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Synopsis:

This thesis will concern topology optimizatior
with two different commercial program#&-
squs CAEandAltair Optistruc)) where SIMP
optimization is used. First will the fundamen
tal theory in the field of topology optimizatior]
be outlined and a review of the historical bac
ground is presented.

Topology optimization will be performed
on three cases with increased complexity. T
two commercial programs will be used an
commented based on different performan
parameters e.g. resulting topologies, comp

ance and time used. This will lead to a

overview of the functionality of the programs,

Topology optimization will be performed
on two civil engineering structure. First a tran
sition piece for an offshore wind turbine. Tw
sizes of transition pieces in CRC concrete g
optimized using SIMP optimization. A ro-
tation constrain is used to ensure loads c
be obtain from multiple directions. Secon
a pedestrian footbridge over a freeway op
mized. The bridge in investigate through fou
topology optimizations. An eigenfrequenc]
constrain is applied in a SIMP optimizatio

task.
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Preface

The present Master thesiStructural Optimization with Topology Optimization of @plex Civil En-
gineering Structuresls prepared and compiled as a part of M. Sc. in Structural anitEhgineering

at Aalborg University. The period of which this thesis isttem is from the 1 of February 2012 to the
8" of June 2012 under the supervision of Poul Henning Kirkedjaad Lars Vabbersgaard Andersen.

Reading Guide

The thesis consists of two parts; a main report and appendikéch can be found in the back of the
report. In the main report there are references to the apEs)dvhere the extensional documentation
are to be found.

For the thesis the two commercial computer programs Abad\E &hd Altair Optistruct is used.
Abaqus and Hyperworks are softwares used for creating dodlating finite element (FEM) models
and preform topology optimization on a structure.

Sources are quoted by the Harvard method of bibliographly thiz name of the author and year
of publication inserted in brackets after the text. Quotmdrses from literature, papers, websites and

design codes will appear e.d_._(B_endw_e_a.nd_SigM 2003).

Figure and table numerations refers to which chapter thiesdfigure or table is located in. Please

note that if a figure or a table is not attached to a source, #éneyproduced by the author. The
bibliography gives extensive information about each seugince several of the sources are recurrent,
the bibliography is not divided into source types. Instehe, sources are sorted alphabetically by
notices, under which information about the source type, a@thor, title, publisher or editor, year of
publication, presentation number, ISBN and URL.
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Chapter 1

Introduction

In this chapter a general presentation to topology optirtictaand an overview of the use of topology
optimization in civil engineering will be given. The histal background of topology optimization is
shown and the scope of the thesis is outlined at the end ohtyzter.

1.1 Topology Optimization in Civil Engineering

A large part of designing a civil engineering structure igledermine the layout of the design for a
structure also called topology. When preforming strudtapgimization and topology optimization,
the goal is to achieve a structure that with a given amountatenal preform best while satisfying

the necessary constrains.

Figure1.1: Qatar Convention Centre created by Arata Isozaki & Assedat

dnmmmqatamnlemm_cﬁlhn_zdlz)

Topology optimization has been used on many types of strestu-rom Aerospace flights, biomed-
ical, nanotechnologies and machine design. An exampleeofifie of topology optimization in a
commercial company is Airbus’ use of topology optimizatiarthe design of the aircraft A380. In-
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Chapter 1. Introduction

side the wing of the aircraft was box ribs weight reused usipglogy optimization. This reduced

the weight of the aircraft with up to 1000 ng_ﬂSLog_eJ MQOZ
Since the 1980’s have the rapidly-growing incensement gaitbdility of computer capacity made

it possible to perform more and more complex finite elementlefimg. This combined with the
improvements in algorithms for design optimization havevetbthe field of topology optimization.
Optimization have mostly been an academic field of interestiy concerned with the mathematical
aspects of structural optimization. More and more engiaead architects are today experimenting
with optimization techniques. Commercial finite elemeritgare packages dsyperworks Suitand
Abaqus CAEare now offering a build in module with structural optimipat algorithms to preform
topology and shape optimization.

The practical applications have only rarely been used ohwedd civil engineering structures.
There is a clear gab between the many papers published camgéopology and shape optimization
and the use on real life civil engineering structures. Okierresent ten years some civil engineering
structures have begun to be build where topology optintnatias been used in practical applica-
tions. An example is Qatar Convention Centre completed Dbeee 2011 cf. FigureIl1. The organic
design of the roof structure was original designed for FloeeNew Station Project in Italy. The 250
m long roof structure was initially created from a deck siynglipported with legs and evolved into
the final form using topology optimizatio 11

Figure 1.2: Akutagwa River Side Project. To the left is a computer mofithe structure. To the
right is the finished structuremo&

Another example of a topology optimized building is the Adgiva River Side Project in Japan com-
pleted in 2004 cf. Figure1.2 . The building is approximaten®06m. Optimization was applied to
three of the four outer wall of the building where materidiaw stress regions was gradually removed

(éué;é ;Ba Xie,

and added to areas with high stress until the final optimisedttsire was achieve

2010)




Introduction to Transition Piece

The slowly growing field of topology optimization makes tresayn process more effective. With the
new tools in the commercial programs it is easier to implengmology optimization in the design
process for real civil engineering structures. The easieess to topology optimization opens for a
new view of structures both for engineers and for architettsre new forms will give a new design
idiom.

Use of topology optimization in civil engineering has sorhaltenges compared to the use in other
field’s e.g. mechanical engineering. The load patterns davileeagineering structure are typical vary
complex and different load patters can influence the strasturhe use of different types of material
and composite material also challenge the use of topologgnation on an civil engineering struc-
ture.

When a structure is optimized it should perform better. Tlaemal in a structure is better used
and the stress distribution should be more homogeneouthdisd. The final volume of the structure
will also be reduces in an optimization and the final struetuill therefore be lighter. These are some
of the benefits an topology optimization of a structure caul l®.

This thesis will concern some of the challenges regardimgplogy optimization in civil engi-
neering. Use of the commercial software packaggperworks Suitand Abaqus CABo preform
topology optimization will be tested and the possibilitieih this new tools are investigated. Then
topology optimization will be performed on two civil engeréng structure. The first structure is
a transition piece of an offshore wind turbine. The traositpiece is the part of the wind turbine
that combines the tower with the foundati(lm_m_ezhﬂnlsgﬂ,&mh). The second civil engineer-
ing structure to be investigated using topology optimarais a pedestrian footbridge. The bridge is

based on a design for a pedestrian footbridge over a freaﬂm_and_xd 0).

Introduction to Transition Piece

For offshore wind turbines there are different types of fitation. A relatively new type of foundation

for offshore structures is a suction bucket (caisson). Aisnducket consists of a steel bucket with
approximately the same length as width attached to a cehpiliee Under pressure is applied inside
the bucket and the bucket pulls itself down into the soil. Shetion bucket functions as a combi-
nation between gravity foundation and a monopile. Some @faitivantages with a suction bucket
compared to a monopile are a fair simplicity if installatidhe structure is stiff compared to other

foundation types and it is possible to decommissioning thetire. (Nezhentseva Qﬂél., 2})10)

The connecting part between the wind turbine tower and tokditdfoundation is called a transition

piece. Traditional offshore structures are constructlouikl in steel and the bucket is designed with
steel-flange-reinforced sheer panels. Another possilmiay be to use a high strength concrete type
called Compact Reinforced Composite (CRC) to the tramsjiece.

The transition piece will be designed for a 5 MW wind turbinighva rotordiameter of 126 m and
a hub height of 77.5 m. The assumed water depth is 35 m. Theadbalse tower is assumed to be
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Chapter 1. Introduction

7 m in diameter and a bucket foundation on 35 m of water is asdum have a diameter of 18 m.

({N_QZDE_DIS_QMB._EIH.__Zle)
[N_QZDE_DLS_GALa_e_LLL_(Zdll) have proposed two heights ofdhsition piece, 9 m and 16 m cf. green
part of Figurd_1.B and has formed the transition piece as ae like structure. The thickness of the

wind turbine tower wall is assumed to be 0.04 m and the thiskmd the suction bucket is assumed

to be 0.03 m. Measurement for the transition piece are showable 1.1.

Table 1.1: Measurement for the transition piece.

Height of transition piecel() 9m/16 m
Radius of of suction buckeRf) 9m
Radius of wind turbine towelR}) 3.5m
Thickness of suction bucket § 0.03m
Thickness of wind turbine towet,) 0.04m

Figure 1.3: Sketch of parts in a wind turbine foundation with two sizegaisition pieces. In the
bottom is the suction bucket (gray). In the middle (greenhéstransition piece. In the
top (blue) is the wind turbine tower. To the left is the traiosi piece 16 m high and the
right is the transition piece 9 m high.

A topology optimization will be performed on the transitipieces in sectiohl4. The optimization
will be performed in steps of increasing complexity to shine tlevelopment that leads to the final
topology optimized design. The steps that will be perforraeglisted below.

4



Introduction to Pedestrian Footbridge

¢ 15! Topology Optimization - Basic Solution An optimization will be performed on the tran-
sition Piece with a volume constrain.

¢ 2"d Topology Optimization - Multiple Load Directions . A constrain is applied to ensure the
structure is resistant to loads from different directions.

¢ 3 Topology Optimization - Material Model and Volume. A more advanced material mod-
elled are applied and different choice of volume constraiesinvestigated.

e Final Topology of Transition Piece. The final topology is presented and the next steps in a
design process are discussed.

Introduction to Pedestrian Footbridge

A pedestrian footbridge based on a footbridge over a majorapelitan freeway in Australia will be
optimized with topology optimization. An initial sketchoim BKK Architects of the project indicates
the geometric constrains of the footbridge cf. Figurd 1.#e Tootbridge will have a free span of
72 m over the road from pier to pier. The slope of the pedesfioatbridge deck is set to maxi-
mal 1:20. The bridge will have a height over road level of 5.7Trhe footbridge is assumed to be 4

m wide. The measurements of the pedestrian footbridge grshoTabld 1.2. i|&._2610)

Table 1.2: Measurements of pedestrian footbridge.

Length 72m
With 4m

Free span| 5.7m
Max slope| 1:20

PIER PIER
72 M ARCH CLEARSPAN

|
L
1
I
I

1.8 M MAX
RISE FOR
MIDSPAN
OF ARCH

65 M CLEARANCE UNDER ‘u

| L
1 FOR ROAD TRAFFIC 1
| WITH 5.7 M MINIMUM |

Figure 1.4: Initial sketch from BKK Architects of pedestrian footbréddrhe sketch indicating geo-

metric constraints of the footbridgé._ﬂiuang_a.n_d] JS].QJOlO)




Chapter 1. Introduction

The loads on the structure for finding the optimal topology kept simple. There are only applied
a static load. The load is a pressure of 4 kPa applied to the afdbe footbridge. Other load cases
will not be used to find the topology but will have to be anatysethe final design process.

The purpose of the topology optimization of the pedestr@oitiridge is to find an optimal design
to withstand the loads under the geometric constrains. lemamnported aspect of designing a slender
structure as a pedestrian footbridge is the eigenfrequehtlye structure. A classic example where
structures eigenfrequency have become a problem is thiditi Bridge in London. At the opening
day between 80.000 and 100.000 people cross the MillinivitigBrwith a maximum density of 1.3
to 1.5 person’s pr. square meter. The pedestrians creatgdaanit lateral load with frequencies
between 0.5 Hz and 1.0 Hz. The designers of the bridge didaket into account the load from
the lateral motion caused by the pedestrians. The movenoérite bridge made the pedestrian
sway simultaneous from side to side adding to the momentedbtilge. The number of pedestrians
allowed onto the bridge had to be reduced and the bridge wasdalfor pedestrian only two days
after it opened. The solution for the Millinium Bridge wasitstall dampers on the bridge costing an

extra 5 million pounds. (Dallard et HI., 2(})01)

To avoid this problem the structures eigenfrequency istcaimed in the topology optimization. A

constrain will be applied so the eigenfrequency for mod@ehavith lateral movement will be above
1.2 Hz and the eigenfrequency for mode shapes with verticaement will be above 4.6 Hz. This
constrain will change the topology of the structure and it lag investigated how.

A topology optimization is performed on the Pedestrian Badge fc. sectiofi5. The optimization
will be performed in steps leading to a final topology optiedzdesign. The steps performed are
listed below.

e 15t Topology Optimization - 2D solution. A study of different overall designs is investigated
on a 2D model of the bridge.

¢ 2"d Topology Optimization - 3D Solution in Steel. The pedestrian footbridge is modelled in
3D with steel as material.

¢ 3 Topology Optimization - 3D Solution in Concrete. The pedestrian footbridge is modelled
in 3D with concrete as material.

e 4™ Topology Optimization - Eigenfrequency Constrains.The pedestrian footbridge’s eigen-
frequencies are constrained and it is investigated howilitence the final design.

e Final Topology of Pedestrian FootbridgeThe found topologies are presented and the next
steps in a design process are discussed.




1.2. History of Topology Optimization

1.2 History of Topology Optimization

High-speed computers have over the last three decadeasectén availability. Combining the com-
puter power with the improvements in optimization algarithused for designing structures have
moved topology optimization from a field of mostly academniterest to stage where more and more
engineers and architects are experimenting with the opgitioin techniques. Topology optimization
of structures is a relatively recent discipline in the fiefdtuctural optimization. Different method
for topology optimization have been developed over theflast decades and their history are out-
lined here.

e@B) proposed the homogenization method bassddias of existence of solutions.
In the homogenization method are materials with microstinecused. The material is a composite
that is constructed by a unit cell consisting of one or molesthat is period repeated. The homoge-
nization method is used to determine the material propseatel optimal distribution of material can
be found. The method has the drawback that the optimal nticiciares and their orientations is dif-
ficult to solve or unsolvable and there are no definite lersgtide associated with the microstructures
resulting that the structure cannot be build. The methodstiitve used to understand the theoretical
performance of structure@OOl)

9) proposed The Solid Isotropic Material wihahzation Method. The method use
isotropic material and assign each element with a relatresitly to the design variable. Through a
power-lawed interpolation scheme is Young’s modulus deitezd for each element. In recent years
has the method been more and more popular and is now implechenseveral commercial finite
element programs.

