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Abstract:

A Brain-Computer Interface (BCI) is a communica-
tion system that does not depend on the brain’s nor-
mal output pathways of peripheral nerves and mus-
cles. Thus, it constitutes a new output channel for
the brain. In completely disabled patients, it may
be used to recognize the patients’ "will" directly from
the brain in order to command a device, e.g., pros-
thesis. The purpose of this project is to develop a
decoder for a BCI system capable of providing a con-
trol output based on decoding of different direction of
movement execution, which in turn will enhance the
quality of the command to external systems to propi-
tiate the restoration of more complex motor functions
than the two-choice commands commonly available
in literature. The system will be based on classifica-
tion of invasive and non-invasive brain signal record-
ings. The project will be divided into sub-tasks: 1)
experimental recording of a data bank of electroen-
cephalographic (EEG) signals for testing the BCI; 2)
development of a multi-class, multi-channel transla-
tion algorithm that decodes different movement di-
rections based on EEG and intracranial recordings.
The late step is subdivided in two main parts: 1)
time analysis for movement intention detection based
on MRCPs; b) time frequency analysis for movement
direction classification. Results of movement inten-
tion detection and classification of the direction have
shown to be significantly above the level of chance
for both iEEG and scalp EEG data. The present
study also enabled us to set a comparison of different
methods used for spatial filtering, normalization and
classification. The method seems promising for the
development of asynchronous brain–computer inter-
faces (BCIs) systems, merging detection and direc-
tion classification analyses.
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Chapter 1

Introduction

1.1 BCI systems
A brain-computer interface (BCI), also referred as brain-machine interface (BMI), is a
device that translates neuronal signals reflecting a persons’ intention into commands
driving a machine (e.g. prosthesis, cursor, computer, robot, etc.) [Waldert et al., 2008;
Birbaumer, 2006]. Typically, BCI control is achieved via classification of mental states or
motor intentions using brain signals (such as EEG, iEEG, etc.). It is usually a closed-loop
system, which acquires the signals, treats the data (preprocessing, feature extraction and
classification are used to make a decision) and provides a feedback to the user through
the device (e.g. movement of the prosthesis, etc.) [Pfurtscheller et al., 2008].

Figure 1.1: Elements of a BCI system. With the user’s EEG recording as input, the system digitizes
the brain signals, extracts and classifies signal features, and feeds the results to the application interface.
The user controls the application and receives visual, auditory, or haptic feedback on the accuracy of
the focused thought. In this way, the system becomes a closed-loop [Pfurtscheller et al., 2008].

1



2 Chapter 1. Introduction

1.1.1 BCI for communication

The key part of a BCI system is to make brain and computer communicate with each
other. To achieve this goal, several physiological phenomena and technical approaches
are used. To date the brain signals employed for invasive BCIs include: (1) action po-
tentials from nerve cells or nerve fibers, (2) synaptic and extracellular field potentials
and (3) electrocorticograms. The non invasive BCIs used, include instead: (1) the slow
cortical potentials (SCP) component of the EEG, (2) other EEG and MEG oscillations,
mainly sensorimotor rhythm (SMR), also called µ-rhythm, (3) P300 and other event-
related brain potentials, (4) blood-oxygen-level-dependent (BOLD) response in func-
tional magnetic resonance imaging (fMRI) and (5) near-infrared spectroscopy (NIRS),
which measures cortical blood flow [Birbaumer, 2006].
A blind approach might also provide interesting results. Instead of using precise and
well-known phenomena in given brain areas, classifiers can be trained on several ’random’
features. Although this approach may be less efficient at first sight, it might provide
new inputs about brain functional areas and brain physiology.

BCI systems are used for many different fields and applications. The principal ones are
rehabilitation and multi-media (e.g gaming, etc.).

1.1.2 BCI for rehabilitation

BCI systems have different medical applications. For instance, restorative BCI systems
aim at normalization of neurophysiologic activity that might facilitate motor recovery.
Rehabilitation methods based on neuroscience seek to stimulate spontaneous functional
motor recovery by exploiting the brain potential for plastic reorganization. The example
of stroke rehabilitation is meaningful. Motor impairment after stroke is the leading cause
of permanent physical disability. A patient who has important difficulty to move his
limbs, or can not even move them at all, can use a BCI system with visual feedback
in order to improve his condition of disability. By triggering limb movements, even if
the movement is not real (e.g. motor imagery), and adapting his will to the feedback,
the patient activates sensorimotor networks that the lesions affected [Pfurtscheller et al.,
2008; Soekadar et al., 2011].

Figure 1.2: Feedback training using virtual hands. The participant’s task is to imagine left- and
right-hand opening and closing tasks. The BCI generates movement of the right or left (virtual) hand
according to classified brain patterns [Pfurtscheller et al., 2008].
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On the contrary, the assistive technology (AT), using a BCI system, aims to provide
assistance to disabled people in a daily environment (e.g. web browsing, prosthesis con-
trol, etc...). Because a BCI device alone is not able to provide 100 % reliable decoding
of the real intention of the subject, BCI in AT is mainly used as an additional channel
in a so-called hybrid BCI (hBCI) system [Millan et al., 2010].
However, examples of BCI-only AT systems are present in the literature. For in-
stance, Leeb et al. succeeded to make a reliable brain-controlled wheelchair. When
the tetraplegic user imagine movements of his paralysed feet, beta oscillations appear
in the EEG recordings and are used to control the wheelchair in a virtual environment.
The patient is then able to drive himself in a virtual street and go from avatar to avatar.
The navigation in a virtual environment may also have applications in the multi-media/gaming
field.

1.1.3 BCI for gaming

Although BCI research will likely continue to focus on medical applications, BCIs may
also be used by healthy users for different purposes [Allison et al., 2007].
For instance, the Berlin Brain Computer Interface (BBCI) provides intuitive control
strategies in plausible gaming applications through the use bio-feedbacks. In addition,
the BBCI paradigm shows encouraging result for patients without previous experiences
with BCI systems. Indeed, even an untrained subject can navigate through the Pacman
labyrinth (see figure 1.3) in about 40 seconds [Krepki et al., 2003].

Figure 1.3: Feedback "Brain Pacman" and the head filling strategy for indication of user’s upcoming
intentions. The Pacman moves every 2 seconds [Krepki et al., 2007].

On top of this, many other applications can be imagined: Middendorf et al. presented
a BCI that allowed people to bank a full motion aircraft simulator; some other games
or virtual environment allow users to turn or lean left or right. However, this particular
kind of BCI usually only allows one degree of freedom with a binary choice [Allison et al.,
2007].
A few companies have sold BCIs intended to enable healthy subjects to play simple
games (e.g. ibva.com, cyberlink.com and smartbraingames.com). Although the state
of art of BCI gaming usually allows only one degree of freedom with a binary choice,
further developments are expected in this field [Allison et al., 2007].
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1.1.4 Types of BCI systems

BCIs can be categorized according to two main characteristics: synchronization and
invasiveness [Besserve, 2007].

1.1.4.1 Synchronous - asynchronous BCIs

The main difference between synchronous and asynchronous BCIs is that synchronous
BCI uses the response from the brain to a given stimulus, while asynchronous BCI
analyses the signal in continue. The synchronous paradigm is usually used more often
[Besserve, 2007]. For example, Leeb et al. uses an asynchronous paradigm, which screens
the brain in continue, in order to control a wheelchair in real-time by imagination of feet
movements.
On the other hand, in this report we will analyse the brain response to a given signal off-
line: the preparation of the movement is triggered by a visual cue, then actual movement
initiated by a "Go signal". It involves, therefore, a synchronous BCI.

1.1.4.2 Invasive - non invasive BCIs

Invasive BCI uses intracranial techniques to acquire the signal, such as electrocorticog-
raphy (ECoG, in which electrodes are on the surface of the cortex) or stereoelectroen-
cephalography (SEEG, where electrodes are placed inside the grey matter). Non-invasive
BCI instead uses extracranial recordings of the brain activity, such as electroencephalog-
raphy (EEG, electrodes on the scalp), magnetoencephalography (MEG, electrodes near
the scalp) or functional magnetic resonance imaging (fMRI) [Besserve, 2007]. Unlike
invasive systems, which entail the risks associated with any brain surgery, non invasive
systems are basically harmless [Pfurtscheller et al., 2008].
For practical reasons, non invasive BCI are more common: from 2007 to 2011, 14.992
publications have cited EEG or MEG, while only 337 mention intracranial EEG [Dalal
et al., 2011].

1.2 State of the art
The following report has been written with the goal of detecting the movement inten-
tion and classifying four different directions of hand movement, both during the actual
movement and the preparation phase, by means of invasive and non-invasive synchronous
BCIs.

1.2.1 Overview

Directional tuning of hand/arm movement is present in iEEG, in the low-pass filtered
signals (Mehring et al. 2004, Ball et al. 2009; see also figure 1.5) and in the ampli-
tude modulations of different frequency bands (Leuthardt et al. 2004, Ball et al. 2009).
Tuning strength is sufficient for relatively accurate directional decoding from low-pass
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filtered signals as well as from amplitude modulations of different frequency bands.
As for non invasive EEG, it has been shown that directional tuning for hand/arm move-
ment can also be observed both in low-pass filtered signals and in amplitude modulations
of different frequency bands (Waldert et al. 2008, figure 1.6). However, it seems that
EEG are less capable of revealing high frequencies (Dalal et al. 2008, Waldert et al.
2008) and only few publications clearly show movement dependent high γ modulations
above 90 Hz that are unlikely due to artefacts (Gonzalez et al. 2006, Ball et al. 2008).
The common time-frequency pattern during center-out movements (see figure 1.4) is the
following: change of amplitude in a low frequency band (< 2 Hz for iEEG, < 7 Hz for
EEG) during the movement, decrease of amplitude in an intermediate frequency band
(6-30 Hz for iEEG, 10-30 Hz for EEG) shortly before and lasting until the end of the
movement, and movement related amplitude increase in high frequency band (34-128 Hz
for iEEG, 62-87 Hz for EEG).

Figure 1.4: Grand-average time-resolved amplitude spectrograms during centre-out movements for the
different recording techniques (LFP, ECoG, EEG, MEG) [Waldert et al., 2009].

1.2.2 Particular cases

Rickert et al. showed that the local field potential (LFP) recorded by an intracranial
procedure can be used to discriminate 8 directions in a centre-out arm movement. On the
one hand, analysis of the LFPs in the time domain showed that the amplitude of a slow
complex waveform beginning shortly before the onset or arm movement is modulated
with the direction of the movement (see figure 1.7. Direction-dependant modulations
are found also in other frequency ranges (<4 Hz, 6-13 Hz and 63-200 Hz), where the
components of the signal typically increase their amplitudes before and during movement
execution (see figure 1.8). As shown in figure 1.9, the low frequency band yields the best
decoding power (DP = 0.24 on < 4 Hz and 1 electrode). The combination of the high
frequency band and the low frequency band (63-200 Hz and < 4 Hz) can increase the
decoding power.
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Figure 1.5: Average human ECoG from one electrode on hand/arm motor cortex, measured during
continuous target-to-target movement and sorted for eight different instantaneous movement directions
(lower plot). The vertical solid line shows the time of a new target appearance (t = 0) while the dotted
line indicates the median time of target reaching. Coloured bands display the mean over all single traces
of one direction +/- standard-error of the mean. The upper inset shows the average magnitude of hand
velocity [Waldert et al., 2009].

Figure 1.6: Averaged movement related potential recorded with one EEG electrode above the contra-
lateral motor area of one subject (average +/- standard-error of the mean across all trials for each
direction, blue – right, green – up, red – left, cyan – down) [Waldert et al., 2009].

Leuthardt et al. used ECoG recordings decoding to control a one-dimensional com-
puter cursor. This binary task can be a achieved with up to 74 % accuracy while opening
and closing the right hand (combination of frequency bands within 10.5 and 50.5 Hz) and
83 % of accuracy while imagining opening and closing right hand (in which a decrease
in 30.5-32.5 Hz band has been seen). This result may seem curious, as the best result is
achieved with the imagination task. This can be explained by the effort Leuthardt et al.
made in order to optimize the imaginary task, which is indeed more relevant for BCI.
Direction-dependant modulations are also found for a bidimensional joystick movement
direction task (4 directions), particularly in 40-180 Hz (see figure 1.10).
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Figure 1.7: Tuning of the movement-evoked potential. Time 0 ms indicates movement onset. (a) Grand
average movement evoked potentials (averaged across all recorded LFPs). Trials were aligned either to
movement onset (black curve) or to cue onset (grey curve). P1, P2, N1, and N2 indicate the points in
time of the positive and negative peaks of the average LFP. (b) Directional tuning of a movement evoked
potential obtained from a single electrode: trial-averaged activity shown separately for each movement
direction [Rickert et al., 2005].

Figure 1.8: (a) Time-resolved amplitude spectrum, (b) Each frequency bin normalized by its baseline
amplitude, (c) Changes in the amplitude exhibited by four different frequency bands (<4, 6–13, 16–42,
and 63–200 Hz) during the task [Rickert et al., 2005].

Ball et al. proposed a general study about how arm movement direction in neuronal
activity of the cerebral cortex (ECoG technique) can be used for movement control
mediated by a BCI. The results shown in figures 1.11 and 1.12 are found using regularized
linear discriminant analysis (RLDA) in a center-out arm movement task in 4 directions.
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Figure 1.9: Decoding power of different frequency bands [Rickert et al., 2005].

Figure 1.10: ECoG correlations with joystick movement direction before and during movement
[Leuthardt et al., 2004].
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Figure 1.11: Decoding accuracy from different frontal anatomical subregions and signal frequency
bands (four movement directions). The dashed line depicts the chance level. Stars indicate bars with
significant decoding accuracy. (a) Decoding results for the movement-related potentials from the whole
mean duration of the reaching movement, including activity up to 250 ms prior to movement onset. The
five groups of bars correspond to the anatomical subdivisions MC (entire motor cortex = M1 + PM),
M1 (primary motor cortex), PM (premotor cortex), PF (prefrontal cortex) and PM + PF (premotor and
prefrontal cortex). Each of the five bars in the individual groups of bars represents one recording session
(two sessions from subject 1, and one session from each of the subjects 2, 3 and 4). Horizontal coloured
lines mark the mean DA for each anatomical subdivision (b) Frequency domain decoding results for MC,
for the same time window as in (a), for the low, intermediate and different gamma bands (low, high and
broad). The corresponding results as in (a) and (b) are given for activity during the pre-movement time
window only, ranging from 250 ms to 0 ms before arm movement onset [Ball et al., 2009].
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Figure 1.12: Temporal evolution of decoding accuracy. Graphs show the DA of the time window
lasting from 500 ms before until the time indicated on the x-axis. Time is given relative to movement
onset. (a) Time course for decoding of the movement-related potentials for M1, PM, MC and PF. (b)
Time course of DA for decoding from the amplitude spectra using the low, intermediate and different
gamma bands for M1. The black line indicates the chance level. (c) Time course for PM and (d) for PF
[Ball et al., 2009].
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1.3 Problem statement
Movement intention detection can be achieved studying EEG waveforms which occur
before the movement onset. One of the major challenges in detecting EEG waveforms
from single trials is the poor signal to noise ratio (SNR) of the EEG. Since EEG sig-
nals represent the summation of potentials generated by a large population of cortical
neurons, the amplitude of the spontaneous EEG activity is relatively large (in the range
of 100 µV ) with respect to the activity related to motor planning and execution, such
as the initial negative phase of MRCP (range 8–10 µV , see appendix C for a MRPC
insight). In order to improve the SNR of EEG signals, spatial filtering can be used,
however, commonly used spacial filters such as Laplacian filters, may not be optimal for
detection of MRCPs from single trials [Niazi et al., 2011].
Once the movement intention is confirmed, the decoding of the direction is the next
challenge. By considering the signal in the frequency domain, new information about
the movement direction might be found. The ability to decode the direction of upper-
limb motor tasks from its underlying neural signature is even more intriguing for brain
computer interface used for rehabilitation. Although a lot of progress has been achieved
in the recent years, numerous methodological and physiological questions remain open
or need deeper exploration. Specifically, what type of information about movement di-
rection can be extracted from surface and invasive recordings of brain activity? Which
brain signals provide the best decoding of limb movements direction? What signal clas-
sification algorithms are best suited for this endeavour and how can we optimize them
to achieve efficient BCIs in the future?

Aim

The goal of this research project is to implement and apply multiple detection and
decoding techniques to scalp and depth EEG recorded in subjects performing motor
tasks in different directions. The accuracy of the various decoding strategies will be
compared at various levels: (a) the classification methods, (b) the discriminant neuronal
signatures, known as the features, (c) the type of EEG recordings, and (d) robustness
to artifacts and noise.

Methods

This interdisciplinary project consists of two main parts: (1) electrophysiological record-
ings of brain activity such as MRCPs, LFPs and different brainwaves, both from iEEG
and scalp EEG; and (2) implementation and comparison of signal detection, classifica-
tion and decoding approaches to infer movement intention and direction from invasive
and non-invasive brain signal recordings.

Part 1

Experimental data acquisition in subjects performing a delayed motor task was con-
ducted. In addition to already existing intracranial EEG recordings acquired from an
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epileptic patient (Grenoble hospital (France)), new surface EEG recordings were ac-
quired (Aalborg University laboratory (Denmark)). The latter experiment used scalp
EEG in a delayed center-out motor task. The scalp EEG data will be cleaned from
blinks or muscle artifacts and will be pre-processed prior to implementation of detection
and classification tests.

Part 2

• Two types of signals will be explored: (a) surface EEG (acquired during the project
in Aalborg University laboratory), and (b) depth intracranial EEG (provided by
Lyon laboratory).

• Two types of analyses will be considered, (a) movement intention detection and
(b) movement direction detection, either intended (during the delay period) or
executed (during real movement).

• Two types of features will be assessed: (a) time-domain features such as motor
cortical potentials for movement intention detection, and (b) frequency-domain
features for movement detection/direction decoding.

• Different spatial filter are used in the time-domain analysis. For the frequency-
domain, features will be examined with a number of appropriate signal processing
tools that include: (i) wavelets transform to compute the frequency features from
the EEG signals, (ii) Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM), k-Nearest Neighbor (KNN) and Neural Network (NN) for classification of
(intended/executed) movement directions.

