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Abstract

Historically, sepsis has been a condition which is difficult to both diagnose and treat. It is a leading
cause of death in part because many patients receive inappropriate antibiotic treatment. Although
understanding of the pathophysiology of sepsis has improved, the search continues for a magic-bullet
biomarker which can confirm diagnosis in a timely and cost-effective manner. In the area of sepsis,
TREAT has been successful so far in classifying septic patients in terms of severity, allowing higher
risk patients to undergo more expensive tests which may help to identify the cause of sepsis and thus
recommend appropriate treatment. However, the sepsis network in TREAT is old, and potentially
out of date, and it is thought that further improvements could be made to this part of the network.

The project builds on previous work completed by the author on sepsis diagnosis, with the im-
plementation of modifications to the sepsis network. Several sets of modifications are presented,
from structural changes such as the addition of new nodes, redesign of sections of the network and
change to the states within nodes along with the replacement of discrete chance with continuous
chance nodes. Automatic learning within causal probabilistic networks (CPNs) is also investigated,
with descriptions of the learning process within the Hugin development environment as included.
Methodologies for learning within the sepsis network are presented along with a description of the
database requirements for such a process to succeed.
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Intended Audience

This report is intended for those interested in medical decision support, and in particular, causal
probabilistic networks. It is suitable to be read by students in the field of biomedical engineering, as
well as those with a particular interest in the subject area. It is expected that the reader will have
at least some medical knowledge and a basic understanding of probability calculus.

1 Introduction

The Treat CPN is a causal probabilistic network designed to identify infectious diseases and rec-

ommend optimal antibiotic treatment based on coverage, economical cost and ecological cost. By

identifying the causative agent, broad spectrum antibiotics, and the associated risk of creating resis-

tance, can be avoided. Treat is currently in use in Hvidovre Hospital and to be installed at Sygehus

Lilleblt, with plans for implementation in several more hospitals in Denmark and internationally.

Since its inception, Treat has improved both the percentage of appropriate antibiotic treatments

and the coverage of such treatments (compared with a physician-only regime) while reducing the

ecological cost. The Treat network is continually being modified and optimized to ensure that the

best product is available. One area that has been identified for possible improvements is the sepsis

network.

Historically, sepsis is a very difficult disease to diagnose and also to treat. Despite extensive research

and clinical trials, sepsis remains a leading cause of death, with mortality rates of 18-29% reported

in US epidemiological studies [1, 2]. Early appropriate antibiotic treatment is essential, since it

approximately halves the mortality. Relative mortality increases by 8% for each hours delay after

onset of infection. Early appropriate antibiotic treatment requires that the infection is detected and

subsequently that appropriate treatment is administered. A CPN such as Treat has great potential

for the early detection of sepsis, and is able to then stratify patients according to risk. High-risk

patients can then be given further, more expensive diagnostic tests, such as PCR tests to identify

the pathogens, while lower risk patients can be managed accordingly.

This project describes steps taken to improve Treat’s sepsis network, and the results of the im-

provements. The work builds on knowledge obtained through a previous Aalborg University project

which focused on the diagnosis on sepsis, and identified ways in which the sepsis network could be

improved.
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2 Background

This section aims to provide background information on sepsis, medical decision support, and the

TREAT system. In particular, the history of sepsis, information about diagnosis and treatment, the

history of clinical decision support systems and their potential for use in modern clinical settings,

information about causal probabilistic networks, how they work and their uses, a description of

the TREAT CPN, its background in terms of development and clinical use and effectiveness, and a

summary of the previous semesters project on sepsis diagnosis.

2.1 Sepsis: History, Diagnosis and Treatment

Despite the best efforts of clinicians and researchers, sepsis remains a leading cause of death in

critically ill patients [3, 4, 5]. It is clear from the literature that although sepsis is a very well

researched and document subject within medical circles, it is often a very difficult condition to

diagnose and to treat [3, 4, 5, 6, 7]. Sepsis is defined as a systemic inflammatory response due to the

presence of an infection [8]. In 1992, a consensus conference held by the American College of Chest

Physicians decided that a patient will be diagnosed with sepsis if they present with SIRS (Systemic

Inflammatory Response Syndrome), which is readily diagnosed by the presence of at least two of:

• Fever or hypothermia

• Tachycardia

• Tachypnea or hyperventilation

• Leukocytosis or leukopenia

in addition to a confirmed infection [9]. However, due to the lack of specificity given by this list,

the criteria (again in addition to a confirmed infection) were extended following an international

consensus conference in 2001 [10]:

• General variables

– Fever or hypothermia
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– Tachypnea

– Altered mental state

– Unexplained hyperglycemia

• Inflammatory variables

– Leukocytosis or leukopenia

– Increased CRP (>2 SD above normal)

– Increased PCT (>2 SD above normal)

• Tissue perfusion variables

– Unexplained hyperlactatemia

– Decreases capillary refill or skin mottling

• Organ dysfunction variables

– Unexplained hypoxemia

– Acute oliguria

– Coagulation abnormalities

– Ileus

– Hyperbilirubinemia

– Thrombocytopenia

More specifically, severe sepsis is defined as sepsis with an associated acute organ failure, and septic

shock is severe sepsis where the patient remains hypotensive despite adequate fluid resuscitation.

These diagnoses do not define different illnesses, but instead define more serious conditions of the

same illness.

The high mortality rates associated with sepsis, in addition to its prevalence in intensive care pa-

tients, has lead to extensive research into potential biomarkers and methods of treatment. A review

published in 2010 [5] describes 178 different biomarkers that have been evaluated for use in sepsis.

However, out of these 178 biomarkers, few were tested for diagnosis, with most evaluated as prog-

nostic markers. None of the biomarkers listed were able to achieve the sensitivity or specificity that
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would be required for routine clinical use. The main problem with the use of biomarkers in sepsis is

that they are not able to accurately distinguish sepsis from other diseases or conditions. Although

no single biomarker has been effective, the author notes that there is potential that a combination

of markers would be more successful.

Diagnosis is not the only problematic area in sepsis studies, with effective treatment also proving

elusive. Therapies targeting some of the physiological response to sepsis, for example, modulating

the effects of inflammatory mediators such as tumor necrosis factor alpha (TNFα) or interleukin-1

(IL-1), have been ineffective, and in some cases damaging as the host’s immune response to the

microbial invasion is mitigated [6]. In 2008, a set of international guidelines for the treatment and

management of severe sepsis was published [11] as an update to the guidelines formed by a group of

11 organizations - Surviving Sepsis Campaign guidelines for management of severe sepsis and septic

shock, published in 2004. Recommendations and suggestions are presented, along with the rationale

for such decisions given the case presented with. However, this is not a definitive guide on sepsis

treatment, as progress is still being made on new treatments and diagnostic techniques.