Evolutionary Structural Optimization was first proposedhiea early 1990's. The method is based a
simple approach where inefficient material is slowly rentbfrem the structure leaving the only nec-
essary material. In the late 1990’s an extension of the HEeolary Structural Optimization method
was made called Bi-directional Evolutionary Structuralti@jzation. Besides removing inefficient
material the method also allowed material to be added tdimtawhere it was most needed. The
structures shown in Figuke 1.1 and Figlrd 1.2 are optimis@thuBi-directional Evolutionary Struc-
tural Optimization. @ﬂ 1)

1.3 Scope of the Thesis

The thesis will concern the use of topology optimization iwil@ngineering. There are four main
parts of the thesis which will concern different aspectsopbtogy optimization in civil engineering.
The structure of the thesis is summarized in the followinomiso




Chapter 1. Introduction

e Chapter & General theory of topology optimization. The general emiof topology op-
timization and the use of different approaches for prefagriopology optimization are re-
viewed.

e Chapter[3 Case study of commercial programs performance when pnérigrtopology opti-
mization. Possibilities and limitations when using comaierprograms to preform topology
optimization are discussed. Two commercial finite elememnt aptimization programs are
used.

e Chapter[d andchapter[E Civil engineering structures. Two civil engineering stures will
be analysed and optimized using topology optimization.

e Chapter[@ Summary of thesis conclusions and possible further work.

The first part concerns the theoretical background of tapotiptimization. There are many different
approaches to do topology optimization and each method fffesetit advantages and disadvan-
tages. To give a better overall understanding on the gettezaty behind topology optimization is
four different method reviewed: Solid Isotropic MateriatiPenalization Method, Homogenization
method Evolutionary Structural Optimization method andiigictional Evolutionary Structural Op-
timization.

The second part of the thesis will concern a case study pee@dmwith two commercial finite ele-
ment programs. To get an understanding on how topology @gation is used and how it works in
commercial programs are the case study performed. The tabeis performed on three cases. The
first case is a so-called Mitchell type structure, which wilbw if the use of topology optimization
gives the same optimal structure as a classical analyttalien. The second case is a 2D cantilever
beam. This case will be used to compare two commercial pnogjtapology module and investigate
the difference. This will also be used to compare differapests of the programs. The third case
study is of a 3D cantilever beam. This case study is used th@sdhe two commercial programs
will perform on a solid 3D structure. The case study will gae overview on the possibilities on
using commercial finite element programs to preform topplogtimization on structures.

The third part will concern the use of topology optimizatmmtwo civil engineering structures rep-
resented in sectidn 1.1. The purpose of this part is to us#dgyp optimization on civil engineering
structures and investigate how topology optimization caimiplanted as a part of the design process
of a civil engineering structure.

After the three parts above will there be a conclusion of tleekwerformed in the thesis and a
discussion of possible further work.




Part |

Concept of Topology Optimization






Chapter 2

Topology Optimization Methods

Three different types of optimization and different categgoof solution methods for topology opti-
mization are defined. Different solution methods will berdefiwith the main focus on the SIMP
method and a solution scheme is presented.

2.1 Types of Optimizations

Topology optimization of a structure is just one way to ojitiena structure substance to different
variables. When optimizing the methods can be divided inted different groups: size, shape and
topology optimization cf. Figurie 2.1.

Jeccccclieccnos]
- N (<ZSON

Figure 2.1: Types and concept of optimization. To the left is the origstraucture and to the right
is the optimized structure. a) Size optimization. Only thiekhess of the truss is
changed. b) Shape optimization of a beam with holes wherstthpe of the structure

is optimized. c¢) Typology optimization where both the shapktopology are changed.
rﬁg‘ Ebos)

With size optimization methods the goal can be to find thenoglticross-section of a frame or truss or
optimal thickness distribution of plate. This way the op#iation should maximize the performance
and overall stiffness or strength of the structure or thegivedf the structure. The variable will then

be the thickness of a plate or the cross-section area ofs ffine desigh domain is known before the
optimization begins and is fixed throughout the optimizafioocess. This is illustrated on Figlre]2.1
a). Only the size of the truss of the structure is changed dithe shape of the structure.

11



Chapter 2. Topology Optimization Methods

In shape optimization is the goal to find the optimal shape désign domain which optimizes the
performance of the structure. In shape optimization is thealn not fixed but a variable. The
geometric boundaries of the design domain are changedghoow the optimization process but the
topology of the structure is fixed cf. Figure P.1 b) where oihlg shapes of the original structure
changes but the topology is the same after the optimization.

In topology optimization the goal is to determine the optimanber and locations of holes within
the continuum design domain. Both the structures topologl/shape are design variable. This is
illustrated in Figuré Z]1 c). The original structure is tméi® design domain. After the optimization

both the shape and topology of the structure are chan

2.2 Types of Solutions Approaches for Optimization.

Topology optimization can be categorized in two groupscrdite and continuous approaches. In
discrete approaches an element is removed by a "hard-kilthod and the element cannot reappear.
Evolutionary Structural Optimization is a discrete apjgloaUnder continues approaches are ele-
ments never completely removed and can reappear in latatitbes. The density based method Solid
Isotropic Material with Penalization method and the Homtiﬁion method fall under the continu-

ous approaches. Four solutions approaches will be revi tMO)

e Solid Isotropic Material with Penalization method (secffa3)
e Homogenization method (sectibnP.4)
e Evolutionary Structural Optimization method (section)2.5

e Bidirectional Evolutionary Structural Optimization meth(sectior_2J6)

The main focus will be concentrated on the Solid Isotropidavial with Penalization method. This
method will be used through the commercial prografisaqus CAE'and" Altair Optistruct" which

is a part of"Hyperworks Suitefor topology optimization in this thesis. A short preseittatof the
Homogenization method and Evolutionary Structural Optation methods will be given to create
an overview over the different possibilities for preformitopology optimization.

2.3 Solid Isotropic Material with Penalization Method (SIMP)

Solid Isotropic Material with Penalization Method (SIMPstiibutes a specific isotropic material
in the design domain and finds an optimized design with theafise penalization strategy. The
objective of the density based topology optimization is fnimize the compliance. The compliance,

12



2.3. Solid Isotropic Material with Penalization Method N8?)

C, is defined in equatioh (2.1) and the definition of strain gnes, is shown in equatiori (2.2).

C=UF (2.1)

1
S=Z-U'F (2.2)
2
Where:

U | Displacement
F | Force vector

It is seen that the compliance is twice the strain energyré&fbee minimizing structures compliance
is equivalent with minimizing the structures strain energgnder the same loaB minimizing the
strain energy means minimizing the deformationor maximizing the structures stiffness.

When Solid Isotropic Material with Penalization method $2d the goal is therefore to minimize
the compliance and maximizing the structures global €t The optimizing problem is defined in
discretized form in equation _(2.3).

minC=UTKU (2.3)

st. KU =F

The global stiffness matrixik, and the local stiffness matriX;, depend on the stiffness in each
elementFE;, as shown in equatio (2.4).

K = _ima) (2.4)

The SIMP method assign an element density to each elementhenis the design variable in a
penalized, proportional stiffness model. This makes tipeltmy optimization problem to a sizing
problem for the size of the stiffness parameter which is #&gh variable. It can be shown that for
isotropic material that the sizing can be seen as the siZeeaitaterial. The penalized, proportional
stiffness model is shown in equatidn (2.5).

Eiji (X) = p(X)PEJy (2.5)
/QD(X)dQ <v, 0<p(x)<1

13



Chapter 2. Topology Optimization Methods

Eij | Stiffness tensor

Ei?kl Stiffness tensor for isotropic material
p Penalty factor

Q Reference domain

p Density function

The density is in fact a volume density and interpolate thtere properties between 0 alfTﬁkI . The
desired end result is where there is a density in each elewitgna value of either zero or one. This
corresponds to what is called a black-and-white or 1-0 desig do this a penaltyp, in introduced.
In the SIMP method the penalty is chosen todae 0 typical around 3. This make it "uneconomical”
for the model to have intermediate density and the resultgywito black-and-white result.

The SIMP method in a discretized based formulation is showaguation[(Z6).

N
minC=UTKU = ZluiTkiui (2.6)
i=

N
st. V= leivi <\y—-V*
=

KU =F
ki = (%)Pko
0<Xmn<x <1

Xi Design variable

U Local displacement

ko Initial local stiffness matrix

Xmin | Minimum value of design variable
Vi Element volume

Vo Initial volume

V* \olume to be removed

There is a boundary applied for the size of the density soésdwmt become zero. A density value
of zero may course the stiffness matrix to become singulae. vblume fraction constrain determine
how much of the material is removed from the structure. IfwbkRime constrain was not applied
the structure with minimum compliance and maximum stiffned| be a structure with full material

14



Approaches for Solving the Optimization Problem

and no void. The influence of the volume constrain can be seéigure[2.2 where a MMB-beam

are optimized. A MMB beam is a classical optimization probleriginal from an Airbus passenger
carrier where the beam is carrying the floor of the fuselagee Beam are 2400 mm x 400 mm and
are loaded with a single concentrate load on the middle ob#zen |(Xie and Steven, 1997). When

the volume fraction is low the final topology goes againstiagrike structure.

v

Figure 2.2: Influence of volume fraction on SIMP topology optimizatidran MMB-beam. The
optimization is performed in Abaqus. The beam is meshedd6i0 quadric elements.
a) Structural system of a MMB-beam. b) 90 % volume fractipi@0% volume fraction.
d) 50 % volume fraction. e) 30 % volume fraction. f) 10 % voldraetion.

Approaches for Solving the Optimization Problem

For solving the optimizing problem and update the varialdasity can different approaches be
used. This could be the Optimality Criteria method, the ®etjal Linear Programming method,
the Method of Moving Asymptotes or others (Sigmund, 200h)thie following section two of the
methods will be reviewed: the Optimality Criteria methodlahe Method of Moving Asymptotes.
These two methods are well suited for topology optimizapooblems and are therefore often used
for this purpose.

Optimality Criteria method

The Optimality Criteria (OC) is a heuristic update scheme igrshown in the equatiof (2.3). It has
been proven effective to solve structural topology optatian problems. | (Bendsge and Sigmund,
2003)
xB! if % < xB! <%
X = X if xB <%
% if B > %

15



Chapter 2. Topology Optimization Methods

Where:
% | maxX(Xmin, X — M)
% | min(1,x + m)
n | Numerical damping coefficient (typically = 1/2)
m | Positive move limit

The optimally conditionB;, in (Z.4) can be expressed.

_oc
a 2
B = )\6\7 (27)
e
Where:
% | Sensitivity of objective function
& | Sensitivity of the volume

A | Lagrangian multiplier

The sensitivity of the objective function and the materiallnme with respect to the element densities
can be find by equatiofl (2.8) and equation](2.9).

ac

NP1 kaLt
ax — PP uikou (2.8)
oV

The updating scheme in equatién_{2.3) adds material to tnmeplwhere the strain energy is higher
than the Lagrange multipliek, and remove material from the places where the strain engitgwer
than,A. Therefore will the Lagrange multiplier be adjusted tosfgtthe volume constraint.

The move limitm and the numerical damping coefficiemtcontrols the rate the changes in each
integrations step can happen and is chosen from experience.

Method of Moving Asymptotes

The Method of Moving Asymptotes (MMA) is a solution methodlveeiited for programming topol-
ogy optimization problems. The solution is found based orsisigity information of the iteration
point, X%, and iteration history. A functiorf, with n variable(xy, ..., X,) is given in equation(2.10).

(Bendsge and SigmLJM%).

F(X)m:(xO)Jr__i<Ui'r_‘Xi + _S ) (2.10)

16



Optimization Process in SIMP

ri ands are numbers chosen as

if g—;(x°)>0 then = (Ui—z-(’)Zg—;(xo) and $=0 (2.11)
.. OF 2 0F
if a—xi(x°)<0then F =0 and $:—(X,-O—Li) a—xi(xo)

The numberd); andL; give vertical asymptotes for the approximationFofand hereby the name of
the method) and gives a range for the solutions for optingmgtiroblems and are updated for each
iteration based on the iteration history. The separablesppations of the design variable into sub-
problems so the optimization can be solved individual faheelement. This makes the method well
suited for programming especially when there are only femstrains in the optimization problem.

Optimization Process in SIMP

When finding the optimized topology using SIMP method theatiqas in [2.1) to[(Z.11) are com-
bined in an interpolation scheme. The scheme is shown in afflaw in Figuré 213. The goal is to
find the optimal distribution of material from the densitynpdty based method in a clean 0-1 design.
The scheme is divided into three parts: Pre-processingmiattion and Post-Processing.

The first part is the Pre-processing. Here is a finite elemaueainbuild of the structure. These
involve choosing a reference domain for the model and aalgt bnd boundary conditions. Itis also
necessary to define the areas of the structure that are tigm diesnain for the optimization and areas
of the structure that are frozen domains with are either solids or void. A material need to be
assigned to the structure and with the SIMP method it neelds & isotropic material. The structure
should be meshed for the design process. The same mesh wgkldehroughout the entire process.
Beside the requirements for stress and strain convergegdstie mesh be fine enough to be able to
describe the structure and show the final topology. If thelnie# course the final topology may not
have the right members and form cf. Figlrel 2.4.

The second part is the optimization process. Firstis a hemegus density distribution of material
chosen and a FEM analysis is calculated of the structureendteesses and strains are calculated.
The compliance can be calculated for use in the OC schemiee MItMA scheme is chosen the sen-
sitivities with respect to the design changes is calculatedell. Both the OC scheme and the MMA
scheme can be useh_&enﬂsmaMTM(ZOOB) stated thathdlylbe a bit slower at simple

problems with only a single constrain where MMA has been @naw handle many constrains well.

If the compliance is only marginal improved the optimizatjgrocess stops. Other stop conditions
can be applied as a maximal displacement or stress in a picargtop condition is not met the density
variable are updated using an algorithm like OC or MMA and\ iteration loop is made.
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Chapter 2. Topology Optimization Methods

When the optimization process is finish the resulting togplcan be interpreted and be a basic for
further designing of a structure.

Pre-processing

| Choose Initial density distribution|

v

Make a FEM Analysis and calculate

displacements/strains

= Compute compliance
'% (and sensitivities when MMA is used)
N
: ! |
)= If only marginal
© improvement

in compliance l

Stop optimization || Compute updated

& process density variable
§ Interpret optimal distribution of material
5; for topology and shape
z
~

Figure 2.3: Flow chart of topology optimization scheme based on SIMFhatktlivided into three
parts: Pre-processing, Optimization and Post-Processing

Figure 2.4: SIMP optimization of a cantilever beam with a volume coristad 30 % and meshed

with different meshes. The topology optimization is penfedt in Abaqus. Left: Struc-
tural system for cantilever beam loaded with a single cotre¢ed force. Middle: a
coarse mesh where the design domain is meshed with 400 éterRaght: A finer mesh
where the design domain is meshed with 6400 elements. Theeaoashed structure is
not able to capture the topology of the finer meshed structure
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Mesh Independence and Checkerboard Pattern Control

Mesh Independence and Checkerboard Pattern Control

Different problems can occur under an optimization proceBso of them are mesh dependence
results and checkerboard pattern solutions.

