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Many people live with a hand amputation,
which greatly impacts the quality of their life.
However, some functionality can be regained
using a myoelectric hand prosthesis. Cur-
rently, many advances have been made to-
wards recovering as many functionalities of
the hand as possible including several sequen-
tial movements. However, to make control of
myoelectric prosthesis more intuitive and less
robot like, still lacking is a control system al-
lowing precise control of simultaneous move-
ments and the corresponding force.
To develop such a control system, an experi-
ment was conducted including 10 healthy sub-
jects. The data acquired through the experi-
ment was used to develop a control system al-
lowing 8 distinct wrist movements at contin-
uous force levels along with rest. The control
system was optimized through an investigation
of parameters affecting the performance of the
system.
Validation showed that such a system could be
developed, resulting in a classification accu-
racy of 92.2 % for nine movements. Further-
more, the corresponding force could be pre-
cisely estimated with an R2 of 0.92.
We have developed a novel hybrid control
scheme capable of simultaneous control of
two DoFs achieving high accuracies for both
movement classification and force estimation,
which is suitable for real-time control.





Preface and reading guide

Preface

This project was made by group 1072 as part of the 10th semester at the master spe-
cialization in Medical Systems at Biomedical Engineering & Informatics at Aalborg
University. The project was conducted in the period February 1st to June 1st 2012.
This report focuses on the development of a control system allowing control of mul-
tiple simultaneous DoFs along with the corresponding force for a myoelectric pros-
thetic device.

The project is aimed at fellow students and others with interest in the topics inves-
tigated. However, the proposed control system is targeted to the research field of
myoelectric prosthesis and control of these.

Reading guide

In the introduction to this report the focus is outlined. Following, the report is di-
vided into three parts. In the first part called Analysis the focus is investigated and
the final problem statement is introduced. The second part, Experiment, investigates
and answers the initial problem statement leading to the third part, Synthesis, where
the results are discussed and a conclusion is made.

References are made according to the Harvard method, where authors’ last name and
the year of publication are placed in brackets as so, [Last name, Year]. If references
are given for a specific sentence, the reference is found within the sentence, while it
is placed right after the punctuation if the reference is given for the entire previous
paragraph. All references used can be found in Bibliography, listed in alphabetical
order.

Tables and figures throughout the report are numbered according to the chapter they
appear in (figure 1 in chapter 2 is numbered as figure 2.1). Both tables and figures
include a caption and a reference to the source if any. Figures and tables with no
reference are made by the authors of the report.
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Introduction 1
The loss of a limb due to an amputation greatly reduces the quality of life (QoL) for
the affected person. Especially the loss of the hand impacts the QoL due to its fre-
quent use for grasping and moving small and large objects. In the USA an estimated
1.2 to 1.9 million people live with an amputation (excluding loss of a toe or fingertip)
with 185.000 new cases each year. The main reasons for an amputation are congeni-
tal, surgery, trauma, or as a consequence of disease such as diabetes. [Winkler, 2009;
Epstein et al., 2010; Esquenazi, 2004]

QoL may be increased for persons with hand amputation by use of a hand pros-
thesis, which helps to recover some of the lost functionality of the hand. Types of
prosthetic devices range from passive cosmetic prostheses, that assist amputees to
regain a near-normal look, to active prostheses regaining some functionality. Active
prostheses are either body-powered or electrical. Especially myoelectric prostheses
(controlled based on muscle signals) are useful in recovering multiple hand move-
ments while maintaining a near-normal cosmetic look. However, as the hand is very
complex, it is currently impossible to regain all its functionality (both motor and
sensor functions). [Epstein et al., 2010; Miguelez et al., 2010; Cotton et al., 2007]
Myoelectric prostheses utilizes information encoded in the electromyogram (EMG)
arising from muscle contractions of the residual limb. This information is decoded to
create a control signal for the prosthetic device, which performs the intended move-
ment. A schematic representation of such a system can be seen in figure 1.1, where
the control system extracting the information and generating control signals for the
prosthesis is regarded as a black box. [Parker et al., 2006]

Control system

Figure 1.1: Schematic representation of a control system for a myoelectric pros-
thesis.
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The focus of this project is on persons with transradial (below elbow) amputation,
since amputation at higher levels (above elbow) causes all intrinsic and extrinsic mus-
cles of the hand and wrist to be lost, consequently making direct myoelectric control
very difficult.

Current commercially available myoelectric prostheses only implement a very lim-
ited amount of movements with only one movement at a time, e.g. grasping. Control
is not always intuitive and can require long training periods. [Cotton et al., 2007;
Parker et al., 2006]
Current research has mainly followed two paths in trying to improve control of pros-
thetic devices: 1) Improving the number and the robustness of controllable move-
ments, and 2) allowing prosthetic devices to be activated at different force levels.
Both functionalities are important to regain, as these would allow the amputee to
perform many movements and to adjust the force of the movements. This would en-
able the amputee to e.g. grasp a bottle of water with enough force to hold it without
squeezing it.
Currently, many researches have proposed control systems, which allow accurate
control of multiple, sequential movements; for example, by Scheme et al. where
11 sequentially controllable movements (4 movements of the wrist/forearm, five dif-
ferent grips and no movement) could be controlled with high accuracy. Although less
investigated, a relation between force and myoelectric signals has been established
for both sequential and combined movements; for example by Nielsen et al. where
the intended force of two movements and a combination of these was estimated with
high precision. Although these results are promising, there are still many challenges
towards recovering more functionalities for amputees. [Scheme et al., 2011; Nielsen
et al., 2011]

The ultimate goal for control of a prosthetic hand, as stated by Parker et al., is:
"The ultimate goal of this development work is to have simultaneous, independent,
and proportional control of multiple degrees of freedom with acceptable performance
(classification rate and active daily living) and near ’normal’ control complexity and
response time."
To approach this goal, it is necessary to combine the two paths to achieve several con-
trollable movements while at the same time allowing different forces to be exerted.
Furthermore, such a system must be able to control more than one movement simul-
taneously (i.e. simultaneously control multiple degrees of freedom) while keeping
the control of the system as simple as possible for the user. This leads to the initial
problem statement:

Initial problem statement

How can the control of myoelectric prosthesis be improved to allow both simultane-
ous movements and precise control of the corresponding force?

2 1. Introduction



In order to answer the initial problem statement, it was necessary to investigate the
components of the control system, see figure 1.1. In general, myoelectric control of
a prosthesis typically involves an investigation of the following three steps [Parker
et al., 2006]:

1) Locating a source of myoelectric signals

To locate an appropriate source of myoelectric signals, it is essential to understand
the functionality of a healthy hand and the muscles which control it. Furthermore, it
is necessary to investigate the differences caused by the amputation.

2) Identifying the information available in the signal

When the signal source has been identified, the myoelectric signal can be measured
and used as control input. However, for advanced control of a prosthesis, it is impor-
tant to identify the type of information concealed within the signal and the different
ways to measure the myoelectric signals.

3) Extracting and applying information from the signal for control

The final step is to extract and convert the information in the myoelectric signal to a
control signal for the myoelectric prosthesis. This is done by identifying the methods
needed to generate the control signal based on the myoelectric signals.

Control system

Control unit

Figure 1.2: Schematic representation of the steps to investigate in myoelectric con-
trol system design.

Through these steps, an intended movement can be associated to a performed move-
ment of the prosthesis, as shown in figure 1.2. The analysis will go into each of
these steps and thus form a basis for selecting the elements needed for improving the
control system and thereby answer the initial problem statement.

1. Introduction 3
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Effect of an amputation on the
anatomy of the lower arm 2
In order to utilize myoelectric signals for
control of a prosthesis, it is necessary
to have knowledge of the underlying
anatomy of the muscles. Moreover, it
is necessary to understand the coupling
between the muscles and movements, and
the influence of an amputation.

Control system

Control unit

2.1 Muscles of the forearm and the corresponding move-
ments

The hand governs multiple functionalities in daily life, which can be divided into
motile and non-motile functions. The non-motile functionality enables sensory feed-
back of, e.g., the surface texture and the temperature of an object, or the amount of
force produced on the object. The motile functionality allows fine and gross motor
control of the limb. [Jones and Lederman, 2006]
For control of a myoelectric prosthesis, both the motile and non-motile functional-
ities are of importance. The non-motile functionalities can be used to e.g. mimic
the behavior of mechanoreceptors and thus be used to adjust the grasping strength.
The motile functionalities are important to regain motion. These are controlled by
29 different muscles, mostly extrinsic, which altogether allows more than 20 DoFs.
[Kendall et al., 2005; Jones and Lederman, 2006]

For a short below-elbow amputee, all intrinsic muscles of the hand are no longer
present and thus muscles controlling many DoFs of the fingers are lost and cannot be
used for direct, intuitive control of a prosthesis. Therefore, it is unlikely that all DoFs
of the fingers can be restored for an amputee. However, the possibility of controlling
collective finger flexion and extension directly from extrinsic muscles of the forearm
still remains. The muscles of the proximal third of the forearm can be seen on figure
2.1. [Kendall et al., 2005]
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2.1 Muscles of the forearm and the corresponding movements

Radius

Brachioradialis

Flexor carpi ulnaris
Ulna

Extensor digitorum

Extensor carpi ulnaris

Supinator

Anconeus

Flexor digitorum profondus

Flexor digitorum superöcialis

Pronator Flexor carpi radialis

Extensor carpi radialis

Figure 2.1: Cross sectional view of the proximal third of the forearm.

Still existing are muscles governing the DoFs of the wrist, namely flexion/extension,
pronation/supination, and radial/ulnar deviation. All the muscles of the proximal part
of the lower forearm and their associated movements are listed in table 2.1. [Kendall
et al., 2005; Jones and Lederman, 2006]

DoF DoF DoF DoF
Finger Finger Wrist Wrist Radial Ulnar Pronation Supination
flexion extension flexion extension deviation deviation

Anconeus X X
Brachioradialis X X
Extensor Carpi Radialis Brevis X X
Extensor Carpi Radialis Longus X X
Extensor Carpi Ulnaris X X
Extensor Digiti Minimi X
Extensor Digitorum Communis X X X
Flexor Carpi Radialis X X X
Flexor Carpi Ulnaris X X
Flexor Digitorum Superficialis X X
Flexor Digitorum Profundus X X
Palmaris Longus X
Pronator Teres X
Supinator X

Table 2.1: Summary of the extrinsic muscles along with their corresponding move-
ments.

Of these movements, ulnar and radial deviation are the least useful in daily life due
to the very limited range of motion. However, the three remaining DoFs are all
important in everyday life and regaining these would be very beneficial and improve
the quality of life for transradial amputees. [Jones and Lederman, 2006]
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2.2 Diversity of muscle location due to amputation

2.2 Diversity of muscle location due to amputation

Despite whether an amputation is congenital, traumatic or due to surgery, the anatomy
of the remaining limb differs greatly from a healthy arm. Apart from congenital am-
putations, surgery is performed, where several methods are used to improve the out-
come. These include beveling the bone, shortening of the nerve as well as perform-
ing myoblasty or myodesis (attaching agonist-antagonist muscle pairs or stitching the
muscle to the bone, respectively). Performing myoblasty and myodesis allows ten-
sion in the muscles, which is necessary in order to use myoelectric prosthesis. [Kelly
et al., 2011]
Common for all transradial amputations is the changed anatomy and thus the mapping
between the muscle and an intended movement, as described in table 2.1, is changed.
Therefore, taking advantage of the associations between muscles and movements
might not be beneficial for control of a myoelectric prosthesis.

A study by Farrell and Weir investigated the potential use of untargeted techniques,
i.e., recording of unspecified (random) muscles, for control of a myoelectric pros-
thesis. The results showed that the untargeted technique provided controllability of
a prosthesis comparable to that of the targeted technique. These results suggest that
intuitive myoelectric control of several movements is feasible in amputees as long as
several muscles of the forearm remain. The untargeted technique also makes the job
of fitting/designing a prosthesis easier as no specific muscles has to be located. In-
stead the recording sites can be equally spaced around the forearm [Farrell and Weir,
2008a; Kelly et al., 2011].

2. Effect of an amputation on the anatomy of the lower arm 9
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10 2. Effect of an amputation on the anatomy of the lower arm



EMG response during muscle
activation 3
To improve control of a myoelectric
prosthesis, it is not only necessary to
investigate the anatomy of the lower arm
but also the underlying neurophysiology
during muscle contraction. In particular
the myoelectric signals are of importance,
as these are the sources of information for
controlling myoelectric devices.

Control system

Control unit

3.1 Neural control of skeletal muscles

The somatic nervous system is the efferent part of the peripheral nervous system
associated with voluntary control of skeletal muscles. All voluntary muscular con-
trol (except reflexes) emanates from the motor neurons of the central nervous sys-
tem (CNS) located in the pre- and primary motor cortex. Evoked action potentials
originating from this area travels through the corticospinal pathway. For voluntary
movement of the upper extremity, the action potentials are conveyed through the cor-
ticospinal tracts, which synapse on the lower motor neurons in the anterior gray horns
of the spinal cord. Roughly 85 % of these axons decussate in the medulla oblangata,
forming the lateral corticospinal tract, and the remaining 15 % form the anterior cor-
ticospinal tract. In the latter case, the axons decussate at their level of termination
onto the lower motor neuron. In both cases the connection is established through a
synapse. The action potentials then reach the lower motor neurons innervating the
flexor muscle and also the motor neurons inhibiting the extensor muscles. The lower
motor neuron then branches to include several hundreds of muscle fibers, which al-
together is called a motor unit (MU). An entire skeletal muscle is composed of many
MUs. [Martini, 2006; Silbernagl and Despopoulos, 2009; Merletti and Parker, 2004]

3.2 Voluntary contraction of a skeletal muscle

The muscle fibers of a MU are controlled by the lower motor neuron through a neu-
romuscular junction located midway along the length of the fiber. When a stimulus
arrives at the motor end plate, the permeability of the sarcolemma changes creating an
electrical impulse, which quickly spreads across the entire sarcolemma activating all
myofibrils in the muscle cell almost instantaneously. This process initiates the con-
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3.2 Voluntary contraction of a skeletal muscle

traction cycle, which produces tension through the pivoting of myosin heads, known
as the sliding filament theory. However, a single stimulus only produces activation of
the MU for a very short duration of time producing only a short muscle twitch. Thus,
to produce a movement, several stimuli are required. If the muscle fibers are stimu-
lated immediately after the entire relaxation period has ended, the following twitch
will be slightly stronger than the previous. This is known as the treppe phenomenon.
However, this approach can only be used to produce approximately a fourth of the
maximum muscle tension. Thus, to produce maximum tension, the second stimula-
tion must arrive before the muscle fibers are relaxed, which is the approach normally
used by the CNS during normal contraction. This is known as tetanus stimulation.
[Martini, 2006]

MU 1
MU 2
MU 3
MU 4

MU N

E3

Net excitation

A

MU 1
MU 2
MU 3
MU 4

MU N
E4

B

MU 1
MU 2
MU 3
MU 4

MU N

Emax

C

Firing rates
MU threshold

Drive to the MU pool

Inhibition to 
the MU pool

Figure 3.1

A hydraulic model representing
the regulation of MUs by the
CNS. The common drive is
given by the drive into the MU
pool subtracted the inhibition.
A) shows a common drive just
strong enough for activation
of three MUs, B) indicates a
slightly stronger common drive
recruiting an additional MU as
well as increasing the firing rate
of the already recruited MUs,
and C) convergence towards the
maximal firing rate of all MUs
during maximal common drive
(tetanus stimulation). Adapted
for own use from Luca and Erim
[1994]