2.2 Use of Clinical Decision Support Systems

Clinical decision support systems have at times met with controversy, with few published details

of clinical success. Garg [12] identified 100 decision support systems in a 2005 review, including

systems for diagnostics, reminders, disease management and drug-dosing or prescription. Although

many of the systems (64%) reported improvements in practitioner performance, the effect on patient

outcome is still largely unclear. Although there is seemingly a lack of success in the field of medical

decision support, the absence of widespread success does not imply that the idea of implementing

such a system is flawed, only that in many cases the design and/or implementation of such systems

have been.

There are three main variants of clinical support systems; knowledge-based systems (includes rule-

based and fuzzy logic systems), model-based systems (including differential equations and causal

probabilistic networks, CPNs) and data-based systems (including neural networks and regression

models). Model-based systems have the advantage that they form a hybrid approach where the

structure/model is based on knowledge and the system can be tuned by data. The hypothesis is
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that model-based systems are able to utilize the benefits of both knowledge- and data-based systems

while eliminating the problems with each.

The Center for Model-based Medical Decision Support (MMDS) at Aalborg University has developed

several MMDS systems, including models based on differential equations and CPNs. The differential

equation, or compartment models are Glucosafe for blood glucose control in the intensive care unit

(ICU) and INVENT, a system used to determine optimal ventilator settings. MUNIN, a neuromus-

cular network, and TREAT, a network for optimal therapy for infectious diseases are examples of

CPN-based systems.

2.3 Causal Probabilistic Networks and Their Uses in Medicine

Causal probabilistic networks or CPNs, also known as Bayesian networks, are sets of causally-linked

stochastic variables which form a network. Each stochastic variable is represented by a node, each

of which has a set of possible values or states. Relationships between nodes can be represented by

directional links showing the direction of causality. Each node has a table of conditional or a priori

probabilities, based on the possible states of, and whether it has parents.

The simplest form of CPN is the idiot-Bayes (or naive-Bayes) network where there is a single parent

node, simply connected to a set of child nodes. The children are assumed to be independent of each

other and conditional on the parent. In more complex cases, a naive-Bayes approach may not be

appropriate and nodes can be multiply connected, where nodes may have more than one parent on

which they are conditional.

TREAT and MUNIN, both products of the Aalborg University MMDS Department. The MUNIN

CPN contained approximately 1000 nodes which were organised into four layers. The top layer

consists of the various neuromuscular diseases that MUNIN can diagnose, two layers of intermediate

nodes, and a bottom layer of observable findings, as shown in Figure 1. The intermediate nodes are

unobservable, and represent pathophysiological concepts.

The TREAT CPN, which will be discussed further in Section 2.4, is a little more complicated than

MUNIN. TREAT is designed for the identification and optimal treatment of infectious diseases, and

contains around 8000 nodes. There are several substructures within the TREAT network which is
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Figure 1: Structure of the MUNIN CPN

split into infection sites, and then each infection site into sections dealing with treatment, pathogen

prevalence, symptoms and risk factors.

The structuring of CPNs and formation of conditional (or a priori) probability tables is only one

part of the solution. There must exist an engine to perform inferences within the network based on

evidence entered, for this is where CPNs can become powerful. Given a accurately defined causal

structure and appropriate probability tables, evidence entered as findings can be used to infer the

cause. A major step towards making this possible for complex medical models was the development of

efficient algorithms for inference in both singly connected CPNs (Pearl [13]) and multiply connected

CPNs (Lauritzen and Spiegelhalter [14]).

The development of CPNs is made easier by software designed for the purpose. Hugin, developed by

the company HUGIN EXPERT A/S, has existed since 1989 and provides a graphical user interface

(GUI) for CPN development as well as the inference engine for efficient updating of probabilities

[15]. Hugin provides tools for developing networks with both discrete and conditional chance nodes.

Conditional chance nodes allow normal distributions to be specified as a mean and variance rather

than specifying conditional probabilities for each state. Methods are also provided for automatic

learning within CPNs, where probability tables and distributions can be learned from databases.

The learning process is discussed further in Section 5.
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2.4 The TREAT CPN

TREAT is a DSS that was developed after its creators identified a need to provide improved empir-

ical antibiotic treatment, and the fact that a computerized system could better utilize information

available to physicians on presentation at a hospital. A causal probabilistic network was chosen

as the platform for the model to best reflect the knowledge obtained through certain evidence.

TREAT aims to increase appropriate empirical antibiotic usage, which has been shown to improve

patient outcomes [16, 17], while reducing both financial and ecological costs. The ecological cost

is determined by the the increased chance of developing antibiotic-resistant strains that has been

linked to the use of broad-spectrum antibiotics [18]. TREAT was designed to be used to iden-

tify hospital- and community-acquired infections in inpatients and suggest appropriate antibiotic

treatment [19, 20, 21, 22, 23, 24].

Figure 2: Full treat network overview. Each infection site is highlighted blue, the bacteremia network red
and the sepsis network green
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TREAT aims to identify both the site of infection as well as the pathogen responsible for causing

the infection. TREAT covers eleven sites of infection, with the basic units being the individual

pathogens at each site. Figures 2 to 5 give an overview of some of the structures used within the

TREAT CPN. Figure 2 shows how the network is organised into 11 infection sites, connected to

networks for bacteremia and sepsis.

Each site is broken down further into the different pathogens that are likely to cause infections in that

particular location. Each pathogen has an associated network for treatment/coverage which allows

for a combination of up to three drugs. Figure 3 shows part of the pneumonia network structure.

Four pathogens are shown (four groupings along the bottom) and the treatment networks for two of

these (tree structures at the top).

Figure 3: Overview of the repeated structure used in each of the infection sites, in this case, the pneumonia
network

Figures 4 and 5 show closer views of the treatment/coverage network and the individual pathogen,

respectively. The pathogen network is connected directly to risk factors, for example, the pneumo-

coccal pneumonia node shown is connected to nodes for copd, age, and alcohol abuse among others.

