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Synopsis:

We define the formalism for action invest-
ment games which can be used to reason
about the trade-off between a constrained
resource of energy and two budgets.

We have given a motivating example of a
network relay station where we study the
trade-offs between battery size and the
budget for each player.

We study the decision problem which
is the foundation for reasoning about
trade-offs and given a comprehensive
analysis of complexity bounds for relevant
problems within the formalism.

In the worst cases increases the complexity
by two levels in the polynomial hierarchy
compared to the complexity of the corre-
sponding energy game.

The report content is freely accessible, but the publication (with source) may only be made by

agreement with the authors.
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Chapter 1

Introduction

It is the job of any computer scientist and software engineer to develop software,
but software does not always behave correctly or as intended. There can be a lot
of reasons for flawed software but by applying formal techniques such as modelling,
model-checking and verification it is possible to find bugs, correct errors and prove
correctness, even before development process starts. [2]

Embedded software and embedded systems surround us all in our daily lives, making
modelling and verification of these systems relevant, not only for our well-being but
also for the companies producing these systems as correcting a bug or a flaw in
thousands of deployed systems can be extremely costly if not impossible [4].

It is typical for an embedded system to have limited or constrained resources and
to interact with uncontrollable or even hostile environments. When adding this to
the ever increasing demand on functionality and reliability for the lowest possible
price, several interesting problems emerge.

An example of such a system is a simple mobile phone where the constraining
resource is the size of the battery. The required functionality could be that the
phone must be able to make some number of calls before the battery is empty. It is
possible to install different antennas in the phone, a good and a bad, where the bad
antenna is less expensive than the god antenna, but it consumes more energy when
used. Intuitively the battery needs to be larger if the budget limits the phone to
have the bad antenna, than if the budget was high then the phone could have the
good antenna.

The formalism for studying this kind of trade-off between a constrained resource of
energy and a budget is the main topic of this thesis.

We define and study Action Investment Games (AIG), which are energy games,
extended with budgets and prices on actions. An energy game [5] is played by two
players on a finite graph, where Player 1 wins if he has a strategy such that the
accumulated energy is constrained within an given interval, and Player 2 wins if
Player 1 loses.

The extension captures the intuition from the mobile phone example, as Player 1
can make an investment not costing more than his budget and remove behaviour
from the resulting energy game. It also adds the possibility of Player 2 to making
an investment not costing more than his budget and enable possible behaviour.
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We give a comprehensive analysis on the complexity for the decision problem; is it
possible for Player 1 to make an investment costing less than his budget, such that
for any Player 2 investment costing less than his budget, Player 1 is the winner of
the resulting energy game within a given interval?

Related work

Energy games that are constrained by either a lower bound or an interval have
attracted much attention in recent years. Energy games were introduced with and
without time in [5] and generalised with mean-payoff games in [6]. Energy games
with multiple weights were introduced in [7]. However, none of these introduce the
concept of investments or the trade-offs involved with these.

In [3] a dual-price schema for modal transition systems is studied, this introduces a
long-run average cost and a hardware investment cost, it gives a trade-off scenario
similar to the one studied in this thesis. However, modal transition systems lack the
concept of two players, meaning that there are no uncontrollable states to model
an environment and it lack the concept of constraining as it gives a trade-off over a
long-run average.

To the best of our knowledge this Theses provides the first study of energy games
extended with budgets and prices on actions.
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Preliminaries

We start by defining boolean formulas and the polynomial hierarchy.

2.1 Boolean Formula

Boolean variables X = {x1, x2, . . .} are assigned true or false, by a valuation υ :

X → {true, false}. A boolean formula ϕ over X consists variables combined with
operators ∨ (logic OR) , ∧ (logic AND) and ¬ (logic NOT). A formula ϕ is satisfiable
if there exists an assignment υ such that ϕ evaluates to true is under υ.

2.2 The Polynomial Hierarchy

Definitions and results in this section is based on [1, Chap. 5] and [8, Chap. 17].

Alternating Turing Machines (ATM) are an extension of Turing Machines with exis-
tential (∃) and universal (∀) states. Existential (∃) states capture non-determinism
and universal (∀) states capture co-non-determinism. The ATM accepts from a
existential state (∃) if one successor accepts and from a universal (∀) states if all
successors accept. ATMs give a characterisation of the polynomial-time hierarchy
(PH).

Definition 1. Let ΣP
k be the class of languages L accepted by an ATM that begins

in a existential (∃) state, alternates between existential and universal (∀) states at
most k − 1 times.

Definition 2. Let ΠP
k be the class of languages L accepted by an ATM that begins

in a universal (∀) state, alternates between universal and existential (∃) states at
most k − 1 times.

Note that for the first level is ΣP
1 =NP and ΠP

1 =coNP. It is also clear that ΣP
k ⊆

ΠP
k+1 and ΠP

k ⊆ ΣP
k+1, an illustration of this is shown in Figure 2.1.

Definition 3. The polynomial hierarchy is defined as PH =
⋃
k ΣP

k =
⋃
k ΠP

k

Theorem 4. [8, Prop. 17.1] PH ⊆ PSPACE
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Figure 2.1: Relation between classes in the polynomial time hierarchy

We define quantified boolean formulas which have a finite number of alternations,
formally ΣP

i -SAT
∃ ~x1∀ ~x2∃ . . .Q~xiϕ( ~x1, ~x2, . . . ~xi)

and ΠP
i -SAT

∀ ~x1∃ ~x2∀ . . .Q~xiϕ( ~x1, ~x2, . . . ~xi)

where ϕ is a boolean formula, each ~xi is a vector of boolean variables, and Q is ∃
or ∀ depending on whether i is odd or even.

QSAT problems is the decision problems whether a quantified boolean formulas is
true for false. There are a QSAT problem represented on each level in the polynomial
hierarchy.

Theorem 5. [8, Thm. 17.10] The ΣP
i -SAT problem is ΣP

i -complete and the ΠP
i -

SAT problems is ΠP
i -complete for all i ≥ 0
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Definitions

We defining Weighted Energy Games, runs, plays and strategies for this type of
game, these are slight modification of the definitions in [5] and [6]. We then introduce
Action Investment Game, which builds on top of Weighted Energy Games by giving
each player a set of actions, a budget and introducing a cost for each action.