Expected impact

The results of this ambitious project will have implications at least at three levels: (a)
from a methodological point of view, the comparison of the classification approaches
on experimental data will provide important insights into the strengths and limitations
of existing methods and might suggest ways to improve them; (b) from a physiological
perspective, identification of the best discriminant features will advance our knowledge
of motor encoding/decoding in the context of motor-related BCIs; (c) in the long-term,
the expertise and results obtained in this project may have useful implications on the
future use of BCI to control a robotic prosthesis (neural prosthesis) on one hand, and on
the use of BCI in the context of neuro-rehabilitation in patients with motor deficiencies
on the other.



Chapter 2

Methods

2.1 Introduction
In this chapter, we will first describe the experimental protocol. Then we will explain the
methods used for time analysis (whose the goal is movement detection). Finally, we will
go through the methods used for time frequency analysis (whose the goal is movement
direction classification).

2.2 Experimental protocol

2.2.1 Subjects

2.2.1.1 Intracortical EEG

The subject is a patient affected by a drug-resistant epilepsy who decided to be operated.
As the EEG/MEG investigations are not sufficient to find the epileptic focus, in-depth
electrodes are used until the site was located. During the investigation period, the
patient gave us her agreement to carry the present experiment.

2.2.1.2 Scalp EEG

Five subjects were used for this purpose. The subjects were all right-handed males
with an age that ranged from 23 to 30. None of the subject suffered from hand or
arm pathologies or neurological disorders. The participants gave their informed written
consent before inclusion in the study. The entire test was conducted accordingly to "The
Rights of a Volunteer in a Biomedical Research Project", issued by the Danish National
Committee on Biomedical Research Ethics.

13
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2.2.2 Experimental setup

2.2.2.1 Intracortical EEG

Intra-cerebral recordings were conducted using a video-SEEG monitoring system (Mi-
cromed, Treviso, Italy), which allowed the simultaneous data recording from 128 depth-
EEG electrode sites. The data from the recorded patient were bandpass filtered online
from 0.1 to 200 Hz and sampled at 1024 Hz. During the acquisition, the data are recorded
using a reference electrode located in white matter.
The in-depth electrodes are placed in agreement with the surgeon needs so as to identify
the epileptic focus. As a result, they are spread in the brain without any relations to
the investigated task. More than 128 recording sites (channels) are present but only the
most interesting sites according to the surgeon are scanned for our experiment.
As shown on figures 2.2 and 2.3, each electrode is labelled by a letter, and each dot rep-
resents an electrode site where a signal can be recorded. On each electrode, the different
sites are labelled by a number: from 1 (closer from the scalp), to usually 16: e.g. v14
is the 14th site on the electrode v. The figure 2.1 shortly displays the link between an
electrode and the corresponding brain area.

Figure 2.1: Correspondence between electrodes and functional areas of the brain. Column Ext. rep-
resents the channels which are closer to the scalp. Column Int. represents the channels which are more
deeply in the brain. On a given electrode, the site number 1 is the more internal, while the site number
16 is the more external.
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Figure 2.2: Electrodes implantation diagram, each dot represents a recording site.

Figure 2.3: Electrodes implantation diagram, each dot represents a recording site.

2.2.2.2 Scalp EEG

The experiment took place in an electrically shielded room. Subjects were seated on a
chair, in front of a LCD screen placed on a table, with the arm on the table and the hand
holding a mouse. EEG signals were recorded from Ag/AgCl scalp electrodes. Twenty
electrodes were placed accordingly to the International 10-20 system, located in F3, F1,
Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
CP4, P3, P1, Pz, P2, P4. The right ear lobe (A2) was used as a reference. The subjects
were grounded at the forehead. EOG was measured from FP1. The EEG recording was
performed with a forty channels digital DC EEG amplifier (Nuamps Express, Neuroscan,
USA) and data recorded with the Acquire Software Scan 4.5 (Neuro Scan Labs) following
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the mentioned protocol (using Presentation software). Electrode impedances should be
kept below 5 kΩ. The EEG and EOG signals were sampled with a rate of 500 Hz and
amplified with a gain of 19. The signals were converted by a 32-bit A/D converter. Early
preprocessing has been performed with EEGLAB and Neuroscan.

2.2.3 Task

The experimental task consisted in asking the subjects to perform a simple movement
of the arm in the given direction, while holding the mouse (no constraints on the speed
of the movement), reaching a point on the screen and finally coming back to the central
starting point. Presentation software was used to display synchronized cues on the screen
both for the iEEG and surface EEG recordings. The task consisted, in detail, of:

• A "rest period", from 0 to 1 sec, during which the screen is blank.

• At 1 sec a visual cue (illuminated target) in a random direction, is given to the
subject.

• A "preparation period", from 1 to 2.5 sec, during which the subject is instructed
not to perform the movement.

• At 2.5 sec a "go signal" is displayed. This means that the subject can start to
perform the movement in the suggested direction.

• A "movement period", starting from 2.5 to 3.9 sec. The subject moves the pointer
of the mouse towards the target, reaches it, and comes back to the starting point
on the screen.

Figure 2.4: Picture of the experiment setup. The central point and the 4 different targets (up, down,
right, left) can be seen on the screen.

This protocol was used both for the iEEG and surface EEG, with some differences
between the number of direction and number of trials recorded. As for the iEEG record-
ings, the subject performed 50 trials (movement tasks) for each of the four directions
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(up, down, left and right), both for the left and the right hand. As for the surface
EEG recordings, 100 trials for each of the four directions (up, down, left and right) were
collected for the right hand, whereas only two directions (up and down, 100 trials) were
collected from the left hand. The increase in the number of trails recorded from the
scalp EEG can be explained by the loss of quality of the scalp recordings compared with
the intracortical ones.

2.3 Early preprocessing

2.3.1 Detrend

The iEEG signal is 0.1 to 200 Hz bandpassed online then detrendend so as to remove
the continuous part (offset). The EEG signal is 0.05 - 150 Hz bandpassed offline then
detrended. However, the bandpassing and detrending do not remove the muscular arti-
facts.

2.3.2 Bipolarization

As the muscular artifacts were widespread into the brain, we could partially remove
their influence by using bipolarization on iEEG data. E.g. instead of using the voltage
of the site 6 of electrode n (calculated from a reference electrode in the white matter)
we used n7-n6. If there was an artefact, it is most likely present on the two sites due to
the short inter-site distance (around 3 mm) and thus the artifact could be removed by
bipolarization [Jerbi et al., 2009].

2.3.3 Eye artifacts

As proposed by Imran and Mads (and also referenced in Waldert et al.) who already
worked with the Aalborg University EEG system, we used a 50 microvolts threshold
detection of eyes artifacts in the EEG signal. For each epoch, if the signal acquired
on one electrode is above the threshold, we decided to discard the entire epoch (and
not only the couple epoch-electrode). Indeed, an artifact which leads the signal to be
above the threshold on one electrode is certainly also present on other electrodes, maybe
without being strong enough to cross the threshold.
Bipolarized iEEG signal is far less vulnerable to muscular artifacts than EEG signal
Leuthardt et al. [2004]. We used the averaged across epochs time-frequency maps of
each electrodes in order to find and discard artifacted channels (see example in Results).

2.4 Signal processing

2.4.1 Movement intention detection

Here follows a brief introduction to the protocol and the techniques used to analyse
the data set, which later will be treated more extensively. The experimental data were
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analysed with two different spatial filters and a cross-correlation approach was used
to determine the movement intention detection accuracy. Since the aim is detecting
an intention of the movement, the initial negative phase of the MRCP was used (see
appendix C for a MRPC insight). The signal analysis methods will be discussed in the
following subsections. It was divided in two steps, first MRCP template extraction from
the training data, then the movement intention detection part.
The aim of spatial filtering is to improve the signal-to-noise ratio by creating a virtual
channel which is a (linear, in the following cases) combination of the input channels
of the filter. The first filter was a large Laplacian spatial filter (LSF), which has been
proved to be a valuable choice among other fixed coefficient spatial filters [Niazi et al.,
2011]. The second filter was an optimized spatial filter (OSF), where the optimization
process is achieved with the aim of maximizing the SNR of the filtered data. After the
spatial filtering, the MRCP template was extracted from the resulting channel (named
surrogate channel from now on).
In the second part of the analysis, the negative phase of the MRCP template was used on
the data to calculate the movement intention detection accuracy. This was achieved by
measuring the cross-correlation between template and signal and obtaining the number
of correct and incorrect detections. The results are expressed using statistical parameters
as true positive rate (TPR) and false positives rate (FPR). Finally, the performance of
the different spatial filters was compared.
The protocol described above was applied on: (a) each data set containing the single task
performed by each subject (for example ’down’ movement with the right hand for subject
no. 3), and (b) combining for each subject each hand movement tasks (for example: all
the epochs from left hand of subject no. 3), allowing to have more epochs, but losing
the direction information.

2.4.1.1 Electrode selection

iEEG After the bipolarization process, we were left with 91 channels located in 16
electrodes (see figure 2.7). Out of these 91, 7 channels were selected to be used in the
analysis; their location is showed in figure 2.7. This number of channels might seem
restricted compared to the starting point mentioned above, but the procedure it was
necessary for at least two reasons: (a) the optimization process for the OSF filter on 91
channels would have been too long, and (b) from an MRCP extraction point of view,
these seven channels were the ones showing a shape that reminded the one of the MRCP.
Among these seven channels, two channels were chosen from two electrodes near senso-
rimotor areas, three channels from other two electrodes located in the frontal lobe and
the two last channels came from two electrodes which passed through the temporal lobe.
The locations of the chosen electrodes are near the motor cortex, the prefrontal areas
and basal ganglia, places in which the MRCP is likely to be generated (see appendix C).

Scalp EEG For the same reason mentioned above, for the spatial filtering 9 channels
out of 20 were chosen. As figure 2.8 shows, they were:
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Figure 2.5: The flux diagram describes the first part of the protocol (signal processing)
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Figure 2.6: The flux diagram describes the second part of the protocol (template extraction and
movement detection)
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Figure 2.7: Electrodes location and number of the channels chosen for the iEEG data analysis.

• C3, C1, Cz, CP3, CP1, CPz, P3, P1, Pz for right hand movements and

• Cz, C2, C4, CPz, CP2, CP4, Pz, P2, P4 for left hand movements.

This choice is justified by the fact that these electrodes as they are located above the
premotor, motor and somatosensory cortices and are not expected to be easily contami-
nated by task related auditory or visual artifacts. Nine channels were considered enough
for this type of analysis, and so F3, F1, Fz, F2 and F4 electrodes were not used, both
to make the optimization process faster and because they are the nearest to the sub-
ject face. The position of the electrodes was not centered on the z axis, but shifted
contralaterally with respect to the hand used for the motor task.

2.4.1.2 Signal analysis

2.4.1.3 Preprocessing

Both the iEEG and the EEG data were detrended, band-pass filtered with a third order
Butterworth zero-phase filter from 0.05 Hz to 5 Hz.

2.4.1.4 Spatial filtering

Spatial filtering has been used for source localization in EEG. In particular, the surface
Laplacian is a technique that has been used to improve the spatial resolution of the
electroencephalographic signals. Through a liner combination of the input channels, the
filtering process ends with a single virtual channel (later referred as surrogate channel)
which contains greater spatial information than does the raw potential measured by
EEG montages [Bradshaw and Wikswo, 2001].
The spatial filtering has been applied both on iEEG and scalp EEG data for each move-
ment the subject performed.
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Figure 2.8: Electrodes selection for the scalp EEG. The squares indicate which electrodes were selected
for the analysis, depending on the hand used during the movement (right hand:blue square, left hand:red
square). The circle indicated which electrode had 1 as weight coefficient in the Laplacian filtering process.

The two spatial filters (LSF and OSF) were applied on the pre-processed data sets (iEEG
channels and EEG channels) and resulted in a surrogate channel for each one of them.
A spatial filter is defined and changes its characteristics depending on its set of coef-
ficients. In this study, we investigated two different spatial filters: a Laplacian spatial
filter (LSF) and an optimal spatial filter (OSF) [Niazi et al., 2011].

Laplacian filter The Laplacian filter is a commonly used source localization and it
has fixed coefficients. The channel coefficients in this case were:

xi =
{

1, i = 1
− 1

(Nch−1)) , ∀i 6= 1,

where Nch is the number of channels, so 7 for the iEEG and 9 for the scalp EEG. The
sum of the Nch coefficients is zero so that the spatial dc (mean value of the waveform)
components are rejected [Niazi et al., 2011]. Channel 1, which has weight equal to 1 in
the Laplacian filter, (xi = 1) changed according to the type of data.
For iEEG data, the channel 1 was chosen empirically among the ones that were located
in the frontal areas and above the motor cortex. Because of their location, a preference
was initially reserved to M and N electrodes (see figure 2.7 for detailed position). As it
could be expected, the signal recorded from them presented good information about the
movement phase (after the ’go’ signal in the protocol), but not as much for the MRCP
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negativity phase. A more recurrent negative phase came instead from a channel located
on electrode F, in the frontal lobe of the brain. In order to find the best channel, a
preliminary analysis was anyway conducted and confirmed that channel F performed
from 0 % up to 10-15 % better in terms of TPR compared to M or N, and so it was
chosen as channel 1 for the Laplacian filter during the final analysis.
As for the scalp EEG, instead, x1 corresponded to C1 for right hand movements and
C3 for left hand movements: C1 and C3, respectively, are the centers of the matrix of
electrodes (see figure 2.8) positioned contralaterally with respect of the used hand, and
due to their position overlaying the hand area in the brain, are most likely the ones that
can provide a good source of information [Ramoser et al., 2000].
Here follows an example for scalp EEG data (right hand movement ):

surrogate channel =
[
x1 x2 ... xNch

] 
channel C1
channel C3

...
channel Pz


Optimized Laplacian Filter The Optimal Spatial Filter (OSF) provides an opti-
mized coefficient set in order to maximize the signal-to-noise ratio in the surrogate
channel.
The filter coefficients were optimized on the data set with the following procedure. First,
’signal’ epochs of about 1 s were selected (more or less the entire MRCP length). These
epochs contained the initial negative phase of an MRCP; more precisely, they started
from the beginning of the negativity phase of the MRCP and finished shortly before its
peak positivity in the movement period. Then, ’noise’ epochs of 1 second (by protocol
it corresponds to the whole rest period) were selected.
The aim of the optimization process was to find a set of channels that maximizes the
’signal’ energy while minimizing the ’noise’ energy, with the constraint that the sum of
the coefficients was zero. Thus, signal-to-noise ratio was the function (SNR(x), depen-
dent on x) to be maximised in the optimization process [Niazi et al., 2011]. The SNR is
calculated as follows:

SNR = Psignal

Pnoise
,

where Psignal and Pnoise are respectively the powers of the signal and noise.
A quasi-Newton method was used for the optimization: from an initial guess, a series of
steps were repeated iteratively until x converges to the solution. The initial vector of
coefficients x0 was based on the EEG large Laplacian montage [Niazi et al., 2011].

2.4.1.5 Template extraction and detection of movement intention

The template was built on the descending phase of MRCP extracted from the training
data of (a) the surrogate channel and (b) the virtual channel obtained with the Laplacian
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Figure 2.9: Normalized epoch traces (mean over all the epochs) for the ’up’ movement with the left
hand for the iEEG data for the raw signal and the two spacial filters outputs. More precisely: (a)
normalized ’raw’ signal (after bandpass filtering) acquired from the channel which was given weight 1
in the Laplacian filtering (coefficient x1 = 1)(’Raw’,dotted line), (b) normalized output of the Laplacian
filter (’LSF’, dashed line), and (c) output of the Optimized Spacial Filter (’OSF’,continuous line). The
vertical dashed lines correspond to the ’visual cue’ and the ’go signal’ (see protocol in the Methods
chapter 2).
The descending phase of the MRCP was used as template for the movement detection.
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Figure 2.10: Normalized epoch traces (mean over all the epochs) for the ’up’ movement with the left
hand for the EEG data (subject no. 2) for the raw signal and the two spacial filters outputs. More
precisely: (a) normalized ’raw’ signal (after bandpass filtering) acquired from the channel which was
given weight 1 in the Laplacian filtering (coefficient x1 = 1)(’Raw’,dotted line), (b) normalized output of
the Laplacian filter (’LSF’, dashed line), and (c) output of the Optimized Spacial Filter (’OSF’,continuous
line). The vertical dashed lines correspond to the ’visual cue’ and the ’go signal’ (see protocol in the
Methods chapter 2).
The descending phase of the MRCP was used as template for the movement detection.



24 Chapter 2. Methods

filter, allowing later comparison between the two spacial filters. Then, through cross-
validation (using leave-one-out technique) between template and testing signal epochs,
a ROC curve was built, allowing to measure the true positive rate and false positive rate
of the movement detection. The threshold of the cross-correlation was selected on the
midpoint of the turning phase of the ROC in order to obtain a balance between number
of correct detections and number of false positives.

Template extraction The template was obtained from the OSF and LSF outputs,
performing an average over the epochs of the training set, and then extracting the MRCP
portion of interest: from the initial of the depression phase till the negativity peak (see
figure 2.11). The length of this template was in most cases of about or less than 1 second
of signal, depending on subject, hand or movement in question.
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Figure 2.11: Example of template extracted from the training set (subject 2, left hand movement in the
’up’ direction from scalp EEG data). The template corresponds to the descending phase of the MRCP
(thick line).

2.4.1.6 Movement detection

For the movement detection, a leave-one-out cross-validation approach was used (more
information about can be found in subsection 2.4.2.3 in the Methods chapter). The
cross-correlation between the template (built on training data) and testing data was
measured. After setting a certain threshold, the true and false positive rates can be
calculated, and so on with different threshold values. This process ended with a receiver
operating characteristic (ROC), which finally led to choose the "optimal" threshold as
the one that allows to have the highest number of correct movement detections while
having the lowest of incorrect detections; this translates in having the highest TPR while
minimizing the FPR. In our analysis, we decided to identified our ’optimal’ threshold
as the one which provides the nearest value (Euclidean distance) in the ROC curve to
(TPR,FPR) = (100%, 0%). This value was in the well known midpoint of the turning
phase of the ROC. By doing this, a balance between TPR and FPR can be obtained.
After selecting the "optimal" threshold, the corresponding TPR and FPR were extracted
as results of the movement intention detection accuracy. The TPR and FPR were
calculated as:

TPR = tp/(tp+ fn), FPR = fp/(fp+ tn),
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where tp, tn, fp, fn indicate the number of true positives, true negatives, false positives
and false negatives, respectively.

• tp (true positive): a movement is detected in the ’signal’ portion of the epoch
(’preparation’ + ’movement’ phase in the protocol);

• tn (true negative): absence of movement is detected in the ’noise’ portion of the
epoch (’rest period’ in the protocol description);

• fp (false positive): a movement is detected in the ’noise’ portion of the epoch;

• fn (false negative): absence of movement is detected in the ’signal’ portion of the
epoch.