Likelihoods for pathogens, and the severity of the infection they are likely to cause, are collected
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for each site at a point where site-specific symptoms are recognized. Each site is then connected to

the sepsis and bacteremia networks, where likely severities are added together to give likelihoods for

sepsis and whether bacteria will be found in the blood.

Figure 4: Closer view of the repeating structure shown in Figure 3 for coverage of pneumococcal pneumonia
infections

Figure 5: Close up view of the network for pneumococcus pneumoniae

Following the identification of the most likely pathogen and the infection site, TREAT identifies the
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most appropriate treatment based on a cost-benefit model. Benefits are derived from the coverage of

the specific antibiotic in relation to the identified site and pathogen as well as increased or decreased

efficacy when combined with other drug therapies among other factors. The cost component includes

the cost of the drug, including administration and monitoring, cost of potential side-effects, the cost

of resistance induction, and a penalty cost formed from a combination of local preferences and an

additional cost for being a drug of last resort - one that after which, there is no broader-spectrum

available. Before implementation in any site, TREAT is calibrated. This involves accounting for

local pathogen prevalences as well as tailoring towards local preferences in terms of antibiotic usage,

the latter of which is done by increasing the penalty cost on certain drugs.

TREAT has been studies in randomized comparative trials, described in greater detail in [23]. The

results of the trial were that TREAT improved appropriate empirical antibiotic usage over clinicians

(73% compared to 64%) when comparing wards where TREAT was used to control wards, with the

figure for TREAT improving to 85% in all cases where the clinician followed the advice given by

TREAT. In addition, the length of hospital stay, ecological costs due to the potential for developing

resistance as well as the total antibiotic costs were also reduced in intervention versus control wards.
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2.5 Previous Work

A previous semester project focused on identifying the pathophysiology of sepsis in greater detail.

With the availability of a more complete picture of the relations between physiological mediators

and sepsis symptoms, the causal network in TREAT could be examined for potential areas for

improvement. The development of this causal diagram consisted of finding the missing links between

the symptoms used in the current TREAT network, expanded to include a few common symptoms

known to be missing, and the root cause of the septic condition - the microbial infection.

More specifically, the identification of sepsis pathophysiology focused on the existing symptoms and

lab measurements qualified in the TREAT sepsis network; temperature, serum albumin, erythrocyte

sedimentation rate (ESR), C-reactive protein (CRP), leukocyte count, serum creatinine, blood pres-

sure, disseminated intravascular coagulation (DIC) and acute respiratory disease syndrome (ARDS).

Essentially, sepsis is caused by an imbalance between the inflammatory response to an infection and

the compensatory anti-inflammatory response. The extended network is shown in Figure 7.

The main inflammatory mediators are the interleukins, particularly IL-1 and IL-6, along with tumor

necrosis factor alpha (TNF-α). There are then several pathways that are activated in different

cases, involving different organ systems and other systemic markers. Temperature is affected by

the adjustment of the thermoregulatory setpoint by prostaglandin E2 (PGE2) in the hypothalamus.

The release of PGE2 is stimulated by TNFα and IL-1. Serum albumin can be modified through one

of two pathways; the production of albumin can be modified, or changes in vascular permeability

can lead to albumin leaking out into the interstitium. DIC and ESR are affected by the induction

of the coagulation cascade by the complement system as well as the release of acute phase proteins.

CRP is an acute phase protein, and thus is often combined/used interchangeably with ESR. Serum

creatinine is a common marker of kidney function, with increased creatinine a result of a reduction in

the glomerular filtration rate. Kidney damage in sepsis can be traced back to the release of vasoactive

substances triggered by IL-1 and the activation of the complement system. Blood pressure (and as

a direct consequence, heart rate) is modified on two main fronts, volemic issues are caused by

increased vascular permeability leading to capillary leakage, and pressure is also affected by the

release of vasoactive substances.Increased vascular permeability is the main cause of ARDS, with

the fluid leakage causing edema, which when in the lungs leads to impaired oxygen perfusion and
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respiratory issues.

Figure 6: Diagram of the fever induction pathway in an infection [25] alongside the causal pathway extracted
from Figure 7

One example of a pathway in the network is shown in Figure 6, which compares the pathophys-

iological process of fever induction as described in [25] to the causal pathway extracted from the

extended causal network shown in Figure 7. The causal diagram is obviously somewhat simplified,

and needs to be simplified further if it is to be used for diagnostic purposes. If a causal network is

too complex, with too many unobservable nodes, it will not be useful.

During this project, the idea of replacing discrete chance nodes with continuous chance nodes was also

addressed. Continuous chance nodes have potential to better reflect the changes between disease

states by allowing for more fluid transitions. A ’playground’ for development, consisting of just

the sepsis and pneumonia networks was also created, and is again used in the present project.

This playground allows a smaller subset of the network to come into focus, while also improving

compilation and propagation speeds - less computing power required for a smaller network.
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Figure 7: Causal diagram for sepsis, showing links between inflammatory mediators, physiological processes and observable symptoms and values
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3 Literature Search

In the current TREAT sepsis network, viral infections are treated almost identically to non-septic

patients, other than showing a mildly elevated temperature, see Figure 8. It is desirable to be able

to distinguish between patients with bacterial and viral infections as only bacterial infections should

be treated with antibiotics, however it is also important to be able to identify patients with a viral

infection, which it is very difficult to do with the current setup. One part of the literature search

focused on identifying ways in which viral and bacterial infections can be differentiated.

Figure 8: Characteristics of viral sepsis in the current TREAT network

Another issue identified where the literature would be helpful was the differentiation between the

states of sepsis. The current sepsis network makes only very slight differentiations (discussed further

in Section 4.2), and if this process can be improved, patients can be better stratified by risk, and

receive treatment and tests accordingly.

3.1 Differentiation between bacterial and viral infections

One desirable feature of TREAT is the ability to differentiate between bacterial and viral infec-

tions. The literature search carried out here identified several studies in which inflammatory medi-
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ators/common laboratory measurements were compared for patients with confirmed bacterial, viral

and/or mixed infections. The studies chosen focus specifically on LRT infections, which is reason-

able given that most LRT infections are viral [26]. The measurements compare leukocyte count

[27, 28, 29], procalcitonin (PCT) [26, 28], C-reactive protein (CRP) [28, 29] and creatinine [29].

Comparisons between pure viral, and pneumococcal infections are shown in Table 1. The results

of the studies listed suggest that there are differences in leukocyte count as well as CRP and PCT

levels in patients with viral and bacterial infections, although the differences in leukocyte count are

not statistically significant.

