
Model-Based Schedulability Analysis of

Hard Real-Time Java Programs using

Software Transactional Memory

10th Term Software Engineering Project

Department:

Database and Programming Technologies

Authors:
Marcus Calverley
Anders Christian Sørensen

Department of Computer Science
Aalborg University

Selma Lagerlöfs Vej 300
DK-9220 Aalborg Øst
http://www.cs.aau.dk

Title
Model-Based Schedulability Analysis of Hard Real-Time Java Programs using
Software Transactional Memory

Department

Database and Programming Technologies

Project term

Spring 2012

Project group

sw103f12

Supervisors

Lone Leth Thomsen and Bent Thomsen

Attachments

CD-ROM with source code, UPPAAL models, and PDF-version of this report.

Abstract
This report documents our work in developing a software transactional memory (STM) for real-time
Java, which assigns priorities to transactions based on the tasks in which they execute. Contention is
managed in such a way that the highest priority transaction does not experience retries, allowing for
irreversible actions such as I/O, which is otherwise impossible using traditional STM. These properties
are proven using the model checking tool UPPAAL.
The Hardware-near Virtual Machine (HVM) is chosen as the target platform due to its portability
and flexibility, but it does not support multi-threading in its current state. To alleviate this, we have
implemented real-time multi-threading through an implementation of Safety-Critical Java named
SCJ2.
In order to determine schedulability of real-time Java programs using our STM and SCJ2, we have
developed OSAT, which is a model-based schedulability analysis tool. It analyses the Java bytecode of
the input program, and produces a UPPAAL model which can be used to verify schedulability. We have
conducted experiments with our tool, comparing it to a similar existing model-based schedulability
analysis tool named SARTS. We also compare the use of locks and our STM in a real-time setting,
showing their advantages and disadvantages.

Participants

Marcus Calverley and Anders Christian Sørensen

Preface

This report assumes the reader already has knowledge pertaining to the programming languages
Java and C. In addition, we expect familiarity with real-time systems theory and notation,
namely regarding tasks, types of tasks, scheduling, WCET and response time analysis, although
we do provide a brief recap of these. UPPAAL [1] is used extensively throughout this report,
and although we give a quick introduction to the tool, a rudimentary understanding of model
checking is expected.

Whenever we refer to a programmer in this report, we mean the person who uses the pro-
gramming tools described, e.g. our analysis tool.

Enclosed with this report is a CD containing the source code developed in this project, along
with the full generated UPPAAL models used in our experiments. The contents of the CD can
also be found at http://sw10.lmz.dk.

We would like to thank our supervisors Lone Leth Thomsen and Bent Thomsen for their
in-depth feedback during this project. Stephan Korsholm, the creator of the Hardware-near
Virtual Machine (HVM) used in this project, also deserves thanks for his extensive support in
helping us understand the inner workings of the HVM, as well as Kasper Søe Luckow who
provided additional insights into the HVM and the inner workings of the tool TetaJ on which
we base much of our work.

http://sw10.lmz.dk

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Subsidiary Goals . 2
1.3 Report Structure . 3

2 Development Process 5
2.1 Applied Methods . 5
2.2 Project Plan . 8

3 Real-Time Systems 9
3.1 Definition . 9
3.2 Schedulability Analysis . 11

4 Technology 13
4.1 Software Transactional Memory . 13
4.2 Programming Languages . 15
4.3 Platform . 20
4.4 Model Checking . 23
4.5 Schedulability Analysis Tools . 26

5 Hardware-near Virtual Machine 33
5.1 Multi-Threading . 33
5.2 RTLinux . 35
5.3 Memory Management . 36
5.4 Safety Critical Java Profile . 36

6 Software Transactional Memory Development 43
6.1 Early STM Prototype . 43
6.2 HVM STM . 48

iv Contents

7 Schedulability Analysis Tool Development 57
7.1 Requirements Analysis . 57
7.2 Design and Implementation . 58

8 Experiments 75
8.1 Response Time Comparison with SARTS . 75
8.2 Response Times of Lock-Based and STM-Based Tasks 79
8.3 Fault-Tolerance . 82

9 Evaluation and Future Work 85
9.1 Software Transactional Memory . 85
9.2 Hardware-near Virtual Machine . 86
9.3 OSAT . 87
9.4 Development Process . 88

10 Conclusion 91

Bibliography 96

A Example: Response Time Analysis for FPS 97

Chapter 1

Introduction

Embedded real-time software (RTS) is a class of software which drives an increasingly large
amount of electronic devices, such as the anti-lock brakes in motor vehicles, pacemakers, and
anti-collision detection systems in airplanes. Real-time refers to the notion of computations with
timing constraints, i.e. computations are required to finish within a given timeframe. Fulfilling
the timing requirements set up is crucial to the system and failure to do so could have catastrophic
consequences, such as the failure of the brakes on a car causing it to crash.

In RTS, schedulability analysis is used to ensure that the application running on the system
will, even under the worst circumstances, always fulfil the timing requirements. Schedulability
analysis involves determining the time it takes to run the code of the system on the given
platform. The code can be logically separated in tasks that run at certain times, e.g. every
100 ms or when the brake pedal of a car is pressed. When there are several tasks in a real-time
system, these can be run as separate threads that may run concurrently. Concurrency in real-
time systems may make schedulability analysis more complicated, as this means that a high
priority task may preempt a low priority task, thus suspending the execution of the low priority
task for the duration of the high priority task.

Schedulability analysis can be further complicated if the tasks need to communicate with
each other. Shared memory is a communication method that allows threads to communicate
by reading from and writing to memory that is accessible to all threads. However, one is often
interested in working with a consistent snapshot of the parts of the shared memory that are
needed to be able to write code that works even when another thread interrupts the execution
at a critical point and changes something. To this end, lock-based mechanisms are a common
way to ensure mutually exclusive access to resources where needed [2, 3]. Our experience and
literature will tell us lock-based mechanisms are inherently error-prone since they are manually
put in place by the programmers, they will not scale with the number of cores if not implemented
carefully, they are difficult or impossible to combine, and a frequent cause for deadlocks and
priority inversion [4, 3].

2 Introduction

Recently, software transactional memory (STM) has gained interest as an abstraction for
concurrency control in shared memory [3, 4, 5, 6, 7]. This allows the programmer to focus on the
domain of interest rather than where to place locks to get the correct result of the computation
but still achieve high concurrency. Thus STM can eliminate deadlocks, priority inversion, and
other common problems that might arise when using lock-based concurrency.

However, STM introduces a new complication to schedulability analysis when used in real-
time systems. The first few steps towards bringing STM to RTS have already been taken [8, 9, 10].
In this project, we create an STM that is schedulable in a real-time context in the programming
language Java. Java is a high-level programming language that has been chosen for the project
over other programming languages because it is gaining increased support in real-time systems,
which means it is now a viable alternative to the lower level languages traditionally used for
real-time systems, such as C or Ada [11]. Java is also familiar to us, which means we have a
solid foundation for its use in this project.

Aside from the programming language, we also need a platform on which to run our
Java code. A recent virtual machine for Java bytecode is the Hardware-near Virtual Machine
(HVM) that supports several popular embedded platforms such as Atmel ATmega, National
Semiconductor CR16C, and even allows running the code on a PC. [12] Using the HVM as our
target system, we can thus potentially reach a range of target platforms on the market today,
and furthermore the HVM is easily extensible and open source. We have chosen this platform
over the JOP [13] which, although better suited for RTS, has fewer features that are useful in this
project.

1.1 Problem Statement

STM provides many benefits to programmers and also has benefits especially interesting to hard
real-time systems. However, STM introduces a new challenge when proving schedulability of
programs. In this project, we want to implement an STM with real-time properties on the
HVM, create an analysis tool that can determine if a set of tasks written in Java and containing
transactions that use our STM is schedulable. We also want to prove that our STM is correct
using model-based verification and test our tool through a series of experiments.

1.2 Subsidiary Goals

To elaborate on how we will accomplish the tasks set in our problem statement, we have devised
a number of goals to use as milestones through the project period:

Development Process

• Select suitable development methods for the project.

Report Structure 3

Real-Time Systems

• Define real-time systems and their properties.

• Determine what is required to use the HVM in the project.

Software Transactional Memory

• Design a real-time STM for the HVM.

• Prove the correctness of our STM using model-based verification.

• Implement the STM on the HVM.

Schedulability Analysis Tool

• Design a tool that can ascertain schedulability of multi-threaded HVM programs using
our STM and locks.

• Decide whether or not to use an existing tool upon which to base our tool.

• Implement the tool for use on a PC.

• Test the tool by conducting experiments on programs using our STM and locks.

• Use the tool to compare lock-based synchronisation with our STM.

1.3 Report Structure

The report is structured as follows: we begin by looking at the development process employed
throughout the project period in Chapter 2, followed by a brief recap of real-time system concepts
used in this report in Chapter 3. In Chapter 4, we introduce the technologies used in the project,
including the concepts of STM. Our use of the HVM and the modifications we have made to it to
allow its use in this project are described in Chapter 5, followed by a description of the real-time
STM we have developed in Chapter 6. The schedulability analysis tool we have developed,
which allows analysis of programs using this STM, is described in Chapter 7. In Chapter 8,
we describe the experiments conducted with the developed tool to show its properties and
properties of our STM. Finally, we give an evaluation of our work and possible directions for
future work in Chapter 9, before concluding on the project in Chapter 10.

Chapter 2

Development Process

The challenges in this project were manifold. They involved the following activities: verification
of proposed software transactional memory properties suitable for hard real-time systems, im-
plementation of such properties, extending a platform to support concurrency, and developing
a schedulability analysis tool for Java programs utilising these technologies.

In order to organise our work with these challenges, we tailored a development process
consisting of methods from the risk-driven domain, model-driven domain, and agile method-
ologies in general. These methods and their applications are described in Section 2.1. The
overall process and time estimates are documented in Section 2.2.

2.1 Applied Methods

We chose an agile work style due to the unknown factors and risks posed by the challenges
in Section 1.2. Agile development embraces change and adaptive planning, which fit the
characteristics of this project. As an example, consider if we had failed in achieving the goals of
developing the STM, or if the proposed real-time properties did not verify. This would mean
a drastic change of plans at that point, which could require more time in a waterfall based
approach compared to taking an agile approach. [14]

2.1.1 Managing Risk

The distinct element of risk associated with this project had to be managed. This was necessary
in order to be able to divert from the original plan, should the choices we made have proven
infeasible.

In the software industry, this technique is known as risk-driven development. As the name
indicates, it is risk which drives the project. It is the philosophy behind software development
processes such as Unified Process (UP), which is a framework of 50 different activities [15], where

6 Development Process

it is the practitioners’ responsibility to identify and apply the relevant activities, or methods1.
UP recommends that the first phase of the project, also referred to as the inception phase, is

spent identifying architectural and technological insecurities which could pose as show-stoppers
later in the process. We used the same technique and arrived at an ordering of which tasks to
complete first:

1. Develop the STM and verify the proposed properties are valid.

2. Extend the HVM to support the developed STM.

3. Develop the schedulability analysis tool.

4. Test the schedulability analysis tool.

This ordering was based on the fact that the STM and the proposed properties were absolute
musts for the remaining parts of the project. Even though the proposed properties could prove
to be invalid, detecting them as early as possible would maximise the time available to adapt.

Successfully extending the HVM to support the STM was next; it required a functioning
STM. However, we also had to consider the limitations of the platform during our development
of the STM, so we decided that points 1 and 2 should be developed in parallel.

Developing the schedulability analysis tool and conducting the experiments relied on the
STM with the proposed properties, and a functioning platform being available. Naturally, these
had to be considered after points 1 and 2 given their prerequisites.

At this point, we have only described how we applied risk-driven development at the overall
level, considering the tasks superficially. We also considered each task separately in a risk-driven
manner, identifying specific functionalities or concepts which were important to settle first. This
is explained further in Section 2.1.2.

2.1.2 Agile Development

Knowing we could have to change plans during the project, we chose to employ an agile work
style. Agile development is a broad term covering all iterative and incremental methods, which
embrace the fact that software requirements change. Instead of having a single cycle of analysis,
design, implementation and testing, agile development employs iterations. Each iteration can
be seen as a full cycle of the classic waterfall method:

1. Decide upon the goals of the iteration.

2. Analyse the goals.

3. Design a solution.

4. Implement the design.

1A complete list of the activities in UP is given in [15, chp. 2]

Applied Methods 7

5. Test the implementation and design.

This pattern is derived from how UP, SCRUM, eXtreme Programming (XP) and other iterative
methods are practiced [15, 16, 17]. We wanted to rapidly construct working proof-of-concept
prototypes, and this pattern allowed us to do exactly that. In addition, it was important for us
to identify implementation errors or pitfalls as early as possible. With an iteration length of one
week, the pattern forced us to review the current status of our goals once per week, and given
an entire project term, we determined this was a fit iteration length. For industrial software
projects, iteration lengths are recommended to be between 1–4 weeks [14].

2.1.3 Model-Driven Development

In [10], we developed a prototype STM. In this project, we extended this STM with real-time
properties, and to prove its correctness we used a model checker. The purpose of a model
checker is described in Section 4.4, but informally it is a tool which allows one to describe
certain types of systems and have the tool determine whether a given property holds. For
example, one could ask the model checker to determine if a given model is deadlock-free.

Step 1
Specification and

requirements
Step 2

Model of specification

Step 5
Model of

implementation
Step 3

Implementation

Step 4
Analysis

Check for correspondance

Figure 2.1: The main body of the five-step SARTS development process proposed in [18]

In order to manage this process, we followed a model-driven method proposed by SARTS. It
is a process which is designed to aid the development real-time systems using model checking,
and even in an iterative manner [18]. The main cycle of the SARTS process is illustrated in
Figure 2.1. As it can be seen, it assumes the cycle starts with requirements and specifications
of the system. Although we already have an implementation, we also have requirements in the
form of the proposed claims which are not yet implemented. Constructing a model of these
allowed us to abstract away from implementation details and other run-time technicalities, and

8 Development Process

focus on the conceptual properties of the STM. Once the model was deemed correct, it was
realised as a software implementation. Again as Figure 2.1 illustrates, the process encourages
developers to use the model defining phase to better understand the requirements and refine
the model accordingly. Should the model and/or implementation exhibit unwanted behavior,
the model is further refined through another cycle.

2.2 Project Plan

This section outlines the overall plan for the project. Below is a description of how we allocated
the time during the term.

February Clarify and validate project goals and problem statement.

February–March (parallel) Implement our proposed real-time properties in an STM verify them
using model checking.

February–March (parallel) Extend the HVM with functionality needed to support our STM.

April–May Develop the schedulability analysis tool and conduct experiments to demonstrate
both the STM and proposed real-time properties as well as the analysis tool.

By working on the STM and HVM in parallel, we could develop both the STM and HVM
incrementally and continuously test how well they integrated with each other.

The STM was developed by following the SARTS method described in Section 2.1.3. The
functionality and precision of the model was constantly refined, re-implemented, and subse-
quently tested on the HVM.

During the HVM work, functionality also gradually increased. First, proof-of-concept pro-
totypes were used to demonstrate what we wanted to achieve was indeed possible through
minimum working examples. These concepts were then implemented in the main code base,
thus increasing the supported features of the HVM incrementally.

Like the other parts of the project, the schedulability analysis tool was developed iteratively.
The first iteration was reserved to determine which of the existing tools we could re-use com-
ponents from or be inspired by. The remaining iterations followed an incremental work style,
constantly increasing the functionality.

Chapter 3

Real-Time Systems

Real-Time Software (RTS) is the class of computer software which is required to provide a
response to an event within a given time frame. In this context, an event can be the occurrence
of an action in the surrounding environment, such as a proximity sensor detecting an object
closing in. It can also be a message from an internal clock, signalling an interval in time. The
latter can be used to trigger an operation at specific intervals. A response is the result from a
computation performed based on an event.

Examples of RTS applications are anti-lock brakes, hearing aid devices, and pacemakers.
Each provides a response based on an event in the surrounding environment, e.g. anti-lock
brakes allow wheels to interact tractively with the road surface while braking; hearing aid
captures sounds, amplifies them, and replays them through an ear-piece; pacemakers emit
small electrical shocks to stimulate the heart rate. One can then imagine how timing is equally
as important as functional correctness in RTS.

In this chapter, we reiterate the properties of the task model in RTS and the fixed-priority
scheduling (FPS) policy, which are applied in this project. The purpose is to briefly refresh the
basics, and for an in-depth description of the task model and other scheduling policies, we refer
to [11, 10].

3.1 Definition

Real-time systems can be classified as one of two types: hard real-time and soft real-time. In a hard
real-time system meeting the timing requirements is essential under any circumstances, whereas
a soft real-time system may occasionally miss deadlines. In this report, we are concerned with
hard real-time systems only.

In RTS, logically coherent functionality is grouped into a task that, in the context of this
report, is functionally the same as a thread of execution in an application, but with added timing
constraints. We use the notation in Table 3.1 to describe properties of RTS tasks.

10 Real-Time Systems

Notation Description
B Worst-case blocking time
C Worst-case execution time
D Deadline
I Maximum interference
J Jitter
P Priority
R Worst-case response time
T Interval between release
U Utilization of the task (C

T)

Table 3.1: Properties of the general task model.

The worst-case execution time (WCET) C is defined at task level. Schedulability analysis
techniques use these values in determining whether a task set is schedulable or not, and as such
it is important that the values are precise. Obtaining the WCET for a given task is done by either
analysing or measuring the execution time the task. Analysing means calculating the amount
of cycles required to execute the instructions constituting a task, while measuring them implies
timing the execution of the task. Measuring the execution time of a task can provide imprecise
readings, since it is difficult to determine how the code is executed—especially on modern CPUs
with features such as branch prediction, caches, and pipelines [11]. Analysing the execution
time of a task can be done using a computer-aided walk-through of the code, which identifies
the most expensive code path and calculates the CPU cycles necessary to execute it.

The priority P of a task is an integer number that defines which of a set of ready-to-run tasks
should be allowed to run on the processor. If a task with period p1 and another task with period
p2 are both ready, the former should be be the one executing if p1 > p2. Priorities are selected
based on the scheduling policy chosen.

When a task is executing, it may require exclusive access to a resource that is currently being
held by another lower priority task that is suspended. When this occurs the task is said to
be blocked while the lower priority task is resumed to continue executing until it releases the
required resource. The longest period of time that a task can be blocked is denoted B. On the
other hand, a task may be preempted because a task of higher priority is ready to run. This task
will then interfere with the running lower priority task which must wait for the higher priority
task to finish. The longest period of time that a task can experience interference is denoted I.

Jitter J is the time it takes for the system to switch between tasks. This involves determining
which tasks are ready to run, which of them has the highest priority and context switching to
the state of the new task that will be executing.

Tasks can be either periodic or aperiodic. A periodic task is a task that is released with a fixed
interval of time called the period of the task, defined as T. An aperiodic task is a task that is
released by a specific event, e.g. on input from a sensor or it can be fired by another task. A
special case of aperiodic tasks is the sporadic task which has a bound on how often it can be fired:

Schedulability Analysis 11

its minimum inter-arrival time. As this is the minimum interval between releases of the task, it
too is defined as T.

In hard real-time, only periodic and sporadic tasks are possible, as aperiodic tasks in general
may be released an unbounded number of times and cause the processor to overload and miss
deadlines.

ID Priority (P) WCET (C) Period (T) Delay
τ1 2 50 75 10
τ2 1 100 200 0

Table 3.2: A simple task set.

The worst-case response time R of a task denotes the amount of time a task requires in order
to execute, that is from release to termination, and while considering the entire task set. Where
WCET is defined for a single task in isolation, response time is defined for a single task with
respect to the entire task set. Consider the task set given in Table 3.2: task τ2 will be preempted
by task τ1 when it is released since the priority of τ1 is higher. When task τ1 is executing, τ2 is
suffering from interference from τ1. τ2 is resumed once τ1 has terminated, and thus the observed
execution time of τ2 is greater than its WCET. Similarly, tasks that can be blocked by lower
priority tasks will also have a greater response time than their WCET. The maximum time a task
can be blocked is denoted B.

3.2 Schedulability Analysis

In order to determine if a set of tasks will be able to run within the timing constraints in all
circumstances in a hard real-time system, schedulability analysis is performed on the tasks.
Schedulability is determined by the time it takes to execute the code of the tasks on the given
platform, the time between releases of each task, and the interaction between tasks if tasks are
executed concurrently. If a system is schedulable it means that all tasks in the system are always
guaranteed to meet their deadlines.