12 3. EMG response during muscle activation



3.3 Measurement of myoelectric signals

Activation of the MUs in a skeletal muscle follows Henneman’s size principle, which
states that MUs are generally recruited in order of fewest fibers to most fibers during
an increase in the strength of the contraction. Through complete tetanus stimulation
of all MUs, the peak tension can be reached although only for a brief period. Thus,
MUs are activated on a rotating basis, as MUs quickly use their energy reserves,
depending on the type of muscle-fibers constituting the MU. This produces an asyn-
chronous activation maintaining a level less than maximum tension. [Merletti and
Parker, 2004; Martini, 2006]

In the work by Luca and Erim, a general model for activation of MUs in relation to
isometrically produced force was proposed. The model suggests that the activation
of MUs is controlled by a common drive (i.e., common stimulation) from the CNS to
the muscle rather than an individual control of each single MU, see figure 3.1. The
size principle stated by Henneman is explained by different recruitment thresholds
of MUs. Thus, for an increasing firing rate from the CNS, increasingly more MUs
are activated. This also suggests, that the firing rate of earlier recruited MUs will at
any time be larger than later recruited MUs. However, factors such as availability of
oxygen and nutrients has also been shown to have an effect causing some MUs to be
in a complete relaxation-state, i.e., non-recruitable. [Luca and Erim, 1994; Merletti
and Parker, 2004]

3.3 Measurement of myoelectric signals

The electrical impulses conveyed across the sarcolemma of all MUs give rise to myo-
electric signals, which can be measured as the EMG. The EMG can fundamentally
be measured either non-invasively or invasively. Non-invasively, EMG is measured
from the skin using surface electrodes (sEMG) and invasively, EMG is commonly
measured using intramuscular wire or needle electrodes (iEMG). An obvious disad-
vantage of the intramuscular electrodes is the need to be inserted into the muscle,
which can cause discomfort and risk of infection. Even though surface electrodes
are non-invasive they can cause skin irritation. Furthermore, sEMG may change over
time due to change in e.g. skin impedance or electrode lift-off. [Merletti and Parker,
2004]
Albeit both techniques measure myoelectric signals, the pattern of even the same
MUs will appear very different. The iEMG signals provides a more detailed local
response at the MU level, whereas sEMG collects the global information from sev-
eral MUs often from several muscles. This is because the action potentials from
different MUs pass through the tissue, which act as a low-pass filter. Thus, the pat-
tern measured with sEMG will be broader and with lower amplitude than with iEMG.
Moreover, sEMG will contain a summation of several MUs, whereas MUs in iEMG
often can be distinguished even at a relatively high contraction level. Consequently,
the use of sEMG and iEMG as information sources for myoelectric prosthesis may
complement each other rather than being alternatives. [Merletti and Parker, 2004]

3. EMG response during muscle activation 13



3.3 Measurement of myoelectric signals

Figure 3.2 depicts both the sEMG and the iEMG, top left and right respectively. It can
be seen that the iEMG is very localized in time with an amplitude of approximately
2.5 µV, whereas the sEMG is smoothed out by the low-pass filtering characteristics
of the skin, and thus has a lower amplitude of 0.5 µV. Furthermore, the iEMG con-
tains high frequency components in the range of 100 to 2500 Hz whereas the sEMG
ranges from 20 to 400 Hz, see figure 3.2 bottom. [Komi and Tesch, 1979; Merletti
and Parker, 2004]
Typically, only sEMG is considered for control of myoelectric prosthesis. However,
for the reasons mentioned above, the use of intramuscular signals has also been sug-
gested by Scheme and Englehart to be useful for control of myoelectric prosthesis; in
particular for multiple DoFs and simultaneous movements. Moreover, iEMG sensors
can possibly be chronically implanted allowing robust measurements during the day
even after doffing and donning of the prosthesis [Scheme and Englehart, 2011].
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Figure 3.2: Representation of sEMG and iEMG signal and their corresponding fre-
quency content.
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Myoelectric control schemes 4
This chapter describes the methods to de-
velop a control scheme. A control scheme
is the strategy for converting the EMG
into a control signal, which enables the
prosthesis to perform intended movements
and/or a given force.

Control system

Control unit

Generally three types of control schemes for prosthetic myoelectric control have been
reported in the literature. These are state control, proportional control and pattern
recognition [Oskoei and Hu, 2007]. Common for all three control schemes is a pre-
processing step. The stages required in the different control schemes can be seen in
figure 4.1. Each stage contains different parameters that can be adjusted, which will
be described throughout this chapter.

State control Pattern recognition Proportional control

Pre-processing

WindowingOn/off control

Feature extraction

Dimensionality 
reduction

Classification

Post-processing

Windowing

Feature extraction

Relationship

Dimensionality 
reduction

Figure 4.1: The different stages in the control schemes.

Preprocessing

The EMG signal is usually contaminated with unwanted components, e.g., motion
artifacts and power line noise, which can be attenuated using a filter. Usually a
bandpass filter is used, preserving the EMG signal but removing noise components.
[Zecca et al., 2002; Hargrove et al., 2009, 2010; Scheme and Englehart, 2011]
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4.1 State control

4.1 State control

One of the first myoelectric control schemes to be implemented used the on/off strat-
egy. When the EMG exceeds a specified threshold the prosthetic device turns on a
defined function, for example, closing the hand, see figure 4.2. This strategy can be
used to control a number of states or functionalities by defining different thresholds
corresponding to different functions, or alternatively by having independent sources
for different functions. [Battye et al., 1955; Bottomley, 1965; Scott, 1967; Parker
et al., 2006; Merletti and Parker, 2004]

Time (seconds) 
0 1 2 

S2

O�

Open

Close

S1

mean absolute value 

Figure 4.2: State control of a prosthetic hand. When the value of the EMG signal
increases above predefined thresholds different functions of the hand
are turned on - in this case open and close. [Parker et al., 2006]

A three state control scheme was developed by Dorcas and Scott using one EMG
channel from the biceps brachii. One contraction level corresponded to activation of
function one and a higher contraction level to function two. In clinical evaluation only
a short training period was sufficient to achieve reliable control using this particular
approach [Dorcas and Scott, 1966].
The on/off strategy has been expanded for control of up to five states by Paciga et al.
obtaining error rates as low as 1.1 % when switching between states. However, users
were provided with visual feedback on contraction level, which is not feasible in
practice [Paciga et al., 1980].

4.2 Pattern recognition

Pattern recognition is a control scheme where observations from input signals are as-
signed to a class in a predefined set of classes. An observation typically consists of
multiple features, which represent characteristics of the signal. To map observations
to classes, a learning procedure that trains the classifier in separating observations is
used, see figure 4.3 [Duda et al., 2000]. In myoelectric control, the observations are
extracted from the EMG signal and the classes are represented by the movements.
To allow discrimination of the intended movements, a number of processing stages
must be completed. These are windowing, feature extraction, and classification. The
different steps all impact how well the control scheme assigns observations from
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4.2 Pattern recognition

the EMG signal to intended movements, which is quantified as a classification ac-
curacy. These are thus important to consider in a pattern recognition based control
scheme. Furthermore, two optional steps can be taken to improve classification accu-
racy, which are dimensionality reduction and post-processing. [Oskoei and Hu, 2007;
Hargrove et al., 2009, 2010; Zecca et al., 2002]

Class 1

Class 2
Fe

at
ur

e 
2

Feature 1

Decisio
n boundary

Figure 4.3: Basic concept of pattern recognition, were observations are assigned
to class 1 or class 2 based on the decision boundary.

4.2.1 Windowing

Before extraction of features, a segment of the EMG signal has to be selected since
the instantaneous EMG value is not appropriate for classification. The segment is
selected by multiplying a window with a certain length (usually 50-400 ms) to the
EMG signal. The length of the window determines the stability of the features, where
a long window will produce more stable features improving classification accuracy.
However, applying a longer window will also create a longer delay of the system,
which has to be considered for prosthetic use. Additionally, windows can be specified
to overlap in order to create a denser stream of classifications, where the size of
overlap is limited by the processing speed of the system. [Hargrove et al., 2010;
Scheme and Englehart, 2011; Englehart and Hudgins, 2003; Oskoei and Hu, 2008]
It has been shown by Englehart et al., that the state of the EMG signal compared
to window length and classification accuracy is of importance. If the transient state
(onset of contraction or rapid changes in contraction level) of the EMG signal is used,
the impact of the window length on classification accuracy is larger as compared to
the steady state of the EMG signal - especially for short window lengths. [Englehart
et al., 2001]

4.2.2 Feature extraction

A segment of the EMG signal determined by the window is used to extract a number
of different features. A large number of features have been used, which can roughly
be divided into three domains: time domain (TD), frequency domain (FD) and time-
frequency domain (TFD). [Oskoei and Hu, 2007; Zecca et al., 2002]
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Time domain features
TD features are based on EMG amplitudes, which makes them computationally in-
expensive. This property is preferable in myoelectric control, where processing time
and power consumption is important. TD features that have been used extensively
throughout the literature especially for sEMG, although also for iEMG, are: Vari-
ance (VAR), mean absolute value (MAV), mean absolute value slope (MAVSLP),
root mean square (RMS), Willison amplitude (WAMP), zero crossing (ZC), slope
sign changes (SSC) and waveform length (WL). [Oskoei and Hu, 2007; Zecca et al.,
2002; Oskoei and Hu, 2006; Kamavuako et al., 2012]

Frequency domain features
FD features are based on the power spectrum density (PSD) and not the amplitude
of the EMG signal, which makes them computationally more expensive. However,
using FD features in a control scheme provides different information from the EMG
signal. The frequency features that have been used are mean frequency (MNF), me-
dian frequency (MDF), frequency ratio (FR) and auto regressive (AR) coefficients,
where especially AR coefficients have been commonly used in the literature [Oskoei
and Hu, 2006; Hargrove et al., 2007].

Time-frequency domain features
Normally when applying FD features, the EMG signal is assumed stationary within
each window. However, especially during the transient states of the EMG, this as-
sumption might not be valid. Therefore, TFD features have also been investigated,
although only for sEMG. [Oskoei and Hu, 2007; Zecca et al., 2002]
Features of the TFD that have been used are: Short time Fourier transform (STFT),
wavelet transform (WT) and wavelet packet transform (WPT). The STFT has a uni-
form resolution in both time and frequency, whereas the wavelet based features does
not impose uniform resolution in time and frequency. [Oskoei and Hu, 2007; Zecca
et al., 2002]

Impact of features on classification accuracy
Oskoei and Hu compared all the mentioned TD features to the FD features MNF,
MDF and FR and found that single TD features outperformed single FD features.
Albeit, this same pattern was found by Phinyomark et al., it was shown that the FD
features MNF, MDF and FR was outperformed by the FD feature mean power (MP).
[Oskoei and Hu, 2006; Phinyomark et al., 2012]

In a study by Englehart et al. TFD features (STFT, WT and WPT) were compared
to TD features for transient sEMG signal. Here, it was shown that the TFD features
resulted in increased classification accuracy compared to TD features after dimen-
sionality reduction (explained in the next section) of the feature space. These results
were later confirmed by the same author for both transient and steady-state EMG sig-
nal [Englehart et al., 1999, 2001].
Khezri and Jahed investigated the influence of wavelet parameters on sEMG signals
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and found that using the biorthogonal 3.5 wavelet with 9 levels of decomposition pro-
vided the best performance. However, the daubechies 2 and symlet 2 and 9 showed
almost as good performance. Additionally, Englehart et al. used both the coiflet 4
and the symlet 5 mother wavelet obtaining high classification accuracies. [Khezri
and Jahed, 2007; Englehart et al., 1999]

Oskoei and Hu evaluated classification accuracy in relation to feature selection and
segment length on sEMG signal. It was found that single TD features were less af-
fected by segment length and showed better general performance compared to single
AR features of the FD. [Oskoei and Hu, 2008]
Combined features (combined TD features compared to combined TD+AR features)
were also investigated and showed to have higher performance than single features
for short segment lengths. [Oskoei and Hu, 2008]
Another study by Huang et al. showed that combining AR features with TD features
resulted in a higher classification accuracy than TD features alone. Hargrove et al.
assessed sEMG versus iEMG using combined TD and AR features and found com-
parable classification accuracy for the two signals using these features. [Huang et al.,
2005; Hargrove et al., 2007]

Many different feature combinations have been used in the literature, but there is
no obvious tendencies of which features perform best in general. However, using a
combination of features from different domains seems to provide the most generic
results.

4.2.3 Dimensionality reduction

As can be seen from the above section, many different features can be chosen and
combined. However, a very large number of features (each providing a dimension in
the feature space) can lead to a problem referred to as "the curse of dimensionality",
which states that a large feature space requires more training data. A way to reduce
the dimensionality is through principal component analysis (PCA). This technique
maps the feature space to a lower dimension, while keeping as much variance as
possible [Oskoei and Hu, 2007]. PCA has been used extensively in the literature and
has been shown to increase classification accuracy. [Englehart et al., 1999, 2001;
Hargrove et al., 2007, 2009; Khezri and Jahed, 2007]
However, albeit not used extensively in literature, other methods such as separability
and correlation (SEPCOR), where separability is preferred above variance, do exist.
[Ege et al., 2000]

4.2.4 Classification

To classify different movements for myoelectric control, different classifiers with
different properties have been proposed. Among the different classifiers can be men-
tioned linear discriminant analysis (LDA) and the more complex multilayer percep-
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tion artificial neural network (ANN). [Englehart et al., 1999, 2001; Englehart and
Hudgins, 2003; Hargrove et al., 2010]
Interestingly, in a study by Englehart et al. LDA was shown to outperform the more
complex ANN, which may be due to the to the linearizing effect of the PCA. [Engle-
hart et al., 1999]

Another type of classifiers are based on fuzzy logic, where expert knowledge can
be incorporated in an if-else classification structure, which is advantageous if a rule
base can be created [Ajiboye and Weir, 2005; Oskoei and Hu, 2007]. An extension of
the fuzzy logic approach is the neuro-fuzzy classifiers that combine knowledge about
the system from the fuzzy approach with the ability to train the classifier using the
neural networks [Khezri and Jahed, 2007; Zecca et al., 2002].