Mesh Independence

When a structure gets meshed finer it makes it possible téecneare holes in the structure without
changing the volume which in general will create a stiffensture. This effect is shown in Figure .5
where the finer meshed structure gives more detailed tojgalo@herefore it is necessary to make the
solution mesh-Independent so a finer mesh only gives a maafletbmodel of the same topology
solution. A local restriction on the variation in the depsit¢ made to make fine scale structure
impossible. There are three general ways to do this:

e Applying filters in the optimization

e Adding constrains to the optimization problem

e Reducing directly the parameter space for the design

An applied filter that limits the variations of the densities direct way to insure mesh independence.
This can be done by a filter radius for the stiffness distidout This make the stiffness in a point de-
pended of the density in all the nearby point. This makes émsitly of fine structures more "blurry"
and with the penalty factor this areas will disappear in thalfiopology. Another possible is to filter
the sensitivities which give similar results.

An indirect way to make the structure mesh-independent isrstcain that can be added as a
perimeter control. By restricting the lengths/areas ofreler and outer boundaries the final form can
only have restricted number of holes. Other types of rdgiris can be applied.

The last method is based on the MOhnotonicity based minim&mgth scale method (MOLE).
The method makes an extra non-negative constrain that makaiamum length width of material
parts and voids. The method measures the density along doailg spaced diagonals and control
if they are monotonic or not. The reason for also checkingdihgonals beside the horizontal and
vertical way is that this also makes a filter for a checkertdgaoblem.
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Chapter 2. Topology Optimization Methods

(g
—

Figure 2.5: Mesh depended and mesh independent topology optimizdtidmB-beam. Optimiza-
tion is performed in Abaqus. a) Meshed with 2400 elementsMdphed with 9600
elements. c) Meshed with 38400 elements. d) Meshed witt00G8dments. Left: No
filters or constrains applied for preventing mesh dependeRight: A minimum length
constrain are applied which make the topology solutionsmiredependent.

Checkerboard Pattern Control

Under a topology optimization checkerboard patterns caobiserved. The phenomena show where
the material is varied between solid and void in a periodittendike a checkerboard pattern. The
reason for the checkerboard pattern is the finite elemerysewmthat overestimate the numerical
stiffness of a checkerboard pattern. This produces a saltliat is not practical possible. A way

to prevent the checkerboard pattern is to implement oneeofhtee solutions mentioned for mesh
independence above.

Figure 2.6: SIMP optimization of a cantilever beam with a volume cornst 30 %. The opti-
mization is made in Optistruct. Left: No checkerboard patontrol. There is distinct
checkerboard pattern in the final solution. Right: Checkentdl pattern control is ap-
plied to the model and the checkerboard pattern has beenvedio

The method used in this thesis will be the third solution Whgimplementing a minimum member
size in as a geometric constrain. This will prevent both kbdmward pattern and make the solution
mesh Independent. The result of implementation the MOLEhowkts shown i FigurE 215 and 2.6.
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2.4. Homogenization Method

2.4 Homogenization Method

The homogenization method is used to model a composite ialatéfhen a structure is finer and finer
meshed and optimized using the SIMP method it is showedtledirial structure will contain a fine
grit of solid and void. The general concept of the homogditmamethod are to create a composite
material by using a isotropic material defined E]% and void. A base material is then created and
the design variable is the density of the base material. Aiteis introduced wherp = 1 is material
andp = 0 is void. Values between zero and one is composite mateitlalveid on a microstructure
level.

The composite material consist of many infinitely smalls#iiat are repeated periodically through
the material cf. FigurB2l7. The stiffness tensor and theeri@tdensity can then be described as in
equations[(2.12)| (Bendsge and Sigmund, 2003)

X, Skale2: '\
% Rank -1 material //
) "y
0
X

Skalel:

Rank -2 material
Composite
material

Figure2.7: Layered material for two dimensional cases. The materidiugt of a second rank
layered material and can be rotated. (Bendsge and Sigh@th)2

Geometric variablegyy, ... € L*(Q), angled € L*(Q) (2.12)
Eijia (X) = Eijia (L(X),Y(X), ... 8(X))
density of materialp(x) = p(l(x), y(X), ...)
/ p(X)dQ <v; 0<p(x)<1,xe
Q
Where:

Eiju | Effective material parameters for the composite
The composite material can be an anisotropic material amdbtiation angle of the micro structure

is a design variable. Both the effective material paransefier the composite and the density is a
function of a number of variables. These variables are themlésign parameters that will have to be

21



Chapter 2. Topology Optimization Methods

optimized.

The homogenization method can be used to minimize the camgdiof a structure and hereby find
an optimal topology. Generally will the resulting topologgnsist of "gray" areas where the material
use is optimized but not a "black-white" solution. This canused to understand how the use of
composite material influences the effectiveness of a strect

2.5 Evolutionary Structural Optimization (ESO)

Another approach for structural optimization is the Eviolnary Structural Optimization Method
(ESO). The method is based on a simple idea. By slowly remmféicient material from a structure
the residual structure will reach an optimum where the tedichaterial is used more effective.

Material is placed over the design area, meshed into elearahthe stresses in the each element
are determined by a FEM calculation. The stress in each eleiméound as an average over the
stresses in the integration points. A rejection criteriasdd on local stresses in an element is made.
The Von Mises vyield criterion can be used for isotopic materas steel. The element stresses are
compared with the maximal stresses in the structure. Tleetrep criterion is then given by:
va
°_ <RR (2.13)

vm
0-IT'IEIX

Where:

og™ | Von Mises stress in element
o« | Maximum Von Mises stress in model
RR | Current Rejection Ratio

Elements that fulfil the rejection criteria ih (2]13) arergpideleted from the model and the FEM

analysis of the model is run aging. This cycle continuesl matimore elements are being deleted at
the end of the iteration. An evolution rate is then added éRkjection Ratio as shown in equation
(2.13) and an new iterations cycle is run.

RR,1=RR+ER i=0,1,23... (2.14)
Where:
ER | Evolutionary Rate
With the ESO method the final structure is stressed moreyegaid there should not be any unnec-

essary material. The evolutionary rate and rejection iat@hosen from experience and the iterative
optimization process can stop after the end of each iter&tioa given Rejection Ratio. A flow chart
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2.6. Bidirectional Evolutionary Structural OptimizatiRESO)

of the ESO method is shown in Figure 12.8. The pre-processidgpast-processing are identical to
the SIMP method cf. Figuie 2.3.

The ESO method can also be formulated to maximize the stsfoéthe structures by minimizing
the compliance. This is done by determine how much the st#rof the structure will change when
removing the i'th element. A sensitivity number is calcathfor each element and the elements with
the lowest number can be removed.

Make a FEM Analysis
of current model

\

Calculate stresses and rejection ration
for each elements

\

Remove elements that fulfil
the rejection criteria

v
| Are there removed elements |

v \

L e
v

|Is stop condition fuIﬁIIed|

v v

Yes
v v

End of Calculate new
optimization| rejection level

Figure 2.8: Flow chart of topology optimization scheme based on ESOadet®nly the optimiza-
tion part of the scheme is shown.

2.6 Bidirectional Evolutionary Structural Optimization ( BESO)

The Bidirectional Evolutionary Structural OptimizatioBESO) is an extension to the ESO method.
The ESO method is a hard-kill method meaning that when anesieim removed it cannot return in
later iterations. The BESO method is a soft-kill method.nidats are allowed to be added again at
places where they are most demanded. Elements displacéieidatare estimated with FEM anal-
yses also of void elements through a linear extrapolatiome dlements with the lowest sensitivity
number can then be removed and void elements with the higkasttivity numbers can be changed
back into elements. The BESO method shown below is basedtoninpg the stiffness of the struc-
ture. The optimization statement with a volume constrathés formulated in equatiofi (ZJ15)
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Chapter 2. Topology Optimization Methods

minC= UTKU (2.15)

N
st. V= invi <\p—-V*
=
=0 or 1

The stiffness change by removing each element is shown atieqZ2.16) and the sensitivity number
for the mean compliancerf, is defined in equatio (Z.1L7). The sensitivity number fadweements

is set to zero. The BESO method have the same challenges hétkerboard patterns and mesh-
independence as the SIMP method cf. sedfioh 2.3. A filtemsehill have to be added to prevent ill

solutions. The filters will not be explained, but can be foirrliuam_aﬂdﬂe (ZQiO).

AK =K*—K = —k (2.16)
e 1 T
O(i - AC| - Eui kiUi (217)

Where:

K | Global stiffness matrix.
K* | Stiffness matrix of the resulting structure after the eletig removed
ki Stiffness matrix of the i'th element

Criterion for Adding and Removing Elements

The volume constrain in equation (2115) have to be respeclkbéé volume for a iteration step are
expressed in equation (Z2]18).

Vie1 =VW(1+ER) (k=1,2,3...) (2.18)

Where:

ER Evolutionary volume ratio
Vk+1 | Target volume for the next iteration

The sensitivity number is calculated for each element aidielement and threshold sensitivity num-
bers for adding of removing elements are calculated. Thmgabdiiterion where void elements should
be added are shown in equatién (2.19) and the removed oriteriere elements should be removed
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Criterion for Adding and Removing Elements

are shown in equatiof (2.20).

af < agy (2.19)

of > allly (2.20)
Where:

atl, | Threshold sensitivity numbers for removing element
ol | Threshold sensitivity numbers for adding element

To determine the right volume fraction the thresholds carfiobed by sittingalfl, = a'fl, = o™
When knowingV k-+ 1 cana" easily be determined by sorting the sensitivity numberkérstructure
and set threshold sensitivity equal to the value of the Seitginumbers with the desired volume
fraction. If the volume is not constrained after this operatan the thresholds be adjusted.

When the desired volume fraction is reached a convergeitegian can be formulated to see if the
compliance is converted. If the convergence criterion isfuidilled a new finite element calculation
will be made and a new iteration process begins. A flowchahabptimization process using BESO
are shown in Figurg 2.9.
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Determine the target volume
for the next iteration

\

Make a FEM Analysis
of current model

v

Calculate the elemental sensitivity
number for each element

\

Add and delete elements according
to threshold sensitivity numbers

v

Calculate compliance and
convergence criterion

v
|Is the model convergated?|
v v
Yes [No]——
v

Is the volume constraint
satisfied ?

v v
SRy

End of
optimization

Figure 2.9: Flow chart of topology optimization scheme based on BES®adeOnly the optimiza-
tion part of the scheme is shown.
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Chapter 3

Case Study

In the following section three case studies are performed: 2D problems (a Michell type structure
and a cantilever beam) and a 3D problem. The cases will be ecedpfor two analytical finite
element and optimization programs and a conclusion on tbgnams functionality is shown.

Tools for Optimization and Tasks

Two commercial finite element programs will be compared far dptimization: Abaqus CAE and

Altair Optistruct. Abaqus is a finite element program to sadMarge number of numerical problems.
Altair Optistruct is a part of the finite element program suityperworks. The two programs does
essential follow the flow charts in Figure B.1. This means tha process of finding the optimal

topology is divided into two parts: A pre-process part anghtinaization parts. These parts are simi-
lar to the parts shown in Figuie 2.3 for a SIMP optimization.

v

|Create optimization task|

Prepare design variables and update
finite element model

\

|Analyse optimization task |

\

|Optimization complete ?l

v v
L [N Yes
v
End of
optimization

Figure 3.1: Flow chart of topology optimization scheme in commercidirozation programs. After
2).
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Chapter 3. Case Study

In the pre-process part (blue on Figlrel 3.1) is the modeteded his means build and mesh the FEM
model, material properties are chosen and load and bourdaditions is defined. In the pre-process
part is the optimizing task is also created. The optimizagktincludes creating the design responses,
create objective functions and constrains and submittiegptimization process for analysis.

Where all steps in the pre-process part are controlled byske is the steps in the optimization
parts actions (green on Figure13.1) automated in the coniah@rograms. An iterative optimization
process will continue until the results converged or a stmpdition is met. A final step is the post
processing part where the final topology is visualized ateVamt data can be extracted.

There will be made three models in each program and the madlélse made with the same mate-
rials, boundary conditions, object function, constraitts so the results can be compared.

3.1 Case 1: Michell Type Structure

A Michell type structure is a classical analytical solutfonfinding a structure with minimum weight.
To find a Michell type structure it has to have a framework gwttsfy two conditions, one for the
forces and one for the stains in the structure.

e The stresses in all members are equatto, whereo is the allowable stress for tension and

compression.

e There exists a virtual deformation of the regi@n with displacement vanishing on the surfaces
of support and with strains along the members of the stractgual to+ €, where the sign
agrees with that of the end load carried by the particular bepand such that no linear strain
in R exceedg, which is a small positive number, in absolute vaI@)

The Michell Theorem states that a Michell type structureegia framework where the volume is

| 1960)

gua or less than any other framework that satisfy the ibguim conditions for a given force.
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Design and Optimization Task

Design and Optimization Task

The structural system with the design domain and load caeée en Figuré_3]2 and the theoretical

solution for the Michell type structure can be seen on Fifige

Yp

Figure 3.2: Structural system for case 1.
The design domain is simple
supported in corners with sin-
gle concentrated force acting
in bottom of design domain.

P

Figure 3.3: Michell type structure. The
Michell structure has the solu-
tion with minimum of volume
for design problem in Figure

B32. kae_and_S_Lexleh_lEiW)

The objective of the optimization is to minimize the compta of the structure. The design vari-

ables will be the density of each element in the design domaime material of the structure is

modelled as an isotropic material and has the propertieteef. sElements used are a 4-node bilin-

ear plane stress quadrilateral with reduced integratid?S4R). Information about the finite element
model and the optimization task is given in Tablg 3.1[and 3.2.

Table 3.1: Model information.

Table 3.2: Optimization task information.

Material Isotropic linear elastid
Young’s modolus | E =210000 MPa
Possion’s ratio v=0.3

Elements Optistruct 10153 elements
Elements Abaqus | 10082 elements

Optimization type| Topology

Method used SIMP
Opject Minimize compliance
Constrains Volume fraction = 20 %

Min member size =
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Chapter 3. Case Study

Results

The final design from topology optimization in the two pramsacan be seen in Figure B.4 3.5.
Results from topology optimization of the Michell type stture are shown in Table_3.3.