The response time of a task is influenced by the scheduling policy that the system uses. In this
project, we consider the cyclic executive and fixed-priority scheduling (FPS) schemes. In FPS,
each task is assigned a static priority, i.e. it does not change during run-time. The assignment is
conducted using a rate monotonic scheme, which assigns priorites according to the periods of
the task: the shorter the period, the higher the priority.

Cyclic executive requires the ordering of tasks to be defined prior to run-time. Each task is
decomposed into procedures, and their execution sequence is what constitutes the schedule.

12 Real-Time Systems

3.2.1 Schedulability Tests

In order to determine whether or not a task set is schedulable according to FPS, one of two
techniques can be employed: utilisation-based testing or response time analysis.

Utilisation-based testing is the simplest of the two. The utilisation of a task set is given by
U = C

T , which is then compared to the upper-bound on utilisation given in Table 3.3. If the
bound holds, the task set is schedulable according to FPS. If the bound does not hold, the task
set may still be schedulable, i.e. the utilisation-based test is sufficient but not necessary. [11]

N Utilisation bound
1 100.0 %
2 82.8 %
3 78.0 %
4 75.7 %
5 74.3 %

10 71.8 %

Table 3.3: Utilisation bounds for task sets of sizes N using FPS scheme.

Response time analysis covers the cases where utilisation-based tests are not accurate, and
it supports arbitrary deadlines, task interactions and aperiodic and sporadic tasks. It does so
by considering the WCETs and response times of the tasks as described earlier in Section 3.1.
An example of how a response time analysis is performed for a task set using FPS is given in
Appendix A.

Chapter 4

Technology

In this chapter, we describe the technologies we have come in contact with during the course of
this project. First of all, the concepts of STM are described in Section 4.1.

Next, we describe the languages Java and C in which we realised the STM concepts and
schedulability analysis tool in Section 4.2. The programming languages are run on the HVM
platform, which, along with the alternative JOP platform, is described in Section 4.3.

In order to verify the correctness of the STM and the validity of our proposed real-time
claims, we decided to use model checking as the verification method. In order to do this, we
chose to use UPPAAL [1] as model checking tool of the STM and verification engine in the
schdulability analysis tool. Section 4.4 describes model checking as a method in general, how it
applies in this project, and a brief introduction to UPPAAL.

We investigated two tools which aid the development of real-time systems in much the same
way as our schedulability analysis tool. The first is SARTS [18], which analyses Java applications
running on the JOP and generates a corresponding UPPAAL model. The second is TetaJ [19],
which also analyses Java applications, but is not tied to a specific hardware platform as SARTS
is. TetaJ is based on a third tool called WCET Analysis Tool (WCA), which is described together
with TetaJ and SARTS in Section 4.5.

4.1 Software Transactional Memory

In this section, we introduce the concepts of STM that we use to describe the STM we have
developed for the HVM in this project. The list of concepts and their definitions are derived
from our previous work in [10].

Transactional Properties Each transaction in an STM must follow specific behaviour in order
to provide atomicity, consistency, and isolation. Atomicity means that the results of a
transaction happen entirely or not at all. Consistency is that if the system is in a consistent
state before a transaction is run, it must be in a consistent state after it has run. Isolation

14 Technology

refers to the notion that each transaction must appear to be running in isolation from all
other transactions, so that transactions may not interfere with each other.

Opacity For an STM to support opacity it must ensure that “(1) all operations performed by
every committed transaction seem as if they were performed at a single, unique instant
during its lifetime, (2) any operation performed by any [un]committed transaction is never
visible to other transactions, and (3) every transaction always sees consistent data”. [10]
With these properties an STM ensures correctness as defined in [10].

Operational Structure The operational structure of an STM is how the programmer commu-
nicates that a piece of code is a transaction and what data to access transactionally. In a
library-based STM, the programmer must call specific parts of an API to identify transac-
tions. The alternative to this is to integrate the STM in the programming language, which
gives new syntax that then handles the correct calls to the STM behind the scene.

Conflict Detection Two transactions that use the same shared data may conflict if they run
concurrently. In that case, one transaction may need to be aborted to ensure correctness of
the program. To this end, the STM must perform conflict detection on transactions. With
eager conflict detection the STM detects conflicts as soon as they occur when one transaction
tries to access shared data that is already in use by another transaction, whereas lazy conflict
detection means that conflicts are not detected until transactions commit. A related concept
is false conflicts which occur when the STM detects a conflict where there is none. Strictly
speaking, a conflict only occurs if two or more concurrent transactions access the same
shared data and at least one of them writes to the shared data.

Direct or Deferred Update Changes made to shared data in transactions can be stored in dif-
ferent locations. With direct updating, transactions write data directly to shared memory,
and each transaction then keeps an undo-log that can be replayed whenever a transaction
must abort to restore shared memory to its consistent state from when the transaction
began executing, thus undoing all its changes. The alternative is deferred updates, where
each transaction makes its changes locally in a redo-log and only at commit is this redo-log
used to write all the changes a transaction has made to the shared memory.

Isolation An STM can ensure either strong isolation or weak isolation, where the former means
that the STM guarantees consistent data is accessed when non-transactional code uses
shared memory. With weak isolation, such guarantees are not given by the STM.

Nested Transactions One of the primary benefits of STM as opposed to locks, is the compos-
ability provided when transactions are nested. One way to handle this is flat nesting which
simply means aborting the outermost transaction in case a nested transaction must be
aborted. In this way, no extra resources are required to handle inner transactions. How-
ever, in case an inner transaction was aborted and could be rerun to completion without

Programming Languages 15

having to abort the outer transaction, the code of the outer transaction before the inner
transaction will have been rerun unnecessarily. An alternative to flat nesting is closed nest-
ing which tracks nested transactions separately and allows aborting and retrying nested
transactions without aborting their enclosing transactions, in exchange for higher resource
use in order to track each nested transaction.

Granularity This concept describes the granularity with which the STM keeps track of trans-
actional accesses to shared memory. With a fine granularity, e.g. tracking accesses to
individual fields in an object accessed by a transaction, more metadata must be stored, but
allows avoiding false conflicts when transactions access distinct parts of an object. This
may not hold with coarser granularity, e.g. using an STM which only tracks objects ac-
cessed will detect a conflict even if two concurrent transactions access completely different
fields of an object, but will mean that the STM uses less memory.

Static or Dynamic A static STM requires specifying which memory will be accessed by each
transaction statically in the program, whereas a dynamic STM allows the STM to detect
what parts of the shared memory is accessed automatically at runtime. A dynamic STM
also allows creating new transactions at runtime, whereas a static STM only allows for a
predetermined number of transactions.

Blocking or Non-Blocking An STM is classified as either blocking or non-blocking depending
on whether or not it uses locks in its implementation. Using locks means that transac-
tions may have to block while waiting for a lock to become available, or immediately
abort themselves and retry later. With a non-blocking STM this is not the case, as “a
nonblocking algorithm guarantees that if one thread is pre-empted mid-way through
an operation/transaction, then it cannot prevent other threads from being able to make
progress” [20].

Contention Management When two transactions conflict one of them is aborted and retried
later. To determine which of the transactions is aborted a contention management strategy
is used in the STM. The role of the contention management strategy is to provide fairness
between transactions for some definition of fair relevant in the context in which the STM
is being used. Two simple strategies are passive and aggressive, where the former aborts the
transaction that detected the conflict, and the latter aborts the other transaction. Another
strategy involves using fixed priorities on transactions to determine which transaction
should be aborted.

4.2 Programming Languages

In this project, we used two programming languages to implement our STM and analysis tool,
namely Real-Time POSIX/C [21] and Java. For the real-time aspect of our Java code we have

16 Technology

used a real-time Java profile [22, 23, 24]. In this section, we describe Real-Time POSIX/C and
Java in a real-time context.

Developing our STM for the HVM resulted in implementation of both native low-level
functions in Real-Time POSIX/C and the actual STM in real-time Java, while the analysis tool
has been developed in standard Java. Real-Time POSIX/C is described in Section 4.2.1 and
real-time Java is described in Section 4.2.2, followed by the reasoning behind our choice of these
languages in Section 4.2.3.

4.2.1 Real-Time POSIX/C

Real-Time POSIX is a member of the POSIX standards, which are specified by the IEEE to
promote compatibility between the operating systems1. Programming languages such as C can
utilise the APIs defined by POSIX to interact with the underlying operating system, ensuring
its compatibility with all operating systems complying with the same POSIX standards.

The Real-Time POSIX standard provides supporting operating systems and languages with
real-time characteristics. Since C can utilise POSIX APIs, C can be used to implement real-time
systems. C is known for its portability potential and expressive power. C is considered to map
closely to Assembly [25] and, provided ideomatic use, C can allow for compact and highly
efficient machine code, which makes it an obvious candidate for embedded systems.

Real-Time POSIX is also known as POSIX.4, indicating it is an extension of the functionality
provided by POSIX.1–3. POSIX.1 describes basic functionality and concepts such as the notion
of processes and threads, but does not describe interprocess communication, synchronisation,
or scheduling. This is defined by Real-Time POSIX, also known as POSIX.4 [26]. The areas
where POSIX.4 applies to this project are described below.

Thread management In POSIX.1, processes are only allowed to consist of a single thread each.
POSIX.4 extends processes to contain several threads, which allows for cheaper context
switches and shared address space between them [27].

Real-time scheduling Processes and threads as concurrent execution mechanisms are defined
separately in POSIX.1, and the ability to schedule them using preemptive fixed-priority
policy is defined in Real-Time POSIX.

Thread synchronisation Mutexes and condition are used for synchronisation between threads.
Semaphores are also defined by Real-Time POSIX, but only apply to processes rather than
threads. To avoid priority inversion, described in Chapter 3, Real-Time POSIX mutexes
also support priority inheritance and priority ceiling protocols.

POSIX threads are managed by the functions defined in pthread.h2. This includes creating
threads, initialising scheduling attributes for threads, and joining and terminating threads. The

1A complete list of POSIX certified products can be found athttp://get.posixcertified.ieee.org/search_
certprodlist.tpl?CALLER=cert_prodlist.tpl

2http://pubs.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

http://get.posixcertified.ieee.org/search_certprodlist.tpl?CALLER=cert_prodlist.tpl
http://get.posixcertified.ieee.org/search_certprodlist.tpl?CALLER=cert_prodlist.tpl
http://pubs.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

Programming Languages 17

functions we use are described below, each referring to a specific line in Listing 4.1 showing its
signature.

1 int pthread_create(pthread_t *, const pthread_attr_t *, void *(void *), void *)

2 int pthread_join(pthread_t *, void **)

3 int pthread_attr_init(pthread_attr_t *)

4 int pthread_attr_setinheritsched(pthread_attr_t *, int)

5 int pthread_attr_setschedpolicy(pthread_attr_t *, int)

6 int pthread_attr_setschedparam(pthread_attr_t *, int)

Listing 4.1: Excerpt of thread functions and their signatures.

pthread create Creates a thread. By its signature in line 1, the first parameter is a pointer to
a pthread_t, which becomes the handle of the thread. The second parameter is a pointer
to a pthread_attr_t which is described further down. The third parameter is a pointer to a
function, which returns void * and takes an argument of type void *. This is the function
to run within the thread, and the fourth and last parameter is a pointer to the data to pass
this function.

pthread join Joins a thread. By its signature in line 2, the first parameter is a pointer to a
thread handle of type pthread_t. The second parameter is a pointer to where the return
values should be stored.

pthread attr init Initialises a pthread_attr_t which is a struct that describes the attributes
of a POSIX thread. This prepares the pthread_attr_t passed as argument to be used, which
can be seen in line 3.

pthread attr setinheritsched Specifies whether a given thread should inherit the sche-
duling policy from the surrounding process. The specific thread is given by the first
parameter, which can be seen in line 4. The second parameter is an int indicating how the
scheduling policy will be defined.

pthread attr setschedpolicy Specifies the scheduling policy for a given thread. The
specific thread is given by the first parameter, which can be seen in line 5. The second
parameter is an int indicating the scheduling policy to use, given by either SCHED_RR or
SCHED_FIFO. SCHED_RR denotes a round-robin scheme, which applies round-robin between
threads of the same priority, but otherwise favours threads of higher priority. SCHED_FIFO
applies first-in-first-out (FIFO) between threads of the same priority, but also favours

threads of higher priority. Both are preemptive fixed-priority.

pthread attr setschedparam Modifies a specific pthread_attr_t with the details given by
a sched_param, which holds the priority, which is denoted by its signature in line 6.

18 Technology

In order to use POSIX mutexes, they must first be initialised as in line 1 in Listing 4.2. Next,
the usage of pthread_mutex_lock and pthread_mutex_unlock is demonstrated.

1 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

2

3 /* Take the mutex */

4 pthread_mutex_lock(&mutex);

5

6 /* Release the mutex */

7 pthread_mutex_lock(&mutex);

Listing 4.2: Initialisation of POSIX mutex.

An example of how a thread is created using the function described in this section is given
in Listing 4.3. In Section 5.1 we shall see how this is applied in the HVM, and how periodic
threads and delay can be implemented by using the same pattern and functions from time.h3.

1 void worker(void *data)

2 {

3 /* Do work */

4 }

5

6 int main(const char **)

7 {

8 /* Initialize thread priority */

9 struct sched_param scheduler_parameters;

10 scheduler_parameters.priority = 10;

11

12 /* Initialise attributes. */

13 pthread_attr_t attributes;

14

15 pthread_attr_init(&attributes);

16 pthread_attr_setinheritsched(&attributes, PTHREADS_EXPLICIT_SCHED);

17 pthread_attr_setschedpolicy(&attributes, SCHED_RR);

18 pthread_attr_setschedparam(&attributes, &scheduler_parameters);

19

20 /* Declare the thread handle. */

21 pthread_t thread;

22

23 /* Start the thread sending NULL as worker argument */

24 pthread_create(&thread, &attributes, &worker, NULL);

25

26 pthread_join(&thread);

27 return 0;

28 }

Listing 4.3: Example of a Real-Time POSIX thread.

3http://pubs.opengroup.org/onlinepubs/7908799/xsh/time.h.html

http://pubs.opengroup.org/onlinepubs/7908799/xsh/time.h.html

Programming Languages 19

Lines 1–4 defines the function which will run inside the newly created thread.
Lines 8–10 sets the priority of the thread.
Lines 13–15 initialises the pthread_attr_t variable with default values. In lines 16–18, the

scheduling policy is explicitly set to round-robin and the scheduler parameters are set as well.
Line 24 creates the thread with the previously defined attributes, and stores the handle in

thread. In line 26, the thread is joined. In line 26, the execution of main is blocked until the thread
returns by the call to pthread_join.

4.2.2 Real-Time Java

Java is a high-level object-oriented language that is receiving significant interest for use in RTS
[28, 24, 29, 30]. To use Java in RTS, a real-time profile can be used to provide a standard way
to specify the real-time properties of the program, which can then be handled by a supported
platform.

A real-time profile for Java consists of an API and a set of rules about how to program RTS
in Java. The API allows creating tasks and specifying timing constraints for them, whereas the
rules can specify certain features of the Java language that may be unsuitable for RTS or be
difficult to analyse with regards to timing properties. For example, in the Safety-Critical Java
real-time profile (see JSR-302 [31]), the use of recursion is not currently allowed, because it is
difficult to analyse the running time of recursive calls. Details regarding SCJ are described in
Section 5.4.

Being a high-level object-oriented language, Java allows the developers to express the appli-
cation using classes and object-oriented design. This can potentially make the transition from
developing general purpose Java applications to real-time Java systems easier by removing the
need to learn a new language.

Another interesting feature of Java is that it is compiled to Java bytecode. Java bytecode is a
platform independent low-level representation of a program. It is usually run on the Java Virtual
Machine (JVM), which translates Java bytecode into machine code instructions that are run on
the processor. This low-level representation is often used for static analysis of Java programs as
it has a simpler syntax than the Java language.

There are also compilers for other languages than Java that can compile to Java bytecode,
which means that selecting Java may potentially allow several languages to be used, as long
as the analysis takes place on the generated Java bytecode. Although certain programming
languages promote extensive use of certain features that complicate schedulability analysis,
e.g. the frequent use of recursion in functional programming languages like Haskell to avoid
maintaining a state in functions [32].

20 Technology

4.2.3 Our Choice

For this project, we have chosen to work with both Real-Time POSIX/C and Java. As stated
earlier in this section, Java is gaining traction within the field of hard real-time systems [29].
Tools aiding this process have also emerged recently [18, 19], indicating it is gaining momentum.
Java is selected for both the STM and the schedulability analysis tool. Choosing Java over another
language for the STM enables us to ship the STM along side with a real-time Java profile, while
still targeting every platform capable of executing Java.

Since we are targeting the HVM, which is written in C, we applied Real-Time POSIX/C in
our effort to provide the HVM with real-time thread support.

The existing schedulability analysis tools we have investigated, and described later in Sec-
tion 4.5, are written in Java and analyse programs written in Java as well. Accessing Java
bytecode from within another JVM language such as Java itself is easy, as libraries such as
the Byte-Code Engineering Library (BCEL)4 and Java itself supports reflection and bytecode
analysis [33].

4.3 Platform

In this section, we look at two platforms: the Java Optimized Processor (JOP) [13], and the
Hardware-near Virtual Machine (HVM) [12]. The JOP is a processor which executes Java
bytecode directly and in a time-predictable fashion which makes it a good choice for RTS. The
HVM, however, is a virtual machine which executes Java bytecode and is implemented in C for
several embedded hardware platforms and PC.

The HVM was chosen as the platform for our STM, while the JOP was encountered during
our work with SARTS. By looking at the JOP, we also had a backup platform should the HVM
not meet our requirements.

4.3.1 Java Optimized Processor

The JOP was created to be a processor for real-time Java applications, which means that its
design is geared towards predictability instead of average-case speed. This means that features
such as a complicated cache hierarchy or branch prediction have been left out, and instead it
provides exact timing guarantees for each instruction including memory accesses. The JOP is
often implemented on an FPGA mounted on a board with RAM, storage, and I/O ports.

The execution model of the JOP involves translating Java bytecode to microcode to execute
each bytecode instruction in a number of cycles. In general purpose processors, such as an x86
processor, the instructions run by the processor are known as machine code, but, in the JOP, Java
bytecode is the machine code of the processor, so no intermediate virtual machine is required to
translate bytecode instructions to machine code to execute the application.

4http://commons.apache.org/bcel/

http://commons.apache.org/bcel/

Platform 21

In order to support real-time applications, the Java real-time profile Safety-Critical Java (SCJ)
has been implemented for the JOP in [18]. This profile allows programmers to specify tasks,
periods, deadlines, and so on using a Java API. The SCJ code then contains specific calls to
JOP instructions to handle creation of threads and to access the other hardware of the system
for I/O. The life-cycle of a typical application using SCJ consists of an initialisation phase,
the mission phase, and finally a cleanup phase. In the initialisation phase all the tasks are
instantiated together with being allocated memory to be used for the duration of the runtime
of the application. The threads are then started to begin the mission phase where the tasks
run their logic responsible for providing the wanted behaviour of the real-time system. Finally,
when the system is shut down, the cleanup phase makes sure that the tasks are stopped cleanly
before the system can be powered off.

For development it is possible to run a JOP emulator on a PC to simulate execution of a
system. This allows debugging on a PC before executing the code on an actual JOP.

4.3.2 Hardware-near Virtual Machine

The HVM is a virtual machine for embedded systems that can run Java bytecode generated
by a standard Java compiler. Unlike the JOP, it is not a hardware platform, but serves to
translate bytecode into machine code that can then be executed on the hardware platform. The
HVM runs on several hardware platforms including the Atmel ATmega 2560 and the National
Semiconductor CR16C. It even allows executing natively on a PC without the use of an emulator.

The HVM consists of a plug-in for the IDE Eclipse and an SDK with HVM-specific Java
libraries accessible through a Java archive (JAR) file. Through Eclipse, a Java project can be
exported to the HVM, which creates a number of C files containing the interpreter and the
bytecode to be executed. This process is shown in Figure 4.1 which also shows the HVM SDK
file icecapSDK.jar included in the Eclipse project. The C code emitted by the HVM plug-in
can then be compiled to the target hardware platform using a C compiler. In Eclipse it is also
possible to mark individual Java classes for ahead-of-time compilation which increases the size
of the generated C code, but allows faster execution.

The generated C code contains hardware specific code for each target platform in a separate
C file, which means that adding support for a new platform is mainly a matter of implementing
the C functions to provide a form of hardware abstraction layer allowing the HVM to run on
the platform.

Although the HVM is targeted at embedded platforms, it is not, as of the time of writing
(April 2012), officially a real-time platform. However, in [19] the HVM interpreter was modified
to have time-predictable execution so that it can be used in hard RTS, which also included the
development of a real-time Java profile for use in this modified HVM.