The "detection" corresponded to finding a cross-correlation value higher than the
"optimal" threshold found in the previous step by means of the ROC plot.
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Figure 2.12: Example of cross correlation signal between template and the portion of the ’signl’ portion
of one epoch. The dotted red line shows the "optimal" threshold found with the above method. So, in
this case, a true positive is identified.

Artificially generated noise By protocol, the ’rest’ period (here referred also as
’noise’ signal) lasted 1 second. This duration is almost three times shorter than the
remaining part of the signal (2.9 sec) and it is nearly the same as the MRCP template,
probably not enough to lead to a correct detection accuracy. In order to obtain a more
realistic result, epochs of artificial noise of the same length of the rest of the epoch (2.9
sec) were generated.
This was done estimating an auto-regressive (AR) model of every ’noise’ epoch and
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using that instead of the ’real’ noise. The order of the model was decided using the
Akaike Final Prediction Error estimate (FPE). When the FPE does not improve a lot
while increasing the order, it means that our model cannot be enhanced by incrementing
its order. Using this criteria, with the provided set of data, the order was stopped at
15. The Burger’s method, which has been proved to be a good method to estimate the
parameters of an AR model, was used [De Hoon et al., 1996].
Since the model input is white noise, it estimates a slightly different output every time.
The TPR and FPR were thus calculated as the mean over the values given by running
the algorithm 10 times.
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Figure 2.13: The figure show a ROC plot that measure the detection accuracy of right arm direction
towards the right of subject no. 2 (scalp EEG data, artificially generated noise).

2.4.2 Movement direction classification

Following, you will find the different methods we used for the time-frequency analysis
of iEEG and EEG data. The current chapter follows the order of our analysis (pre-
processing, feature building, feature extraction and classification) and the methods are
chronologically sorted within each section (see figure 2.14).

2.4.2.1 Feature extraction

After obtaining a clean signal, the first step was to set a process in order to extract
features.

Time-frequency map A time-frequency (TF) map is a two dimensionnal graph of
time against frequency. There are two main ways of computing a TF map: the windowed
Fourier transform and the wavelet transform.
The windowed Fourier transform replaces the Fourier transform’s sinusoidal wave
by the product of a sinusoid and a window which is localized in time. It takes two
arguments: time and frequency. The windowed Fourier transform has a constant time
frequency resolution. This resolution can be can be changed by rescaling the window g.
It is a complete, stable, redundant representation of the signal (see figure 2.15). Hence
it is invertible. The redundancy implies the existence of a reproducing kernel. The time
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Figure 2.14: Plan of the data analysis process. On top, the raw EEG data from the acquisition system,
then the different steps followed in order to perform the classification. (1) preprocessing: detrend and
bipolarization, (2) feature building: time-frequency (TF) maps and normalization, (3) feature extraction,
(4) classification with different methods: linear discriminant analysis (LDA), support vector machine
(SVM), k-nearest neighbour (kNN), neural network (NN). The artifacts removing is done at different
steps whether we are working with intracranial EEG (iEEG) or extracranial EEG (EEG).

and frequency spreads of these functions are constant. The family is generated by time
and frequency translations of one atom [Chaplais, 1998].

The wavelet transform replaces the Fourier transform’s sinusoidal waves by a fam-
ily generated by translations and dilations of a window called a wavelet. It takes two
arguments: time and scale. Its time spread is proportional to scale s, while its frequency
spread is proportional to the inverse of s [Chaplais, 1998].
The main advantage of wavelet transforms is the variation of windows length. In order
to isolate signal discontinuities, one would like to have some very short basis functions.
At the same time, in order to obtain detailed frequency analysis, one would like to have
some very long basis functions. A way to achieve this is to have short high-frequency
basis functions and long low-frequency ones. This "happy medium" is exactly what we
get with wavelet transforms (see figure 2.16) [Graps, 1995].
One thing to remember is that wavelet transforms do not have a single set of basis
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Figure 2.15: Fourier - The boxes show the localization of an atom in the time frequency space computed
by the windowed Fourier transform. Notice the same resolution in all the space [Chaplais, 1998].

Figure 2.16: Wavelet - The boxes show the localization of an atom in the time frequency space
computed by the wavelet transform. The time resolution is better when punctual changes occur in the
signal (high frequencies) while the frequency resolution is better when the signal is stable in time (low
frequencies) [Chaplais, 1998].

functions like the Fourier transform, which utilizes just the sine and cosine functions.
Instead, wavelet transforms have an infinite set of possible basis functions. Thus wavelet
analysis provides immediate access to information that can be obscured by other time-
frequency methods such as Fourier analysis [Graps, 1995].
Because we are running an offline analysis trying to catch specific changes in the brain
signals due to punctual stimuli, wavelet transform is the most appropriate method to
use although it takes much more time to compute.

Baseline normalization Temporal evolution of the power of different frequencies is
determined by a time-frequency analysis using the wavelet transform. To enhance the
power modulation within a trial, the power spectra is normalized by different methods
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using a baseline. The baseline is a period on which the subject is at rest. The baseline
is computed for each sample in a time interval within the rest period (100-500 ms, 400-
800 ms, 100-800 ms) [Rickert et al., 2005; Waldert et al., 2008]. Then, each frequency
is normalized by the average value of the baseline for the same frequency, enabling to
enhance low amplitudes and smooth high amplitudes so as to obtain homogeneous time
frequency maps.
Here are the 4 methods mainly used to perform baseline normalization:

• (1)TF − baseline

• (2) T F
baseline

• (3)T F −baseline
baseline

• (4)T F −baseline
stdbaseline

Where TF is the time-frequency and std is the standard deviation.

Choice of the features We now have a process to extract time-frequency features
from the signal. However, we could choose an infinity of different features considering
all the frequencies or all the time intervals. A way to restrict our analysis is to consult
the BCI related literature:

iEEG Usual frequency bands are extensively referenced in the iEEG-related liter-
ature. Frequencies up to 200 Hz can be used for iEEG without getting too much noise
([Leuthardt et al., 2004]). In addition, we are working with a 1024 Hz sample frequency,
which enables us to perform a frequency analysis up to 512 Hz without losing informa-
tion (Shannon-Nyquist theorem).
Using multiple references ([Leuthardt et al., 2004; Rickert et al., 2005; Ball et al., 2009;
Waldert et al., 2009; Jerbi et al., 2011]), and after discussions with Karim, we selected
the following common frequency ranges for our first analysis: 2−4, 2−7, 4−7, 8−13, 6−
30, 15 − 30, 30 − 130, 60 − 130, 60 − 160 (Hz). The very low and very high bands (0-2
Hz, 160-200 Hz) are difficult to use due to the wavelet transform lack of resolution in
extreme frequencies.
For each part of the task (0-1000 ms: rest, 1000-2500 ms: movement preparation, 2500-
3900 ms: actual movement), all the time intervals could be considered.

EEG Usual frequency bands are extensively referenced in the EEG-related litera-
ture. One might be careful when using high frequencies due to a lot of perturbations
caused by the extracranial EEG recordings. Usually, the maximal using frequency is
around 90 Hz but recent references report the use of frequencies up to 150 Hz. Using
multiple references ([Ball et al., 2008; Waldert et al., 2008, 2009; Jerbi et al., 2011]), and
after discussions with Karim, we selected the following common frequency ranges for our
first analysis: < 3 Hz, < 5 Hz, < 7 Hz, 2-4 Hz, 10-30 Hz, 15-30 Hz, 30-50 Hz, 60-85 Hz,
62-87 Hz, 50-128 Hz, 30-130 Hz. These two lasts are particularly high, but we would
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like to take a look at the results they can provide.
For each part of the task (0-1000 ms: rest, 1000-2500 ms: movement preparation, 2500-
3900 ms: actual movement), all the time intervals could be considered.

2.4.2.2 Classification

The chosen features were given as inputs to classification algorithms which try to find a
link between the value of a feature and a task (e.g. movement preparation, movement
of the right hand to the left, etc...).
Classification algorithms are used to identify ’patterns’ of brain activity. Considering
some features and a classification algorithm, the BCI tries to recognize different mental
states in a given data set (e.g. hand movement). As a result, the performance of a
pattern recognition system depended on both the features and the algorithm employed
[Lotte et al., 2007].
Basically, given some features, a classifier was trained on an experimental data set so as
to adjust a boundary between the classes by means of a classification algorithm. In our
case we used supervised methods, meaning we had a prior knowledge on which sample
belongs to which class and we used it to design the classifier [Duda et al., 2001].
Formally, classification consists in finding the true label y∗ of a feature vector x using a
mapping function f . This mapping is learnt from a training set T [Lotte et al., 2007].
A classifier can easily reach 100 % of good classification on a given set of data (e.g. by
learning by heart which sample belongs to which class) and, at the same time, provide
poor performance on a new data set. As a result, it is important to find a way to evaluate
the classifier performance.
In this section, we will first briefly explain the different classification methods used in
this project, then we will see how to choose the appropriate features and we will finally
explain how to compare classifier performance.

k-nearest-neighbor The k-nearest-neighbor (kNN) rule is a supervised method for
data classification. This method assumes no prior knowledge of the statistics of the data
in question. kNN is also a ’lazy method’, meaning there is very little training and the
method does not try to generalize from the data.
Simply the k-nearest-neighbor rule classifies a sample by the majority of k nearest train-
ing samples around it, as shown on figure 2.17. K is often an odd number to ensure
majority. The outcomes are strongly linked with the choice of k. A high k removes noise
but decreases the accuracy of the boundaries [Duda et al., 2001].
The distance between samples can be calculated using different measures. The Euclidean
distance formula is the most used:

D(a,b) =
(

d∑
k=1

(ak − bk)2
) 1

2

Where d is the dimensionality of a and b.
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.
Figure 2.17: This plot shows the principle behind K-Nearest-Neighbor Rule. It is a two dimensional
feature space. The blue squares represent class 1 and the red triangles represent class two. The green
dot will be classified according to the nearest samples (image from Wikipedia)

Linear discriminant analysis Linear discriminant analysis (LDA) is a method used
in statistics, pattern recognition and machine learning to find a linear combination of
features which separates two or more classes of objects or events. Linear Discriminant
Analysis (LDA) is characterized as a supervised and parametric method. LDA is per-
formed under the hypothesis of multivariate normal distribution, different mean for each
class, same conditional covariance matrix and same a priori probability for each class
[Duda et al., 2001].
LDA is a very fast method but, depending on the underlying distribution of the sam-
ples, performances may decrease. When classes need to be classified, a decision boundary
is needed. LDA looks for the linear combination of features which best describes the
data, then it creates a decision boundary which is a hyperplane g(x) = 0 (or multiple
hyperplanes to solve a N-class problem with N>2) of the feature space.

g(x) = wt · x + w0,

where x is the input features vector, w is the weight vector, which determines the
direction of the decision boundary, and w0 is the bias, which determines the location
of the decision boundary. In a two classes problem, each sample has to be assigned to
either w1 (class 1) or w2 (class 2). To perform the classification of a sample x, we are
following the rule: if g(x) < 0 then decide w1, if g(x) > 0 then decide w2. On figure 2.18
all the training points are plotted and the best linear decision hyperplane separates the
points [Duda et al., 2001].

Figure 2.18 shows the result of LDA through a set of data, it can be observed how
LDA divides the two classes with a linear boundary.

Support vector machine Support Vector Machine (SVM) is very closely related
to the Linear Discriminant Analysis and uses both k-nearest-neighbor rule and linear
discriminant analysis classification [Press et al., 2007]. SVM aims to find one (or several)
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Figure 2.18: LDA performed in a two dimensional feature space. The red points and the blue circles
belong to different classes, the straight line is the boundary computed by LDA [Mirkin, 2011]

separating hyperplane(s) between two or more classes. The difference is that Support
Vector Machine finds the hyperplane with the largest margin between the classes. A
larger margin between the classes should ensure a better generalization of the classifier.
Furthermore support vector machine does not assume multivariate normal distribution
of the features [Noble et al., 2004].
The best possible case of separation and generalization is illustrated in figure 2.19 by
the red hyperplane labelled H2 . The blue hyperplane labelled H3 could be a result of
a linear discriminant analysis and while it separates the classes well enough it is less
generalizable than hyperplane calculated by the support vector machine, because it only
separates the classes by a small margin [Duda et al., 2001].
SVM finds at least three support vectors (two from class 1 and one from class 2), which
are the most difficult samples to classify. The hyperplane is then situated with equal
distance to the support vectors. In fact, it is not realistic to expect the two classes to
be completely separable, the terms soft margins are introduced to allow samples of one
class to push trough the margin and into the area of the other class [Noble et al., 2004].

Neural network One other interesting method is the neural network (NN) based clas-
sification, since the architecture of neural networks is inspired by the brain. A neural
network is made of several simple communication processors (called neurons) distributed
in at least two layers. Usually, one neuron is connected to every other neuron of the
following layer [Hudson and Cohen, 1999].
The inputs of the neural network will be the different features, and each output will be a
class: depending on the output values, given an input, the sample will be classified. To
perform the classification, the neural network is trained on a training data set [Hudson
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Figure 2.19: The hyperplanes H1, H2 and H3 represent difference separation and generalizability. H1
separates the classes but only with a small margin. H2 is calculated by a support vector machine and it
separates the classes by the maximum margin. H3 does not separate the classes (image from Wikipedia).

Figure 2.20: Two point clouds separated by a hyperplane. The hyperplane does not separate the
classes cleanly. In this situation the margin are soft (image from dtreg.com).

and Cohen, 1999].
There are three characteristics which describe a neural network: the neuron model, the
architecture and the training algorithm [Hudson and Cohen, 1999].

Figure 2.21: Description of a neuron using a NN (image from Wikipedia)
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Neuron model As showed in figure 2.21, each input are first weighted. Then
all the weighted inputs are summed by the so-called transfer function. Finally, the
activation function will provide a final single output. The activation function φ can be
very different from a neural network to another: we can either use a threshold to provide
a binary output (e.g. if net > θ then the output is 1, otherwise it is 0) or also more
complex continuous functions [Hudson and Cohen, 1999].

Architecture For supervised neural network, at least three layers are usually used.
A three-layer neural network is enough to solve all the problems if the activation function
is not linear (e.g. figure 2.22, notice that the layers between the input and output layers
are called hidden layers) [Hudson and Cohen, 1999].

Figure 2.22: Architecture of a neural network (image from Wikipedia)

However, more than three layers can be used: this basically enables a more adaptive
neural network with greater processing power but at the cost of more complex training
algorithm [Hudson and Cohen, 1999].
We will use a feed forward neural network with three layers. As illustrated on 2.22: there
is no feedback from one layer to a previous layer. Each input represents a dimension of
the features vector and each output represents a dimension of the class vector [Hudson
and Cohen, 1999].

Training algorithm As we have prior knowledge of the actual classes the samples
from the training data set belong to, we use a widespread supervised training method
called back-propagation [Hudson and Cohen, 1999].
When there is a mistake in the outputs, the difference between the expected outputs
and the actual outputs is computed. This difference is called error. The error is then
propagated backwards through the hidden layers. The output of each neuron is multi-
plied by the error, so as to get the gradient of the weight. For each neuron the weight is
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increased according to a given learning rate, if the gradient is negative, and vice versa
[Hudson and Cohen, 1999].

Choice of classifiers KNN algorithms are not very popular in the BCI community,
probably because they are known to be very sensitive depending on the dimensionality,
which can make it easily fail. However, when used in BCI systems with low dimensional
feature vectors, kNN may prove to be efficient [Lotte et al., 2007].
Due to its quick computation and good performance, LDA is particularly well suited
for online classification (e.g. P300 speller) or multiclass analysis [Lotte et al., 2007].
In addition, many references across the literature perform LDA for the classification of
hand movement using EEG signals [Rickert et al., 2005; Mehring et al., 2004].
The review wrote by Lotte et al. helped us to make our choice of investigated classifier.
We can see from table 2.23 that LDA, RFLDA, SVM, KNN and Perceptrons provide
good results in different studies. However, the RFLDA is only useful if the sample size
is small compared with the size of feature vector [Dai and Yuen, 2003], which is not our
case. It should also be remarked that perceptron does not actually refer to the historical
perceptron, but to the pattern recognition feedforward neural networks.

Figure 2.23: Accuracy of classifiers in movement intention based BCI [Lotte et al., 2007].
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2.4.2.3 Evaluation of classifier performance

To perform a classification the first step is to train the classifier using a training data
set. The next step is to test the classifier and answer the question: how well does the
classifier perform on other data than the training data?

Cross-validation The best choice would be to separate the total amount of data into
a training data set and a test data set, so the training data would never be used to test
the classifier. Unfortunately, two sets are often expensive and time-consuming to gener-
ate because it requires extensive amount of data. The limited amount of data makes it
necessary to apply a method that reuses the training data [Hawkins, 2004]. The method
applied in this study is the leave-one-out cross validation.
The leave-one-out-method trains the classifier on the entire episode set except one
episode. The one episode left-out is then used to test how well the classifier can predict
which class this episode belongs to. It iterates this operation for every episode then
provides a final confusion matrix [Duda et al., 2001].
A good result given by the cross-validation method ensures that there is no over-fitting
of the classifier [Hawkins, 2004]. This result has to be compared to the level of chance
(for example 33 % for 3 classes).

Decoding information, decoding accuracy, decoding power Specific measure-
ments of classifier performance are found in the BCI related literature. Three of them
are used in different publications closely linked to our work.
The decoding accuracy (DA) (also called decoding power (DP), [Rickert et al., 2005]) is
defined as the percentage of correctly decoded trials [Waldert et al., 2009; Mehring et al.,
2004] (given in our case by cross-validation), while the decoding information (DI) quan-
tifies the amount of information extracted about movement direction [Waldert et al.,
2009].