3.1 Energy Game

Definition 6 (Weighted Energy Game). A Weighted Energy Game (WEG) is a
tuple G = (Q,Q1, Q2,Σ,→, q0) where

• Q is a finite state set,

• Q1, Q2 are a disjoint splitting of Q, Q = Q1 ]Q2,

• Σ is a finite set of actions,

• →⊆ Q×Σ× Z×Q is a successor relation where (q, σ, z, q′) ∈→ is written as
q
σ,z−−→ q′, and

• q0 ∈ Q is the initial state.

A Weighted Energy Game is represented by a graph where each node represents a
state, the node is circled if it is in Q1 and squared if it is in Q2. Edges represent a
transition between states and the edge is labeled with an action name and a weight.
Figure 3.1 is an example of a WEG.

AB b, -1

c, -4

c, -3
a, 2

a, 3

Figure 3.1: Example of a simple energy game

Informally a WEG is a board where an energy game is played on. The energy game
is played by moving a token around on the board. The token starts in the initial
state q0. If the token is in a circle state, then Player 1 moves the token to a successor



6 Chapter 3. Definitions

state. Likewise if the token is in a square state then Player 2 moves the token to
a successor state. The sequence the token moves is called a run, this is formally
defined as follows.

Definition 7 (Run). A run in G = (Q1, Q2,Σ,→, q0) starting from q0 is a finite
or infinite sequence r = q0

σ0,z0−−−→ q1
σ1,z1−−−→ q2

σ2,z2−−−→ . . . where qi ∈ Q and qi
σi,zi−−−→

qi+1 ∈→ for all i.

It is possible during run to determine the energy level γ in each step by summing
the weight on each transition up to that step in the run. Two runs on the WEG is
shown in Figure 3.1 and their energy level through each step is seen in Figure 3.2.

Given a finite run, r = q0
σ0,z0−−−→ . . .

σn−1,zn−1−−−−−−→ qn let the last state of the run be
denoted Last(r) = qn. A finite run r is maximal if Last(r) has no successors.

Definition 8 (Valid Run). A run r is valid in the interval [a, b], a ∈ Z, a ≤ 0, and
b ∈ Z ∪ {∞}, b ≥ a if r = q0

σ0,z0−−−→ . . .
σn−1,zn−1−−−−−−→ qn is a maximal finite run and

a ≤
n−1∑
i=0

zi ≤ b ,

or if r = q0
σ0,z0−−−→ q1

σ1,z1−−−→ . . . is a infinite run and

a ≤
n∑
i=0

zi ≤ b for all n ≥ 0.

A
a,3 b,-1 c,-3 a,3 a,2 b,-1 c,-4 a,3

0

-1

2

1

4

3

-2

Runs
A A AA B A B A

A
a,2 a,2 b,-1 c,-3 a,2 b,-1 c,-3 a,2

A A AA B A B A

Figure 3.2: Run on the WEG in Figure 3.1

A run r is said to be winning for Player 1 and loosing for Player 2 if it is valid. A
Play on a WEG can produce several different runs depending on what strategy each
player uses.

A strategy δ for Player i, where i = {1, 2}, maps a finite non-maximal run r where
Last(r) = qn and qn ∈ Qi to a successor qn

σn,zn−−−→ qn+1. We denote a strategy for
Player i as δi.
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A play on a WEG using strategy δi produces either a infinite run q0
σ0,z0−−−→

. . . qn
σn,zn−−−→ qn+1 . . . where for any n, if qn ∈ Qi then qn

σn,zn−−−→ qn+1 = δi(q0
σ0,z0−−−→

. . . qn). Or it produces a maximal finite run q0
σ0,z0−−−→ . . .

σn−1,zn−1−−−−−−→ qn where for
0 ≤ m < n if qm ∈ Qi then qm

σm,zm−−−−→ qm+1 = δi(q0
σ0,z0−−−→ . . . qm).

We now define the interval bound problem, which is the question whether Player 1
wins or looses a given WEG.

Interval bound problem:
Given a WEG G and an interval [a, b], does there exist a strategy for Player 1, δ1,
such that any play on G using the strategy δ1 produces a run valid in the interval
[a, b]?

Player 1 wins and Player 2 looses a WEG G in the interval [a, b] if the answer to the
interval bound problem for G in the interval [a, b] is positive.

Example 9. Let us now turn to the example WEG in Figure 3.1 and consider this
game with the interval [−2, 4]. We want to find the winner of the game, Player 1
wins if we can find a strategy which is a solution to the interval bound problem for
[−2, 4].

A strategy is a function which take a non-maximal run and gives the next move.
But in this game we do not need the full run to describe the next move for Player
1, we only need the current energy level γ and the current location.

The strategy covers behaviour in the state A as this is the only state in Q1. The
strategy is as follows:

• If γ ≥ 3 do A b,−1−−−→ B

• If γ = 2 do A a,2−−→ A

• If γ < 2 do A a,3−−→ A

The solid run on Figure 3.2 is a run that can occur if Player 1 plays according to
this strategy. It is possible to see that any play where Player 1 plays according to
this strategy produces a valid run.

We now argue that this is true for the lower bound in the interval, let γ = 3 and
the play has reached state A, then Player 1 takes the move to state B changing γ
to 2, then if Player 2 takes the worst possible transition B c,−4−−−→ A do γ = −2 and
the game will continue from A. The strategy tells us that Player 1 does only take
transitions from A to B if the γ ≥ 3, therefore we know that the lower bound has
not been breached.

This strategy yields a positive solution to the interval bound problem, and therefore
Player 1 is the winner of the WEG in Figure 3.1 in the interval [−2, 4].

There are a less strict version of the interval bound problem called the lower-bound
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problem which was studied in [5]. In this, a lower-bound problem is an interval bound
problem for [a,∞].

Energy games in [5] have an initial energy level on c and the interval bound problem
is solved for the interval [0, b]. In our definition the initial energy level is always 0,
and the interval bound problem is solved for [a, b] where a ∈ Z, a ≤ 0. The two
definitions are similar as our definition can model an initial energy level on c by
changing the interval to [a−c, b−c], and their definition can model an interval [a, b]

by setting the initial energy to |a| and the interval to [0, b+ |a|].

As these two definitions are similar can we use the complexity results from [5].

