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ABSTRACT:

Spinal cord injury (SCI) occur to a great extent with approx-
imately 12.000 incidents annually in the US, inducing great
expenses for carrying and treatment. SCI patients encour-
age restoration of gait control as one of the four most pri-
oritized functions to regain for improving quality of life. In
order to aid and restore gait control it is necessary to bridge
and understand the gab between neural activity for voluntary
movements and the muscle response, going around the spinal
cord.
Objective of this report was to evaluate an artificial neural
network (ANN) for predicting muscle activity during gait in
healthy rats.
Neural activity from motor cortex (M1) and EMG signals from
biceps femoris (BF) and vastus lateralis (VL) were obtained
by use of 16 channel intracortical electrode arrays and intra-
muscular EMG electrodes in a bipolar configuration.
Four Sprague-Dawley rats were trained to walk on a treadmill
with 0o and 15o inclination. Kinematics were calculated from
high-speed camera recordings by digitizing toe, heel, knee,
hip and reference markers attached on the rats. Joint angles
were calculated and used to detect and extract specific gait
cycles meeting the inclusion criteria.
Peri-stimulus time histograms (PSTH) were calculated for the
intracortical signals and mean envelopes of maximal EMG
value for BF and VL. Recordings from two rats, meeting the
inclusion criteria, were used in an ANN configured on the
basis of a previous study. PSTH of neural activity were used
as input and envelopes of average maximal EMG value for BF
and VL for output. Results from the ANN gave low R2 values
(R2 = 0.1020) yielding an optimization problem.
A systematic optimization process of the ANN improved the
R2 value (R2 = 0.4146) and demonstrated possibilities in pre-
dicting muscle activity by use of an ANN with neural activity
from M1 as input. Further advancement and usage of predic-
tion for control signal of FES further attention and evaluation
is needed,

Findings implied future possibilities for integration in BMI ap-

plications for restoring gait control of SCI patients, if further

refinement of the ANN and data are done.





Preface
This report is written by project group 12gr1074 during 3rd and 4th semester
of the master education in medical systems at Aalborg University. Knowledge
and practical experience have been obtained during 3rd semester in coopera-
tion with the Miller Lab (the Miller laboratory of Limb Motor Control) at North-
western University, Chicago and Rehabilitation Institute of Chicago (RIC). An in-
tended outcome of pilot data did not succeed due to complications, causing new
experiments to be conducted. Background, experience, ideas and complications
from our stay are described in Appendix A

We would like to thank our supervisor Winnie Jensen for help, assistance and
feedback during surgery and project period. Furthermore, we would like to thank
Lee E. Miller, Matthew Tresch and their colleagues at the Miller laboratory of
Limb Motor Control and Tresch Lab at Northwestern University, Chicago and RIC
for practical experience and knowledge. A final thanks to the staff at the animal
facility at Aalborg Sygehus Nord for assistance and monitoring during and after
conducting surgery and animal experiments.

Reading guide
References in the report are implemented after the Harvard method, why refer-
ences are indicated by [Lastname, Year]. A bibliography is to find in the back
of the main report, with references ordered as they appear. Graphs, tables and
listings are numbered according to its chapter, e.g the first figure in chapter 5 is
numbered Figure 5.1, the second, numbered Figure 5.2 etc. The first time an ab-
breviation is used the word will be explained and afterwards be mentioned by
abbreviation, unless full length word seems necessary.

The report is divided into 4 parts:

• Part I - Problem analysis

• Part II - Experiment

• Part III - Synthesis

• Appendicies
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1
Introduction

Spinal cord injury (SCI) occur to a great extent with approximately 12.000 inci-
dents annually in the US. A total of 265.000 persons being affected by injury are
estimated as of 2010. The causes of SCI are very broad (Figure 1.1), with road ac-
cidents being the primary cause of injury. The percentages have varied through-
out the past years and especially violence and sports accidents have been re-
duced, whereas falls are raising. [McDonald and Sadowsky, 2002; NSCISC, 2011]

8,5
8

15
40,4
27,9

28,0 %

40,5 %

15,0 %
8,0 %
8,5 %

Other/Unknown Sports Violence Vehicular
Falls

Figure 1.1: Causes of SCI as of 2005. Redrawn after [NSCISC, 2011].