Lastly, the HVM lacks support for threads, but it is possible to use the threads of the OS
by using native C functions to implement support for them. However, this means that it is no
longer possible to run the HVM on an embedded system ”bare metal”.

22 Technology

Figure 4.1: The static entry-method of the application is used to create the Icecap application
containing the HVM interpreter and Java bytecode in C. [12]

4.3.3 Our Choice

For this project, we chose to use the HVM as our target platform. After a comparison of the
two systems in Table 4.1, we see that the HVM appears to be more flexible than the JOP for
modification. Another contributing factor is the ability to run the HVM natively on a PC, and
calling native C functions from Java to implement parts of the system in C when that is more
natural or low-level access to the hardware is required.

Choosing the HVM over the JOP also means that we target a wider range of hardware than
just a single processor, which means a potentially wider audience for our results.

As we have pointed out, the HVM does have some shortcomings in a real-time context, and
the fact that its design is not yet finalised also adds uncertainty to the project, but as demonstrated
in [19], it is possible to use the HVM in a real-time context. That it is being actively maintained
is also positive, and its maintainer and creator Stephan Korsholm has been available for direct

Model Checking 23

Platform JOP HVM
Hardware JOP Hardware agnostic
Native functions Hardware C functions
Modifiable By reprogramming the hard-

ware
By modifying the interpreter
in C

Real-time (predictable ex-
ecution time)

Yes With modifications [19]

Table 4.1: Comparison of the features of the JOP and HVM.

support to help us understand the inner workings of the HVM.

4.4 Model Checking

Model checking is a technique to perform automated verification of finite-state reactive systems
[34]. Such a system is modelled as a state machine, where transitions are equivalent to events
to which the system reacts, thus changing its state. One such event could be either a modelled
phenomenon or omnipresent, such as time. The semantics of a subject system is expressed
using temporal logic first introduced in [35]. Since then, modelling tools such as UPPAAL [1]
have been introduced, and provide a graphical user interface to construct the models in a more
intuitive manner compared to writing the temporal logic by hand.

Once the model is constructed it can be queried using the model checker. In this project, we
construct a high-level presentation of our STM along with the proposed real-time properties.
An STM is reactive in the sense it can be triggered to open a shared variable, commit, and abort.
Encoding the rules of a given system in such a way it correctly corresponds to its design is one
of the main challenges, while validating this is another [36].

Employing model checking encouraged us to consider the properties of the STM from new
angles. Being able to rapidly change a rule encoding and re-verify the model revealed pitfalls
we would otherwise have had to construct either practical experiments or formal proofs in order
to detect.

Models can be of varying detail. In this case, where it is the execution time of programs we
consider, we are forced to let the generated models be of a sufficiently high detail. As an example,
TetaJ [19] generates UPPAAL models from Java programs capturing it at machine instruction
level. Naturally, for complex applications it would be cumbersome to manually calculate the
number of machine instructions for even a small program. Model checking automates this
process, and uses an algorithmic approach to explore the entire state-space of a given program.

4.4.1 UPPAAL

UPPAAL is the model checker we chose for this project since we have prior experience using
UPPAAL, and its temporal logic makes it suitable to model real-time software. In UPPAAL,

24 Technology

Figure 4.2: A simple UPPAAL model: two worker processes synchronising using a single
lock.

models are expressed as a Network of Timed Automata (NTA), and verified using a specific
querying language [1]. This section provides a brief introduction to or recap of UPPAAL, while
detailed information can be found in [1].

A model can consist of several templates. A template is a single timed automaton, and an
instantiation hereof is a process. A template consists of a set of locations and transitions between
these locations. A location can be decorated with the following properties:

Initial It is the initial location for the template.

Committed When in this location, time for the entire system is not allowed to pass. The
next transition must involve a process leaving a committed location, should one be in a
committed location.

Urgent Less strict than a committed location. It is the equivalent of adding a new location-local
clock, resetting it to zero, and assign all out-going transitions with the guard x <= 0. As
opposed to a committed location, the system is not forced to leave the location as long as
time does not pass.

Invariant An invariant must always be satisfied when in such a location. As an example, the
Worker processes in Figure 4.2 have a Working location with an invariant x <= 50. This
means that the clock x is not allowed to be greater than 50 while in this location. In the
invariant field, it is also possible to set stopwatches. An example of a stopwatch is x’ == 0

indicating that the clock x should be stopped in that location, while all other clocks can
continue unaffected.

A model can change state by taking transitions between process locations. Transitions can
also be decorated with properties, and these are described below:

Selection UPPAAL allows the definition of bounded integers, for example an int within the
bounds of [0; 10]. In Figure 4.2, the transition between mutex.Locked and mutex.Unlocked

selects a value from the bounded integer thread_id_t non-deterministically and stores it
as thread_id.

Model Checking 25

ε ε ε

ε

ε

ε

ε

ε ε ε ε

ε

ε

ε

ε

ε

ε ε

E<> ε A[] ε

E[] ε

A<> ε

Reachability Safety Liveness

Notation Description
E<> ε Is it true for any state in any path that ε is satisfied?
A[] ε Is it true for all states in all paths that ε is satisfied?
E[] ε Is it true for all states in any path that ε is satisfied?
A<> ε Is it true for any state in all paths that ε is satisfied?

Figure 4.3: An illustration of reachability, safety, and liveness queries and their meanings in
UPPAAL. [19]

Synchronisation In order for processes to communicate, they can synchronise with each other.
In Figure 4.2, the Worker processes synchronise with the mutex process. This happens
over a channel, in this case lock and unlock. Suffixing the channel name with ! (excla-
mation mark) indicates a caller, while ? (question mark) indicates a receiver. The Worker
processes both attempt to synchronise over the lock channel, each passing their ID 1 and
2, respectively. The mutex process receives one of the lock calls, and succeeds in doing so
and receives the caller ID by non-deterministically selecting it from the bounded integer.

Updating A transition can also trigger side-effects. In Figure 4.2, the mutex process stores the
matched thread_id_t within the owner variable, denoting the current holder of the mutex.

Guards Equivalent of invariants for locations, but for transitions.

Querying models in UPPAAL is done by expressing the property using a logical formula. For
example, UPPAAL can verify whether the system is deadlock free: A[] not deadlock. Queries
can either check for reachability, safety, or liveness properties. Their characteristics are illustrated
and described in Figure 4.3.

26 Technology

4.5 Schedulability Analysis Tools

In an effort to learn from existing schedulability analysis tools, we have investigated three of
such systems, which are designed to aid specific parts of the schedulability analysis. Each
supports different versions of the Safety-Critical Java profile, described in [10] and Section 5.4.

A central challenge in schedulability analysis is the ability to express the upper-bound on
execution times. While it is trivial to provide an unrealistically high upper-bound, tightening
this is not, but results in a more realistic analysis. Modern processors are also becoming
increasingly complex with features such as branch prediction, thus making it cumbersome to
construct equivalent models of them. The tools we have investigated address these issues in
various ways described in this section.

The JOP WCET Analysis Tool (WCA) [30] is intended to calculate the WCET of hard real-
time Java programs for the JOP. It is capable of using the Implicit Path Enumeration Technique
(IPET), and also a model-based approach. The features and how this is achieved are described
in Section 4.5.1, but for an in-depth explanation of IPET we refer to [37].

TetaJ [19] generates a UPPAAL model from Java bytecode. This is used to calculate the
WCET of hard real-time Java programs, but supports changing the model of the underlying
JVM and hardware platform. TetaJ is described in Section 4.5.2. The resulting WCET from WCA
and TetaJ are then used in a further analysis to determine whether it can be scheduled or not,
and thus only aid in a particular part of the schedulability analysis.

SARTS [18] generates a model corresponding to the supplied real-time Java program devel-
oped for the JOP. Instead of returning the WCET as WCA and TetaJ do, the model captures the
schedulability property by deadlocking if the program is not schedulable. SARTS is described
in Section 4.5.3.

All three tools generate control-flow graphs (CFGs) from the Java programs, which are then
mapped to UPPAAL models. A CFG in this context is given by directed graph G = (V,E) where
each vertex, or basic block, is a sequence of bytecode instructions without any branching. Edges
denote connections between basic blocks, either in the form of branching, invoking methods or
returning from method calls.

4.5.1 WCET Analysis Tool

WCA is designed for calculating WCETs of single tasks in real-time Java programs for the JOP. In
addition, the programs must conform to the SCJ level 0 and 1 standards [23]. The JOP has known
execution times for Java bytecode instructions, and its architecture simplifies the analysis even
further. As we covered in Section 4.3.1, the JOP still provides caching of stack data and methods,
but these features are designed to be WCET analysable. The JOP pipeline is also analysable, and
allows for tight WCETs [30].

WCA is capable of performing both model-based and IPET-based WCET analysis:

Schedulability Analysis Tools 27

Model-Based The control-flow graph (CFG) of the program is mapped onto a model, relying
on the model checker to explore the entire state space in order to determine the most
expensive path. In WCA, loops are modelled as illustrated in Listing 4.4. Large loop
bounds can greatly increase the state space of the model, and thus the verification time.
According to [38], this is one of the caveats of model-based WCET analysis. However,
expressing features such as caching processor pipelines in models can be more intuitive
than with IPET.

Implicit Path Enumeration Technique Given the CFG for a task, its WCET can be expressed
for each basic block Bi by WCET = max

∑N
i=0 ciei, where N is the total number of basic

blocks, ci is the execution time of Bi, and ei is the execution frequency [30]. Maximising the
value of this expression can be accomplished by using integer linear programming (ILP)
[39], which results in the maximum execution time of the basic block. According to [38],
this technique reduces the analysis time for complex systems, with e.g. large loop bounds,
but it is more difficult to express the hardware-specific features in this manner.

1 //@WCA loop=10

2 for (int i = 0; i < 10; i++)

3 {

4 // Work

5 }

Listing 4.4: Loop bounds must be defined statically in the source code in order for WCA to detect them.

Listing 4.4 shows how loop bounds are defined in the Java source code in order for WCA to
detect them. Data Flow Analysis (DFA) [40] is also implemented in order to detect loop bounds
automatically.

WCA includes a Java framework called JOP libgraph to construct CFGs from BCEL. JOP
libgraph was developed to be used with WCA which targets the JOP, but it is not directly
coupled to the JOP. As such, it can be used to model a control-flow graph for any Java program
in basic blocks, instructions, and branching. JOP libgraph is used by TetaJ, which maps the
generated CFGs onto their own object model.

4.5.2 TetaJ

TetaJ calculates WCET for real-time Java programs scheduled by the cyclic executive scheme.
As such, it does not support multiple threads, and thus only a restricted subset of the SCJ
profile [19]. However, its architecture was novel at the time of development (2011) in that it
allowed for exchanging the underlying platform model, resulting in a flexible way of calculating
WCETs across different hardware platforms. The architecture is illustrated in Figure 4.4, and
the components are described below.

28 Technology

Real-time
Java program

Model
Generator

Intermediate
representation

Model
Combiner

JVM model

Hardware
model

WCETModel
Processor

UPPAAL

Abstraction Analysis

Figure 4.4: The architecture of TetaJ, showing how the process is divided into components
and made pluggable.

Model Generator Extracts a CFG from the Java bytecode and generates a UPPAAL model from
it. Besides the control flow, the CFG also captures bytecode instructions for each code block,
loop bound annotations and instruction-to-source code mapping. The initial generation of
the CFG is made using JOP libgraph, which is described in Section 4.5.1 as a part of WCA.
Based on the JOP libgraph CFG, TetaJ maps this onto its own intermediate representation.
This allows for decorating instructions, basic blocks, and edges with metadata such as
loop bounds. An example on how loop bounds are defined for TetaJ is given in Listing 4.5.

Each edge carries information about whether it is a loop entry or exit edge. Loop bound
information is attributed directly to such edges, and is extracted from the source code by
conducting a loop bound analysis, which in practice searches the source code files for loop
bound annotations.

TetaJ also ships with an optimisation analysis which can reduce the complexity of condi-
tional basic blocks. Implementing new analysis techniques can be done by implementing
a new class, which implements the supplied IAnalysis interface.

Model Combiner Combines the hardware, JVM and program models into one model. The
purpose is not only to consider the program model and every instruction it consists of,
but also taking into account the underlying platform. Having this information allows for
determining a realistic WCET for the application on the given platform.

Model Processor Queries the combined model using UPPAAL to output the WCET for the
application.

1 //@loopbound=10

2 for (int i = 0; i < 10; i++)

3 {

4 // Work

5 }

Listing 4.5: Loop bounds must be defined statically in the source code in order for TetaJ to detect them.

Schedulability Analysis Tools 29

4.5.3 SARTS

SARTS generates UPPAAL models from real-time Java programs developed for the JOP. Instead
of calculating the WCET, SARTS determines whether or not a given program is schedulable
without any further analysis [18]. The generated model is encoded in such a way that the safety
query A[] not deadlock is equal to whether or not the program is schedulable.

The flow of the SARTS analysis mimics that of TetaJ, except for the pluggable hardware and
JVM models. The flow is described below and illustrated in Figure 4.5.

Real-time
Java program

Java
Translation

SARTS Intermediate
Representation

UPPAAL
Translation

Schedulability
Analysis

Abstraction Analysis

Figure 4.5: The architecture of SARTS, showing the responsibility and order of each compo-
nent.

Java Translation SARTS uses BCEL for accessing the Java bytecode of the compiled program.
From this, SARTS creates a class graph with the structure illustrated in Figure 4.6. Child
nodes in the figure denote specialised classes, and parent nodes generalised classes. Each
class contains a set of methods for which CFGs are generated.

SARTS represents the CFGs using a specialised object model: the SARTS Intermediate
Representation (SIR). The basic blocks are of a specific type given their meaning in the
program. As an example, a basic block containing a loop is of the type LoopBasicBlock. It
contains fields denoting loop bounds and possible outgoing edges, which are specific for
this type of basic block. The SIR class hierarchy is depicted in Figure 4.7.

SARTS performs analysis on the SIR in order to optimise and to decorate the CFGs with
loop bound information. A basic block in SIR corresponds to one bytecode instruction,
which results in a very large state space for even small programs. Because SARTS uses
stopwatches for preemption of tasks, basic blocks can be collapsed into bigger blocks
consisting of multiple bytecode instructions and their execution times. This reduces the
state space significantly, and thus the verification time.

UPPAAL Translation UPPAAL models are generated from the SIR. Each method is represented
by a UPPAAL template, and method invocations are modelled using channel synchronisa-
tion between these. The system also contains a PeriodicThread and SporadicThread template,
which are responsible for driving the methods called by the periodic and sporadic threads
of the system. Finally, a scheduler template is included statically, which employs the
preemptive fixed-priority scheduling scheme.

30 Technology

Schedulability Analysis The generated model captures the schedulability property through
its safety property of being deadlock-free. If the model is deadlock-free, the system is
schedulable, and vice versa.

Class B

Class A

Class C

...

Methods

Method1

Methodn

CFG1

CFGn

... ...

Figure 4.6: The SARTS Intermediate Representation is a graph containing every class in the
program, and child nodes represent specialised classes. A CFG is generated for each method
in the classes.

AbstractBasicBlock

BranchingBasicBlock EmptyBasicBlock MethodCallingBasicBlock MonitorEnterBasicBlock MonitorExitBasicBlockSimpleBasicBlock

IfBasicBlock LoopBasicBlock SporadicInvokeBasicBlock

Figure 4.7: The basic block class hierarchy in the SARTS Intermediate Representation (SIR).

4.5.4 Our Choice

From what is described about WCA, TetaJ, and SARTS in this section, and from inspecting their
code, we have identified key components which would assist us in achieving our goals. We
wanted to focus on achieving a working STM suitable for real-time systems running on the
HVM, rather than implementing CFG generators and UPPAAL model generators from scratch.
WCA is JOP specific as a tool, and as is SARTS. Their code base is closely tied to the JOP
architecture and timing details, while TetaJ is agnostic of the underlying platform.

The structure of the TetaJ source code was more suited for changing rather than that of
SARTS. As stated, SARTS is closely tied to the JOP, and TetaJ has a more stringent notion of
being hardware agnostic. Having identified the phases where the bytecode processed and the
intermediate representation is generated in TetaJ, we decided to use the TetaJ CFG generator.

In SARTS, multi-threaded programs are modelled in an intuitive manner. Methods are still
represented by separate templates, and as are the threads invoking the methods. Having the
thread model expressed in a separate template yields a greater separation of concern between

Schedulability Analysis Tools 31

the templates. It also heightens the intuitive construction of the model by having thread and
scheduler logic intertwined into the program control flow.

In conclusion, TetaJ does not support multi-threading or any form of synchronisation mech-
anisms, but its object model and CFG generators are not directly coupled to the underlying
platform as SARTS is. Reusing the object model and CFG generators from TetaJ along with
multi-threading concepts from SARTS, we will create a hybrid of the two tools which we can
use to add our STM functionality.

Chapter 5

Hardware-near Virtual Machine

With our choice of the HVM, we addressed its shortcomings in relation to RTS and multi-
threading. At the time of writing (June 2012), the HVM does not have support for multi-
threading and thus has no use for synchronisation mechanisms like the STM developed in
this project. However, there are ongoing efforts to implement the Safety Critical Java (SCJ)
level 1 profile (see JSR-302 [31]) which requires multi-threading. Since we are not able to use
these unfinished efforts in our project, we have invested time to provide the necessary features
ourselves to be able to use the HVM in this project. This chapter describes the work we have
done to this end.

For the purposes of this project we have extended the HVM with threading via POSIX threads
as described in Section 5.1. This allows us to use the HVM to run multi-threaded applications on
a standard Linux installation. Running the HVM on Linux has the benefit of easier debugging,
as we can connect the GNU Project Debugger1 to the running HVM to investigate bugs we
encounter. On a PC we can also access print functions to print strings to the screen both from C
and Java code, which further helps our efforts.

To close some of the gap between running on a standard Linux installation and an RTS
platform, we have used RTLinux [41] as a test platform as described in Section 5.2.

Memory management is another vital part of real-time systems, with which we have gained
some experience in the HVM that is discussed in Section 5.3. We also look at how to allow the
use of the SCJ API found in [18] in the HVM in Section 5.4.

5.1 Multi-Threading

In this section, we describe how we added thread support for the HVM using POSIX threads in
C. Our efforts resulted in several C functions that can be called from Java as native function that
can be used to manage the threads. We implemented functions to be able to create threads that

1http://sources.redhat.com/gdb/

http://sources.redhat.com/gdb/

34 Hardware-near Virtual Machine

will execute the run() method of a Java object that implements the Runnable interface, run these
threads, and wait for them to finish executing.

The most complicated function required to implement this functionality is the functionality
to start a thread which, in our code, means looking up the run() method, creating a thread
local call stack for Java, and starting the HVM method interpreter in the thread. The threads
have access to the same memory as the rest of the Java application, making synchronisation
mechanisms such as locking and STM useful.

The code that handles thread execution is shown in Listing 5.1.

1 void *dispatchRunnable(void* arg)

2 {

3 unsigned short methodVtableIndex;

4 unsigned short* vtable;

5 unsigned short clIndex;

6 const MethodInfo* methodInfo;

7 int32 isrMethodStack[50];

8

9 struct thread_data* data = (struct thread_data *) arg;

10

11 clIndex = getClassIndex(data->runnable);

12 methodVtableIndex = findMethodVTableIndex(JAVA_LANG_RUNNABLE, 0, clIndex);

13 vtable = (unsigned short*) pgm_read_pointer(&classes[clIndex].vtable, unsigned

short**);

14 methodInfo = &methods[pgm_read_word(&vtable[methodVtableIndex])];

15

16 isrMethodStack[0] = (int32)(pointer)data->runnable;

17

18 /* Execute the run() method of the Runnable instance */

19 enterMethodInterpreter(methodInfo, &isrMethodStack[0]);

20

21 return 0;

22 }

23

24 void runNativeThread(int thread)

25 {

26 pthread_create(&threads[thread].thread_id, &threads[thread].attr, &

dispatchRunnable, (void*) &threads[thread]);

27 }

Listing 5.1: Running a Java Runnable in a POSIX thread with the HVM.

In this code, there are two C functions: dispatchRunnable(void* arg) and runNativeThread(

int priority). The former is run by the POSIX thread when it is created in the latter, where the
function pointer to dispatchRunnable is sent as an argument in line 26 to pthread_create that is
the POSIX threads function to create and run a new thread. The threads array used for the other
arguments of the call in line 26 is an array that we have created to hold thread specific data in C.

RTLinux 35

The code for the dispatchRunnable function accesses internal functions of the HVM interpreter
to look up the run() method of the Runnable instance in line 11-14. This method is then run with
a thread local method stack in line 19. This code was provided by Stephan Korsholm.