Table 1: Comparison of septic marker levels for patients with pure viral and pneumococcal infections

Variable Pure Viral Pneumococcal Reference

n Range n Range

Leukocyte count 26 13100±6600 cells/µL 44 16000±6600 cells/µL [29]

34 14100 [4350-36500] 31 19700 [8420-44380] [28]

CRP 26 16±12 mg/dL 44 20±16 mg/dL [29]

34 37.35 [10.03-229.74] 31 268 [9.62-575.8] [28]

Creatinine 26 1.1±0.6 mg/dL 44 1.1±0.5 [29]

PCT 34 0.854 [0.128-6.08] 31 9.42 [0.078-63.32] [28]

Wright [27] also states that although at one point in time viral infections were associated with relative

leukopenia, several studies contradict this idea, indicating that both etiologies result in leukocytosis

and leukocyte count can not be used to differentiate them. At the very least, leukocyte count can

be used to confirm some kind of infection, which it does not do in the current sepsis network, where

for all factors other than temperature, viral sepsis and no sepsis are identical.

CRP and PCT appear to be much more useful in differentiating between viral and bacterial infec-

tions, with marked differences between the two. Although there is some overlap on the lower end,

higher values of both are very strongly suggestive of a bacterial infection. PCT and CRP have also

been evaluated as markers for differentiating between infectious and non-infectious SIRS, and the

stages thereof, which is discussed further in Section 3.2.
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3.2 Differentiation between sepsis and non-infectious SIRS, and the states of

each

A problem often noted on the subject of sepsis diagnosis is being unable to distinguish between

sepsis and non-infectious SIRS. As mentioned in Section 2.1, many of the markers used for sepsis

are not specific to infectious diseases and are commonly markers of inflammation. However, several

markers do show some differences between sepsis and non-infectious SIRS, and importantly, between

the different stages of sepsis. Selected studies compare PCT, interleukin-6 (IL-6), CRP, leukocyte

count, lactate, blood pressure, pulse rate, respiratory rate, oxygen saturation, body temperature

and erythrocyte sedimentation rate (ESR) for non-infected and infected patients, with the further

differentiation made between sepsis stages for PCT, CRP and lactate.

IL-6 is not measured commonly, nor is it included in the TREAT network, so it is excluded from this

analysis. It should be noted, however, that IL-6 levels were significantly different between infected

and non-infected patients as well as between non-infectious SIRS, sepsis, severe sepsis and septic

shock (with the latter two compared to sepsis) [30].

Tables 2 and 3 show a collection of results from studies measuring lactate, CRP and PCT for patients

diagnosed with different stages of sepsis, as well as non-infectious SIRS. Although lactate and PCT

are not currently included in the sepsis network, nor have they been added during the course of this

project, they are expected to be added in the near future. Lactate is routinely measured and PCT

is becoming more common, although it is still a comparatively expensive test.

Table 2: Lactate concentrations for non-infectious SIRS and sepsis. All values are median (IQR)

Diagnosis n Lactate (mmol/L) Reference

Non-infectious SIRS 15 2.13 (1.14-2.93) [31]
Sepsis 34 1.37 (1-2.61) [31]
Severe sepsis 22 2.19 (1.73-2.93) [31]
Septic shock 15 3.7 (2.6-6.4) [31]

Lactate levels appear to correlate well with disease state, with increases seen from sepsis to severe

sepsis, and a further increase seen in septic shock patients. However, non-infectious SIRS patients

appear to present with similar lactate levels to severe sepsis patients. This suggests that lactate is

a useful marker of severity, but is not useful for distinguishing between infected and non-infected

patients.
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The PCT and CRP values in Table 3 show broad differences within each categorization, that is, SIRS,

sepsis etc, however, within each study there is a clear trend of increased values for both markers

from non-infectious SIRS to sepsis, and then on with the severity of illness. This is discussed further

in Section 4.3, where the distributions are designed to be implemented in continuous nodes in the

new sepsis network.

Table 3: Plasma CRP and PCT levels in non-infectious and infectious SIRS. Values given as mean±SD or
median (IQR)

Diagnosis n CRP (mg/L) PCT (ng/mL) Reference

Non-infectious 17 113.4±23.9 0.41±3.04 a

SIRS 20 70±48 3.8±6.9 b

18 119±89 0.6 (0-5.3) c

211 79.9 (52.9-103.4) 0.4 (0.2-0.7) d

11 N/A 3.0 (0.7-29.5) f

29 N/A 5.45±1.45 g

89 15 (3.3-54) 0.07 (0.03-0.17) [30]
15 51 (19.5-80.5) 0.38 (0.16-0.93) [31]

Sepsis 61 104.8±30.5 0.53±2.89 a

24 98±76 1.3±2.7 b

14 159±51 3.5 (0.4-6.7) c

132 125.6 (79.4-174.6) 3.1 (1.4-5.2) d

11 N/A 7.29±3.16 g

202 82 (24-150) 0.19 (0.06-0.95) [30]
34 150 (71-209) 1.58 (0.41-3) [31]

Severe sepsis 68 138.1±25.5 6.91±3.87 a

27 145±70 9.1±18.2 b

21 254±181 6.2 (2.2-85) c

25 73.6 (60.9-148.9) 3.2 (1.7-7.4) d

14 N/A 19.1 (2.8-351.2) f

17 N/A 6.26±3.29 g

28 100 ( 67-152) 1.3 ( 0.43-6.3) [30]
22 159 (75-209) 5.58 (1.84-32.93) [31]

Septic Shock 39 177.9±35.5 12.89±4.39 a

24 173±98 38.5±59.1 b

16 264±170 89±154 c

25 228±119 21.3 (1.2-654) d

43 108.0 (62.9-167.5) 10.7 (2.9-33.2) e

10 N/A 38.76±14.75 g

17 94 (45-188) 1.3 (0.27-14.4) [30]
15 195 (75-272) 13.1 (6.1-42.2) [31]

a,b,c,d,e,f,g - different studies collected in review [32]
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4 Sepsis Network Modifications

4.1 Strategy

In a previous semester project (described in Section 2.5), tasks were undertaken to convert some of

the nodes in the existing TREAT sepsis network to continuous chance nodes to better represent the

clinical variables they described and to provide smoother transitions between diagnoses. Suggestions

were also made on the structure of the sepsis network, if it were to be redesigned based on sepsis

pathophysiology. In this project, a hybrid approach is taken, where the initial approach is to replace

discrete chance nodes with continuous chance nodes, then subsequently alter the states of the given

nodes and make minor structural changes to create a more physically relevant picture. The current

sepsis network is shown in Figure 9.