3.2 Action Investment Game

Definition 10 (Action Investment Game). An action investment game (AIG) is a
tuple, AG = (Q,Q1, Q2,Σ,→, q0,Σ1,Σ2, actCost, B1, B2) where,

• (Q,Q1, Q2,Σ,→, q0) is a WEG,

• Σ1,Σ2 ⊆ Σ are disjoint action sets Σ1 ∩ Σ2 = ∅

• actCost is a function actCost : Σ1 ∪ Σ2 → N0 and

• B1, B2 ∈ N are two budgets.

An investment is a subset of actions I ⊆ Σ. An investment for Player i is denoted
Ii, and Ii ⊆ Σi. The cost of an investment is the sum of the cost of the actions in
the investment invCost(I) =

∑
σ∈I actCost(σ).

The AIG problem for an interval:
Given AIG AG , and an interval [a, b] does there exist an initial investment I1 ⊆ Σ1

where invCost(I1) ≤ B1, such that for all possible initial investment I2 ⊆ Σ2

where invCost(I2) ≤ B2, Player 1 wins the WEG G′ = (Q,Q1, Q2,Σ
′,→′, q0) in the

interval [a, b], where Σ′ = (Σ \ I1)∩ ((Σ \Σ2)∪ I2) and →′=→ ∩(Q×Σ′×Z×Q) ?

Player 1 is wins and Player 2 loses the AIG AG for the interval [a, b] if the answer
to the AIG problem for AG and the interval [a, b] is positive. Meaning that Player
1 wins the AIG in the interval [a, b] if he can find an investment I1 such that for
any Player 2 investment I2, Player 1 has a strategy to win the resulting WEG in
the interval [a, b].

An action in I1 ⊆ Σ1 is disabled from the resulting WEG, meaning that it is not
possible for either player to take any transitions labeled with that action in the
resulting WEG. Informally Player 1 can see his investment as a guarantee which
ensures that some action can not happen.

An action in I2 ⊆ Σ2 is enabled in the resulting WEG, meaning that it possible for
either player to take any transitions labeled with that action in the resulting WEG.
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Informally Player 2 enables actions and thereby possible behaviour in the resulting
WEG by his investment.

It is clear that for an AIG where Σ1 = ∅ and Σ2 = ∅ , the AIG problem for an
interval is an interval bound problem, as neither player can make an investment.

It is also clear that for a AIG AG = (Q,Q1, Q2,Σ,→, q0,Σ1,Σ2, actCost, B1, B2)

where B1 = 0 and B2 = 0 the AIG problem for an interval can be solved by solving
a single interval bound problem for G′ = (Q,Q1, Q2,Σ

′,→′, q0) where Σ′ = Σ \ Σ2

and→′=→ ∩(Q×Σ′×Z×Q), as the only investment either player can make is the
empty investment.
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Motivating Example

This is a motivational example of a network relay station. The network relay station
contains a battery, a solar panel to charge the battery, and an antenna from which
it can receive signals. It is clear that the amount of energy charged to the battery
depends on the weather. There are two types of weather conditions in this study
case, mild and extreme. If the weather is mild, and the station needs to charge there
is added 2 or 3 energy units to the battery, if the weather is extreme then there is
added 1 or 6 energy units to the battery.

When the network relay receives a signal, the signal can be good, normal, or bad. It
requires more energy to decode the signal if it is bad than if it is normal or good,
and less energy if it is good than normal. Furthermore the weather also influences
how much energy is needed to receive and decode the signal. It is possible to make
a test of the system, in a test no energy is added to or consumed from the battery.

On the station is it possible to install a better antenna and thereby remove the bad
or normal signal, a better antenna naturally comes at a cost.

Figure 4.1 shows the AIG for the network relay station, where Σ1 =

{bad, normal, good}, Σ2 = {test,mild, extreme} and the actCost function is given
in Table 4.1.

σ ∈ Σ1 bad normal good

actCost(σ) 4 2 1
σ ∈ Σ2 test mild extreme

actCost(σ) 1 3 5

Table 4.1: The actCost function for the AIG in Figure 4.1

The intuition is that if Player 1 has a high budget B1 then can he buy a better
antenna and ensure a better signal, this corresponds to Player 1 including the action
bad in his investment, this implies that the station works with a smaller battery. If
Player 2 has a high budget B2 he can require that the station must work in extreme
weather conditions, and the station needs a larger battery to work.

We now investigate two instances of the relay station to show this intuition.

1. For the budgets B1 = 6, B2 = 3 and the interval [0, 4] Player 1 wins, but if
the budget for Player 1 is lowered to B1 = 5 then Player 1 loses. The reason
is that for B1 = 6 Player 1 can make the investment I1 = {bad, normal}, and
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Figure 4.1: Motivating example of a network relay station

ensure that the station only receives good signals, this is not possible if B1 = 5

as actCost({bad, normal}) = 6.

2. For the budgets B1 = 4, B2 = 4 and the interval [0, 6] Player 1 wins, but if
the budget for Player 2 B2 is increased to B2 = 5 then Player 1 loses. It is
possible for Player 1 to win B1 = 4 and B2 = 5 but the interval needs to be
[0, 11], the reason is that the extreme actions could be enabled in the resulting
WEG.
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Complexity

In this chapter we find the complexity of solving the AIG problem for an interval.
We give results under different budget restrictions and for intervals with and without
no upper bound. The chapter begins by introducing three gadgets, and defines how
these can be linked, this is used when finding complexity bounds in the end of the
chapter.

5.1 Gadgets for complexity bounds

Gadgets are basically constructors for AIGs. They are used later when satisfiability
(SAT) problems are reduced to AIG problems for an interval.

In a gadget boolean variables are represented by actions. The boolean x is rep-
resented by two actions x and x′. The idea is that, a player has to choose his
investment such that either the action x or x′ is present in the resulting WEG,
but not both. When the action x is present the boolean variable x assignment is
true, υ(x) = true, and when x′ is present υ(x) = false. This creates a map from
investments to the assignment of booleans.

Definition 11 (Valid investment). An investment Ii ⊆ Σi is valid for Player i,
where i = {1, 2}, if for all x ∈ Σi either x or x′ is in Ii, but not both (x ∈ Ii ∨ x′ ∈
Ii) ∧ ¬(x ∈ Ii ∧ x′ ∈ Ii).

It is clear that each player needs a sufficient budget to make a valid investment.
This is defined as follows.

Definition 12 (Sufficient Budget). The budget Bi is sufficient for Player i, where
i = {1, 2}, if actcost(Ii) ≤ Bi for any valid investments Ii ⊆ Σi.