DA = DP = Nc

N
,

where Nc is the number of correct classification given by cross-validation and N is
the total number of samples.
Under the assumptions of equal probabilities for correct predictions for each direction
and equal distributions of false predictions across directions, we can use the following
formula which relates the DI to the DA:

DI(DA) = DA

100 ln DA

DAchance
+ 100−DA

100 ln 100−DA
100−DAchance

,

where DAchance is the level of the chance (e.g. 25 (%) for 4 classes) [Waldert et al.,
2008].
The DI enables to directly compare the decoding performance of studies using different
number of classes.
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2.4.2.4 iEEG analysis

From a practical point of view, we do not have sufficient data storage capacity to save a
TF map for each trial, each channel and each event. The first solution, which would have
been to reduce the frequency resolution, presents two main issues. First, without saving
each frequency bin independently we can not apply normalization any more; or we have
to directly save the normalized data, which limits our analysis. Secondly, although the
frequency resolution is not important in the high frequencies, it is in the low frequencies.
Together with Karim, we decided to keep all the frequency bins but save our data on the
given time windows: 100-500 ms, 400-800 ms, 100-800 ms for the rest, 1000-1400 ms,
1000-2300 ms, 2000-2500 ms for the preparation, 2500-3000 ms, 2700-3700 ms, 3200-3700
ms for the movement.
To select the channels on which we ran a more detailed analysis (influence of normal-
ization, 2 features, etc.), we made the following hypothesis: if a good DA is found for
a couple channel-task on a large time window, the DA can be improved by choosing
other close time windows, other frequency bands or a multiple features approach, for
the same couple channel-task. On the contrary, a good DA on a narrow time-window
will not necessarily lead to a better DA on a wider one. As a result, our first analysis is
performed on the widest time-windows. Further analysis was performed on the 3 chan-
nels which provide the best DA for each couple channel-task during the first analysis.
Another approach would have been to fix a threshold for each couple channel-task, and
select all the channels for which the DA is above this threshold. However, doing this,
the best classifiers of the first analysis will keep more electrodes than the others, giving
them more chance of achieving a high DA after other analysis. With the purpose of
classifier comparison in mind, this method would have created a bias.

2.4.2.5 EEG analysis

In order to perform EEG analysis, we used the conclusions from iEEG analysis, which
can be found in Discussion. We therefore performed a single channel one feature clas-
sification on the widest time windows with a subtraction then division by the baseline
normalization. Due to computation time issues, we did not investigate SVM and NN.
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Chapter 3

Results

Time and time frequency results are successively displayed in this chapter.

3.1 Movement intention detection
In general, the results demonstrated that it is possible to detect voluntary movement
intentions using the descending phase of the MRCPs. The TPR (true positive rate) is
always above 70 % (OSF data) and often above 75 %, which roughly means that we are
able to detect correctly three intended movement out of four. Most of the FPRs (false
positive rate) are, instead, around 25 % . Considering the complexity of the task the
subject had to perform, and the amount of ’noise signal’ available, we can consider these
results as rather satisfactory.

The following tables present the TPRs (%) and FPRs (%) for the datasets already
described in ’Methods’. They point out the detection performances on (a) the particular
movement performed by each subject (e.g. ’down’ movement with the right hand for
subject no. 3), and (b) the movement data performed by the left hand and the right
hand joined together. An average over the different movements for every subject can
also be evaluated easily (Tables 3.1, 3.2, 3.5, 3.6 and 3.3, 3.4 3.7, 3.8, respectively).
The data used for the detection comprises iEEG and EEG data (Tables from 3.1 to
3.4 and from 3.5 to 3.9, respectively). For both iEEG and scalp EEG, the detection
accuracy has been calculated for two data sets: the first provided by the recordings,
and the second by the ones which use estimated ’noise signals’ based on the ’real’ noise
signals (corresponding to the first second of the recorded epochs). In the latter case, an
average of the TPRs and FPRs has been measured over the values given running the
algorithm 10 times. The standard deviation of the mentioned average is not reported in
the tables to avoid confusion and because it was always lower than 5 %. As expected,
using only the rest period (see protocol) as ’noise signal’ provided greater performances,
but we can expect that the results obtained using estimated noise to be more realistic.
A comparison between the performance of the two spatial filters is highlighted in the
tables as well, finding no relevant improvement using the OSF. In particular, Table 3.9

39
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shows the detection accuracy for the two filter, averaging TPRs and FPRs over all the
movements and all the subjects.
Finally, Table 3.10 shows the mean over the five subjects for the six tasks used during
scalp EEG recordings (using estimated noise).

Since the legend is common for every table, it will be listed here:

• OSF Optimized Spatial Filter

• LSF Laplacian Spatial Filter

• LH Left Hand movement

• RH Right Hand movement

• _u movement towards ’up’ direction

• _d movement towards ’down’ direction

• _l movement towards ’left’ direction

• _r movement towards ’right’ direction
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Mov. OSF - TPR (%) LSF - TPR (%)

LH_u 84.0 80.0
LH_r 90.0 82.0
LH_d 96.0 82.0
LH_l 90.0 72.0
RH_u 80.0 70.0
RH_r 94.0 80.0
RH_d 86.0 74.0
RH_l 80.0 88.0

sd 6.0 6.0
Mean 87.5 78.5

Mov. OSF - FPR (%) LSF - FPR (%)

LH_u 18.0 20.0
LH_r 12.0 24.0
LH_d 30.0 26.0
LH_l 12.0 10.0
RH_u 18.0 32.0
RH_r 18.0 24.0
RH_d 32.0 38.0
RH_l 20.0 32.0

sd 7.4 8.6
Mean 20.0 25.8

Table 3.1: The table shows the detection accuracy for the iEEG data for the particular movement task
performed by the subject.
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Mov. OSF - TPR (%) LSF - TPR (%)

LH_u 79.9 70.1
LH_r 79.6 74.1
LH_d 71.4 81.5
LH_l 81.5 69.9
RH_u 72.7 78.0
RH_r 73.4 75.3
RH_d 68.3 72.4
RH_l 75.0 77.9

sd 4.7 4.1
Mean 75.2 74.9

Mov. OSF - FPR (%) LSF - FPR (%)

LH_u 26.7 38.9
LH_r 34.7 42.2
LH_d 34.4 36.7
LH_l 29.3 32.8
RH_u 34.8 45.6
RH_r 35.0 38.2
RH_d 52.5 43.6
RH_l 31.4 41.1

sd 7.8 4.1
Mean 34.9 39.9

Table 3.2: The table shows the detection accuracy for the iEEG data for the particular movement task
performed by the subject, using estimated noise signal for the analysis.
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Mov. OSF - TPR (%) LSF - TPR (%)

LH 81.5 84.5
RH 83.0 83.0

sd 1.1 1.1
Mean 82.3 83.8

Mov. OSF - FPR (%) LSF - FPR (%)

LH 14.5 23.5
RH 20.5 27.0

sd 4.2 2.5
Mean 17.5 25.3

Table 3.3: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands.

Mov. OSF - TPR (%) LSF - TPR (%)

LH 75.2 77.9
RH 78.7 80.3

sd 2.5 1.7
Mean 77.0 79.1

Mov. OSF - FPR (%) LSF - FPR (%)

LH 31.9 32.0
RH 35.2 34.3

sd 2.3 1.6
Mean 33.6 33.2

Table 3.4: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands, using estimated noise in analysis.
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OSF - TPR (%) LSF - TPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 66.3 60.0 76.6 57.1 71.7 70.4 64.7 64.9 66.3 71.7
LH_d 83.4 79.3 61.3 77.9 77.3 63.6 70.1 54.8 72.6 75.3
RH_u 70.4 87.8 69.0 75.2 81.0 68.4 79.6 75.0 65.0 66.0
RH_r 69.0 72.4 72.2 84.0 91.2 75.0 78.6 58.8 69.0 84.3
RH_d 63.3 78.8 75.3 65.0 86.5 79.6 88.9 69.1 65.0 64.4
RH_l 69.4 81.2 85.7 82.0 78.8 80.6 68.7 65.3 64.0 73.1

sd 6.9 9.5 8.2 10.4 6.9 6.7 8.9 7.2 3.3 7.2
Mean 70.3 76.6 73.4 73.5 81.1 72.9 75.1 64.7 67.0 72.5

OSF - FPR (%) LSF - FPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 45.9 31.8 45.7 27.6 44.6 45.9 36.5 40.4 36.7 29.3
LH_d 21.2 44.8 35.4 42.1 26.8 33.3 51.7 37.6 35.8 39.1
RH_u 17.3 25.5 24.0 30.9 21.0 27.6 34.7 50.0 25.8 38.0
RH_r 27.0 27.6 26.8 27.0 3.9 31.0 35.7 21.6 34.0 17.6
RH_d 33.7 20.2 29.9 36.0 19.2 19.4 39.4 27.8 27.0 50.0
RH_l 48.0 36.4 32.7 26.0 22.1 21.4 25.2 18.3 23.0 52.9

sd 11.3 9.3 8.6 6.3 14.7 9.6 7.0 11.1 5.1 12.1
Mean 32.2 31.1 32.4 31.6 22.9 29.8 37.2 32.6 30.4 37.8

Table 3.5: The table shows the detection accuracy for the scalp EEG data for the particular movement
task performed by the subject.
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OSF - TPR (%) LSF - TPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 70.0 62.0 73.7 65.3 65.7 73.8 62.6 65.1 58.1 69.3
LH_d 80.9 84.8 72.8 70.6 69.6 56.4 84.0 57.7 66.1 63.7
RH_u 76.7 78.0 69.7 69.8 75.9 68.8 79.0 76.7 63.6 58.3
RH_r 81.4 77.1 80.7 69.2 86.1 80.0 78.3 66.5 69.3 77.2
RH_d 57.7 77.0 70.0 78.5 78.8 68.6 85.1 64.1 64.4 64.6
RH_l 61.2 64.7 60.7 69.0 72.0 73.2 74.6 60.5 64.6 66.0

sd 10.1 8.7 6.5 4.4 7.2 7.9 8.2 6.5 3.7 6.3
Mean 71.3 73.9 71.3 70.4 74.7 70.1 77.3 65.1 64.4 66.5

OSF - FPR (%) LSF - FPR (%)

Mov. sub1 sub2 sub3 sub4 sub5 sub1 sub2 sub3 sub4 sub5

LH_u 40.1 20.2 32.2 28.7 19.7 19.8 18.8 17.1 16.9 23.6
LH_d 30.0 19.3 27.8 33.4 22.2 23.3 29.4 32.7 30.8 28.2
RH_u 19.4 22.2 16.9 21.6 21.5 18.0 25.3 25.1 22.5 21.8
RH_r 26.5 22.1 25.6 25.9 17.5 15.3 23.1 24.0 22.5 21.5
RH_d 20.4 18.3 23.3 23.3 17.2 19.8 25.1 24.7 19.5 29.9
RH_l 31.9 29.6 22.4 25.1 25.0 24.2 25.0 25.6 24.8 32.4

sd 7.7 4.1 5.2 4.2 3.0 3.3 3.5 5.0 4.8 4.6
Mean 28.1 22.0 24.7 26.3 20.5 20.1 24.5 24.9 22.8 26.2

Table 3.6: The table shows the detection accuracy for the scalp EEG data for the particular movement
task performed by the subject, using estimated noise signal for the analysis.
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OSF - TPR (%) LSF - TPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 74.5 87.8 70.0 84.0 81.0 69.4 79.6 78.0 69.0 66.0
RH 75.0 72.4 72.1 75.3 91.2 80.0 78.6 58.8 64.9 84.3

sd 0.4 10.9 1.5 6.2 7.2 7.5 0.7 13.6 2.9 12.9
Mean 74.8 80.1 71.1 79.7 86.1 74.7 79.1 68.4 67.0 75.2

OSF - FPR (%) LSF - FPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 24.5 25.5 23.0 27.0 21.0 23.5 34.7 51.0 34.0 38.0
RH 35.0 27.6 27.8 30.1 3.9 35.0 35.7 21.6 25.8 17.6

sd 7.4 1.5 3.4 2.2 12.1 8.1 0.7 20.8 5.8 14.4
Mean 29.8 26.6 25.4 28.6 12.5 29.3 35.2 36.3 29.9 27.8

Table 3.7: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands.

OSF - TPR (%) LSF - TPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 80.8 76.7 67.3 69.8 76.4 69.4 81.0 76.0 63.9 58.5
RH 74.4 76.2 80.1 72.4 85.1 82.7 78.0 66.3 69.1 76.4

sd 4.5 0.4 9.1 1.8 6.2 9.4 2.1 6.9 3.7 12.7
Mean 77.6 76.5 73.7 71.1 80.8 76.1 79.5 71.2 66.5 67.5

OSF - FPR (%) LSF - FPR (%)

Mov. sub 1 sub 2 sub3 sub4 sub5 sub 1 sub 2 sub3 sub4 sub5

LH 29.8 23.2 16.8 24.3 24.3 24.2 28.1 25.5 22.3 20.4
RH 25.8 19.8 26.3 29.1 19.5 19.7 21.5 26.6 22.4 20.1

sd 2.8 2.4 6.7 3.4 3.4 3.2 4.7 0.8 0.1 0.2
Mean 27.8 21.5 21.6 26.7 21.9 22.0 24.8 26.1 22.4 20.3

Table 3.8: The table shows the detection accuracy for the iEEG data, for the joined movement tasks
performed by the subject, for both hands, using estimated noise in analysis.
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TPR (%) FPR (%)

OSF LSF OSF LSF

72.3 69.7 24.3 23.2

Table 3.9: Mean over all the movement tasks and all the subjects, for the same spatial filter (estimated
noise data)

TPR (%) FPR (%)

Mov. OSF LSF OSF LSF

LH_u 67.3 65.8 28.2 19.2
LH_d 75.7 65.6 26.5 28.9
RH_u 74.0 69.3 20.3 22.5
RH_r 78.9 74.3 23.5 21.3
RH_d 72.4 69.4 20.5 23.8
RH_l 65.5 67.8 26.8 26.4

Table 3.10: The table shows the mean over the five subjects of the everyone of the six tasks performed
during scalp EEG recordings (estimated noise data).

3.2 Movement direction classification
In this part, we will follow the order of Methods to display the results the time frequency
analysis. A more deep analysis has been performed on iEEG signals because we got the
iEEG data quite quickly. The conclusions (see Discussion) of this first iEEG analysis
have been used to set up the EEG analysis.

3.2.1 iEEG data

3.2.1.1 Preprocessing and feature extraction

Bipolarization By bipolarization, we are keeping 91 channels out of 128. The isolated
recording sites (e.g. n9 if there is neither n8, nor n10) are removed.

Time-frequency maps Time-frequency (TF) maps have been plotted using wavelet
transform. Figure 3.1 shows a classic TF map. In order to find the artifacts, we plotted
TF map for each channel across all the events and all the trials (e.g. figure 3.2). We
listed the channels on which we found artifacts and we removed them for further analysis.



48 Chapter 3. Results

Figure 3.1: TF map for channel f10-f9, across all the event and all the samples. The vertical black lines
show respectively (1) the visual cue, (2) the go signal. The effect of wavelet transform in high frequencies
(stretching) and low frequencies (crushing) are noticeable. We also notice an increase of power in the high
frequencies during the preparation and the movement, while the power of the intermediate frequency band
decrease. The power of the very low frequencies is particularly high during the movement preparation.

Figure 3.2: Example of a synchrone high amplitude artifact around 2450 ms in the time frequency (TF)
map. This artifact is found on channels number 18 and 19 (i5-i4 and i6-i5), which have been employed
to send information about the experiment so as to synchronize the data.

3.2.1.2 Classification analysis

Pattern recognition methods are optimized by trial and error. We have 91 bipolarized
channels so far, and we could run an analysis on all the possible time windows and fre-
quency ranges, which would take both too much time and too much memory. Our main
goal with this first analysis is to aim the channels which provide the best results for each
classification method. Beside that, a secondary goal is to provide a first comparison of
the different classifiers and their parameters (e.g. k in kNN).
As explained in section 2.4.2.1, the analysis is ran on the frequency ranges: 2 − 4, 2 −
7, 4− 7, 8− 13, 6− 30, 15− 30, 30− 130, 60− 130, 60− 160 (Hz).
For each part of the task (0-1000 ms: rest, 1000-2500 ms: movement preparation, 2500-
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3900 ms: actual movement) we chose a wide time-window (see section 3.2.1.6) and we
avoided the edges to not consider the wavelet-transform artifacts: 100-800 ms: rest,
1000-2300 ms: preparation (2300 ms instead of 2500 ms to avoid the effect of anticipa-
tion of the go signal), 2700-3200 ms: execution (2700 ms instead of 2500 ms to catch
the actual movement execution, which begins on average 200 ms after the go signal).
Figure 3.5 displays the DAs found with Neural Network method. Due to long computa-
tion time, an extensive analysis closed to what we have done with LDA, SVM and kNN
was impossible (more than 10 days of computation). As a result, we decided to test
the NN on the best features of both LDA and kNN. E.g. the best feature for rest vs.
movement with LDA is 60-130 Hz on channel v14-v13, as a result, we tested the neural
network on 60-130 Hz on v14-v13 for the classification rest vs. movement.
A summary of the analysis is displayed in figures 3.6 and 3.7. TF maps of some repre-
sentative channels which yield to good DAs are displayed in figures 3.8, 3.9 and 3.10.
Because the kNN results are very similar depending on k, we will keep k = 3 (which
seems to provide the best results globally) and k = 5 (which is interesting because more
robust to the noise) for further analysis.

LDA SVM
DA chan. freq. DA chan. freq.

RM 82.25 60-130 v14-v13 86 2-7 i2-i1
RP 81.5 6-30 b2-b1 86.25 2-7 v14-v13
LRM 67 60-160 u2-u1 67 60-160 u2-u1
LRP 64 60-130 v3-v2 63 60-130 v3-v2
UDM 66 60-160 g13-g12 65 60-160 g13-g12
UDP 64 8-13 u2-u1 63 2-4 x14-x13
4M 36 15-30 o10-o9
4P 35 30-130 x14-x13

Figure 3.3: For LDA and SVM, for each comparison, the best decoding accuracy (DA) found across
the cchannels and across the frequency bands is displayed. In lines, RM: rest vs. movement, RP: rest
vs. preparation, LRM: left vs. right during the movement, LRP: left vs. right during the preparation,
UDM: up vs. down during the movement, UDP: up vs. down during the preparation, 4M: classification
of the 4 directions during the movement, 4P: classification of the 4 directions during the preparation.
Good DA yielded by channels with artifacts are not displayed (see figure 3.2)
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kNN, k=3 kNN, k=5
DA chan. freq. DA chan. freq.

