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Abstract

This report proposes a composite kernel method of semantic rela-
tion extraction between named entities within natural language docu-
ments. Using two kernel methods, the benefits from both are combined
to gain an increase in performance compared to earlier approaches. 1)
A linear kernel processing linguistic features, such as word-span, order-
of-entities and word-type. 2) A tree kernel computing the similarity of
a relation type with the shortest path-enclosed tree between a pair of
candidate entities. Experiments are done using previous implemented
methods, such as context sensitiveness and latent annotations to mea-
sure their impact on the performance. Evaluating on a dataset for the
relation extraction task at the Conference on Computational Natural
Language Learning from 2004, the results obtained are on par with
previous state-of-the-art approaches on the same dataset.
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Preface

This report has been written in connection with the 10th semester project
for master of science in computer engineering. The period of the project was
from February 1, 2012 to June 6, 2012. This report documents my master
thesis in Information Extraction (IE) and Relation Extraction (RE). I present
my approach on the relation extraction task and compare it to the current
state-of-the-art. Additionally, I suggest an approach for post processing the
relation extraction output.

The report also comes with a CD, the contents of the CD are:

• Report in pdf-format

• All referred articles in pdf-format

• My relation extraction system including possibility of post processing
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1 Introduction

Today, enormous amounts of information are available to us on the Internet.
Whether the information is comments and opinions from blogs and micro-
blogging sites, or facts from articles and news sites, it has great potential for
gathering knowledge or opinions about a specific topic. In computer science,
the task of gathering this information is known as Information Extraction
(IE), which is one of the key tasks in the field of Natural Language Processing
(NLP). IE applications attempt to identify relevant information from a large
amount of unstructured text documents in the form of natural language, and
store them in a structured format.

The research in NLP and IE specifically was first initiated by the Mes-
sage Understanding Conference (MUC, 1987-1998) [1] and then further pro-
moted by the Conference on Computational Natural Language Learning
(CoNLL, 1997-2011) [2] and the National Institute of Standards and Tech-
nology (NIST) Automatic Content Extraction (ACE, 2000-2008) program
[3, 4]. In the NIST ACE program, two subtasks of IE are defined as:

• Entity Detection and Recognition (EDR), also known as Named Entity
Recognition (NER)1

• Relation Detection and Recognition (RDR), also known as Relation
Extraction (RE)2

According to the ACE program, an entity is an object or a set of objects
in the world, and a relation is an explicitly or implicitly stated relationship
between the entities. The objective of NER is to detect and recognize en-
tities in unstructured text, while the objective of relation extraction is to
detect and recognize semantic relationships between predefined types of en-
tities previously recognized by the NER subtask. For Example, given the
sentence “Henrik works as a system developer at Computerfriend.dk.”, the
named entities “Henrik” (person) and “Computerfriend.dk” (company) are
expected to be identified and extracted by the NER, while the relation ex-
traction is expected to identify and extract the semantic relation work for in
which “Henrik” is the first argument (worker) and “Computerfriend.dk” is
the second (employer).

NER and especially relation extraction have potential to be very useful
in many NLP applications such as for example question answering and text
summarization. Unfortunately though, due to the limited accuracy in the
current state-of-the-art syntactic and semantic parsing, not to forget the

1Will be referred to as NER from here on
2Will be referred to as relation extraction from here on
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complexity and variability of semantic relations in natural language, reliably
extracting, such semantic relations between named entities, is still a difficult
and unresolved problem.

In the field of NER, there are implementations with near-human per-
formance. In 2002, Zhou and Su [5] developed a machine-learning named
entity recognizer using the Hidden Markov Model (HMM) which achieved
an F-measure of 96.6% on the MUC-6 corpus [6]. F-measure is a function
combining the Precision and Recall of a system, written as:

F =
2× Precision× Recall

Precision + Recall
(1)

where

Precision =
number of correct answers found by the system

number of answers found by the system
,

Recall =
number of correct answers found by the system

number of correct answers in the test corpus

An F-measure of 96.6% is close to human performance, as not even humans
are capable of reaching 100% without extensive knowledge of the subject in
question, which is improbable seeing the test is done on a corpus containing
hundreds of documents of different subjects. Because of this, in the recent
years researchers have moved their focus from NER to relation extraction.

Initially, relation extraction was approached as a classification problem
using a machine learning algorithm relying on feature-based representations
of the input instances [7, 8, 9, 10]. These systems first transform the relation
examples into the corresponding numerical vectors of various syntactic and
semantic features3, next they apply a machine learning approach (such as
HMM or Support Vector Machines (SVM)[11]) to detect and classify them
into predefined types of semantic relations between named entities. How-
ever, according to Zhou et. al [8], the feature-based methods usually fail to
effectively capture the critical structural information inherent in the parse
trees, making it difficult for the feature-based methods to extract new and
effective features to further improve performance. Because of this limitation,
researchers have turned to kernel-based methods4, which directly computes
the similarity between two discrete objects, like parse trees with rich struc-
tural information. Since the first kernel-based solution [12], the use of kernel
methods have continued to increase the performance in relation extraction
due to its effectiveness in modelling discrete objects [13, 14, 15, 16, 17, 18].

3The features used include lexical items, phrase and chunk information, syntactic parse
trees, deep semantic information and entity-related information

4Kernel methods will be described further in Section 3.1
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This report gathers the knowledge I have gained while exploring the
methodologies used in previous kernel-based relation extraction approaches.
I present my approach on the relation extraction task and suggest an ap-
proach to social network post processing. In Section 2, I further analyse the
related work in kernel-based relation extraction applications. In Section 3, I
analyse the state-of-the-art relation extraction methodologies. In Section 4,
my relation extraction approach is described. In Section 5, experiments dur-
ing the project are documented. I discuss and suggest a possible approach
for post processing in Section 6. In Section 7, I discuss results and limita-
tions of my relation extraction approach. I conclude the project in Section
8. References are listed in Section 9.

2 Related Work

Many machine learning methods have been proposed for relation extraction,
including unsupervised learning, semi-supervised learning [19] and supervised
learning. In a supervised learning setting, representative related work can be
classified into feature-based [7, 8, 9, 10] or kernel-based methods [12, 13, 14,
15, 16, 17, 18].

In [7], Kambhatla employs Maximum Entropy (ME) models to combine
lexical, syntactic, and semantic features. The features he uses include entity
type, mention level, overlap, dependency and parse tree. He achieves an F-
measure of 52.8% on the ACE 2003 corpus. In [8], Zhou et al. use SVM
to incorporate diverse lexical, syntactic, and semantic knowledge in feature-
based relation extraction. In addition to the features used by [7] they also
use chunking and other semantic resources and they achieve an F-measure of
55.5% on the ACE 2003 corpus. Roth and Yih take a different approach in
[9] where they criticise the “pipeline” approach in NLP and develop a linear
programming formulation where they simultaneously learn named entities
and their relationships. They develop a general approach to inference over the
outcomes of predictors in the presence of general constraints, allowing them
to efficiently incorporate domain and task specific constraints at decision
time. They evaluate their results on the CoNLL’04 corpus [20] and achieve
F-measures between 51.6% and 81.7% on the five relation types (located in,
work for, orgBased in, live in, kill). In [10] Jiang and Zhai systematically
explore a large space of features for relation extraction and evaluate the
effectiveness of different subspaces. They present a general definition of a
feature space, based on a graphical representation of relation instances. Their
research shows that using only basic unit features is generally sufficient to
achieve state-of-the-art performance, while over-inclusion of complex features
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may hurt the performance. They achieved an F-measure of 70.7% using the
ME classifier on the ACE 2004 corpus.