Yet another classifier is the support vector machine (SVM). This classifier is orig-
inally intended for binary problems but has been adapted to differentiate between
multiple classes. The approach is to train one classifier for every combination of two
classes and use a one against one principle. Alternatively, each binary classifier is
trained on one class versus the remaining classes in a one against all approach. [Os-
koei and Hu, 2008]

Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) have also
been used for classification purposes but were shown to have the same classification
accuracy as ANN and LDA for a sixth order AR feature set by Hargrove et al.. [Har-
grove et al., 2007]

It has been shown that choosing the proper features and performing PCA makes the
classification task minimally dependent on the choice of classifier. [Scheme and En-
glehart, 2011; Scheme et al., 2011]

Reference Class Channels Classifier Features
Englehart et al. [1999] 4 2 sEMG LDA, ANN MAV, MAVSLP, ZC, SSC, WL,

STFT, WT, WPT
Englehart et al. [2001] 6 4 sEMG LDA, ANN MAV, MAVSLP, ZC, SSC, WL,

STFT, WT, WPT
Englehart and Hudgins [2003] 4 4 sEMG LDA MAV, MAVSLP, ZC, SSC, WL
Ajiboye and Weir [2005] 4-5 3-4 sEMG Fuzzy logic -
Huang et al. [2005] 6 4 sEMG LDA, ANN, GMM MAV, RMS, ZC, SSC, WL, AR
Hargrove et al. [2007] 10 16 sEMG,

6 iEMG
LDA, ANN MAV, RMS, MAVSLP, ZC,

SSC, WL, AR
Khezri and Jahed [2007] 6 4 sEMG Neuro-fuzzy MAV, SSC, AR, WT
Oskoei and Hu [2008] 6 4 sEMG LDA, ANN, SVM MAV, RMS, WL, VAR, ZC,

SSC, WAMP, AR, MNF, MDF
Hargrove et al. [2009] 11 10 sEMG LDA AR
Scheme et al. [2011] 6-11 10 sEMG kNN, SVM, ANN,

GMM, LDA
MAV, MAVSLP, ZC, SSC, WL

Table 4.1: Chronological overview of the references used for pattern recognition
including methodological aspects of the experimental designs. All stud-
ies achieved high accuracies (above 90 %) with at least one of their
approaches.
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4.2.5 Post-processing

After classification, a post-processing step can be utilized on the classification stream.
One way is by performing a majority vote (MV), which takes a number of results from
the classifier and classifies the movement as the class with most occurrences. This
can improve classification accuracy but at the cost of response time. If overlapped
windows are used and the step is chosen to equal the processing delay of the sys-
tem the densest stream of classifications is produced. Consequently, more results are
available for the majority vote. [Englehart and Hudgins, 2003; Chan and Englehart,
2005]

A short overview of the references used in the description of the stages of pattern
recognition control scheme can be seen in table 4.1. The table describes the num-
ber of information sources (EMG channels), the complexity of the control scheme
(classes), the classification approach and the utilized features.

4.3 Proportional control

To enable determination of not only the intended movement but also the force of
the movement, another control scheme called proportional control has been utilized.
In the proportional control scheme, a relationship between the activity of the EMG
signal and force is determined, see figure 4.4. This allows prosthetic devices to be
controlled not only for different DoFs, but also to determine the intended force that
the prosthetic hand should perform. [Dorcas and Scott, 1966; Englehart et al., 2001;
Cotton et al., 2007]
As with pattern recognition, for proportional control the data must be windowed and
representative features extracted before a relationship between the features and force
can be determined.

Force

Input EMG

Figure 4.4: Proportional control of prosthesis. Force is dependent on EMG vari-
ables. In this case force increase linearly with increasing EMG value.
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4.3.1 Windowing

Kamavuako et al. investigated the relationship between grasping force and single
channel sEMG and iEMG. It was found that the significantly highest correlation be-
tween force and sEMG could be obtained using a 200 ms window and a 300 ms
window for iEMG [Kamavuako et al., 2009]. Another study by Nielsen et al. used
seven sEMG channels to estimate force for simultaneous movements of two wrist
DoFs. The window length that resulted in the highest correlation between sEMG and
force in this case was found to be 100 ms. [Nielsen et al., 2011]

4.3.2 Feature extraction

In the literature many authors use the amplitude of the EMG signal to estimate the
force produced. Basic 5 Hz low pass filtering of the rectified EMG signal, integra-
tion of the rectified signal, moving average (MA), moving average root mean square
(MARMS) and mean square value (MSV) have been used. [Hoozemans and van
Dieën, 2005; Onishi et al., 2000; Jiang, 2009; Kamavuako et al., 2009]
A multi-dimensional feature space has also been investigated in the study by Nielsen
et al. resembling that of pattern recognition based movement classification. The fea-
ture used by Nielsen et al. were a combination of the TD features MAV, ZC, SSC
and WL, which were also combined with AR or WT features. Here, the combined
TD features outperformed the MSV single feature. However, combining TD and AR
or WT did not improve performance any further. [Nielsen et al., 2011]
In a study by Kamavuako et al. nine TD features were investigated in all possible
combinations. The best performance could be obtained combining the WL, SSC,
WAMP, modified-MAV, and constraint sample entropy (CSE) features [Kamavuako
et al., 2012].

4.3.3 Relationship

Both linear and nonlinear relationships has been proposed in the literature [Kamavuako
et al., 2009; Nielsen et al., 2011]. Even though the ANN should fit the data in the best
possible way theoretically, a linear model (LM) has shown to produce similar results
for one-channel sEMG and iEMG and grasping force [Rosenvang et al., 2010b].

4.4 Pros and cons of myoelectric control schemes

To distinguish between multiple movements, especially a pattern recognition con-
trol scheme has been used in the literature, whereas proportional control has proven
effective for force estimation. Common is that the choice of parameters, e.g. fea-
tures, have varied between different control schemes proposed by different authors
and, consequently, it is not clear which parameters provides the best results in general
[Farrell and Weir, 2008a].
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4.4 Pros and cons of myoelectric control schemes

The three control schemes: state control, pattern recognition and proportional control
have been reviewed. Each of the control schemes has some advantages and disadvan-
tages, which have been explained in this chapter and are summarized in table 4.2.

Control scheme Prospects Consequences
State control Simple Allows few DoFs

Fast Limited by predefined thresholds
Clinically available Must have independent control sites

Pattern recognition Allows many DoFs Must be trained
Can be fast Advanced schemes are slow
Allows intuitive control Limited by predefined classes
Can use untargeted electrode sites

Proportional control Continuous force estimation Allows few DoFs
Simple Predefined input-output relationship
Allows intuitive control

Table 4.2: Prospects and consequences of each of the three control schemes: state
control, pattern recognition and proportional control.
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Aim 5
Throughout the problem analysis, several important factors for control of myoelectric
prosthesis have been investigated. The initial problem statement concerned improve-
ment of the control, and many factors have been disclosed throughout the analysis.
The control system for a prosthesis consists of the following steps:

• Locating a source of myoelectric signals
• Identifying the information available in the signal
• Extracting and applying information from the signal for control

According to the initial problem statement, the goal was to improve the control sys-
tem to allow simultaneous control of multiple DoFs with corresponding force esti-
mation. In order to do so, a number of choices was made with basis in the knowledge
established in the problem analysis.

Locating a source of myoelectric signals
In chapter 2 it was found that different muscles map different movements of the
hand. However, amputation affects this relationship, since some muscles are com-
pletely lost, and the anatomy of the remaining muscles change due to the amputation.
Thus, for amputees no unique mapping can be made between muscles and move-
ments. However, untargeted techniques have shown comparable results to targeted
techniques for control of single movements, which potentially eliminates the need
to use a specific mapping between muscles and movements. The use of a untargeted
technique has not been investigated for control of simultaneous DoFs or estimation of
force. Thus, it was chosen to use an untargeted technique to investigate its potential
use for simultaneous movements and force estimation. Moreover, the use of untar-
geted measurement sites would also ease the possible future design of a prosthesis.

Three movements of the hand and wrist were identified to be the most important
to regain for an amputee: 1) flexion/extension of the fingers, 2) pronation/supination
of the wrist, and 3) flexion/extension of the wrist. Thus, it was chosen to support
these movements in the control system.

Identifying the information available in the signal
In chapter 3 the content of the EMG was investigated, where a relation between the
size of the common drive activating MUs and the produced force was found. To
measure the activity of the MUs, two recording techniques were identified, namely
sEMG and iEMG. sEMG provides a more global representation of the muscle acti-
vation, whereas iEMG provides a more localized representation. Therefore, it was
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chosen to use both sEMG and iEMG, which can provide information on muscle acti-
vation together with the force produced by the muscles.

Because of the different characteristics of sEMG and iEMG, it was chosen to com-
pare these when developing the control system for simultaneous DoFs. Furthermore,
in chapter 3 it was argued that the two information sources should not necessarily be
compared but also combined, as they may complement each other rather than being
alternatives. Thus, it was also chosen to combine sEMG and iEMG to assess whether
this could provide better results.

Extracting and applying information from the signal for control
Chapter 4 found that a myoelectric control scheme is necessary to convert the infor-
mation in the EMG to the control signal for the prosthetic device.
For classification of movements, especially pattern recognition based control schemes
were found to be useful whereas proportional control schemes have shown to be good
for estimation of force.
To our best knowledge, no work has been published using a hybrid between propor-
tional control for force estimation and pattern recognition for movement classification
(for both single and simultaneous DoFs). As the current project aims at investigating
both simultaneous movements along with force estimation, a hybrid control scheme
was chosen.
The hybrid control scheme has a number of stages, each containing different pa-
rameters that can be adjusted, see figure 5.1. A special property of the hybrid con-
trol scheme is, that there can be an interaction between the force estimation and the
movement classification, i.e. the result from the classifier may be used in the force
estimation and vice versa.

Pre-processing Feature
extraction

Dimentionality
reduction

Movement
classi�cation

Force
estimation

Movement

Hybrid control scheme

Control input
(EMG)

DoF 1

DoF 2

DoF 3

Post-
processing

Figure 5.1: Stages of the proposed hybrid control scheme.

The choice of parameters, e.g. features, used in the different control schemes has var-
ied between authors, and consequently no apparent choice regarding these could be
made. Therefore, it was chosen to investigate which parameters provided the optimal
results for the proposed hybrid control scheme.

It was chosen to investigate the effect of different window sizes, different TD, FD,
TFD features and a combination of feature domains. Moreover, both PCA and SEP-
COR algorithms were investigated as dimensionality reduction techniques to identify
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the optimal method.
It has been shown that the choice of classifier has a minimal effect on the performance
of a control scheme, if appropriate features are selected. However, it was chosen to
investigate which of the following four common classifiers (LDA, kNN, SVM and
ANN) was the most suited for the particular control scheme. Moreover, the effect of
adding post-processing to the outcome from the classifier was investigated.
The relation between both sEMG and iEMG, and force was found to be well-described
using a proportional control scheme based on an ANN. However, a LM approach has
also shown to perform equally well for a more simple case and thus it was chosen to
investigate which of these methods could provide the best results.

5.0.1 Choices summarized

The choices made for the control system based on the problem analysis can be seen
in figure 5.2.

Choice of movements:
Finger �exion/extension
Wrist �exion/extension
Wrist pronation/supination
Choice of recording sites:
Untargeted recording sites

Measurement method
sEMG and iEMG
Combination of sEMG and iEMG

Features
TD, FD, TFD
Combination of feature domains
Dimensionality reduction
PCA and SEPCOR
Movement classi�cation
LDA, kNN, SVM and ANN
Force estimation 
ANN and LM
Post processing
Majority vote

Control input Hybrid control scheme

Control system

Control unit

Figure 5.2: Choices made on basis of the problem analysis according to the steps
in designing the control system.

Hypothesis

A novel hybrid control scheme based on untargeted EMG signals (iEMG and sEMG)
will allow precise, simultaneous control of finger flexion/extension, wrist flexion/ex-
tension and wrist pronation/supination movements along with corresponding force.
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Experimental design 6
Based on the analysis, a number of choices were made resulting in the proposed hy-
pothesis. In order to test this hypothesis, an experiment was conducted. To do so, a
number of additional choices relating to the execution of the experiment were made.
This chapter describes these choices with corresponding arguments and the used pro-
tocol.

6.1 Subjects

The study included 10 healthy subjects (6 men / 4 women, mean age: 24.4 [range: 23-
26]) with no limb deficiencies or neurological disorders. The protocol was approved
by the Danish local ethical committee (approval no.: N-20080045). Prior to the ex-
periment, subjects were given both oral and written information about the experiment
as well as signing a written consent. All subjects were made aware that participating
was voluntary and that they could resign at any point during the experiment.

6.2 Degrees of Freedom

In the analysis, it was chosen to investigate the three DoFs: finger flexion/exten-
sion, wrist flexion/extension and wrist pronation/supination. However, no avail-
able devices for measuring force (dynamometers) for all three DoFs existed. An
attempt to design a dynamometer allowing both finger flexion/extension and wrist
pronation/supination has been made by Rosenvang et al. using multiple transduc-
ers. However, the results showed inconsistent output from the transducers. Thus,
in this study it was chosen to develop a dynamometer based on a single, precise,
multiaxial transducer (Gamma FT-130-10, ATI Industries), and, consequently, it was
only possible to measure wrist DoFs. Therefore, finger flexion/extension was ex-
cluded leaving the two wrist DoFs flexion/extension and pronation/supination. To
allow simultaneous control of the two wrist DoFs, they were combined, resulting
in four the movements: simultaneous flexion and supination (flexion+supination),
simultaneous extension and pronation (extension+pronation), simultaneous flexion
and pronation (flexion+pronation), and simultaneous extension and supination (ex-
tension+supination). Thus, in total 8 different movements were included:

• Flexion
• Extension
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6.3 EMG acquisition

• Pronation
• Supination
• Flexion+supination
• Extension+pronation
• Flexion+pronation
• Extension+supination

An additional consequence of the design of the dynamometer was, that the performed
movements produced a torque in the transducer and thus forces were represented by
moments of force.

6.3 EMG acquisition

In a study by Hargrove et al. applying a total of 16 sEMG channels, classification
accuracy was compared to the number of EMG channels. It was shown that only
three channels were needed to obtain the maximal classification accuracy, if the three
optimal channels were selected. A symmetrical channel selection was also performed
using equally spaced channels around the forearm, where four channels resulted in
maximal classification accuracy. While classification accuracy did not improve by
raising the number of channels for sEMG above four, similar performance was ob-
served as a result of utilizing six iEMG channels. Since no studies have utilized
untargeted techniques for force estimation, it was decided to use six iEMG channels
and six sEMG channels based on the studies for movement classification. [Hargrove
et al., 2007; Farrell and Weir, 2008a]

E1
E6

E5

E4
E3

E2

Figure 6.1: Example of sEMG and iEMG placement at equally spaced distances
around the forearm starting just lateral of the ulnar exposure. iEMG
was inserted at a 45◦ angle oriented in the proximal direction, such
that sEMG electrodes were placed approximately above the tip of the
iEMG electrodes. Electrode position in relation to muscle anatomy as
shown on the figure was not necessarily the same for all subjects due
to the untargeted electrode placement technique.

32 6. Experimental design



6.4 Force profiles for execution of movements

The EMG electrodes were placed according to the protocol used by Farrell and Weir
in a circle around the forearm at approximately 1/3 distal of the elbow joint [Farrell
and Weir, 2008a].
The sEMG electrodes (Ambu Neuroline 720) were placed equidistantly, starting just
lateral of the ulnar exposure.
For iEMG (custom-made by use of hypodermic needles, 25G from B. Braun, and
Teflon coated wires from AM-Systems), an insertion angle of 45◦ was chosen with
the orientation of the needle parallel to the arm and in the proximal direction. An
approximate insertion depth was chosen as the circumference of the arm divided by
16 [Farrell and Weir, 2008a]. Prior to insertion of the needle, the area was sterilized
with alcohol to minimize the risk of infection. iEMG electrodes were placed imme-
diately distal to each sEMG electrode. Electrode placement was verified based on
the presence of EMG signal during contraction of all forearm muscles during various
movements.