The two gadgets which are presented in the two following sections, have the property
that a player needs to choose a valid investment or he risks loosing.

5.1.1 Gadget G∀(~x)

The purpose of the gadget G∀(~x) is to construct an AIG, A∀, from a vector of
booleans ~x = (x1 . . . xn). The property is that Player 2 needs to choose his invest-
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ment as a valid investment, or Player 1 has a strategy to win any play. In addition
if Player 2 choose a valid investment, any play starting from qin reaches qout or it
is loosing for Player 1. Let Σ2 = {x1, . . . xn, x′1 . . . x′n} such that it is possible for
Player 2 to make a valid investment. The construction of A∀ and representation of
the gadget is shown on Figure 5.1.

(a) Construction

(b) Representation

Figure 5.1: Gadget 2

Lemma 13.

(a) If I2 is a valid investment for Player 2, then any play starting from qin is either
loosing for Player 1 or reaches qout.

(b) If I2 is a valid investment for Player 2, then Player 1 has a strategy such that
any play from qin reaches qout.

(c) If I2 is not a valid investment for Player 2, then Player 1 has a strategy to win
any play starting from qin.

Proof. (a) Let I2 be a valid investment for Player 2. We evaluate how a play can
evolve in the first step from qin. I2 is a valid investment therefore either x1 ∈ I2
or x′1 ∈ I2. We evaluate the outcome for each case. If x1 ∈ I2, Player 1 has two
choices, a x1 transition up and a x1 transition right. If Player 1 takes the transition
up he loses, as he will be in an infinite negative loop as x′1 6∈ I2. If Player 1 takes
the transition right the play is one step closer to qend. If x′1 ∈ I2 Player 1 can only
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take a transition right and the play is one step closer to qend.

Now we know how any play can evolve from qin to be either loosing for Player 1 or
one step closer to qend.

There are n steps from qin to qout and if the argument is repeated to cover all n
steps, then it gives that any play from qin either is loosing for Player 1 or reaches
qout.

(b) Let I2 be a valid investment for Player 2. Now we need to find a strategy for
Player 1 which ensures that any play from qin reaches qout. The Player 1 strategy
is to take either the transition xj or x′j right for 0 < j ≤ n, this is possible as I2 is
valid.

Any play from qin where Player 1 use this strategy reaches qout.

(c) Let I2 be not a valid investment for Player 2. This means that there is a smallest
i such that {xi, x′i} ∈ I2 or {xi, x′i} 6∈ I2. Now we need to find a winning strategy
for Player 1. The Player 1 strategy from qin to qi is to take a transition right, this
is possible as xj ∈ I2 or x′j ∈ I2 for 1 ≤ j < i. From qi there are two cases, if
{xi, x′i} ∈ I2 or if {xi, x′i} 6∈ I2. If {xi, x′i} ∈ I2 then the strategy is to take two

transition up, qi
xi,0−−→ ri followed by ri

x′i,0−−→ si to si, this is winning for Player 1 as
si does not have any successors. If {xi, x′i} 6∈ I2 then Player 1 wins as qi does not
have any successors.

Any play from qin where Player 1 use this strategy is Player 1 winning, as the
resulting run always is a valid maximal run to qi or si.

5.1.2 Gadget G∃(~x)

The purpose of the gadget G∃(~x) is to construct an AIG, A∃, from a vector of
booleans ~x = (x1 . . . xn). The property is that Player 1 needs to choose his in-
vestments as a valid investment, or Player 2 has a strategy to win any play. Let
Σ1 = {x1, . . . xn, x′1 . . . x′n} such that it is possible for Player 1 to make a valid in-
vestment. The constructed and representation of the gadget is shown in Figure 5.2.

Lemma 14.

(a) If I1 is a valid investment for Player 1, then Player 1 has a strategy such that
any play from qin either reaches qout or is loosing for Player 2.

(b) If I1 is a valid investment for Player 1, then Player 2 has a strategy such that
any play from qin either reaches qout or is loosing for Player 1.

(c) If I1 is not a valid investment for Player 1, then Player 2 has a strategy to win
any play starting from qin.
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(a) Construction

(b) Representation

Figure 5.2: Gadget 1

Proof. (a) Let I1 be a valid investment for Player 1. We need to find a Player 1
strategy δ1 which ensures that any play from qin either reaches qout or is loosing for
Player 2. The Player 1 strategy δ1 is; when the play reach a state in Q1 \ {qend}
then take the action in Σ2 \ I2 available from that state.

We now evaluate how any play can evolve starting from qin when Player 1 play
according to δ1. As qin ∈ Q1 the play continues according to δ1 sending the play
right, one step closer to qout, and the play continues from a state in Q2.

For this state there are two cases, if x′1 ∈ I1 or if x1 ∈ I1. If x′1 ∈ I1 then Player
2 has a choice, either to take a x1 transition up or to take a τ transition right. If
Player 2 takes the x1 transition up he loses, as the run generated would be maximal
and valid. If Player 2 takes the τ transition right the play continues from a state in
Q1, and the play will be one step closer to qout.

If x1 ∈ I1 then the state only has one successor and Player 2 must take the τ
transition right, the play will continue from a state in Q1, and it will be one step
closer to qout.

Now we know how any play from qin where Player 1 plays according to δ1 either
takes two transitions right, two steps closer to qout, or is loosing for Player 2.

There are 2n steps from qin to qout and if the argument is repeated to cover all



5.1. Gadgets for complexity bounds 17

2n steps, then it gives that any play from qin where Player 1 plays according to δ1
either reaches qout or is loosing for Player 2.

(b) Let I1 be a valid investment for Player 1. We need to find a Player 2 strategy
δ2 which ensures that any play from qin either reaches qout or is loosing for Player
1. The Player 2 strategy δ2 is; take the τ, 0 transition right when possible.

We now evaluate how a play can evolve starting from qin when Player 2 plays
according to δ2.

From qin Player 1 has a choice, either to take the τ,−1 self-loop transition or move
right along either a x1 or x′1 transition. Player 1 does eventually lose if enough τ,−1

self-loop transition is taken, by breaking the lower bound of the interval.

If Player 1 takes a transition right the play continues from a state in Q2, one step
closer to qout. From there Player 2 plays according to δ2 and takes τ, 0 transition
right to a state in Q1, again one step closer to qout.

