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ABSTRACT:

CAD systems are increasingly relied on for the iden-
tification and quantification of lung damage follow-
ing radiation therapy. However the ability to clas-
sify several types of lung damage using the same
features and classifier is often difficult. As a part
of this work, the use of different subvolume sizes
was examined, showing that larger volumes pro-
vide better classification. The use of sub volumes
of size 21x21x21 to distinct between treated non-
pneumonitis tissue and treated pneumonitis tissue,
was found to produce an accuracy of 88.7%. How-
ever, future work should focus on including the
counter lateral lungs in the classification.
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CHAPTER 1

Introduction

It is probably no surprise that lung cancer is the most common type of
cancer in the world, also when judging by both incidence and mortal-
ity rates. Statistics from the World Health Organization (WHO) show
that by 2008 an estimated 1.61 million new cases were seen each year
and a reported 1.38 million deaths [Ferlay et al., 2010]. Generally,
lung cancer has shown little improvement in survival rate over time,
despite improvements in diagnosis and treatment, making it evident
that continued research is needed within the field [Siegel et al., 2012].

A specific area of interest for researchers are the adverse effects
of radiation therapy, which in combination with chemotherapy, is
the treatment of choice for advanced non-small-cell lung cancer
(NSCLC) [E. Lim et al., 2010]. An estimated 1- 20% of patients un-
dergoing radiotherapy or chemoradiotherapy, develop moderate to
severe radiation pneumonitis (RP) within the first few weeks [Marks
et al., 2003; Mehta, 2005; Rovirosa & Valduvieco, 2010]. According to
Rodrigues et al. [2004], the number should be even higher, with an in-
cidence rate around 13-37%. However, the incidence rates prove dif-
ficult to determine precisely, as discussed by Kocak et al. [2005] and
Yirmibesoglu et al. [2012]. The latter recently conducted a large retro-
spective review of 434 irradiated patients and concluded that within
the 17% who were diagnosed as affected by RP, a 48% diagnostic un-
certainty existed.

The uncertainty arises due to the relatively limited clinical syndromes
of pneumonitis, which are defined as mild dyspnea, non-productive
mild cough, low-grade fever and pleuritic chest pain, making physical
examination and laboratory findings unreliable [Berkey, 2010; Rovi-
rosa & Valduvieco, 2010]. As a consequence of this, clinicians have
started utilizing computer-assisted-detection (CAD) systems to iden-
tify pneumonitis and other lung diceases within medical images of
the lungs and correlate the radiographic findings with the underlying
pathology and syndromes [Fass, 2008; Shiraishi et al., 2011].

In order for the CAD systems to provide a reliable evaluation, they
must be able to detect and distinct between altered attenuations, as
well as nodular, reticular or linear abnormalities, which may occur
alone or mixed together in the images. Damage caused by pneu-
monitis has so far proven difficult to detect, due to its diffuse and hazy
appearance in medical images [Provatopoulou et al., 2008]. This has
lead to the development of several distinct algorithms for analysis,
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1.1. Aim

among which the newest use wavelet filtering, fuzzy k-nearet neigh-
bor, Markov random fields, support vector machines or artificial neu-
ral networks [Gangeh et al., 2011; Palma et al., 2011; Park et al., 2011;
Tolouee et al., 2011; Zhu et al., 2011]. Common for all, is the evalua-
tion of lung tissue texture, which is complicated by the interference
of pulmonary and air tree vessels.

1.1 Aim
The purpose of this study is to develop an algorithm which is able to
detect radiation-induced pneumonitis within follow-up CT studies of
patients undergoing radiation therapy.
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CHAPTER 2

Radiation-induced pneumonitis

Due to its extremely radiosensitive tissue, the lungs are prone to
radiation-induced injuries to the normal lung parenchyma surround-
ing the target of radiation, e.g. neoplasm. The damage occurs when
energy generated by the radiation, is released. This generates free
radicals, which are believed to cause macromolecular cell damage
and DNA alterations [Ataya et al., 2006]. The result of this, is an acti-
vation of inflammatory processes which become self sustained once
established, due to the vast amounts and distinctive damages gener-
ated during irradiation [Provatopoulou et al., 2008].

