specifying the position of stringers and shear areas thaaddinds the optimum design of the structure for a
given load and regarding restrictions of both material aratfical kind. The practical restrictions regarding
design parameters are especially applicable for sheas aseall the areas then must be reinforced with respect
to the same stress according to practice.

Opti _String is based on the stringer method formulated in a FE conceptéirdvards linear optimisa-
tion algorithm finds an optimum solution for ultimate limtage (ULS). This optimisation is not suitable for a
hand calculation using the stringer method.

The plasticity theory provides an economic advantage coeada an elastic calculation because the plastic-
ity theory permits development of collapse mechanisms. Wising a plastic stress distribution a plastic mode
of operation of the structure must be ensured by developaienificient plasticity in the reinforcement. Thus,
the yield in the reinforcement occurs to a certain extendteadther failure conditions affect the ductile failure.
Eurocode sets up requirements that must be satisfied toeedautile behaviour, cf.L(.EN.lQ_Q&l;l_DK_dJA,

, pp. 15-16). The following demands are taken in to actioLOpt i _String:

e Ductile behaviour of the reinforcement ensures establkstiof the expected collapse mode m-l-l,

@, Table C.1)

e No stress increase after yield stress which is obtained ligemtised strain-stress curve

With regard to mode of operation further demands must beemsgd and can if possible be implemented in a
further development dipti _Stri ng:

e Satisfying the expressio%AsE < Asp < 3Age for the plastic reinforcement arefsp, in proportion to the
elastic reinforcement areAge

e The minimum requirement of reinforcement must be obeyedlamdeinforcement must yield in failure,
e.i. a normally reinforcement ratio

e The plastic stress distribution may not differ significamoinh an elastic distribution for a cracked cross-

section|(EN 1992-1-1 DK b‘,ﬁl 2Qd)7, p. 16)
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Chapter 11. Comments On Practical Applications

The requirements ensure sufficient rotation capacity, wiscassumed in the plasticity theory, where large
stress redistributions occur.
By compliance of the above mentioned requirements both UHdSSA S are satisfied.

Because the program uses plasticity theory the size of tferdation of the structure is unknown thus, the
requirement from the standard regarding for example dé&ileat SLS can not be controlled. This is ensured
with the above mentioned demands.

The width of the stringers is designed according to currequirements and the maximum allowed shear
stress inpti _String is limited to satisfy the requirement h(mawlm pp. 16 - 17). To
ensure the deformation capacity for bending the concretgcession strength is calculated using a factor of

iEO?, 5.102NA).

efficiency according t -1-

The reactions calculated @pti _String are only based on the stringer forces. The only restrictomthese
forces are the material limits specified in the data file timaslimits are set up for the supports. In reality the
strength of supports are restricted by soil conditionse typfoundation, space, surrounding elements etc. All
these factors may be implemented in the calculation by &ddire stringer with appropriate limits for each
support which only is connected to the node of the supportidglstringers at supports improve the practical
applicability of Opti _Stri ng but more restrictions lead to a less optimum solution, ciptbif8. Thus, the
engineer must judge the number of practical restrictiony@aportion to a optimum solution.

In the stringer method loads are converted and applied aseotrated point loads in either end nodes or
mid-side nodes. Thus, the distance between the nodesstifecsize of the point load.

However, many point loads, corresponding to a fine stringérare not preferable because it entails devia-
tion from the principle of concentrated reinforcement ie gtructure. In design situations the engineer must
carefully judge the conversion of line loads to point loadsider to meet the principle of concentrated rein-
forcement, which must be interpreted as a contribution ¢opttactical applicability ofpti _String, and at
the same time avoid large concentrated loads.

Interaction among programs for different professions idusxtensively in reality. Thus, models in the de-
sign phase are often made in commercial programs by thetectHor example Autoesk Revit, and afterwards
imported into the calculation software, for example Rohiou&ural Analysis.

InOpti _String the geometry must be defined by a data file which is importedipiti _St ri ng after which
the calculation is performed. Becau@® i _Stri ng imports a separate data file it is prepared for enhancement
involving interaction with other BIM models. For exampleporting a CAD based model by making a syntax
for converting the output file from another program into theriat ofOpti _Stri ng.

Horizontal and vertical stringers combined with rectaagshear areas are possiblédp i _String. The de-
sign of some structures can be improved by use of stringedsarzontal or vertical. An example is a console
where it is preferable to take the tension in the cantileeet f the structure by a diagonal stringer. Thus, a re-
finement ofCpt i _St ri ng must involve handling of diagonal stringers which leadsitcaduction of triangular
shear areas. FigureI1L.1 illustrate the principle of stnattée which is used for practical design problems by
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(Schlaich and Sgha"]lelr, 1§91). The basic principles can be when introducing diagonal stringers. A useful
formulation of a plastic triangular element is describéd@@@.

5

—

Figure11.1: Strut and tie model for a console beam. Ties are marked wigh diae. hlaich an hafer,
@)

For some structures it may be preferable to use more thanesigrdvariable for a stringer line or shear areas.
This can be present for large structures in order to saveriabktests. In case of a change in the amount of the
reinforcement, for example in a stringer line, additioreahforcement must ensure transfer of forces between
the reinforcement.

The weighting parameters from material optimisation cande for manage which elements to be utilised
more than others. If a specific efficiency ratio is desired mst influence the individual elements by change
the material vectomg.
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Chapter 1 2

Conclusion

Opti_String is a finite element program developed in MATLAB based on thweelobound method of the
plasticity theoryOpti _String is capable of optimising arbitrary concrete walls regagdire stringer method
and includes following features:

e Optimisation of the load regarding given material stresgth
e Optimisation of material consumption subjected to a spekifd
e Practical material optimisation regarding linking of elemts and several load cases.

The application of the stringer method leads to a number @fmigation options which induce additional
optimisation potentials by implementing the theory by gsiiFE concept. The optimisation features are:

e Optimisation due to statically indeterminate stress patans which in principle can be chosen freely
e Free choices for stress parameters lead to a plastic ribdi#in of the stresses

e Redistribution of stresses facilitates an optimum sofufar carrying a given load

e The nature ensures accuracy of these stresses

Opti_String is verified by calculating a simple structure for both lowadaipper bound and the practical
optimisation as well. The upper bound calculations are dhasea discretisation of the physical model and
provides the exact same optimised results as the lower boaindlations. This indicates that an exact trans-
lation from the lower bound method to the upper bound metmabogposite exists for the stringers and shear
elements in the stringer method.

Opti _String could have been made by taking the upper bound method asgtaoint. Although, with this
knowledge, it is still preferred th&@pti _String uses the lower bound method because it is easier to imagine
the principle of lower bound, especially for several loadesa

The optimisation of a complex structure by introducing et design demands and several load cases re-
sults in a less optimal solution. The explanation is founthaextra restrictions which are added when linking
elements and specifying material strengths. The resuttseske extra bands, which are impose to the optimisa-
tion, are seen in the necessary reinforcement area whickase with the amount of extra restrictions.

Opti _String is general formulated which makes it possible for an expegd programmer to write a code
for linking arbitrary geometry from CAD to the data file @pti _String. Subsequent it will be obvious to
generate a code for returning stringer geometry, includtrigger height to a calculation based CAD program
such as Robot Structural Analysis 2011. The purpose is ffy\be given structure regarding the extra design
demands such as minimum reinforcement ect.

Alternativ Opti _String can be written in another format, in this way it can become ra @laa program
package for a commercial calculation program.
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