Expenses associated with SCI varies dependent on location and extend of injury,
but an estimate in the US state expenses between $500.000 and $2.000.000 as
average treatment of an individual, whereas costs associated with carrying and
treatment of individual spinal cord injured surpasses $8 billions annually. [Mc-
Donald and Sadowsky, 2002; NSCISC, 2011]

SCI is classified as being complete or incomplete, stating none or some neuro-
logical functions are preserved below the point of injury, respectively. Further
classification and subdivision of injury depend on the individual case and level
of function preserved. Functions affected by location of injury can roughly be
subdivided into a cervical- (respiration, hear rate and head movement), thoracic-
(posture and stability), lumbar- (gait) and sacral division (sexual function, bowel
and bladder control) (Figure 1.2). [Liverman et al., 2005]

A survey covering priorities of regaining function in regard to improved qual-
ity of life (QOL) for quadriplegics and paraplegics revealed a wish for arm/-
hand function (quadriplegics) and sexual function (paraplegics) having highest
priorities. Following priorities were bladder/bowel control, trunk stability and
walking movement. [Anderson, 2004]
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1. INTRODUCTION

Figure 1.2: Body regions affected by SCI, dependent on point of injury. Re-
drawn from [Byrne and Dafny, 2000].

Today’s research is therefore aimed towards hand function, stabilizing seated
posture, gait, bladder/bowel control and sensation [Tate et al., 2011]. Commer-
cial neuroprostheses products relying on functional electrical stimulation (FES)
exist for grasping, and it is possible to restore or aid breathing, bladder control
and hand function in SCI patients at the moment [Donaldson et al., 1997; John-
ston et al., 2005; Keith et al., 1989; Popovic et al., 2002; Tate et al., 2011].

FES is one of todays main applied technologies in pursuing movement restora-
tion after SCI and a potential solution [Tate et al., 2011]. FES make use of electri-
cal bursts defined by a control signal, to stimulate e.g. motor neurons [Popovic
et al., 2002]. Electrical stimulation of muscles have been known since Luigi Gal-
vani demonstrated existence of bioelectricity [Webster, 2006].

A disadvantage of todays solutions is the limitations of control and the control
signal not being enough to convey the intentions of the patient. Control signals
for FES are often pre-programmed patterns for a specific movement and does not
take the users intensions into consideration when eliciting an electrical burst to
target muscles. [Bauman et al., 2011; Popovic et al., 2002]

An important fact is that motor commands, for carrying out voluntary move-
ments, are independent of a SCI and still generated in the primary motor cor-
tex (M1), but unable to reach the muscles. Decoding models are widely used
in the research area of rehabilitation and seeks to fill the gab between intended
movement and actual control signals for movement fed to FES. [Fitzsimmons
et al., 2009; Pohlmeyer et al., 2009; Sanchez and Principe, 2007] An approach for
achieving an individual decoding model is to predict muscle activity related to
brain activity. A decoding model aim to decode and understand the correlation
between input and output, which allow bypassing damaged tissue and thereby
rebuild the lost connection from brain to muscles. [Sanchez and Principe, 2007]

Brain activity and insight in electrophysiology can be recorded and obtained in
various ways with invasive or non-invasive methods like epidural-, subdural-,
intracortical recordings or EEG. Epidural- and subdural recordings will give a
high resolution, while the latter can monitor single unit neurons. [Wolpaw et al.,

2



1.1. Initial problem formulation

2002] Intracortical recordings are favorable in terms of getting very specific neu-
ral activity.