Figure 2.1: A example of types of lung damage. a normal, b ground-glass
opacity, c reticular opacity, d honeycombing, e emphysema, f
consolidation [J. Lim et al., 2011]

Both X-ray and CT are utilized in order to monitor the possible devel-
opment of pneumonitis, which develops as a diffuse haze and later
becomes more consolidated within the area of the treatment portals
[Provatopoulou et al., 2008]. The findings are typically divided into six
different types, called honeycombing, emphysema, reticular opaci-
ties, ground-glass opacities and consolidation, as seen on figure 2.1.

Studies have shown that 50% to 90% of the patients that receive ra-
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2.1. Computer-aided diagnosis systems

diotherapy in the chest area, develop abnormalities in either the pul-
monary function or the lung parenchyma [Rovirosa & Valduvieco,
2010]. It is therefore a key interest of physicians to efficiently mon-
itor the development of pneumonitis and compare it to the amount
of radiation therapy administered [Bagci et al., 2012].

2.1 Computer-aided diagnosis systems
CAD systems are increasingly used to detect abnormalities such as
pneumonitis, in order to reduce the time consuming process of visu-
ally inspecting the large image sets, as well as quantifying the amount
of damage. These systems utilize various methods of texture analysis,
such as the low-level features produced by Gray-level Co-occurrence
matrices and general shape features computed using binary trans-
forms of image subvolumes [Bagci et al., 2012]. A large portion of the
possible features used to detect lung damage is shown in figure 2.2

Figure 2.2: Types of features used in CAD systems for detection of lung dam-
ages [Bagci et al., 2012]

The systems are generally comprised of the three main routines: data
acquisition, segmentation of region and texture analysis, after which
the features are fed to a classifier. (see figure 2.3).

Examples of the different classification algorithm used for lung dam-
age identification, are shown in table A.1. As seen, the CAD systems
usually focus on a specific type of pneumonitis, due to the vast textu-
ral differences.
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2.1. Computer-aided diagnosis systems

Figure 2.3: The build-up of a CAD system [Bagci et al., 2012]
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CHAPTER 3

Development approach

A CAD system was developed for the purpose of detecting occur-
rences of pneumonitis tissue from subjects who have undergone ra-
diation therapy. The idea is to first segment the lungs of each subject
and then extract subvolumes needed to perform the texture analysis.
The analysis was performed using the features of Haralick, which are
calculated on Gray-Level Co-orcurrence Matrices (GLCM). Finally, a
subset of the features were used to optimize and train a Support Vec-
tor Machine (SVM), while a separate subset was used for the classifi-
cation.

3.1 Data collection
CT studies of six subjects, taken three months after finishing their
therapy sessions, were obtained from the Department of Oncology at
Aalborg Hospital, which provide the radiation therapy to lung cancer
patients. The studies were chosen by an experienced radiologist who
classified four of the subjects as having pneumonitis (RPpos), while
two were without (RPneg ). Each RPpos subject was characterized by
having a more dominant type of pneumonitis within the lungs, e.g.
ground-glass opacity, consolidation, reticular opacities, micro nod-
ules or honeycombing. One RPneg subject was removed due to its
reduced lung size caused by lung damage, making extraction of sub
volumes impossible.

All scans were captured using helical CT with a resolution of 512 x 512
pixels and a beam energy of 120 kVp. For a more detailed description
of the data used see Table 3.1.

The health information stored within the DICOM-RT headers were
immediately anonymized in accordance with clinical guidelines, af-
ter which the data was imported into MatLab using the Computa-
tional Environment for Radiotherapy Research (CERR). The CERR ap-
plication automatically makes the data uniform.

3.2 Examples
As shown in figure 3.1, four of the subjects (RPpos) have diagnosed
signs of pneumonitis, while the remaining two (RPneg ) only contain
remains of the shrinking lung nodules/tumor.
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3.2. Examples

Ref.
subject

No.
slices

Avg. Tube
current
[mA]

Pixel
spacing
[mm]

Slice
thickness
[mm]

Class
type

5 135 211 0.7578 5 RPpos

6 83 186 0.6309 5 RPpos

7 60 - 0.7773 5 RPpos

8 84 178 0.6367 5 RPpos

9 141 276 0.7813 3 RPpos

22 76 375 0.7422 6 RPneg

37 246 173 0.8203 2.5 RPneg

Table 3.1: Overview of data used to develop and test the algorithm. The av-
erage tube current for subject no. 7 was not present in the header
information.