RM 99.5 60-130 x13-x12 99 15-30 g14-g13
RP 99.75 2-7 k11-k10 98.75 30-130 m11-m10
LRM 78 8-13 f3-f2 78 8-13 f3-f2
LRP 71 2-7 e8-e7 69 60-160 o9-o8
UDM 73 15-30 q7-q6 66 60-130 v2-v1
UDP 68 2-4 e6-e5 71 4-7 o2-o1
4M 37 60-130 f9-f8 40.5 15-30 o9-o8
4P 40 2-7 q8-q7 36.5 2-7 e8-e7

Figure 3.4: For kNN (k=3 ands k=5), for each comparison, the best decoding accuracy (DA) found
across the channels and across the frequency bands is displayed. In lines, RM: rest vs. movement,
RP: rest vs. preparation, LRM: left vs. right during the movement, LRP: left vs. right during the
preparation, UDM: up vs. down during the movement, UDP: up vs. down during the preparation, 4M:
classification of the 4 directions during the movement, 4P: classification of the 4 directions during the
preparation. Good DA yielded by channels with artifacts are not displayed (see figure 3.2)

NN-LDA NN-kNN
RM 95.7 95.7
RP 95.2 94
LRM 55 50
LRP 59 44
UDM 50 50
UDP 50 41

Figure 3.5: In NN-LDA column, the DA found by using the best couples channel-frequency found
with LDA method for each task is displayed. In NN-kNN column, the DA found by using the best
couples channel-frequency found with kNN (k=3) method for each task is displayed. In lines, RM:
rest vs. movement, RP: rest vs. preparation, LRM: left vs. right during the movement, LRP: left vs.
right during the preparation, UDM: up vs. down during the movement, UDP: up vs. down during the
preparation. Good DA yielded by channels with artifacts are not displayed (see figure 3.2)
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Figure 3.6: Display the best DA found for each task and each classifier. LRM: left vs. right during
the movement, LRP: left vs. right during the preparation, UDM: up vs. down during the movement,
UDP: up vs. down during the preparation, 4M: classification of the 4 directions during the movement,
4P: classification of the 4 directions during the preparation. In order to plot the NN, we averaged the
results found for NN-LDA and NN-kNN (see figure 3.5)

Figure 3.7: Display the number of occurrences of each frequency band among the best features found
across the classifiers.
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Figure 3.8: Averaged time frequency map across all the events and all the epochs for channel v14-
v13. We notice an increase of power in high and low frequencies during the preparation and the actual
movement. This channel yields to 82.25 % of correct classification of rest vs. movement on 60-130 with
LDA and 86.25 % of correct classification of rest vs. preparation on 2-7 with SVM.

Figure 3.9: Up minus down averaged time frequency map across all the epochs for channel o2-o1. We
notice an increase of power in 2-5 with a decrease of power in 5-8 during the preparation and an increase
of power in 3-7 during the movement. This channel yields to 71 % of correct classification of up vs.
down during the preparation on 4-7 with kNN, k=5.
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Figure 3.10: Left minus right averaged time frequency map across all the epochs for channel u2-u1.
We notice a global decrease of high frequencies power during the movement. This channel yields to 67
% of correct classification of right vs. left during the movement on 60-160 with both LDA and SVM.

3.2.1.3 Influence of normalization

We studied the influence of normalization on the DA of the three best channels for each
couple classifier-task. Absence of normalization, and the methods (1) (2) (3) of normal-
ization (see section 2.4.2.1) has been considered. The method (4) is not used as we can
not access the standard deviation with our way of saving the TF maps. The results for
kNN (k=3) and LDA are respectively displayed in figures 3.11 and 3.12. The results for
kNN (k=5) are very similar to the ones obtained for kNN (k=3), the results for SVM
are also very similar to the ones obtained for LDA. Methods (1) substract the averaged
baseline then divide by the averaged baseline and (2) divide by the averaged baseline pro-
vide the same results in term of DA but lead to different time-frequency map display.
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kNN, k=3
no norm. sub. & div. sub.

RM 57/x13-x12 99.5/x13-x12 99/n14-n13
RP 58.75/h13-h12 99.25/v3-v2 99.25/g14-g13
LRM 68/e8-e7 78/e8-e7 64/q3-q2
LRP 64/f3-f4 71/f3-f4 62/i5-i4
UDM 61/e12-e11 73/q7-q6 62/q7-q6
UDP 63/b3-b2 68/e6-e5 66/f11-f10
4M 32/v3-v2 37/q8-q7 34.5/q8-q7
4P 33/f9-f8 40/f9-f8 32.5/e7-e5

Figure 3.11: Comparison: absence of normalization (No norm.) and two normalization methods:
subtraction and division by the baseline, subtraction of the baseline. The third method (division by the
baseline) provide the same results as the first method. The comparison is performed on the three best
channels of kNN (k=3) for the 8 tasks (RM: rest vs. movement, RP: rest vs. preparation, LR: left vs.
right during the movement (LRM) and the preparation (LRP), UD: up vs. down, 4: classification of the
4 directions). The best DA and the corresponding channel are displayed.

LDA
no norm. sub. & div. sub.

RM 66.5/l14-l13 82.25/k7-k6 83.75/v14-v13
RP 58.75/b2-b1 81.5/b2-b1 80.25/b2-b1
LRM 64/u7-u6 67/v3-v2 66/v3-v2
LRP 62/e3-e2 64/u2-u1 62/e3-e2
UDM 62/i4-i3 66/g13-g12 63/v2-v1
UDP 60/x14-x13 64/u2-u1 60/u2-u1
4M 33/x14-x13 29.5/x14-x13 33/x14-x13
4P 32.5/o10-o9 35/o10-o9 31.5/o10-o9

Figure 3.12: Comparison: absence of normalization (No norm.) and two normalization methods:
subtraction and division by the baseline, subtraction of the baseline. The third method (division by the
baseline) provide the same results as the first method. The comparison is performed on the three best
channels of LDA for the 8 tasks (RM: rest vs. movement, RP: rest vs. preparation, LR: left vs. right
during the movement (LRM) and the preparation (LRP), UD: up vs. down, 4: classification of the 4
directions). The best DA and the corresponding channel are displayed.

3.2.1.4 Time windows influence

See figures 3.14 and ?? for the analysis results. The protocol is explained in captions.
The combination 222 will be kept for further analysis.
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kNN, k=3
111 122 133 211 222 233 311 322 333

RM 98.5 98.75 99 98.75 99.5 98.75 99 99.25 99.25
RP 98.75 99 99 99 99.75 99 98.75 99.25 99
LRM 62 65 63 62 78 60 62 57 63
LRP 61 64 69 73 71 65 60 69 64
UDM 65 64 63 63 73 63 59 61 65
UDP 64 58 67 62 69 62 64 65 58
4M 31.5 33 31 34.5 37 32.5 30 32 31
4P 33 30.5 31 31 40 32 31 33 30

Figure 3.13: Display the best DA found for each task and each time windows combination for kNN,
k=3. The considered time windows are: 100-500 ms, 400-800 ms, 100-800 ms for the rest, 1000-1400
ms, 1000-2300 ms, 2000-2500 ms for the preparation, 2500-3000 ms, 2700-3700 ms, 3200-3700 ms for the
movement. The time windows are referenced by a code. E.g. 122 means we use the first range for the
rest, the second for the preparation and the second for the movement (thus 100-500 ms, 1000-2300 ms
and 2700-3700 ms). We use the same task notations as previously.

LDA
111 122 133 211 222 233 311 322 333

RM 78.75 81.75 81.75 77.5 82.25 80.25 81.25 79.75 83.25
RP 81 81.25 78.75 77.75 81.5 80.75 79 79.25 82
LRM 60 62 63 61 67 66 62 64 65
LRP 64 61 62 61 64 61 63 59 61
UDM 59 67 62 61 64 61 60 64 65
UDP 61 60 61 61 64 61 58 64 62
4M 31 32.5 32.5 30.5 36 32.5 30 31.5 34
4P 31.5 30.5 30 32 33 33.5 32.5 36 33

Figure 3.14: Display the best DA found for each task and each time windows combination for the
LDA. The considered time windows are: 100-500 ms, 400-800 ms, 100-800 ms for the rest, 1000-1400
ms, 1000-2300 ms, 2000-2500 ms for the preparation, 2500-3000 ms, 2700-3700 ms, 3200-3700 ms for the
movement. The time windows are referenced by a code. E.g. 122 means we used the first range for the
rest, the second for the preparation and the second for the movement (thus 100-500 ms, 1000-2300 ms
and 2700-3700 ms). We used the same task notations as previously.

3.2.1.5 Two features analysis

The two features analysis (see figures 3.15 and 3.17) has to be compared with the one
feature analysis (see figure 3.3, 3.4 and 3.5). All the combinations of the chosen frequency
ranges (see 2.4.2.1) has been investigated on the three best channels.
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LDA, 2 features
DA Channel Freq. ranges

RM 84.25 v14-v14 2-4 – 60-160
RP 82.75 b3-b2 2-7 – 30-130
LRM 66 u2-u1 2-4 – 30-130
LRP 65 g13-g12 4-7 – 60 160
UDM 65 v3-v2 2-4 – 60-160
UDP 68 x14-x13 2-4 – 6-30
4M 33 o10-o9 2-7 – 30-130
4P 36 x14-x13 2-4 – 4-7

Figure 3.15: Display the best results found using LDA with two features (two frequency ranges) applied
on the 3 best channels.

SVM, 2 features
DA Channel Freq. ranges

RM 88.5 i2-i1 2-7 – 6-30
RP 90 v14-v13 2-7 – 30-130
LRM 66 u2-u1 4-7 – 60-160
LRP 63 v3-v2 2-4 – 60 130
UDM 64 g13-g12 60-130 – 60-160
UDP 66 x14-x13 2-4 – 6-30

Figure 3.16: Display the best results found using SVM with two features (two frequency ranges) applied
on the 3 best channels.

kNN, k=3, 2 features
DA Channel Freq. ranges

RM 97.75 x13-x12 2-4 – 15-30
RP 97.75 v3-v2 15-30 – 30-130
LRM 74 f3-f2 8-13 – 60-160
LRP 66 e8-e7 6-30 – 15-30
UDM 64 n9-n8 2-4 – 30-130
UDP 62 b3-b2 2-4 – 2-7
4M 35 f10-f9 2-7 – 60-160
4P 36 q8-q7 2-7 – 30-130

Figure 3.17: Display the best results found using kNN, k=3, with two features (two frequency ranges)
applied on the 3 best channels.
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kNN, k=5, 2 features
DA Channel Freq. ranges

RM 97.75 g14-g13 6-30 – 15-30
RP 98 m11-m10 2-7 – 15-30
LRM 74 f3-f2 8-13 – 60-160
LRP 68 o9-o8 15-30 – 60-130
UDM 64 n9-n8 2-4 – 30-130
UDP 62 n9-n8 6-30 – 30-130
4M 40 g12-g11 4-7 – 60-130
4P 37 e8-e7 2-7 – 30-130

Figure 3.18: Display the best results found using kNN, k=5, with two features (two frequency ranges)
applied on the 3 best channels.

LDA, 2 features
DA Channel Freq. ranges

RM 84.25 v14-v13 2-4 – 60-160
RP 83.75 v14-v13 2-7 – 60-130
LRM 68 n2-n1 2-7 – 4-7
LRP 66 k12-k11 8-13 – 6-30
UDM 66 o10-o9 2-7 – 30-130
UDP 69 e7-e6 30-130 – 60-160
4M 39.5 z5-z4 8-13 – 6-30
4P 36.5 n10-n9 4-7 – 60-130

Figure 3.19: Display the best results found using LDA with two features (two frequency ranges) applied
on all the channels.

3.2.1.6 Channels combination

Another analysis has been launched to see if summing some channels could lead to more
discriminant features. We investigated all the possible combinations (by summation)
of the three best channels for each couple classifier-task (see ). The frequency window
combination 222 is used, all the frequency ranges are tested. Compared to the previous
results (see 3.2.1.2), we notice a global decrease of the DA.
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LDA
DA Channel(s) Frequency range

RM 82.25 v14-v13 60-130
RP 81.5 v2-v1,b2-b1 6-30
LRM 67 u2-u1 60-160
LRP 64 v3-v2 60-130
UDM 65 g13-g12, v2-v1, i3-i2 60-130
UDP 62 m10-m9, u2-u1 2-7
4M 30 o10-o9, q3-q2,f13-f12 60-160
4P 35 x14-x13 2-4

Figure 3.20: The 3 best channels (see previous) has been combined as follow: chan1+chan2,
chan2+chan3, chan3+chan1, chan1+chan2+chan3. The best DAs across the combinations are displayed.
If one channel is used multiple times (e.g. chan1=chan2 and chan1+chan2 provides the best DA) we
only display one time the name of this channel.

SVM
DA Channel(s) Frequency range

RM 86 e8-e7, i2-i1 2-7
RP 86.25 v14-v13,b3-b2 2-7
LRM 67 u2-u1 60-160
LRP 63 v3-v2 60-130
UDM 63 g13-g12, i3-i2 60-160
UDP 59 m10-m9, x14-x13 2-4

Figure 3.21: The 3 best channels (see previous) has been combined as follow: chan1+chan2,
chan2+chan3, chan3+chan1, chan1+chan2+chan3. The best DAs across the combinations are displayed.
If one channel is used multiple times (e.g. chan1=chan2 and chan1+chan2 provides the best DA) we
only display one time the name of this channel.
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kNN, k=3
DA Channel(s) Frequency range

RM 99.5 x13-x12, n14-n13 60-160
RP 99.25 v3-v2,g14-g13 6-30
LRM 65 i4-i3, f3-f2 8-13
LRP 64 q3-q2, e8-e7 6-30
UDM 61 e12-e11, q7-q6 60-130
UDP 67 e6-e5, b3-b2 30-130
4M 35 e6-e5, f10-f9 60-160
4P 33 v3-v2, f12-f11 30-130

Figure 3.22: The 3 best channels (see previous) has been combined as follow: chan1+chan2,
chan2+chan3, chan3+chan1, chan1+chan2+chan3. The best DAs across the combinations are displayed.
If one channel is used multiple times (e.g. chan1=chan2 and chan1+chan2 provides the best DA) we
only display one time the name of this channel.

kNN, k=5
DA Channel(s) Frequency range

RM 99 m11-m10, g14-g13 15-30
RP 98.75 b7-b6, m11-m10 30-130
LRM 57 f3-f2, l12-l11 4-7
LRP 66 b7-b6, l4-l3 2-7
UDM 67 q7-q6 60-160
UDP 59 n9-n8, h13-h12 30-130
4M 34.5 o9-o8, z2-z1 60-160
4P 31 z2-z1, e8-e7 30-130

Figure 3.23: The 3 best channels (see previous) has been combined as follow: chan1+chan2,
chan2+chan3, chan3+chan1, chan1+chan2+chan3. The best DAs across the combinations are displayed.
If one channel is used multiple times (e.g. chan1=chan2 and chan1+chan2 provides the best DA) we
only display one time the name of this channel.

3.2.2 EEG data

3.2.2.1 Eye artifacts monitoring

The threshold methods used to discard the eye artifacts worked correctly. Up to 10
epochs has been removed for each couple subject-event.

3.2.2.2 Classification results

Due to large amount of data (5 subjects with 100 epochs per event for EEG, instead
of one subject with 50 epochs per event for iEEG) and lack of time, we decided to
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set the analysis protocol with regards to the iEEG results (see 2.4.2.5). We then kept
long time windows: 300-800 ms, 1000-2300 ms, 2500-3700 ms, used ’subtraction then
division’ normalization, and ran a single feature analysis with LDA, kNN (k=3) and
kNN (k=5). We also tried other more specific time windows (e.g. 2500-2800 on subject
1) from scratch without getting a better DA. SVM has been ran on subject 1, and we
checked that, as for the iEEG analysis, the results were very similar to those we have
got from LDA. As a result, because this classifier is very time consuming, we decided to
discard it. For the same time reason, we did not investigate NN classifier. The results
of the 4 directions comparisons were close to the level of the chance (25 %) and are
consequently not displayed.
A summary of the analysis is displayed in figures 3.29 and 3.30. TF maps of some
channels which yield to good DAs are displayed in figures 3.31, 3.32 and 3.33.

Subject 1, right hand
LDA KNN3 KNN5

DA chan. freq. DA chan. freq. DA chan. freq.
RM 81.6 30-130 C3 99.6 60-85 C3 99.5 30-130 C2
RP 81.6 62-87 F3 99.6 15-30 CZ 99.3 2-3 CP1
LRM 65.3 50-128 CZ 63.2 15-30 C1 64.3 15-30 C1
LRP 60.7 62-87 F3 66.3 50-128 CP4 64.3 50-128 C4
UDM 63.8 30-50 FZ 62.2 2-4 F3 63.8 60-85 F1
UDP 58 15-30 CPZ 62.2 50-128 F4 64.8 50-128 F4

Figure 3.24: For each classifier, for each comparison, display the best decoding accuracy (DA) found
across the channels and across the frequency bands for the first subject. In lines, RM: rest vs. movement,
RP: rest vs. preparation, LRM: left vs. right during the movement, LRP: left vs. right during the
preparation, UDM: up vs. down during the movement, UDP: up vs. down during the preparation.

Subject 2, right hand
LDA KNN3 KNN5

DA chan. freq. DA chan. freq. DA chan. freq.
RM 83.5 30-130 CP1 99.6 15-30 FCZ 99.6 60-85 CP2
RP 79.6 2-7 FC1 99.6 2-4 C3 99.5 4-7 F1
LRM 61.3 30-130 CZ 66.5 4-7 C1 64.4 15-30 C1
LRP 61.3 2-5 FC1 65.5 4-7 C1 64.9 50-128 C1
UDM 60.8 15-30 FZ 63.9 60-85 CP4 64.9 50-128 FC3
UDP 59.8 15-30 F1 62.9 60-85 C1 69 60-85 C1

Figure 3.25: For each classifier, for each comparison, display the best decoding accuracy (DA) found
across the channels and across the frequency bands for the second subject. In lines, RM: rest vs.
movement, RP: rest vs. preparation, LRM: left vs. right during the movement, LRP: left vs. right
during the preparation, UDM: up vs. down during the movement, UDP: up vs. down during the
preparation.
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Subject 3, right hand
LDA KNN3 KNN5

DA chan. freq. DA chan. freq. DA chan. freq.
RM 88.7 15-30 F4 99.7 10-30 C4 99.4 30-130 FC4
RP 79.1 2-7 FC2 99.7 30-130 FCZ 99.3 2-3 FC1
LRM 62.4 30-130 FC1 61.3 4-7 F3 63.9 30-130 F1
LRP 61.3 30-50 CZ 61.9 4-7 F2 63.9 60-85 CP1
UDM 58.2 60-85 F3 63.9 60-85 CPZ 63.4 2-4 FC4
UDP 60.8 62-87 CP3 69 2-3 F3 65.4 2-5 C1

Figure 3.26: For each classifier, for each comparison, display the best decoding accuracy (DA) found
across the channels and across the frequency bands for the third subject. In lines, RM: rest vs. movement,
RP: rest vs. preparation, LRM: left vs. right during the movement, LRP: left vs. right during the
preparation, UDM: up vs. down during the movement, UDP: up vs. down during the preparation.