6.4 Force profiles for execution of movements

The experiment was composed of three trials in total. The purpose of the first two
trials was to collect data while performing all movements similarly, while the third
trial consisted of a less ideal execution of the movements. In order to create a consis-
tent, uniform execution of the different movements throughout the experiment, it was
chosen to use a standardized force profile for each movement. The movements were
performed isometrically by exerting a force in the direction of each movement, which
was measured by the dynamometer. [Kamavuako et al., 2009; Bøg et al., 2011]
To include different force levels, it was chosen to use a dynamic force profile for each
movement. To incorporate a more natural use of a prosthesis into the force profile,
it was chosen to switch directly from one movement to another [Parker et al., 2006].
This was also done in a study by Nielsen et al., where sinusoidal force profiles were
used for control of two single and simultaneous DoFs. Thus, in the present study
it was chosen to use sinusoidal profiles, since they incorporate dynamic force levels
with shifting movements. The sinusoidal profiles were chosen to oscillate at a fre-
quency of 0.25 Hz as used by Nielsen et al.. This resulted in one force profile for
each single DoF:

• Flexion followed by extension, see figure 6.2 a)
• Pronation followed by supination, see figure 6.2 b).

Furthermore, two profiles were made to cover the simultaneous DoFs:

• Flexion+pronation followed by extension+supination, see figure 6.2 c).
• Flexion+supination followed by extension+pronation, see figure 6.2 d).

For the third trial, a force profile was made for each single and simultaneous DoF.
However, as this trial should represent a less ideal case, the force profiles were am-
plitude and frequency modulated (frequency range 0.1-0.5 Hz, amplitude range 0.5-2
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6.4 Force profiles for execution of movements

Nm). All profiles were set to have a duration of 30 s to avoid muscle fatigue during
the task.
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Figure 6.2: The figure depicts the profiles for a) the single DoF flexion and ex-
tension, b) the single DoF pronation and supination, c) the simulta-
neous DoF for flexion+pronation followed by extension+supination,
and d) the simultaneous DoF for flexion+supination followed by ex-
tension+pronation.
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Figure 6.3: The figure depicts the frequency and amplitude modulated profiles
(Frequency range: 0.1-0.5 Hz, Amplitude range: 0.5-2 Nm) for a)
the single DoF flexion and extension, b) the single DoF pronation
and supination, c) the simultaneous DoF for flexion+pronation fol-
lowed by extension+supination, and d) the simultaneous DoF for flex-
ion+supination followed by extension+pronation.

Since maximum voluntary contraction (MVC) could not be measured due to a limited
force range of the used dynamometer, a percentage of each subject’s MVC could not
be used as the maximum force level. Therefore, a maximum force level was chosen
to be 3 Nm or 2 Nm (for male or female, respectively) for flexion and extension and
2 Nm or 1.5 Nm for supination and pronation empirically verified as a comfortable
level of contraction at low to medium force. [Nielsen et al., 2011]
During the experiment, subjects were provided with visual feedback of exerted and
targeted force. The force channels corresponding to the DoFs flexion/extension and
pronation/supination were represented as blue and red, respectively. Throughout the
experiment, the force channels were normalized according to their targeted force
profiles such that they appeared similar only differentiated by color, see figure 6.2.
Empirically, this was shown to reduce the cognitive load of the task.
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6.5 Setup

6.5 Setup

6.5.1 Positioning of the hand

To enhance consistent muscle activity during the different profiles, the hand was se-
cured firmly in the dynamometer. This was ensured by fixating the hand between
two plates. The plates were foam coated to minimize discomfort and to adapt the
shape of the plate to the hand of each individual, see figure 6.4. The dynamometer
was rotated to fit the shape and angles of the arm and hand better. The hand was
inserted creating a distance between the center of the transducer and the joint of the
wrist of approximately 5 cm. Moreover, the hand was placed in the upper part of the
dynamometer with the thumb above the plates. Markers were made on the hand to
ensure consistent location of the hand.

Pronation/supination

Flexion/extension

Figure 6.4: Positioning of the subject’s arm and hand in the dynamometer as well
as directional markers for the used movements.

Computer

Screen 1 Screen 2

Dynamometer

Wristband

EMG electrodes

Arm rest

AnEMG

Figure 6.5: Positioning of the subject during the experiment.
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6.5.2 Positioning of the subject

The subject was placed on a comfortable chair in an upright position with the elbow
fixated in an arm rest, see figure 6.5. The subject faced the screen (screen 2) providing
visual feedback for the subject. The experimenter sat next to the subject inspecting
all acquired signals on another screen (screen 1) whilst providing guidance for the
subject throughout the experiment.

6.5.3 Recording tool

To sample EMG and force data, while providing the subjects with visual feedback
of the exerted force in real time, a software tool was developed by the project group.
Furthermore, the tool allowed inspection of the EMG signals during execution of
the movements. The software tool displayed two windows. Window one, see figure
6.6, enabled the experimenter to control actions (initiating recording, randomizing
profiles, saving data etc.) and provided visual real time force feedback for the subject.
Window two, see figure 6.7, enabled the experimenter to inspect all 12 EMG channels
during profile execution in real time to ensure that all EMG channels were functioning
correctly. In order not to confuse the subject, window two was displayed on a separate
screen. The software tool also ensured randomization of the order of the profile and
a consistent naming of the acquired EMG and force data. All data was sampled at 10
kHz.

Figure 6.6: A screen-shot of window one in the recording tool, which allow control
of multiple functionalities while providing the subject with visual feed-
back of the exerted force along with the targeted force profile (lower
plot).
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Figure 6.7: A screen-shot of window two in the recording tool, which displays all
measured signals for the experimenter in real time (sEMG: left side,
iEMG: right side, torque: bottom).

6.6 Procedure

The procedure of the experiment is described below and can be seen in figure 6.8:
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Figure 6.8: Timeline of the experiment. Each measurement was preceded by a
break in order to avoid muscle fatigue. Each trial consisted of follow-
ing the four profiles constituting the eight movements. Each trial was
preceded by a 5 minute pause and the two normal trials were com-
pleted. Trial three consisted of one repetition of all four profiles as
normal trials but with amplitude and frequency modulated profiles.
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1. EMG device (AnEMG12) and computer was turned on
2. Recording software was set up
3. Subject was informed about the risks of the experiments and the experiment in

general
4. Informed consent was signed
5. Subject’s hand was positioned in dynamometer
6. Subject was instructed in performing the movements

(a) Every profile was trained until a good match between the targeted and the
actual force was achieved

7. Subject’s hand was removed from the dynamometer
8. Subject’s arm was prepared

(a) Electrode placement was marked
(b) Electrode area was shaved

9. sEMG electrodes were applied and connected to the AnEMG
10. Correct sEMG electrode placement was verified by presence of sEMG signal

during contraction
11. iEMG electrodes were inserted after sterilization of insertion area and con-

nected to the AnEMG
12. Correct iEMG electrode placement was verified by presence of iEMG signal

during contraction
13. Subject’s hand was positioned in dynamometer
14. Trial 1 was initiated

(a) Profile order was randomized by the recording software
(b) Subject performed the current profile and the best match was selected

within an approximate 5 minutes time frame including breaks
(c) Subject was given 2 minutes break
(d) Step (a) to (c) was repeated for all profiles
(e) Trial 1 ended and subject was given a pause of 5 minutes

15. Trial 2 was completed as trial 1
16. Trial 3 was completed as trial 1 and 2 with modulated profiles
17. Subject’s hand was removed from dynamometer
18. EMG electrodes were removed
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Data Processing 7
In order to develop the control scheme proposed in the hypothesis, several processing
techniques were implemented for the data acquired in the experiment. These are
described in the following.

7.1 Filters

To minimize the effect of noise outside the frequency bands for sEMG and iEMG, a
Butterworth band-pass filter was implemented. This infinite impulse response filter
was chosen as it has a flat frequency response within the passband and thus has a
minimal effect on the EMG signal. The order of the filter was 4 and thus the gain
was -24 dB/octave. To avoid removing any frequency components of the signals
cut-off frequencies of 20-500 Hz and 100-3000 Hz for sEMG and iEMG were used,
respectively.
Moreover, a low-pass Butterworth filter of order 4 was added to the torque signals
with a cutoff frequency of 3 Hz, which is well above the maximum frequency of the
performed sinusoidal profiles (0.5 Hz).

7.2 Features

To represent the EMG signal, several features were chosen. Each feature was calcu-
lated for each channel within a certain window (usually with a length between 50-400
ms.) with some overlap between windows to create a denser stream of outputs.
For the torque channels, the mean torque was calculated for each channel as a feature
for each window representing the real performed torque.

7.2.1 Time-domain features (TD)

All the TD features were calculated directly from the EMG signal according to the
formulas given below.

Mean Absolute Value (MAV)

MAV is commonly used to detect onset of EMG signal and represents the amplitude
of the signal. It is defined as: [Phinyomark et al., 2010; Oskoei and Hu, 2006]

MAV =
1
N

N

∑
k=1
|xk| (7.1)
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where xk is the value of the k’th sample and N is the number of samples in the window.

Modified Mean Absolute Value (MMAV)

To improve the robustness of the MAV feature, a modified version has been proposed,
where the data is smoothed by a Hanning window function. MMAV is defined as:
[Phinyomark et al., 2010]

MMAV =
1
N

N

∑
k=1

wk|xk| (7.2)

where xk is the k’th sample of the EMG, wk is the k’th sample of the Hanning window
and N is the number of samples in the window.

Mean Absolute Value Slope (MAVSLP)

MAVSLP is another modified version of the MAV feature. MAVSLP is the difference
between adjacent MAV values and can thus be used as an estimate for the amount of
change in the amplitude of the EMG signal. It is defined as: [Phinyomark et al., 2010;
Oskoei and Hu, 2006]

MAV SLP = MAVi+1−MAVi, for i = 1, ..., I−1 (7.3)

where i is i’th window and I is the total number of windows.

Root Mean Square (RMS)

RMS is used as an estimate of the standard deviation of the signal representing the
power content. It is defined as: [Phinyomark et al., 2010; Oskoei and Hu, 2006]

RMS =

√
1
N

N

∑
k=1

x2
k (7.4)

where xk denotes the k’th sample and N is the number of samples in the window.

Variance (VAR)

The variance is an estimate of the power content of the signal. It is defined as: [Phiny-
omark et al., 2010; Oskoei and Hu, 2006]

VAR =
1
N

N

∑
k=1

(xk−µ)2 (7.5)

where xk is the k’th sample, N is the number of samples in the window and µ is the
mean of these samples.
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Waveform Length (WL)

WL is the cumulative length of the waveforms in the signal. The feature is therefore
influenced by waveform frequency, amplitude and duration. It is defined as: [Phiny-
omark et al., 2010; Oskoei and Hu, 2006]

WL =
N

∑
k=2
|xk− xk−1| (7.6)

where xk is the k’th sample and N is the total number of samples in the window.

Willison Amplitude (WAMP)

WAMP is a measure of motor unit activity while ignoring the influence of noise by
applying a threshold. It is defined as: [Phinyomark et al., 2010; Oskoei and Hu, 2006]

WAMP =
N−1

∑
k=1

f (|xk− xk+1|), f (x) =

{
1, if x > ε

0, otherwise.
(7.7)

where k is the k’th sample, N is the total number of samples in the window and ε is
the threshold. Thus, WAMP represents a count of amplitude differences larger than
the threshold.

Zero Crossing (ZC)

ZC is an estimate of the frequency properties of the signal, while excluding the effect
of noise through a threshold. It is defined as: [Phinyomark et al., 2010; Oskoei and
Hu, 2006]

ZC =
N

∑
k=2

f [(xk− ε) · (xk−1− ε)] , f (x) =

{
1, if x < 0,

0, otherwise.
(7.8)

where k is the k’th sample, N is the total number of samples and ε is the threshold.
Thus, ZC represents the number of times the EMG crosses the axis while minimizing
the effect of noise.

Slope Sign Changes (SSC)

Similarly to ZC, SSC is a measure of the frequency characteristics of the signal, while
excluding the effect of noise through a threshold. It is defined as: [Phinyomark et al.,
2010; Oskoei and Hu, 2006]

SCC =
N−1

∑
k=2

[ f [(xk− xk−1) · (xk− xk+1)]] f (x) =

{
1, if x≥ ε,

0, otherwise.
(7.9)
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where k is the k’th sample, N is the total number of samples in the window and ε is
the threshold. Thus, SSC is the number of changes in the slope of the signal.

Calculation of the used thresholds

As mentioned, the three features WAMP, ZC and SSC require thresholds to ignore
the effect of noise. To optimize these thresholds, an algorithm was developed, which
automatically determined the optimal thresholds for each subject.
In the algorithm, the threshold was varied from a very low value, preserving the entire
signal and much noise, to a very high value minimizing noise but also removing sig-
nal components. The optimization parameter was chosen as the difference between
feature values during the rest period (noise) and active period (signal) of each profile
- referred to as signal noise difference (SN).
The outcome of this can be seen in figure 7.1, where the threshold was set according
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Figure 7.1: Example of the value of SN at different iterations for the WAMP fea-
ture for one subject.

to the global maximum of the optimization parameter SN.
The algorithm worked as follows for both sEMG and iEMG

1. Initialize thresholds as a very low value (empirically determined)

2. Calculate the average feature value at rest (N) (first 3 s of each profile) based
on all 8 profiles and all 6 channels.

N =

6
∑

chan=1
nchan +

8
∑

pro f=1
npro f

6 ·8
3. Calculate the average feature value over a long period of activity (S), i.e., while

performing several e.g. flexion movements, based on all 8 profiles and all 6
channels.
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S =

6
∑

chan=1
schan +

8
∑

pro f=1
spro f

6 ·8
4. Calculate and save SN (signal-noise) SN = S−N.
5. Increment threshold.
6. Recalculate step 1-5
7. Find and save the threshold corresponding to the global maximum of SN.

7.2.2 Frequency-domain features (FD)

The FD features were calculated according to the formulas given below.

Mean Power (MP)

The mean power of the PSD is a direct measure of the power in the signal. It is
defined as: [Phinyomark et al., 2012]

MP =
1
M

M

∑
j=1

Pj (7.10)

where Pj is the power of the j’th frequency and M is the total number of frequencies.

Auto-regressive model (AR)

The AR model describes the EMG signal through P previous samples, where P is the
model’s order. It is defined as: [Phinyomark et al., 2010; Oskoei and Hu, 2006]

xi =
P

∑
p=1

(apxi−p +wi) (7.11)

where xi is the i’th sample of the signal, ap is the p’th AR-model coefficient and wi is
the i’th error term of white driving noise. The coefficients a are estimated using the
Yule-Walker approach for a model of order six. This yields seven coefficients, where
the first coefficient is always 1, and thus the remaining six coefficients were used as
six features.

7.2.3 Time-frequency domain features (TFD)

TFD features were calculated based on the STFT and WT as described below.

Center of Mass (CoM)

CoM was calculated based on a STFT of the EMG signal within a given window. The
STFT was calculated by dividing the window into eight segments using a Hamming
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window with 50 % overlap between each segment, and for each segment calculate
the PSD.
CoM can be used to represent the many values of the STFT. The feature was used to
represent the change in position of the CoM on the frequency axis. It is defined as:
[Farina et al., 2008]

CoM =
1
M

N

∑
l=1

ml~pl (7.12)

where M is the total mass, ml and pl is the mass and position of the l’th sample of
the STFT and N is the total number of samples in the STFT.

Discrete Wavelet Transform (DWT)
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Figure 7.2: Decomposition of the
signal into approxima-
tion (cA) and detail (cD)
coefficients using filter
banks.