Element density

+1.000e+00
+9.167e-01
+8.335e-01
+7.502e-01
+6.670e-01
+5.837e-01
+5.005e-01
+4.172e-01
+3.340e-01
+2.508e-01
+1.675e-01
+8.425e-02
+1.000e-03

Figure 3.4: Topology optimization of Michell type structure with Abagurhe material density is
plotted with colours.

Element density)|
1.000E+00

[BQIIE 01
7 BODE-01
+—6.700E-01

[sems-m
4 S00E-01

3 400E-01
2.300E-01
1.200E-01
1.000E-02

Figure 3.5: Topology optimization of Michell type structure with Optigt. The material density is
plotted with colours.

Table 3.3: Results of optimization with Abaqus and Optistruct.

Abaqus Optistruct

Final Compliance 59.62 49.96
Final volume fraction 20.0 % 20.0 %
Number of iterations 34 42

Wall clock time used 20 min 3 min
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Results

As seen in Figuré 314 and 3.5 does the topology optimizatieash a final design. It can also be
seen that both programs reach a clear 0-1 distribution dfiger©Only few elements have a density in
the middle interval. Both programs reach a topology sintdathe theoretical Michell type structure
shown in Figurd_3J2. Both with an arc form with trust like stiure to the point where the force
attacks. Abaqus and Optistruct do not obtain exactly sarutico for the topology of the structure.

The Abaqus solution has five horizontal trusts where thesbptit solution only has four. To compare
the two solutions the compliance is plotted for the two meaél Figurd3.5.

3000
—— Abaqus
—— Optistruct
2500 |
2000 H
o
Q
=
8
"2, 1500
=
o
@)
1000
500 L
0 1 1 1 Il Il Il Il 1 J
0 5 10 15 20 25 30 35 40 45

Iterations

Figure 3.6: Plot of compliance for topology optimization of Michell &gtructure with Abaqus and
Optistruct.

The compliance converged for the solutions in both Abaqas@ptistruct. There are a difference in
the final value of compliance in the two programs but compé#uetie initial values is the difference
relative small cf. Table“3]3. Both solution may thereforesben a feasible solutions to the optimiza-
tion problem of the Michell structure.

Another parameter for the optimization process is how mimk the process use. There is a no-
ticeable difference in the use of time. Abaqus solver uspsapmately seven times as much time to
solve the optimization problem. The same general trendssmed with other optimizations tasks.
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Chapter 3. Case Study

3.2 Case 2: 2D Cantilever Beam

Design and Optimization Task

The second case study is of a 2D cantilever beam. The beamniecpin one end and loaded with a
single concentrated loa®,in the other end. The structural system is shown in Figurde 3.7

lP

Figure 3.7: Second case. Structural system of cantilever beam.

The beam is pinned for all translations and rotations in arek & he optimized structure does not
need to be pinned along the entire side. Therefore is thedasyrtonditions not defined as a frozen
area. The volume fraction i chosen to be only 20 % which shgiud a trust like structure. The

objective is to minimize the compliance and the method use8IMP. To make the optimization

independent a minimum member size control is applied. n&tion of the finite element model and
optimization task is given in Table_3.4 apd]3.5.

Table 3.4: Model information. Table 3.5: Optimization task information.
Material Isotropic linear elastig Optimization type| Topology
Young’s modulus E =210000 MPa Method used SIMP
Poisson’s ratio v=0.3 Opject Minimize volume
Element type Optistruct 10000 elements Constrains Volume fraction = 20 %
Element type Abaqus | 10000 elements Min member size

Results

The result of the optimization are shown in Figlre 3.8[and Bt final optimized material distribu-
tion obtained with Abaqus and Optistruct are almost idahti€his is also seen from the graph shown
in Figure[3.10 where the compliance is plotted. Though trepgvograms use a different number of
iterations is the final compliance close to each other cfl€elals.
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Results

Figure 3.8: Topology optimization of Cantilever Beam with Abaqus. @éd material distribution
is showed.

Figure 3.9: Topology optimization of Cantilever Beam with Optistru@ptimized material distribu-
tion is showed.

10000 -

Abaqus with member size control
9000 - — — — Abaqus without member size control
—— Optistruct with member size control

— = = Optistruct without member size control

8000 -

7000

6000

5000

4000

Compliance

3000

2000

1000 -

[terations

Figure 3.10: Plot of compliance for topology optimization of 2D cantdeweam with Abaqus and
Optistruct.
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Table 3.6: Results of optimization with Abagus ATOM and Optistruct.

Abaqus Optistruct

Final Compliance 1601.4 1365.0
Final volume fraction 20 % 20 %
Number of iterations 51 54
Wall clock time used 37 min 2 min

Influence of Checkerboard Control

The build in checkerboard control in the both programs igstigated. To be able to do this the op-
timization process is run without the minimum member sizetiad. This will show if the programs
will be able to remove checkerboard patterns from the finabltmgy. It is expected that the final
result will differ from the results shown in Figure 8.8, Fig(B.9 and Tablg_3l6. The new topology
can be seen in Figufe 3111 and Figure B.12.

Figure 3.11: Topology optimization of cantilever beam is Abaqus with eonimer size control. Op-

timized material distribution is showed.

Figure 3.12: Topology optimization of cantilever beam in Optistructhwito member size control.

Optimized material distribution is showed.

The topology changes in Abaqus when the minimum member siremoved. This show that the
model has become mesh depended and some of the trust merakerbdtome smaller than the
minimum size. The removed constrain also shows in the fimalpdiance fc. Figur€3.10. The com-
pliance is minimized more and the final structure is herelffest After the minimum size constrain
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3.3. Case 3: 3D Cantilever Beam

is removed the final topology does not show any checkerboattdrp. Abaqus have a build in filter
function where a filter radius and a filter diameter are ch@gamatic to prevent checkerboard pat-
tern. This filter is automatically applied to all topologytmpization tasks in Abaqus.

The changes in the final topology are larger in Optistruah fheAbaqus. When the minimum size
control is removed are there not applied another filter aat@mrand a checkerboard pattern appear
in the final topology. As stated in sectibn2.3 should a chdxderd pattern increase the stiffness of
the structure and the compliance should be lower. This isvhat is shown in Figure_3.10 where the
compliance from the model without minimum member size islaaer than the model with mini-
mum member size. The design with checkerboard pattern ia feasible result and cannot be used.

The optimization without checkerboard control has shovenntécessity of a user defined checker-
board control in the programs special if using Optistructithéut will the resulting topology be
misguiding.

3.3 Case 3: 3D Cantilever Beam

Design and Optimization Task

The third case study is a three dimensional solid structdiee study will show if the two finite
element programs Abaqus and Optistruct are able to perfopoldgy optimization on a three di-
mensional solid structure with multiple loads. The struaktisystem of the beam to be optimized is
shown in Figuré_3.13.

Figure 3.13: Structural system of three dimensional cantilever beam.

All translations and rotations degrees of freedom are fixesha end of beam. In the opposite corner
of the beam is two forces acting, one half the size of the otHéris gives a three dimensional
problem. The only frozen area of the structure is the poineémetthe forces attach. The volume
fraction is chosen to be 10 %. Information of the finite eletrrandel and optimization task is given

37



Chapter 3. Case Study

in Table[3.7 and_3]18. The objective is to minimize the conmu@and the method used is SIMP.
Minimum member size control is applied.

Table 3.7: Model information. Table 3.8: Optimization task information.
Material Isotropic linear elastig | Optimization type| Topology
Young’s modulus E = 210000 MPa Method used SIMP
Poisson’s ratio v=0.3 Opject Minimize compliance
Element type Optistruct 16000 linear elements | Constrains Volume fraction = 10 %
Element type Abaqus | 16000 linear elements Min member size

Results

The result of the optimization are shown in Fighre 3.14[add 3.

Figure 3.14: Topology optimization of 3D cantilever beam in Abaqus. @jzation material distri-
bution is showed.

nyi..zl

Figure 3.15: Topology optimization of 3D cantilever beam in Optistru@ptimization material dis-
tribution is showed.

As seen on the figures above does the optimization task inusbaigd Optistruct ends out with similar
topologies. The compliance obtained from the optimizatian be seen i Figute 3]16 and the general
results can be seen i Table3.9. The final structures fromgrotrams have similar end compliances.
Itis also observed that the difference in time used for themapation process is smaller for the three
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dimensional problem then in the previous cases.

2000
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Figure 3.16: Plot of compliance for topology optimization of cantilevram with Abaqus and Op-
tistruct.

Table 3.9: Results of optimization with Abaqus and Optistruct.

Abaqus Optistruct

Final Compliance 17.07 12.56
Final volume fraction 10 % 10 %
Number of iterations 22 32

Wall clock time used 22 min 7 min

3.4 Abaqus vs. Optistruct

The commercial topology optimizations programs Abaqus@ptistruct have been evaluated though
three case studies in sectionl3.T] 3.2[and 3.3. Some of tleevelosresults and comments on how the
programs preformed are listed below.

In the case studies a classical SIMP optimization has bedarped with compliance as the object
and with a volume fraction as a constrain. Other object amdtcains are possible in both programs.
Some of the possible object functions beside compliance@tene, weight, displacement and ro-
tation. Possible constrains are strain energy, volumeghtedisplacement, rotation, eigenfrequency
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Chapter 3. Case Study

and more. This gives a large number of opportunities for dimopation tasks. Both programs also
give the possibility to apply a geometric constrain beskierminimum member size constrain used
in the case studies. This makes it possible to apply a camstrat demand symmetric around a plain
or rotations symmetric around an axis.

Both programs have proven suitable to preform topologynoigiition. Both on a two dimensional
shell structure and on a three dimension solid structure thlo programs have in all case studies
found similar final topology and compliance. In the 2D caselists does Optistruct in general con-
verge faster against the final compliance where Abaqus atidtfot converge the same rate in the
3D case. It is possible to select a more aggressive algoathan update strategy for the density in
the setup of the optimization task in Abagus. This may makaqiis converge faster. Both programs
are also able to reach a 1-0 density distribution. It has lobserved that in 3D cases are there more
elements with a density in middle interval. This makes itassary to determine a lower boundary
for element densities to accept in the final topology.

The overall time spend on an optimization task for all threelies are listed in Table_3.110. The
time spent in Abaqus for an topology optimization is gergrainger. This is both due to the time
spent on the optimization but also the time spent on FEM tatioms and other tasks. An investiga-
tion of the log files from the Abaqus optimization shows thaly@approximately 20-25% of the time
is spend on the optimization. 75%-80% of the time is spend Bl Rnalysis and under 1% of the
time on preparing the job and others tasks.

Table 3.10: Wall clock time used for optimization in Abaqus and Optistru

Abaqus Optistruct

Casel 20 min 3 min
Case?2 37 min 2 min
Case3 22min 7 min

It is observed that with a manual applied checkerboard obdty both programs obtain a checker-
board free solution. When the manual checkerboard con@elivet applied did the build in checker-
board filter able Abaqus to reach a checkerboard free solufibiere is no automatic checkerboard
filter in Optistruct and a checkerboard control method hdsetapplied manual.

Abagus will be used for modelling two civil engineering stiures in chaptdr4 aid 5. This is chosen
based on the result of the three case studies and the knavtedgodelling complex structures in
Abaqus. It is the experience that Abaqus is able to solvesrgmplex non-linear FEM problems, is
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able to model different material properties and the userfate for building a model, meshing and
applying elements and Post-Processing works very well.
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Chapter 4

Transition Piece for Offshore Wind

Turbine

Topology optimization is performed on a civil engineeritgusture. The structure is a transition
piece of an offshore wind turbine. With the use of topologyndpation an optimal design is found
while satisfying the necessary constrains.

4.1 Introduction

Topology optimization is used to design a transition piefcaooffshore wind turbine fc. sectign1.1.
The transition piece will be designed for a 5 MW wind turbinighva rotordiameter of 126 m and a
hub height of 77.5 m. The assumed water depth is 35 m. Two sizée transition piece will be

investigated. A sketch of the transition pieces is showdeignre[4.1. The optimization is divided in
three steps to investigate different aspects of the desidradinal optimized structure is presented.

Figure4.1: Sketch of parts in a wind turbine foundation with two sizewaisition pieces. In the
bottom is the suction bucket (gray). In the middle (greenhéstransition piece. In the

top (blue) is the wind turbine tower. To the left is the trdiasi piece 16 m high and the
right is the transition piece 9 meters high.
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Chapter 4. Transition Piece for Offshore Wind Turbine

4.2 Loads and Material

The material used for the transition piece is a high perfaicaaconcrete called CRC. The concrete
is mixed with steel fibre (typically 2-12%). CRC concrete hasumber of advantages compared to
conventional concrete. It has a higher compressive anddestiiengths and increased durability. Due
to the dense micro-structure in CRC concrete there is alsoager anchorage of the reinforcement.
There is only needed a cover layer of 5-15 mm which is smallpamed to approximately 50 mm for
conventional concrete.

The transition piece will be designed after the Ultimate itiBtate (ULS) and the force will be
applied as an equivalent quasi-static force. Other linaitest as Fatigue Limit state will not be con-
sidered. The extreme wind load is assumed to be 2 MN. The kadting 91 m above sea level.
The load is moved to the top of the transition piece and gém@raending moment on 220 MNm on
the high transition piece and 234 MNm on the short transiti@ee. The vertical load is 7.5 MNm.
(Nezhentseva et Lai Zle)

Table 4.1: Loads applied to top of transition piece form wind load.

Horizontal Load () 2 MN
Vertical load ¥) 7.5 MN
Moment (high TP) ) | 220 MNm
Moment (short TP)Mls) | 235 MNm

Beside wind load does a wave load also act on the stru&luﬂl%ﬂ@_el_iall._(ﬂll) state that the

wind load contribute with the main stress development insthgcture. The wave load acting on the

transition piece is very dependent on the shape and size aftthcture. In an optimization process
where the shape is changing for every iteration is it hardpjayathe wave load. If the load had
been constant and independent of the shape applying therisige the design domain would still
have been difficult. The SIMP method is a soft-kill method aficelements are present throw-out
the optimization process. Applying the load on the surfddd@design domain will give a incorrect
picture of the stress distribution in the structure. It isgible to make the attack point where the loads
act as a frozen zone. To do this for the transition piece \ailise that the surface of the design will
be frozen and this will give a incorrect result. The load fraawve action is simplified to a force and
moment acting on the top of the transition piece togethen thié wind load.