However, in all of the feature-based approaches, they fail to effectively
capture the critical structural information inherent in the parse trees, and
unfortunately for feature-based methods, almost all the flat features related
to lexical, syntactic, and semantic knowledge have been systematically ex-
plored, making further improvements of relation extraction through feature
engineering difficult. Instead, kernel methods have the potential of better
modelling structured objects due to its ability of directly measuring the sim-
ilarity between two structured objects, without explicitly enumerating their
substructures. For example, the kernel method can capture the structural
information in a parse tree and consequently avoid the burden of feature
engineering by directly computing the similarity between any two trees.

The first kernel-based relation extraction approach was made by Zelenko
et al. [12], who proposed a kernel between shallow parse trees, which re-
cursively matched nodes from roots to leaves in a top-down manner. They
achieved promising results on two simple relation extraction tasks. In [13],
Culotta and Sorensen extended the solution of [12] to estimate the similarity
between the dependency trees of sentences. However, their solution required
the matched nodes to be at the same layer and in the identical path starting
from the roots to the current nodes, which is a very strong constraint. Their
solution achieved very high precision, but not surprisingly very low recall
and achieved an F-measure of 45.8% on the five relation types of the ACE
2003 corpus. In correlation with the very strong constraint, once a node
cannot be matched with any node at the same depth in another tree, all the
sub-trees below this node are discarded even if some of them can be matched
to their counterparts in another tree due to the nature of the top-down node
matching mechanism of this kernel. In [14], Bunescu and Mooney proposes a
shortest path dependency tree kernel which achieves an F-measure of 52.5%
on the ACE 2003 corpus. Their kernel simply sums up the number of com-
mon word classes at each position in the two paths. Based on observations,
they argue that the information required to assert a relationship between
two named entities could be typically captured by the shortest path between
the two entities in the dependency graph. As with [13], they suffer from low
recall because the two shortest paths must have the same length to get a
non-zero similarity score in the kernel computation. Also, the shortest path
may not be able to well preserve the necessary structural dependency tree
information, leading to further reduction of the system’s recall. Zhang et al.
[15] proposes a composite kernel5 for relation extraction. The kernel consists

5A composite kernel is a kernel consisting of two or more individual kernels
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of an entity kernel that allows for entity-related features and a Convolution
Tree Kernel (CTK) that models syntactic information of relation examples.
They claim that the composite kernel can effectively capture both flat and
structured features without the need for extensive feature engineering, and
that it also easily can scale to include more features. They achieve an F-
measure of 70.9% on the ACE 2003 corpus, which is a significant increase
in performance compared to the earlier approaches by [13] and [14]. The
approach by Giuliano et al. [16] is based solely on shallow linguistic pro-
cessing, such as tokenization, sentence splitting, part-of-speech tagging, and
lemmatization. They use a composite kernel to integrate two different infor-
mation sources: (i) the whole sentence where the relation appears, and (ii)
the local contexts around the interacting entities. From evaluation on the
CoNLL’04 corpus [20], they achieve F-measures between 65.8% and 80.5%
on the five relation types. While their results are close to the state-of-the-art,
their solution could be further enhanced by adding another individual kernel
function to contribute with syntactic information. In 2007, Zhou et al. [17]
proposed a tree kernel with context-sensitive structured parse tree informa-
tion for relation extraction. It resolved two critical problems in previous tree
kernels for relation extraction. First, it automatically determines a dynamic
context-sensitive tree span for relation extraction by extending the widely-
used Shortest Path-enclosed Tree (SPT) to include necessary context infor-
mation outside the SPT. Second, it proposes a context-sensitive CTK, which
enumerates both context-free and context-sensitive sub-trees by considering
their ancestor node paths as their contexts. They achieve an F-measure of
74.1% and 75.8% on the ACE 2003 and 2004 corpora. While this is a signifi-
cant improvement of the solution proposed by Zhang et. al [15], the CS-SPT
only recovers part of the contextual information and still contains as much
noisy information as the ordinary SPT. Finally, in [18], Zhou et al. extend
the context-sensitive CTK in [17] with approximate matching and further
expand the CS-SPT with unique portion labelling and latent annotations.
They achieve an F-measure of 75.7% and 77.6% on the ACE 2003 and 2004
corpora, which currently is the best results obtained by anyone in the field
of relation extraction.
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3 Methodologies for Extracting Relations

Having analyzed the related work, one can argue that the two most significant
topics of current state-of-the-art relation extraction approaches are:

• Parse Tree Structure

• Machine Learning

While the problem of relation extraction initially was approached as a
classification problem using a machine learning algorithm relying on feature-
based representations of the input instances, due to syntactic limitations of
the feature representations researchers have switched their focus onto kernel
methods for directly computing the similarity of discrete objects such as
syntactic parse tree representations of the semantic relations.

For Support Vector Machines (SVM), using a training data set, the ma-
chine learning algorithm generates a model containing support vectors, or in
this case example parse trees, which is then used to classify new relations
from their parse tree representation.

Additionally, both the syntax and span of the parse trees have a great im-
pact on the performance of the relation extraction system, as usually there’s
also a lot of unnecessary “noise” within a relation phrase or sentence. These
two topics and their underlying theory will be studied further in the next
two sub sections.

Considering the related work, it is obvious that the F-measure (1), gen-
erally is accepted as the best performance measure for systems within in-
formation extraction. The F-measure is equally determined by the precision
and recall, but in some domains the precision might be more important or
vice versa, in which case the F-measure is not ideal. In Section 3.3 I study a
possible solution to this through a generalized F-measure.

3.1 Parse Tree Structure

For kernel-based relation extraction, the relations are encapsulated in parse
trees, see Figure 1 for an example. In most cases, the parse trees also contain
a lot of unnecessary data for the relation extraction task and thus one could
represent the relation instances by only a portion of the parse tree to avoid
unnecessary “noise”. Before doing this however, it is of great importance to
understand which portion of the parse tree that is necessary for the relation
extraction task within the tree kernel computation.

In previous work [15, 17, 18], researchers have explored different parse
tree structures and studied their impact on the relation extraction task. In
[15], Zhang et al. explored five different parse tree structures:
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1. Minimum Complete Tree (MCT)

2. Path-enclosed Tree (PT)

3. Context-Sensitive Path Tree (CSPT)

4. Flattened Path-enclosed Tree (FPT)

5. Flattened CSPT (FCSPT)

See Figure 1 for an example on the sentence Several students have jobs in
their spare time, Henrik works as a system developer at Computerfriend.dk
in Esbjerg.