Figure 9: Former sepsis network in Hugin

Early in the project, it was decided that the links between the states of the leaf nodes and those

of the sepsis node needed to be stronger. However, the problem exists that most of the clinical

variables measured are not specific to sepsis; some are characteristic of SIRS, whether infection is

involved or not, and some are purely indicative of organ failure. The fact that there is no specific

marker of sepsis is why it is such a difficult condition to diagnose, and why decision support systems

such as TREAT are so useful. A work-around for this problem, was to create a leak node to explain

away some of the symptoms as being caused by non-infectious SIRS, or by other causes. A relative

prevalence is set for this.
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4.2 Modifications Made - Structural Changes

The modifications made to the network include additions of nodes, redesigns of parts of the structure

and changes within the nodes themselves. In particular, the way in which the states in the factor

nodes behave was completely redesigned, leak nodes were added to account for non-septic causes of

variations in the sepsis network variables, and the ARDS network was redesigned. Nodes were also

added for heart rate and age-dependence of blood pressure.

Addition of New States in Factor Nodes

The structure, in terms of the symptoms grouped beneath factor nodes, was retained, however, the

states present in each factor were modified. Previously, each of the factors ’Fact fever’, ’Fact albESR’,

’Fact leukocreat’ consisted of three states: ’no’, ’good’, and ’bad’, and the shock factor had the states

’yes’ and ’no’, as shown in Figure 10. In most cases, good and bad were almost identical, and de-

grees of sepsis were influenced by small shifts between their relative distributions. To allow for a

more intuitive development of the sepsis network, these ’no’, ’good’ and ’bad’ states were replaced

with states that are more directly related to the physical situation to which the factor pertains.

’Fact fever’, for example, was given the states: ’no’, ’mild’, ’mod-sev’ and ’hypothermia’. These

states of fever are then related to the sepsis node.

Figure 10: States in the factor nodes and sepsis node in the current network

A similar practice is adopted for the other three factor nodes, with each node given a relevant set

of state names. For example, the children of the shock factor are not involved in mild infections, so

no mild state is included. The states of the factors are shown in Figure 11.

This introduction of extra states allows a more direct mapping from the states in the factor nodes

to the sepsis diagnosis node. This is an ideal scenario, because not only does it simplify the con-

ditional probability table, but it also gives the opportunity to give physically relevant distributions
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Figure 11: States in the factor nodes and sepsis diagnosis node in the redesigned sepsis network

to the measurements. Figures 12 and 13 show the probability distributions for the fever factor and

temperature nodes for given states of sepsis. The state names in the sepsis node have also been

adjusted to match the common nomenclature of the literature, and map directly to the states of the

previous sepsis node as shown in Table 4.

Table 4: Changes in state names in the sepsis diagnosis node

Old name New name

no no
moderate sepsis
severe severe sepsis
critical septic shock
viral mild*

*includes cystitis

Expanding the number of states in the factor nodes also means making modifications to each of

their respective child nodes. In several cases, this made it easier to set up continuous distributions,

as distributions could be made to match a disease state as described in literature or the physical

description now given in the factor node. In other cases where nodes were retained from the original

sepsis network, distributions were adjusted to roughly match those given by instantiating the sepsis

node in the old network. New nodes were introduced to perform a mapping task for leukocytes and

ESR, as both require a very low count and a very high count to register as septic shock/critical

sepsis evidence.

Figure 12 shows the lack of distinction between temperature distributions for the given states of

sepsis. The only difference in distribution in seen for the ’no sepsis’ case. One explanation for this

is that disease state does not correlate well with the degree of fever. However, it is much more

likely that a patient with a fever above 40 degrees is seriously ill when compared to a patient with

a normal temperature. Currently every patient in the clinically defined fever range - temperature

above 38.5 degrees celsius - is lumped together in one bin. It is also apparent that this version of
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the temperature node does not take hypothermia into account. Septic patients can be considered

to be at the severe end of the spectrum when they have both abnormally high and abnormally low

temperatures. The new states created within the fever factor allow for these distributions.

Figure 12: Mapping of sepsis states to factor nodes and through to the leaf nodes in the current network

Figure 13: Mapping of sepsis states to factor nodes and through to the leaf nodes in the redesigned network

Other structural modifications include the split of ESR and CRP (Figure 14) so that they are not

treated identically (Figure 15), addition of a heart rate node, and redesign of the ARDS network.

Figure 14: Previous structure of the nodes beneath the albumin-ESR factor. The node labeled ESR is an
OR node that maps the three states in the crp node to those in the esr node.
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Figure 15: New structure of the nodes beneath the albumin-ESR factor.

Leak Nodes

The initial strategy for implementing leak nodes was to have what was essentially a second factor

node, linking one-to-one with the factor, and then to have a prevalence node as a parent of the second

factor node. This allowed a relative prevalence to be set between non-infectious and infectious SIRS,

while setting a distribution for the factor node states for infectious SIRS. In this case, the leak from

each factor node could be adjusted independently. This first strategy is shown as a cut-out from the

CPN in Figure 16.

Figure 16: Leak nodes with independent adjustment for each factor

Two further approaches, shown in Figure 17 and Figure 18 respectively, are combining the prevalence

nodes into a shared ’other-SIRS’ node, or removing the prevalence node entirely and integrating its

effect into the secondary factor nodes in the a priori probabilities.

The chosen solution is the second method where there is a single leak node. This combines the

reasoning from each factor and allows the node to act as an alternative diagnosis, with reasoning

from the factors collected in much the same way as it is for the sepsis node.
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Figure 17: Leak nodes with common ’other SIRS’ node

Figure 18: Leak nodes with integrated prevalences for non-infectious SIRS

ARDS Network Redesign

The ARDS network was also identified as an area in which improvements could be made. The

effect of oxygen supplementation on the fraction of inspired oxygen was included, along with the

introduction of continuous nodes for the respiratory rate, RR (previously ’tachypnea’), as well as

oxygen saturation, SaO2 (previously included in ’hypoxia’). A gradation is also introduced within

the ARDS node to allow for the indentification of ALI. ARDS and ALI are defined by the following:

The previous ARDS network, shown in Figure 19 was also characterized by a small number of states.