To create and run a thread from Java the thread data is first created with a call to the native
function int createNativeThread(Runnable object, int priority). The returned integer is then
used to run the thread using void runNativeThread(int thread) which calls the C function
described above. Once the thread is running it is possible to wait for it to finish executing with
a call to joinNativeThread(int thread) which is implemented with code in Listing 5.2.

1 void joinNativeThread(int thread)

2 {

3 pthread_join(threads[thread].thread_id, NULL);

4 }

Listing 5.2: Joining a POSIX thread.

Using these functions it is possible to create threads from Java with the HVM running on
a Linux system, however, to close the gap between running the HVM on a time-predictable
embedded system and a Linux system that does not provide any real-time guarantees, we have
used RTLinux. A downside to our implementation of threads in the HVM is that it requires an
operating system with POSIX threads, so it is not possible to run the code on the embedded
platforms described in [12]. This means that we are only able to run our code on a PC until
threads are officially supported in the HVM.

One problem that we have experienced with our thread extension is that there is certain
code in the HVM that is prone to race conditions. Especially the memory allocation code is not
thread safe, and can cause the heap to become corrupt and crash threads that try to concurrently
allocate new instances of objects. In our code, we have worked around this issue by avoiding
allocation of new memory once the threads have been started, and as such have been able to run
threads for extended periods of time without experiencing individual threads crashing when
race conditions happened as we experienced when allocating memory in concurrent threads.

5.2 RTLinux

RTLinux is a microkernel that wraps a standard Linux kernel to make it possible to use Linux
for RTS. It does this by making it possible for tasks to preempt the Linux kernel, and as tasks are
given higher priority than the Linux kernel, this means that tasks will run predictably on the
hardware without being interrupted by the kernel to handle e.g. hardware interrupts. Interrupts
are instead queued and handled as software interrupts when no real-time tasks need to use the
system resources. [42]

36 Hardware-near Virtual Machine

In this project, we have used RTLinux for running the HVM, since it allows us to test our
code on a real-time platform which supports the POSIX threads we have used to implement
threads in the HVM.

5.3 Memory Management

As of the time of writing (June 2012), the HVM does not feature a garbage collector. Thus,
any memory instantiated in the heap during a run of an application will not be automatically
garbage collected while the application runs.

The limitations in memory handling in the HVM mean that we must either develop our
algorithms for a future version of the HVM that will support real-time garbage collection
(which may never come), or ensure that our code does not rely on the presence of a garbage
collector to run correctly. The former case still allows using the HVM for the project, as we are
able to instantiate memory as long as there is still free room in the heap, but when the heap runs
dry individual threads, or even the entire application will crash. However, the latter option
will, in theory, allow our code to run indefinitely, but means we have to take greater care in
development so that allocation of memory is bounded.

5.4 Safety Critical Java Profile

A real-time profile for Java gives programmers an API for creating real-time applications. The
SCJ2 profile introduced in [18] gives programmers access to create tasks and give them periods,
deadlines and delay their startup. It also provides a clean way of shutting down the system by
allowing clean-up methods in individual tasks.

For this project, we have implemented the SCJ2 profile for the HVM using POSIX threads
as described in Section 5.1. We have done this to be able to compare our results with those of
SARTS. This section describes our implementation of SCJ2 for the HVM.

5.4.1 API

The API of SCJ2 available to the programmer consists of several classes:

RealtimeSystem is a non-instantiable class that has static methods to start and stop all tasks.
The method start() runs all periodic tasks and blocks until they stop, stop() stops all
periodic tasks and cleanly shuts down all sporadic tasks and blocks until they are done,
and fire(int event) asynchronously runs the sporadic task registered with the event
number given as the argument.

PeriodicThread is an abstract class that is extended by the programmer when wanting to add a
class of periodic tasks to the system. When the constructor is called, the object is added to

Safety Critical Java Profile 37

the list of tasks that will be started when RealtimeSystem.start() is called. The argument
to the constructor is an instance of PeriodicParameters described below.

PeriodicParameters is a class used to describe the parameters of execution for periodic tasks.
It has fields for the period, deadline, and delay with which to offset initial execution of the
task. Each of these times are defined by an integer that expresses the time in microseconds.

SporadicThread is an abstract class that is extended by the programmer when wanting to add
a class of sporadic tasks to the system. The constructor takes as its argument an instance
of SporadicParameters described below.

SporadicParameters is a class used to describe the parameters of execution for sporadic tasks.
It has fields for the integer that is used when firing the event using RealtimeSystem.fire

(int event), the minimum inter-arrival time between runs of the task, and the deadline.
The times are expressed in microseconds with integers.

Using this API the programmer can create tasks by extending the relevant class and there
add the code that a task will execute in a run() method. This method will be called whenever
the task runs, either every period for periodic tasks, or every time the event is fired for sporadic
tasks. The run() method returns a Boolean value to indicate whether or not it is ready to be shut
down to ensure that the task is shut down cleanly when stopping the system. For a periodic task,
returning false means that the task will be executed next period until it returns true after which
the cleanup() method is run. For sporadic tasks, when the system is shut down all events are
fired to allow the cleanup() method of the task to be run, unless the run() method has returned
false on its last run.

1 public class MyPeriodicTask extends PeriodicThread {

2 private int i;

3

4 public MyPeriodicTask(PeriodicParameters pp) {

5 super(pp);

6 // Perform task initialisation here.

7 i = 1;

8 }

9

10 @Override

11 protected boolean run() {

12 // This code is run every period once the mission phase is started.

13 devices.Console.println(String.valueOf(i++));

14 RealtimeSystem.fire(2);

15 return true;

16 }

17

18 @Override

19 public boolean cleanup() {

20 // Cleanup code run on shutdown.

38 Hardware-near Virtual Machine

21 i = 0;

22 return true;

23 }

24 }

Listing 5.3: An example of a periodic task.

In Listing 5.3, a new periodic task is defined, which runs the code in line 12–15 every period.
In line 14, the task fires the sporadic task that has event number 2, which demonstrates how
sporadic events function. The cleanup() method in line 18–23 is run when RealtimeSystem.stop

() is called. A sporadic task has a similar structure except SporadicThread must be extended
instead of PeriodicThread and SporadicParameters must be sent to the super-constructor instead
of PeriodicParameters. To start the system using a periodic and sporadic task, the code in
Listing 5.4 can be used.

1 public static void main(String[] args) {

2 new MyPeriodicTask(new PeriodicParameters(100000, 100000, 250000));

3 new MySporadicTask(new SporadicParameters(2, 100000, 100000));

4 RealtimeSystem.start();

5 }

Listing 5.4: Example main method of a real-time system using SCJ2.

In lines 2 and 3, the periodic and sporadic tasks are initialised by calling their constructors. It
is not necessary to store the task objects in the main method, as the SCJ2 code will automatically
keep track of the tasks in the system. The parameters given to the periodic task are: 100
millisecond period, 100 millisecond deadline, and an initial delay of 250 milliseconds before
the task is run the first time after the call to RealtimeSystem.start(). The sporadic task has
these parameters: the number 2 as the event number, 100 millisecond inter-arrival time and 100
millisecond deadline. The inter-arrival time of the sporadic task has been set to 100 milliseconds,
because this is the period with which it can be fired from the periodic task in the MyPeriodicTask

code above. In line 4, the system then begins the mission phase by calling RealtimeSystem.start

(). The main method will be blocked in this call until all threads have stopped.

5.4.2 Implementation

Our implementation of SCJ2 for the HVM is based on the SCJ2 code from [18]. It is implemented
partly in Java, and partly in the native C functions used to control the POSIX threads from Java.
We use the createNativeThread, runNativeThread, and joinNativeThread native functions from
Section 5.1 to manage the POSIX threads, which have been extended for SCJ.

Much of the SCJ2 code from [18] could be used unmodified, so we have primarily focused
on removing the JOP specific code and replacing it with code that can run on the HVM. The API

Safety Critical Java Profile 39

provided to programmers using SCJ2 is the same whether using the JOP version from [18] or
the version presented here.

Periodic Tasks

Periodic tasks are managed by the SCJ2 code through a class called RtThreadAdapter that uses
native methods to work with the POSIX threads. An instance of RtThreadAdapter is created for
each periodic task, and this RtThreadAdapter instance holds a reference to the PeriodicThread of
the periodic task. The constructor of the RtThreadAdapter initialises the native thread through
the call in Listing 5.5.

1 this.threadId = createNativeThread(this, priority, period, offset);

Listing 5.5: Calling the native function to initialise a POSIX thread.

This call will initialise the thread data with the information required to run the thread when
the mission phase begins. The arguments given are: the Runnable instance which contains the
run() method that is executed in the new thread, the priority of the task, the period of the task,
and the offset or delay before the first release of the task after the mission phase has started.
The native call returns the unique thread id of the data that must be used in subsequent calls to
start or join with the thread. The first argument sent is the RtThreadAdapter instance itself. The
RtThreadAdapter class contains the run() method that is shown in Listing 5.6.

1 @Override

2 public void run() {

3 for (;;) {

4 if (shutdown && runReturn) {

5 if (!cleanupReturn) {

6 cleanupReturn = re.cleanup();

7 } else {

8 break;

9 }

10 } else {

11 runReturn = re.run();

12 }

13 waitForNextPeriod(threadId);

14 }

15 }

Listing 5.6: Periodic thread loop.

The run() method consists of an infinite loop that executes the run() method of the
PeriodicThread in line 11, and then waits for the next period in line 13. In line 4–9, the handling
of the shutdown procedure is done. This consists of executing the cleanup() method each period

40 Hardware-near Virtual Machine

until it returns true after which the code exits from the loop and the thread is terminated. The
method waitForNextPeriod used in line 13 is native and implemented with the C function in
Listing 5.7.

1 void waitForNextPeriod(int thread_id)

2 {

3 struct thread_data *data = &threads[thread_id];

4

5 add_timespec(&data->next_release, &data->next_release, &data->period);

6 clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &data->next_release, &data->

remaining_time);

7 }

Listing 5.7: C native function to wait for next release of a periodic task.

In this code, the thread data is found in the array of thread data using the thread ID in line
3. In line 4, the data is then used to add the period to the time of the last release and put it in the
next_release variable. The resulting absolute time is then used in line 5 to sleep until the next
release after which the call returns. The remaining_time variable can be used, should the sleep
be interrupted, to indicate the remaining time of the sleep period. However, we assume that no
interruptions will occur.

Sporadic Tasks

Similar to the RtThreadAdapter for periodic tasks, sporadic tasks use instances of
RtSwEventAdapter to interface with the POSIX threads that run the individual tasks.

Due to it only being possible to create a limited amount of POSIX threads, we chose not
to create a new thread every time a sporadic task is fired. Instead we use the two native
methods waitForSignal(int threadId) and signalNativeThread(int threadId) in Listing 5.8.
These methods use a semaphore that is stored in the thread data kept in C.

1 void signalNativeThread(int thread_id)

2 {

3 struct thread_data *data = &threads[thread_id];

4 sem_post(&data->sem_signal);

5 }

6

7 void waitForSignal(int thread_id)

8 {

9 struct thread_data *data = &threads[thread_id];

10 sem_wait(&data->sem_signal);

11 }

Listing 5.8: Native implementation of code to handle blocking until a sporadic thread is released.

Safety Critical Java Profile 41

In lines 3 and 9, the thread data is accessed which is then used in lines 4 and 10 to increment
and wait for the semaphore to be incremented, respectively.

This native functions are used in the Java code in Listing 5.9.

1 public void fire() {

2 signalNativeThread(threadId);

3 }

4

5 @Override

6 public void run() {

7 while (!shutdown) {

8 waitForSignal(threadId);

9 handle();

10 }

11 }

Listing 5.9: Java code to handle firing of events.

The method fire(), defined in lines 1–3, is called when a call to RealtimeSystem.fire(int

event) is made. This will then increment the semaphore of the sporadic thread. The run()

method, defined in lines 6–11, runs in its own POSIX thread and loops until the system is shut
down. The waitForSignal(threadId) call will block while the semaphore is 0 until another task
increments it by calling fire() after which the handle() method is called to run the actual logic
of the sporadic thread.

Due to this implementation, when an event is fired multiple times before it can run to
completion, the event will be released the requested number of times successively. This is
because the sem_wait call will immediately return until the semaphore reaches 0.

Chapter 6

Software Transactional Memory
Development

Developing an STM requires careful consideration of which properties are desired and their
implications. In Section 4.1, we presented design and implementation parameters derived from
research within the field of STM. In this chapter, we describe our implementation of a real-time
STM for the HVM, and, using these design and implementation parameters, we describe its
properties.

In [10], we argued for a non-blocking STM with real-time properties. This work is described
in Section 6.1 along with claims that we made in [10] about how it would behave in a real-time
setting. Since then, however, we decided on the HVM platform, which has required changes
to the design and implementation choices that we had made. The resulting STM is described
in Section 6.2 along with the reasoning for our changes and how the STM fulfils the claims we
have made. In the process of ensuring we indeed fulfil the claims, we have taken a model-based
approach. The model of our STM is documented in Section 6.2.5 and then used to verify relevant
properties in Section 6.2.6.

6.1 Early STM Prototype

The non-blocking STM that we created in [10] was designed for the OpenJDK1 JVM. We used it
as a basis in the beginning of this project to create an early prototype with support for priorities.
However, using the OpenJDK JVM meant that we had no access to real-time functionality and
thus we could only speculate on how it would behave in a real-time context. We begin by
describing the design and implementation details of this early non-blocking STM.

STMs for Java such as those found in [3, 7] use Java bytecode rewriting to allow using the

1http://openjdk.java.net

http://openjdk.java.net

44 Software Transactional Memory Development

STM with a simple annotation such as in line 1 of Listing 6.1.

1 @atomic

2 public void addValue(int v)

3 {

4 counter = counter + 1;

5 }

Listing 6.1: Using Java annotations to make a method transactional.

However, because this is just syntactic sugar, we chose to use a lower-level approach by
having the programmer use the STM by calling all library functions directly as in Listing 6.2.

1 do

2 {

3 try

4 {

5 c.txNew();

6

7 // This is the body of the transaction

8 c.txWrite(counter, c.txRead(counter) + 1));

9

10 c.txCommit();

11 }

12 catch (AbortException e)

13 {

14 if (c.txRethrowAbort())

15 {

16 throw e;

17 }

18 }

19 } while (!c.txIsCommitted());

Listing 6.2: Example of calling the STM library directly. [10]

This code consists of an explicit retry-loop, that makes the transaction start anew whenever
it is aborted by the txWrite, txRead, or txCommit methods throwing an AbortException. The
transaction body only actually consists of line 8, where a shared counter is incremented by one.
The if-statement in lines 14–17 is there to support flat nesting by rethrowing the exception if the
transaction is nested. In this way it will continue to be thrown until it reaches the outermost
transaction which will then retry from the beginning. The rest of the handling of flat nesting
consists of ignoring the calls to txNew and txCommit if the transaction is nested, so that a transaction
is only started and committed at the beginning and end of the outermost transaction.

The code shows that the usage of our STM requires a lot of boilerplate code (all lines except
7–8) before writing the actual contents of the transaction, where the methods txRead and txWrite

Early STM Prototype 45

must be used to access data in shared memory. However, since the boilerplate code could be
generated automatically, it would be possible to attain the same operational structure as other
STMs using bytecode rewriting.

Conflicts in the STM are detected when a call to txRead or txWrite tries to acquire a shared
object that is already acquired by another transaction. Each shared object is encapsulated in
a TValue object, which stores transactional metadata about who has acquired a variable and a
new and old version of the object. To make the STM non-blocking, the TValue object is further
wrapped in an AtomicReference object, which allows lock-free compare-and-set through the
Java built-in java.util.concurrent.atomic package on supported platforms [43]. The transac-
tion states are also wrapped in AtomicReference objects so that transactions can change states
atomically.

1 public <T> void write(AtomicReference<TValue<T>> value, T newValue) throws

AbortException

2 {

3 TValue<T> v = value.get();

4 TValue<T> result = new TValue<T>(this, v.oldValue, newValue);

5

6 if (v.owner != this && v.owner != null)

7 {

8 if (v.owner.state.get() == State.LIVE && v.owner.priority > this.priority)

9 {

10 // Current owner has higher priority and should not be aborted

11 abort();

12 }

13 v.owner.state.compareAndSet(State.LIVE, State.ABORTED);

14 if (v.owner.state.get() == State.COMMITTED)

15 {

16 result.oldValue = v.newValue;

17 }

18 }

19

20 if (state.get() != State.LIVE || !value.compareAndSet(v, result))

21 {

22 // Transaction has been aborted, or someone else acquired the variable

23 abort();

24 }

25 }

Listing 6.3: Transactional code for writing to a shared object.

In Listing 6.3, the old metadata is first retrieved through the AtomicReference object, and
a new metadata object is created in line 4, which has a reference to the new value. In line 6,
the transaction checks that it is the current owner of the variable. If not, it must acquire it by
first trying to abort the current owner if it is running and does not have a higher priority than

46 Software Transactional Memory Development

the active transaction. If the current owner has already committed, the value written by that
transaction must be used as the old value in line 16, in case the current transaction is aborted. In
line 20, the transaction then atomically tries to acquire the variable by replacing the old metadata
with the new metadata that it has just created. If this fails, it means that another transaction
managed to acquire the variable in the mean time, which means that the transaction must abort.
This is an essential part of the structure of the STM making it non-blocking.

From the code, it can be seen that readers and writers are not distinguished, as there is only a
single field recording who has acquired the variable. This means that false conflicts occur when
two readers try to acquire the same variable, since one of them will be aborted when the other
tries to acquire the variable. The object granularity of opening the entire object for reading or
writing means that false conflicts can occur when two different fields are written by individual
transactions as well.

The implementation of the metadata in TValue also means that the STM uses direct updates,
as the metadata is globally accessible. However, the effects are undone not by the current
transaction when it aborts, but by the next transaction that acquires that variable, as it creates
new metadata to replace it. This also means that there is no strong isolation, because both values
are globally accessible.

To summarise, the properties of the STM are concluded below:

Operational Structure To use the STM, the programmer must call our library functions manu-
ally. Shared objects must be manually wrapped in TValue and AtomicReference objects.

Conflict Detection Conflicts are detected early and false conflicts can occur with read-only
accesses by transactions.

Direct or Deferred Update Updates are stored directly in shared memory, and, in case of an
abort, rolled back by the transaction following the aborted transaction.

Isolation The STM does not guarantee strong isolation, as shared data in an inconsistent state
can be accessed outside of transactions. The STM thus has weak isolation.

Nested Transactions Nested transactions are supported through flat nesting.

Granularity Object-level granularity is used, since ownership of shared variables is defined at
object-level.

Static or Dynamic The STM is dynamic, as it allows creating transactions and accessing shared
memory based on runtime information.

Blocking or Non-Blocking Relying on hardware instructions to support non-blocking synchro-
nisation primitives, the STM is non-blocking.

Contention Management Contention is handled by the priority of the competing transaction:
if a shared variable has already been acquired by another transaction, it will be aborted if
the requesting transaction has a higher priority than the current owner.

Early STM Prototype 47

6.1.1 Real-Time Claims

In [10], we argued that if we could prove that the following claims hold for our STM running
on a real-time platform, then it would be possible to perform a schedulability analysis on a
program using the STM:

Claim 1:
By assigning non-blocking transactions priorities inherited from the tasks starting them,
and preventing other than the highest-priority transaction from committing, we can allow
higher priority tasks to start executing their critical sections faster than with lock-based
synchronization.

This first claim is fulfilled by the fact that a non-blocking algorithm will always be able to
run to completion if no other threads interfere, whereas a lock-based approach might require a
lower priority task to be scheduled to allow it to release any locks it is holding that prevent the
current task from obtaining the lock and continue executing.

Claim 2:
By using distinct priorities for threads, only one of the running transactions at any point in
time will have the highest priority and will always be allowed to commit successfully.

This claim relates to the first claim, as it ensures that no other threads of equal priority will be
allowed to interfere, so that they might continually abort the transactions of each other causing
a livelock. If the system is scheduled using FPS only one task at each point in time will have the
highest priority of the released tasks, and thus be able to run.

Claim 3:
Using static analysis, we can determine sets of transactions that can run concurrently
without conflicts. If the schedulability analysis takes this into consideration it will lead to a
tighter bound on the worst-case response time, as there might be fewer retries to consider.

This claim was put forward before we chose a model-based approach to verifying schedu-
lability. Using modelling, the schedulability analysis will consider which tasks can conflict and
take this into account when proving schedulability.

Claim 4:
Since the transactions of the running task with the highest priority in our system are
effectively inevitable, I/O can be performed here. If applications are designed to use only the
highest priority thread to perform I/O that must be in critical sections, then our idea becomes
viable for a wider range of real-time software.