MCT refers to the complete sub-tree rooted by the nearest common an-
cestor of the two entities under consideration, as can be seen on Figure 1(a),
the nearest common ancestor node in this case is a noun phrase (NP).

PT refers to the smallest common sub-tree including the two entities,
illustrated on Figure 1(b). Or said in another way, the sub-tree is enclosed
by the shortest path linking the two entities in the parse tree (hence why it
is also known as Shortest Path-enclosed Tree (SPT)).

CSPT refers to the PT extended with context sensitivity, which in this
case means extending the PT with the first left word of entity 1, and the first
right word of entity 2. Figure 1(c) illustrates the CSPT representation.

FPT refers to the flattened PT, which means that all single in and out
arcs of nonterminal nodes (except POS nodes) are removed, as can be seen
on Figure 1(d).

FCSPT is the same as FPT except it is the CSPT that is flattened instead,
the FCSPT can be seen on Figure 1(e) [15].

After studying these five parse tree representations, Zhang et al. acknowl-
edged that the best performance was achieved by the Shortest Path-enclosed
Tree. They argued that the most significant information was within the SPT
and that improper inclusion of additional structural information would only
introduce more “noise” to the system [15].

3.1.1 Context-Sensitive Shortest Path-enclosed Tree

On the contrary, later in [17], Zhou et al. argues that the CSPT should
outperform the SPT, as in some cases the SPT will not contain enough infor-
mation to identify the semantic relation. For example, consider the sentence
Ken and Krystal got divorced. Here, got divorced is critical to determine the
relation between Ken and Krystal, but the SPT would only contain Ken and
Krystal which obviously is not enough information to identify the relation
between them.

7
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(a) MCT

(b) PT (c) CSPT

(d) FPT (e) FCSPT

Figure 1: Different parse tree representations of a relation instance in the example
sentence Several students have jobs in their spare time, Henrik works as a system
developer at Computerfriend.dk in Esbjerg, where Henrik (PERSON) is the first
entity and Computerfriend.dk (COMPANY) is the second entity in the semantic
relation work for.

One could argue that the problem with the CSPT proposed by Zhang et
al. in [15] was that it only considered the availability of the entities’ siblings6,
failing to consider the following two important elements:

1. Is the information within the SPT enough to determine the semantic
relation between the two entities? In some cases SPT is enough, for
example in the embedded case Ken got divorced with Ken’s wife., where
one entity is embedded in the other i.e. Ken and Ken’s wife. However,
in the coordinated case as illustrated in the example sentence Ken and
Krystal got divorced above, the SPT is not enough.

6As explained earlier, the CSPT by [15] extends the SPT with the first left word of
entity 1 and first right word of entity 2
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2. If the SPT is insufficient for extracting the relation, how can it be
extended to include necessary context information?

In [17], Zhou et al. study 100 relation instances from the ACE 2003 training
data set, and based on their observations, they implement an algorithm to
dynamically determine the necessary tree span for the relation extraction
task. The algorithm is designed to dynamically determine the tree span
according to the category of the tree and its context. They classify five tree
span categories:

1. Embedded, where one entity is embedded into another, for example
Ken and Ken’s wife

2. PP-linked, where one entity is linked to another entity via PP attach-
ment, for example System developer and Computerfriend.dk in System
developer at Computerfriend.dk developed...

3. Semi-structured, where the sentence consists of a sequence of noun
phrases, for example Henrik and Computerfriend.dk in Henrik, Com-
puterfriend.dk, Esbjerg

4. Descriptive, where the relation is described within the sentence, for
example His employer and Computerfriend.dk in His employer, Com-
puterfriend.dk, launched a new...

5. Predicate-linked and others, where the predicate information is needed
for determining the relationship between two entities, for example Ken
and Krystal in Ken and Krystal got divorced

Zhou et al. designed their algorithm so that, given a parse tree containing
two entities, it first determines the tree span category and then extends the
tree span accordingly [17]. Initially, the parse tree span is based on the SPT,
and only when the tree span belongs to the predicate-linked category, the
tree span is expanded further. For the four other tree span categories, the
SPT is sufficient, and as the predicate-linked category only occupy around
20% of all the cases, this also explains why Zhang et al. in [15] achieved
better results with the SPT than their CSPT.

3.1.2 Enriched CS-SPT

In [18], Zhou et al. further extend their former solution in [17] with unique
portion labelling and latent annotations. As will be described later in Sec-
tion 3.2.2 and 3.2.3, the Convolution Tree Kernel (CTK) counts the number

9
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Figure 2: The enriched CS-SPT with unique portion labels on the sentence Esbjerg
is where he used to live

of common sub-trees to measure the similarity between two parse trees, but
Zhou et al. argue that both the SPT and CS-SPT allow wrong matching be-
tween different portions of parse trees when computing their similarity with
the CTK. To overcome this problem, and avoid wrong matching between
different portions of parse trees, they apply unique portion labels to explic-
itly distinguish different tree portions. They divide the CS-SPT into four
portions:

A) The first mention

B) The second mention

C) The shortest path between the two mentions

D) The expanded predicate path for the predicate-linked category

For an example on the sentence Esbjerg is where he used to live, see Figure 2.
As can be seen, the two mentions Esbjerg and he are labeled with A and B
as first and second mention, respectively. The nodes included in the shortest
path between the two mentions are labeled with C, for example SBAR-C
means that the node SBAR is part of the shortest path between the two
mentions. The same goes for the nodes marked with D and the expanded
predicate path for the predicate-linked category.

The purpose of the unique portion labels is then to only match a sub-tree
in a particular portion of a parse tree with sub-trees in the same portion
of another parse tree. For example, a sub-tree within the second mention
portion of a parse tree will only be matched with sub-trees inside the second
mention portion of another parse tree [18].

10
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Figure 3: The enriched CS-SPT with latent annotations on the sentence Esbjerg
is where he used to live

Another extension to the CS-SPT that Zhou et al. proposes, is the latent
annotations [18]. They employ latent annotations on the basic non-terminal
nodes, such as NP, NNP etc. By using latent annotations, they divide the
non-terminals into several finer categories. For example, the treebank7 non-
terminal category NP may be expanded to several finer categories such as
object NPs or subject NPs. To employ latent annotations, Zhou et al. uses
the Berkeley parser [21]8. See Figure 3 for an example on the sentence Esbjerg
is where he used to live

3.2 Machine Learning

As described earlier in Section 3, kernel methods are used to compute the
similarity between two discrete objects, e.g. syntactic parse tree represen-
tations of semantic relations. The kernel method is employed in a machine
learning (ML) algorithm. By definition:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E. [22]

More specifically, an ML algorithm allows a computer to evolve behaviours
based on empirical data9. Machine learning is concerned with the develop-

7A treebank is a text corpus in which each sentence has been parsed, i.e. annotated
with syntactic structure

8The Berkeley parser is also used to parse all of the other parse tree examples in this
report

9Data produced by an experiment or observation, e.g. datasets such as the CoNLL’04
corpus
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ment of algorithms allowing the machine to learn via inductive inference10. In
relation extraction, the task of machine learning is classification, or pattern
recognition, in which machines “learn” to:

1. Automatically recognize complex patterns

2. Distinguish between exemplars based on their different patterns

3. Make intelligent predictions on their class

As briefly mentioned in the Related Work in Section 2, there have been
several machine learning methods proposed for relation extraction. Based on
their desired output, one can organize the ML algorithms into different cat-
egories, such as supervised, unsupervised, semi-supervised, and reinforcement
learning algorithms.