Restoration of hand control, aid of breathing and bladder control have been ac-
complished to a great extent, whereas restoration of gait control using intra-
cortical recordings seems very limited in the research field of biomedical engi-
neering. [Fitzsimmons et al., 2009; Song et al., 2009]

Assessing intracortical (IC) signals from SCI patients for a decoding model imply
ethical limitations. Argumentation and discussions by Gill et al. [1989] and Cenci
et al. [2002] seeks to justify the use of rats as an experimental model, emphasiz-
ing similarities in motor patterns and neuroanatomy. Additional advantages of
in-expenses compared with other laboratory animals and decent size for hand-
ling. Mapping of the rat brain has been done in great details and motor centers
and underlying structures controlling gait have been located with high accuracy
[Leergaard et al., 2004]. Bearing these factors in mind, rats seems adequate in an
experimental setups a human model for assessing gait.

A schematic overview of a decoding model feeding IC signals and translating
these into stimulation patterns for specific muscles coupled with gait control,
could be an opportunity to bypass a transected spinal cord (Figure 1.3).

Several animal experiments have shown the possibilities of decoding intracortical
or epidural signals and restoring simple hand movements, Wessberg et al. [2000]
demonstrated R2 values as high as 0.5 between actual and predicted hand move-
ment. [Fagg et al., 2007; Slutzky et al., 2011; Wessberg et al., 2000].

FES

Decoding model

Intention 
to move

Feature 
extraction

Control 
signals

Stimulation
pattern

IC signals Output

Input

Figure 1.3: A schematic overview of a decoding model where the output
from the model is fed to the FES. IC signals are used to predict
the actual intended muscle output, allowing independent stim-
ulation instead of pre-programmed control patterns used in tra-
ditional FES.

1.1 Initial problem formulation
To examine the correlation between brain signals planning and executing move-
ment from primary motor cortex (M1) and muscle activity in relation to gait and
use of FES.
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2
Spinal cord injury

SCI affects the nervous systems and can lead to loss of reflexes, sensation and the
ability to control muscles and thereby movement.

SCI can be classified with The American Spinal Injury Association(ASIA) Inter-
national Standards for Neurological Classification which are divided into four
different methods that hold information about: 1) the sensory and motor level,
2) the completeness of the injury, 3) the ASIA Impairment Scale, 4) the zone of
partial preservation, have maintained some motor- and sensory function above
and below in complete injury cases. [Liverman et al., 2005]

The sensory- and motor level (1) is defined by the location on the spinal cord
where sensory and motor functionality is intact. This is determined be touch-
ing and evaluating motor function. The completeness of injury (2) can either be
complete or incomplete SCI. Complete SCI affects the patient from point of in-
jury and functions below this point, whereas incomplete SCI still have sensory
and motor functionality available below the point of injury. The ASIA Impair-
ment Scale (3) have five different levels. Level A categorize the complete SCI,
level B-D categorize three different types of incomplete SCI, and level E catego-
rize no impairment of the spinal cord. The zone of partial preservation (4) define
if the patient still have sensory or motor function after complete SCI above S5 or
below the point of injury.[Liverman et al., 2005]

2.1 Loss of function
Functionality of the patients are affected accordingly to the point of injury (Fig-
ure 2.1). The loss of function affect the person from the point of injury and below
at complete SCI, and in incomplete SCI the functions below the point of injury
can still be functional. If the injury occur at cervical level the patient will become
tetraplegic and head, neck, diaphragm and arms will be affected. If the site of
injury is beneath the cervical level the patient will become paraplegic. Injury at
the thoracic level affects the chest and abdominal muscles, whereas injury within
the lumbar level affects the hips, legs and injury at sacral level affects the bowel,
bladder, groin, calves, buttocks and legs. [Liverman et al., 2005]

2.2 Quality of life
QOL for SCI patients can change radically after injury, due to chronic pain and
loss of functions. Around 60%-80% of SCI patients have chronic pain after their
injury, and losing their independent lives due to loss of functions causes depres-
sion and increased suicide rates. The loss of sexual function, dysfunction of the