This final claim is related to allowing I/O in transactions. This claim would be fulfilled with
the STM, since the transaction-related code of the highest priority transaction would not be
preemptible by any other task, and thus it would not be able for any other transaction to cause
the highest priority transaction to abort.

48 Software Transactional Memory Development

6.2 HVM STM

In this section, we describe our efforts to bring our STM to the HVM platform. This consisted of
first attempting to modify the prototype, and when discovering that the design was fundamen-
tally incompatible with the platform, a new STM design was created specifically for the HVM,
but reusing many of the principles from our early prototype.

6.2.1 Porting the prototype STM

Once we had chosen the HVM as our platform, we began porting our prototype STM to the HVM.
This consisted of implementing the features described in Chapter 5 and the AtomicReference class
using native functions to access hardware compare-and-set instructions. However, once this
work was complete, we found that due to the lack of garbage collection in the HVM, our initial
design would only be able to run for a limited time, since our algorithm would continuously
allocate new transactional objects on the heap. This meant that the heap would eventually run
out of space causing tasks to crash.

In order to solve this, we first tried to see if it was possible to manually clean the heap of
unused transactional objects using native C functions for the HVM. However, we were unable
to identify a pattern that let us reliably clean up transactional objects at certain points in the
execution of transactional method calls. Furthermore, at that time the HVM memory allocation
code to create new objects on the heap was not thread-safe and would regularly cause memory
corruption during test runs of our prototype.2

6.2.2 New Design

Due to the problems we encountered with our original prototype, we decided to try a new
approach which used a fixed amount of objects and modified them directly, so that in the
mission phase no new objects would be created. This approach allows us to run the STM
reliably without memory corruption and without eventually running out of heap space.

The new design uses a blocking approach, because we were not able to rely on modifying
metadata by creating new metadata objects as we did with the prototype. A global transactional
lock ensures atomicity of metadata operations instead of using compare-and-set, which is what
makes the STM blocking.

In order to retain some of the properties of the original design, however, the ability to revoke
ownership of shared data was implemented to still allow high priority tasks to execute faster
by at most only having to wait for the metadata operation of a lower priority task to complete
as opposed to waiting for the entire critical section of the lower priority task to finish as would
have been the case with lock-based concurrency.

2The HVM gained thread-safe memory allocation in April 2012. [12]

HVM STM 49

The new design also let us improve on the operational structure of the STM as we decided to
use a different approach to accessing shared data: when accessing a shared object, a single call
to open the object is made where the transaction acquires the object, instead of having to read
or write by calling STM library functions. The reasoning behind this is that readers and writers
are not distinguished, so separate calls for these operations are not necessary.

When a transaction in the old design aborted another transaction, it would directly modify the
state of the competing transaction to abort it. In the new design, however, we avoided accessing
the states of other transactions as transaction memory is reused when new transactions are
started to avoid allocating new objects. This means that transactions in the new design must
instead validate that they still have ownership of previously acquired objects when opening
new shared objects to ensure opacity. The transaction must abort and retry if validation fails
due to revokation of its ownership of one or more shared objects by a higher priority transaction.

6.2.3 Implementation

The implementation of the new design includes several classes:

AbortException The AbortException is similar to the AbortException of the prototype, but a
single instance per task is reused to avoid allocating new objects when transactions abort.

Lock This singleton class is a helper class which gives access to a global lock object used by all
transactions when modifying global metadata.

OpenSet Each transaction has its own instance of this class to store which shared objects are
opened by the transaction. Details of how the open set avoids continually allocating new
heap space are shown below.

TContext Each task that wants to use transactions must have an instance of this class, which
handles communication with the STM and flat nesting by keeping track of the transaction
depth.

Transaction The TContext object of a task has an instance of a Transaction object that contains
the main functionality of our STM.

TValue Shared objects must be wrapped in a TValue instance which stores metadata about
which transaction has acquired the object.

In the prototype, the Transaction class was instantiated for each new transaction and retry.
However, since we are using flat nesting, only one transaction can be active at any time in each
task, so in the new design we reuse the Transaction object by merely resetting its state and
clearing its OpenSet instance.

To compare the implementation with the non-blocking prototype, we show how the shared
objects are acquired by a transaction in Listing 6.4.

50 Software Transactional Memory Development

1 public <T> void open(T destination, TValue<T> value) throws AbortException

2 {

3 if (!openSet.contains(value))

4 {

5 synchronized (Lock.getInstance().lock)

6 {

7 if (value.getOwnerPriority() > priority.getPriority() || !validate())

8 {

9 // Unable to acquire object; other transaction has higher priority or

this transaction has been invalidated

10 abort();

11 }

12 value.acquire(priority.getPriority(), destination);

13 }

14 openSet.add(destination, value);

15 }

16 }

Listing 6.4: Java code to open a shared object transactionally.

In the non-blocking implementation a new TValue object was created in the beginning to
update the metadata, which replaced the old TValue object if the object was successfully acquired.
The TValueobjects were immutable. In the new design, we have made the TValueobjects mutable,
however, so it is possible to acquire the object by changing the existing metadata and thus we
avoid allocating a new object.

To ensure opacity, the value is only acquired if the transaction still has ownership of all values
in its open set. If any of the values have been lost, it means that a higher priority transaction
has acquired one or more of its values, and it is necessary to abort to ensure that no inconsistent
data is used. Validation happens in line 7, where the call to validate() iterates over the entire
open set to check that all TValue objects have not changed ownership.

The first argument to the open method is a thread-local store which is used to hold a copy
of the object. This copy can then be read and modified in the transaction and when committing
the modified data is written back to shared memory. This means that deferred updates are used
in the new design instead of the direct updates used in the original prototype.

To copy the data of the global object, we have implemented a native function in the HVM to
perform a shallow copy of the object as shown in Listing 6.5.

1 int16 n_javax_stm_TValue_shallowCopy(int32 *sp)

2 {

3 Object *src = (Object *) (pointer) sp[0];

4 Object *dst = (Object *) (pointer) sp[1];

5

6 unsigned short ci = getClassIndex(src);

7 unsigned short size = classes[ci].dobjectSize >> 3;

HVM STM 51

8

9 while (size > 0)

10 {

11 *dst++ = *src++;

12 size--;

13 }

14

15 return -1;

16 }

Listing 6.5: Native HVM function to shallow copy an object.

In this code, the two arguments are first accessed through the sp stack pointer array. The first
argument is the source object, and the second argument is the destination and they are saved to
the src and dst pointers in line 3 and 4. To perform the shallow copy, it is necessary to figure
out the size of the source object. This is done by looking up the class in the HVM classes array,
which contains this information about all classes. When the object size has been retrieved in
line 7, the data is copied byte for byte in the while-loop in lines 9–13.

From Java the function is accessed through the signature in Listing 6.6.

1 private static native void shallowCopy(Object source, Object destination);

Listing 6.6: Signature of the Java method to access the native shallow copy function.

The use of this function, however, requires that the destination space has already been
allocated in the heap. Usually, objects are allocated using the new keyword in Java, but this will
call the constructor of the class to create a new object, which may have side effects. To avoid
having to call the constructor, we have created a native function for the HVM which merely
allocates the memory in the heap without calling the constructor. This code is shown Listing 6.7.

1 int16 n_javax_stm_TValue_allocateInstance(int32 *sp)

2 {

3 Object *class = (Object *) (pointer) sp[0];

4 unsigned short classIndex = *(unsigned short *) ((unsigned char*) class + sizeof(

Object));

5

6 handleNewClassIndex(sp, classIndex);

7

8 return -1;

9 }

Listing 6.7: Native HVM function to allocate an instance on the heap.

52 Software Transactional Memory Development

Using this code from Java, it is possible to allocate the memory for the local store, which is
then ready to be used as the destination for the shallow copy when the global object is opened.
The argument to the function is the Class object of the class that should be instantiated. In Java
every class has a Class instance that describes the class. To allocate a memory for a new instance
the code is used from Java as in Listing 6.8.

1 MyObject threadLocalStore = allocateInstance(MyObject.class);

Listing 6.8: Using the allocateInstance native function from Java.

6.2.4 Properties

Based on the design and implementation described, the STM is classified as follows:

Operational Structure The same operational structure is used as in the prototype, except that
writing and reading shared objects occurs after opening the object which copies it to
a thread-local store, and shared objects are only wrapped in TValue objects and not
AtomicReference objects as well.

Conflict Detection As in the prototype, conflicts are detected early and false conflicts can occur
with read-only accesses by transactions.

Direct or Deferred Update Updates are stored locally in a thread-local copy of the shared object.
The copy is written back to shared memory when committing, thus deferred updating is
used by the STM.

Isolation Unless all access to the shared object is protected by the global transaction lock, it may
be modified while using it if a transaction commits its changes while non-transactional
access takes place. Thus the STM has weak isolation.

Nested Transactions As in the prototype, nested transactions are supported through flat nest-
ing.

Granularity As in the prototype, object-level granularity is used, since ownership of shared
data is defined at object-level.

Static or Dynamic As in the prototype, the STM is dynamic, as it allows creating transactions
and accessing shared memory based on runtime information.

Blocking or Non-Blocking The STM is blocking, because it uses a lock to ensure mutually
exclusive access to the shared object metadata.

HVM STM 53

Contention Management As in the prototype, contention is handled by the priority of the
competing transaction: if a shared object has already been acquired by another transaction,
it will be aborted if the requesting transaction has a higher priority than the current owner.

From this list, we remark that the most significant change from the prototype to the new
design is that the new design is blocking. This means that we must rethink our first claim
in Section 6.1.1, which is dependent on a non-blocking design. We still want to be able to
say that higher priority tasks will be able to start their critical sections faster than with lock-
based concurrency control, but guaranteeing this property requires further investigation into
the behaviour of the STM.

With the non-blocking design, the high priority transaction would be able to revoke owner-
ship of any acquired objects in the same time as if their were not acquired. This is also true for
the blocking design, as long as another task does not hold the global transaction lock and is thus
in the process of acquiring an object or committing its results. If the transaction lock is held, the
lower priority task must be allowed to run until it releases the lock. This behaviour is similar to
that of lock-based concurrency, except for the fact that the lock is held only while committing or
acquiring an object. With lock-based concurrency the lock would be held for the duration of the
critical section, and thus a high priority critical section would be blocked until the lower priority
critical section is completed. An even worse case is when several locks are required in the high
priority critical section that are held by several lower priority critical sections. In this case, the
high priority critical section must wait for each of these lower priority critical sections to run
to completion. With our STM design, there is only one lock, and at most one lower priority
transaction can block the high priority transaction in its entire span, and only for the duration
of acquiring an object or committing.

The time it takes to acquire an object depends on the size of that object, as the object needs
to have a shallow copy taken to be acquired. The size of each object in the HVM depends on
the number and type of the fields of the object class. Simple types such as int and long are
stored directly in the object, while fields that point to other objects such as instances of String
or user-defined classes are stored as 32-bit pointers.

The time it takes to commit depends on the number of objects in the open-set, which must be
shallow copied back to the global counter. This time can be derived by inspecting the number
of acquired objects and how long it took to acquire them.

Claim 2 and 4 are proven using a UPPAAL model of our STM, whereas Claim 3 has been
replaced by our model-based approach to schedulability analysis taken in this project.

6.2.5 STM Model

In this section, we describe the model of our STM. The model was used to ensure that the
implementation of the STM is correct, and to verify certain properties. It is also used later in the
development of our schedulability analysis tool.

54 Software Transactional Memory Development

Figure 6.1: The UPPAAL template modelling our STM.

The transaction template of our model is shown in Figure 6.1 and has several locations:

Idle The initial location where the model is ready to start a new transaction.

Running The state where the actual body of the transaction is run. At any point during the
transaction body it may attempt to open a variable or commit.

TryOpen The state when the body of the transaction attempts to open a specific shared variable
with a specific ref_id_t.

Opening If the ref_id has not already been acquired by the transaction, it will attempt to
acquire it from this location.

TryCommit The state when the body of the transaction attempts to commit the transaction.

Committing From here, the transaction either commits or aborts depending on whether it has
been invalidated by another transaction.

Committed When the model is in this state, it means that the transaction was successfully com-
mitted. The location is committed, as it does not represent any code in the implementation.

Aborted Similarly, this state means that the transaction was aborted, and the location is also
committed because it does not represent any code in the implementation.

HVM STM 55

Reset From this state, the variables of the model are reset to be ready for the start of the next
transaction.

Since the STM uses flat nesting, only one transaction can be running in each thread. To
accommodate this, a template instance is created for each thread in the system, which can then
communicate with the STM using urgent channels. The communication can be either start_tx,
open_tx, or commit_tx, which represent starting a new transaction, opening a shared variable,
and committing the transaction, respectively. When opening a shared variable, the identifier of
which variable to open must be sent as well. For this we use a global array ref_to_open with the
size of the number of threads allowing each thread to set its entry to the identifier of the variable
it wants to acquire. The transaction then reads the identifier from this array and saves the result
in a local variable ref_id for easy access in following transitions. To reduce the state-space, these
values are reset to −1 as soon as possible.

The can_acquire_value function is used to check that the value is not already owned by a
higher priority transaction. If it is, then the transaction must abort.

The template also uses a global lock to model the transaction lock of the implementation.
This lock is used by synchronising with the channels lock and unlock. If the lock is currently
held by another transaction, the instance must wait in the TryOpen or TryCommit locations until
the lock is free and listening on the lock channel.

The open set of each transaction is modelled as an array with the total number of shared
variables as its size. Whenever a value is acquired, the corresponding entry in the array is set to
true to indicate that the value has been acquired. The open set is used whenever the transaction
needs to validate where ownership of all values in the open set are checked to ensure that no
other transaction has acquired any of its values.

Nested transactions in the model are not handled expicitly, but rather by the convention that
nested transactions do not use start_tx or commit_tx when they start or commit. Thus, only the
outermost transaction uses start_tx and commit_tx, and inner transactions only use open_tx to
open the variables they need.

6.2.6 Verification

To verify that the remainder of our claims hold, we have created the following queries to assert
the necessary properties of our STM model:

1. A[] not deadlock

2. A[] not Transaction(0).Aborted

The first query ensures that there are no deadlocks in the system. This query is important in
a lock-based STM where it must not be possible for any interleaving to cause the STM to crash.

The second query allows us to verify that the transaction with the highest priority, which
is the transaction with thread_id 0, cannot be aborted under any circumstances. Proving this

56 Software Transactional Memory Development

query means that the STM will always be able to ensure that at least one transaction out of a
number of transactions can commit. Thus, if a number of transactions are running concurrently,
then it is assured that the one with the highest priority of these will always commit. It also
shows that our fourth claim in Section 6.1.1 is true.

Figure 6.2: The driver template used to run the STM model.

To verify these queries, we have created a generic system of two transactions with two shared
variables, where a “driver” template is used to randomly start transactions, open variables, and
commit the transactions. This template is shown in Figure 6.2. Two transactions are sufficient to
show correctness of an STM since conflicts occur with at least two transactions contending for
the same shared variable [44]. Running with more transactions provide the same results, except
for UPPAAL taking longer to explore the state-space of more transactions interacting.

Both queries were proven to be satisfied using UPPAAL. Verifying that the transaction with
the highest priority can never be aborted has thus proven that Claim 2 and 4 are fulfilled with
our STM.

Chapter 7

Schedulability Analysis Tool
Development

In this chapter, we describe the development of our schedulability analysis tool which we have
named OSAT. OSAT allows analysis of Java bytecode using the real-time profile SCJ2 described
in Section 5.4, and our STM described in Section 6.2.

7.1 Requirements Analysis

With our choice of using TetaJ as the code-base for OSAT in Section 4.5.4, we identified which
features we had to implement to extend TetaJ and develop OSAT. By looking at what TetaJ is
already capable of, and what we want to achieve as described in Chapter 1, we see that the main
feature that we need to add is analysis of programs using multi-threading and our STM.

SARTS already does schedulability analysis of multi-threaded Java programs for the JOP
using their own implementation of SCJ. To be able to compare our results with SARTS, we
implemented their version of SCJ for the HVM in Section 5.4 and decided on a similar approach
to analysing Java programs:

• Use control-flow analysis of the main method of the Java program to find all instantiations
of the PeriodicThread and SporadicThread classes.

• Perform control-flow analysis for each of the run() methods of the threads. This step will
also perform special handling of STM-related functionality to use our STM-model in the
schedulability analysis.

• Generate a UPPAAL model using the control-flow analyses and add in templates for a
real-time scheduler and handling of each periodic and sporadic task.

58 Schedulability Analysis Tool Development

The resulting schedulability analysis would be more like that of SARTS than TetaJ. Where
SARTS can verify if a program will always be able to execute its tasks within their deadlines,
TetaJ calculates a WCET for one round of running the tasks using cyclic executive scheduling.
Using the approach of SARTS thus makes sense for multi-threaded programs using SCJ.

To identify transactions in the program, we decided to add a specific annotation to the
code before each transaction. TetaJ and SARTS already use Java code comments as annotations
to be able to specify loop bounds in the Java programs. However, these annotations rely on
having access to Java source-code files, which we found unnecessary, since the remainder of
the analysis only relies on access to the compiled Java class files. An alternative to using
code comments as annotations is to use static method calls as described in [45], e.g. writing
RealtimeSystem.loopbound(20); right before a loop instead of //@loopbound=20 which is how
TetaJ reads loop-bounds. Using this approach, we are also able to analyse other languages than
Java that have Java bytecode compilers, since the schedulability analysis is now only dependent
on Java class files. However, the HVM is intended for executing bytecode compiled from Java
[12], and we have not experimented with other JVM compatible languages. Unfortunately, the
addition of static method calls as annotations increases the execution time since the method
calls will incur an overhead in entering and exiting the methods even if they contain no code to
be run. One solution to this would be to modify the bytecode to remove these method calls in
the analysis and before deploying the code to the platform, but that was not added as a system
requirement for OSAT.

7.2 Design and Implementation

We now present our design for OSAT and its implementation. We begin by giving a general
overview of the flow through the tool, followed by an individual description of each of the
components that make up our implementation.

7.2.1 Main Flow

The analysis of a Java program using OSAT takes place through several different steps. In this
section, we describe these steps and how they relate to give a better understanding of where
and how our modifications to TetaJ are incorporated to create OSAT.

1. Load Main Method
The process begins with loading the main method of the program to analyse. The bytecode
in the class file is opened using BCEL and a CFG of the main method is generated to access
its code.

2. Find Threads
This step consists of walking through the code of the mainmethod using the CFG generated

Design and Implementation 59

in the first step. During this walk, we search for places where subclasses of PeriodicThread
or SporadicThread of our SCJ implementation are instantiated and read the task properties
sent via PeriodicParameters or SporadicParameters as arguments.

3. Analyse Threads
In this step, the run method of each discovered task is analysed and a CFG is created
for the run method and for each method used. The CFGs are then analysed to discover
transactions, set bounds on loops, and locate firings of sporadic tasks.

4. Generate UPPAAL Model
This step is where the UPPAAL model is generated with a template for each method in
the program. Various UPPAAL model constants are also defined and arrays used in the
verification are initialised. To start the run methods in the UPPAAL model, a template for
each task is created which manages the temporal properties such as deadline, period, and
minimum inter-arrival time.

5. Combine UPPAAL Model
In this step, the generated UPPAAL model is combined with various static UPPAAL
templates that each reside in their own UPPAAL model files. These templates are necessary
to complete the UPPAAL system, and include a model of the scheduler, a model of the
platform, and the model of our STM.

6. Output UPPAAL Model
Finally, the resulting XML-file is saved to disk and can be opened with UPPAAL to perform
the schedulability analysis.

The first and second steps are where we add the SARTS thread-capability to TetaJ for it to
be able to analyse each thread in the program. The third step is basically a loop around how
TetaJ analyses a single-threaded program, where we have added additional analysis phases to
incorporate our unique functionality. In the fourth step, we added the templates to handle the
threads, where TetaJ only has to analyse the main method. The fifth and sixth steps are the
same as in TetaJ, where the TetaJ model combiner program is used to combine several UPPAAL
models into one, where the resulting UPPAAL model is then verified using UPPAAL.

The flow and architecture of OSAT is also illustrated in Figure 7.1. We adopted the idea of
a combiner phase from TetaJ, which allows us to plug in different models for the scheduler and
STM. This is useful in the event the tool should consider a different scheduling scheme than the
preemptive fixed-priority scheme we provide, or an STM with different properties than the one
we provide.

In the following sections, we describe the details of each step to explain how OSAT works.