Most relevant for today’s relation extraction is supervised learning. Su-
pervised learning generates a function that maps inputs to desired outputs
(also called labels, because they are often provided by human experts labelling
the training data). For example, in a classification problem, the learner ap-
proximates a function mapping a parse tree to a relation by looking at pre-
vious input-output examples of the function. The most popular supervised
learning method in relation extraction is Support Vector Machines (SVM).

3.2.1 Support Vector Machine

SVM is a supervised learning algorithm for binary classification11, which has
been successfully applied in many relation extraction approaches, from early
approaches in [12, 13] to today’s state-of-the-art systems in [17, 18].

One can define a set of training examples each of which is labelled with
either positive or negative class tag (x1, y1)...(xn, yn). Here, xj ∈ Rn is a
feature vector of the j-th example represented by an n-dimensional vector.
yj ∈ {1,−1} is the label of the j-th example (1 for positive and -1 for
negative), and n is the total number of training examples derived from the
training set. Specifically, the SVM learns to find a hyperplane that separates
positive and negative examples with the highest possible accuracy. This is
also known as finding the maximal margin. First, any hyperplane can be
written as the set of points x satisfying:

w · x− b = 0 (2)

10The theory of prediction based on observations, e.g. predicting the next symbol based
upon a given series of symbols[23]

11Given a set of training examples, each marked as belonging to one of two categories,
an SVM training algorithm builds a model that assigns new examples into one category
or the other
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Figure 4: A hyperplane separating positive and negative examples

where w is the hyperplane’s normal vector and b determines the offset of
the hyperplane from the origin along the normal vector w[24]. Suppose
the hyperplane separates the training data into positive and negative parts.
Initially, several of such hyperplanes exist, see Figure 4 for an example of such
a hyperplane. SVM then tries to find the optimal hyperplane that maximizes
the margins between the nearest examples to the hyperplane. For each class,
these hyperplanes can be described by the equations

w · x1 − b = 1

w · x2 − b = −1

where x1 is the set of points of the first class, and x2 is the set of points of
the second class. The distance between these two hyperplanes, the margin
M , can be expressed as:

M =
2

‖w‖
(3)

Maximizing M is equivalent to minimizing ‖w‖, which is equivalent to
solving the following optimization problem:

Minimize:
1

2
‖w‖2 (4)

subject to: yj(w · xj − b) ≥ 1 (5)

where ‖w‖ is substituted by 1
2
‖w‖2 for mathematical convenience as ‖w‖

involves a square root making it difficult to solve. The constraint in (5) is to
prevent data points from falling into the margin. See Figure 5 for an example
of a maximum-margin hyperplane.

Since an ordinary SVM only solves the binary classification problem, it
must be extended to a multiclass SVM in order for it to be eligible for seman-
tic relation extraction. Multiclass SVMs aim to design labels to instances,

13
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Figure 5: Maximum-margin hyperplane and margins for an SVM trained with
samples from two classes. Samples on the margin are called support vectors[25]

where the labels are drawn from a finite set of several elements, which means
the single multiclass problem is reduced into a multiple binary classification
problems. The most common multiclass SVM, is the one-against-all method.
For example, in relation extraction, the one-against-all SVM is trained for
every semantic relation to be able to distinguish between examples of its
current class and the rest.

3.2.2 Kernel Function

In kernel-based relation extraction, the dot product is replaced by a kernel
function. As briefly mentioned in the start of Section 3, kernel-based methods
are used to directly compute the similarity between discrete objects, such as
syntactic parse trees. More precisely, a kernel function K over the object
space X is a binary function

K : X ×X → [0,∞] (6)

mapping a pair of objects x, y ∈ X to their similarity score K(x, y). Ad-
ditionally, a kernel function is required to be both symmetric and positive-
semidefinite.

A binary function K is symmetric over X, if ∀x, y ∈ X:

K(x, y) = K(y, x) (7)

A binary function K is positive-semidefinite, if ∀x1, x2, ..., xn ∈ X, the n ×
n matrix (K(xi, xj))ij is positive-semidefinite[12]. A positive-semidefinite
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matrix is a Hermitian matrix, i.e. (K(xi, xj))ij = (K(xi, xj))ji all of whose
eigenvalues are nonnegative.

It can be shown that any kernel function can measure the similarity be-
tween two input instances by implicitly computing the dot product of certain
features in high-dimensional feature spaces without explicitly enumerating
all the features[18]. That is, there exist features f(·) = (f1(·), f2(·), ...),
fi : X → R, so that

K(x, y) = 〈f(x), f(y)〉12 (8)

As mentioned, in many cases, it may be possible to compute the dot prod-
uct of certain features without explicitly enumerating all the features. An
example of such a case is the subsequence kernel [26]. In the subsequence
kernel, the inputs are string of characters, and the kernel function computes
the number of common character subsequences between two strings, where
each subsequence match is additionally decreased by the factor reflecting how
spread out the matched subsequences are in the original sequences. Despite
the exponential number of features, or in this case subsequences, it is possi-
ble to compute the subsequence kernel in polynomial time. Because of this,
the long-range features can be exploited without enumerating the features
explicitly [26].

These kinds of kernels are also referred to as convolution kernels [27],
which aims to capture structural information in terms of substructures.

3.2.3 Convolution Tree Kernel

As a specialized convolution kernel, the convolution tree kernelKCTK(T1, T2)
counts the number of common sub-trees13 as the syntactic structure similar-
ity between the two parse trees T1 and T2 [28]. See Figure 6 for an example14.
Where in this case, a parse tree T is implicitly represented by a vector of
integer counts of each sub-tree type (regardless of its ancestors):

h(T ) = (h1(T ), ..., hi(T ), ..., hn(T )) (9)

where hi(T ) is the occurrence number of the i-th subtree type in T [18].
Unfortunately though, since the number of different sub-trees increase expo-
nentially with the parse tree size, it is not computationally feasible to use

12〈a, b〉 denotes the dot product of vectors a and b
13A sub-tree can be defined to be any sub-graph which includes more than one node,

restricted by the fact that the entire production rule must be included. For example, the
sub-graph (NP (NN shop)) is not a sub-tree and is excluded because it contains only part
of the production rule NP → DT NN.