10



3.2. Examples

RP-pos RP-pos

RP-pos RP-pos

RP-negRP-neg

Figure 3.1: A slice from each subject depicting the severity of injuries.
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CHAPTER 4

Lung segmentation

The following sections focusses on the method of which the right and
left lung were segmented in order to provide a boundary for the tex-
ture analysis. The segmentation was done using wavefront propaga-
tion after which the segmented regions were processed using mor-
phological hole filling. Afterwards, the obtained regions are filled
with different sized consecutive subvolumes within the lungs.

4.1 Wavefront propagation
The algorithm was used to segment three different areas of the torso.
First the airway tree from trachea to the bronchial bifurcation was
segmented in order to subtract it from the regions of the lung. A seed
point was placed within the trachea, after which the wavefront was
allowed to propagate. Every time a bifurcation was encountered, the
wavefront would split and form two new fronts.

The specific implementation of the propagation technique which
was used in this work, contains a priority-queuing system which
maximizes the performance of the propagation algorithm. Following
the initiation of a wavefront segment from a seed point, the segments
connected to the perimeter of the segment are added to a queue, as
described on figure 4.2. The list is a "First-in, first-out" list, which en-
sures that branches from upper areas of the lung are segmented first.
Following the propagation of a wavefront, the front is evaluated to as-
sess whether leakage has occurred. This is typically done by compar-
ing the surface area of the new wavefront, with the previous. A large
difference between these values indicate that the surrounding bor-
ders have been breached by the wavefront, after which the threshold
for wavefront edge pixel intensities is raised. Another interesting fea-
ture of the algorithm is the ability to compare the segment that the
wavefront is propagating from, by evaluating the size of the diameter
for the previous and current segment. This is a vital function when
segmenting tree structures like the airway tree.

During the validation of the new propagation and segment, the chil-
dren of the wavefront are either added to the queue or removed, after
which the next segment in queue is processed instead.

In addition to the use of the algorithm for segmentation of the airway

12



4.2. Extraction of subvolumes
7012 X Artaechevarria et al

Figure 1. Block diagram of general tree segmentation and reconstruction framework.

structures. The radius was selected because it represented a good trade-off between noise
removal and contour information preservation.

2.2. Airway tree segmentation and reconstruction

The adopted framework has been explained in detail in previous works by Schlathoelter
et al (2002) and Bülow et al (2004). A block diagram summarizing the main execution flow is
shown in figure 1. A key concept is the segment. A segment is a set of contiguous points that
has been segmented by a growing wavefront without bifurcations. The growing wavefront
is initialized in one seed point and grows into neighboring voxels that fulfill certain voxel
acceptance criteria. After every wavefront propagation step, several conditions are checked to
prevent leaks. When the wavefront bifurcates, new segments are initialized and added to the
rest of pending segments in a segment queue. This queue is a first-in, first-out (FIFO) list, thus
ensuring that branches from upper airways are processed first. When a segment is finished, its
correctness is checked in a segment evaluation step.

It was necessary to develop new voxel acceptance, propagation evaluation and segment
evaluation criteria, due to the particularities of our segmentation task. Details about these new
features are given in this subsection.

Figure 4.1: Diagram of the steps involved in wavefront propagation [Ar-
taechevarria et al., 2009].

tree, the wavefront propagation can also be applied to the segmen-
tation of the individual lungs. This was done by lowering the rules,
thereby allowing the wavefront to propagate in spite of a large differ-
ences between the previous and new wavefront, which would occur
within the large regions of the lungs. The result of this is a finely seg-
mented lung region from which the airway tree is subtracted in or-
der to remove the segments that have propagated from the lungs and
back upwards through the trachea.

Thereafter, the holes in the segmented region is removed using mor-
phological hole filling, as shown in figure 4.2.

4.2 Extraction of subvolumes
The solid lung regions were then used as the boundary for the fill-
ing of subvolumes within each lung, as depicted in figure . Firstly,
the subvolumes are positioned within the lung in a manner which
maximizes the amount, after which the intensity values of the orig-
inal image are isolated within each subvolume area. Subvolumes of
size (13x13x13, 17x17x17 and 21x21x21) are extracted from each sub-
ject.