60 Schedulability Analysis Tool Development

Real-time
Java program

Model
Generator

Intermediate
representation

Model
Combiner

JVM model

Abstraction

Transaction
Analysis

Loopbound
Analysis

Complete
UPPAAL
system

Scheduler
model

STM model

Figure 7.1: The flow and architecture of OSAT showing a similar pluggable architecture
found in TetaJ.

7.2.2 Load Main Method

In programs analysable with TetaJ, the main method is where the mission phase is executed.
However, in the multi-threaded SCJ implementation, the mission phase takes place when the
periodic threads are all running and the main method is blocked in the call to RealtimeSystem

.start() after it has instantiated all the tasks. This means that OSAT must first perform an
analysis of the main method to discover all the tasks of the system, and then generate the
UPPAAL model based on the run methods of the individual tasks. By using this approach, we
attain the same functionality in this step as found in SARTS.

In our approach, only the main method is analysed, and thus if the main method initialises
threads in a separate method that is called, these threads will not be detected. This means that
it is a convention that the main method must have the form shown in Listing 7.1.

1 public static void main(String[] args)

2 {

3 // Code that is part of the initialisation phase

4 ...

5

6 // Thread initialisation

7 new MyPeriodicThread1(new PeriodicParameters(1000000, 1000000, 250000));

8 new MyPeriodicThread2(new PeriodicParameters(2000000, 1000000, 0));

9 new MyPeriodicThread3(new PeriodicParameters(1500000, 1500000, 0));

10 new MySporadicThread1(new SporadicParameters(1, 1000000, 100000));

11 ...

12

13 // More code that is part of the initialisation phase

Design and Implementation 61

14 ...

15

16 // Start mission phase

17 RealtimeSystem.start();

18 }

Listing 7.1: An example of the initialisation phase in SCJ2.

The first code in line 4 is where any initialisation code can be run. In lines 7–11, all threads
of the system are initialised, and then in line 14, more initialisation code can be run. Finally,
the mission phase is started by running all the periodic threads in line 17. The most important
part is that all threads are instantiated in the main method only. It is possible to run code in
between instantiations of threads, but this is not shown in the example. The execution time of
the initialisation phase is not relevant to the schedulability analysis.

7.2.3 Find Threads

After the main method has been loaded, we use the same CFG generator that is used to create
UPPAAL templates in TetaJ to find the thread instantiations. The output of the CFG generator
contains a list of all instructions in the analysed method, which we then iterate over to locate
all new statements. When a new statement is encountered, the names of the super-classes of the
class being instantiated are compared to the SCJ periodic and sporadic task classes javax.scj

.PeriodicThread and javax.scj.SporadicThread. Any real-time task will extend one of these
classes and be instantiated in the main method by our convention.

1 if (statement instanceof StackPush)

2 {

3 StackPush pushStatement = (StackPush)statement;

4 switch (currentThread.getType())

5 {

6 case Periodic:

7 currentThread.setPeriodicParameter(pushStatement.getValue().getIntValue());

8 break;

9 case Sporadic:

10 currentThread.setSporadicParameter(pushStatement.getValue().getIntValue());

11 break;

12 }

13 }

Listing 7.2: Excerpt of our code to extract thread parameters.

Another convention, that is also found in SARTS, is that the constructor of each task takes,
as its first argument, an instance of either PeriodicParameters or SporadicParameters depending

62 Schedulability Analysis Tool Development

on whether it is a periodic or sporadic task. The constructors of these classes take the arguments
described in Section 5.4. To allow OSAT to access the parameters without performing data-flow
analysis, the arguments must be passed as integer literals, and not as variables. Using this
convention we can access the numbers with the code in Listing 7.2.

This code is run as part of the loop that iterates over each bytecode and after an instantiation
of either a subclass of PeriodicThread or SporadicThread. We can then access the numeric value of
each argument in lines 7 and 10 through the bytecode statement getValue method, which is im-
plemented in the JOP libgraph bytecode analysis library from WCA. The setPeriodicParameter

and setSporadicParameter methods are implemented by us in our ThreadInfo class to set the
parameters while holding the state of which parameters have been set and which is the next
one. One ThreadInfo instance is created for each thread found in the main method.

After all threads have been found in the main method, we assign the priorities of the tasks.
In the implementation of SCJ, tasks are given priorities based on whether they are sporadic or
periodic, and on their deadlines. A sporadic task always has a higher priority than a periodic
task, and, of two sporadic or periodic tasks, the task with the lowest deadline has higher priority.
In OSAT, we have implemented this as a compareTo method that can compare two ThreadInfo

objects. We then just iterate over the threads using the code in Listing 7.3 to set the priorities.

1 int priority = 1;

2 for (ThreadInfo ti : threads) {

3 ti.setPriority(priority++);

4 }

Listing 7.3: Thread priority assignment.

Here the iterator used will automatically iterate over the threads in sorted order by priority
because the ThreadInfo class implements the Java Comparable interface.

7.2.4 Analyse Threads

We now have information about all the threads that are created in the main method and can
begin to analyse the run methods of the threads. For each thread, a CFG is created of the run

method and, recursively, all methods called from the run method. This means that any method
reachable from the run method will have a CFG generated. Using these CFGs, we then perform
different analysis steps to add our functionality to the generated UPPAAL model:

Transaction Analysis

The first analysis that we perform is the transaction analysis. To be able to recognise trans-
actions, each transaction must have the form described in Section 6.2, and must further be
prepended with a call to RealtimeSystem.transactionStart(). The transactionStart method

Design and Implementation 63

is an empty static method, and calls to this method are looked for in the transaction analysis.
When a transaction is found, the CFG is modified to remove the do-while-loop and try-catch
of the transaction and replace calls to the STM with special instructions that will become syn-
chronisation points with our transaction template in the UPPAAL model that is generated later.
Removing the do-while loop and try-catch block of the transaction is done because these parts
of the transactions are handled by the transaction template.

The transaction analysis can be seen as a finite-state machine with four states depending on
what is searched for in the CFG of a method:

TxStart is when a call to RealtimeSystem.transactionStart() is being looked for. This is the
state that the analysis is in whenever it is searching for the next transaction.

TxNew is when a call to the txNewmethod of the TContext object is looked for. While the analysis
is in this state, all nodes encountered are removed from the CFG to ignore the first part of
the do-while loop and try-catch block around the transaction.

TxCommit is the state that signifies that the call to the txCommit method of the TContext object is
looked for. This is the body of the transaction, and here we also look for calls to txOpen of
the TContext object, where new shared variables are opened. Calls to txOpen are rewritten
in the CFG so that they will become synchronisation points with the transaction template
later. The fully qualified name of the first argument of the call, which is the shared variable
to open, is used to identify which shared object the transaction is trying to open.

TxIsCommitted is after the call to txCommit of the TContext object has been located, and the call
to txIsCommitted of the TContext object is searched for. The call to txIsCommitted signifies
the end of the transaction do-while loop and thus also the end of the transaction. In this
state all bytecode instructions are removed from the CFG to remove the catch block of the
try-catch block and the remainder of the do-while loop. After the txIsCommitted call is
found, the analysis goes back to the txStart state to search for the next transaction.

Since the fully qualified name of the shared object to open is used to identify when two
transactions are opening the same object, it is necessary that all shared objects are accessed
through static fields, so that the shared objects can be recognised correctly without a data-flow
analysis. Whenever a call to txOpen is found, a static map of all shared objects is searched to see
if the shared object with that name has been seen earlier. If not, a new RefInfo object is created,
which holds the name of the shared object and a unique integer ID, which is later used in the
generation of the UPPAAL model to open the shared object in the transaction template. If the
shared object already has an entry in the map of shared objects, we use that so that two different
transactions are able to conflict when opening the same shared object in the UPPAAL model.

64 Schedulability Analysis Tool Development

Loop Bound Analysis

The next analysis that is performed is the loop bound analysis. TetaJ already does a loop bound
analysis by accessing the Java source files of the program to read specially formatted comments
on the lines before loops begin. However, as mentioned in Section 7.1, we decided to change
this analysis to use static method calls for the annotations like in the transaction analysis. Loop
bounds are set using a call to RealtimeSystem.loopBound(int upperBound). As in the arguments
to PeriodicParameters and SporadicParameters, the argument to this method must use an integer
literal to specify the upper bound of the number of loop iterations. This number is then recorded
to be used later in the generation of the UPPAAL templates for each method, so that loops are
correctly bounded.

Sporadic Task Firing Analysis

As described in Section 5.4, sporadic tasks are fired by a call to RealtimeSystem.fire(int

eventNumber). When this call is made in the bytecode of a method, the sporadic task with the
corresponding event number must be fired in the UPPAAL model. During the sporadic task
firing analysis, we identify all these calls so that they can generate a synchronisation with the
corresponding sporadic thread template in the UPPAAL model to release the task. Locating the
calls is done in the same manner as locating loop bounds in the loop bound analysis.

7.2.5 Generate UPPAAL Model

At this point, the generated CFGs are translated into UPPAAL timed automata. The general
idea is to let the progress of the automata denote the execution of bytecode instructions, while
at the same time considering the execution time of each instruction and the temporal properties
defined for each thread.

The UPPAAL system is generated through a series of steps. Figure 7.2 illustrates this process,
which is further described throughout this section.

Generating Thread Models

In order to preserve the concepts of threads in our model, threads are captured in separate
templates. The characteristics of periodic and sporadic threads differ in their execution, where
sporadic threads are one-off and started as a response to a signal, and periodic threads are
repetitive. The structure of these templates are based on similar templates found in SARTS.

In Figure 7.2, Main uses the [threadInfo]s when generating the thread templates. We
provide a template generator for each of the types:

PeriodicThreadTemplateGenerator Generates a periodic thread template. Its construc-
tor takes a ThreadInfo object as an argument and uses it to initialise the properties of the

Design and Implementation 65

Main Thread analysis
Retrieve threads

[threadInfo]
Periodic or sporadic
Temporal properties
Entry method names

CFG generator

Loop [for each threadInfo]
Generate CFGs for entry method

[cfgs]

Thread template
generator

Generate template [threadInfo]

[threadTemplate]

Method template
generator

Generate templates [cfgs]

[methodTemplates]

Figure 7.2: A sequence diagram showing the process of generating a UPPAAL system for a
compliant Java program using OSAT.

thread template. The temporal properties used are deadline, period, and offset. Besides
these, it also uses the fully qualified name of the run method.

SporadicThreadTemplateGenerator Generates a sporadic thread template. Its construc-
tor takes a ThreadInfo object as an argument and initialises the properties of the thread
template based on these information. The specific properties used are the event identifier,
deadline, and minimum inter-arrival time. The fully qualified name of the run method is
also used.

The periodic thread template uses the temporal properties to behave as a periodic thread:
deadline to detect whether the thread finishes in time, period to control the interval of execution,
and offset to delay thread execution. The fully qualified method name is used to start the
automaton equivalent of the run method. For now, we only describe how the thread templates
are generated. The connection between these and starting the run method templates is described
in the next section.

An example of a periodic thread template is given in Figure 7.3.

Initial→ CheckForOffset This transition is taken once the scheduler synchronises on the
GO channel. This is a broadcast channel, and as such all thread templates will participate
in this synchronisation. This is the equivalent of the SCJ mission start.

CheckForOffset→ Tmp1 When the invariant in CheckForOffset becomes false and the guard

66 Schedulability Analysis Tool Development

Figure 7.3: The base template for a periodic thread. The channels invoke_fq_method_name
and return_fq_method_name are used to invoke and synchronise on return from run

methods. The names are placeholders for automatically generated fully qualified method
names based on the actual program.

transition released_time == offset guard is valid, the automaton enters the Tmp1 location,
symbolising the offset of the thread has passed.

Tmp1→ Tmp2 The thread is now released and schedulable, hence the released_time clock is
reset and the thread is marked schedulable by schedulable[thread_id] = true.

Tmp2→ ReadyToBeScheduled If the thread currently running has lower priority, the func-
tion run_scheduler() is called. This function is described in Section 7.2.6, but at this point
it suffices to say it switches the context to this thread.

If the thread currently running has higher priority, the automaton still enters the
ReadyToBeScheduled location, but without forcing the context switch.

ReadyToBeScheduled→ Executing At this point, the actual code in the thread is signaled
to run. This is achieved by having the thread automaton synchronise on a special channel
intended to signal the associated run method: invoke_fq_method_name. Note that this
channel name is only a placeholder, and the name of the channel will change according

Design and Implementation 67

the fully qualified name of the run method in an actual program.

Notice that in the previous un-commited locations, the response_time clock is stopped by
the stopwatch response_time’ == 0. Now that the thread is executing, this clock is started
and measures the response time of the current thread.

Executing→ Done The invariant in Executing forces the out-transition to be taken once the
time since release is greater than or equal to the deadline of the thread. However, the
out-transition can be taken if and only if the automaton responsible for the actual thread
code returns from execution, denoted by the synchronisation on the run_fq_method_name

channel. If this transition cannot be taken at any point in time, the thread has effectively
missed its deadline.

The response_time clock is also reset, letting the intermediate value of the clock be the
response time of the thread.

Done→ Tmp1 Once the thread is done executing and its period has passed, the thread is made
schedulable again by entering Tmp1 once again.

Sporadic threads are modeled in much the same way, except sporadic threads are signaled
to execute programmatically whereas periodic threads are signaled by time. The base model for
sporadic threads is given in Figure 7.4.

Much of the logic behind the periodic thread template also applies for the sporadic thread
template, except that sporadic threads do not have offsets and periods, but are signaled to be
released and a minimum inter-arrival time:

Idle→ ReadyToBeFired The thread is made ready to fire when the scheduler synchronises
on the GO broadcast channel, and marked fireable by fireable[thread_id] = true.

ReadyToBeFired→ ReadyToBeScheduled Sporadic threads are released whenever an-
other thread synchronises on the fire channel array, where the thread_idth element denotes
the specific thread.

At this point, the sporadic thread is ready to be scheduled and synchronises on both the
invoke and return channel, similar to how periodic threads invoke their associated run

methods.

Generate Method Templates

We already established how CFGs are generated using the run method for each thread as entry
point. That is, for each tread in the Java program under analysis, we have a complete list of
every method invoked by this thread and a CFG for each of these including the run method.
This is illustrated in Figure 7.5.

68 Schedulability Analysis Tool Development

Figure 7.4: The base template for a sporadic thread. The channels invoke_fq_method_name
and return_fq_method_name are used to invoke and synchronise on return from run

methods. The names are placeholders for automatically generated fully qualified method
names based on the actual program.

The final UPPAAL system will consist of a set of templates, where each invoked method
in the Java program is represented by a single template and two channels: invoke_<fq_name>

and return_<fq_name> for synchronising upon invocation of and returning from a given method
respectively. A simple example is given in Figure 7.6.

The use of the jvm_execute channel denotes the invocation of a bytecode instruction, which
is handled in a separate JVM model described in Section 7.2.6.

However, the mapping between methods and UPPAAL templates illustrated in Figure 7.6 is
not sufficient for multi-threaded programs. If two threads were to invoke Invokee at the same
time, only one of them would succeed since only one can synchronise on the invoke channel.

Method2

Methodn

CFG2

CFGn

... ...

Method1 CFG1

Thread

run
method

CFGrun

Figure 7.5: For each thread in the Java program being analysed, OSAT generates a CFG for
the run method and each of the invoked methods.

Design and Implementation 69

1 class InvocationExample
2 {
3 public void Invoker()
4 {
5 Invokee();
6 }
7

8 public void Invokee()
9 {

10 // Do something
11 }
12 }

(a) Example Java code showing a sim-
ple method invocation.

(b) Corresponding UPPAAL tem-
plates capturing the method invoca-
tion found in (a).

Figure 7.6: Methods are mapped to UPPAAL templates. Invocation of and returning from
methods is modeled through synchronisation channels.

Furthermore, a single instantiation of each method template would also result in a synchronised
invocation of methods.

Clearly, this does not capture the notion of concurrency in the given program. To address
this, OSAT does the following:

• Generate invoke and return channels as arrays of size equal to the number of threads.

• Instantiate one of each method template per thread parameterised by thread IDs.

Figure 7.7 is an excerpt of a generated model, which uses this approach. Notice how
jvm_execute has also become a channel array now. This is because we also instantiate a JVM
template per thread, in order to isolate the execution of each thread entirely. However, using
this approach naively would enable the system to perform execution of bytecode instructions in
parallel—each of the JVM models will synchronise with the respective method templates, and
since there is one of each per thread, they will execute in parallel which is not correct behavior.
We overcome this by introducing UPPAAL stopwatches in the model, which is described in
Section 7.2.6 where we document the inclusion of JVM, scheduler, and transaction models.

70 Schedulability Analysis Tool Development

Figure 7.7: To support concurrency in the UPPAAL system, invoke and return channels
have been made arrays of size equal to the number of threads.

Generate Transaction Interaction

When programs using the our STM are analysed, the transaction analysis step described in
Section 7.2.4 decorates the CFG with extra information. This information is used to determine
when a transaction is started, when shared values are opened, when transactions are committed,
and when they are aborted. In order to support the STM concepts in the generated model,
OSAT includes the transaction template we defined in Section 6.2. An overview of the template
extended to be able to interact with the remaining system is provided in Figure 7.8.

Figure 7.8: The STM model has been extended to contain an abort channel in order to
interact with the generated models.

Before the transaction analysis, invocations of txStart, txOpen, and txCommit are represented
as regular method invocations in the CFG. Using the decorated transaction information, the
generated template will become transaction-aware and able to interact with the included STM
model: for every encounter of txStart, the template will synchronise with the transaction model

Design and Implementation 71

Figure 7.9: An excerpt of a method template, where invocations of STM related methods are
extended with synchronisations in order to interact with the STM model.

on the start_tx channel. For every txOpen, the template will synchronise on the open_tx channel
using an intermediate variable to hold an identifier of the requested shared variable. For every
txCommit, the template will synchronise on the commit_tx channel, and lastly, if the transaction is
aborted, the transaction model synchronises back to the method template. Aborting resets the
execution of the invoking method, which is illustrated in Figure 7.9 including examples on how
STM actions are mapped.

The TXSTART location is entered whenever txStart is invoked, and, as it can be seen, it
synchronises on the start_tx_ channel. This signals the transaction template to enter its Running
location. The out-transition from TXSTART indicates execution of some bytecode instructions,
but when txOpen is invoked, the method template synchronises on the invoke_txopen channel1.
The identifier of the requested shared variable is stored in the ref_to_open array, which is then
read by the transaction model. Should the opening logic in the transaction model prohibit
this shared variable from being opened, the transaction model will synchronise back on the
abort_tx channel, thus resetting the execution of the transactional block. If it succeeds, the
transaction template synchronises back to the method template on the open_tx channel again,
thus indicating it was successfully opened.

1The channel name has been shortened for readability purposes. OSAT automatically inserts a generated name,
which is a combination of the fully qualified method name and a unique identifier.

72 Schedulability Analysis Tool Development

7.2.6 Combine UPPAAL Model

In order to complete the UPPAAL system, additional static templates that we have created must
be included. This is achieved in this step, by combining the generated UPPAAL system with
the static templates. This is similar to both TetaJ and SARTS.

In TetaJ, this step is performed in a separate Java program that is part of the TetaJ program
suite, but we have chosen to integrate the process into the main flow of OSAT, as in SARTS, to
avoid having to call an extra program after having run the first steps of the analysis.

The models included are:

Scheduler Maintains the execution and preemption of threads in the system. It is based on the
fixed-priority preemptive scheduling scheme.

StaticJvm Responsible for simulating the execution of bytecode instructions on the platform
while preserving the worst-case execution times of these.

Transaction Whenever transactions are created and interacted with in the analysed program,
the transaction template is used to respond to these interactions.

The scheduler model is responsible for starting threads when they are supposed to be started.
That is, when they are schedulable. Figure 7.10 shows the scheduler template which is injected
into the generated UPPAAL system.

Figure 7.10: The scheduler template which is injected into the generated UPPAAL system
as-is.

The invariant in Running and the guard on the out-transition simulates the execution time of
the scheduler, which is 1 cycle. While this is clearly not enough for a scheduler, it is the number
used by SARTS. In future work, the actual WCET for the scheduler of the chosen platform must
be used to give a sound analysis.

Design and Implementation 73

it is not important in the context of this project as we do not consider jitter in our timing
analysis.

Exiting from the Schedule location, the scheduler can take one of two transitions depending
on whether or not there is a schedulable thread. If not, the idle() function is called, which
simply marks every thread as not running. If there is a thread schedulable, the select_thread()

function is called, which is where the fixed-priority preemptive scheduling logic resides. The
code is provided in Listing 7.4.