14Part of speech (POS) tags: NP (noun phrase), DT (determiner), NN (noun, singular),
PP (prepositional phrase), VP (verb phrase) etc.
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(a) (b)

Figure 6: (a) An example tree of the sentence Henrik drove his new car to the shop.
(b) All of the sub-trees for the NP the shop covered by the convolution kernel [28].

the feature vector h(T ) directly. In [28], they attempt to solve this compu-
tational issue by proposing a CTK to implicitly compute the dot product
between the high-dimensional vectors as follows:

KCTK(T1, T2) = 〈h(T1),h(T2)〉

=
∑
i

(hi(T1) · hi(T2))

=
∑
i

(( ∑
n1∈N1

Ii(n1)

)( ∑
n2∈N2

Ii(n2)

))
=
∑
n1∈N1

∑
n2∈N2

C(n1, n2) (10)

where N1 and N2 are the sets of nodes in trees T1 and T2, Ii(n) is an indicator
function which is defined to be 1 if there is a sub-tree i rooted at node n and
0 otherwise, and C(n1, n2) is the number of the common sub-trees rooted at
n1 and n2, i.e.,

C(n1, n2) =
∑
i

(Ii(n1) · Ii(n2)) (11)

Each node n encodes the identity of a sub-tree rooted at n and, if there
are more than one node in the tree with the same label, the summation will
go over both of them. Therefore, Collins et al. [28] notes that C(n1, n2) can
be computed in polynomial time, due to the following recursive definition:

1. If the context-free productions at n1 and n2 are different, then C(n1, n2) =
0; otherwise go to 2.

16



Combining Feature-based kernel with Tree Kernel for Extracting Relations

2. If the productions at n1 and n2 are the same, and they are both POS
tags, then C(n1, n2) = λ; otherwise (i.e., if both n1 and n2 are con-
stituent tags, such as NP and S) go to 3.

3. Calculate C(n1, n2) recursively as:

C(n1, n2) = λ

nch(n1)∏
j=1

(1 + C(ch(n1, j), ch(n2, j))) (12)

where nch(n) is the number of children of node n, ch(n, j) is the j-th child of
node n and 0 < λ < 1 is the decay factor in order to make the kernel value
less variable with respect to different sub-tree sizes [28]. An important thing
to consider, is that in the above standard CTK, n1 and n2 in (12) must have
the same number of children, i.e., nch(n1) = nch(n2). The addition of the
decay factor λ corresponds to a modified kernel:

KCTK(T1, T2) =
∑
i

(
λsizeihi(T1)hi(T2)

)
(13)

where sizei is the number of rules in the sub-tree i. In the original convo-
lution kernel (λ = 1), large matchable sub-trees have much higher influence.
According to Collins et al. in [28], if one were to use such a kernel to con-
struct a model which is a linear combination of trees, as is the case with
for example SVM, the output would be dominated by the most similar tree.
This would cause the model to behave like a nearest neighbour rule. Because
of this, the relative importance of the sub-trees are set to scale with their
size by introducing the decay factor λ. The decay factor downweights the
contribution of sub-trees exponentially with their size.

The convolution kernel by [28] have been successfully applied in many
NLP applications [12, 13, 14, 15]. But in [17] and later in [18] Zhou et al.
argue that the standard convolution kernel has two shortcomings:

1. All of the sub-trees covered by the convolution kernel are context-free,
meaning they don’t consider information outside of the specific sub-
tree.

2. The convolution kernel may fail to effectively capture the commonality
between similar sub-trees because it only allows exact matching of sub-
trees.

In [17], Zhou et al. extend the standard CTK with context sensitiveness
to overcome 1, and in [18] they further extend the CTK with approximate
matching to resolve 215.

15See [18] for further explanation of the context sensitive and approximate matching
CTK
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3.3 Performance Measure

As briefly mentioned in the start of Section 3, the F-measure in Equation
(1) is generally accepted as the best performance measure for systems within
information extraction. The F-measure is just the Harmonic Mean, as the
weighted F-Measure just is the Weighted Harmonic Mean, that is, a special
case of the (Weighted) Power Means.

One weakness of the F-measure is that it has a degree of andness16 (as a
mean operator) that is fixed to 0.77. Another limitation is that the Weighted
F-measure cannot represent recall as more important than the precision or
vice versa. In [30], Larsen suggests the Weighted Power Means as a replace-
ment for the F-measure. The Weighted Power Means (WPM) provide a more
general and powerful measure, since it allows one to control both the degree
of andness and the weighting of the recall and precision.

As a generalized F-measure, the WPM can be written as:

F β

WPM(α)
(R,P ) = (βRα + (1− β)Pα)

1
α (14)

where α represents the degree of andness17 while β and 1 − β are sum-
normalized importance weights; i.e., β is the multiplicative importance[29]
of the recall (hence, 1− β is the multiplicative importance of the precision).
Assuming that the andness should not be less than 0.5, we have α ∈]−∞, 1].

In domains where the precision or recall is of much greater importance,
the generalized F-measure could prove to be of more use than the F-measure
we know of today. Also, the unweighted WPM is retained for β = 1

2
by which

we at α = −1 further retain the F-measure as in Equation (1).

16Andness is the degree to which the operator aggregates like the minimum (logic AND)
rather than the maximum (logic OR)[29]

17α→ −∞ : 1, α = −1 : 0.77, α = 0 : 0.66, α = 1 : 0.5, α→ +∞ : 0
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Table 1: Set of predefined relations and their contraints on the entity types

Relation Arg1 Arg2 Example

Located In LOC LOC (Toledo, Ohio)
Work For PER ORG (Steven Bryen, Pentagon)

OrgBased In ORG LOC (Pentagon, U.S.)
Live In PER LOC (LeRoy, New York)

Kill PER PER (Jack Ruby, Lee Harvey Oswald)

4 My Relation Extraction Approach

After studying the related work and their state-of-the-art theory, I consider
the problem of automatically identifying predefined types of relations be-
tween named entities in text documents. Formally, given a sentence S, which
consists of a sequence of words and entities {E1, E2, ..., EN} indexed accord-
ing to their order, a binary relation between the entities Ei and Ej is rep-
resented as a pair Rij = (Ei, Ej), where Ei and Ej are the first and second
argument, respectively. I denote the set of predefined entity and relation
types as CE and CR, respectively.

Five different types of binary relations are present in the corpus I will
be doing my experiments on: Kill, Located In, Work For, OrgBased In and
Live In, where the named entities are of type person, location and organiza-
tion. Table 1 illustrates the set of predefined relations and their entity type
constraints18. Note that the relations are directed, i.e. Rij 6= Rji since the
entities each have their own role. Consider Figure 7 for an example on a sen-
tence from the dataset19. There are five named entity mentions, E1 is of type
person while E2, E5 are of type location and E3, E4 are of type organization.
Among the 20 possible directed relations, R12 = (Miller,Wilmington) are
of type Live In and R45 = (Bringham Young University, Utah) are of type
OrgBased In while the other 18 are of type no rel.