13



4.2. Extraction of subvolumes

Original Wavefront Propagation Hole !lling

Figure 4.2: Example showing the segmentation of a right lung from an orig-
inal dicom image, using wavefront propagation and hole filling.

Segmentation Voxel positioning Voxel extraction

Figure 4.3: Example showing the steps involved in extracting subvolumes
from a segmentation by first positioning the subvolumes areas
and then isolating the original intensity values within the indi-
vidual subvolumes.

14



CHAPTER 5

Texture analysis

The texture analysis was performed using 3D GLCMs on the subvol-
umes obtained from each group of subjects. In this work, the method
was combined with a support vector machine classifier.

5.1 Gray-level co-occurance matrices
The GLCM called Co(i , j ) provides a measurement of how often a
gray-scale pixel i occurs adjacent to pixels with the value j , in either
or all of the four 2D directions (0±, 45±, 90±, 135±). In addition to the
direction, it is also possible to choose the distance between the pixel
of interest i and the neighbor j , allowing for multiple calculations.

A simple example of the calculation is presented in figure 5.1. The
image I to the left is being analyzed in order to create the GLCM Co
to the right. One neighboring pixel pair of ones are placed in Co(1,1),
while the two pairs for ones next to twos, are counted and placed in
Co(1,2), since the pixel of interest is 1 [Sebastian et al., 2012].

Figure 5.1: Simple example of the transformation of an image I to an GLCM
Co(i , j ) [MathWorks Inc.].

However, the difference with the 3D GLCM, is the additional 9 direc-
tions that can be calculated, making the GLCM multidimensional it-
self.

5.2 Features
Following the construction of the GLCM, a variety of different fea-
tures are calculated based on the values of Co(i , j ). The features used

15



5.2. Features

are the famous Haralick features.

fEner g y =
PN

i=1
PN

j=1 Co2(i , j )

fEntr opy =°PN
i=1

PN
j=1 Co(i , j ) log10(Co(i , j ))

fCor r el ati on = 1
æxæy

PN
i=1

PN
j=1(i j ) Co(i , j )°µxµy

fContr ast = 1
(N°1)2

PN
i=1

PN
j=1(i ° j )2 Co(i , j )

fHomog enei t y =
PN

i=1
PN

j=1
1

1+(i° j )2 Co(i , j )

fV ar i ance =
PN

i=1
PN

j=1(i °µ)2 Co(i , j )

fSum mean =P2N
i=2 i Cox+y (i )

fInver se di f f er ence moment =
PN

i=1
PN

j=1
Co(i , j )
|i° j |2 i j

fC l uster shade =
PN

i , j=1(i°PN
i , j=1 i Co(i , j )+ j°PN

i , j=1 j Co(i , j ))4 Co(i , j )

fC l uster tendenc y =
PN

i , j (i°PN
i , j=1 i Co(i , j )+ j°PN

i , j=1 j Co(i , j ))4 Co(i , j )

fM ax pr obabi l i t y = M ax
£
Co(i , j )

§

Using separability and correlation analysis (SEPCOR) the sum mean
and cluster prominence were found to be the most descriptive fea-
tures.
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CHAPTER 6

Validation of lung segmentation

In order to extract subvolumes of size 13x13x13, 17x17x17 and 21x21x21
within the lungs, it was necessary to segment each lung and after-
wards fill the generated binary mask with as many subvolumes as
possible. The qualitative results of the segmentation and extraction
of subvolumes from each subject is presented in the following.

6.1 Method
Since there is no ground truth segmentation for the datasets provided
by the hospital, a qualitative evaluation of the segmentation obtained
using wavefront propagation, is performed instead on all subjects.

The segmentations were done using the parameters for wavefront
propagation presented in table 6.1.

Location Variable Value

Airway
Image threshold –820 HU
Maximum difference 180
Voxel limit 4.000.000

Lungs
Image threshold -500 HU to -300 HU
Maximum difference 500-700
Voxel limit 6.000.000

Default for both
Wavefront expansion ratio 1.1
Segment expansion ratio 1.1
Connectivity 18

Table 6.1: Variable values used during validation of lung field segmenta-
tion.

For each subject a seed point was placed within the trachea and each
of the lungs. All seed points were placed in areas with a low intensity,
allowing the wavefront propagation algorithm to function properly.