Now we know how any play from qin where Player 2 plays according to δ2, Player 1
loses or the play evolves right, two steps closer to qout.

The argument can be repeated to cover all 2n steps through the game, and gives
that any play from qin where Player 2 plays according to δ2 either reaches qout or is
loosing for Player 1.

(c) Let I1 not be a valid investment for Player 1. This means that there is a smallest
i such that {xi, x′i} ∈ I2 or {xi, x′i} 6∈ I2 and for 1 ≤ j < i is either xj ∈ I1 or x′j ∈ I1,
but not both. We need to find a Player 2 strategy which ensures that Player 2 wins
any play starting from qin.

The Player 2 strategy is; take τ, 0 transition right when possible until the play reach
qi. By the similar argument as in (b) we know that any play from qin reaches qi or
is winning for Player 2.

If the play reaches qi is there two possibility, either {xi, x′i} ∈ I1 or {xi, x′i} 6∈ I1.
We will now find a Player 2 strategy for each possibility. If {xi, x′i} ∈ I2 wins Player
2 as Player 1 is forced to do a infinite amount of qi

τ,−1−−−→ qi, transitions

If {xi, x′i} 6∈ I2 wins Player 2 by taking two transitions up to ti as any play from ti
gives a infinite invalid run which is winning for Player 2.
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5.1.3 Gadget Gϕ(ϕ)

The purpose of the gadget Gϕ(ϕ) is to construct an AIG, Aϕ, from a boolean formula
ϕ(x1 . . . xn). We assume without loss of generality that all negations are pushed to
the variables in ϕ.

The gadget is inductively construct using the four figures, in Figure 5.3.

(a) Positive literal (b) Negative lit-
eral

(c) Conjunction (d) Disjunction

Figure 5.3: Building blocks for Gϕ

The representation of the gadget is shown in Figure 5.4.

Figure 5.4: Representation of Gϕ



5.1. Gadgets for complexity bounds 19

Recall that Σ1 ∩ Σ2 = ∅.

Lemma 15. Let I1, I2 be a valid investments and let

υ(x) =

{
true if x′ ∈ I1 or x ∈ I2
false if x ∈ I1 or x′ ∈ I2

(a) If ϕ is true under υ then Player 1 has a strategy to win any play starting from
qin in Aϕ.

(b) If ϕ is false under υ then Player 2 is the winner of any play starting from qin
in Aϕ.

Proof. (a) Let ϕ be true under υ and we prove by induction in the structure of Aϕ
that Player 1 has a strategy to win any play starting from qin on Aϕ.

Basis: We have two base cases, ϕ = x and ϕ = ¬x.

If ϕ = x, then Aϕ is as in Figure 5.3a and the Player 1 strategy needs to cover the
first state where a x, 0 and a τ,−1 transition is possible. The Player 1 strategy is to
take the x, 0 transition. The x, 0 action is possible as ϕ is true under υ. Any play
with this strategy is winning for Player 1 as the resulting run is valid and maximal.

If ϕ = ¬x then Aϕ is as in Figure 5.3b and the Player 1 strategy needs to cover the
first state where a x, 0 and a τ,−1 transition is possible. The Player 1 strategy is to
take the x′, 0 transition. The x′, 0 action is possible as ϕ is true under υ. Any play
with this strategy is winning for Player 1 as the resulting run is valid and maximal.

Induction Step: Assume by induction hypothesis (IH) that for ϕ = F Player 1
has a strategy to win any play on Aϕ.

We now prove that Player 1 has a strategy to win any play where ϕ = F1 ∧ F2 and
where ϕ = F1 ∨ F2.

If ϕ = F1 ∧F2, we know that ϕ is true under υ, this implies that F1 and F2 is true,
and we know by the IH that Player 1 has a strategy to win both F1 and F2, therefor
he also has a strategy to win when ϕ = F1 ∧ F2.

If F1 ∨ F2 we know that ϕ is true under υ, this implies that either F1 or F2 is true.
We know by the IH that if F1 is true Player 1 has a winning strategy for F1 or if F2

is true Player 1 has a winning strategy for F2. The Player 1 strategy is to take the
transition Left τ, 0 if F1 is true and take Right τ, 0 if F2 is true. Player 1 now has
a strategy to win if either F1 or F2 is true.

We now know by induction that Player 1 has a winning strategy to win any play on
Aϕ if ϕ is true under υ.

(b) Let ϕ be false under υ and we prove by induction in the structure of Aϕ that
any play starting from qin on Aϕ is Player 2 winning.

Basis: We have two base cases, ϕ = x and ϕ = ¬x.
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If ϕ = x, then Aϕ is as in Figure 5.3a and

If ϕ = x, then is Aϕ as Figure 5.3a We know ϕ is false under υ meaning that either
x ∈ I1 or x′ ∈ I2 implying that no x transition is present in the resulting WEG.
Any play is therefore Player 2 winning it produces infinite and invalid run.

If ϕ = ¬x, then is Aϕ as Figure 5.3b We know ϕ is false under υ meaning that
either x′ ∈ I1 or x ∈ I2 implying that no x′ transition is present in the resulting
WEG. Any play is therefore Player 2 winning it produces infinite and invalid run.

Induction Step: Assume by induction hypothesis (IH) that for ϕ = F is any play
on Aϕ Player 2 winning.

We now prove that any play on Aϕ where ϕ = F1 ∧ F2 and where ϕ = F1 ∨ F2 is
Player 2 winning.

If F1∧F2, we know that ϕ is false if either F1 or F2 is false under υ. By the IH do
and the fact that F1 and F2 are in sequence wins Player 2 any play as any produces
run is infinite and invalid.

If F1∨F2, we know that ϕ is false if both F1 and F2 is false under υ. By the IH do
and the fact that F1 and F2 are in parallel wins Player 2 any play as any produces
run is infinite and invalid.
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5.1.4 Linking gadgets

Gadgets can be linked together in sequence and thereby create a combined AIG.
This is done by adding a τ, 0 transition from qout in one gadget to the state qin
in another gadget. If it is necessary then rename states and updating successor
relation, union action sets, union state sets, union successor relation, sum budgets.

The short hand notation of linking gadgets is an arrow. The representation of three
linked gadgets G∃(~x)→ G∀(~y)→ Gϕ(ϕ) is shown in Figure 5.5.