As is the case in most of the related work, I treat relation extraction as
a supervised learning problem. For the classification task, a crucial issue
concerns how I can generate a dataset suitable to train a classifier from a
corpus of annotated sentences as the one shown in Figure 7.

18In addition to the relations in Table 1, CR contains a special element no rel which
represents the absence of a relation of interest

19The dataset used is the CoNLL’04 which will be further discussed later in this section
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Figure 7: A sentence with two relations, R12 and R45, between four entities of
type person: E1, location: E2, E5 and organization: E4.

4.1 Dataset

In this section I will describe a generative procedure that allows me to reduce
the dataset size and to balance its distribution making the classification task
easier20

Initially, some assumptions are made about the input data. First, as
for most relation extraction datasets, the entities are already recognized and
given to us as input. Second, only relations between entities within the same
sentence are considered; while there may be relations between entities in
different sentences, they are not annotated in the corpus used for evaluation.
Especially this assumption significantly limits the size of the dataset. Third,
self-relations (i.e. Rii) are not considered as they are not annotated in the
corpus. Finally, each relation type is learned independently (i.e. each relation
is trained and tested on a distinct dataset).

Given an annotated sentence S, as the one shown in Figure 7, let E be
the set of N entities in S. The simplest way to generate examples to train a
classifier for a specific relation R is to enumerate all possible ordered pairs
of entities (Ei, Ej ∈ E, 1 ≤ i, j ≤ N, i 6= j) in S. These pairs will be referred
to as candidate entities for the relation R. In particular, each example is the
copy of the original sentence S represented by the shortest path-enclosed tree
between the candidate entities. The candidate entities are assigned AGENT
and TARGET attributes according to the roles taken in the relation example,
while entities not involved are ignored. If the relation holds between the two
candidate entities, then the example is labelled 1, otherwise, it is labelled -1.
This approach simplifies the relation extraction into a binary classification
task.

As an example consider the sentence in Figure 7. This sentence would
generate 20 examples, (i.e., all permutations of five entities taken two at a
time). However this strategy would yield a strongly unbalanced dataset (i.e,

20Learning with skewed class distributions is a well known problem in machine learning.
Studies have shown that an imbalanced class distribution leads to poor performance on
the minority class[31]
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Figure 8: Example of a sentence block in the CoNLL’04 Relation Recognition
Corpus, col-2: Entity class label, col-3: Element order number, col-5: POS tags,
col-6: Word

with a low density of positive relation examples). Among the 20 instances,
only 2 are positive examples of Live In and OrgBased In, respectively. Fur-
thermore, the resulting dataset would contain pairs of similar examples, dif-
fering only in the assigned attributes, but with different classification labels
(e.g., (Miller, Wilmington)=1 and (Wilmington, Miller) = -1).

To overcome these problems, I define a different way of generating the
examples, that is, I enumerate the candidate entities without taking into
account the order of the entities (e.g., (Ei, Ej) = (Ej, Ei)). However, to avoid
wrong classifications, each example is assigned an attribute representing the
order of the candidate entities according to the relation R (i.e., WRONG or
CORRECT order of entities). Note that this allows me to halve the size of the
dataset and prevent the generation of misleading (negative) examples (e.g.,
in the example (Wilmington, Miller) = -1), thereby implicitly undersampling
the dataset without losing positive examples. This mitigates the problem of
the low density of positive examples.

In an attempt to further reduce the dataset size, I generate only those
examples whose candidate entities satisfy the argument type constraints of
R, that is, different relation classifiers are trained on different datasets for
different relation types. In Section 5, I compare the impact of these reduc-
tions.

4.1.1 CoNLL

The dataset used is a corpus generated for the relation extraction task as
a part of the Conference on Computational Natural Language Learning in
2004[20]. As mentioned in the previous section, I assume the entities are
already given, as they are marked in the corpus. Besides the entities, addi-
tional features such as POS tag, and word number is also provided. Consider
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Figure 9: Example output from the parser on the sentence ”In 1822, the 19th
president of the United States, Rutherford B. Hayes, was born in Delaware, Ohio.”
for the relation Live In

Figure 8 for an example from the corpus.

4.2 Parsing

As briefly mentioned in Section 4.1, the parse trees generated for each pair of
candidate entities for a relation R are based on the Shortest Path-enclosed
Tree (SPT) structure, see Figure 1(b) for an example. While there have been
suggested improvements to the SPT, the complexity of these extensions do
not match the estimated gain in performance, and because of this they are
dismissed in my approach. Instead I combine the SPT with a few simple but
efficient features, these features include:

1. Entity types

2. Potential relation types

3. Order of entities

4. Index of first argument in the relation

5. Index of second argument in the relation

6. Distance between the candidate entities

While very simple, these features prove to enhance the performance of
the relation extraction task significantly. In Section 5, I do experiments with
and without these features.

4.2.1 Berkeley Parser

By rewriting the PCFGLA.BerkeleyParser[21], I adapt the parser to work
with the CoNLL’04 corpus. For each pair of candidate entities, the parser
checks for a possible relation and generates the dataset as described in Section
4. The parser adopts a hierarchical split-and-merge strategy[32] to enrich
basic non-terminal tags with latent annotations as described in Section 3.1.2.
In the experiments in Section 5, I compare results with and without latent
annotations.
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Figure 10: Taking as input the SPT for a pair of candidate entities and it’s related
entities, the algorithm generates the entity specific feature vectors

Additionally, I integrate a module for generating the feature vectors di-
rectly from the CoNLL’04 corpus.

4.2.2 Feature Vectors

The generation of feature vectors is separated into two categories, entity
specific and relation specific. Entity specific features are generated by the al-
gorithm in Figure 10. Taking as input the SPT for a pair of candidate entities
and it’s related entities, the algorithm generates the entity specific feature
vectors. While very simple, these features are necessary for the classifier to
recognize the entities.

For relation specific features, the candidate entities are essential. Based
on the type of the candidate entities, the system is able to determine the
order of the entities for the relation (i.e., order of entities is WRONG in
”Computerfriend hired Henrik” for the Work For relation according to the
rules in Table 1). Based on the order of the entities, the feature vectors
for first and second argument as well as the distance between them can be
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computed directly.

4.3 Learning

Once the dataset for each of the five relations have been generated by the
parser, the dataset is split into a training set and a testing set. In the
CoNLL’04[20] corpus, there are 1,441 sentences with 5,349 entities that con-
tain at least one active relation. Of the entities, 1,691 are people, 1,968 are
location, 984 are organizations, and 706 are miscellaneous names. Possible
pairs of candidate entities (binary relations) are 19,080 specifically, 405 Lo-
cated In, 401 Work For, 452 OrgBased In, 521 Live In, 268 Kill, and 17,033
no rel. Note that the relation no rel significantly outnumbers all the others
because there are no active relations at all between most pairs of candidate
entities. Consider Table 1 for examples of each relation type and the con-
straints between a relation and its two entity arguments.