18



6.2. Results

6.2 Results
The obtained segmentation of each lung in each subject is presented
in figure 6.1-6.6, while a 3D view of the extracted subvolumes from
subject 5 is shown in figure 6.7-6.8.

Figure 6.1: Subject 5: Result of segmentation

Figure 6.2: Subject 6: Result of segmentation

19



6.2. Results

Figure 6.3: Subject 7: Result of segmentation

Figure 6.4: Subject 8: Result of segmentation
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6.2. Results

Figure 6.5: Subject 22: Result of segmentation

Figure 6.6: Subject 37: Result of segmentation

21



6.2. Results

Figure 6.7: 3D view of subvolumes extracted from subject no. 5. Due to the
interpolation, the individual subvolumes are visually combined
in the image, even though the are separate entities.
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6.3. Discussion

Figure 6.8: Top to bottom 3D view of subvolumes extracted within the lungs
of subject no. 5

6.3 Discussion
The lung regions (including pulmonary vessels and airway tree el-
ements within the lung itself) were successfully segmented in sub-
ject 5-9, while subjects 22-37 contained a thin and weakly contrasted
junction line between the two lungs, allowing the wavefront to prop-
agate into the neighboring lung region. This is the result of a tradeoff
between the degree of segmentation of pneumonitis areas and sepa-
rability of large regions. With regards to subject 22, the left lung con-
tained a large tumor which the algorithm avoided as intended.

Following the lung segmentation, the subvolumes of size 13x13x13,
17x17x17 and 21x21x21 within the lungs, were extracted. This was
performed with success, as seen in the example in figure 6.7-6.8.

It is worth noting that all lung segmentations contain both pul-
monary and airway vessels in addition to the parenchyma. This could
have been avoided by segmenting the whole airway tree and pul-
monary vessel tree and subtracting them from the lung segmenta-
tion. However, the relatively large slice thickness made it impos-
sible for the wavefront propagation algorithm to move into smaller
lung nodes. Also, the subtraction of non-parenchyma objects would
have lead to a significant reduction in the number of subvolumes that
could be extracted from within the segmented regions.
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CHAPTER 7

Validation of texture analysis

In order to detect areas with pneumonitis, the extracted subvolumes
from both groups of subjects, were analyzed using GLCM and classi-
fied using a SVM. The division of data, optimization and training of
the classifier, as well as the texture classification itself, is presented in
the following.

7.1 Method
Data was divided into a training and test set, with 60% being train-
ing subvolumes and 40% being test subvolumes. Both sets contain
as equal amounts of both RPneg and RPpos as possible. With regards
to the RPpos subjects, only the subvolumes from the irradiated (area
receiving above 50% of the dose) lung in which the pneumonitis was
present, was used. On the other hand, both lungs from the RPneg sub-
jects were used, giving four lungs classified as having pneumonitis
and four without. The use of both the irradiated and non-irradiated
lung from the RPneg subjects, was due to slight remains of tumor tis-
sue, which resembles pneumonitis. The opposite lung would func-
tion as a balance to this.

The division of the data for each subvolume size is presented in table
7.1.

subvolume size 13 x 13 x 13 17 x 17 x 17 21 x 21 x 21

Total subvolumes 3380 1304 597
Train subvolumes RPneg 1524 600 287
Train subvolumes RPpos 504 183 72
Test subvolumes RPneg 1016 399 190
Test subvolumes RPpos 336 122 48

Table 7.1: The amount of subvolumes extracted totally and for each group.

Prior to the classification of data, the SVM classifier is trained using
the training set. However, an unconstrained nonlinear optimization
combined with a five-fold cross-validation was first performed in or-
der to optimize the training process. The purpose of the grid search
was to estimate the value sigma of the gaussian radial basis function
used as the kernel, as well as the box constraint. The sigma value rep-

24



7.1. Method

resents the scaling or width of the gaussian function, while the box
constraint controls the soft margin used when data does not allow
for a complete separation using a hyperplane.

The minimization process gave the parameters for the SVM trainer
shown in table 7.2.

subvolume size 13 x 13 x 13 17 x 17 x 17 21 x 21 x 21

RBF sigma 11.1014 7.3312 4.9064
Box constraint 2.9228 3.5326 2.3537

Table 7.2: Optimal SVM parameters.

After optimization and training of the SVM, the test data of each sub-
volume size was classified using a five-fold cross validation and the
parameters determined before.