Figure 5.5: Linking of gadget G∃(~x) with G∀(~y) and Gϕ(ϕ)

The construction of linking gadgets is useful for reducing (Q)SAT problems to AIG
problems. A construction of a reduction from a given QSAT problem to a AIG
problem is shown in Example 16.

Example 16. Reduction from the QSAT problem ∃x1, x2∀y1, y2(x1 ∨ (¬y2 ∧ y1) ∧
(¬y1 ∨ y2 ∨¬x2)) = 1 to an AIG problem. The construction is three gadgets linked
together, G∃(~x)→ G∀(~y)→ Gϕ(ϕ), the representation of this shown in Figure 5.5.

The full drawn out AIG is shown in Figure 5.6.

The intuitions is that if there exists a x1, x2 for which the QSAT problem is true,
then Player 1 is the winner of the AIG. Similar if there does not exists a x1, x2 for
which the QSAT problem is true then Player 2 is the winner of the AIG.
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Figure 5.6: Translation

We now argue that this transformation can be done in polynomial time. For a
problem with n literals is at most 5n states introduced in the game by the first
two gadgets, and for the last gadget with the worst possible ϕ, all n literals disjoint
introduce 4n+2 states. Therefor the AIG constructed is at most 20n+2 larger than
the QSAT problem, which is definitely polynomial in the size of the QSAT problem.
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5.2 Complexity results

This section covers all complexity results.

Budget Interval Type
restrictions Existential Q2 = ∅ Game
B1 = 0, B2 = 0 [a,∞] ∈ P, [5] ∈ UP ∩ coUP, [5]

[a, b] NP-Hard, ∈ PSPACE, [5] EXPTIME-complete, [5]
B2 = 0 [a,∞] ∈ P, Lem. 18 NP-Complete, Lem.24

[a, b] NP-Hard, EXPTIME-complete,
∈ PSPACE, Lem. 19 Lem. 27

B1 = 0 [a,∞] ΠP
1 -complete, Lem. 20 ΠP

1 -Complete, Lem. 25
[a, b] ΠP

2 -hard, Claim 21, EXPTIME-complete,
∈ PSPACE, Lem. 22 Lem. 27

− [a,∞] ΠP
1 -complete, Lem. 23 ΣP

2 -complete Lem. 26
[a, b] ΠP

2 -hard, Claim 21, EXPTIME-complete,
∈ PSPACE, Lem. 22 Lem. 27

Table 5.1: Complexity for AIG problems for an interval

Proposition 17. Let AG be an AIG where Q2 = ∅. The complexity of solving the
AIG problem for AG in an interval with no restrictions on B1 and is equivalent to
the complexity of solving the AIG for problem for an AG interval where B1 = 0.

Proof. Let AG be an AIG where Q1 = ∅ and with no restrictions on B1. Now we
solve the AIG problem for an AG interval. Player 1 choses an investment I1 ⊆ Σ1

where actCost(I1) ≤ B1. But all states are in Q1, meaning that Player 1 controls
any play on the resulting WEG, hence Player 1 does not benefit from making an
investment different from I1 = ∅ as this could remove options for him in the resulting
WEG.

Therefore the budget B1 can be ignored and restricted to 0, as Player 1 in any AIG
where Q2 = ∅ for any budget makes the investment I1 = ∅. This makes the two
problems equivalent, and the budget B1 can be set to 0 when Q2 = ∅.

Lemma 18. The AIG problem where Q2 = ∅ and B2 = 0, for the interval [a,∞] is
in P.

Proof. This follows from Proposition 17 and the fact that the AIG problem where
Q2 = ∅, B2 = 0 and B1 = 0 for the interval [a,∞] is in P.

Lemma 19. The AIG problem where Q2 = ∅, and B2 = 0, for the interval [a, b] is
NP-Hard and in PSPACE.
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Proof. This follows from Proposition 17 and the fact that the AIG problem where
Q2 = ∅, B2 = 0 and B1 = 0 for the interval [a,∞] is NP-Hard and in PSPACE.

Lemma 20. The AIG problem where Q2 = ∅ and B1 = 0, for the interval [a,∞] is
ΠP

1 -complete.

Proof. Lower bound: The AIG problem where Q2 = ∅ and B1 = 0 for the interval
[a,∞] is ΠP

1 -hard by reduction from ΠP
1 -SAT.

Let ∀~xϕ(~x) = 1 be a ΠP
1 -SAT problem. We construct the AIG AG given by G∀(~x)→

Gϕ(ϕ) and define B2 to be any sufficient budget.

We want to show:

(a) If ∀~xϕ(~x) = 1 is true, Player 1 wins AG .

(b) If ∀~xϕ(~x) = 1 is false, Player 2 wins AG .

(a) Suppose that ∀~xϕ(~x) = 1 is true under the assignment of υ. We now want to
show that Player 1 wins the AIG AG .

Player 2 can pick either an invalid or valid investment I2. If I2 is an invalid invest-
ment we know from Lemma 13 (c) that Player 1 has a strategy to win any play
starting from qin in the AIG A∀ constructed by G∀(~x). If I2 is a valid investment
we know from Lemma 13 (b) that Player 1 has a strategy such that any play from
qin reaches qout in A∀.

If the play reaches qout in A∀ then by the construction of linking the play continues
in the AIG Aϕ constructed from Gϕ(ϕ).

We know that ∀~xϕ(~x) = 1 is true. Hence for every υ this imply by Lemma 15 (a)
that Player 1 win any play starting from qin in Aϕ.

Therefore do Player 1 have a strategy to win no what investment I2 Player 2 does.

(b) Suppose that ∀~xϕ(~x) = 1 is false. There there is an assignment υ such that
∀~xϕ(~x) = 1 is false. We now want to show that Player 2 wins the AIG AG .

Player 2 chooses the valid investment I2 = {x | υ(x) = true} ∪ {x′ | υ(x) = false}.

By Lemma 13 (a) we know that any play starting in qin gets to qout in the AIG A∀
constructed by G∃(~x), or Player 2 wins.

If the play reaches qout in A∀ then by the construction of linking the play continues
in the AIG Aϕ constructed from Gϕ(ϕ).

We know that ∀~xϕ(~x) = 1 is false under the assignment of υ and therefore by
Lemma 15 (b) we know that Player 2 is winning any play starting from qin in Aϕ.