For each window, the DWT was calculated us-
ing a quadrature mirror filter composed of a low-
pass and a high-pass filter determined by the
used mother wavelet. The signal was convolved
with the low-pass filter providing the 1st level
approximation coefficients (cA1) and, simulta-
neously, convolved with the high-pass filter pro-
viding the detail coefficients (cD1), see figure
7.2. To increase the resolution in frequency, the
same procedure was used on cA1, providing cA2
and cD2 and so on. For each level, the maximum
frequency content in the signal was downscaled
by a factor 2 (dyadic decimation).
Since sEMG and iEMG have different signal
characteristics and frequency bands, it is reason-
able to use different mother wavelets and decom-
position levels. It was chosen to use daubechies
2 for sEMG and coiflet 5 for iEMG with decom-
position levels of 4 and 3, respectively, based on
the literature and on the similarity between these
mother wavelets and the EMG signals. Phiny-
omark et al.; Khezri and Jahed; Englehart et al.

DWTMAV

As a feature for each decomposition level, MAV (as described in eq. 7.1) was cal-
culated. MAV was calculated for cDs at each level, and both cA and cD at the final
level; i.e., five MAV values (cD1-cD4 and cA4) for sEMG and four values (cD1-cD3
and cA3) for iEMG. [Phinyomark et al., 2011]
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DWTRMS

Similarly to DWTMAV, RMS values (as described in eq. 7.4) were calculated using
the same approach. [Phinyomark et al., 2011]

7.3 Dimensionality Reduction

For each of the calculated features, each channel of EMG provided at least one di-
mension (known as a variable) in the feature space. The features CoM, MP and
each TD feature provided 1 variable per channel, the AR feature provided 6 variables
per channel, and DWTMAV and DWTRMS features provided 5 and 4 variables per
channel for sEMG and iEMG, respectively. Thus, if all features were combined, the
feature space would have 162 and 150 variables for sEMG and iEMG, respectively.
To reduce the complexity of the feature space, and thereby avoid the curse of di-
mensionality, the two dimensionality reduction techniques SEPCOR and PCA were
implemented.

Separability and Correlation (SEPCOR)

The SEPCOR algorithm treats discriminative power as information, and thus selects
the variables, which best discriminates groups in the data. The algorithm is based on
the value V calculated by eq. 7.13 [Ege et al., 2000]

~Vm =
The variance of the average values in xm

The average value of the variances in xm
(7.13)

where xm is the m’th variable.

After calculating the V-values, the algorithm consisted of two steps. First, all V-
values below a threshold set to 0.2 were removed. Next, three simple steps were
performed: [Ege et al., 2000]

1. Remove and save the variable with highest Vm

2. Find the correlation between the removed and the remaining variables
3. Remove variables with a maximum correlation higher than a given threshold

These steps were performed until all variables were either saved (i.e., step 1) or re-
moved (i.e., step 3). [Ege et al., 2000]

Principal Component Analysis (PCA)

Contrary to SEPCOR, the PCA algorithm treats variance as information where a
predefined variance of the feature space is retained using as few variables as possible.
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The algorithm consists of 7 steps for a D-dimensional feature space: [Duda et al.,
2000]

• Compute a mean vector of D-dimensions (a mean value for each variable)
• Compute a covariance matrix of the feature space of D×D-dimensions
• Compute the eigenvalues and -vectors of the covariance matrix
• Sort eigenvalues and -vectors according to eigenvalue in descending order
• Calculate the cumulative variance (power) described by the eigenvalues
• Select the number of eigenvalues necessary to describe the minimum variance

desired
• Transform the original data using a matrix of the eigenvectors corresponding

to the chosen eigenvalues.

By applying these steps, the data was transformed to fewer variables equal to the
number of chosen eigenvalues. [Duda et al., 2000]

7.4 Classification

In order to classify movements based on the EMG signal, a classifier was needed.
However, to train and test the classifier, it was necessary to know exactly when the
subject performed a movement and which movement it was. Therefore, the data had
to be labeled.

7.4.1 Labeling of data

The labeling of movements was done manually by identifying when the torque curve
crossed the x-axis. As shown in the upper plot on figure 7.3, only one torque chan-
nel was active representing a single DoF, e.g. flexion/extension. If the movement
consisted of 2 DoFs, two torque channels were active. However, commonly the two
lines crossed the x-axis at slightly different time due to imperfect execution of the
movements, as seen on the lower plot on figure 7.3. In such cases, the transition
was identified at the center of the two lines. This constitutes a compromise between
favoring the crossing of each of the two movements.

7.4.2 Linear Discriminant Analysis (LDA)

Many algorithms have been used to perform an LDA, which are distinguished by
the number of discriminant analyses needed. To avoid ambiguous regions, i.e., re-
gions in the feature space not belonging to a class, the approach used implemented c
discriminant analyses (one for each class) defined as: [Duda et al., 2000]

gi(x) = −1
2
(~x−~µi)

t
Σ
−1
p (~x−~µi) −

d
2

ln(2π) − 1
2

ln(det(Σp)) + lnP(ωi) (7.14)

46 7. Data Processing



7.4 Classification

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5
Flexion/extension pro�le

Time (seconds)

N
or

m
al

iz
ed

 to
rq

ue

 

 

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5
Flexion/supination + extension/pronation pro�le

Time (seconds)

N
or

m
al

iz
ed

 to
rq

ue

 

 

Flexion/extension
Pronation/supination

Flexion/extension
Pronation/supination

Figure 7.3: Example of labeled data, where the crosses indicate a transition be-
tween movements. The upper plot shows the trivial procedure of plac-
ing these on a single DoF profile (flexion/extension depicted). The
lower plot shows the trade-off necessary to mark the changes on a two
DoF profile (flexion/supination + extension/pronation depicted)

where ~x is the observation, ~µi is the mean vector of the i’th class given by 7.16, Σp

is the pooled covariance matrix with elements given by eq. 7.17, d is the number of
dimensions and P(ωi) is the a priori probability of the i’th class.
Since (d/2)ln(2π) and (1/2)ln(det(Σp)) are independent of i, these are additive con-
stants, which therefore were ignored. Moreover, since the a priori probability was
the same for all classes, and thus uniformly distributed, this could also be treated
as a superfluous constant and removed. Lastly, by expanding the quadratic form
(~x−~µi)

tΣ−1
p (~x−~µi), a quadratic term~x tΣ−1

p ~x appears as a summed term independent
of i, and thus the equation for the LDA was simplified to:

gi(x) = (Σ−1
p ~µi)

t ~x − 1
2
~µi

t
Σ
−1
p ~µi (7.15)

where the elements of the mean vector ~µi for the i’th class are given by:

µk =
1
Ni

Ni

∑
n=1

xkn for k = 1,2, ..,V (7.16)
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where k is the k’th variable, n is the n’th observation, Ni is the number of observation
in the i’th class and V is the total number of variables. The elements of the pooled
covariance matrix are given by:

Σ jk =
1

Nt −1

Nt

∑
n=1

( xn j−µ j )( xnk−µk ) (7.17)

where j is j’th variable, µ j is the global mean of the j’th variable (disregarding the
class), µk is the global mean of the k’th variable and Nt is the global number of ob-
servations.

A new observation was classified based on the value of g for all the classes, where
the class i corresponding to the largest value of g was chosen. That is, assign xn to
class ωi if gi(xn) > g j(xn) for all j 6= i. Theoretically, in case of a tie, i.e., gi(xn) =
g j(xn) for j 6= i, the observation was disregarded.

7.4.3 k Nearest Neighbor (kNN)

kNN is a relatively simple classifier, which classifies a new observation based on the
k nearest observations in the training data. The method utilizes a Euclidean distance
measure, see eq. 7.18, and selects the most frequent class of the k nearest observations
in the training data. [Duda et al., 2000]

Dist(a,b) =

√
D

∑
i=1

(ai−bi)
2 (7.18)

The value of k was set to 5 to avoid classification based on too few observations while
keeping the pick-up area localized. In case of two classes being represented with the
highest and equal frequency, it was chosen to classify the new observation based on
the class of the former observation.

7.4.4 Support Vector Machine (SVM)

SVM is a binary classifier that separates two classes using an optimal separating
hyperplane. The optimal hyperplane is found by maximizing the distance from the
hyperplane to the nearest training observation on both sides. This distance is referred
to as the margin, see figure 7.4 a). Thus, the SVM is known as a maximum margin
classifier. [Abe, 2010]

However, maximizing the margin in this way requires that training observation are
linearly separable, which is often not the case. Therefore a soft margin can be intro-
duced, which allows training observations to fall within the margin or be misclassified
(soft margin SVM). However, observations that are located inside the margin or mis-
classified are given a penalty, see figure 7.4 b). Thus, in order to find the optimal
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Figure 7.4: Determination of separating hyperplane and margins. a) margin if data
is linearly separable, and b) soft margin approach where ξ represents
the training observation penalty if it is within the margin or misclassi-
fied by the hyperplane. [Abe, 2010]

separating hyperplane the margin must be as wide as possible (by allowing train-
ing observations to fall within the margin or be misclassified) while still keeping the
penalty as small as possible. [Abe, 2010]
Even though the separating hyperplane is determined in the optimal way, the SVM
may still not be able to separate the data if it is not linearly separable. To overcome
this problem, the SVM maps the training data into a higher dimension using a ker-
nel where the data may be linearly separable. There are different kernel functions
representing different mappings. The optimal kernel depends entirely on the nature
of the data. As explained earlier, dimensionality reduction was used, which has a
linearizing effect on the feature space and thus a linear kernel was used. [Englehart
et al., 1999]
Since a SVM classifier is inherently binary, two methods was used to extend the func-
tionality to allow classification of multiple classes. These are described below. [Abe,
2010]

One against all (SVMOAA)

In the one against all approach, the n classes were split into n two-class problems.
For each problem a classifier was trained to distinguish between one class and the
remaining classes (all). To classify a new observation, it was determined which class
it belonged to with the n classifiers, i.e., where it did not belong to the all class. How-
ever, if the new observation was classified as none or more than one of the classes,
it was unclassifiable. In such cases it was chosen to classify it as the previously
classified observation. [Oskoei and Hu, 2006; Abe, 2010]
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One against one (SVMOAO)

In the one against one approach, a classifier was trained for every pair of classes, thus
C(C-1)/2 SVMs were trained. Each SVM determined whether a new observation be-
longed to one class or the other. This observation was classified by all the SVMs and
assigned to the class with the highest frequency (the class most of the SVMs voted
for). However, if two classes had the highest but equal number of votes, the obser-
vation was unclassifiable. In this case it was classified as the previously classified
sample. [Oskoei and Hu, 2006; Abe, 2010]

7.4.5 Artificial Neural Network for movement classification

The ANN is an emulation of the biological neural network. The architecture of the
network typically involves two layers; a hidden layer and an output layer [Beale et al.,
2012].
In the hidden layer, the input data is, in parallel, multiplied with several weights
(whid), summed and subtracted a bias (bhid), see figure 7.5. Afterwards the data is
passed through a transfer function ( f hid). As the first part of the output layer, the
output from the neurons in the hidden layer (a) is weighted (whid), summed and sub-
tracted a bias (bout). This is passed through transfer functions ( f out) providing the
network’s output (y). [Beale et al., 2012]
The hidden layer consisted of 10 neurons (S1 = 10) and both transfer functions were
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Figure 7.5: The design of a neural network with one hidden layer and one output
layer. xn is the n’th feature of the training data, whid and wout are the
individual weights of the hidden and output layer, respectively, bhid

and bout are the biases, S1 and S2 are the number of neurons, f hid and
f out are the transfer function, a is the output from the hidden layer and
ym is the output for the m’th class. [Beale et al., 2012]
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chosen as hyperbolic tangent sigmoid functions. The number of neurons in the output
layer (S2) was equal to the number of classes to predict.

To optimize the functionality of the network, it must be trained. This was done by
providing the network with training data and the corresponding class labels. The
training data was randomly divided into actual training data (70 %) and validation
data (30 %), where the percentages describe the amount of data for each class. The
network was then iteratively used to match the training data to the target class. This
was done by updating the weights and biases in both layers to minimize the mean
square error of the system. For each iteration, the validation data was used to avoid
overfitting of the network, i.e., when the performance of the network on the valida-
tion data was worse than the performance in the previous iterations. [Beale et al.,
2012]

To further optimize the performance of the network, a new network was created 50
times, where the above procedure was performed for each network. This was done
to reinitialize all weights and biases as well as re-randomize the distribution of data
to the training and validation data set. The performance of each network was as-
sessed by using the network to predict the outcome of the entire training set and then
calculate the percentage of correctly classified observations. The best of these 50
networks, determined by the highest classification accuracy on the training data, was
then used to classify the new observations. [Beale et al., 2012]

7.4.6 Post processing

As post processing technique, MV was implemented. MV basically accumulate a
number of results from the classifier and selects the class with the most occurrences.
However, this also creates a delay in the system. Thus, before choosing the number
of results for the MV, an acceptable delay in the system had to be specified. The
delay created by the MV can be calculated as: [Farrell and Weir, 2008b]

D =
1
2

Ta +(
n−1

2
)Tw + τ (7.19)

where Ta is the window length, Tw is the step size, n is the number of MVs and τ is
the processing delay. Further, τ is set as zero since this parameter is only important
in a real time implementation and should be very small. The formula can be isolated
to return the number of votes for the MV given a certain allowed delay: [Farrell and
Weir, 2008b]

n =
2 ·D − Ta

Tw
+1 (7.20)

In case of a tie between two or more classes the current observation was classified as
the previously classified observation.
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7.5 Force estimation

7.4.7 Outcome measures

The performance of the movement classification was determined as classification
accuracy given by the formula: [Scheme and Englehart, 2011]

Acc =
Number of correct decisions
Total number of decisions

·100% (7.21)

7.5 Force estimation

In order to estimate the corresponding force to the movements based on the EMG
signal, a force estimator was needed. Below is a description of the two techniques
used.

7.5.1 Artificial Neural Network for force

The ANN used for force estimation had the same functionality as the network de-
scribed for movement classification. However, to estimate a torque profile it was
chosen to use a linear transfer function in the output layer. [Beale et al., 2012]
To quantify the performance of each of the 50 created networks, a multi-dimensional
coefficient of determination (explained in the next section) was calculated for the pre-
dicted torque based on the training data compared to the real measured torque. The
network providing the highest value was used for the new observations.

7.5.2 Linear Model (LM)

Two linear models were implemented using linear predictor functions estimating the
unknown model parameters based on training data. The equation for the linear model
can be written as: [Mathworks, 2012]

~y = X ~β + ~ε (7.22)

where~y is a vector of the true torque, X is a matrix of training data,~β is a vector of
model coefficients and~ε is the noise. The estimation of the model coefficients was
performed through minimization of the least square error. In one of the two models,
the standard least square error was used (LMorg) and for the second, a more ro-
bust method was used which minimized the effect of outliers (LMrob). [Mathworks,
2012]

7.5.3 Outcome measures

To quantify the output from the force estimator, the coefficient of determination
(R2) was used. However, since two torque channels were predicted, the original
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7.6 Statistical analysis

1-dimensional R2-value could not be used. Thus, a multi-dimensional R2 was imple-
mented: [d’Avella et al., 2006]

R2 = 1 − ∑
D
i=1 SSerr(i)

∑
D
i=1 SStot(i)

(7.23)

where D is the number of dimensions, and SSerr and SStot are given by:

SSerr =
N

∑
k
(yk− fk)

2 (7.24)

SStot =
N

∑
k
(yk− y)2 (7.25)

where yk is the k’th measured sample, fk is the k’th estimated sample and y is the
mean of the measured observations. The multi-dimensional R2 is a relatively simple
extension of the 1-dimensional R2 given by: [Rosenvang et al., 2010a]

R2 = 1 − SSerr

SStot
(7.26)

To mimic the outcome of a prosthesis, it was chosen to implement a one-dimensional
R2 as well. This value was calculated for each channel independently based on the
result of the classifier. E.g., if the classifier determined flexion, the sample was esti-
mated using the found relationship for that movement. The final R2-value was then
calculated as a weighted average between the outcome of the two single R2-values
(one for each torque channel).