An overview of the complete process can be seen in figure 7.1.

Figure 7.1: Method utilized to optimize and classify using SVM.

In the following the results from the classification of each subvolume
type is presented. In order to easily compare the output of each dif-
ferent subvolume, an Fmeasur e is calculated. The Fmeasur e is the har-
monic mean of the Sensitivity (S) and Positive Predictive Value (PPV),
which is calculated as shown in equation 7.1.

Fmeasur e = 2
S ·PPV
S +PPV

(7.1)

The calculated Fmeasur e is between zero and one, with zeros being the
worst outcome and one the best.
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7.2. Results

7.2 Results
The result of the classification is presented in table 7.3.

Subvolume size 13 x 13 x 13 17 x 17 x 17 21 x 21 x 21

Accuracy 59.5% 79.9% 88.7%
Sensitivity 50.6% 76.2% 86.8%
Specificity 86.6% 91.8% 95.8%
Positive predictive value 92.0% 96.8 % 98.8%
Negative predictive value 36.7% 54.1% 64.8%

Fmeasur e 0.595 0.853 0.924

Table 7.3: Results of the five-fold cross-validation.

The outcome of the classification can also be visually confirmed
when evaluating sliced versions of randomly sampled subvolumes,
as are depicted in figure 7.2-7.10.

7.3 Discussion
The subvolume size of 13x13x13 scored the lowest, while the 17x17x17
subvolumes proved slightly better with a sensitivity of 76.2% and
specificity of 91.8%. The best performance was seen when using the
21x21x21 subvolumes which achieved a sensitivity of 86.8% and a
specificity of 95.8%. This is also evident judging by the sliced versions
of subvolumes classified as true positive (left column) and the slices
classified as false negative (right column) present in figure 7.10. The
true positive slices clearly contain a more hazy texture, while the false
negatives contain small pulmonary vessels. However, when looking
at the subvolumes classified as true negative (figure 7.8) and false
positive (figure 7.9), it was clear that the classifier needs more diverse
training material.

The 17x17x17 subvolumes proves slightly worse as also seen on fig-
ure 7.7. Despite the large distinction between the true positive and
false positive slices, the amount of true negative and false positive
was higher than the 21x21x21 subvolume classification. Again the
subvolumes belonging to these categories showed to contain hazy
structures, however with a large mixture of pulmonary nodes within.

As seen in figure 7.4, the true positive and false negative slices of
13x13x13 subvolumes both contain hazy areas, making it likely the
the subvolume size is simply to small to sample enough features for
texture analysis. As with the 17x17x17 and 21x21x21 subvolumes, the
true negative and false positive both contain patterns that are remi-
niscent of pneumonitis, even though the false positives are likely to
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7.3. Discussion

be nodule edges from the RPneg subjects.

Based on the results it is evident that the subvolume size of 21x21x21
performed the best, due to its capacity of containing more distinctive
textural features.

Figure 7.2: Sliced versions of 13 x 13 x 13 subvolumes that have been classi-
fied as true negative.

Figure 7.3: Sliced versions of 13 x 13 x 13 subvolumes that have been classi-
fied as false positive.
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7.3. Discussion

Figure 7.4: Sliced versions of 13 x 13 x 13 subvolumes selected randomly.
Each row contains a sliced subvolume classified as true positive
(left column) and a subvolume classified as false negative (right
column).
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7.3. Discussion

Figure 7.5: Sliced versions of 17 x 17 x 17 subvolumes that have been classi-
fied as true negative.

Figure 7.6: Sliced versions of 17 x 17 x 17 subvolumes that have been classi-
fied as false positive.
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7.3. Discussion

Figure 7.7: Sliced versions of 17 x 17 x 17 subvolumes selected randomly.
Each row contains a sliced subvolume classified as true positive
(left column) and a subvolume classified as false negative (right
column).
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7.3. Discussion

Figure 7.8: Sliced versions of 21 x 21 x 21 subvolumes that have been classi-
fied as true negative.