Tachypnea and hypoxia were effectively boolean nodes, with the split made 20 breaths per minute

for the respiratory rate (≥20 is tachypnea), and at 60 mmHg for the partial pressure of oxygen

(PaO2 ≤ 60 mmHg gives hypoxia).
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Table 5: Recommended criteria for ALI and ARDS [33]

Timing Oxygenation Chest Radio-
graph

Pulmonary Artery
Wedge Pressure

ALI cri-
teria

acute onset PaO2/F iO2 ≤ 300mmHg
(regardless of PEEP∗ level)

Bilateral infil-
trates seen on
frontal chest
radiograph

≤ 18mmHg when mea-
sured or no clinical evi-
dence of lef arterial hy-
pertension

ARDS
criteria

acute onset PaO2/F iO2 ≤ 200mmHg
(regardless of PEEP∗ level)

Bilateral infil-
trates seen on
frontal chest
radiograph

≤ 18mmHg when mea-
sured or no clinical evi-
dence of lef arterial hy-
pertension

* PEEP: Positive End Expiratory Pressure

In the redesigned network, Figure 20, the P/F ratio and FiO2 nodes are both split into eight states,

and the PaO2 node contains fifteen states to cover the combinations of its parents. Consequently,

the oxygen saturation node, SaO2 contains fifteen continuous distributions corresponding to the

oxygen saturation states. Hypoxia is still essentially defined as an OR node, split at 60 mmHg. The

supplementary oxygen contains states for flow rates of 0-10 L/min, in steps of 1 L/min.

Figure 19: ARDS network from the original sepsis network

Figure 20: New design for the ARDS section of the sepsis network
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Addition of HR node and age-dependent BP

Other changes beneath the shock factor include the introduction of a node representing heart rate

(HR). HR was a notable omission in the current network, with tachycardia (elevated HR) being one

of the symptoms of SIRS. The age-dependence of blood pressure is also an important consideration;

the general trend of blood pressure increasing with age means that a hard limit for shock is not likely

to be appropriate for all patients. Previously set at 90 mmHg, the threshold for the blood pressure

node may not have been reached by those patients with a normal blood pressure substantially above

120 mmHg, something that is common among older patients.

Figure 21 (from [34]) shows the relationship between age and blood pressure. In the sepsis network,

three age ranges will be used; less than 40 years, 40-60 years and over 60 years. This will enable the

capture of age-related blood pressure changes without excessive discretization. Distributions to be

used in the network are described in Section 4.3

Figure 21: Variation in blood pressure with age

New Structure - Complete Sepsis Network

The complete structure of the modified sepsis network is shown in Figure 22. The nodes are coloured

according to the kind of that variable they represent. The green node is the diagnosis. The ob-

servations are yellow and orange; orange if they are measured, yellow if they represent a clinical

observation/opinion. The dark blue nodes are the factors, and light blue are nodes used to perform

mapping. The red node is the leak node, effectively an alternative diagnosis, that is, a non-septic

cause of the observed variables.
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Figure 22: Redesigned sepsis network

4.3 Modifications Made - Continuous Distributions

The following nodes have been designed with continuous distributions:

• Temperature

• Serum Albumin

• Erythrocyte Sedimentation Rate (ESR)

• C-Reactive Protein (CRP)

• Leukocyte count

• Creatinine

• Systolic Blood Pressure

• Heart Rate

• Respiratory Rate

• Oxygen Saturation (SaO2)

This section presents the distributions implemented (or set for future implementation) in the re-

designed sepsis network, along with the rationale used in designing the distributions. Values were

taken from literature where possible (referenced where applicable), otherwise distributions where

designed to reflect physiological ranges and trends observed or noted in the literature.
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Temperature

For each of the four states of the fever factor, the temperature node requires a continuous distribution.

By defining the factor states with physically relevant terms, this process is easier. Distributions can

then be designed after which they can be mapped to the appropriate states of sepsis. The ’The

high and low temperatures are taken care of by the ’severe’ and ’hypothermia’ states, and normal

(healthy) and mildly elevated temperatures are covered by ’no’ and ’mild’ respectively. The chosen

distributions are shown graphically in Figure 23.

Figure 23: Continuous distributions within the temperature node in the new sepsis network

The normal values are taken from a large population study on normal body temperature [35], widened

slightly to allow for variations in the measurement procedure. The mild distribution covers the mild

viral infections which do not cause large temperature increases, while the severe and hypothermia

distributions both map across the sepsis states. Disease severity is not correlated well with degree

of fever, hence the single distribution to cover each of the high and low temperature regions.

Albumin

Little information was available in the literature regarding albumin level with respect to the various

stages of sepsis, however information was available on the normal serum levels of albumin. It has also

been reported in the literature that serum albumin level decreases as the severity of sepsis increases
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[refs]. Normal serum albumin is 41±3 g/L [36], with hypoalbuminemia defined as levels less than 34

g/L, with severe cases falling below 30 g/L [37]. Distributions, as shown in Figure 24, were created

to cover this range of serum albumin concentrations while ensuring that the distributions do not

overlap excessively to a point where little distinction is made.

Figure 24: Continuous distributions within the albumin node in the new sepsis network

Erythrocyte Sedimentation Rate (ESR)

ESR in septic patients rises rapidly above normal levels, however in critically ill septic patients

with DIC, it is possible to have an abnormally low ESR (¡1mm/hr). There are also other causes

of abnormally low ESR. ESR is dependent on gender and there are several factors that can cause

artificially high ESR. Normal ESR is somewhere in the region 2-25 mm/hr [38, 39], with ranges for

for sepsis and severe sepsis above this. The chosen distributions are shown in Figure 25.

C-Reactive Protein

CRP levels respond rapidly to infection [40] and have been studied extensively as a marker of

disease state in sepsis. CRP correlates well with disease severity [30, 31, 32] and has often been used

interchangeably with ESR [40]. CRP is also generally an indicator of bacterial infections, although

there are some viruses that will cause elevated CRP levels [41].

Due to the skew noted in the distributions listed in Section 3.2, a log scale was chosen for the CRP

distributions. The top panel of Figure 26 shows the literature values (on a linear scale) with the
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Figure 25: Continuous distributions within the ESR node in the new sepsis network

horizontal lines showing those studies that gave a median and range, and normal distribution curves

showing those that listed a mean and standard deviation. Curves are grouped into respective studies

by line-style and into sepsis stages by colour. The bottom panel shows the log distributions chosen,

with more weight given to the larger studies.