We have now shown that Player 2 wins any on play on AG .
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This construction shows that a solution to the AIG problem where Q2 = ∅ and
B1 = 0 for the interval [a,∞] can solve any ΠP

1 -SAT problem, hence the AIG
problem is ΠP

1 -hard.

Upper bound:
The AIG problem where Q2 = ∅ and B1 = 0 for the interval [a,∞] is in ΠP

1 by the
following algorithm.

1. For all I2 ⊆ Σ2 where actCost(I2) ≤ B2, let I1 = ∅ and construct the resulting
WEG.

2. Solve interval bound problem for the resulting WEG (Q2 = ∅) in the interval
[a,∞] if all results are positive return yes, else return no.

The algorithm uses one universal quantifier over a polynomial time problem, there-
fore in ΠP

1 .

Claim 21. The AIG problem where Q2 = ∅, for the interval [a, b] is ΠP
2 -hard.

Lemma 22. The AIG problem where Q2 = ∅, for the interval [a, b] is in PSPACE.

Proof. We want to prove that the AIG problem where Q2 = ∅, for the interval [a, b]

is in PSPACE, this is done by finding an algorithm in PSPACE which solves the
problem. The algorithm is

1. For all I2 ⊆ Σ2 where actCost(I2) ≤ B2, let I1 = ∅ and construct the resulting
WEG.

2. Solve interval bound problem for the resulting WEG (Q2 = ∅) in the interval
[a, b] if all results are positive return yes, else return no.

Step 1 is a universal quantifier over step 2. Step 2 is a problem in PSPACE, hence
the algorithm is in PSPACE.

Lemma 23. The AIG problem whereQ2 = ∅, for the interval [a,∞] is ΠP
1 -complete.

Proof. This follows from Proposition 17 and Lemma 20.

Lemma 24. The AIG problem where B2 = 0 for an interval [a,∞] is NP-complete.

Proof. Lower bound:
The AIG problem where B2 = 0 for the interval [a,∞] is NP-hard by reduction from
SAT.

Let ∃~xϕ(~x) = 1 be a SAT problem. We construct the AIG AG given by G∃(~x) →
Gϕ(ϕ) and define B1 to be any sufficient budget.

We want to show:

(a) If ∃~xϕ(~x) = 1 is true, Player 1 wins AG .
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(b) If ∃~xϕ(~x) = 1 is false, Player 2 wins AG .

(a) Suppose that ∃~xϕ(~x) = 1 is true under some assignment υ. We now want
to show that Player 1 wins the AIG AG . Player 1 chooses the valid investment
I1 = {x′ | υ(x) = true} ∪ {x | υ(x) = false}.

Player 1 has by Lemma 14 (a) a strategy such that any play starting in qin gets to
qout in the AIG A∃ constructed by G∃(~x), or Player 1 wins.

If the play reaches qout in A∃ then by the construction of linking the play continues
in the AIG Aϕ constructed from Gϕ(ϕ).

We know that ∃~xϕ(~x) = 1 is true under the assignment of υ and therefore Player 1
in Aϕ by Lemma 15 (a) has a strategy such that any play starting in qin is winning
for Player 1.

We have now shown that Player 1 has an investment I1 and a strategy to win such
that he wins AG .

(b) Suppose that ∃~xϕ(~x) = 1 is false under any assignment υ. We now want to
show that Player 2 wins the AIG AG no matter what Player 1 does.

Player 1 can pick either an invalid or valid investment I1. If I1 is an invalid invest-
ment we know from Lemma 14 (c) that Player 2 has a strategy to win any play
starting from qin in the AIG A∃ constructed by G∃(~x).

If I1 is a valid investment we know from Lemma 14 (b) that Player 2 has a strategy
such that any play from qin either reaches qout in A∃ or is winning for Player 2.

If the play reaches qout in A∃ then by the construction of linking the play continues
in the AIG Aϕ constructed from Gϕ(ϕ).

We know that ∃~xϕ(~x) = 1 is false under the assignment of υ this implies by
Lemma 15 (b) that Player 2 wins any play starting from qin in Aϕ.

Therefore Player 2 has a strategy to win no matter what Player 1 does.

This construction shows that a solution to the AIG problem where B2 = 0 for the
interval [a,∞] can solve any SAT problem, hence the AIG problem is NP-hard.

Upper bound:
The AIG problem where B2 = 0 for an interval [a,∞] is in NP by the fallowing
algorithm.

1. Guess I1 ⊆ Σ1 where actCost(I1) ≤ B1, let I2 = ∅ and construct the resulting
WEG.

2. Solve the interval bound problem for the resulting WEG in the interval [a,∞],
if the result is positive return yes, else return no.

Step 1 is a guess of polynomial size, this is done in polynomial time. Step 2 is
problem in UP ∪ coUP, which is a subclass of NP. Therefore the algorithm is in
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NP.

Lemma 25. The AIG problem where B1 = 0 for an interval [a,∞] is ΠP
1 -complete.

Proof. Lower bound: The AIG problem where B1 = 0 for the interval [a,∞] is
ΠP

1 -hard by reduction from ΠP
1 -SAT.

Let ∀~xϕ(~x) = 1 be a ΠP
1 -SAT problem. We construct the AIG AG given by G∀(~x)→

Gϕ(ϕ) and define B2 to be any sufficient budget.

The proof for the two following properties of the construction is similar to the proof
in Lemma 20.

(a) If ∀~xϕ(~x) = 1 is true, Player 1 wins AG .

(b) If ∀~xϕ(~x) = 1 is false, Player 2 wins AG .

This construction shows that a solution to the AIG problem where B1 = 0 for the
interval [a,∞] can solve any ΠP

1 -SAT problem, hence the AIG problem is ΠP
1 -hard.

Upper bound:
The AIG problem where B1 = 0 for the interval [a,∞] is in ΠP

1 by the following
algorithm.

1. For all I2 ⊆ Σ2 where actCost(I2) ≤ B2, let I1 = ∅ and construct the resulting
WEG.

2. Solve the interval bound problem for the resulting WEG in the interval [a,∞],
if all results are positive return yes, else return no.

Step 1 is a universal guess over Step 2. Step 2 is problem in UP ∪ coUP, which is
a subclass of coNP = ΠP

1 . Since the algorithm only uses universal quantifiers, it is
in ΠP

1 .

Lemma 26. The AIG problem for an interval [a,∞] is ΣP
2 -complete.