7.6 Statistical analysis

To choose the statistical tests needed for the analysis, the distribution of the data
was investigated. Through pilot experiments it was found that the outcome measures
(classification accuracy and R2) were not normally distributed, and thus nonparamet-
ric tests had to be used. To compare two groups of more than 30 observations, the
paired t-test was used. To avoid type I errors through multiple pairwise compar-
isons, Friedman’s two-way analysis of variance with adjusted post-hoc comparison
was used for analysis on more than two groups. The two tests are explained below.
[Mathworks, 2012; Corder and Foreman, 2009]

7.6.1 Paired t-test

The paired t-test is similar to a one-sample t-test, where the test sample is instead
given by the difference between the two paired samples, i.e., x = sample one - sample
two. The test statistic (t) for a paired t-test is therefore given by: [Zar, 2010]

t =
x−µ
s/
√

n
(7.27)
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7.6 Statistical analysis

where x is the sample mean, µ is the hypothesized mean, s is the sample standard
deviation and n is the sample size. The test statistic, t, can be converted to a p-value
through a table look-up. [Zar, 2010]

The hypothesis of the test was that the mean of x was zero. This hypothesis was
rejected if the p value was below 0.05

7.6.2 Friedman’s two-way analysis of variance

The test statistic (Fr) for a Friedman test is calculated on ranked sample data. It is
given by: [Corder and Foreman, 2009]

Fr =
12

nk(k+1)

k

∑
i=1

R2
i − 3n(k+1) (7.28)

where n is the number of samples, k is the number of groups and Ri is the sum of the
ranks for group i. If any duplicate ranks are found, a correction is added. The test
statistic, Fr, can be converted to a p-value through a table look-up. [Zar, 2010]

The hypothesis of the test was that the distributions of the samples are equal. This
hypothesis was rejected if the p value was below 0.05, where a corrected pairwise
comparison was performed between the groups.
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Optimization and validation
strategy 8
In the process of designing a hybrid control scheme, the components seen in figure 5.1
must be specified. Each of these components includes parameters, e.g. choice of fea-
tures, which were further specified in the aim in figure 5.2. The optimal combination
of these parameters must be found and later used for validation of the system.

8.1 Optimization of parameters

The parameters of the control scheme that could adjusted were:

• Features
• Window
• Filtering of features
• Dimensionality reduction method
• Movement classifier
• Post processing
• Force estimator

There exists thousands of combinations of the parameters mentioned above, which in
practice was impossible to investigate due to time constraints. Therefore, a strategy
was needed in order to investigate the performance of the control scheme when ad-
justing the different parameters. The approach was in general to investigate the effect
of each step in the design process, find the parameters that provided the best results
and maintain these parameters in the next step. For all steps, results from sEMG,
iEMG and combined sEMG and iEMG (cEMG) were considered. The investigation
was based on a four-fold cross-validation, where all profiles were split in half for the
two trials. Thus, all 9 classes (8 movements + rest) were represented.

8.1.1 Step 1 - selection of optimal TD feature set

Pattern recognition

The purpose of step one was to determine the optimal choice of TD features for dif-
ferent window sizes.

To find the optimal TD feature combination, all feature subsets had to be considered,
i.e. combining 1, 2 and up to all 9 features. The total number of possible combina-
tions can be calculated using the formula:
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8.1 Optimization of parameters

K(n,P) =
n

∑
P=1

n!
P! · (n−P)!

(8.1)

where n is the total number of features (n = 9) and p is the number of features to be
combined. The total number of feature combinations was thus 511.
In this step it was also chosen to investigate window sizes (50 ms, 100 ms, 150 ms,
200 ms, 300 ms, 400 ms and 500 ms) with a step size of 50 ms (overlapped win-
dows). A step size of 50 ms was chosen to obtain more data points for classification
compared to non-overlapping windows. Furthermore, the choice of step size should
not affect accuracy if no post processing was performed.
To investigate seven windows, each with 511 feature combinations, a fast classifier
was needed due to the time constraints of the project. Thus, it was chosen to use the
LDA classifier, since this was the fastest among the possible choices (SVM, kNN,
ANN) and, moreover, it has shown good performance throughout the literature.

For step 1-4, the following parameters were held constant: LDA classifier, PCA
dimensionality reduction, fourth order Butterworth band-pass filter and no post pro-
cessing.

Proportional control

In order to find the best performing features for force estimation, ideally the same ap-
proach for force estimation as in movement classification should be performed. How-
ever, the force estimator was based on ANN, which takes approximately 30 minutes
for each feature combination. Thus, performing 3577 of such would take ≈ 75 days.
Therefore, the chosen features for force estimation were based on the analysis from
pattern recognition. Moreover, we believe that determining the correct movements is
more important than finding the exact force level, since force will have no meaning if
the movement is incorrect. This applies for all the steps, which optimize the control
scheme performance, i.e. step 1-6.

8.1.2 Step 2 - selection of the optimal complete feature set

In step 2, the best performing TD feature set was combined with the other feature do-
mains to find the overall best performing feature set. Specifically, the TD subset was
combined with the FD features (AR, MNP), and the TFD feature (CoM, DWTRMS,
DWTRMS) for all window sizes.
Thus, a total of three feature combinations for each window were investigated and
compared to the TD feature set determined in step 1:

• TD + FD
• TD + TFD
• TD + FD + TFD

56 8. Optimization and validation strategy



8.1 Optimization of parameters

8.1.3 Step 3 - selection of optimal window length

During step 1 and 2, the best performing feature set was chosen. The purpose of step
3 was to investigate which window provided the best classification accuracy with the
feature set found in step 2. Window sizes were investigated, since the length of the
window impacts the performance of the control system and the delay of the control
scheme. The delay is given by the formula below: [Farrell and Weir, 2008b]

D =
1
2

Ta + τ (8.2)

where Ta is the window length and τ is the processing delay of the system. The effect
of τ was neglected, since its value should be based on the processing time of a control
system implemented on a micro-processor in a myoelectric prosthesis. In general, the
value should be as small as possible. [Farrell and Weir, 2008b]

8.1.4 Step 4 - selection of feature filtering

In step 4, the best performing feature set and window length was held constant, while
investigating the effect of filtering the features. Filtering features provides a smoother
feature set and may have an effect on classification accuracy across different classi-
fiers. Furthermore, the impact of smoothing the features on classification accuracy
has not been investigated before.

8.1.5 Step 5 - selection of dimensionality reduction method and classi-
fier

In step 5, the effect of dimensionality reduction (PCA, SEPCOR) of the feature
set was investigated across the different classifiers (LDA, kNN, ANN, SVMOAO,
SVMOAA). Classifiers and dimensionality reduction methods were investigated to-
gether since the different classifiers may respond differently to the dimensionality
reduction methods. Additionally, to compare the two methods, their parameters
defining the minimum variance (PCA) and maximum correlation (SEPCOR) were
adjusted using the values:

• PCA: Minimum variance = 0.95
• PCA: Minimum variance = 0.99
• PCA: Minimum variance = 0.999
• SEPCOR: Maximum correlation = 0.8
• SEPCOR: Maximum correlation = 0.9
• SEPCOR: Maximum correlation = 0.95

The results from step 5 were used to determine the last parameters, which were the
dimensionality reduction method and its parameters, and the classifier with the best
performance.
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8.2 Validation of system

8.1.6 Step 6 - selection of post processing parameters

In step 6, the effect of post-processing (MV) was investigated. For a given acceptable
delay of the system, a different number of samples could be used for the MV. It was
chosen to investigate windows of 50, 100 and 150 ms at step sizes equal to 25, 50,
100 and 150 ms with an acceptable delay of 200 ms.
The following combinations of windows and steps were used to calculate the number
of MVs using formula 7.20 and are given in table 8.1.

Window [ms] Step [ms] n [number of MVs]
50 25 and 50 15 and 8
100 25, 50 and 100 13, 7 and 4
150 25, 50, 100 and 150 11, 6, 3 and 2

Table 8.1: Number of samples for the MV according to an acceptable delay of 200
ms at different window and step sizes.

Furthermore, the effect of post-processing was compared to a window of 400 ms,
which induced an equal acceptable delay without using post-processing, calculated
by formula 8.2.

8.1.7 Step 7 - selection of force estimator

In step 7, the effect of different force estimators was investigated (LMorg, LMrob and
ANN). This was done to choose the force estimator giving the highest R2 considering
both the one and two dimensional R2.

8.2 Validation of system

A nine class problem (all possible classes) with four fold validation was used, while
finding the optimal parameters for the myoelectric control scheme. However, the
control scheme was also validated for movement classification and force estimation
to compare how the signals (iEMG, sEMG and cEMG) performed individually.

8.2.1 Step 1 - evaluation of number of classes

In step 1 of the validation, it was assessed how the number of included classes af-
fected movement classification and force estimation. This was done by excluding
some of the classes from the used data, representing a more simple problem for the
control system. Classes were divided into single movements and simultaneous move-
ments in the following way:

1. 3 classes: Flexion and extension
2. 3 classes: Pronation and supination
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3. 3 classes: Flexion+pronation and extension+supination
4. 3 classes: Flexion+supination and extension+pronation
5. 5 classes: Flexion, extension, pronation and supination
6. 5 classes: Flexion+pronation, extension+supination, flexion+supination and

extension+pronation
7. 9 classes: all classes from the above

8.2.2 Step 2 - evaluation of modulated profile

In step 2 of the validation, the outcome of using the modulated profile as test data
while training on trial one and two (normal profiles) was investigated. The modu-
lated profile corresponded to doing the same movements as in trial one and two with
varying amplitude and frequency. This may resemble the real life case more, where
the prosthesis is trained on data that is different from the data acquired during the
day.

8.2.3 Step 3 - evaluation of mis-classifications

The data was dynamic in nature with 11 switches between movements for each per-
formed profile, e.g. between flexion and extension. This resulted in periods of tran-
sition between two classes with almost zero force, which may pose difficulties for
the classifier. Thus, the outcome of ignoring these transition periods was tested. The
classifier and force estimator was trained using the whole data set, but the classifi-
cation accuracy was calculated while ignoring the transition states. It was chosen to
investigate different ignore zones determined as 0.05 - 0.25 seconds on either side of
a transition in increments of 0.05 seconds. This ignore zone represented 7.9 % - 38.3
% of the targeted force level.
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Results 9
In the previous chapter, the strategy for optimizing and validating the system was
outlined. In this chapter, the results of these steps will be presented.
All results are based on a four-fold validation using PCA with an explained vari-
ance of 99 % unless otherwise stated.

9.1 Effect of different combinations of TD features

Using the cEMG with a window of 150 ms, 8 features provided the highest mean
classification accuracy (cEMG: 85.8 % ± 4.6 % (mean±SD)), see figure 9.1. Simi-
larly for sEMG and iEMG, the highest mean classification accuracy (sEMG: 81.9 %
± 4.4 %, iEMG: 74.9 % ± 6.7 %) was achived using 9 features for both signals.
In general for cEMG across all windows (50 ms, 100 ms, 150 ms, 200 ms, 300 ms,
400 ms, 500 ms), using 8 features resulted in the highest mean accuracy, although
using more than 6 features did not provide any significant improvement (p > 0.05).
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Figure 9.1: Classification accuracy when using a combination of 1 to 9 features
for a 150 ms window using a step size of 50 ms for the cEMG signal
across subjects. Mean refers to the mean performance of all different
combinations of a feature subset. Best and worst refers to the best
and worst performing feature subset, respectively. PC is the number of
principal components used (axis to the right) according to the number
of included features.
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9.2 Effect of different feature domains

In general for sEMG and iEMG, the highest mean accuracies across all windows
were achieved using 8 and 7 features, respectively. However, no significant increase
in classification accuracy was found using more than 6 and 4 features, respectively
(p > 0.05). The number of principal components used increased when adding more
features, as shown in figure 9.1.
In general, no improvement was seen when adding var as a ninth feature for any of
the signals or windows.
In the remaining of the results, var was removed from the TD feature set.

9.2 Effect of different feature domains

The mean accuracies of using features from the different domains to TD features
(excluding var) can be seen in figure 9.2 for the three signals with a window of 150
ms.
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Figure 9.2: Classification accuracy (left) and corresponding number of principal
components (right) according to different feature domains for the three
EMG signals using a window of 150 ms with step size 50 ms. Stars (*)
indicate highest significant classification accuracies achieved.

For this window, cEMG and sEMG provided the highest mean accuracy using all
feature domains (cEMG: 88.3 % ± 3.8 %, sEMG: 83.8 % ± 4.6 %), whereas for
iEMG this was achieved using the two features domains T D+ T FD (iEMG: 79.2
% ± 6.5 %). Similar results were observed for the remaining windows, albeit the
highest mean accuracy for iEMG using longer windows (> 300 ms) was achieved
using all domains.
Statistically, a significant difference was found between all feature domains across
all windows (p < 0.05) except for adding FD to T D+ T FD (p > 0.05). The used
principal components are shown in figure 9.2.
In the remaining of the results, all feature domains were used (T D+FD+T FD).
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9.3 Effect of different windows

9.3 Effect of different windows

Using all domains, the effect of different windows can be seen in figure 9.3. For all
signals, the highest mean accuracy was achieved using the longest window of 500
ms. In general, the longer window used, a statistically higher mean accuracy was
achieved (p < 0.05), although no improvement was found using longer windows than
400 ms for cEMG and iEMG, and 300 ms for sEMG (p > 0.05).
In the remaining of the results, a window of 150 ms with a step of 50 ms was used,
unless otherwise stated.
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Figure 9.3: Classification accuracy for different window sizes with a step of 50 ms
for the three signals. Stars (*) indicate highest significant classification
accuracies achieved.

9.4 Effect of filtering features

The effect of applying a low-pass filter to the features is shown in figure 9.4. In
general across signals, kNN and LDA showed a significant increase in classification
accuracy (p < 0.05), ANN did not show any significant differences (p > 0.05) and
the SVM classifiers showed a decrease, although only significant for cEMG with
SVMOAA (p < 0.05), see table 9.1.
In the remaining of the results, all features were filtered.
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9.5 Effect of classifier and dimensionality reduction method
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Figure 9.4: Classification accuracy for different classifiers with filtered or unfil-
tered features for the three signals. Stars (*) indicate significant differ-
ence between using filtered and unfiltered features.

SVMOAO SVMOAA kNN ANN LDA
cEMG -0.5 % -3.6 %∗ 4.4 %∗ 0.3 % 1.8 %∗

sEMG 0.4 % -0.2 % 4.8 %∗ 0.4 % 3.4 %∗

iEMG -1.5 % -1.8 % 4.8 %∗ -2.0 % 3.2 %∗

Table 9.1: Difference in classification accuracy between filtered and unfiltered fea-
tures for the five classifiers. Negative numbers represents a drop in clas-
sification accuracy from filtering of the features. Positive numbers rep-
resent an increase in classification accuracy. * p < 0.05

9.5 Effect of classifier and dimensionality reduction method

The effect of applying different dimensionality reduction techniques (PCA and SEP-
COR with different parameters) in relation to different classifiers can be seen in figure
9.5. In general for SEPCOR, increasing the maximum allowed correlation increased
the amount of used variables, see table 9.2. In general, this also resulted in increased
classification accuracy, as seen in table 9.3, however, only in some cases significantly.