Figure 26: Continuous distributions within the CRP node in the new sepsis network
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Leukocytes

The normal range for leukocytes is between 4000 and 10000 cells/mm3 with these limits also com-

monly used as cut-off values for leukocytosis and leukopenia in the SIRS criteria [42, 43]. In the

literature, raised leukocyte levels are reported as high as ¿40000 cells/mm3. The degree of leuko-

cytosis is correlated with the degree of the inflammatory response, which is usually proportional

to the severity of the illness. Generally, leukopenia is associated with worse outcomes [43], as the

compensatory anti-inflammatory response is stronger than the inflammatory response, weakening

the hosts defenses against threats. Distributions for the leukocyte count are shown in Figure 27.

The mild distribution covers viral infections as well as some bacterial infections, although most will

fall into the mod-sev range. Septic shock is covered by both very high and very low leukocyte counts,

which are mapped together onto the septic shock state.

Figure 27: Continuous distributions within the leukocyte node in the new sepsis network

Creatinine

Creatinine is produced at a fairly constant rate in muscle tissue and is cleared through the kidneys.

Usually raised creatinine levels are a sign of kidney injury as they correlate with a reduction in the

glomerular filtration rate (GFR) which shows kidney function or lack thereof. However, in sepsis,

the production of creatinine is reduced and so septic patients may appear with mildly elevated or

even normal creatinine levels [44]. Although levels may be normal, raised serum creatinine is a
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strong indicator of renal failure, and in this case will be related more to the critical stage of sepsis

[45]. The normal levels in this case are derived from a combination of literature values [46], with

mild levels taken as a slight right-shift from this, and mod-sev and septic shock levels taken from

thresholds given in the current version of the TREAT sepsis network. The distributions used for the

serum creatinine levels are shown in Figure 28.

Figure 28: Continuous distributions within the creatinine node in the new sepsis network

Systolic Blood Pressure

Blood pressure is dependent on age, as discussed in Section 4.2, and also on disease state. Blood

pressure is reduced in septic patients by fluid loss due to increased vascular permeability, as well

as the vasodilatory action of many inflammatory mediators. Shock is commonly defined as systolic

blood pressure less than 90 mmHg, however, for patients who have a higher normal blood pressure,

they may be in shock at levels above this. The distributions shown in Figure 29 contain the normal

range, roughly corresponding to the values given in the literature [34], with septic levels staggered

below this. Note the increase across the age ranges.

Heart Rate

The distributions for heart rate, shown in Figure 30, are based on opinion about heart rate elevation

with sepsis severity. Normal heart rate in adults ranges between 60 and 100 beats per minute, with

elite athletes slightly lower at 40-60 beats per minute [47]. The SIRS criteria define tachycardia
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Figure 29: Continuous distributions within the blood pressure node in the new sepsis network

as heart rate greater than 90 beats per minute [9]. Distributions for severe sepsis and septic shock

patients are included above this range.

Figure 30: Continuous distributions within the heart rate node in the new sepsis network

Respiratory Rate

In the current sepsis network, respiratory rate is addressed by a tachypnea node that has the option

of either being greater than or less than 20 breaths/min. In the redesigned network, the parent of

the respiratory rate node is the P/F ratio, which is used in determining the degree of lung injury in

the patient, that is, P/F less than 300 is associated with ALI and P/F less than 200 is associated
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with ARDS. As the P/F ratio decreases, the patient’s use of oxygen is further limited, and so the

respiratory rate will increase in an attempt to deliver sufficient oxygen. The distributions shown in

Figure 31 have been designed to steadily increase with reducing P/F ratio, with the distribution for

the normal respiratory rate not exceeding 20 breaths/min.

Figure 31: Continuous distributions within the respiratory rate node in the new sepsis network

Oxygen Saturation (SaO2)

The oxygen saturation distributions are based on the oxygen saturation curve, where a particular

partial pressure of oxygen (parent node) has a corresponding SaO2. The width of the distributions

are adjusted to account for the relative slope of the curve. The curve is shown in Figure 32 (taken

from [48]) and the distributions in Figure 33.

Figure 32: Oxygen saturation curve
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Figure 33: Continuous distributions within the oxygen saturation node in the new sepsis network

Procalcitonin (PCT)

The PCT distributions shown in the lower panel of Figure 34 have been developed in a similar

manner to the CRP distributions in Figure 26. Again, a log-normal distribution has been chosen

to account for the skew shown by the data. The top panel shows the distributions reported in the

literature, as listed in Table 3. Distributions shown as lines were those reported as median and

range, and the curves show those reported as a mean and standard deviation. Line-style groups

together individual studies, and the colors represent the sepsis stages.

Figure 34: Continuous distributions within the PCT node in the new sepsis network
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Lactate

The distributions for the lactate levels are based off the literature values reported in Section 3.2 and

are shown in Figure 35. Sepsis and severe sepsis produce only mildly elevated lactate levels, while

septic shock is associated with greater increases.

Figure 35: Continuous distributions within the lactate node in the new sepsis network
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5 EM Learning for Optimisation

The Hugin Researcher software package provides a useful tool for learning in causal probabilistic

networks. Given a database containing a set of cases, the probability tables/continuous distributions

of nodes within a CPN can be learned. This type of learning is known as batch-learning, and requires

that all the data be available at the time of learning.

A case is defined as a set of values corresponding to some or all of the nodes in a given CPN, that is,

the case can be complete or incomplete. Before learning can take place, experience tables are added

to nodes for which learning is desired, and the database containing the set of cases is specified. If

experience tables are left empty (containing all zeros), no restriction is based on the the form of the

resulting tables, whereas if experience tables are modified, these values are used as ’prior counts’

which are used to augment those found from the data set.

Hugin then uses the estimation-maximisation algorithm developed by Lauritzen in 1995 [49] to

determine the optimal tables for each of the specified nodes. The process is iterative, with the log-

likelihood computed after each iteration. Hugin attempts to maximize this value, that it, minimize

the error, and will stop iterating either when the maximum number of iterations has been reached,

or when the specified tolerance has been achieved. The tolerance is reached when the relative

difference between the log-likelihood values falls below that specified. Providing the database is a

representative sample of the population for which the CPN will be used, the new, learned values

should give much greater accuracy when diagnosing patients.