Of the 1,441 sentences, 91% (1,310) are used for training while 9% (131)
are used for testing. For classifying the relations, I implement a composite
kernel consisting of a linear kernel21 for the feature space described in Section
4.2, and a convolution tree kernel as the one described in Section 3.2.3.

The kernels are combined using sequential summation i.e., the kernels
between corresponding pairs of trees and vectors in the input sequence are
summed together:

Ks(o1, o2) = τ ×Kt(T1, T2) +Kv(v1,v2) (15)

where τ rules the contribution of the tree kernel Kt with respect to the
feature vector kernel Kv.

4.3.1 SVM-Light-TK

The composite kernel described above is implemented using the open-source
software SVM-Light-TK[33]. SVM-Light-TK (SVMLTK) is an extension to
the well known open source implementation of SVMs in C, SVMlight[34].

As any machine learning algorithm, the SVMLTK is separated into two
modules, specifically svm learn and svm classify. Using Equation (15), the
svm learn module builds a model composed by support vectors generated
from the examples in the training set. Taking the model as input, the
svm classify classifies the test set accordingly.

Originally, the svm classify generates no applicable output except the
result of the classification (i.e., precision/recall). Because of this, the

21Linear kernel is described in Section 3.2.2
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Figure 11: Resource Description Framework triple - Subject (Henrik), Predicate
(Work For), and Object (Computerfriend)

svm classify is rewritten to generate a more interpretable output. I integrate
a module that stores the result of each classification together with the pair
of candidate entities using the Resource Description Framework (RDF) data
model [35].

4.3.2 Resource Description Framework

The RDF data model is similar to classic conceptual modeling approaches
such as entity-relationship or class diagrams, as it is based upon the idea of
making statements about resources in the form of subject-predicate-object
expressions22. For example, one way to represent the Work For relation
in the sentence: “Henrik works for Computerfriend.dk” in RDF is as the
triple: a subject denoting “Henrik”, a predicate denoting “Work For”, and
an object denoting “Computerfriend.dk”. Also consider Figure 11 for a visual
illustration of the triple.

RDF has come to be used as a general method for conceptual description
or modeling of information that is implemented in web resources. Using RDF
in the relation extraction system accommodates possible post processing of
the classification. In Section 6, a post processing prototype for gathering
information about a specific entity is suggested.

22The subject-predicate-object expression is known as triples in RDF terminology
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Table 2: Performance of tree kernel-based relation extraction

Kill Live In Located In
P R F1 P R F1 P R F1

77.8 41.2 53.9 84.6 20.8 33.3 84.6 34.4 48.9

OrgBased In Work For
P R F1 P R F1

80.0 38.7 52.2 93.8 37.5 53.6

5 Experiments

In this section, experiments conducted to evaluate different relation extrac-
tion methods are described. Additionally, the final system is evaluated and
compared to earlier approaches. The objective of these experiments were to
investigate the effectiveness of the different relation extraction methods, and
optimize my solution to produce the best possible results.

Using the dataset described in Section 4.1, and later in 4.3, the experi-
ments leading up to the final solution were:

1. Relation extraction through the use of a subset tree kernel on the short-
est path-enclosed tree of the candidate entities as described in Section
3.2.3.

2. Addition of linear kernel for entity and relation specific features as
described in Section 3.2.2.

3. Extending the SPT with context sensitiveness (CSPT) as described in
Section 3.1.

4. Extending with latent annotations as described in Section 3.1.2.

5. Further reduction of the dataset as described in Section 4.1.

6. Context sensitive SPT with the composite kernel on the reduced dataset.

5.1 Tree Kernel-based Relation Extraction

Initially, the first thought was to extract relations through the use of a tree
kernel exclusively, KT . Using the theory of the convolution tree kernel as
described in Section 3.2.3, and the two open source programs23, this was

23Berkeley Parser[21] and SVMlight-TK[33]
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Table 3: Performance of composite kernel-based relation extraction

Approach
Kill Live In Located In

P R F1 P R F1 P R F1
KC 60.9 82.4 70.0 70.0 52.8 60.2 85.7 75.0 80.0
KCS 57.7 88.2 69.8 69.8 56.6 62.5 78.8 83.9 81.3
KLA 70.6 70.6 70.6 68.6 45.3 54.6 81.5 68.8 74.6
KCr 72.2 76.5 74.3 68.6 45.3 54.6 85.7 75.0 80.0
KCSr 93.3 82.4 87.5 76.7 43.4 55.4 84.0 67.7 75.0

Approach
OrgBased In Work For

P R F1 P R F1
KC 74.3 83.9 78.8 73.6 97.5 83.9
KCS 74.3 83.9 78.8 70.6 94.7 80.9
KLA 80.0 77.4 78.7 72.9 87.5 79.6
KCr 76.5 83.4 80.0 73.6 97.5 83.9
KCSr 76.5 83.4 80.0 59.7 97.4 74.0

accomplished. Unfortunately, as can be seen in Table 2, the results were very
poor. This approach suffered the same issues as early kernel-based relation
extraction approaches - high precision, but low recall. This is caused by the
nature of the tree kernel as mentioned in Section 2, matching only nodes
at the same layer and in the identical path starting from the roots to the
current nodes, which is a very strong constraint.

5.2 Composite Kernel-based Relation Extraction

To increase the recall of the system, the tree kernel is further extended to a
composite kernel KC by summing together the results of a linear kernel of
the entity and relation specific features generated in Section 4.2.2. As can
be seen in Table 3, this significantly improved the performance on especially
the Located In, OrgBased In, and the Work For relations.

Unfortunately, the recall of the Live In and Kill relations were still low.
The Live In relation often span over a larger amount of words, which causes
the strong constraints of the tree kernel to significantly lower the recall. Of
the five relation types, the Kill relation has a significantly lower amount of
actual relations, and as mentioned in Section 4.1, skewed class distribution
often leads to poor performance on the minority class (i.e., positive Kill
relation).
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5.3 Context sensitive SPT

In an attempt to improve the performance of the relation extraction, the SPT
generated for each pair of candidate entities is extended by the first word on
the left and right side of the first and second entity, respectively. The per-
formance of the composite kernel on the context sensitive SPT (KCS) can be
seen in Table 3. Argued earlier by Zhang et al. [15], improper inclusion of
additional structural information, in most cases, only introduce more “noise”
to the system. From the results obtained during this experiment, one can ac-
knowledge that statement, as the inclusion of context sensitiveness produces
no visible improvement to the performance of the system. Unfortunately, the
dynamic context sensitive SPT proposed by Zhou et al. [17] was not realized
in my solution.

5.4 SPT and Latent Annotations

Proposed by Zhou et al. [18], latent annotations are employed on the ba-
sic non-terminal nodes, such as NP, NNP etc (KLA). Unfortunately, as can
be seen from the results in Table 3, the latent annotations affects the per-
formance negatively, reducing the recall of the system while only slightly
improving precision. If one considers the nature of latent annotations, this
result is inevitable. While matching of parse trees is already suffering from
very strong constraints, adding another constraint is likely to make it even
worse, as it also shows in the experiment.