The material used for the transition piece is CRC concretethé material are there added 2-12
% steel fibre to the concrete. The tensile properties areawagr by including high-strength steel
reinforcement bars. The steel bars also improve the dyctfithe composite material. The fine
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4.3. General Design and Optimization Task

fibred CRC concrete only need a cover layer and layer betwaend 5-15 mm compared to 50 mm
for conventional concrete. This allows five to ten times nsie®l reinforcement in the concrete. The
material properties are shown in Tablel4.2.

Table 4.2: Material properties for CRC concreté._(NﬁZh_enls_esLa_lB[Qﬂlfb)

Conventional CRC CRC
concrete with rebar
Compressive strength [MPa] 80 160-400 160-400
Tensile strength [MPa] 6-15 10-30 100-300
Young's Modulus [GPa] 50 60-100 60-110

4.3 General Design and Optimization Task

The task is to optimize the transition piece using SIMP toggloptimization. The design domain is
defined as a cylinder formed around the space where thettaangiece will be. The design domain
will have the same radius as the suction bucket which is 9 radius. The height will be 9 m for the
short transition piece and 16 m for the high transition pigfcé&igurel4.2.

Figure 4.2: Design domain for short and high transition piece. The desigmain is showed with
green. Below the design domain is the suction bucket andeath@vdesign domain is
the bottom of the wind turbine tower.
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Chapter 4. Transition Piece for Offshore Wind Turbine

Only the design domain is modelled. The loads is applied angaan the surface of the design are.
The ring will have the same measurements as the bottom ofitigetwrbine tower which is a radius
of 3.5 m and a thickness of 0.04 m.

Boundary conditions are applied where the top of the sudtitcket touches the design domain.
A 0.03 m wide circle with an outer radius of 9 m is constraingdte boundary condition. On the
circle are all translations and rotations constrained. Gdwendary conditions and loads for the short
transition piece are shown on Figlirel4.3.

Ring where loads is
applied

Ring where translation
and rotation is
constrained

Figure 4.3: Design domain for short transition piece. Loads are appbedop of the domain where
the wind turbine tower interacts with the design domain he bottom is the design do-
main constrained against all translations and rotationsads and boundary conditions
are applied similar to the high transition piece.

The design domain is modelled as a solid. The element typisseTen-node tetrahedral element
(C3D10). The element has quadratic shape functions andfasesntegration points. The area
around the boundary conditions and where the load is apatiedneshed with a finer mesh than the
rest of the model. This is done to be able to model these areas detailed. The high transition
piece is meshed with 100901 elements and the short tramgitsze is meshed with 98573 elements.

4.4 1st Topology Optimization - Basic Solution

Design and Optimization Task

The first topology optimization of transition piece is a siaal density based SIMP optimization
with compliance as the object. There is applied a singletcainsnamely 10 % volume fraction. This
volume constrain is the same for both the short and the hagtsition piece. This optimization is
only to investigate how the optimized topology will be fordnié only a single volume constrain is
applied. The stress distribution is therefore not inténgsat these stages. The material is modelled
as a linear elastic material and there is no plasticity. Alkdedlection theory is applied which mean
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Results

there will not be any geometric non-linearity. The finiterat model information and optimization
task information is shown in Table 4.3 andl4.4.

Table 4.3 Model information. Table 4.4: Optimization task information.

Optimization type | Topology

Material [ [
ateria sotropic Method used SIMP
Linear elastic Object Minimize compliance
Youna's m | E= MP
oung’s modulus 90000 MPa Constrains Volume fraction = 10 %

Poisson’s ratio v=0.25
Element type Ten-node tetrahedral elemep
Element Short TH 100901 elements

Element High TP | 98573 linear elements

Min member size = 0.1 m
Checkerboard filtef On

Task Standard general analysis
No geometric non-linearity

Results

Figure[4.4 shows the final topology for the short transitimte and Figure 415 shows the final topol-
ogy for the high transition piece. The topology shows two rhera formed in the direction of the
forces. Between them is a truss structures formed. It caede that the overall design are the same
for both the short and the high transition piece.

Figure 4.4: Topology optimized short tran- Figure 4.5: Topology optimized high transi-

sition piece. tion piece.
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Chapter 4. Transition Piece for Offshore Wind Turbine

It is obvious that this design will not be suitable for a triéina piece. The structure may be able
to transfer the loads in the one direction that is investidatBut an offshore wind turbine can be
influence of loads in many directions. One load case may bdrdimg on some structures, but
in others may there be multiple equal sized load cases aitidferent direction. It is therefore
necessary to add an extra constrain to the topology optiiniztask.

4.5 2nd Topology Optimization - Multiple Load Directions

Design and Optimization Task

A rotation constrain is added to the topology setup from tH@gpology Optimization of Transition
Piece. The constrain is a geometric constrain. This typ@os$itain influence how the geometric is
formed.

The constrain used is a rotation constrain. It demands ligastructure should be repeated after
a number of degrees of rotation around the middle axis of thetsire. The use of four rotation
constrains are investigated namely 1280°, 60° and 45 which is equal to three, four, six and eight
repetitions around the middle axis. Information about thitielement model is shown in Talhle 4.5
and information about the optimization task is shown in €&hb.

Table 4.6: Optimization task information.

Table 4.5: Model information. —
Optimization type | Topology
Material Isotropic Method used SIMP
Linear elastic Object Minimize compliance
Young’s modulus | E =90000 MPa Constrains Volume fraction = 10 %
Poisson’s ratio v=0.25 Min member size = 0.1 m
Element type Ten-node tetrahedral elemept Rotation constrain (45 120°)
Element Short TH 100901 elements Checkerboard filte On
Element High TP| 98573 elements Task Standard general
No geometric non-linearity

Results

Figures of all the resulting topologies with rotation coast are shown in appendix’/Al. The resulting

topology for a 60and 90 rotation constrain for the short and high transition pieoe shown in

Figurel4.6 td 4.9. The compliance for each rotation consérare shown in Table 4.7 and are plotted

on Figurd 41D and Figufe 4]11.

50




Results

Figure 4.6: Topology optimized short tran- Figure 4.7: Topology optimized short tran-
sition piece with a 69rotation sition piece with a 90rotation
constrain. There are formed six constrain. There are formed
legs from the top to the bucket four legs from the top to the
foundation. bucket foundation.

Figure 4.8: Topology optimized high transi- Figure 4.9: Topology optimized high transi-
tion piece with a 60 rotation tion piece with a 90 rotation
constrain. There are formed six constrain. There are formed
legs from the top to the bucket four legs from the top to the
foundation. bucket foundation.
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Chapter 4. Transition Piece for Offshore Wind Turbine

Compliance

Compliance

No rotation constrain
— 45%rotation constrain
— 60° rotation constrain
—— 90° rotation constrain
120° rotation constrain

30 40 50

Iterations

Figure 4.10: Compliance for short transition piece.
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No rotation constrain
— 45%rotation constrain
— 60°rotation constrain
— 90°rotation constrain
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Figure 4.11: Compliance for high transition piece.
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4.6. 3rd Topology Optimization - Material Model and Volume

Table 4.7: Number of iterations and final compliance for the short arghhransition piece.

Short transition piece High transition piece
Iterations Compliance Iterations Compliance

No rotation constrain 30 58898 30 48436
45° rotation constrain 33 137660 32 129120
60° rotation constrain 49 112380 32 109650
90 rotation constrain 37 99408 32 99220
120 rotation constrain 38 100330 37 101350

The final compliance is lowest for the optimization withoatation constrain. When the rotations
constrain is added the material is forced away from the @dtptacing to obtain the loads. Therefore
will the structure become less stiff and the final compliawilebecome higher. A rotation constrain
on 45 gives the highest compliance and the compliance becomes loten less circular repetitions
is required.

The resulting compliance does not give a good estimate ooharbtation constrain there is more
optimal for the transition piece. The 9fbtation constrain does have the lowest final compliance but
only haves four legs cf. Figute'4.7 andl4.9. It is thereforeessary to choose a rotation constrain
based on other parameters. It is chosen to use theo&tion constrain for the transition piece. This
will give six legs around the structure which is assumed gile the necessary stiffness against loads
in multiple directions.

4.6 3rd Topology Optimization - Material Model and Volume

The material has been modelled as an isotropic linear elasiterial with no plasticity for the first
two topology optimization of the transition piece. The resdterial is a composite of CRC concrete
and steel reinforcement cf. Figure 4.12 where a possibks@ections of a structure in CRC concrete
is showed.
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Chapter 4. Transition Piece for Offshore Wind Turbine

Figure4.12: Two possible cross sections of CRC-steel composite. Oaly Bim of cover layer
is necessary and there can therefore be 5-10 times moreorearhent in the CRC
concrete then in conventional concrete. In the cross sestio the left a 5-10 mm thick

steel sheet is combined with CRC concr&lﬁ._(N_eZh_euls_eklalmI{b)

Material Model for reinforced CRC concrete

The CRC concrete in itself is also a composite material wisimhsists of steel fibre and concrete.
The orientation of the steel fibres in the CRC concrete angldeement of the reinforcement steel in
the concrete are not taken into account in the material madsead an isotropic material response
is assumed. The compressive strength, tensile strengt@my’'s modulus of CRC concrete with
rebar is shown in Table 4.2.

The exact material is not known and values in the middle vialgs therefore chosen. The isotropic
material model is assumed to have the strength parametsssh Tabld 4.B. In the elastic domain
is the material modelled linear elastic.

Table4.8: Strength parameters for isotropic material model for CR@aete with reinforcement
steel.

Compressive strength 200 GPa
Tensile strength 200 GPa
Young’s modulus 92 GPa

It is assumed the material has a ductile behaviour afterah@weessive strength and strength is reach.
It is known froml_Ngzhgm;sexa_eJJa{L_(Z&nO) that CRC concragedplastic softening after the yield

limit in compression is reached. It is assumed that the oedeiment in the concrete can give the

concrete the necessary strength to obtain the same behavimunsile as in compression. A plastic
response is therefore modelled as shown in Figurel 4.13.eTdrer plastic softening in the material
after the compressive or tensile strength have been reached
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200 - —— CRC 200 in compression
Reinforced CRC in Abaqus
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Figure4.13: Stress strain curve for CRC concrete. The black line is cesgive behaviour for CRC
concrete based (J_D_N_ezh_e_nls_eia;l?tl_al_(}ZOH). The blue Immighe CRC concrete is

modelled for the transition piece in Abaqus for both tenaild compressive behaviour.

Design and Optimization Task

In the Bt and 29 topology optimization of the transition piece it is assurtieat the volume fraction
is 10 % of the initial volume. To investigate the optimal vole is different topology optimizations
made with varying volume constrains. The object is choselpetthe compliance. A 60rotation
constrain are made to ensure the structures ability torohsads in multiply directions.

One of the design criteria’s for a wind turbine is the rotataf the tower. An often used design
criteria is 0.28 of rotation of the tower around a vertical axis after the afiation. Most of this
rotation is due to settlement in the soil. The demand to tasttion piece will therefore be set to a
smaller value. A design criteria for the transition piecehissen to be 0.0%f rotation. Information
about the finite element model is showed in Tdblé 4.9 and rimdtion on the optimization task is
showed in Table 4.10.
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Table 4.10: Optimization task information

Table 4.9: Model information Optimization type | Topology

Material Isotropic material model Method used SIMP

Reinforced CRC concrete Object Minimize Compliance
Young’s modulus | E = 43000 MPa Constrains Volume fraction = 10 % - 20 %
Poisson'’s ratio Lv=0.25 Min member size = 0.1 m
Element type Ten-node tetrahedral element 60° rotation constrain
Element Short TR 100901 elements Checkerboard filtef On
Element High TP | 98573 elements Task Standard general

Geometric non-linearity

Results

Different volume constrains have been investigated. Makimtation of the wind turbine tower and
final compliance for each volume constrain is showed in TdHld for the short transition piece and
in Table[4.12 for the high transition piece.

Table 4.11: Rotation of wind turbine tower Table 4.12: Rotation of wind turbine tower
and final compliance for short and final compliance for high
transition piece for different transition piece for different
volume constrains. volume constrains.

Volume constrain  Rotation Compliance Volume constrain  Rotation Compliance

5% 0.088 179540 10 % 0.056 109650
10 % 0.055 112380 11 % 0.047 94871

11 % 0.049 103740 12% 0.042 83521

15 % 0.023 47110 13 % 0.037 75881

20 % 0.017 35640 15 % 0.023 60612
100 % 0.008 17868 100 % 0.008 17898

As shown in Tablé 411 and Taldle 4111 the overall stiffnegsedds on the volume fraction con-
strain. The volume necessary to ensure less thart 0f0btation is 11 % for the short transition piece
and 11 % for the high transition piece. This is equal to a velwh252 n3 for the short transition
piece and 448 fhfor the high transition piece.
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Figure 4.14: Distribution of Von Mises stresses in the short transititecp

It is assumed for the optimization purpose the CRC mategalductile isotropic properties and the
Von Mises yield criterion is therefore used to analyses ttesses in the transition piece. For further
investigation and designing of the transition piece wheeedteel reinforcement and concrete are
modelled separately should another yield criterion be uskd Von Mises stress distributions for the
short transition piece are shown in Figlire 4.14. A similaess distribution for the high transition
piece are shown in appendixJA2. The stress in most of thetatesis between 0 MPa and 23 MPa
which is in the elastic area of the material. The maximalssige are concentrated around the top
of the structure where the loads are applied. There are @ikssssconcentrations around the foots of
the six legs where the loads are transferred to the suctiokebhu The maximum stress in the high
transition piece is 126.4 MPa and the maximum stress in tbe sfansition piece is 139.6 MPa.
This means that the maximum stresses does not exceed théafsatempression strength or tensile
strength of the CRC concrete.

4.7 Final Topology of Transition Piece

After three topology optimizations of the transition piése final topology found. The final topol-
ogy for the short and high transition piece are shown on E{@uE% and4.16. From thé%topology
optimization it is found that rotation constrain is set tG 60 the transition piece have six legs. Both
the short and the high transition piece have the same ovepallogy and shape.