P95 P99 P99.9 S80 S90 S95
cEMG 13.5 ± 0.7 30.4 ± 1.5 76.4 ± 3.0 42.4 ± 3.5 60.0 ± 3.8 81.3 ± 3.7
sEMG 10.4 ± 0.6 21.1 ± 1.5 45.2 ± 1.8 23.2 ± 2.5 32.7 ± 3.1 44.9 ± 3.6
iEMG 11.9 ± 1.1 22.5 ± 1.2 46.6 ± 3.0 29.0 ± 2.4 38.8 ± 3.2 52.6 ± 4.5

Table 9.2: The number of variables used for the two dimensionality reduction
methods (P: PCA, S: SEPCOR) with the three parameters (maximum
correlation allowed and minimum amount of explained variance). The
number of variables before dimensionality reduction was: 300 for
cEMG, 156 for sEMG, and 144 for iEMG
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9.5 Effect of classifier and dimensionality reduction method

For PCA, an increase in the number of used variables was seen when increasing the
explained variance as seen in table 9.2. Mean classification accuracy also increased
when the explained variance was increased from 95 % to 99 % as seen in table 9.3.
However, increasing the explained variance further to 99.9 % did not consistently
increase the accuracy further; on the contrary, a tendency towards a drop in mean
accuracy was seen for both SVM classifiers for all signals and for ANN using cEMG.
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Figure 9.5: Classification accuracy for all classifiers using the two dimensionality
reduction methods (each with three parameters) for all three signals.
Stars (*) indicate significant highest classification accuracies achieved.

As seen in table 9.3 and figure 9.5, amongst the used classifiers, LDA benefits the
most from increasing the amount of variables used; especially by increasing the num-
ber of principal components for the PCA.

For cEMG, LDA with PCA 99.9 % had a mean accuracy of 92.2 % ± 3.3 % sig-
nificantly higher than all other classifiers with the different dimensionality reduction
methods (p < 0.05) except kNN and ANN with SEPCOR95 (p > 0.05).
Similarly, for cEMG and LDA with SEPCOR95, a mean accuracy of 91.4 % ± 3.6
% was achieved significantly higher than all other classifiers (p < 0.05) except SV-
MOAO, kNN and ANN with SEPCOR95 (p > 0.05).
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9.6 Effect of post-processing

For sEMG, LDA with PCA 99.9 % had a mean accuracy of 89.7 % ± 4.5 % sig-
nificantly different to all other classifiers (p < 0.05) except SVMOAO and ANN with
SEPCOR95 and kNN with PCA 99.9 % (p > 0.05).
Similarly, for sEMG and LDA with SEPCOR95, a mean of 91.0 % ± 3.5 % was
achieved significantly different to all other classifiers (p < 0.05) except SVMOAO
and ANN with SEPCOR95 (p > 0.05).

For iEMG, LDA with PCA 99.9 % had a mean accuracy of 86.0 % ± 5.4 % was
found significantly different from all other classifiers (p < 0.05).
Similarly, for iEMG and LDA with SEPCOR95, a mean accuracy of 84.22 % ± 6.7
% was achieved significantly higher than all other classifiers (p < 0.05) except SV-
MOAO with PCA 99 % and ANN with SEPCOR95 (p > 0.05).
In the remaining of the results, PCA 99.9 % was used with an LDA classifier.

cEMG [%] sEMG [%] iEMG [%]
P99 P99.9 S90 S95 P99 P99.9 S90 S95 P99 P99.9 S90 S95

SVMOAO 3.6 1.1 1.6 2.8 2.1 1.0 1.6 3.5 2.8 1.9 0.3 0.8
SVMOAA 7.1∗ 1.3 1.8 3.1 10.7∗ 10.2∗ 4.8∗ 7.9∗ 10.8∗ 9.4∗ 1.1 3.3
kNN 2.8 3.2 2.9 4.0∗ 3.0 3.5 2.5 4.6∗ 3.5 4.1∗ 1.4 2.4
ANN 3.3∗ 1.0 2.7 4.5∗ 2.0 2.0 1.6 4.0 2.3 2.0 0.1 2.7
LDA 7.4∗ 9.6∗ 2.8 4∗ 7.2∗ 9.7∗ 3.1 6.4∗ 7.6∗ 11.4∗ 2.2 4.3∗

Table 9.3: Difference in classification accuracy for the different classifiers, signals
and dimensionality reduction methods. Positive numbers represent an
increase in classification accuracy. * p < 0.05
P99 refers to the difference between PCA95 and PCA99.
P99.9 refers to the difference between PCA95 and PCA99.9.
S90 refers to the difference between SEPCOR80 and SEPCOR90.
S95 refers to the difference between SEPCOR80 and SEPCOR95.

9.6 Effect of post-processing

The effect of applying MVs allowing a delay in the control system of approximately
200 ms is shown in figure 9.6 for different window and step sizes. For comparison,
classification accuracy for a window of 400 ms is shown as the horizontal line in
figure 9.6. In general, the highest mean accuracy was achieved using the 400 ms
window, although only significantly higher than W150S100 (window of length 150
ms with step size of 100 ms) for cEMG and W150S50, W150S100 and W150S150
for sEMG (p < 0.05). No significant differences were found for iEMG. In general,
a shorter step-size and thus more MVs provided higher mean accuracies than longer
step-sizes with fewer MVs.
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Figure 9.6: Classification accuracy when applying MVs for different window- and
step-sizes tolerating a delay in the control system of approximately
200 ms. Stars (*) indicate significantly lower classification accuracies
compared to a 400 ms window.

9.7 Effect of force estimator

The effect of applying different force estimators for the three signals can be seen in
figure 9.7. For the one-dimensional R2, no significant differences were found between
the different force estimators for each signal (p > 0.05). For the two-dimensional R2,
the LM performed significantly better than the ANN for cEMG (p < 0.05). No other
significant differences were found for sEMG and iEMG for the two-dimensional R2.
In general, the one dimensional R2 showed higher accuracies compared to the two
dimensional.
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Figure 9.7: One- and two-dimensional R2 for the different force estimators and
signals.

An example of measured and estimated force during movements can be seen on figure
9.8 using the LM estimator.
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Figure 9.8: Measured and estimated force during movements using the LM esti-
mator.

In the remaining of the results, LM was used as the force estimator.

9.8 Validation of control system

The outcome of the control system with all feature domains using PCA99.9 for LDA
and LM can be seen in figure 9.10 for seven class combinations. Furthermore, the
performance of each individual subject for the 9 class problem can be seen in figure
9.9
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Figure 9.9: Classification accuracy and coefficient of determination (R2) for each
subject on the 9 class problem.
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9.8 Validation of control system

For the 9 class problem, a significant difference was found between all three signals
(p < 0.05) for classification accuracy, where a mean accuracy of 92.2% ± 3.3 %
was achieved with cEMG. For the remaining class combinations, sEMG and cEMG
showed similar performance (p > 0.05) and generally both outperformed iEMG, see
table 9.4. For classification accuracu, no general tendencies were found between the
3- and 5-class combinations, whereas the 9 class combination was significantly lower.
No generel tendencies between class combinations for R2 were found.
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Figure 9.10: Classification accuracy and coefficient of determination (R2) for sev-
eral class combinations and all three signals. 1) Flexion+extension.
2) Pronation+Supination. 3) Flexion/supination + extension/prona-
tion. 4) Flexion/pronation+supination/extension. 5) Combination of
classes 1) and 2). 6) Combination of classes 3) and 4). 7) Combina-
tion of classes 1), 2), 3) and 4). All includes rest as a class.

Modulated profile

When testing the control system on the modulated profile and training on trial one
and two, a significant decrease in classification accuracy and R2 was found compared
to the four fold validation used in the previously described results (p < 0.05), see
figure 9.11 and table 9.4. In general, sEMG and cEMG showed similar performance
(p > 0.05) and generally both outperformed iEMG for classification accuracy and R2,
see table 9.4.
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Figure 9.11: Classification accuracy and coefficient of determination (R2) for
several class combinations and all three signals for the modu-
lated profile. 1) Flexion+extension. 2) Pronation+Supination.
3) Flexion/supination + extension/pronation. 4) Flexion/prona-
tion+supination/extension. 5) Combination of classes 1) and 2). 6)
Combination of classes 3) and 4). 7) Combination of classes 1), 2),
3) and 4). All includes rest as a class.

Normal profile
Acc [%] R2

cEMG sEMG iEMG cEMG sEMG iEMG
1 (3 class) 95.5 ± 2.7∗ 95.4 ± 3.1† 94.2 ± 3.2∗/† 0.94 ± 0.05∗ 0.93 ± 0.08† 0.91 ± 0.07∗/†

2 (3 class) 93.4 ± 3.5∗ 93.7 ± 2.9† 84.1 ± 9.2∗/† 0.91 ± 0.07∗ 0.90 ± 0.07† 0.47 ± 1.24∗/†

3 (3 class) 95.2 ± 2.8 95.3 ± 2.6 93.6 ± 4.5 0.95 ± 0.02∗/† 0.93 ± 0.04∗ 0.88 ± 0.09†

4 (3 class) 97.0 ± 1.2∗ 97.0 ± 1.1† 94.5 ± 2.8∗/† 0.94 ± 0.03∗ 0.93 ± 0.04† 0.88 ± 0.10∗/†

5 (5 class) 93.8 ± 3.8∗ 94.1 ± 3.1† 87.8 ± 7.4∗/† 0.92 ± 0.05∗ 0.90 ± 0.07† 0.78 ± 0.14∗/†

6 (5 class) 95.3 ± 2.7∗ 94.7 ± 2.8 92.5 ± 4.7∗ 0.93 ± 0.03∗ 0.92 ± 0.03† 0.85 ± 0.09∗/†

7 (9 class) 92.2 ± 3.3∗ 89.7 ± 4.5∗ 86.0 ± 5.4∗ 0.92 ± 0.03∗ 0.91 ± 0.03∗ 0.81 ± 0.11∗

Modulated profile
Acc [%] R2

cEMG sEMG iEMG cEMG sEMG iEMG
1 (3 class) 89.5 ± 7.5 91.0 ± 4.3 86.4 ± 7.9 0.74 ± 0.42∗ 0.78 ± 0.39† 0.64 ± 0.44∗/†

2 (3 class) 86.4 ± 6.4∗ 87.3 ± 4.2† 68.7 ± 13.9∗/† 0.74 ± 0.19 0.73 ± 0.21† -0.16 ± 1.12†

3 (3 class) 91.5 ± 5.4∗ 92.6 ± 2.2† 87.1 ± 7.9∗/† 0.74 ± 0.28 0.82 ± 0.14† 0.52 ± 0.37†

4 (3 class) 94.2 ± 2.2∗ 93.8 ± 2.6† 88.4 ± 6.2∗/† 0.83 ± 0.14∗ 0.87 ± 0.09† 0.62 ± 0.43∗/†

5 (5 class) 85.8 ± 9.5∗ 88.3 ± 4.4† 65.0 ± 11.3∗/† 0.74 ± 0.19∗ 0.81 ± 0.10† 0.15 ± 0.89∗/†

6 (5 class) 84.3 ± 9.9∗ 88.3 ± 5.5 75.8 ± 11.6∗ 0.79 ± 0.13∗ 0.83 ± 0.08† 0.52 ± 0.33∗/†

7 (9 class) 70.8 ± 11.2∗ 74.8 ± 9.3† 54.5 ± 13.3∗/† 0.80 ± 0.09∗ 0.82 ± 0.06† 0.29 ± 0.69∗/†

Table 9.4: Classification accuracy and coefficient of determination (R2) for sev-
eral class combinations and all three signals. 1) Flexion+extension. 2)
Pronation+Supination. 3) Flexion/supination + extension/pronation. 4)
Flexion/pronation+supination/extension. 5) Combination of classes 1)
and 2). 6) Combination of classes 3) and 4). 7) Combination of classes
1), 2), 3) and 4). All includes rest as a class. A significant difference
was found between the signals with matching symbols († and ∗) for that
problem.
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9.8 Validation of control system

Investigation of mis-classifications

As seen on figure 9.12, the errors most frequently occur during transition between
movements.
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Figure 9.12: Representative example of the location of misclassification for sub-
ject 1 for a 9 class problem.

The effect of ignoring classifications around transitions from one class to another can
be seen in figure 9.13 for the 9 class problem for the three signals. In general classi-
fication accuracy increased when an increasing number of classifications around the
transitions were ignored; in particular when ignoring few outcomes.
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Figure 9.13: Effect on classification accuracy of ignoring outcomes around each
transition for the complex 9-class problem.

The effect of the ignore zone on the different class combinations can be seen in figure
9.14 ignoring one and 5 outcomes, corresponding to 7.9 % and 38.3 % of the target
force level.
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Figure 9.14: Classification accuracy and coefficient of determination (R2) for sev-
eral class combinations and all three signals with 1 and 5 values
around each transition ignored. 1) Flexion+extension. 2) Prona-
tion+Supination. 3) Flexion/supination + extension/pronation. 4)
Flexion/pronation+supination/extension. 5) Combination of classes
1) and 2). 6) Combination of classes 3) and 4). 7) Combination of
classes 1), 2), 3) and 4). All includes rest as a class.

9.9 Summary of results

Throughout the results, the different parameters which impact the performance of the
control scheme were investigated, and the system validated. The following describes
the main findings:

• The significant highest classification accuracy for TD features was achieved
using at least six features for cEMG and sEMG and at least four features for
iEMG.

• The significant highest classification accuracy was found using features from
the TD+TFD or the TD+FD+TFD.

• Filtering of the features increased classification accuracy significantly for LDA
and kNN.

• The LDA classifier was significantly better than most other classifiers for both
dimensionality reduction methods.

• Of the dimensionality reduction methods neither PCA or SEPCOR showed
superior performance.

• Using MV did not show any significantly improved classification accuracies
compared to a window of 400 ms.

• Neither of the investigated force estimators was significantly superior.
• For the nine class problem, a classification accuracy of 92.2 % for cEMG was

achieved, which was significantly higher than both sEMG and iEMG.
• For the nine class problem, an R2 of 0.92 for cEMG was achieved, which was

significantly higher then both sEMG and iEMG.
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9.9 Summary of results

• The modulated profile showed significantly worse performance compared to
trial one and two.
• Most of the errors were located in shifts between movements. By ignoring 250

ms on either side of these shifts classification accuracy increased to 96.6 for
the nine class problem using cEMG. %
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Discussion 10
In this study, each step of the proposed myoelectric control system was investigated
and optimized. The control system must allow precise control of sequential and simul-
taneous movements along with the corresponding force of two DoFs flexion/extension
and pronation/supination of the wrist.