5.5 Reduced Dataset

As described in Section 4.1, the dataset for each relation R is reduced to
only contain those pair of candidate entities that satisfy the argument type
constraints of R (KCr) (i.e., only person-person candidate entities are con-
sidered for the relation Kill). This will greatly reduce the dataset and create
a more even class distribution, possibly improving performance.

As can be seen from the results in Table 3, the performance on especially
the Kill relation increased significantly. As mentioned earlier in Section 5.2,
the Kill relation has a very skewed class distribution in the large dataset as
there are less than half as many Kill relations as any other relation type.
Unfortunately, the reduction in recall for the Live In relation causes the KCr

to only be equal in performance with the KC .
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5.6 Context Sensitive SPT on Reduced Dataset

Finally, I combine the context sensitive SPT from the experiment in Section
5.3 with the reduced dataset from the experiment in Section 5.5 (KCSr).
Evaluating the results in Table 3, the Kill relation experienced significantly
increase in performance. This is both because of the previous described
skewed class distribution which is avoided by reducing the dataset, and the
fact that some of the kill relations have critical verbs just before or after the
candidate entities. Unfortunately the context sensitive SPT causes especially
the Work For classifier to produce too many false positives, significantly
reducing the F1.

In the discussion in Section 7, I consider the benefits of the different
approaches and talk about the limitations made in regards to the state-of-
the-art.
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6 Post Processing

In previous relation extraction approaches, researchers have primarily been
focusing on improving the performance of the extraction and classification of
the relations, but as the state-of-the-art approaches are beginning to produce
better and more useful results, I will be looking into the possibility of post
processing the output from the relation extraction.

As mentioned in Section 4.3, the classifier is rewritten to produce an out-
put using the RDF data model as described in Section 4.3.2, e.g.:

Prediction: [”Sirhan B. Sirhan”,”Kennedy”, kill]

As it is, this output is still not very consumer friendly, and with the pos-
sibility of hundreds of such relations being marked, obtaining an overview
of the extracted information will be very difficult. I create a prototype for
extracting information about one specific entity, allowing the user to query
the system asking for information about one specific entity (e.g., Kennedy as
in the example above). For each extracted relation, the algorithm scans the
entities in the search for information, i.e.:

if firstMention == entity then
return {relation, secondMention}

else
if secondMention == entity then

return {firstMention, relation}
end if

end if

Using this algorithm, the system can be queried for an entity and return
any extracted information. While simple, this process is very helpful in
gathering information about a specific entity, and can greatly reduce the
workload on the person analysing the text.

For gathering information about a larger topic, one might want to still
gather all the extracted relations. Using the RDF data model, one possibility
would be to combine all the relations into a social network graph, representing
the different entities and their relations.
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Table 4: Comparison to the state-of-the-art approach by Giuliano et. al (KSL)
[16]

Approach
Kill Live In Located In

P R F1 P R F1 P R F1
KC 60.9 82.4 70.0 70.0 52.8 60.2 85.7 75.0 80.0
KSL 82.2 81.0 81.9 78.0 65.8 71.4 79.6 76.0 77.8

Approach
OrgBased In Work For

P R F1 P R F1
KC 74.3 83.9 78.8 73.6 97.5 83.9
KSL 74.3 77.2 75.7 76.8 80.0 78.4

7 Discussion

After analysing the theory of the state-of-the-art relation extraction ap-
proaches, I did experiments with different kernels and parse tree structures as
described in Section 5. While initially expecting the state-of-the-art method-
ologies to improve performance, on the contrary experiments showed that for
example latent annotations[18] would only act as an even stronger constraint
on the system, lowering recall significantly in comparison to the slightly, if
any, increase in precision. Taking into account the advanced complexity and
questionable increase in performance of the extensions Zhou et al. proposed,
additional implementation of those extensions were dismissed.

Instead, in an attempt to improve performance, the tree kernel was com-
bined with the simple but significant feature kernel, which in the end proved
to perform the best overall performance. As earlier argued by Zhou et al. in
[17], a context-sensitive parse tree structure would only introduce more noise
without proper administration, which also is what the experiments showed.

In [16], Giuliano et al. argued that reducing the dataset24 would help to
remove skewed class distributions and because of that, improve performance
of the system. But as can be seen from the experiments, this was only the case
for some of the relation types, again ending with a lower overall performance
compared to the default composite kernel25.

Of course here the performance is measured by the generally accepted
performance measure F-measure, if one were to weigh precision or recall
higher the outcome might be different using the generalized F-measure as
described in Section 3.3.

24Reducing the dataset by generating different smaller datasets for each relation type
only containing valid pair of candidate entities

25Composite kernel, i.e. results of tree kernel and feature kernel summed together
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The previous state-of-the-art approach on the dataset used in this report
was made by Giuliano et. a. in [16], in Table 4 a comparison can be seen.
While the approach in this report achieves better results on the Located In,
OrgBased In and Work For relations, Giuliano et al. gets significantly better
results on the Kill and Live In relations, which leads to a better overall
performance.

The approach by Giuliano et al. uses a global context kernel where each
sentence is represented using the bag-of-words structure instead of subse-
quences of words, which has been shown to perform better on longer sen-
tences as is the case for the Kill and especially Live In relation. This is
because the bag-of-words doesn’t take into account the syntax and structure
of the sentence, which gets more difficult to match the longer the sentence
is.

After having studied and worked with the task of relation extraction, I
have realized that an F-measure of approximately 80% is from my point of
view enough to be useful in many domains, with the possibility of adapting
a system to produce a much greater precision or recall by refining some of
the classification parameters.

Because of this, a more interesting approach for further study in relation
extraction would be towards the area of application. Where can the relation
extraction be applied? Earlier in the introduction, I mentioned question
answering and text summarization for possible applications of the relation
extraction. However, using the RDF data model as described in Section 4.3.2,
there are many other domains where the application of relation extraction
would prove useful.

As briefly mentioned in Section 6, one possible domain is social network
analysis (SNA). The application of relation extraction would add another
dimension to SNA, instead of simply representing links between entities, the
type of links, or in this case relationships, would also be visible.
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8 Conclusion and Future Work

In this report, I have presented my approach on the relation extraction task. I
proposed a linear combination of a tree kernel and a feature kernel. Applying
a CTK on the SPT for a pair of candidate entities, combined with the results
of a feature-based kernel, the goal was to gain an increase in performance
compared to earlier approaches in the related work. Unfortunately, the final
performance of the system only achieved close to same performance as the
previous state-of-the-art approach on the CoNLL’04 dataset. However, as
my approach produces an output using the RDF data model, it allows for
easier application.

For future work, I would like to further study the application of rela-
tion extraction, as the performance of the relation extraction task for some
domains is reliable enough to be very useful.
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