Subject 4, right hand
LDA KNN3 KNN5

DA chan. freq. DA chan. freq. DA chan. freq.
RM 78.3 30-130 CZ 99.6 30-50 CP1 99.5 30-50 CP1
RP 79.7 10-30 FZ 99.6 30-50 FC2 99 30-130 FC2
LRM 62.8 30-50 FC2 62.3 30-130 CZ 63.9 30-50 FC2
LRP 60.8 10-30 CZ 64.9 2-7 CP3 66.5 50-128 C3
UDM 62.9 2-5 F1 63.4 30-50 CZ 62.9 2-5 F1
UDP 58.8 10-30 C3 66.5 2-5 FZ 68.6 2-5 FZ

Figure 3.27: For each classifier, for each comparison, display the best decoding accuracy (DA) found
across the channels and across the frequency bands for the fourth subject. In lines, RM: rest vs. move-
ment, RP: rest vs. preparation, LRM: left vs. right during the movement, LRP: left vs. right during
the preparation, UDM: up vs. down during the movement, UDP: up vs. down during the preparation.
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Subject 5, right hand
LDA KNN3 KNN5

DA chan. freq. DA chan. freq. DA chan. freq.
RM 82 30-130 F3 99.7 10-30 CP1 99.2 2-5 C3
RP 79.8 60-85 CPZ 99.9 2-4 CP3 99.4 60-85 F4
LRM 70.6 60-85 F3 65.5 2-7 CP2 64.4 2-7 FC2
LRP 64.9 30-130 F3 66 2-4 CP1 65.5 10-30 CP4
UDM 72.7 50-128 F3 71.6 50-128 F3 69.6 50-128 F3
UDP 64.4 50-128 F1 63.4 15-30 FC4 64.9 60-85 CZ

Figure 3.28: For each classifier, for each comparison, display the best decoding accuracy (DA) found
across the channels and across the frequency bands for the fifth subject. In lines, RM: rest vs. movement,
RP: rest vs. preparation, LRM: left vs. right during the movement, LRP: left vs. right during the
preparation, UDM: up vs. down during the movement, UDP: up vs. down during the preparation.

Figure 3.29: Display the best DA found for each task and each classifier. For each couple classifier-task,
we averaged the best DA found across the 5 subjects. LRM: left vs. right during the movement, LRP:
left vs. right during the preparation, UDM: up vs. down during the movement, UDP: up vs. down
during the preparation.
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Figure 3.30: Display the number of occurrences of each frequency band among the best features found
across the classifiers. The analysis is performed across the 5 subjects.

Figure 3.31: Averaged time frequency map across all the events and all the epochs for channel CP1
(subject1). We notice a decrease of the power in low frequencies during both the preparation and the
movement, while the intermediate frequencies power increases only during the preparation, and the
high frequencies power increases only during the movement. This channel yields to 99.3 % of correct
classification of rest vs. movement on 2-3 with kNN, k=5.
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Figure 3.32: Up minus down averaged time frequency map across all the epochs for channel F1 (subject
1). We notice a decrease of power in high frequencies during the preparation. It is difficult to say whether
or not artifacts are involved though. This channel yields to 63.8 % of correct classification of up vs.
down during the movement on 60-85 with kNN, k=5.

Figure 3.33: Right minus left averaged time frequency map across all the epochs for channel F3 (subject
5). We notice a first decrease of intermediate and high frequencies during the preparation, then a more
clear decrease of intermediate and high frequencies during the movement. This channel yields to 70.6 %
of correct classification of right vs. left during the movement on 60-85 with LDA. F3 also yields to 64.9
% of correct classification of right vs. left during the preparation on 30-130 with LDA.



Chapter 4

Discussion

In this part, we try to have a critical view on various aspects of our work, first by sum-
marizing the results and then by confronting our outcomes to the BCI-related literature.
We will finally draw a conclusion and try to propose a way for going further.

4.1 Results summary
In general, the results demonstrated the feasibility to detect voluntary movement in-
tention using the negative phase of MRCPs or the time frequency maps from executed
movements trials in four directions. Despite the relative complexity of the protocol fol-
lowed by the subject (see Chapter 2), the true positive rates obtained from both iEEG
data and scalp EEG with time analysis show that the proposed methods can be used for
movement intention detection purposes. The TPR (true positive rate) is always above 70
% (OSF data) and often above 75 %, while the majority of the FPRs (false positive rate)
are around 25 %. It is also possible to use time frequency analysis in this purpose: the
DA (decoding accuracy) obtained from both iEEG and EEG data with time frequency
analysis is above 80 % (LDA and SVM) and goes up to 99 % (kNNs) for the movement
intention detection.
Once the movement intention is validated, the movement direction analysis can be taken
into account. Time frequency analysis enables movement direction classification on in-
tracortical EEG during the intended movement (around 70 % with kNN, 64 % with LDA
or SVM for two directions classification; around 38 % with kNN and 35 % with LDA
for four directions classification) and actual movement (around 75 % with kNN and 67
% with LDA or SVM for two directions classification; around 39 % with kNN and 36 %
with LDA for four directions classification). Direction classification is possible for two
directions on scalp EEG data (on average 66 % with kNN across the subjects and 62 %
with LDA; however, up to 72 % can be reached for subject number 5), while the four
directions classification is around the level of chance.

The most striking outcome from EEG results is the big differences which can be seen
across the different subjects in many fields: frequency ranges, results of the LDA, results
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of the kNN. As for the employed methods, one can notice an important increase of
the DA on the comparisons rest vs. movement/preparation by using normalization. The
best results are found with the ’sub. & div.’ normalization at one exception (4 directions
movement for LDA). We can therefore conclude that normalization enhance the decoding
accuracy for time frequency analysis. Concerning the time windows, according to figures
3.14 and 3.13 the choice of the three longer time intervals (222, see figure caption for
explanation) yields to the best results. Our effort to combine the two or three best
channels did not work (see 3.2.1.6)). Finally, by using two features instead of one, we
noticed an increase of the DA for the comparisons RM and RP with LDA and SVM,
while the DAs for the other comparisons were similar. However, the use of two features
for kNN (k=3 and k=5) led to a globally decreased DA.

4.2 Similar BCI paradigms
The novelty of the movement intention detection analysis of our report stands in
the application of the movement intention detection based on the negative phase of the
MRCP, for four different directions of movement, with no prior training of the subjects.
Since there are no similar studies, no direct comparison is possible.
We can though report several studies which concentrated their attention on low frequen-
cies (1-4 Hz) switch designs mainly intended for communication purposes [Bashashati
et al., 2006; Yom-Tov and Inbar, 2003]. Their results show lower TPR (50 -70 %) than
ours, but one of the goals relies in minimal FPR (which was around 1-2 %).
The most similar work compared to ours comes from a recent study conducted by Niazi
et al., whose work has been of great inspiration for the movement intention method
during the development of the project. The accuracy of movement detection intention
from single trial MRCPs for both movement imagination and execution was measured
using a portion of the negative phase of the MRCP (until movement onset) as a tem-
plate in order to be tested against the testing data (scalp EEG, 9 channels). The same
Optimized Laplacian Filter (OSF) was used to improve the SNR of the MRCP over the
noise. The mean of TPR was 82.5 % (FPR not reported in the article), which is slightly
better than our findings. However, unlike us, the subject performed always the same
task (ankle dorsiflexion) and they had to undergo a training session. In this study it was
demonstrated that the OSF outperforms the LSF.
Relying on our results, we can state the Optimized Spatial Filter brings a slight im-
provement (or sometimes no improvement) over the Large Laplacian filter. One of the
reasons may stand in the fact that, by protocol, we dispose only of 1 second of noise
signal (the ’rest period’) to be used in the SNR optimization. These results anyway
confirm the robustness of the Optimized Spatial filter in this type of analysis, where four
different movement directions were performed by 5 (scalp EEG) + 1 (iEEG) subjects
at their preferred speed, following a rather "complex" set of instructions. The validity
of the OSF is also indicated in a study conducted on MRCP classification [Boye et al.,
2008]. The analysis was conducted on imagination of plantar-flexions with the right
foot. Features were extracted with principal component analysis and classification be-
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tween MRCPs and noise was performed with kNN and SVM. In this case, the TPR were
high (80-90 %), but given the differences in the protocol, e.g. a larger data set, only one
task rather than four, and usage of the entire MRCP waveform was used in the analysis,
a comparison seems inappropriate.
Some of the above mentioned papers tend to give priority to a low FPR rather than high
TPRs. Depending on the purpose of the BCI system which this study is be applied to, a
different threshold can be set, which results in a different weight of TPRs over FPRs. In
our study, the threshold was set trying to get the highest TPR while having the lowest
FPR possible, but other approaches can be used. For instance, higher TPR could be
achieved increasing the number of false positives, or even using the entire MRCP as
template instead of the negative phase. In the second case, thought, the detection could
only be made once the movement is already started, loosing the predictive design of the
study.
Further considerations can be made about the movement detection accuracy. The first
note can be the distinction between results obtained using ’real’ noise (’rest period’ in
the protocol, 1 sec. of duration) and longer artificial noise, estimated from the real one.
As it can be expected, the performances decrease using estimated noise. Nevertheless,
we base most of our considerations on these results, as the same length of ’noise’ and
’signal’ (see Chapter 2) is used for the movement detection and so the results can be
expect to be more "realistic".
A second reflection is that there is an improvement brought by using a bigger data set.
Using all the data from one hand (with no distinction of two/four movements) leads
to higher TPRs and lower FPRs, particularly for the iEEG data. This result could be
explained by the fact that a larger training set leads to built a better MRCP template.
This difference is indeed more beneficial to the iEEG, as we dispose only of half (50)
epochs for each movement in respect of the scalp EEG data (100 epochs per movement).
Furthermore, the iEEG results, in general, show +10 % of FPRs, despite the fact that
intracortical recording have greater spatial resolution than standard scalp EEG. This
could be because the electrodes in the epileptic patient were placed in order to treat
his illness, rather than in optimal locations (e.g the motor cortex). Furthermore, the
locations of the electrodes were not spatially disposed on a surface like for the scalp EEG
data, nor one next to the other, but spread around the brain. This probably affected
the performance since we use a spatial filter for our analysis also on the iEEG data.
Finally, a consideration about the detection accuracies of movement in the four direc-
tions can be made. The tables show (in particular, but not only, Table 3.10) no general
trend of a better detection of movement intention for a particular direction rather than
another.

Moving to direction classification, as first notice, it should be specified that our
time frequency analysis compares different classification methods (LDA, SVM, kNN,
NN) on both scalp and intracranial EEG recordings, which has not be done previously
according to our knowledge. In addition, the different normalization methods comparison
is not referenced in the literature as well. As a result, the used paper for this section
only partially cover the analysis performed in our study. For instance, we did not focus
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our main attention on the optimization of the classifiers, while most of the published
studies did it.

Channel combination In a similar EEG experiment, Jerbi et al. reported a peak of
the DA when 34 out of 55 channels were used (and a drop for more than 34 channels).
According to Waldert et al. the decoding performance of iEEG could be increased by
using additional recording sites. Indeed, the weaker inter-channel correlation and thus
less redundancy between channels, could lead to better results. Waldert et al., in another
study, reports that the use of few sensors exclusively above contralateral motor-related
areas after movement onset can improve the DA of a similar EEG experiment. Finally,
Mehring et al. in figure 4.1 shows how the use of multiple channels can increase the DA.

Figure 4.1: Decoding of movement target and trajectories from multiple local field potentials (LFP).
Average probability of correctly discriminating between eight targets as a function of the number of
recording electrodes. LFPs (green) and single-unit activity (SUA, red), both recorded simultaneously
from identical sets of micro-electrodes yielded a similar decoding power. Using LFPs in conjunction with
simultaneously recorded SUAs (black) further increased the average decoding power [Mehring et al.,
2004].

Feature combination According to Jerbi et al., simultaneous multichannel recordings
from large neuronal ensembles used in the context of brain machine interfaces further
support the notion of a distributed representation of limb kinematics in multiple cortical
areas. This assertion supports the use a multi-feature approach. In addition, Rickert
et al. shows that combining two frequency ranges can increase the DA (e.g. <4 Hz and
63-200 Hz, see figure 4.2).

iEEG analysis According to Jerbi et al. highest directional tuning is found in <4
Hz and 60-140 Hz. From our analysis, we can observe that most of the frequencies
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Figure 4.2: Decoding power of different frequency bands. a, The box plots show the distribution
of decoding power of single LFPs for various frequency bands and their combinations indicated at the
bottom. White bars depict the median, the box ranges from the lower to the upper quartiles, the dashed
whiskers extend to the most extreme decoding power within the 1.5-fold interquartile range from the
borders of the bars, and the symbols mark outliers. b, Decoding power of simultaneous LFP recordings
from eight electrodes (symbols as in a) [Rickert et al., 2005].

ranges which provided the best DAs are either in the low frequency or in the high
frequency bands. Yet, some intermediate bands also yield to good results, especially
for kNN and LDA. Rickert et al. shows that the amplitude of <13 Hz is modulated
with the direction of movement and that the amplitude of 16–42 Hz band decreases
during movement execution, which supports our use of intermediate frequency bands.
Furthermore, Mehring et al. uses the changes in relative spectral power for 8-30 Hz in
order to classify limb movements.
The reached DA can be seen as satisfactory and can be compared to what is found
in the literature. E.g. Leuthardt et al. used ECoG recordings decoding to control a
one-dimensional computer cursor. This binary task can be a achieved with up to 74 %
accuracy while performing opening and closing movements of the right hand and with
83 % of accuracy while the subject is performing the same imagined task. Other binary
tasks referenced by Leuthardt et al. are performed with a 60 to 70 % DA before training.
However, many papers are focused on the 4 directions or 8 directions classification (see
figure 4.2). Our results can be considered valid, considering the fact that we use only
one channel where most of the results referenced in the literature use a multiple channels
approach.

EEG analysis First of all, it has to be said that the movement direction decoding
from extracranial EEG data is still a challenge and has only been performed recently
for the first time by Waldert et al. in 2008. Therefore, it has been largely assumed
that non invasive recordings cannot decode limb movement directions because of the low
SNR and bandwidth limitation [Jerbi et al., 2011]. Jerbi et al. reports 80 % in a binary
single trial EEG classification left vs. right across 4 subjects in his review. If we con-
sider the left vs. right classification across our 5 subjects, we achieved 64.5 % on average.
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4.3 Limitations
We first deal with the limitations leaded by the experimental protocol, then we dig into
more specific limitations: first for the time-based analysis, then for the time frequency
analysis. As mentioned above, due to specific methods used for each technique, we
judged the display our comments in two different parts to be clearer for the reader.

4.3.1 Experimental protocol

4.3.1.1 iEEG

For obvious ethical reasons, iEEG recordings in human are only performed on non
healthy epileptic subject during the pre surgical investigation. iEEG is then only recorded
in patients with intractable epilepsy who are sometimes cognitively impaired due to var-
ious pain/sedating medication or frequent seizures. In addition, between recovery of the
patient from channel implantation and channel removal there is often very limited time,
and sometimes a low patient interest to perform BCI experiments ([Waldert et al., 2009]).
Furthermore, epileptic EEG shows characteristics peaks from time to time during the
’normal’ state. During a crisis, those peaks gain in amplitude and the different EEG
channels begin to synchronize on each other. If there is a crisis during an experiment,
the data have to be discarded. However, the ’normal state’ peaks remain and might
induce a bias in our data. Furthermore, we can also wonder if there are other hidden
epileptic-related phenomena which could impact classifiers accuracy.
Because electrode placement is solely determined by the requirements of epilepsy surgery,
we miss some areas which could be relevant for our purpose. Indeed, according to
Leuthardt et al., the decoding performance is dependant on the location of the im-
planted electrodes, the number of electrodes, and the inter-electrodes distance. It might
also depend on electrode size and impedance. These parameters are determined by the
requirements of pre-neurosurgical evaluations. As a result, in case of low DA, a general
conclusion about whether or not iEEG is able to decode limb movements can not be
drawn. On the contrary, an iEEG analysis can randomly reveal the importance of a very
specific zone for some tasks.

4.3.1.2 EEG

Concerning scalp EEG data, we face the opposite problem: the recorded area is wide
for each electrode. Although EEG enables to cover all the surface of the brain, it is not
able to aim a very specific zone.
As reviewed by Jerbi et al., the presence of eye artifact shows a notable drop in accuracy.
Even is we are discarding blinks by the mean of a threshold comparison [Waldert et al.,
2008], some eye saccades might remain and impact the results. In addition, at least
another person was present in the same room while the experiment was running, leading
to an increased risk of eye saccades.
Finally, although the room in which the EEGs have been recorded is shielded from the
outside (roads, other buildings, etc.), numerous electromagnetic sources were present
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inside: computers, cellphones, etc. These sources are impossible to monitor and may
induce random artifacts in the signal.

4.3.1.3 iEEG and EEG

There are limitations which are common for EEG and iEEG.
In the protocol, visual cues trigger the execution of a task (one visual cue to indicate
the direction and another visual cue to display the ’go signal’). The impact of visual
trigger on the EEG signals is not known. We could imagine that a punctual drop in the
power of a given frequency band right after the visual cue is not due to the movement
planification, but to the apparition of the visual cue itself. In order to have a better
understanding about its influence, it would be interesting to propose visual cues to a
subject without letting him know the goal of the experiment and without allowing him
to move his arm.
On top of this, after the visual cues, each subject reacted differently: some of them
performed the movement quickly, some others moved their arm slowly, etc. As a result,
the protocol is not exactly the same and some results might be biased, especially when
the detection accuracy across the 5 EEG subjects is averaged. We could have used the
mouse position information in order to locate precisely the interesting movement, which
would have eliminated the movement onset uncertainty. However, using such a technique
would have raised algorithmic issues due to a different samples lengths for every trial.
Finally, although we tried to carefully reproduce the intracranial experiment ran in
Grenoble (France), the two setups are not exactly the same: positions (sat in a bed in
France, sat on a chair in Denmark), distance from the screen, etc. These differences
might lead to unknown bias.