In the 39 topology optimization the material of the transition piésenodelled as CRC concrete.
It is investigated from a design criteria what the necessalyme of the transition piece is and it is
found to be 11 % of the original volume for both sizes of thasiaon piece. The stress distribution
in both sizes of transition piece is below the compressiangth and tensile strength. The final result
of the topology optimization should not be seen as a finalgefgir the transition piece. Below are
listed a number of issues needed to be concerned in the fisiginde

57



Chapter 4. Transition Piece for Offshore Wind Turbine

Figure4.15: Topology optimized short Figure 4.16: Topology optimized high tran-
transition piece. sition piece.

The material is modelled as an isotropic material but agdtiat sectiol 4)6. This is not correct. A
finite element model of the structure needs to be createdentheranisotropic behaviour of the CRC
concrete and the reinforcement is modelled together. Ibssiple to take the final topology and use
the geometric as a basic for a new finite element model. Thiem# possible to perform a more
detailed finite element investigation of the structure.

There is only investigated one simplified load combinatiante transition piece. More load com-
binations needs to be investigated. The wave load is sireglith a moment and vertical force acting
in the top of the transition piece. The real load has to beraeéted and they are acting on the legs of
the transition piece. The six legs make the wave load cdlonlaomplex and experimental data may
be necessary to determine the load.

The six legs may also create more turbulence in the wateralsatid shell structure. More turbulence
may lead to scour around the bucket foundation which leadiss®bearing capacity. The shape of
the transition piece has to be investigated for the influamcscour around the structure.

As seen of Figuré_4.15 amnd 4116 does the topology for theitirmmpiece have six slender legs.
The stress does not reach the compressive strength oretstrghgth in the legs and the ULS limit
state is not exceeded. Another limit state is the limit stdtbuckling where a structure suddenly
loses stability and large deformations happen. Buckling specific type of instability, where the
structure will deform from the original shape. The struetwill under a loading go from the existing
state of equilibrium and find a new form of equilibrium stakdis structure could be a slender beam,
a cylindrical shell structure etc.

This form for instability can be included in an optimizatiprocess. After the topology optimiza-
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tion is finished can the geometry found be used for a shapenization. The wave load acting
vertical on a legs can be vary imported to find the criticalldiing load. The load on the side of the
legs of the transition piece was not possible to apply in tpelogy optimization because the shape
and placement of the legs changes throughout the optimizatiocess. In a shape optimization of
the transition pieces can the legs be loaded with the wawkdod the optimal shape to withstand
buckling can be applied as a constrain. The critical buckirgl is found by a linear perturbations
analysis where the eigenvalue is determined by a eigenpabidem. The optimization with a buck-
ling constrain are formulated in equatidn_(4.1). The obfeaction could be compliance but also
stress or other object functions can be used.

min f(X) (4.2)

St. Perit >0, i=1,...,Ngof
Perit :)\iQi
(Kg™N + MK Mo =0 i =1,...,Ngor

N . .
V= ZX'\/I <Vp—V*
i=

KU=F
K = (xX)Pko
0<Xmn<X <1

f(x) | Object function

Oi Constrained lower value for i'th eigenvalue
Ai i'th eigenvalue

Qi Perturbation load pattern

O i'th eigenvalue eigenvector

KYN | Stiffness matrix corresponding to the initial state. Imigla effects of the preloads
KMN | Differential initial stress and load stiffness matrix dodricremental loading
oM i mode shape
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With the use of shape optimization can the shape of the streitte optimized with other types of
constrains e.g minimization of stress concentrations. sthiface nodes will in a shape optimization
be the design variables and can be modified in an optimizatem This way only the shape chances
but the topology of the structure stays the same. A shapenizatiion can be used to refine the
shape and topology found in a topology optimization andmjze the structure to perform better e.g.
reduce stress concentrations or risk of buckling.

As shown above are the topology optimization only the firgpsh a design process. Topology
optimization can be used to investigate possible configurdbr the structure and can provide a
potential good design chose for further investigations degigning.
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Chapter 5

Pedestrian Footbridge

Topology optimization is performed a pedestrian footbeidyer a freeway. An optimal design is
investigated with the use of topology optimization whidiisbgang the necessary constrains.

5.1 Introduction

The second civil engineering structure designed usingléggooptimization is a pedestrian foot-
bridge based on a footbridge over a major metropolitan fegreiw Australia. A general introduction
to the structure is given in sectibnL.1. An initial desigetsk is presented in Figure 1.4 where the
geometric constrains for the bridge is shown.

Topology optimization will be performed in three steps. sFis a 2D solution of the bridge in-
vestigated. This will give an estimate on the overall togglof the bridges and the importance of
supports of the bridge and slope of the pedestrian deck. &¢end and third topology optimization
will be performed on a 3D model of the bridge. Here will thedaand different geometric constrains
be applied. This will lead to a topology optimized bridges tlte static load. Last an optimization
will be performed with constrains for the eigenfrequenchiisiwill lead to a topology design that is
optimized for the static loads and where the risk for resoaan the bridges is minimized.

5.2 Loads and Material

The material used for designing the bridge is steel. It isrmgsl to have isotropic properties and will
be modelled as a linear elastic perfect plastic materia¢ Uded type of steel is assumed to have the
same tensile and compressive strength properties and isli@ddvith a Young’s Modulus of 210
GPa. Material properties are shown in Tablg 5.1. The loacherstructure for finding the optimal
topology is one static load. The load is a vertical presstirthe 4 kPa applied to the deck of the
footbridge.
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Table 5.1: Material properties for steel used in optimization of pedas footbridge.

Compressive strength 325 MPa

Tensile strength 325 MPa
Young’s Modulus 210 GPa
Poisson’s ratio 0.3

5.3 1st Topology Optimization - 2D Solution

Design and Optimization Task

Based on the sketch of the pedestrian footbridge cf. Figikare design domains of the bridges de-
termined. The height of the design domain is sé#ifo= 3.5m. It is assumed that the baring structure
is placed under the pedestrian deck. In each side of thedddgthe a area of te, = 3.5m width
where the structure can be supported without interferirty thie clearance under the bridges. This
area is included in the design domain. The dimensions ofésgd domain are shown on Figlre]5.1
and in Tablé 5R.

Ly

H,

H
H;

L,

Figure 5.1: Dimensions of design domain illustrated.

Table 5.2: Dimensions of design domain.

Total length (1) 72 m
Length of supportl(;) | 3.5 m
Total Height H1) 9.2m

Bridge height Hy) 3.5m
Free span height{z) | 5.7 m

The maximal ramp slope is set to be 1:20. For the 2D solutierttaee possible forms of the deck
slope investigated cf. Figute®.2. A model with a ramp slop& 20 where the middle 20 m is mod-
elled as an arc with the radius of 200.4 m, a model where theeeatmp is modelled with an arc with
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a radius of 721.5 m, and a model without any ramp slope.

The load is applied on the design domain where the pedestdek is assumed to be. The load
zone is set to be a frozen zone. The frozen zone is showed @dtbrr Figuré 5J2. It is assumed the
width of the deck is 4 m cf. sectidn 1.1 . The applied load in2ZBecase is set to 16 kin.

Model 2 Model 1

Model 3

Figure5.2: Design domains for pedestrian footbridge modelled in 2Dd®ldl: Pedestrian deck
with a slope of 1:20 and an arc in the middle. Model 2: Pedastideck formed as an
arc with a beginning slope of 1:20. Model 3: Pedestrian deitk wo slope. Boundary
condition are showed as pinned for translation i verticaledtion in the left side and
pinned for translation in vertical and horizontal directian the right side. The frozen
zone is showed with red.

Each model of the pedestrian footbridge is modelled withgets of boundary conditions. In the first
set is both sides of the footbridge double pinned in vertical horizontal direction. For the second
set of boundary condition are both sides only single pinnasitical direction. A single point is also
pinned in horizontal direction. The boundary conditionsvged on Figur€ 512 are the single pinned.

The pedestrian footbridge is meshed with an 8-node bigtiagiane stress quadrilateral elements
with reduced integration (CPS8R). Model 1 is meshed with88éi@ments, model 2 is meshed with
8516 elements and model 3 is meshed with 8763 elements. Titeedlament analyses is a static
general analysis and there will be no geometric non-litgari

The objective of the optimization is to minimize the struewicompliance. The design variables
are the density of each element in the design domain. A voloomstrain is applied to the three
models. The total volume of the model varies coursed therdifft design domains form. The vol-
ume constrain is therefore set to 25 % of the original volurheodel 3. This will give the same
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final volume and the results are therefore comparable. Twl@roall truss and to make the model
mesh independent are a member size constrain of 0.40 m ie@dptlis desired that the bridges is
symmetric around the middle of the bridges. There are thezefpplied a planer symmetric constrain
where the final topology have to be symmetric around a platimeugh the middle of the bridge.

To make the model symmetric Abaqus is finding nodes that apeogjmately symmetric and
adding them into a symmetry group and determines the mastir of the symmetry group. Then
can the design displacements be calculates for the mastarliant nodes so they move symmetri-

cally to the symmetry plan12)

Information about the finite element model and the optinnratask is given in Tablg 5.3 and 5.4.

. . Table 5.4: imization task information.
Table 5.3: Model information. able5.4: Opt ation tas ormatio

Optimization type | Topology

Material Is-otr0p|c . .|| Method used SIMP
Linear elastic perfect plastic . L .
Young’s modulus| E =210000 MPa Object Minimize compliance
9 B Constrains Volume fraction = 25 % (of model 3

Poisson’s ratio v=0.3
Element type 8-node quadrilateral elements$
Element Model 1| 8638 elements
Element Model 2| 8516 elements
Element Model 3| 8763 elements

Min member size = 0.4 m
Planner symmetric constrain
Checkerboard filtef On

Task Standard general analysis
No geometric non-linearity

Results

The final topology of the pedestrian footbridge in 2D is shawkigure[5.3 for model 1. All three
models topologies are shown in apperidiX A3. The compliarma fopology optimization are shown
in Figure[5.4 an@5]5 and final compliance from the six topplogtimization are shown in Tahle’5.5.

Figure5.3: Topology of model 1 pedestrian footbridge. Top: Bridge gk pinned in both sides.
Bottom: Bridge is double pinned in both sides.
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Figure5.4: Compliance for pedestrian Figure5.5: Compliance for pedestrian
footbridge with single pinned footbridge with double pinned
boundary conditions. boundary conditions.

Table 5.5: Final compliance of pedestrian footbridge in 2D.

Single pinned Double pinned

Model 1 758 5278
Model 2 916 5123
Model 3 1260 6001

The final topology of the single pinned bridges are similardibthree models and the final topology
of the double pinned bridge for all three models are alsolaim each other cf appendix A3. The
single pinned structures form two planes with a trust liketsyn in between. The double pinned
structures form arc structure under the pedestrian deckexpescted the double pinned structure is
stiffer which is shown in the final compliances in Tablel5.5.

Model 3 has the highest compliance for both sets of boundamgliions. Both model 1 and model
2 have the advances of a general arc form which gives a higiffeless against a vertical load and
hereby a lower compliance. Model 3 are therefore not a gosiydehoice.

Model 1's design domain is higher than the design domain aleh@. This makes it possible to
make a larger arc structure under the pedestrian deck apyhéarm a structure with higher stiff-
ness. Therefore is model 1's compliance lower than modsls@npliance for the double pinned
boundary conditions.

For further topology optimization of the structure in thidienensions and with a frequency con-
strains is the design domain of model 1 with double pinnechdaty conditions used.
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5.4 2nd Topology Optimization - 3D Solution in Steel

Design and Optimization Task

Based on the sketch on Figure]l.4 and results from selctida 33 model of the pedestrian foot-
bridge is created. It was chosen to use the profile of modelth avslope of 1:20 of the pedestrian
deck and connected in the middle 20 m with an arc. The widthefdridge is 4 m and the design
domain will therefore be 4 m wide. The design domain are skhawé&igure 5.6.

Figure5.6: Design domains for pedestrian footbridge modelled in 3De Dhidges are pinned
against translation in all three directions in each side.eTVertical load is applied on

the pedestrian deck.

The design domain i loaded with the vertical pressure on 4 KPa load zone is set to be a frozen
zone and the load is applied on the top of the design domaia.bdhndary conditions are, based on
sectior 5.B set to be pinned in all three directions in balbsbf the bridge.

The pedestrian footbridge is meshed with a 20-node quadydtk element with reduced integra-
tion and quadratic shape functions (C3D20R). There are 18864 elements to mesh the model and
the sides of each element are approximately 0.5 m. This isdahee size as the minimum member
size desired and it is therefore assumed the model will betalfiorm the desired topology. A finite
element analyses will be run as a static general analysishanel will be no geometric non-linearity.

The objective of the optimization is to minimize the struet@ompliance and a volume constrain
is applied between 20 % - 50 %. A member size constrain of 0.8@plied to avoid small trusts and
ensure mesh independents.

To ensure symmetry in the bridge a planer symmetric comstsaadded. As in sectidn 3.3 it is
desired that the structure is symmetric around the middteenength direction of the bridge. This
symmetry plane are added to the 3D model as well and are showigarel5.Y. Information about
the finite element model and the optimization task is givefable[5.6 an@5l17.
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Figure5.7: Symmetry plane used to create symmetric constrain on pedegiotbridge.

Table 5.7: Optimization task information
Table 5.6: Model information.

Optimization type | Topology

Material Isotropic Method used SIMP

Linear elastic perfect plastic | Object Minimize compliance
Young’s modulus| E =210000 MPa Constrains Volume fraction = 20% - 50%
Poisson’s ratio v=0.3 Min member size = 0.5 m
Element type 20-node quadratic - Planner symmetry

brick element Checkerboard filte On
Elements 10664 Task Standard general analysis

No geometric non-linearity

Results

A volume fraction varying between 20 % to 50% is investigafBlde final topology of the pedestrian
footbridge with a volume fraction of 50 % is shown on Figur8 &nd with a volume fraction of 20
% on Figurd 5.0. The topology optimizing of the pedestriantiicidge with the remaining volume
fractions is shown in appendix A4.