1 void select_thread()

2 {

3 int i;

4 selected_thread = -1;

5 selected_thread_priority = -1;

6 for (i : thread_id_t)

7 {

8 if (schedulable[i] && thread_priority[i] > selected_thread_priority)

9 {

10 selected_thread = i;

11 selected_thread_priority = thread_priority[i];

12 }

13 }

14

15 for (i = 0; i <= NUM_THREADS; i++)

16 {

17 running[i] = 0;

18 }

19 running[selected_thread] = 1;

20 }

Listing 7.4: The source code of select_thread, which contains the fixed-priority preemptive scheduling
logic for the scheduler template.

The function iterates through every thread identifier in the system, defined by the thread_id_t
bounded integer type, and leaves selected_thread with the identifier of the schedulable thread
with the highest priority. Lastly, the selected thread is marked as running. Marking a thread as
running allows the associated JVM model to execute its code.

The JVM template is then included. It simulates the execution time of executing bytecode
instructions, and is the lowest level of abstraction in the UPPAAL system. An example on
how this interaction works is given in Figure 7.11. First, the method template to the left sets
jvm_instruction = JVM_ICONST_3 indicating this is the bytecode instruction to execute. Then
it synchronises with the JVM template using the jvm_execute channel parameterised by the
identifier of the calling thread. Once the JVM model enters the JVM_Execute_ICONST_3 location,
time elapses on the execution_time clock if and only if the thread is marked as running—that
is, when running[thread_id] == 1. This is denoted by the stopwatch syntax execution_time’ ==

74 Schedulability Analysis Tool Development

running[thread_id] indicating the rate of which the clock increases, which in turn means the
execution is stopped when running[thread_id] == 0.

Figure 7.11: Excerpts of the generated UPPAAL system showing how method templates
interact with the JVM template, and how stopwatches are used to control execution of the
instructions. The JVM model to the right is simplified; showing only how one bytecode
instruction is encoded in the template.

In TetaJ, the JVM template communicates with a model of the hardware to provide exact
timings for the platform. However, we have simplified this by removing the hardware model,
and instead set the timings directly in the JVM template as described above. The transformation
from the TetaJ static JVM model to our version was performed using a Python script. This script
edited the XML of the static UPPAAL model to remove all synchronisation with the hardware
model, and add timing guards and invariants along with the stopwatches we use.

The transaction template is also included. How the generated system interacts with the STM
model is described in Section 7.2.5.

7.2.7 Output UPPAAL Model

The final stage of OSAT is where the combined UPPAAL model is written to an XML-file on the
disk. Using this file, it is possible to perform the actual schedulability analysis of the program
by using UPPAAL to check that the model is deadlock-free. Any deadlocks indicate that it is
possible for the system to miss a deadline, thus proving that the system is not schedulable.
However, if the system is proven deadlock-free by UPPAAL, then all tasks will always be able
to finish executing within their deadlines thus proving that the system is schedulable.

Chapter 8

Experiments

In this chapter, we describe experiments we have performed with OSAT. We have conducted
three experiments that show different aspects of OSAT comparing it to SARTS and how our
claims in Section 6.2 are fulfilled in practice:

Response Time Comparison with SARTS In an example found in [46] with a periodic and
two sporadic threads, we compare response times of the tasks with UPPAAL in models
generated by SARTS and OSAT. This experiment shows how similar models generated by
OSAT are to those generated by SARTS.

Response Times of Lock-Based and STM-Based Tasks With an example of our own construc-
tion, we compare response times of tasks that use lock-based synchronisation with re-
sponse times of the same tasks using our STM. With this experiment, we show what kind
of overhead our STM incurs on a program and how a high priority task critical section is
affected by critical sections of other tasks.

Fault-Tolerance Through an example constructed from our previous example, we show how
our STM provides certain fault-tolerance to tasks using transactions instead of lock-based
synchronisation.

8.1 Response Time Comparison with SARTS

In this section, we use a small example program called ConditionalSporadic found in [46] to test
OSAT and compare the results with the output of SARTS. Because OSAT uses the same timings
as SARTS, the resulting schedulability analyses should match. The test program consists of one
periodic task that fires one of two sporadic tasks every period. The code for the periodic task is
shown in Listing 8.1 and the code for the two sporadic threads is shown in Listing 8.2.

1 package ConditionalSporadic;

2 import javax.scj.*;

76 Experiments

3

4 class ExamplePeriodic extends PeriodicThread{

5 public ExamplePeriodic(PeriodicParameters pp) {

6 super(pp);

7 }

8

9 boolean b = true;

10

11 public boolean run() {

12 if(b)

13 RealtimeSystem.fire(1);

14 else

15 RealtimeSystem.fire(2);

16

17 return true;

18 }

19 }

Listing 8.1: Periodic thread that fires one of two sporadic threads every period.

1 package ConditionalSporadic;

2 import javax.scj.*;

3

4 class ExampleSporadic extends SporadicThread{

5 public ExampleSporadic(SporadicParameters sp) {

6 super(sp);

7 }

8

9 int j = 0;

10

11 protected boolean run() {

12 RealtimeSystem.loopBound(2);

13 for(int i = 0; i<2; i++); // @WCA loop=2

14 return true;

15 }

16 }

Listing 8.2: Sporadic thread that loops twice doing nothing and then returns.

For analysis with OSAT, the code in Listing 8.2 has been modified to use our loop bound
annotation, since the SARTS one of //@WCA loop=2 is not recognised by OSAT.

Using a model generated with SARTS of the original code (without our loop bound anno-
tation), UPPAAL was able to verify that the system is schedulable using the system definition
given in Listing 8.3. In this definition, the periodic task has a period of four microseconds which
is equal to 240 JOP cycles at 60 MHz. Since the sporadic tasks are released by the periodic thread
at most once every period, these have minimum inter-arrival times of 4 microseconds as well.

Response Time Comparison with SARTS 77

Task Priority SARTS OSAT
Periodic 1 193 307
Sporadic 2 69 162
Sporadic 3 69 162

Table 8.1: Response times in JOP cycles for the tasks of the ConditionalSporadic program
found with SARTS and OSAT.

1 new ExamplePeriodic(new PeriodicParameters(4));

2 new ExampleSporadic(new SporadicParameters(1, 4));

3 new ExampleSporadic(new SporadicParameters(2, 4));

Listing 8.3: Task definitions for the example real-time system.

In [18], it is shown that a traditional schedulability analysis is not able to verify that the
system is schedulable because the response time of the periodic thread would be too high if both
the sporadic threads were to be released every period. However, using SARTS, the system can
be proven schedulable because the periodic task can only trigger one of the sporadic tasks each
period, thus reducing the response time to schedulable levels.

With this experiment, we want to show that OSAT reaches the same conclusion as SARTS
with its generated model. However, since the code used for OSAT contains an additional
static method invocation in the sporadic tasks to provide the loop bound annotation, we cannot
compare the results directly. Instead, we compare the response times of each task and then show
that the generated model of OSAT is equivalent to that of SARTS.

To read the response times of the tasks, we modified the SARTS model by hand to add a
clock that runs only when the task is released and is reset after the task has finished executing,
which means that it records exactly the response time of the task. In Figure 8.1, the modified
SARTS template for a periodic thread is shown. The clock we have added to the template is
called response_time, and to ensure that it only runs in the ExecutingThread location, we have
added a stopwatch of response_time’ == 0 to all other non-committed locations in the template.

In a similar fashion, we have also added this to the sporadic thread template, so that we can
also query the response time of the two sporadic threads.

To find the response time of each task, a sup query per task was used: sup:PeriodicThread1
.response_time gives the response time of the periodic task, while sup:SporadicThread2.

response_time and sup:SporadicThread3.response_time give the response times of the sporadic
tasks.

Using the same procedure to get the response times of the tasks in the model generated by
OSAT, we get the response times shown in Table 8.1. In this table, we see that the response times
of the tasks analysed with OSAT are higher than those found with SARTS. As mentioned, this is
due to the invocation of the static RealtimeSystem.loopBound method that we use in OSAT. The

78 Experiments

Figure 8.1: The modified periodic thread template in the generated SARTS model.

cost of the STATICINVOKE bytecode for the static method invocation is 75 cycles, to which we must
add the cost of pushing the argument to the method onto the stack. In this case, the argument
is an integer in the range from -1 to 5, which means that this is an ICONST bytecode which has
a cost of 1 cycle1. Finally, the void RETURN bytecode to return from the static method costs 21
cycles, so in total the cost of using our loop bound annotation is 97 cycles.

Subtracting the method invocation from the response time found with OSAT gives us 162 −
97 = 65, which is lower than the 69 cycles found with SARTS. The reason for this is that the
compiler we have used to generate the bytecode that we analyse with OSAT is different from
the one used with SARTS. The difference is found in the for-loop, where our newer OpenJDK 7
compiler has optimised the loop by performing the evaluation of the loop-condition at the end
of the loop and starting the loop with a GOTO, whereas the program compiled for SARTS used
an older Java compiler which performed the loop-condition evaluation at the beginning and
then performing a GOTO at the end of the loop. This means an additional GOTO is used at the last
iteration of the loop, costing 4 cycles and thus gives us the same number of cycles: 69 − 4 = 65.

Now that we have accounted for the differences in the analysis of the sporadic tasks, we will
look at the differences between the analyses of the periodic task:

1The general BIPUSH bytecode for pushing an integer literal onto the stack costs 2 cycles.

Response Times of Lock-Based and STM-Based Tasks 79

Because the periodic task fires one of the sporadic tasks, its response time contains the
response time of the sporadic tasks. So we will start by performing the same subtractions we
did for the sporadic tasks: so for the SARTS generated version we get 193 − 4 = 189 and for
OSAT we get 307−97 = 210. This still leaves a difference of 21 cycles. These remaining cycles are
due to SARTS not returning from the static method invoke of the RealtimeSystem.fire method.
In OSAT, however, we do account for the RETURN bytecode, so this adds 21 cycles to the response
time. By subtracting these we get 210 − 21 = 189 which is exactly the number we arrived at for
the SARTS generated version.

These calculations show that OSAT and SARTS provide equivalent models, when taking into
account certain differences in the environment as we have done above.

8.2 Response Times of Lock-Based and STM-Based Tasks

In this experiment, we look at the response times of tasks when using lock-based synchronisation
and when our STM is used. To provide a simple workload for the systems used in the experiment,
we have created two periodic threads of the same class that change a static field using the
synchronisation mechanism to be tested. The code for the lock-based threads is shown in
Listing 8.4 and the code for the STM-based threads is shown in Listing 8.5.

1 public static Integer sharedCounter = 0;

2

3 @Override

4 protected boolean run() {

5 synchronized (sharedCounter) {

6 int current = sharedCounter;

7 RealtimeSystem.loopBound(3);

8 for (int i = 0; i < 3; i++) {

9 current = increment(current);

10 }

11 sharedCounter = current;

12 }

13 return true;

14 }

15

16 private int increment(int value) {

17 return value++;

18 }

Listing 8.4: The code run by the lock-based periodic tasks.

1 public static TValue<Integer> sharedCounter = new TValue<Integer>(0);

2

3 private Integer store;

80 Experiments

4 private TContext c;

5

6 @Override

7 protected boolean run() {

8 RealtimeSystem.transactionStart();

9 do {

10 try {

11 c.txNew();

12 c.txOpen(store, sharedCounter);

13 RealtimeSystem.loopBound(3);

14 for (int i = 0; i < 3; i++) {

15 store = increment(store);

16 }

17 c.txCommit();

18 } catch (AbortException e) {

19 if (c.txRethrowAbort()) {

20 throw e;

21 }

22 }

23 } while (!c.txIsCommitted());

24 return true;

25 }

26

27 private int increment(int value) {

28 return value++;

29 }

Listing 8.5: The code run by the STM-based periodic tasks.

Basically, the code of these two thread classes increments the shared integer sharedCounter

by three. The lock-based version uses Java monitors with the synchronized keyword, while the
STM-based version uses our STM to wrap the increment calls in a transaction. The tasks are
created with the system definition in Listing 8.6.

1 new WorkerThread(new PeriodicParameters(125, 125, 10)); // Priority 2

2 new WorkerThread(new PeriodicParameters(125)); // Priority 1

Listing 8.6: Definition of the real-time system properties for the experiment.

UPPAAL is able to verify schedulability for each of the systems with the query A[] not

deadlock. In Table 8.2, the results of the schedulability analyses for the systems are shown.
The time UPPAAL took to verify the queries has also been added, and shows that there is a
considerable overhead to verifying schedulability when using our STM.

Since the systems are schedulable, we can compare the response times of their tasks to see
more precisely how the schedulability is achieved and the differences between the response

Response Times of Lock-Based and STM-Based Tasks 81

System Verification Time Result
Lock-Based 5 seconds Satisfied
STM-Based 120 seconds Satisfied

Table 8.2: Schedulability analyses of the described real-time systems.

Type Priority With Offset No Offset
Lock-Based 1 1496 1494
Lock-Based 2 867 747
STM-Based 1 6473 4654
STM-Based 2 2327 2327

Table 8.3: Response times for the tasks of the ConditionalSporadic program.

times of the tasks using locks and the tasks using our STM. The response times for all tasks are
shown in Table 8.3.

The offset, which is defined for the high priority task in Listing 8.6 to be 10 microseconds,
ensures that the low priority task is released before the high priority task, thus making it possible
for the low priority task to acquire the shared resource before the high priority task. For the
lock-based version, this means that the high priority task is blocked while the low priority
task finishes its critical section, resulting in the higher response time of the high priority task
when the blocking occurs. The low priority task essentially has the same response time with or
without the offset, as the difference of two cycles is due to the scheduler, which we have given
a WCET of 1 cycle, runs two times more when the low priority task is released first. For the
version with no offset, both tasks are released at the same time, and the response time of the
high priority task is thus the WCET of the task, whereas the low priority task has a response
time of 747 ∗ 2 = 1494 because it must first wait for the execution of the high priority task to
finish before it can use the processor. These interleavings are illustrated in Figure 8.2.

Lock

Attempt lock Lock

Release

Release Done

Done

2

1

Priority

Time

Figure 8.2: Interleavings showing how the high priority task is blocked by the low priority
task.

For the STM-based program, we see that the tasks have higher execution times. This is
due to the overhead of the STM, as each call to the STM library consists of at least two virtual

82 Experiments

method calls which cost over 100 cycles each on the JOP. We see that the version with no offset
again provides the case of a response time equal to the WCET for the high priority task and a
response time equal to two times the WCET for the low priority task. However, when the offset
is introduced, we see that the response time of the high priority task does not increase. This is
because the STM allows the high priority task to preempt the ownership of the shared object
and execute without delay. Due to the preemption of the ownership, the low priority task is
invalidated and must abort and retry its transaction, which increases its response time. This
situation is shown in Figure 8.3.

Start

2

1

Priority

Time

Start

Acquire

Acquire Commit Done

Abort Acquire Commit Done

Figure 8.3: Interleavings showing how the high priority task preempts the low priority
transaction before the end of its critical section.

The result of having exactly the same response time for the high priority task with the offset
as without the offset may not always hold, however. As we remarked in Section 6.2.4, a low
priority transaction may block the execution of a higher priority transaction if it is in the process
of acquiring a variable or committing and thus holds the global transaction lock. Although the
effects of this event are limited, since it is only possible for a transaction execution to be blocked
once per execution, and even then it will in the worst case be blocked only for the time it takes
to commit the transaction of lower priority that takes the longest to commit. This is potentially
much less than in the lock-based program, where the high priority task could be blocked for the
entire length of a critical section of a lower priority task.

From our claims in Section 6.1.1, we expected that the STM-based program would allow the
high priority task to complete its execution with less time spent blocked than the lock-based
program. The experiment confirmed this by comparing with a lock-based program that we used
as a baseline to show the amount of blocking that was avoided by using STM instead of locks.

8.3 Fault-Tolerance

For our final experiment, we again use the lock-based and STM-based programs to show what
effect it would have on a real-time system if a low priority task misbehaved in a critical section.
In our experiment, we use the UPPAAL models of the programs to simulate that the low priority

Fault-Tolerance 83

task of each program crashes in its critical section, however, the same logic applies should the
low priority task enter an infinite loop or exhibit similar unexpected behaviour. If the priority
of a task denotes the importance of that task, it may be useful for the higher priority tasks of the
system to continue executing unaffected. This experiment shows how that is possible using our
STM.

In Figure 8.4, we see a small part of the critical section modelled in the UPPAAL template
for the run method of the tasks (see Listing 8.4 and Listing 8.5). This is part of the loop where
the method increment is called. To simulate the thread crashing, we have added a guard so
that only the high priority thread with the thread_id of 2 is allowed to continue, as shown in
Figure 8.5.

Figure 8.4: Part of the original worker thread template in the body of the for-loop.

Figure 8.5: The modified template which makes the low priority thread hang at the invoka-
tion of the increment method.

With the modified model, we see that UPPAAL is no longer able to prove that the system is

84 Experiments

schedulable. What is more important in this experiment, though, is that none of the tasks can
run to completion. By using the queries E<> Thread1.Done and E<> Thread2.Done, UPPAAL tells
us that these properties are not satisfied, which means that it is not possible for either of the
tasks to finish executing even their first release.

By performing the same change to the model of the STM-based program, we again find that
UPPAAL is not able to prove that the system is schedulable. This is of course because the low
priority thread cannot complete its execution, which is verified by UPPAAL telling us that the
query E<> Thread1.Done is not satisfied. However, with our STM, it is possible for the high
priority task to continue executing, because it is not being blocked by the low priority thread.
UPPAAL can verify this with the query A<> Thread2.Done, which it indeed proves to be satisfied,
and running the query sup:Thread2.response_time shows us that the response time of the high
priority thread remains unchanged at 2327 cycles.

Chapter 9

Evaluation and Future Work

In this chapter, we evaluate the choices we have made throughout this project. As a part of each
section, we also suggest future efforts which could improve our work.

We begin by discussing the development of our STM and the implications of introducing
STM in a real-time setting in Section 9.1.

This is followed by an evaluation of our work on the HVM in Section 9.2, which has under-
gone several modifications in order to meet the requirements set up in this project.

Then we evaluate on our tool OSAT in Section 9.3. Reusing functionality from TetaJ and
SARTS had it strengths and weaknesses, which are documented here.

Lastly, we evaluate the development process and applied methods used throughout the
project in Section 9.4.

9.1 Software Transactional Memory

The blocking STM we designed during this project period has made schedulability analysis more
difficult than the analysis we considered for our non-blocking design since it introduced the
ability for tasks to block each other, which the non-blocking design did not allow. We were able
to reason about the worst-case time a transaction could be blocked, but due to time constraints
we could not implement an exact analysis of this in OSAT.

Using OSAT, we discovered that the time it takes to access and execute the code of our STM
is significantly higher than using locks. Especially when critical sections are small, we see that
the time consumed to execute it consists mostly of running our STM code. In an improved
version of our STM, it might be interesting to look at cutting these costs, for example by inlining
the method calls of the STM to reduce the number of method invocations that are very costly to
execute. Another way to reduce the overhead could be to implement the transactional memory
in hardware as in [9], however, the focus on this project was to make an analysable STM, so
performance was not considered to be of any concern.

86 Evaluation and Future Work

Even with a high overhead, we still find STM to be a valuable addition to real-time systems
development, since it guarantees deadlock freedom, minimises priority inversion, provides
composability through nesting, and allows for fault-tolerance as demonstrated in Section 8.3.
Another useful feature would be to add the syntactic sugar shown in Listing 6.1. This would
decrease the amount of boilerplate code needed to use our STM, but would require an additional
step to transform the code into using the STM library.

9.2 Hardware-near Virtual Machine

We extended the HVM with multi-threading to be able to use synchronisation mechanisms.
However, by using POSIX threads to implement multi-threading, we limited the HVM so it was
only able to run on a POSIX OS, which meant that we could not run our code on an embedded
platform. Although we still had embedded real-time systems in mind when developing our
code, it has not been tested on such a platform. Originally, we had planned to create a larger
case-study to test our STM and schedulability tool in a more realistic setting, as done in [19, 18],
but we opted to use the experiments in Chapter 8 instead since we would not be able to test
the case-study in practice. In addition, the experiments demonstrate specific properties in a
very concise manner, which is a strength compared to a case-study where conclusions could be
harder to derive.

Multi-threading was added to the HVM by implementing SCJ2 from SARTS. This approach
made it easy to compare our work with SARTS, since we had the same API for real-time
programs developed for our project as those developed for SARTS on the JOP. Implementing
the JOP specific thread-handling code as native functions on the HVM allowed us to reuse much
of the SCJ2 code. As such, the approach we took to implement multi-threading proved to be of
great success to us, by providing us with a version of the HVM that could be used as a solid
foundation for further development.