Proof. Lower bound: The AIG problem for the interval [a,∞] is ΣP
2 -hard by reduc-

tion from ΣP
2 -SAT.

Let ∃~x∀~yϕ(~x, ~y) = 1 be a ΣP
2 -SAT problem. We construct the AIG AG given by

G∃(~x)G∀(~y)→ Gϕ(ϕ) and define B1 and B2 to be any sufficient budget.

We want to show:

(a) If ∃~x∀~yϕ(~x, ~y) = 1 is true, Player 1 wins AG .

(b) If ∃~x∀~yϕ(~x, ~y) = 1 is false, Player 2 wins AG .

(a) Suppose that ∃~x∀~yϕ(~x, ~y) = 1, is true. Then υ is an assignment of the booleans
in ~x such that for any assignments of ~y, ϕ is true. We now want to show that Player
1 wins the AIG AG .
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Player 1 chooses the valid investment I1 = {x′ | υ(x) = true} ∪ {x | υ(x) = false}.

Player 1 has by Lemma 14 (a) a strategy such that any play starting in qin gets to
qout in the AIG A∃ constructed by G∃(~x), or Player 1 wins.

If the play reaches qout in A∃ then by the construction of linking the play continues
in the AIG A∀ constructed from G∀(~y), where the play starts in qin.

Player 2 can pick either an invalid or valid investment I2. If I2 is an invalid invest-
ment we know from Lemma 13 (c) that Player 1 has a strategy to win any play
starting from qin in the AIG A∀.

If I2 is a valid investment we know from Lemma 13 (b) that Player 1 has a strategy
such that any play from qin reaches qout in A∀.

If the play reaches qout in A∀ then by the construction of linking the play continues
in the AIG Aϕ constructed from Gϕ(ϕ).

We know that ∃~x∀~yϕ(~x, ~y) = 1 is true, under the assignment υ this implies by
Lemma 15 (a) that Player 1 wins any play starting from qin in Aϕ.

Therefore Player 1 has an investment I1 and a strategy to win no matter what
investment I2 and strategy Player 2 uses.

(b) Suppose that ∃~x∀~yϕ(~x, ~y) = 1 is false. Then υ is the assignment which, for
any assignment of ~x, assigns the booleans in ~y such that ϕ is false. We now want
to show that Player 2 wins the AIG AG no matter what Player 1 does.

Player 1 can pick either an invalid or valid investment I1. If I1 is an invalid invest-
ment we know from Lemma 14 (c) that Player 2 has a strategy to win any play
starting from qin in the AIG A∃ constructed by G∃(~x).

If I1 is a valid investment we know from Lemma 14 (b) that Player 2 has a strategy
such that any play from qin either reaches qout in A∃ or is winning for Player 2.

If the play reaches qout in A∃ then by the construction of linking the play continues
in the AIG A∀ constructed from G∀(~y).

Player 2 choose the valid investment I2 = {x | υ(x) = true} ∪ {x′ | υ(x) = false}.

By Lemma 13 (a) we know that any play starting in qin gets to qout in A∀, or Player
2 wins.

If the play reaches qout in A∀ then by the construction of linking the play continues
in the AIG Aϕ constructed from Gϕ(ϕ).

We know that ∃~x∀~yϕ(~x, ~y) = 1 is false under any assignment υ and therefore by
Lemma 15 (b) we know that Player 2 is winning any play starting from qin in Aϕ.

We have now shown that Player 2 wins any on play on AG .
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Upper bound:
The AIG problem where for the interval [a,∞] is in ΣP

2 by the following algorithm.

1. Guess I1 ⊆ Σ1 where actCost(I1) ≤ B1.

2. For all I2 ⊆ Σ2 where actCost(I2) ≤ B2, and construct the resulting WEG.

3. Solve the interval bound problem for the resulting WEG in the interval [a,∞]

if all results are positive return yes, else return no.

Step 1 is a guess of polynomial size. Step 2 is a universal guess over Step 3. Step 3
is problem in UP ∪ coUP, which is a subclass of coNP = ΠP

1 .

The algorithm uses one existential followed by two universal quantifiers, and is
therefore in ΣP

2 .

Lemma 27. The AIG problem for an interval [a, b] is EXPTIME-complete.

Proof. Lower bound
The EXPTIME-hard lower bound is given by the AIG problem for an interval [a,∞]

where B1 = 0 and B2 = 0.

Upper bound:
The EXPTIME upper bound is given by the following argument. There can be
exponential many different combinations of investments I1, I2, this depends on the
budget for each player, and for each combination we need to solve an EXPTIME
problem, this gives an algorithm in EXPTIME.





Chapter 6

Conclusion

We have introduced the formalism for action investment games which can be used
to reason about the trade-off between a constrained resource of energy and two
budgets. We have given a motivating example of a network relay station where we
study the trade-offs between battery size and the budget for each player.

We have given a comprehensive analysis of the complexity of the decision prob-
lem which is the foundation for reasoning about these trade-offs. The complexity
problem is studied in different cases. In the existential case, where all states are
controlled by Player 1, under the restriction that the budget for Player 2 is 0 then
the complexity bounds follow those of energy games. In all other cases increases the
complexity by at most two levels in the polynomial hierarchy.

It is expected that the complexity increases by two levels in the polynomial hierarchy
as the problem introduces a existential choice and a universal quantifier before the
energy game.

The future work is to write full proof of the claims, that the complexity for the
existential action investment games problem for a closed interval is ΠP

2 − hard. It
is also of high priority to find a case study where the investment of Player 2 is used
to model a more controllable phenomena than the weather.





Resume

We define the formalism for action investment games which can be used to reason
about the trade-off between a constrained resource of energy and two budgets.

The formalism is an extended of energy games with budgets and prices on actions.
An energy game are played by two players on a finite graph, where Player 1 wins if
he has a strategy such that the accumulated energy is constrained within an given
interval, and Player 2 wins if Player 1 loses.

We use the formalism in a motivating example of a network relay station where we
study the trade-offs between battery size and the budget for each player.

We given a comprehensive analysis of the complexity of the decision problem which
is the foundation for reasoning about these trade-offs. The complexity problem is
studied in different cases. In the existential case, where all states are controlled by
Player 1, under the restriction that the budget for Player 2 is 0 then the complexity
bounds follow those of energy games.

In the worst cases increases the complexity by two levels in the polynomial hierarchy
compared to the complexity of the corresponding energy game.
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