The supporting truss structure uner the middle of the bridghe 2D solutions for the footbridge
cf. Figure[5.8 are disappeared in the 3D solution and onlathestructure is left. This trend is com-
mon to all the investigated volume fractions. In each endheffbotbridges is a hollow box structure
formed for the higher volume fractions. As the volume fractis reduced is a truss like structure
emerging. With a volume fraction of 20 % are an arc truss siredormed in each side of the bridge
with horizontal and vertical supporting truss. A largesgrirom the bridge deck to the pinned sup-
port are also formed in each side of the bridge.
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Figure 5.8: Topology optimized footbridge with a volume fraction of 50 %
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Figure5.10: Compliance for pedestrian Figure 5.11: Maximum deflection of pedes-
footbridge plotted for different trian deck plotted for different
volume constrains. volume constrains.
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The maximal deflection occurs in the middle of the bridge. @tmpliance and deflection are plotted
on Figurd 5.I0 and 5.11. The deflection of the footbridgeh @itolume fraction of 20 % is 2.3 mm.
The Von Mises stresses reach only 4.6 MPa cf. FigurelA4.5 peiagix[A4. The stresses is within
the reach of conventional concrete cf. Tdbld 4.2. A desigri¢ke pedestrian footbridges in concrete
will therefore be investigated.

5.5 3rd Topology Optimization - 3D Solution in Concrete

Design and Optimization Task

The material used for theBoptimization of the pedestrian footbridge is a conventiarancrete.
Material properties for the conventional concrete aredish Tabld 4.P. For the optimization process
is the material modelled isotropic linear elastic. Coreraaterial behaves non-linear but is assumed
approximately linear as long the stresses does not exceegressive strength.

The design domain, loads and optimization task is the sanimesastior[ 5.4. Based on the resulting
topologies of section 5.4 is a volume constrain of 20 % uséeé. pedestrian footbridge is meshed with
a 20-node quadratic brick element with reduced integratimhquadratic shape functions (C3D20R).
The structure is meshed in the same way as the pedestridorifly® optimized in steel with 10664
elements with an element side length of approximately 0.8.static general finite element analysis
will be used with both geometric non-linearity and no geatneaton-linearity.

Information about the finite element model and the optinratask are given in Table 5.8 and.9.

Table 5.9: Optimization task information
Table 5.8: Model information.

Optimization type | Topology

Material Isotropic Method used SIMP

Linear elastic Object Minimize compliance
Young’s modulus| E =50000 MPa Constrains Volume fraction = 20%
Poisson’s ratio Lv=0.25 Min member size = 0.5 m
Element type 20-node quadratic Planner symmetry

brick element Checkerboard filte On
Elements 10664 Task Standard general analysis

With/No geometric non-linearity

Results

The final topology of the pedestrian footbridge has change #ie material has been changed from
steel to concrete cf. Figute5]12. The larges change is {gosting structure in the middle of the
bridge that has reappeared in the optimization.
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Figure5.12: Topology optimized footbridge with concrete as the makenia a volume fraction of
20 %. Geometrical non-linearity is taken into account in finite element analysis.

The bridge has been modelled with and without geometriclimaarity cf. FiguredLAS.R. There are
no larges visual differences in the topologies with and atithgeometric non-linearity. Compliance
and total deflection of the bridge are plotted on Fiqurel5ridifa14 for the two models.
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Figure 5.14: Maximum deflection of pedes-
Figure5.13: Compliance for pedestrian trian footbridge deck with and
footbridge with and without without non-linear geometric
non-linear geometric effects. effects.

There are no larges difference between the compliance &ndethection for the pedestrian bridge
with and without non-linear geometric effects. The smalleatzion of the bridge makes the non-linear
geometric effects negligible. The deflection of the foathds with non-linear geometric effects and
a volume fraction of 20 % is 7.4 mm. The concrete material F@dmated as isotropic material and
the stresses are approximated with Von Misses stressed/onhdises stresses reach 4.42 MPa. Itis
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5.6. 4th Topology Optimization - Eigenfrequency Constsain

therefore assumed the design shown on Figure 5.12 can bdarske pedestrian footbridge based
on a load case with a static load. The simple load applied erstitucture is not enough for a final
design. More load combination need to be investigated totfiedinal design. Another important
load case is dynamic loads on the structure. This area witimstigated in the next section.

5.6 4th Topology Optimization - Eigenfrequency Constrains

A structure like a pedestrian footbridge is subject to dyicdoads. This load may be a dynamic wind
load or the dynamic load from pedestrians waking over traigeri If the loads frequencies are close to
the structures eigenfrequency may the load course ogmiltabf the bridges movement. It is therefore
necessary not only to design the footbridge by a static le&@lso design by the structures dynamic
behaviour. It is desirable to keep a structures eigenfreguaway from the frequencies of the dy-
namic loading from the pedestrians. A structure with a higidamental eigenfrequency also tent to

be reasonable stiff for a static load and may therefore b@d design choice (Ben nd Sigmund,
2003).

A formulation of the SIMP method with a eigenfrequency coaistis given in equatiori(5.1). This
eigenfrequency constrain is added to the general fornaulat the SIMP method with a volume con-
strain given in equatiori (2.6).

minC=UTKU = Zu'k'u' (5.1)
=
st. Aj>Bi, i=1,...,Ngof

(K—=AM)®; =0, i=1,...,Ngof

N . .
V= ZX'\/I <Vp—V*
i=

KU =F
K'= (x)Pko

0<Xmin<X <1
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Where:

Bi | Constrained lower value for i,th eigenvalue
A | i'th eigenvalue

®; | i'th eigenvalue eigenvector

M | Structures mass matrix

An modal dynamic analysis of the design domain are made tbleg¢@evaluate how many eigen-
frequency are necessary to include in the optimizationgeecf. appendix’A6. The frequencies are
found with a linear perturbation procedure. It is found thatfirst nine eigenfrequencies will be used
in the optimization task.

Design and Optimization Task

The material used for thé™optimization of the pedestrian footbridge is conventiocahcrete and
the material properties are modelled isotropic lineartglass in sectiof 5]5. There are assigned a
density to the design domain so the mass matrix can be craatkdised in the calculation of the
eigenfrequencies. The density assigned to the domain &@ &#¥m"3 which are the density for
conventional concret008).

There will be performed two analyses of the pedestrian fidgle in each iteration cycle, a stan-
dard general analysis with geometric non-linearity and dahanalysis of eigenfrequencies. The first
analysis is used to calculate stress and strains in thetwteuand hereby compliance. The second
analysis is used to determine the eigenfrequencies for tidershapes. The design domain, loads,
mesh and optimization task are modelled as in se€fidn 5.5.

For a footbridge with pedestrian excitation are the ctitremges of natural frequencie§, given
below. These criteria will be applied as constrains two thigngization task as a lower bound for the
eigenfrequencies. There will be made two constrains. Onstn for lateral vibrations and one

constrain for vertical and longitudinal vibrationg._(J:Ieline;LeLei_fllL_Zng)

The demand for frequencies ranges for vertical and longigdiibrations is given in equatiof (5.2) :

1.25 Hz< f; < 2,3 Hz (5.2)

There is a possibility for a resonance by 78 armonic frequencies for the vertical and longitudinal
vibrations and the demand is therefore changes to the ddntieleval of frequencies cf. equation

G.3).

1.25 Hz< f; < 4,6 Hz (5.3)
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For lateral vibrations the critical ranges is shown in equm({5.4) and the lateral vibrations are not
affected by the 2 harmonic frequencies.

05Hz< fi<12Hz

(5.4)

Beside the eigenfrequency constrains are the pedestmdinriidge modelled with a volume fraction
constrain on 20 %, 25 %, 30 %, 40%, and 50%. Information abbwufibite element model and the
optimization task is given in Table 5]J10 and 3.11.

Table 5.11: Optimization task information.

Table 5.10: Model information. Optimization type | Topology
Method used SIMP
Material Isotropic Object Minimize compliance
Linear elastic Constrains Volume fraction = 20% - 80%
Young’s modulus| E =50000 MPa Lateral eigenfrequency > 1.2 Hz
Poisson'sratio | v=0.25 Vertical eigenfrequency > 4.6 Hg

Element type 20-node quadratid Min member size = 0.5 m
brick element Planner symmetric constrains
Elements 10664 Checkerboard filte On
Task Standard general analysis
Modal frequency analysis
Results

The first nine mode shapes have been constrained in the eatior process. The most critical mode
shapes are for all volume constrain is found to be the firssaadnd mode shape with one half waves
in vertical or lateral direction cf. Figute’/AG.1 ahd Ab.2 ippendix. The models investigated obtains
a final topology that fulfils the lateral eigenfrequency daais for all volume fractions investigated.
Only the investigated structures with a volume constraier @0 % fulfil the vertical eigenfrequency
constrain. Results from the optimization task with eigegfrensy constrains is shown in Table5.12.

73



Chapter 5. Pedestrian Footbridge

Table 5.12: Results from topology optimization of pedestrian footpeidvith eigenfrequency con-
strain.

Volume constrain  Compliance Lowest vertical eigenfreqydhlz] Lowest lateral eigenfrequency [Hz]

20 % 5083.0 2.05 3.41
25% 2735.0 2.64 4.38
30 % 1152.0 3.96 4.60
40 % 591.8 3.65 4.60
50 % 484.0 3.54 4.63

The compliance for the optimization process with a volunaetion of 30 % are shown in Figure

and the lowest lateral and vertical eigenfrequencyshaosvn in Figuré 5.16. Eigenfrequencies
and compliances are potted for all investigated volumetcains in appendik A6. It is seen that the
optimization fulfil the constrains and minimise the comptia. When the eigenfrequency constrain
is fulfilled for a given optimization step is the frequencynstrains almost fulfilled throughout the

rest of the optimization. There are iteration steps whegectinstrains is not fulfilled due to the min-

imization of the compliance but over the next iteration stepthe eigenfrequency elevated to the
constrained level.

9000 —— With eigenfrequency constrain 6L Lateral Eigenfrequency .
—— Without eigenfrequency constrain - - - Lateral Eigenfrequency constrain
Vertical Eigenfrequency .
~ sl - — - Vertical Eigenfrequency constrain
= H I
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Figure 5.15: Compliance plotted for foot- Figure5.16: Lowest lateral and vertical
bridge with and without fre- eigenfrequency and eigenfre-
guency constrain and 30 % guency constrains with a 30 %
volume fraction constrain. volume fraction constrain.

The final topologies with a volume constrain of 25 % and 50 %sha@vn in Figuré 5.7 arld 5.18.
Remaining topologies are shown in apperidiX A6.
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Figure 5.17: Topology optimized pedestrian footbridge with eigenfestpy constrain and 25 % vol-
ume constrain.

Figure 5.18: Topology optimized pedestrian footbridge with eigenfestpy constrain and 50 % vol-
ume constrain.

The implementation of the eigenfrequency constrains hasgds the topology of the pedestrian
footbridge. Material is moved from the middle of the bridgeeach side. This works as a fixation
of the bridge side and makes each side of the bridge modéamstsagainst bending. Hereby the
eigenfrequency is raises to the constrained level. Thesébrelocation of material makes the final
topology less stiff and the compliance of the structure &dfore higher. This effect is shown on
Figure[5.15 for a volume constrain on 30 % and for remainirigme constrains in appendix A6.
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5.7 Final Topology of Pedestrian Footbridge

Topology optimization has been used to investigate passiesigns of a pedestrian footbridge.

| section[5.8 the bridge is investigated in a 2D model. Thendawy conditions are chosen to be
double pinned. This solution gives the lowest complianattae highest total stiffness. Other influ-
ences on the selection of the pedestrian footbridges boyedadition have to be considered. When
the bridge is fixed for translation in the vertical directiorboth sides there is no possibilities for the
bridge to expand and increased stresses may occur. A poss#éson for expansion is heat. When a
structure is exposure to heat different will the structugeasd or shrink.

In section[5.4 an@ 55 the topology design of a 3D model of ti@gb with steel and concrete as
the material is investigated. The bearing constructioreutite pedestrian deck is formed as an arc.
It is chosen to use concrete as a material.

It has to be considered how to construct the bridge. If thédariis built in concrete it has to be
considered if it is possible to cast the bridges elementktbeidesign has to be adapted. If the bridge
was chosen to be built in steel it may be desired not to havarge Imembers. A solution may be to
make a topology optimization where the maximal size of masilsealso constrained.

The bridge has only been topology optimized for a verticatlldt is assumed this are the dominating
load of the bridge. To verify the design of the bridge othexd® have to be considered in the final
design process.

In section[5.6 it is investigated how an eigenfrequency taimsinfluences the final design. It is
possible to constrain the bridge to have a higher eigenéregyuthan the constrained level but will
require a higher volume. In sectibn b.4 5.5t is found @ahaolume fraction of 20 % is enough to
obtain a satisfying design. With an eigenfrequency comstileast 30 % volume is necessary to sat-
isfy the constrains. The final compliance is larger with a&afgequency constrain. It may therefore
be a possibility to install dampers to the bridge insteads Way it would be possible to maintain the
design of the bridge found in sectibnb.5.

The investigation of the pedestrian footbridge does notwtida finished design of the pedestrian
footbridge. Instead the topology optimization providesomd) initial design for a further design
process. With the use of topology optimization it is possilal investigate the influence of different
parameters and make a well-founded chose of the topolodyedttucture.
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Chapter 6

Conclusions

In this thesis topology optimization in civil engineerirgginvestigated. In this chapter are investiga-
tions of the thesis outlined and the main conclusions arensaized.

6.1 Summary of the Thesis

Chapter[l A general presentation to topology optimization is gived e use in civil engineering
is reviewed. Presentations of the civil engineering stmes that are analysed using topology opti-
mization are given. In the end of the chapter is the histoppblogy optimization reviewed and the
scope of the thesis outlined.

Chapter@ The theoretical background for topology optimization aeewed. Four different solu-
tion schemes for topology optimization are defined: the Siv#®hod, the Homogenization Method,
ESO method and BESO method. The method used to preformelbdgpaptimization in the thesis
is the SIMP method and the main focus is therefore on this edetRossible problems that can occur
under a topology optimization are discussed and possililgiao methods for solving checkerboard
pattern problems and mesh independents problems are shown.

Chapter@ A Case study is performed in a SIMP optimization with comptia as the object and
with a volume fraction as a constrain. Three cases are igatst: A Michell type structure, a 2D
cantilever beam and a 3D cantilever beam. The case studyf@ped with two commercial finite
element and optimization programs: Abaqus CAE and Altaitisbpict.

From the case study of a Michell type structure it is found tigh both Abaqus and Optistruct it
is possible to find a feasible solution for the topology ojation task. Both solutions found with
Abaqus and Optistruct are similar to the analytical solutibthe Michell type structure.

In the second case a 2D cantilever beam is topology optimBeth programs give similar topol-
ogy solutions when a manual checkerboard pattern conteppdied. The automatic checkerboard
pattern control is investigated for both programs. Abacgasgehan automatic checkerboard control
and is able to find a feasible solution to the optimizatiok taghout a manual applied checkerboard
control. Optistruct do not have an automatic checkerboardral and the solution is only feasible
when a checkerboard control is applied manual.