Before April 2012, the HVM was prone to race conditions in the heap allocation code, which
meant that our threads could crash randomly if such race conditions were encountered. This is
one of the reasons for HVM being a high-risk choice for this project, but by designing our code
to avoid memory allocation in running threads, we were able to work around this problem.
With a new release of the HVM in April 2012, this problem was fixed as part of the efforts
to implement SCJ with multi-threading on the HVM for all supported platforms. However,
by looking through the code-base of the HVM, we still see patterns that are difficult to reason
about for worst-case execution time of Java bytecode instructions running on the HVM. In TetaJ,
the HVM interpreter was modified to be able to perform a worst-case analysis, but due to the
changes to the HVM since, we did not reuse those efforts. OSAT allows for plugging in a model
of the platform, so using a model of the JOP we were able to compare our results with those of
SARTS. In order to analyse programs targeting the HVM, a new model of the HVM has to be
developed.

OSAT 87

Being a software interpreter of Java bytecode, the HVM proved to be a good choice for this
project. One of the main reasons for this is its open source nature that allowed us to access and
modify the inner workings of the HVM. This would have been more difficult had we chosen
to use the JOP, which runs Java bytecode in hardware, as our target platform. We also had the
benefit of being able to communicate directly with the creator of the HVM, Stephan Korsholm,
which allowed us to get help when we discovered problems that we suspected were due to
the platform, such as the thread-crashes experienced when allocating memory due to the race
condition in the heap allocation code.

9.3 OSAT

We anticipated the time saved from re-using the TetaJ code base would be useful when extending
it with concepts from SARTS, and the time saved from re-using SARTS concepts would be useful
when tying the generated model together with our STM model. The advantage of doing this
was the fact we did not have to create our own object model for a control flow graph (CFG),
let alone the UPPAAL model generator. Instead, we modified the object model of TetaJ to
contain information on transactions which we utilise in the model generator. As we describe
in Section 7.2.4, it was easy to add new analysis procedures which was how we decorated the
generated CFGs with transaction details.

We recognise STM usage by looking for invocation of the static methods, indicating the
start of a transactional block, creation of a new transaction, opening of shared variables, and
committing and aborting a transaction. The method invoked when starting a transactional block
is empty, but it still counts as a method invocation in the analysis. This also applies for loop
bound definitions, which are empty methods as well. It enables OSAT to operate on class-files
only without the need of access to the corresponding source code files. This is a great advantage
in that OSAT could potentially analyse programs written in other languages targeting the JVM.
As mentioned in Section 7.1, it would be possible for OSAT to remove these invocations from the
CFG, thus removing the execution time overhead and still being independent of the source files.
The resulting bytecode could then be written to separate class-files, which would be deployed
to the platform as optimised bytecode. The overhead could also be reduced by using variable
assignments, e.g. RealtimeSystem.loopBound = 20;, which are cheaper to execute than method
invocations, but removing the method invocations before deployment would completely remove
the overhead of the annotations.

UPPAAL was used to great success for this project. In addition to TetaJ and SARTS, UPPAAL
has also been used to analyse the schedulability of transactions in [44] but without the containing
program. This indicates that UPPAAL is a good base for schedulability analysis of multi-
threaded real-time programs using a real-time STM, which has been proven to be true in this
project.

Another shortcoming of OSAT, which is due to it being based on TetaJ, is that the analysis

88 Evaluation and Future Work

does not consider the time it takes to execute methods of Java library classes, e.g. java.lang.
String. The same is true for SARTS, where the SCJ2 and JOP library classes are also exempt
from analysis. To be able to compare our results with SARTS, we also exempt SCJ2 from being
analysed in OSAT. However, this means that all three tools are unsound in this regard. Thus,
before OSAT can be considered sound, these shortcomings must be addressed in future work.

In OSAT the JVM model is parameterised like in TetaJ, with the possibility of defining custom
worst-case execution timings for each bytecode instruction. We use the timings of the JOP in
order be able to compare our analysis with that of SARTS. However, to use OSAT with the HVM,
it is necessary to use HVM specific timings.

Further inaccuracy can be found when transactions validate upon opening shared variables
and committing, which takes linear time with respect to the current size of the open set. We
have prepared for this in both OSAT and STM model, but it is still short of exact timings for
objects with a variable number of fields and types. At this point, we provide a fixed timing for
this in order to demonstrate the concept, but future work is needed to determine the exact time
required.

9.4 Development Process

The assumptions we made about the project being characterised by unknown factors and risks
led us to choose a risk-driven agile work style. For example, during the work on the HVM
we often hit dead-ends and problems which took more than a week to solve. Based on our
risk assessments, the HVM was one of the first things we started to work. If we had begun
working on the HVM at a later stage, assuming it would be straight-forward, we could risk
facing problems that would take too long to solve compared to the time available.

Since we followed an agile work style, we did not define an exhaustive specification of what
we wanted to create, other than stating the basic functional requirements listed in Section 1.2.
Neither did we go through a full phase of analysing the problem domain of using the HVM
or STM for this project, but instead we analysed and solved problems in smaller steps. If we
had provided a full specification of the STM, for example, stating it should be a non-blocking
STM to begin with, we could have ended up implementing other pieces of the project which
relied on this fact. Due to limitations in the HVM, we decided to change the STM and make it
blocking instead. Approaching the parts of this project which had risks and unknown factors
in this manner made it easy to change plans as work progressed. In a waterfall-based process,
we could end up spending a large amount of time speculating on which limitations we would
run into, and which quirks would prevent us from achieving what we wanted.

The model-driven method we applied in developing the STM also proved to be a valuable
technique. We did have an STM implementation from the 9th project term, but without the
proposed real-time properties, and we found it difficult to convince ourselves that the properties
were sound by testing the implementation. Constructing a model of the STM and the real-time

Development Process 89

properties made us think about the actual problem instead of the challenge of implementing
it, and the model was also used to verify the soundness of the properties. In addition to being
an easier way of grasping the STM concepts, the model we constructed from the initial STM
implementation also helped prove the correctness of our STM.

At times, we worked through iterations without upholding the one-week iteration length.
We are not aware of any negative impact of this, and suspect it is more likely to be a problem in
larger teams, where the continuous iteration meetings help keeping everyone up-to-date. Being
a group of two members, we worked closely during every phase of this project, and did not
notice any negative side-effects.

Chapter 10

Conclusion

In this project, we continued our earlier work [10] in bringing STM to hard real-time systems.
In our earlier work, we defined claims which an STM must fulfil in order for it to be suitable in
hard real-time systems. We have developed an STM in this project, which fulfils these claims.
To verify the validity of the claims, we have used the model checker UPPAAL to construct a
model of the STM and express UPPAAL queries that capture our claims.

The STM we have developed respects the priorities assigned to the tasks in the system,
and uses them to prevent transactions in lower priority tasks to abort transactions in those of
higher priority. This enables the highest priority thread to perform irreversible actions such as
I/O, which is useful in embedded real-time systems. However, our STM does not discriminate
between reads or writes, thus creating the possibility of contention in read-only systems. In order
to make the STM more efficient, future work could involve allowing for multiple concurrent
readers.

We chose the HVM as the target platform due to its portability and flexibility. Since it did
not support multi-threading, we have extended it with support for this using POSIX threads.
To provide an API for the programmer to utilise this, we implemented the Safety-Critical Java
profile (SCJ) SCJ2 from SARTS [18].

To determine whether a given real-time program using our STM and SCJ profile is schedu-
lable or not, we have developed a schedulability analysis tool (OSAT) which is capable of
generating a UPPAAL model of the supplied program. This model can then be used with UP-
PAAL to verify whether or not the program is schedulable. OSAT allows plugging in a static
model of the platform to become platform agnostic, like TetaJ which is used as the code base for
OSAT. To add support for concurrency, which is not present in TetaJ, we implemented concepts
from SARTS, and furthermore, we have extended it with features to support the STM we have
developed.

Being platform agnostic, OSAT is able to consider any target platform, provided timings for
each bytecode instruction can be supplied or analysed. In this project, we have considered the

92 Conclusion

HVM as a target platform for our STM. However, in order to compare OSAT with SARTS, from
which the concurrency concepts are adopted, we have chosen to use the JOP timings in our
experiments.

Proving the schedulability of programs using STMs with model checking is a novel technique
we have developed based on the work of SARTS and TetaJ. Estimating the execution time of
STMs in real-time systems manually has been proposed before [47, 48, 49], but OSAT automates
this process by using model checking.

OSAT was tested through three experiments, each showing specific properties of our tool
and STM. In the first experiment, we compare models generated by OSAT and SARTS. We do
this by comparing response times of each task in the models. Through reasoning, we found
the models to be equivalent, providing us with a baseline for response time analysis. In the
second experiment, we compare the use of locks and STM. This shows that using STM results
in a higher execution time, but on the other hand minimises the blocking time of higher priority
threads. The final experiment demonstrates an interesting property gained from using our STM
compared to locks that low priority threads cannot prevent progress for the entire system by
allowing higher priority threads to preempt critical sections. The experiments also revealed that
verifying our STM-based programs required more CPU time compared to lock-based programs.
This is due to the fact that transactions are not synchronised in their critical sections as tasks
using locks are, thus yielding a larger state space within the model.

Throughout the project, we employed an agile risk- and model-driven development process
to structure and organise our work. This minimised the risks and impact of unknown factors
which were associated with the nature of the project.

Manually calculating response times for tasks in a system using STM would be complex,
considering the many interleavings threads and transactions can display. Model-based schedu-
lability is used to automate the process. However, OSAT still has limitations in its analysis in
that it underestimates the time required for scheduling and leaves out certain parts of SCJ2,
transactions, and built-in Java libraries. Before OSAT can be considered sound in its analy-
sis, these missing parts must be added. These additions have been prepared for in OSAT to
encourage this development.

Bibliography

[1] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal on
Software Tools for Technology Transfer (STTT), 1:134–152, 1997. 10.1007/s100090050010.

[2] Bryan Cantrill and Jeff Bonwick. Real-world concurrency. Queue, 6:16–25, September 2008.

[3] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for implementing
software transactional memory. SIGPLAN Not., 41:253–262, October 2006.

[4] Simon P. Jones. Beautiful Concurrency. O’Reilly Media, Inc., 2007.

[5] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. SIGARCH Comput. Archit. News, 21:289–300, May 1993.

[6] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers, 2008.

[7] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with java stm. In Third
Workshop on Programmability Issues for Multi-Core Computers (MULTIPROG-3), 2010.

[8] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan, Marek Prochazka, Bin
Xin, and Jan Vitek. Preemptible atomic regions for real-time java. In In 26th IEEE Real-Time
Systems Symposium, 2005.

[9] Martin Schoeberl, Florian Brandner, and Jan Vitek. Rttm: real-time transactional memory.
In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 326–333,
New York, NY, USA, 2010. ACM.

[10] Marcus Calverley and Anders Christian Sørensen. Towards software transactional memory
in hard real-time java systems, 2011. 9th term pre-specialisation project. Available online:
http://sw9.lmz.dk.

[11] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages. Addison
Wesley, fourth edition, 2009.

[12] Stephan Korsholm. Hvm lean java for small devices. http://icelab.dk. [Online;
accessed 30 Mar 2012].

http://sw9.lmz.dk
http://icelab.dk

94 Bibliography

[13] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Systems. PhD
thesis, Vienna University of Technology, 2005.

[14] Craig Larman. Agile and Iterative Development – A Manager’s Guide. Pearson Education,
2003.

[15] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development (3rd Edition). Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2004.

[16] Ken Schwaber and Jeff Sutherland. The scrum guide: The definitive guide to scrum, rules
of the game. http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf.
[Online; accessed 22 Jan 2012].

[17] eXtreme Programming Explained: Embrace Change. Addison-Wesley, us ed edition, 2001.

[18] Thomas Bøgholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and Kim G. Larsen.
Model-based schedulability analysis of safety critical hard real-time java programs. In
JTRES ’08: Proceedings of the 6th international workshop on Java technologies for real-time and
embedded systems, pages 106–114, New York, NY, USA, 2008. ACM.

[19] Christian Frost, Casper Svenning Jensen, and Kasper Søe Luckow. Wcet analysis of java
bytecode featuring common execution environments. Master’s thesis, Aalborg University,
2011.

[20] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Memory, 2nd edition. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers, 2010.

[21] X/Open Base Working Group. Real-time extension in unix. http://www.unix.org/

version2/whatsnew/realtime.html. [Online; accessed Dec 6 2011].

[22] Oracle-Sun Developer Network. An introduction to real-time java technology: Garbage col-
lection. http://java.sun.com/developer/technicalArticles/Programming/
rt_pt2/. [Online; accessed Dec 2 2011].

[23] Thomas Henties, James J. Hunt, Doug Locke, Kelvin Nilsen, Martin Schoeberl, and Jan
Vitek. Java for safety-critical applications. In 2nd International Workshop on the Certification
of Safety-Critical Software Controlled Systems (SafeCert 2009), 2009.

[24] Oracle Java Community Process. Real-time specification for java (rtsj). http://www.

rtsj.org/specjavadoc/book_index.html. [Online; accessed Oct 9 2011].

[25] Alan Mycroft. Programming language design and analysis motivated by hardware evolu-
tion. In SAS, pages 18–33, 2007.

[26] Michael Gonzalez Harbour. Real-time posix: An overview, 1993.

http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://www.unix.org/version2/whatsnew/realtime.html
http://www.unix.org/version2/whatsnew/realtime.html
http://java.sun.com/developer/technicalArticles/Programming/rt_pt2/
http://java.sun.com/developer/technicalArticles/Programming/rt_pt2/
http://www.rtsj.org/specjavadoc/book_index.html
http://www.rtsj.org/specjavadoc/book_index.html

Bibliography 95

[27] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle River,
NJ, USA, 3rd edition, 2007.

[28] Oracle Corporation. Java real-time system. http://java.sun.com/javase/

technologies/realtime/index.jsp. [Online; accessed Dec 2 2011].

[29] CISS. Indlejrede systemer skal tale java. http://ciss.dk/dk/projekter/

afsluttede_projekter_-_case_stories/indlejrede_systemer_skal_tale_

java.htm. [Online; accessed Dec 28 2011].

[30] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and Benedikt Huber.
Worst-case execution time analysis for a java processor. Softw. Pract. Exper., 40(6):507–542,
May 2010.

[31] The Open Group. Jsr 302: Safety critical java technology. http://jcp.org/en/jsr/

detail?id=302. [Online; accessed Mar 5 2012].

[32] Haskell. http://www.haskell.org/. [Online; accessed Mar 9 2012].

[33] Inc. Oracle. Trail: The reflection api. http://docs.oracle.com/javase/tutorial/
reflect/index.html. [Online; accessed 22 Apr 2012].

[34] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of
finite state concurrent systems using temporal logic specifications: A practical approach.
In POPL, pages 117–126, 1983.

[35] Edmund Clarke and E. Emerson. Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. In Dexter Kozen, editor, Logics of Programs, volume
131 of Lecture Notes in Computer Science, pages 52–71. Springer Berlin / Heidelberg, 1982.
10.1007/BFb0025774.

[36] Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Toward a provably-correct im-
plementation of the jvm bytecode verifier. In In Proc. OOPSLA’98 Workshop on Formal
Underpinnings of Java, pages 403–410, 1998.

[37] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using
implicit path enumeration, 1995.

[38] Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumeration and
model checking based wcet analysis. In Niklas Holsti, editor, 9th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Germany. also published in print by Austrian Computer Society
(OCG) with ISBN 978-3-85403-252-6.

[39] Peter Puschner and Anton Schedl. Computing maximum task execution times - a graph-
based approach. Journal of Real-Time Systems, 13:67–91, 1997.

http://java.sun.com/javase/technologies/realtime/index.jsp
http://java.sun.com/javase/technologies/realtime/index.jsp
http://ciss.dk/dk/projekter/afsluttede_projekter_-_case_stories/indlejrede_systemer_skal_tale_java.htm
http://ciss.dk/dk/projekter/afsluttede_projekter_-_case_stories/indlejrede_systemer_skal_tale_java.htm
http://ciss.dk/dk/projekter/afsluttede_projekter_-_case_stories/indlejrede_systemer_skal_tale_java.htm
http://jcp.org/en/jsr/detail?id=302
http://jcp.org/en/jsr/detail?id=302
http://www.haskell.org/
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html

96 Bibliography

[40] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[41] Wind River. Rtlinux. http://www.rtlinuxfree.com. [Online; accessed 20 Mar 2012].

[42] Rtlinux howto: Why rtlinux. http://tldp.org/HOWTO/RTLinux-HOWTO-3.html.
[Online; accessed 24 Apr 2012].

[43] Oracle. Package java.util.concurrent.atomic. http://docs.oracle.com/javase/

6/docs/api/java/util/concurrent/atomic/package-summary.html. [Online;
accessed Dec 20 2011].

[44] C. Belwal and A.M.K. Cheng. Schedulability analysis of transactions in software trans-
actional memory using timed automata. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2011 IEEE 10th International Conference on, pages 1091 –1098,
nov. 2011.

[45] Erik Yu-Shing Hu, Guillem Bernat, and Andy Wellings. A static timing analysis envi-
ronment using java architecture for safety critical real-time systems. In Proceedings of the
The Seventh IEEE International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 2002), WORDS ’02, pages 77–, Washington, DC, USA, 2002. IEEE Computer
Society.

[46] Thomas Bøgholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and Kim G. Larsen.
Schedulability analyzer for real-time systems (sarts). http://sarts.boegholm.dk/

old.php. [Online; accessed 20 May 2012].

[47] António Barros and Luı́s Miguel Pinho. Managing contention of software transactional
memory in real-time systems. Technical report, CISTER Research Center, Polytechnic
Institute of Porto, Portugal, 2010.

[48] Sherif F. Fahmy, Binoy Ravindran, and E. D. Jensen. Response time analysis of software
transactional memory-based distributed real-time systems. In Proceedings of the 2009 ACM
symposium on Applied Computing, SAC ’09, pages 334–338, New York, NY, USA, 2009. ACM.

[49] S.F. Fahmy, B. Ravindran, and E.D. Jensen. On bounding response times under software
transactional memory in distributed multiprocessor real-time systems. In Design, Automa-
tion Test in Europe Conference Exhibition, 2009. DATE ’09., pages 688 –693, april 2009.

http://www.rtlinuxfree.com
http://tldp.org/HOWTO/RTLinux-HOWTO-3.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://sarts.boegholm.dk/old.php
http://sarts.boegholm.dk/old.php

Appendix A

Example: Response Time Analysis
for FPS

Here we give a short example of how to calculate the response time for a task using response
time analysis as described in Chapter 3. The formula for calculating the response time of a task
is given in Equation A.1 which is a recurrence relation that converges on a fixed point. More
details on how the formula is constructed is given in [10].

wn+1
i = Ci +

∑
j∈hp(i)

⌈
wn

i

T j

⌉
C j (A.1)

Given the task set of independent tasks in Table A.1, we can establish the worst-case response
time for the highest-priority task a equals its computation time, that is Ra = 2 since no blocking
can occur. The response times of the remaining tasks are calculated using Equation A.1. The
iterations needed for calculating the response time for task b is defined here:

Task Period (T) Computation time (C) Priority (P)
a 4 2 2
b 10 3 1

Table A.1: Example task set.

w0
b = 3

w1
b = 3 +

⌈2
4

⌉
3

w1
b = 6

98 Example: Response Time Analysis for FPS

w2
b = 3 +

⌈6
4

⌉
3

w2
b = 9

w3
b = 3 +

⌈9
4

⌉
3

w3
b = 12

w4
b = 3 +

⌈12
4

⌉
3

w4
b = 12

The fourth iteration w4
b yields the same result as the previous iteration w3

b , and thus the response
time for task b in the example task set equals 12. Finally, asserting whether or not the task is
schedulable depends on whether R ≤ T for the given task, and since 12 ≤ 12 task b is deemed
schedulable with respect to both its own computation time and the worst-case interference from
task a.

	Introduction
	Problem Statement
	Subsidiary Goals
	Report Structure

	Development Process
	Applied Methods
	Project Plan

	Real-Time Systems
	Definition
	Schedulability Analysis

	Technology
	Software Transactional Memory
	Programming Languages
	Platform
	Model Checking
	Schedulability Analysis Tools

	Hardware-near Virtual Machine
	Multi-Threading
	RTLinux
	Memory Management
	Safety Critical Java Profile

	Software Transactional Memory Development
	Early STM Prototype
	HVM STM

	Schedulability Analysis Tool Development
	Requirements Analysis
	Design and Implementation

	Experiments
	Response Time Comparison with SARTS
	Response Times of Lock-Based and STM-Based Tasks
	Fault-Tolerance

	Evaluation and Future Work
	Software Transactional Memory
	Hardware-near Virtual Machine
	OSAT
	Development Process

	Conclusion
	Bibliography
	Example: Response Time Analysis for FPS