4.3.2 Time frequency analysis

Normalization As the value taken for the rest and the value taken for the baseline
are the same, the normalization leads to compare the value 1 (rest) to the average power
in a given time frequency area (movement or preparation). This obvious comparison
provides good classification results despite of the chosen channel. Furthermore, the best
DA is not directly yielded by physiological parameters. As a result, the DA without
normalization for the best channels found with normalization is quite low (see figure
3.11).
Besides, the best results are found with the sub. & div. normalization at one exception (4
directions movement for LDA). We can therefore conclude that normalization enhances
the decoding accuracy for time frequency analysis.
A limit to our normalization approach is that we use a specific baseline for each epoch
taken in the rest period (prior to the first visual cue). In a real-time online analysis,
such a method can not been used (we would have to use a unique baseline to normalize
each epoch). In a previous study conducted by Rohu V. at INSERM (Lyon, France),
it has been shown that the use of an averaged baseline across the epochs (in order to
normalize each epoch) leads to a decrease of the DA on the rest vs movement/preparation
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classifications.

Time windows As we previously selected our 3 channels using the time intervals which
provide the best results, a specific conclusion cannot be withdrawn. The hypothesis (see
3.2.1.6) according to which we could find better DA by narrowing the time windows
is not validated. However, due to data storage limitations we have not been able to
perform a more refined time windows analysis. Therefore, we can neither invalidate our
hypothesis.

Channels combination Channels combination could improve the DA. Indeed, we
used the best channels without regards to the physiological meanings. Two channels in
two different parts of the brain can yield to good DA if taken separately, but give a low
DA if taken together. We could have performed an analysis from scratch, trying all the
possible combination of two or more channels.

Feature combination The feature combination shows different behavior between
kNNs and LDA-SVM to a two-feature analysis. This is not surprising, as LDA and
SVM are close methods. Yet, the decrease of the DA is more unexpected. The choice
of three channels relevant for a single feature analysis does not mean they are for a two
features analysis. As shown on a further analysis of two-features classification applied on
all the channels (see figure 3.19), the DA is actually increased when going from scratch.
As did Rickert et al., we noticed that combination of a low frequency band with a high
frequency band provides the best results.
Working with two features also adds complexity in an already noisy space, which might
lead to more uncertain results. Indeed, Rickert et al. noticed that the combination of all
the frequency bands did not further increase the DA because the relatively low amount
of additional information added by the intermediate frequency band competes with the
decrease in performance of the decoder as a result of the higher number of input signals.
As a result, a trade-off has to be found between and increased number of features, an
increased complexity of the feature space and the computation time (which was a major
issue in our case).

EEG analysis Globally, high frequency ranges are extensively used. Yet, according
to Waldert et al. 2005 and 2008 information about movement directions are present in
the low (< 3 Hz), nearly absent in < 7 Hz, not present in high frequencies (62-87 Hz).
As a result, our outcomes may have to be linked with our critics of the experimental pro-
tocol and the possible electromagnetic noise, which could lead to beta and high gamma
artifacts.
However, we can see from figure 4.3 that frequency analysis for movements direction
classification in EEG stays a weak method compared to time analysis.
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Figure 4.3: Topography of DA for single sensor-based decoding and different time windows. All DA
values are averages across subjects. The sensor field is shown from above (in approximation to the head,
nose pointing upward); all sensors (black dots) are visible. The top three panels show the DA for the
three frequency bands, and the bottom shows the DA for the 3 Hz low-pass (LP) filtered MEG activity.
Sensors showing significant DA are marked with an “x” [Waldert et al., 2008].

Classifier comparison At our knowlege, Lotte et al. is the only paper which attended
to review classifiers in BCI research. Lotte et al. did not perform their own study but
gather information from a corpus of published papers. The different articles we took
into consideration to build our work are using different classifiers. It has to be said that
an objective classifier comparison is extremely difficult due to all the parameters which
can be modified in each classifier (mainly in Neural Network or SVM). The comparison
performed by Lotte et al. has to be taken even more carefully because the used inputs
provide from articles where the methods differ. In addition, the choice of a classifier is
highly dependant of both the data set and the goal of the classification (e.g. offline vs.
online).
For both iEEG and EEG data, our investigations show kNN methods globally lead to
better results than LDA, SVM or NN. The impact of k is not obvious: it seems that an
increased k decreases the DA on rest vs. movement or preparation while a k > 1 may
lead to a better DA on directions classification. According to Lotte et al., kNN algo-
rithms are not very popular in the BCI community, probably because they are known
to be very sensitive to the curse-of-dimensionality, which made them fail in several BCI
experiments. However, when used in BCI systems with low dimensional feature vectors,
kNN may prove to be efficient. We talk about ’curse-of-dimensionality’ when the number
of training data is small compared to the size of the feature vectors, which is not the
case in our experiment.
Despite Neural Network are universal approximators, these classifiers are very sensitive
to overtraining, especially with such noisy and non-stationary data as EEG. Therefore,
careful architecture selection and regularization is required [Lotte et al., 2007]. It could
explain the bad results of the Neural Network in the direction classification, where the
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features space is much more complex and noisy than for the movement vs. rest classifi-
cation. Furthermore, due to time issues, we had to run the neural network on the best
features found for LDA and kNN=3, which are not necessarily the most relevant with
this method.
Finally, LDA is shown to provide slightly lower results than SVM, but is much more
quick to run. We had the same impression. LDA can override SVM on some classifica-
tions though. A further optimization of the SVM methods (regularization parameter C
and the RBF width if using kernel) could have increase the DA.
Ideally, classifiers should be tested within the same context, i.e., with the same users,
using the same feature extraction method and the same protocol. It is what we did.
But, the remaining problem would be to apply to each classifier the same level of opti-
mization: layers and learning function for NN, k and distance measure for kNN, a-priori
assumptions for LDA and parameters for SVM. For this reason some researchers have
proposed general purpose BCI systems such as the BCI2000 toolkit [Schalk et al., 2004].
This toolkit is a modular framework which makes it possible to easily change the clas-
sification, preprocessing or feature extraction modules. With such a system it becomes
possible to test several classifiers with the same features and preprocessing. The use of
BCI2000 could help to choose the best a-priori classifier which has to be further opti-
mized.

4.4 Prospectives
One future prospective would be to use both time and time frequency analysis in a BCI
system. Indeed, the two methods might be complementary. Even if time frequency
analysis performs equally or better than time analysis for the movement detection, it is
a far less robust method. E.g. a mental calculation task lead to important changes in
the time-frequency domain, and could thus be mistaken as a movement intention. On
the contrary, MRCPs are specifically linked to motor tasks. This system could be useful
for an online real-time and asynchronous analysis (e.g. prosthesis movement).
Another way of improving the system would be to use not only the early phase of the
MRCP, but the whole MRCP, which could also enable a detection of the movement
direction, rather than movement intention only. We could then use a "grading system"
to determine the direction: each of the methods (time analysis, frequency analysis with
LDA, kNN, k=3, and kNN, k=5) would lean for the classification of a direction, and the
most represented direction would be taken as the direction of choice.
Modifying the experimental protocol might also lead to better and safer outcomes. For
instance, a longer rest period and preparation period would bring benefit to the time-
based movement detection. The visual cues could also be eliminated to avoid possible
artifacts on the MRCPs in the brain signals. The subject would choose when to perform
a movement (given certain specification). The mouse position could then be used in
order to detect movement onset and course. Although more complex to analyse, such a
recording is also closer to real-life BCI system.
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In order to build a real life application, two other aspects could be further investigated.
First, it would be interesting to test our algorithm robustness on an artificially noised
dataset. Also, as a real time application would not let us know whether the subject is
resting or not, it could be relevant to use a single baseline per subject (time frequency
analysis) or a single noise per subject (time analysis) in the algorithm. Secondly, con-
sidering the heterogeneous results we have found among the different subjects for the
EEG recordings (e.g. kNN methods provide best results for subjects 1 to 4 while LDA is
better for subject 5), it seems difficult to design a system which could be efficient without
fitting itself to the user (choice of a classifier, choice of the features, etc.). Given the
above statements, two paths might be followed: trying to find patterns with cross com-
parison on large population of subjects, or trying to find a way to adapt the techniques
of choice quickly and efficiently on a user. In this report, we followed the second path,
enabling us to discover different techniques widely used in BCI, from the data prepro-
cessing to the different analyses (time and frequency). Closed loop systems have shown
to improve very quickly with short training periods. Leuthardt et al. reported 74-100 %
final accuracy for a binary task performed across all subjects after short training periods
(3-24 min) (see figure 4.4).

Figure 4.4: Learning curves for ECoG control of vertical cursor movement using motor imagery to
move up and rest to move down). (Accuracy in the absence of control would be 50%) [Leuthardt et al.,
2004]

A study conducted by Leuthardt et al. reported a substantial improvement from 71
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% to 94 % of correct classification using closed loop system. In order to fit our classifier
to a specific subject for a real time continue analysis, the use of a closed loop system
seems very appealing, both in order to select the features of interest and to optimize
the classifier. Furthermore, patterns may be discovered in the way the classification is
optimized.
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Conclusion

The goal of this research project was to implement and apply multiple detection and
decoding techniques to scalp and depth EEG recorded in subjects performing motor
tasks in different directions. Two main techniques have been investigated: time analysis
and time frequency analysis. The accuracy of the various decoding strategies has been
compared at various levels:
(a) the type of EEG recordings: intracortical EEG (iEEG) and scalp EEG
(b) robustness to artifacts and noise with preprocessing, bipolarization methods and
blinks discarding
(c) the different spatial filters (large Laplacian filter and Optimized Laplacian Filter)
in the time analysis and the different classification methods with the time frequency
analysis (LDA and kNN for scalp EEG data; LDA, SVM, kNN and NN for iEEG data).
(d) the features: different time windows, frequency ranges, number of features, channels
combination and sort of normalization with the time frequency analysis.
Not surprisingly, iEEG recordings, which are less noisy and less affected by artifacts,
led to better classification performances than scalp EEG signal. Movement detection
has been performed with time analysis (up to 75% of correct movement preparation
detection,) while movement detection and classification has been performed with time
frequency analysis (up to 98 % of correct movement preparation detection, up to 78 % of
correct two directions classification, up to 40 % of correct four directions classification).
We noticed that kNN classification methods with subtraction then division normalization
globally performed better on our datasets (time frequency analysis) while the two spatial
filters provide similar results (time analysis).
Finally, by using both time analysis and time frequency analysis we are able first to
detect a motor task, and then identify the direction.
The reliable detection of human movement intention along with the knowledge about the
direction of movement, has the potential implication in the control of external devices
(such a prostheses or other robotic systems). Such BCI paradigm could be useful in a
possible development of a patient-driven rehabilitation system which could induce plastic
changes in the brain or even prosthetics control in amputees.
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Appendix A

The brain

A brief introduction to brain anatomy is described below. The following pages are based
on [Martini, 2006] and [Standring et al., 2005].

The brain is one of the most complex parts of a human being. It accounts for up to 98%
of the neural tissue within the entire body and has a weight of about 1.4 kg with large
individual variance.

A.1 Protection and support
The brain tissue is tender and delicate and so it needs protection from potentially dam-
age. Its protection is ensured by three layers: the cranial bones, the cranial meninges
and the cerebrospinal fluid. The bones of the cranium supply a hard encapsulation of the
brain. As show in figure A.1, the cranial meninges consist of multiple layers: dura mater,
arachnoid mater and pia mater, in order of deepness. The dura mater has two fibrous
layers, or lamellae, with tissue fluids and blood vessels in between. The arachnoid mater
provides a smooth surface covering the entire brain, which does line the brain down into
its sulci, as does the pia mater. Pia mater is a thin fibrous tissue, anchored to every fold
of the brain, which encloses cerebrospinal fluid in order to protect the brain and allows
blood vessels to pass through and feed the brain cells.
The cerebrospinal fluid has both a role in transport of nutrients, chemical messengers
and other substances, and in protecting the brain from mechanical stress, partially pre-
venting the brain from beating against the skull.
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Figure A.1: Meninges surrounding the brain (adapted for own use from [Standring et al., 2005]).

Figure A.2: Gross anatomy of the brain (adapted for own use from [Martini, 2006]).
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A.2 Structure
The brain can be anatomically divided into four parts (see figure A.2): the brain stem,
the diencephalon, the cerebellum and the cerebrum. The brain stem is located in the
inferior part of the brain, connected and superior to the spinal cord.

A.2.1 The brain stem

The brain stem consists of several parts, which going superior from the spinal cord are:
medulla oblongata, pons, mesencephalon. Sometimes the diencephalon is regarded as
part of the brain stem.
The medulla oblongata transmits sensory information to the superior parts of the brain
stem and regulates autonomic functions, such as heart rate and blood pressure. The
pons connects the cerebellum to the brain stem and is involved in visceral and somatic
motor control and transmits sensory information to superior parts of the brain stem and
the cerebellum. The mesencephalon controls auditorily and visually triggered reflexes
and helps maintaining consciousness.

A.2.2 The diencephalon

The diencephalon is a region composed by a left and right thalamus both relaying and
processing sensory information. The inferior part is called hypothalamus and is involved
in hormone production, emotions and autonomic functions.

A.2.3 The cerebellum

The second largest part of the brain is the cerebellum, located posterior at the level of
the mesencephalon and covered by the cerebellar cortex. The main function of the cere-
bellum is to adjust the ongoing movements and to help to coordinate repeated advanced
somatic motor patterns by receiving sensory information and comparing it to previously
experienced movements, allowing to make smooth movements.

A.2.4 The cerebrum

The cerebrum consists of two highly folded cerebral hemispheres covered with neural
cortex and, in general, each one controls the contralateral side of the body. Even if the
hemispheres look similar, they do not have the same functionality neither the same size.
The cerebrum plays a role in most higher mental functions, such as attention, awareness,
thought, intellect, memory, highly complex movements, sensations and speech. The
superficial layer of the cerebrum is the cerebral cortex, which together with the deeper
basal nuclei, is part of the grey matter (formed from neurons and their unmyelinated
fibers) and superficial to the white matter (formed predominantly by myelinated axons).
The surface of the cerebral cortex is folded into the so called "sulci" and organized
in different layers. The cerebral cortex can be topographically subdivided into four
lobes: frontal, parietal, occipital and temporal lobe (see figure A.3), and is commonly
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described as comprising three parts: sensory, motor, and association areas, depending
on the functionality. Below, a short explanation of the main areas that compose the
cortex.

Cortices

The primary motor cortex (M1) is located in the posterior part of the frontal lobe and is
involved in performing voluntary movements, whereas the primary sensory cortex (S1),
which is a part of the parietal lobe, il located posteriorly. It allows conscious sensation
of vibration, touch, pressure, pain etc. The two cortices are named "primary" because
they have a specifically defined topographic mapping of the body, so a specific area of
the primary motor cortex is related to motion of a corresponding group of muscles or
organ (for example a limb). The regions of the primary sensory and motor cortex are
not of the same size: as the size increases, a finer control and sensitivity is allowed. The
gustatory cortex, the visual cortex, the auditory and olfactory cortex are also worth to
be mentioned.

Association centres

To each of the cortices mentioned above corresponds an association centre, which in-
terprets signals and coordinates the motor response. The somatic motor association
area stimulates the neurons of the primary motor cortex in order to achieve the planned
movement, while the primary motor cortex initiates the actual movement. Moreover,
the association area stores a pattern of stimulation, which matches the corresponding
movement pattern.

Integrative centres

Integrative centres collect information from the association centres in order to perform
highly complex motor or analytical tasks. The prefrontal cortex located in the frontal
lobe, which integrates information from sensory association centres and Wernicke’s area,
which integrates sensory information while allowing coordinated access to visual and
auditory memory, are two examples of integrative centres.
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Figure A.3: The figure shows a) the major anatomical landmarks of the left cerebral hemisphere, b)
the areas mainly involved in speech and c) histological distinct areas (adapted for own use from [Martini,
2006]).
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Appendix B

Organization of movement

In this chapter a general overview about organization of movement and motor control is
given. The following is mainly based on [Martini, 2006] and [Kandel et al., 2000] unless
otherwise specified.

B.1 Motor cortices and motor planning
The cerebral cortex, the brain stem and the spinal cord are the most important parts of
the nervous system involved in movement. Skeletal muscles can be controlled from many
places in the central nervous system (CNS): the spinal cord, the pons, the basal ganglia,
the cerebellum and the motor cortex, each part having its own role. The spinal cord
can be described as the main path trough which signals from the brain are transmitted
to the periphery of the body and the opposite. The structure is more complex than
this, though: the spinal cord consists of several cord centres, which are commanded by
the upper levels of the nervous system. These neuronal circuits in the cord are also
responsible for walking movements or different reflexes. Pons, basal ganglia and cerebel-
lum belong to the lower brain and control automatic, instantaneous muscle responses to
sensory stimuli.
As it has already been said, the cerebral cortex is involved in processing and integrat-
ing sensory information and establishing motor commands. The motor cortex is, more
specifically, in charge of complex movements that are controlled by thought processes
and also functions as a storage of information for future control of motor activities.
Each part of the body receiving somatosensory input corresponds to a specific area in
the cortex; this is often represented with a somatosensory homonculus, as shown in figure
B.1(a). In the same way, the primary motor cortex (M1) is organised in a topographical
manner, containing a representation of each part of the body (see figure B.1(b)). Besides
in M1 and S1, a complete map of the body is present in the premotor areas too. How-
ever, while stimulation in the M1 evokes simple movements of single joints, stimulation
of the premotor cortex results in more complex movement involving multiple joints and
resemble natural coordinated movements. The premotor areas consist of the premotor
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Figure B.1: The figure shows a) The somatotopic representation of the body in somatosensory cortex
b) the topographic representation of the body in the motor cortex (adapted for own use from [Kandel
et al., 2000]).

cortex and the supplementary motor area and are mainly involved in coordination and
planning of movements.
All these areas in the brain are interconnected to each other in a complex network (see
figure B.2).
I could explain in detail the connections but i think it’s not necessary.
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Figure B.2: The major inputs to the motor cortex in monkeys.
A. The major inputs to the primary motor cortex. (PMd = dorsal premotor area; PMv = ventral
premotor area; S1 = primary sensory cortex; SMA = supplementary motor area.)
B. The major inputs to the premotor areas. Dense interconnections between the premotor areas are not
shown here. (adapted for own use from [Kandel et al., 2000]).