79



Chapter 6. Conclusions

A case study of the 3D cantilever beam is performed. It shtnashioth programs are able to per-
form topology optimization on a 3D structure with solid elemis.

It is found that both Abaqus and Optistruct are suitable &fggm topology optimization on 2D
shell structures and on 3D solid structures. The two progrhave both in all case studies found
similar final topology and compliance. In the 2D case stu@esistruct in general converges faster
against the final compliance than Abaqus. In the 3D caseeusbaigd Optistruct converge in almost
the rate. Both programs are also able to reach a 1-0 densitybdtion. It has been observed in 3D
cases there are more elements with a density in middle aitefhis makes it necessary to determine
a lower boundary for element densities to accept in the fommdlbgy. The time spent in Abaqus for
an optimization task is generally longer then in Optistruihis is both due to the time spent on the
optimization but also the time spent on FEM calculations atheér tasks.

Chapter[4 A transition piece for an offshore wind turbine is optimize@ihe transition piece is
optimized for two sizes. The topology is investigated irethoptimization tasks. First is a topology
optimization made with no additional constrains to the sitzed SIMP formulation. Then the opti-
mization is expanded to include a rotation constrain. Tla&tian constrain of 60makes it possible
to find a structure that is optimized to obtain loads from iplyltdirections.

In the third optimization the material is modelled as CRCarete. The optimization is also per-
formed with geometric non-linearity. It is investigatedatihe volume constrain should be to satisfy
a design criteria. The found optimized topologies of thegition pieces are shown in Figure 6.1
and[6.2. The stresses in the structure are investigatedt andound to be below the tensile and
compressive strength of CRC concrete.

Figure 6.1: Topology optimized short tran- Figure 6.2: Topology optimized high transi-
sition piece. tion piece.
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6.1. Summary of the Thesis

Chapter[d The design of a pedestrian footbridge is investigated usipglogy optimization. The
investigation is performed in four steps: A 2D solution, a8iution in steel, a 3D solution in con-
crete and a solution where the structures eigenfrequermynistrained. The resulting topologies are
shown in Figuré 6J3 tb 6.6.

Figure 6.3: Topology of 2D solution in Figure 6.4: Topology of 3D solution in
steel. steel.

Figure 6.5: Topology of 3D solution in con- Figure 6.6: Topology of 3D solution with
crete. eigenfrequency constrain.

The first investigation is a 2D model. The influence of boupdanditions and slope of the pedestrian
deck are investigated with topology optimization. The ficampliances are compared and a model
where both sides of the bridge are pinned in both vertical leorizontal directions has the lowest
compliance and is used for further investigation. The infaeeof the slope of the pedestrian deck is
investigated and it is found that a solution with the maxialdwable slope of 1:20 gives the lowest
compliance.

In the second and third topology optimization of the pedistfootbridge are a 3D model of the
design domain optimized using topology optimization. Awnk fraction of 20 % gives the final
topologies showed in Figute 6.4 andl]6.5. It is found that tifference material parameters and the
use of geometric non-linearity give different resultingatogyies.

In the fourth topology optimization a eigenfrequency coaistis applied to the optimization task.
It is desired to move the structures eigenfrequency abovéieat interval for frequencies created
from pedestrians. A critical interval is defined for bothtieal and lateral movement. The topology
with a eigenfrequenct constrain is showed in Figuré 6.& found that a volume fraction of 30 % is
necessary to satisfy the eigenfrequency constrain. Thiecfimapliance is lower when the frequency
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constrain is added. This is due to relocation of materiahts the eigenfrequency constrain which
gives a less stiff structure.

The investigation with topology optimization provides aodanitial design for the further design
process. With the use of topology optimization it is possital investigate the influence of different
parameters and make a well-founded chose of the topolodyedttucture.

6.2 Overall Conclusions

The use of topology optimization in civil engineering hashévestigated and the main conclusions
are summarized in the following points.

e Topology optimization methods in commercial programs arecsssfully used to preform
SIMP optimization. SIMP optimization with compliance ageatt and volume as an constrain
is compared and it is found that using both Abaqua CAE andrADatistruct it is possible to
preform optimized topology. The final topology is similar fbe two programs.

e Topology optimization can be used to optimize civil engiiveg structures. The complex na-
ture of most civil engineering structures in shape, loatbpas and material makes it important
to simplify the model and use appropriated constrains taibla feasible final topology.

e Complex load patterns acting on the part of the structure ithaptimized are not possible
to model correct. Instead it is necessary to simplify thedlaad move it to a frozen zone
of the structure. The structure can after a topology option be optimized using shape
optimization where the loads can be applied more correbtlgeneral topology optimization
is more powerful on structures where the dominating loadisting inside the design domain
and where the main loads size and direction are not deperidled structures shape and size.

e It is possible to account for load acting in multiple directs. A symmetry constrain can be
applied to the structure to ensure that the structure carstaitd load from several directions.
This is done for the transition piece with a rotation corigt@round the middle axis. If a
vertical load was applied to the pedestrian bridge a symnmsine through the middle of the
bridge could be used to ensure that the bridge could obtairiodd from both sides of the
bridge.

e A frequency constrain can successfully be used togethér avlBIMP optimization. This is
done for the pedestrian footbridge. The interpretatiorheftopology of the optimization can
be used as a base for the design or to evaluate other pdgssifitir securing the bridge against
oscillations.

e The resulting topology is dependent of the definition of tesign task. Therefore itis imported
to use appropriate constrains to define the optimizatidn tas
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6.3. Further Work

e Topology optimization is a powerful design tool. In the ialtface of the design of a civil
engineering structure topology optimization can succélgsbe used to determine the overall
topology. The investigations of two civil engineering stiwres show that topology optimiza-
tion cannot make it out for the entire design process. Altettbpology optimization is finished
it is necessary to preform additional designing of the stméc Nevertheless with the use of
topology optimization it is possible to obtain an effectased high preforming topology for a
civil engineering structure. The use of topology optimizatcan lead to an unconventional and
unexpected design that else would not have been taken ingidewation.

6.3 Further Work

With the new tools in commercial programs topology optirtimahas become more easily accessible
to use in civil engineering. In this thesis topology optiatian has been performed on two different
civil engineering structures with success. A number of $ifilcptions and assumptions have been
made to make this possible. There is still many areas of égyobptimization there can be investi-
gate to make the optimization more effective and give bettsults.

This thesis has mainly focused on using topology optimiratd maximise the stiffness of a structure
while being constrained by a volume constrain. Other caimgtrhave been added to different opti-
mization tasks. There are other approaches for finding amaptopology e.g. minimising weight
with a stress constraints. A further investigation of the agdifferent optimization task set-up and
the influence on the final topology is needed to determine & &pproach when using a penalty
method as SIMP.

Topology optimization using SIMP method can only be usedsotropic material. An implemen-
tation of the homogenization method in a commercial progcauld be used to model composite
material. The use of the homogenization method could alsséd to determine the properties of the
a composite material as well as the topology of the struaficomposite materials.

Reinforced concrete consists of both concrete and stagbreement. In this thesis the combined
material is simplified to act as a combined isotropic makefifiis can be used as an approximation
to find a topology for further design. An area for further warkuld be to model both materials com-
bined for a optimization. Combined optimizations of sta@l aoncrete are proposed but the methods

have so far not been used for large scale civil engineeringtstres ' L._de)

(Surit and WQIh)(ﬁViVQJ’I’LLO_Ill)

A drawback for topology optimization is still computer cafig. The increased availability of com-

puter capacity has made it possible to perform more and murglex finite element modelling.
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Chapter 6. Conclusions

Large civil engineering structures with a high level of detimand a high number of degrees of
freedoms. Topology optimization is an iterative process e FEM model will have to be calcu-
lated many times in a optimization. Further optimizationhaf solving algorithms and more computer
capacity will make topology optimization an even more ative design tool.
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AppendicesA 1

2nd Topology Optimization of Transition

Piece

Figure[AT.1 td AT.% shows the optimized structures of thertstnansition piece shown. Figure Al.5[to AlL.8
shows the optimized structures of the high transition pigloewn. There are applied a rotation constrain
between 45to 120°.

Figure A1.1: Short Transition Piece topol- Figure A1.2: Short Transition Piece topol-
ogy optimized with a 45ro- ogy optimized with a 60ro-
tation constrain. tation constrain.

Figure A1.3: Short Transition Piece topol- Figure Al1.4: Short Transition Piece topol-
ogy optimized with a 90ro- ogy optimized with a 120ro0-
tation constrain. tation constrain.
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Appendices Al. 2nd Topology Optimization of Transitiondgie

Figure A1.5: High Transition Piece topol- Figure A1.6: High Transition Piece topol-
ogy optimized with a 45ro- ogy optimized with a 60ro-
tation constrain. tation constrain.

Figure AL.7: High Transition Piece topol- Figure A1.8: High Transition Piece topol-
ogy optimized with a 90ro- ogy optimized with a 120ro0-
tation constrain. tation constrain.
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AppendicesA 2

3rd Topology Optimization of Transition

Piece

O=WANNO—=D RN
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Figure A2.1: Distribution of Von Mises stresses in the short transitigecp.
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Figure A2.2: Distribution of Von Mises stresses in the high transitioeqg.
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AppendicesA 3

1st Topology Optimization of Pedestrian

Footbridge

Figure A3.1: Topology of model 1 pedestrian footbridge. Top: Bridge impd in both sides of the
bridge. Bottom: Bridge is fixed in both sides.

Figure A3.2: Topology of model 2 pedestrian footbridge. Top: Bridge imed in both sides of the
bridge. Bottom: Bridge is fixed in both sides.

Figure A3.3: Topology of model 2 pedestrian footbridge. Top: Bridge impd in both sides of the
bridge. Bottom: Bridge is fixed in both sides.
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AppendicesA 4

2nd Topology Optimization of Pedestrian
Footbridge

Topology Optimized Footbridge With Different Volume Fractions

Figure A4.1: Topology optimized footbridge with a volume fraction of 50 %

Figure A4.2: Topology optimized footbridge with a volume fraction of 40 %
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Appendices A4. 2nd Topology Optimization of PedestriantBodge

Figure A4.3: Topology optimized footbridge with a volume fraction of 30 %

Figure A4.4: Topology optimized footbridge with a volume fraction of 20 %

S, Mises

(Avg: 75%)
+4.6 MPa
+4.2 MPa
+3.9 MPa
+3.5 MPa
+3.1 MPa
+2.7 MPa
+2.3 MPa
+1.9 MPa
+1.5 MPa
+1.2 MPa
+0.8 MPa
+0.4 MPa
+0.0 MPa

Figure A4.5: Distribution of von Mises stresses in pedestrian bridgetedls
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AppendicesA 5

3nd Topology Optimization of Pedestrian
Footbridge.

Topology Optimized Footbridge With Concrete Material

Figure A5.1: Topology optimized footbridge with concrete as the matena a volume fraction of
20 %. Geometric non-linearity is taken into account in thédielement analysis.

Figure A5.2: Topology optimized footbridge with concrete as the matema a volume fraction of
20 %. Geometric non-linearity is not taken into account ie fimite element analysis.
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AppendicesA 6

4th Topology Optimization of Pedestrian
Footbridge.

Mode Shape and Eigenfrequency Analysis

Figure[AG.1 to AG.D shows mode shapes for the first nine modes & frequency analysis of the design
domain. A table of data from the test are shown i Table A6.1.

FigureA6.1: 18t mode Figure A6.2: 29 mode Figure A6.3: 39 mode
shape. shape. shape.

Figure A6.4: 4"  mode Figure A65: 5" mode Figure A6.6: 6"  mode
shape. shape. shape.
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Appendices A6. 4th Topology Optimization of Pedestriantbadge.

FigureA6.7: 7" mode Figure A6.8: 8" mode Figure A6.9: 9" mode

shape. shape. shape.

Table A6.1: Mode shape and Eigenfrequency information for design domai

Mode No. Eigenfrequency [Hz] Number of half waves Desooiptdf mode shape

1 3.31 1 Lateral effects
2 3.73 1 Vertical effects
3 8.23 2 Vertical effects
4 9.03 2 Lateral effects
5 16.18 3 Vertical effects
6 17.25 3 Lateral + torsion effects
7 18.61 1 Torsion effects
8 22.69 4 Vertical effects
9 27.46 4 Lateral + torsion effects
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Appendices A6. 4th Topology Optimization of Pedestriantbadge.

Topologies with Eigenfrequency Constrain

Figure A6.10: Topology optimized pedestrian footbridge with eigenfesgpy constrain and 20 %
volume constrain.

Figure A6.11: Topology optimized pedestrian footbridge with eigenfesgpy constrain and 25 %
volume constrain.

Figure A6.12: Topology optimized pedestrian footbridge with eigenfespy constrain and 30 %
volume constrain.
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Appendices A6. 4th Topology Optimization of Pedestriantbadge.

Y

.

Figure A6.13: Topology optimized pedestrian footbridge with eigenfesgpy constrain and 40 %
volume constrain.

Figure A6.14: Topology optimized pedestrian footbridge with eigenfesgny constrain and 50 %
volume constrain.
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Appendices A6. 4th Topology Optimization of Pedestriantbadge.

Compliance and Eigenfrequencies
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Figure A6.15: Compliance plotted with and
without frequency constrain
and 20 % volume fraction
constrain.
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Figure A6.17: Compliance plotted with and
without frequency constrain
and 25 % volume fraction
constrain.
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Figure A6.16: Lateral and vertical eigen-
frequencys plotted with a 20
% volume fraction constrain.
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Figure A6.18: Lateral and vertical eigen-
frequencys plotted with a 25
% volume fraction constrain.
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Appendices A6. 4th Topology Optimization of Pedestriantbadge.
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Figure A6.19: Compliance plotted with and
without frequency constrain
and 30 % volume fraction

constrain.
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Figure A6.21: Compliance plotted with and
without frequency constrain
and 40 % volume fraction

constrain.
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Figure A6.20: Lateral and vertical eigen-
frequencys plotted with a 30
% volume fraction constrain.
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Figure A6.22: Lateral and vertical eigen-
frequencys plotted with a 40
% volume fraction constrain.
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Appendices A6. 4th Topology Optimization of Pedestriantbadge.
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Figure A6.24: Lateral and vertical eigen-
frequencys plotted with a 50
% volume fraction constrain.

without frequency constrain
and 50 % volume fraction
constrain.
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