Figure 7.9: Sliced versions of 21 x 21 x 21 subvolumes that have been classi-
fied as false positive.
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7.3. Discussion

Figure 7.10: Sliced versions of 21 x 21 x 21 subvolumes selected randomly.
Each row contains a sliced subvolume classified as true positive
(left column) and a subvolume classified as false negative (right
column).
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CHAPTER 8

Discussion & Conclusion

CAD systems are increasingly relied on for the identification and
quantification of lung damage following radiation therapy. The sys-
tems use descriptive features to analyze the different textural com-
positions of the lung parenchyma to classify signs of pneumonitis.
However the ability to classify several types of lung damage using the
same features and classifier is often difficult, which is also reflected in
the results of this work, especially when focusing on pneumonia tex-
tures within the false positives and true negatives of the classification.
The distinction between treated non-pneumonitis tissue and treated
pneumonitis tissue is also made difficult by the fading remains of
neoplasms within the treated non-pneumonitis tissue.

As a part of this work, the use of different subvolume sizes was ex-
amined, showing that larger volumes provide better classification.
However, the increase also reduces the amount of available divisions
of the lung, and the divisions will be limited to the central parts of
the lungs, missing the occurrences of pneumonitis that are typically
found in the boundary regions of the lungs. A tradeoff therefore ex-
ists between the desire of having a precise location of damaged tissue
and the ability to the detect it within the volume.

With regards to the segmentation of the lungs, it is worth noting that
all lung segmentations contain both pulmonary and airway vessels
in addition to the parenchyma. This could have been avoided by seg-
menting the whole airway tree and pulmonary vessel tree and sub-
tracting them from the lung segmentation. However, the relatively
large slice thickness made it impossible for the wavefront propaga-
tion algorithm to move into smaller lung nodes. Also, the subtraction
of non-parenchyma objects would have lead to a significant reduc-
tion in the number of subvolumes that could be extracted from within
the segmented regions.

A limitation of this study is the classes of which the individual lungs
are classified to. An ideal classification would focus on the not only
the separation of treated non-pneumonitis tissue and treated pneu-
monitis tissue, but also between the untreated non-pneumonitis tis-
sue and untreated pneumonitis tissue of the counter lateral lungs.
However, the lack of a precise ground truth model and due to the dif-
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ferent types of dominating pneumonitis within each subject, it was
necessary to limit the field of examination.

Despite the limitations of the study, it was still possible to distinct
between treated non-pneumonitis tissue and treated pneumonitis
tissue, with an accuracy of 88.7%, when using sub volumes of size
21x21x21.
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APPENDIX A

Literature search

Background

A systemized literature search was performed in order to obtain back-
ground material on the subject of radiation-induced lung disease.
Figure A.1 illustrates the initial areas of investigation.

Figure A.1: Initial areas of investigation around the subject of radiation-
induced lung disease.

Information sources

The two databases, PubMed and Embase, were chosen for their wast
library of publications within health sciences. PubMed is well known
as the most largest and up-to-date database, while Embase indexes
a lot of additional journals (mainly european), which are not covered
by PubMed.

Search strategy

Each database has a thesaurus (subject index), which were first
searched using the following keywords generated based on the initial
areas of investigation shown above.

• Radiotherapy

• Lung damage

• Interstitial lung disease

• Radiation damage

• Computed tomography

• Radiation-induced lung disease

• Radiation pneumonitis and fibrosis

• Lung segmentation

• Computer-assisted diagnosis

• Medical image analysis

Using the keywords, a list of MeSH (Medical Subject Headings) for
PubMed and Emtree terms for Embase, was generated and combined
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as shown in Table A.1. Additional free text search terms were also
used during the search, if no matching MeSH or Emtree terms could
be found. Following the primary search, all literature was exam-
ined using the snowball method in which the references of the before
mentioned publications are examined and acquired if found relevant.

Exclusion criteria

Publications older than the year of 1992 were excluded in the primary
search phase, based on the assumption that the publications would
be outdated with regards to modern medical image analysis.

During the search of Embase, the results were filtered to only contain
publications within Embase in order to avoid overlapping from the
Medline (PubMed) database.

Inclusion criteria

Only peer-reviewed publications, reviews and clinical trials were in-
cluded. Additionally, publications older than the year of 1992 were
included if referenced within relevant publications found during the
primary search phase.

Results
A total of 204 publications were found relevant during the primary
database search, and an additional 40 were found using the snowball
method. The distribution of publications across time as well as type
of publication can be seen in Figure A.2.
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As depicted, the literature found through the search was predomi-
nantly from within the last 10 years and mainly consisted of peer-
reviewed articles.
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