5.1 Hugin EM Learning Tutorial

The use of and robustness of the EM learning process used in Hugin is demonstrated well by their

EM learning tutorial. The situation involves a simple CPN with nine nodes, and a database of

10,000 cases. Hugin also includes a case generator which can be used to generate such a database

which will contain a specified percentage of missing values. Conditional probability tables may be

randomized and then learning performed with a given database.

The CPN used for this tutorial is the Chest Clinic CPN, pictured in Figure 36. This basic network

contains three diseases; tuberculosis, lung cancer and bronchitis, two risk factors; visit to Asia and

37



whether the patient is a smoker, and two observations; positive x-ray and dyspnea.

Figure 36: Chest Clinic CPN, used for the EM learning tutorial in Hugin

The original probability distributions for the Chest Clinic example are shown in Figure 37.

Figure 37: Chest Clinic CPN, showing original probability distributions

Following a complete randomization of the probability tables, the EM learning process was run using

a database of 10,000 cases, with 5% missing values, that had been generated from the original system

using the built-in case generator function. Figure 38 shows the results of the learning process, the

resulting probability distributions agree to within approximately 2% with the original.

This example gives an introduction to the concept of EM learning in the Hugin environment and
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Figure 38: Chest Clinic CPN, showing learned probability distributions

allows the user to get a feel for how well the learning process works. Obviously, the process works

very well for a large database defined across a small network with relatively few missing values.

However, this is not likely to be the case when learning is attempted on the sepsis network. Medical

databases are typically smaller, and are likely to have a greater number of missing values. Although

the size of the database and the number of missing values detract, there are less nodes that need

to be learned in the sepsis network, and it is expected that the initial guesses are much better than

starting with random tables.
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5.2 Patient Database used for Learning

The database supplied for an initial learning attempt was one from Hvidovre Hospital in Copenhagen.

Data was collected while TREAT was in use at the location.

Data is recorded anonymously and grouped by patient. Patient data can then be split into episodes,

each of which covers a hospital admission. Each episode consists of a set of encounters, which

account for each time something new is entered into TREAT, for example, blood culture results.

When analyzing the performance of TREAT, we are interested more in the first encounter when the

patient is admitted to the hospital. However, for the purpose of building and optimizing TREAT, in

this case the sepsis network within TREAT, it is desirable to have as much information at hand as

possible. The problem lies in the fact that by the time some of the information is available, such as

laboratory tests and blood cultures, the patient will have received preliminary treatment, and thus

will not be the same as the patient who presented at the hospital.

Figure 39 shows the structure of the TREAT database, while Figure 40 shows the same diagram

with important tables highlighted. These tables are the ones important for learning in the sepsis

and pneumonia networks. The remaining tables can be removed as they contain information on

other infection sites and decision related information, both sets of which are unnecessary in this

case. Figure 41 shows the view created in SQL Server Manager for easy access to the relevant data.

5.3 Data Preparation and Mapping

In order to utilize the data available in the database, it first needs to be extracted and converted into

an appropriate form for use with Hugin. When TREAT is in use, data exists in three different forms,

one for the database, one for use in the CPN, and one for the user interface. Hugin expects the data

in a specific format for use with the EM learning process, so the data must first be extracted from the

database, irrelevant columns removed, and database entries mapped to the correct nodes and states

of nodes in the network. Most of the cases do not map 1-1 and in certain places, information from

several database columns is required to find the appropriate state for a node. A console application

was written in C# to perform the mapping required, extracting only data to be used in the sepsis

and pneumonia networks present in the ’playground’ to be used for the learning process.
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Figure 41: View created in SQL server manager so that unnecessary data is stripped away

6 Discussion

Although the changes made are thought to improve the performance of the sepsis network, the cases

given are only examples and are not real patients. In order to give a more concrete statement on

the effectiveness of the sepsis network redesign, a benchmark comparison between the two versions

would need to be completed on a representative patient cohort. However, before this happens, further

tailoring needs to be completed in terms of carrying out the learning process within the network,

and making improvements to the pneumonia network. It is believed that the network is, at least,

more physiologically relevant, with the new states added to nodes allow for increased transparency

within the system. This transparency is particularly important for the developer, as it increases the

understanding gained from the system, and makes further changes much easier.

The additional markers, PCT and lactate, discussed in this report have not been included, but

should be in future versions of the sepsis network. The first step towards making this possible is

to find out where they fit within the current structure, that is, which factor they should be added

to, or whether they should be separated from the current factors. PCT in particular, although a

less common measurement, has been shown to be particularly useful in sepsis diagnosis as well as

differentiating between the states of the disease. Although lactate is less effective, it is a commonly

measured marker, and should be included as long as it has some clinical utility.
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The learning process requires a much larger database than the Hvidovre database described in this

report. A larger, more complete database will give much better results when learning is attempted.

The data extraction methods also need to be improved, with recognition of certain features, such

as encounters which are purely confirmations of information previously entered. It is important to

avoid doubling-up on information as this has the potential to skew the learning. Actual learning

from the database has not been attempted successfully in this case, however it is a necessary next

step in the development of the sepsis network.

Only following the completion of learning will a reliable benchmark comparison be able to be made.

Before this time, any comparisons between the current and redesigned sepsis networks must be made

with caution. Although it may be sensible to compare some relative functions of the networks, for

example, their behaviors in certain scenarios, it is unreasonable to make any quantitative comparisons

as the tables in the network are still subject to change.

The pneumonia network, which has had minimal discussion in this report, is another area identified

for improvement. Currently each pathogen is treated identically in terms of the severity of illness it

causes, whereas this is not accurate. If pathogens can be at the very least grouped by the severity

of the infection they cause, TREAT’s ability to infer the causative bacteria and identify appropriate

antibiotic treatment will be improved for patients with respiratory infections.

7 Conclusion

The TREAT sepsis network has been modified to give a more physiologically accurate representation

of sepsis. Altering the representation of states within nodes has given increased transparency which

allows for better understanding of the model and makes future improvements easier. Continuous

nodes have also been implemented, using values from the literature where possible. Additionally,

new nodes have been added to recognize septic characteristics not previously accounted for.

The EM learning process within Hugin was investigated, and seems to be a potentially powerful tool

for refining existing CPNs. It is, however, necessary that the database to be used for learning is

both sufficiently large and complete, as the success of the EM learning its very dependent on these

factors.
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