B.2 Types of movement
The corticospinal tract is considered as the direct pathway of voluntary movements. In
the spinal cord, the projection neurons are connected either with interneurons or directly
with motor neurons, which in their turn transmit the signals to skeletal muscles. Three
types of movements may occur in respect of to ascending and descending signals via
different pathways and at different levels: voluntary movement, reflexes and rhythmic
movement.
Reflexes are performed subconsciously and can occur at an exclusively spinal level,
though they may also be modulated by subcortical or cortical commands. A reflex
is started by a sensory stimulus which then leads to excitations of motor neurons at a
spinal level, resulting in a muscle contraction or relaxation, possibly even before sen-
sation occurs. Distinct reflexes are initiated by different stimuli of the same sensory
receptors or by stimuli of different receptors and can be modulated throughout excita-
tion or depression of the level of the post-synaptic neuron excitability.
The latter, instead, are characterized by a stereotyped action involving repetitions of the
same movements (e.g. walking, running, swimming, crawling, flying and allow control of
movement at a ’low’ (spinal) level without involvement of higher cortical control (con-
scious control). These can be triggered by peripheral stimuli that activate the underlying
circuits or from higher cortical centres, which can also overrule them.
Here, though, we will focus on the voluntary movement planning, control and execution.

B.2.1 Voluntary movement

Voluntary movement is usually goal directed and therefore fully conscious. It arises in
the motor cortex and is executed by the spinal cord. When a voluntary movement is
started, neurons in the M1 send commands to upper and lower motor neurons. Neurons
in the M1 are responsible for one specific somatic location respectively (see figure B.4);
for example, the leg components are situated in the middle, the face components are
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Figure B.3: The figure shows the motor cortices in humans. The sequence of representation of body
parts is similar. The ankle control area is medial while the face, mouth, and mastication control areas
are lateral. The face and fingers in the human motor cortex have much larger representations because
of the greater degree of cortical control of these areas (adapted for own use from [Kandel et al., 2000]).

located laterally and so on. The largest representations belong to muscles which imply
finest movement control (e.g. arms, legs and face, see figure B.3 and B.4).
Typically, every voluntary movement performance is based on movements the person has
done several times before. In this case, the cortical motor area uses the pattern already
memorised in deeper layers of brain stem, basal ganglia, cerebellum or spinal cord and
combines

it with the information that comes from the S1. This constant feedback from the
S1 enables a finer control and adjustment of the voluntary movement before and during
the execution. The cerebellum, instead, plays an essential role as important control
centre for unknown motor activities. When a new unknown movement is needed (motor
learning), the cerebellum is not only in charge of the adaptation of the motor task to
the new movement sequence, but it is also associated in planning, execution, controlling
and refining of the movement execution.
The neuronal activity in the cortex and the subsequent effect in the muscles is specific.
More precisely, it has been shown that the force of a movement is proportionally related
to the firing rate of the associated cortical neurons: when the load opposing a movement
increases, the firing rate of the active neurons increases too.

Direction of the movement

One of the first and most relevant studies on the direction of movement coding mecha-
nism in the brain was achieved by Georgopoulos et al. preforming studies on primates’
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Figure B.4: Somatotopic oraganization of the medial and laterl motor cortex in the monkey, showing
the arm and leg representations. (ArSi, arcuate sulcus, inferior limb; ArSs = arcuate sulcus, superior
limb; CS = central sulcus; M1 = primary motor cortex; PMd = dorsal premotor area; PMv =
ventral premotor area; PS = precentral sulcus; SGm = superior frontal gyrus, medial wall; SMA =
supplementary motor area; pre-SMA = presupplementary motor area; SPcS = superior precentral
sulcus.) (adapted for own use from [Kandel et al., 2000]).

brain. Georgopoulos et al. trained monkeys to move a joystick toward visual targets
located in different directions and recorded the associated changes in activity in the
primary motor cortex. The experiment indicated that all neurons fired both before and
during movement in a wide range of direction. It appears that motor cortical neurons
are tuned to the direction of movement, but individual cells fire preferentially in con-
nection with movement in certain directions. The raster plots in figure B.5 show the
firing pattern of a single neuron during movement in eight direction show the cell firing
at relatively higher rates during movements in the range from 90 degrees to 225 degrees,
pointing out that different cells have different preferred movements directions. Cortical
neurons with different preferred directions are all active during movement in a particu-
lar direction and the entirety of this activity results in a population vector that closely
matches that of the direction of movement.
This means that movement in a particular direction is determined not by the actions
of the single neurons, but by the net action of a large population of neurons, where the
contribution of each neuron to movement in a particular direction can be represented by
a vector whose length indicated the level of activity during movement in that direction
and where the contributions of individual cells could then be added vectorially to pro-
duce a population vector.
Georgopoulos et al. also found a strong dependence between directionally tuned cell’s
firing rate and external load, suggesting that the activity of neurons in the primary
motor cortex varies with the direction. This modulation depends on the amplitude of
the force required to displace the limb; the neuron’s firing rate increases if load opposes
movement of the arm in the cell’s preferred direction, while it decreases if the load pulls
the arm in the cell’s preferred direction.
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Figure B.5: The raster plots of the firing pattern of a single neuron during movement in eight direction.
The cell fires at higher rates during movements in the range fro 90 degrees to 225 degrees. For these
recordings a monkey was trained to move a handle to eight locations arranged radially in one plane
around a central starting position. Each row of tics in each raster plot represents activity in a single
trial. The rows are aligned at the onset of movement (zero time) (adapted for own use from [Georgopoulos
et al., 1982]).

Movement planning

The M1 needs to be stimulated by neurons from the premotor cortex and the supple-
mentary motor area (SMA), which support and coordinate the M1, in order to initiate
a voluntary movement. The preparatory activity of a movement is performed in the
premotor areas and the primary motor cortex. This planning results in a motor pro-
gram (or movement pattern) describing extent, angle and velocity of movement of the
joints involved. Thus the premotor cortex is in charge to provide sensory guidance of
movement, while the SMA is responsible for planning and coordination of complex move-
ments. The premotor cortex and the SMA are able to receive information from different
decisional centres within the brain; these areas interpret the information and coordinate
the execution commands and send it to the M1, which subsequently controls the actual
signals sent to the muscles ( effectors). A movement is the consequence of triggering of a
pattern more that of the stimulation of each neuron separately, thus allowing to perform
the movement more easily when it has been repeated.
The measure of activity in the motor cortex of the brain leading up to voluntary muscle
movement is called Bereitschaftspotential or BP (from German, "readiness potential"),
which is covered more extensively in chapter C.
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The Bereitschaftpotential

The first report of electroencephalographic (EEG) activity preceding voluntary move-
ment in humans was made by Kornhuber and Deecke in 1964, recording both the EEG
and an electromyogram (EMG), with the aim of connecting in some respect the activ-
ity of the brain with the one of the muscles involved in the movement on a temporal
scale. The experiment was conducted using an off-line averaging technique and led to
the identification of two main components of the BP, one before and one after the EMG
onset: the actual Bereitschaftspotential (BP), also known as readiness potential (RP),
and the reafferente potential. Later they found two more components which appear
before the movement onset: the pre-motion positivity (PMP) and the motor poten-
tial (MP). Although a relatively high number of studies have been conducted on the
movement-related cortical potentials (MRCPs), the actual physiological significance of
each component, among others that of BP, has not been fully clarified yet [Shibasaki
and Hallett, 2006].
In its original formulation by Kornhuber and Deecke, the BP was seen as ’readiness po-
tential’, so as an index of motor preparation. Further experiments have shown new and
wider interpretations of the BP, such as anticipation and expectancy, attention, prepara-
tory activity, intention to act, resource mobilization, effort, timing of movements and
degree of effort associated with movement. Jahanshahi and Hallett proposed that it is
possible to differentiate the contributions to BP associated with cognitive, motivational
and motor processes among the different areas of the motor cortex, rising the hypothesis
that while prefrontal areas may be involved in the decision-making process necessary for
response selection timing and initiation of the motor action, the pre-SMA motor areas
and lateral premotor cortex may take care of preparatory precesses [Jahanshahi and
Hallett, 2003].
The BP has become a common tool in motor physiology laboratory in the past years, not
only to investigate movement parameters such as force, rate, movement complexity and
mode of movement, but its latency and/or shape have been reported to change in case
of neurological disorders. Various methods are used to record BPs, e.g. scalp electroen-
cephalography (EEG), magnetoencephalography (MEG), intracranial EEG recordings,
combined EEG and positron emission tomography (PET), combined EEG and MEG,
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Figure C.1: A schematic representation of the time course and the Bereitschaftpotential (BP) prior to
movement (adapted for own use from [Jahanshahi and Hallett, 2003])

combined EEG and functional magnetic resonance imaging (fMRI).
A comprehensive book which describes in detail the Bereitschaftspotential was published
in 2003 ([Jahanshahi and Hallett, 2003]), used hereby as main reference and integrated
with more recent findings, trying, when possible, to focus on hand movements in elec-
troencephalographic recordings
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Figure C.2: Waveforms and terminology of MRCPs from a single normal subject in self-iniated left
wrist extention. Avarage of 98 trials.
Reference (Ref): linked ear electrodes (A1A2). Early pre-movement negativity (early BP) starts 1.7 s
before the onset of the averaged, rectified EMG of the left wrist extensor muscle, and is maximal at the
midline central electrode (Cz) and widely and symmetrically distributed on both hemispheres. Later
negative slope (late BP) starts 300 ms before the EMG onset and is much larger over the right central
region (contralateral to the movement). A negative peak localized at the contralateral central area (C2)
is N-10 or motor potential (MP). Another negative peak occurring shortly after N-10 is localized over
the midline frontal region and corresponds to N+50 or the frontal peak of motor potential (fpMP).
(adapted for own use from [Shibasaki and Hallett, 2006])
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C.1 Morphology of BPs
BPs are considered to represent neuronal activation, which is the outcome of an increase
of extracellular K+ concentration and decrease of Ca++ concentration. This activation
of brain regions result in negative slow potentials, such as the BP. More specifically,
the BP is a negative cortical potential which develops beginning about 1.5 to 1 s prior
the onset af a self-placed movement (see figure C.1 and C.2), although the onset of
BP with respect to the movement onset significantly differs among diverse conditions of
movement and among subjects. For example, when the subject is requested to repeat
the same movement, the BP starts much earlier as compared to the same movement
executed in natural conditions, because in such experimental conditions the subject has
a longer time to prepare for the movement. It is important to stress that its onset is
related to an actual, intended or imaginary voluntary movement. Thus the BP can be
defined as a movement-related cortical potential (MRCP).
Initially a distinction between the slowly rising phase of BP waveform and change in the
steepness of the slope, which suddenly occurs around 400 to 500 ms prior to movement
onset, was made (see figure C.1). The early and late BP differ in term of distribution
over the scalp: the early BP is bilaterally symmetrical, but the late and peak BP are
asymmetrically distributed and maximal over the contralateral precentral areas [Jahan-
shahi and Hallett, 2003]. The early slow, rising negativity has been usually referred as
early BP, BP1, and NS1 (negative slope 1), whereas BP2, NS’ and NS2 stand for the
second phase of negativity [Jahanshahi and Hallett, 2003]. The late BP was thought to
be more specific for the site of movement while the early BP was thought to represent
the more general preparation for the forthcoming movement because of its diffuse distri-
bution, but neither the physiology nor the functional significance of change of steepness
is currently completely known (see section C.2). Later, a third negative component was
distinguished, occurring 50 to 60 ms prior to movement onset, the ’motor potential’
(MP, peak BP or peak NS’), which is the point of maximum negativity over the hand
area contralateral to the moving hand. BP midline maximal, symmetric distribution is
likely due to the summation of electrical fields generated from homologous areas of both
hemispheres [Shibasaki and Hallett, 2006].
Different groups have proposed wide range of different terminologies, according to their
findings and different opinions about origin, location and physiological meaning of BP
components (see table C.3 for details), however, in this report, in order to avoid confusion
about the use of the term BP, we call the early segment ’early BP’ and the late, steeper
segment ’late BP’, and just BP for the early BP and the late BP inclusive (see figure C.2).
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Figure C.3: Terminology of movement-related cortical potentials (adapted for own use from [Shibasaki
and Hallett, 2006])

C.2 Generator sources of MRCPs
The generator sources of MRCPs have to be fully understood yet. In order to achieve
this challenge, various dipole source localization techniques have been applied to esti-
mate the generator sources of MRCPs, as already mentioned above. The identification of
generators of single MRCP components is a controversial topic in the existing literature.
The complexity of the problem occurs due to several different factors, such as the spe-
cific localization technique which was used, the type of movement under investigation,
the movement performance or the investigated time frame. However, it is a common
opinion among the literature that the BP is mainly generated by sources located in the
supplementary motor area (SMA) (both the proper SMA as well as the cingulate motor
area (CMA) should be considered in this context) and in the M1 (particularly in the
contralateral motor cortex) to a lesser or greater extent. [Shibasaki and Hallett, 2006].
Moreover, also regarding the time course of activation of the SMA and M1 there are
still doubts. Some suggest that the BP reflect serial activation of the SMA preceding
M1, others propose that SMA and M1 are activated in parallel [Jahanshahi and Hal-
lett, 2003]. The current consensus on the generator source of each MRCP component is
summarized in table C.4. At least regarding self-paced repetition of simple movements
at slow rate, the early BP begins about 2 s before the movement onset in the pre-SMA
with no site-specificity and is bilaterally generated from the localized area of the SMA
according to the somatotopic organization and shortly thereafter in the lateral premo-
tor cortex bilaterally, again with relatively clear somatotopy. About 400 ms before the
movement onset, suddenly the steepness of the waveform changes and the late BP occurs
in the contralateral M1 and lateral premotor cortex with precise correspondence to a
somatotopic organization. The generator sources of post-movement components have
not been clearly identified yet [Shibasaki and Hallett, 2006].

Shibasaki and Hallett, in his review, has reported some experiments concerning the case
of hand movements. SMA and lateral precentral gyrus were shown to be the main gen-
erator sources for early BP. It has been proposed that there are three dipole sources
of the early BP, one in the SMA and two others in bilateral M1, and that only the
source recorded in the SMA was influenced by the mode of movement selection in such
a way that it was larger before freely selected movements than fixed ones. Based on
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Figure C.4: Generator sources of each component of movement-related cortical potentials (MRCP)
(adapted for own use from [Shibasaki and Hallett, 2006])

the high-resolution DC-EEG analysis, it has been estimated that BP occurs earlier in
the SMA and cingulate motor areas, after in the contralateral M1, and finally in the
ipsilateral M1. Principal component analysis and fMRI-constrained EEG dipole source
analysis were used, determining that the main source of early BP was the crown of the
precentral gyrus bilaterally (specifically hand area of area 6), the source of late BP in
both area 4 and area 6, and MP in area 3. Most studies have localized the source of MP
or N-10 in the M1 hand area.
For this report, it is important to record EEG from multiple electrodes, including C1 and
C2, because the late BP is maximal over the contralateral central area (approximately
C1 or C2 of the International 10-20 System) for the hand movement.

C.3 Factors influencing BP
Lang W. (as reported by [Shibasaki and Hallett, 2006]) reviewed extensively the factors
that contribute to magnitude and time course of BP recorded in a self-paced condition.
Taken together the amplitude and the time course of the MRCP is affected by various
factors, such as: level of intention; speed, precision, mode (free versus fixed), pace
og repetition, discreteness, complexity of the movement; preparatory state; learning
and skill acquisition; perceived effort; force exerted and pathological lesions of brain
structures.
Below are listed some studies supporting the information given by table C.5, which
summarizes the findings about this issue so far [Shibasaki and Hallett, 2006].

The effect of the complexity of a movement on BP was investigated in several studies,
mostly involving comparison of single, simultaneous and sequential movements. Below
are reported (cited by Shibasaki and Hallett; Jahanshahi and Hallett) a number of ex-
periments which confirms that more complex movements translate in a larger late BP.
Comparison of isolated single finger extension with simultaneous finger extension of
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Figure C.5: Differential influence of various factors on early and late BP in normal and pathological
conditions. As for the factors in normal conditions. (adapted for own use from [Shibasaki and Hallett,
2006])

two fingers revealed significantly larger BP at the pre-central area contralateral to the
movement, in the case of single finger activation; although only half of the muscles are
activated. This phenomena can be explained by the fact that single finger movements
are finer and more discrete, therefore requiring a more ’precise’ motor program and M1
activation (Kitamura et al., 1993). Another study was comparing single isotonic elbow
flexion and single isometric finger flexion with sequential and simultaneous activation
of these two movements, finding a larger BP for the sequential and simultaneous move-
ments compared to single flexion (Benecke et al., 1985). Kitamura found that, when
middle and index finger were moved consecutively, the negative slope started earlier,
but no amplitude changes of the BP were observed, compared to simultaneously activa-
tion of the fingers. Thus it was hypothesised that the execution of unilateral sequential
movement requires a greater and earlier activation of the SMA and the primary hand
sensorimotor areas(Kitamura et al.). Earlier onset and larger amplitude of BP in the
sequential movement than in the simple movement was also reported by Simonetta et
al.(1991), in a study involving comparison of a simple movement with a more complex
motor sequence (starting with the simple movement).
The exerced force is another factor that was shown to increase the BP (Slobounov et al.,
2004; Masaki et al., 1998). In a study conducted by Masaki et al. (1998), when subjects
were asked to produce a specific force, a larger negative slope was observed compared
to movements performed in a non-purposive manner although the same amount of force
was produced. This leads to think about the involvement of a planning process which is
required to produce a particular force and subsequently leads to a larger BP amplitude.
Again, a possible explanation is that the preparation process in order to develop larger
forces requires a higher level of activity of the involved brain areas.
As for the mode of movement, investigation showed that freely selected movements led
to higher amplitude of BP as opposed to pre-determined repetitive movements. This
influence does not seem to involve all the areas of the brain, though. By using a spatio-
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temporal decomposition, three dipole sources of the BP were estimated: one located in
the SMA and two in the M1 in each hemisphere, finding that only the source in the
SMA was influenced by the mode of the movement (Praamstra et al.,1995). In contrast
Dirnberger et al. (1998) observed a larger lateralized readiness potential for freely se-
lected movements compared to fixed repetitive movements, considering this by a result
of a greater involvement of M1 activity in the selected movement mode.
Furthermore, the BP onset is affected by the speed with which the movement is con-
ducted. The BP starts later if the movement is performed with a higher speed (Shibasaki
and Hallett, 2006). The time course of the early BP is also influenced by the level of
experience of the movement under study. Libet et al.(1983), for example, observed a
1 s earlier onset when the movement is associated with a preplanning or preparation
time to act shortly compared to movements which are associated with a more specific
or endogenous intention to act (about 500 ms prior onset).
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