Feature domains

In the literature, feature extraction has received much attention in order to choose
appropriate features. Phinyomark et al. investigated 37 features from the TD and FD
for classification of six movements, where varying performance from using single
features was found. Combining several features showed improved classification ac-
curacy, which has also been shown in other studies. [Phinyomark et al., 2012; Oskoei
and Hu, 2008]
Thus, to find the best feature set for the control system proposed in the current study,
nine TD features were investigated in all possible combinations for each signal. In
general, the classification accuracy increased with an increased number of used fea-
tures up to eight. However, combining more than six features for sEMG and cEMG,
and four features for iEMG did not significantly improve the accuracy, which is likely
due to redundancy, as described by Phinyomark et al.. [Phinyomark et al., 2012]
The literature further suggests that using FD and TFD features may increase classifi-
cation accuracy [Huang et al., 2005; Englehart et al., 2001]. In this work, it was found
that adding features from the TFD or FD to the TD features significantly increased
classification accuracy. Moreover, combining TD and TFD features was shown to
outperform combining TD and FD features with an increase in classification accu-
racy of approximately 2.5 %. Englehart et al. showed that TFD features were good
for especially the transient states of the EMG signal. This may explain the better
TFD performance of the current work due to the dynamic nature of the acquired
EMG signal and the frequent switches between movements [Englehart et al., 2001].

Filtering of features

Previously, extracted features have been filtered to remove spurious peaks in the fea-
ture space for both sEMG and iEMG. However, this has only been investigated for
force estimation [Rosenvang et al., 2010b; Kamavuako et al., 2012]. In this work, the
outcome of filtering the features was investigated for movement classification, where
a significant increase in classification accuracy of up to 5 % was found for all signals
for the kNN and LDA classifier. The positive effects may be due to a more consistent
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and localized grouping of classes in the feature space, which especially LDA and
kNN classifiers require. [Duda et al., 2000]

Dimensionality reduction

Many studies perform dimensionality reduction on the feature space to avoid the
curse of dimensionality when multiple features are used [Englehart et al., 1999; Har-
grove et al., 2007, 2009]. PCA has previously been shown to be the superior dimen-
sionality reduction method compared to class separability [Englehart et al., 1999].
However, other techniques based on PCA have shown better performance than the
traditional PCA algorithm [Chu et al., 2006; Hargrove et al., 2009].
In the current study, another alternative technique called SEPCOR was investigated,
which has been used previously in image processing [Ege et al., 2000]. The re-
sults showed that PCA achieved the overall highest accuracy with LDA, however, not
significantly different from SEPCOR. Thus, based on the current results, SEPCOR
could not be conclusively determined as inferior to PCA. On the contrary, SEPCOR
showed a more consistent increase across all classifiers. Furthermore, increasing
the explained variance for PCA in some cases led to a decrease in classification accu-
racy, whereas SEPCOR in all cases increased classification accuracy when increasing
maximum allowed correlation.

Classifier

The choice of classifier has been investigated thoroughly in the literature [Scheme
et al., 2011; Hargrove et al., 2007]. A study by Scheme et al. compared several clas-
sifiers (including the same classifiers as the current study) and found no significant
differences between the investigated classifiers. This finding is further supported by
Scheme and Englehart, arguing that the choice of features are more important than
classifier. [Scheme et al., 2011; Scheme and Englehart, 2011]
The results from the current study showed that LDA had the overall best performance,
however, only when including many variables. Otherwise the investigated classifiers
had almost equal performance, which agrees well with the literature. The reason for
the superior performance of LDA with at high number of variables may be due to the
fact that the choice of features was based on the LDA classifier giving this particular
classifier an advantage in the following optimization steps. Moreover, increasing the
amount of dimensions in the feature space increases the possibility of classes being
linearly separable.

Post-processing

Post-processing of the classified outcomes was performed through majority voting,
given an acceptable delay of 200 ms. In this analysis, different window and step sizes
was used. Majority voting was compared to a window of 400 ms inducing the same
delay in the control system. The results revealed that majority voting did not increase
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classification accuracy; on the contrary, for long step sizes majority voting resulted
in significant decreased classification accuracy compared to the 400 ms window. Re-
sults from Englehart and Hudgins showed that when the window size increased, the
accuracy from majority voting approached the accuracy from unprocessed decisions,
i.e., less effect of using post-processing was found [Englehart and Hudgins, 2003].
This may explain why no difference was found with a window of 400 ms in the
present study. Furthermore, it has previously been shown that a window of 160 ms
with no majority voting provided better results than shorter windows with majority
voting, taking both classification accuracy and computational efficiency into account
[Farrell and Weir, 2008a].
However, it cannot be excluded that post-processing may be beneficial, if smaller
steps were used, since this would provide more votes for the majority vote. A draw-
back of decreasing the step size is the increased computational demand on the pro-
cessing unit, which increase the power consumption and thus drains the battery more
quickly in a prosthesis.

Force estimator

For force estimation, the results showed no significant difference between the pro-
posed force estimators (LM and ANN) for sEMG and iEMG. However, LM showed
to be significantly better for cEMG. In the literature both linear and ANN based es-
timators have been used. Kamavuako et al. showed that grasping force could be
estimated with high accuracy for iEMG using only one EMG channel and a single
feature. These results were later extended to apply for sEMG by Bøg et al., investi-
gating different single TD features. [Kamavuako et al., 2009; Bøg et al., 2011]
Nielsen et al. investigated the relationship between EMG and simultaneous wrist
movements using an ANN and multiple features. Albeit the increased complexity,
it was found that the ANN could precisely estimate the force of both movements
[Nielsen et al., 2011]. In the present work, it was shown that the relationship between
EMG and simultaneous movements could be explained equally well by a simple lin-
ear combination of the used variables, even though the complexity was the same as
in Nielsen et al.. This may be due to the linearizing effects of the PCA and filtering
of the features in the present study. [Kamavuako et al., 2012; Englehart et al., 1999]
These findings are supported by the simple case presented by Smidstrup et al., where
no significant difference between the ANN and LM was found using single TD fea-
tures linearly related to force. [Smidstrup et al., 2011]

Overall performance of the control system

When all parameters were found, the control system was validated on multiple class
combinations. The highest classification accuracy for the nine class problem was 92.2
%, well above the reasonable expectations of a user, and an R2 of 0.92 using cEMG
[Scheme and Englehart, 2011]. As could be expected, fewer classes led to higher
classification accuracies resembling results from other studies [Hargrove et al., 2009;
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Farrell and Weir, 2008a].
Of notice is the three class problem pronation/supination and rest, which showed a
degradation in classification accuracy for iEMG. This might be because the muscles
pronator and supinator were not hit by the iEMG electrodes due to their relatively
deep location. The same tendency was seen in the five-class problem including all
single movements and rest.

EMG signal comparison

Generally, iEMG showed significantly lower classification accuracies than sEMG and
cEMG for all class combinations. This was somewhat in contrast to a study Hargrove
et al., where equal classification accuracies could be achieved for iEMG and sEMG
in a 10 class problem. However, this study targeted specific muscles corresponding
to the performed movements [Hargrove et al., 2007]. Another study by Farrell and
Weir, comparing sEMG and iEMG using a targeted and untargeted technique, found
no difference in classification accuracy between the four conditions when using both
TD and AR features. However, a significant decrease in accuracy was found for
untargeted iEMG using only TD features. The inconsistency between the results re-
ported by Farrell and Weir and the current study may be due to the number of EMG
channels used. Farrell and Weir used eight EMG channels and found that iEMG
suffered more when using fewer channels than sEMG did, although only significant
for one through three channels. As the proposed study only used six channels and a
more complex task, this may contribute to the significant difference between sEMG
and iEMG. Most importantly, in this work dynamic movements with frequent shifts
were investigated, which are much more complex in nature compared to steady-state
contractions as used by Farrell and Weir. [Farrell and Weir, 2008a]
With respect to R2 no other studies have used an untargeted technique for proportional
control, and further no studies have investigated iEMG for simultaneous movements.
The results of the proposed control system for iEMG showed a similar tendency for
R2 as for movement classification (lower accuracy for iEMG). Albeit using an untar-
geted technique, the obtained R2 from sEMG and cEMG (0.91 and 0.92 respectively)
compared well with a study by Nielsen et al., where specific muscles were targeted
(R2 0.93). [Nielsen et al., 2011]

In general, cEMG outperformed sEMG and iEMG. This could be explained by the
different information content encoded in sEMG and iEMG. Thus, for complex prob-
lems, e.g. simultaneous movements, sEMG and iEMG may complement each other
rather than being alternatives.

Generality of the control system

To assess the generality of the control system, it was tested on a modulated profile
with varying amplitude and frequency. It was found that validating on the modu-
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lated profile showed significant decrease in both classification accuracy and R2. This
implies that the system was not general enough to support movements performed
differently from the training of the system. This is a general weakness of pattern
recognition based methods, where changes in the pattern degrade the performance,
which may be overcome by adaptive EMG pattern recognition systems. [Scheme and
Englehart, 2011]

Dynamic movements and transients

Since the experiment was composed of dynamic movements with frequent shifts, the
entire data set could be regarded as semi-transient with transient shifts. In earlier
studies, transient data has been shown to be particularly difficult to classify. [Engle-
hart et al., 2001; Oskoei and Hu, 2007]
In the present study, the influence of transitions on classification was investigated by
applying an ignore zone. The outcome confirmed that indeed most errors occurred in
the transitions, since classification accuracy increased from 92.2 % to 97.3 % ignor-
ing 10 outputs (corresponding to 500 ms) for the nine class problem using the cEMG
signal. In general across all class combinations, an improvement in classification ac-
curacy was achieved by ignoring both one and five outcomes on either side of each
transition.
This approach of eliminating transitions is by no means new, as it has been used by
different authors to improve classification accuracy and allow comparison to classi-
fication on steady state data. Huang et al., Oskoei and Hu and Chan and Englehart
removed 256 ms on either side of a transition equivalent to approximately five out-
comes in the proposed control system. Doing so, classification accuracies of up to
96.6 % could be achieved for the nine class problem, and as high as 98.7 % for a five
class problem using cEMG.
In this work, force could be precisely estimated and thus, in the future, this could be
used to classify to rest at low forces potentially achieving accuracies similar to the
above.

Methodological aspects

Throughout the experiment, several issues became clear. The position of the intra-
muscular electrodes might shift during the experiment causing a slight change in the
pick-up area and thus the measured EMG signal. Although all signals were observed
during recording, a slight change would not be observed. Consequently, the pattern of
even the same movement would differ making it difficult to be recognized by the clas-
sifier. When inserting the intramuscular electrodes, verification of the location was
done based on observed activity during various wrist and hand movements. However,
to ensure a muscle was hit, a stimulator could be used to induce muscle twitch.
Especially the simultaneous torque profiles posed a challenge for some subjects,
which may cause them to perform non-reproducible movements. The used torque
levels were empirically verified as a comfortable low to medium level for males and
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females. However, especially for combined movements, this was not true across all
subjects, where some subjects expressed a high level of effort to reach the target
force level whilst others found it very easy. This may be due to the design of the
dynamometer, where the size and positioning of the hand was found to influence how
much force was needed. In these cases, the subjects may be prune to fatigue of the
muscles, which changes the measured muscle pattern.

Even though the proportional control scheme was used to estimate the produced
torque, the output can also be used to estimate the velocity of a movement propor-
tional to the used torque. [Englehart et al., 2001]
This can be used to develop a multi-functional prosthesis, where large EMG activity
can be interpreted to either move the prosthetic hand in a certain direction quickly or
with a large amount of force, if resistance towards the movement is perceived.

Practical aspects

In the current study, healthy subjects were used for data acquisition. However, it may
be questioned whether the obtained results can be generalized for amputees. In a
study by Scheme et al., EMG signals from both healthy and amputee subjects were
collected using untargeted recording sites on the forearm. Here it was shown that
pattern recognition based classifiers show a decrease in performance for transradial
amputees compared to healthy subjects. However, it was shown that the same rela-
tive performance of the features and classifiers were found for healthy and amputees.
This indicates that finding the optimal system based on healthy individuals, as in the
current work, can also be expected to perform optimally for amputees albeit with
lower accuracy. [Scheme and Englehart, 2011]

When considering the used features in the optimal control system, adding TFD fea-
tures imposes increased computational load. Thus, in the future, it might be inter-
esting to investigate the performance of the proposed control system only with TD
features. Moreover, it was found that LDA was the optimal for movement classifi-
cation, and that LM and ANN showed equal performance for force estimation. This
is important, since LDA and LM were the fastest among the investigated classifiers
and force estimators. This is encouraging when considering the real-time prospects
of the proposed control system.
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Conclusion 11
In this study we investigated how control of a myoelectric prosthesis could be im-
proved for transradial amputees by allowing precise control of dynamic, simultaneous
movements with corresponding force estimation. Such an improvement would allow
movements of a prosthetic device to be more fluent and less robot like. Throughout
the analysis, it was investigated how this could be achieved, and it was found that
a hybrid between a pattern recognition based control scheme for movement classifi-
cation, and a proportional control scheme for force estimation should be developed.
The hybrid control scheme was based on both sEMG and iEMG and supported wrist
flexion/extension and wrist pronation/supination.

To develop such a system, an experiment was conducted including 10 healthy in-
dividuals using untargeted recording sites. To gain optimal control, the parameters
influencing performance of the control system were thoroughly investigated and op-
timized.

This control system allowed classification of nine classes of motion comprising rest
and control of single and simultaneous DoFs with a mean accuracy above 92 %. Re-
moving transients between movements, this result could be increased to above 97 %
comparable to studies with movements of less complexity. The control system also
allowed precise estimation of the corresponding force with a mean R2 of 0.92 across
all subjects. Thus, we have shown that the novel approach of using a hybrid control
scheme can be succesfully implemented to allow intuitive control of dynamic, simul-
taneous DoFs with high accuracy.
Although further studies are needed, these results are very promising for final control
of a myoelectric prosthesis. Furthermore, the optimal system was composed of re-
latively simple processing techniques computationally, and thus has a large potential
for real time control of a myoelectric prosthesis.
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List of abbreviations 12
The present chapter includes a list of all abbreviations used trough out this report.
The abbreviations are listed in an alphabetic order.

• ANN: Artificial neural network
• AR: Autoregressive
• cEMG: Combined sEMG and iEMG
• CoM: Center of mass
• CNS: Central nervous system
• CSE: Constraint sample entropy
• DoF(s): Degree(s) of Freedom
• DWTMAV: Discrete wavelet transform, mean absolute value
• DWTRMS: Discrete wavelet transform, root mean square
• EMG: Electromyography
• FD: Frequency domain
• FR: Frequency ratio
• GMM: Gaussian mixture model
• HMM: Hidden Markov model
• iEMG: Intramuscular electromyography
• kNN: k nearest neighbor
• LDA: Linear discriminant analysis
• LM: Linear model
• MAV: Mean absolute value
• MAVSLP: Mean absolute value slope
• MDF: Median frequency
• MNF: Mean frequency
• MU: Motor unit
• MVC: Maximum voluntary contraction
• PCA: Principal component analysis
• PSD: Power spectral density
• R2: Coefficient of determination
• RMS: Root mean square
• sEMG: Surface electromyography
• SEPCOR: Separability and correlation
• SN: Signal noise difference
• SSC: Slope sign changes
• STFT: Short time Fourier transform
• SVMOAA: Support vector machine, one against all
• SVMOAO: Support vector machine, one against one
• TD: Time domain
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• TFD: Time frequency domain
• VAR: Variance
• WL: Waveform length
• WT: Wavelet transform
• WPT: Wavelet packet transform
• MV: Majority vote
• MSV: Mean square value
• WAMP: Willison amplitude
• ZC: Zero crossings
• QoL: Quality of Life
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