7



2. SPINAL CORD INJURY

Cervical

Lumbar

Thoracic

Sacral

C1 

C8

T1

T12

L1

L5

S1

S5

Functions a�ected

C1-C4  Breathing
C2  Head and neck movement
C4-C6  Heart rate
C5  Shoulder, wrist
 and elbow movement
C7-T1 Hand and �nger movement

T1-T12  Sympathetic tone
T2-T12 Trunk stability

T11-L2  Ejaculation

L2 Hip motion

L4-S1 Foot motion
L5  Knee �exion

S2-S3 Bowel and bladder activity
S2-S4 Sexual function

Figure 2.1: The figure illustrate the different spinal levels and the functions
affected within each level. Redrawn from [Byrne and Dafny,
2000]

bladder and disorders of the bowel function also affects the patients quality of
life. [Liverman et al., 2005]

2.2.1 Restoring important functions
In a survey published in the Journal of Neurotrauma 681 SCI Americans ans-
wered a questionnaire about recovery priorities in QOL for spinal cord injured,
it was shown that regaining hand- and arm functionality was the highest pri-
ority for improving QOL for 48.7% of the tetraplegics, due to increased inde-
pendence. Regaining of other functions to improve QOL as the most important
for tetraplegics and paraplegics are ranked in table 2.1. [Anderson, 2004] The
rankings show that both tetraplegics and paraplegics have the same priorities
of regaining functions which are sexual function, increase trunk strength and
balance, improving bladder/bowel function and walking function but indicated
with different priority percentages.
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2.2. Quality of life

Regained function Improvement of QOL

Tetraplegics
Sexual function 13%

Increase trunk strength and balance 11.5%
Improving bladder/bowel function 8.9%

Walking movement 7.8%
Paraplegics

Sexual function 26.7%
Improving bladder/bowel function 18%

Increase trunk strength and balance 16.5%
Walking movement 15.9%

Table 2.1: The table show regaining of functions and improving of quality
of life for tetraplegics and paraplegics [Anderson, 2004]
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3
Restoring gait control with FES

Restoration of motor control is critical in order to improve QOL for SCI patients.
Several options exists with the purpose of assisting or restoring motor control.
Either by physical training, rehabilitation techniques or neuroprostheses. [Liver-
man et al., 2005]

The latter is an important discipline in biomedical engineering for pursuing
restoration of motor control. FES is one of todays main applied technologies in
pursuing motor restoration after SCI and a potential solution. [Tate et al., 2011]

3.1 Functional electrical stimulation
FES aim to help assisting patients accomplish voluntary movements and are
widely used for restoring motor control after SCI. The conceptual idea of FES is
to fetch inputs from either sensory signals or voluntary movements from active
muscles above point of injury. Inputs are then sent to a controller, triggering and
releasing bursts of electrical pulses to intact motor neurons. A movement can
then be evoked by stimulating several nerve fibers, evoking muscle contractions
in a desired pattern to carry out movement.[Liverman et al., 2005; Peckham and
Knutson, 2005]

The stimulation paradigm of FES include the three parameters pulse frequency,
amplitude and duration. Composition of stimulation intensity and pattern are
vital in order to avoid muscle fatigue. [Peckham and Knutson, 2005]

Several electrodes exists and is chosen depending on the given application, dis-
tinguishing between surface-, percutaneous- and implanted intramuscular elec-
trodes (Figure 3.1). Surface electrodes are noninvasive and simple to use but in-
adequate for stimulating deeper muscle structures or isolated areas. The percu-
taneous setup include an intramuscular electrode and a reference on the skin,
being able to stimulate deeper structures and isolated areas inaccessible by sur-
face electrodes. An implanted solution is used for long-term FES systems, where
the electrode wires are placed under the skin and connected to an implanted
stimulation controller, normally implanted in the abdomen or chest. [Peckham
and Knutson, 2005]

3.1.1 Restoring gait control
Various FES approaches for restoring gait function in paraplegics have been
tested. Restoring gait is a complex task which needs an interplay between fac-
tors such as balance, body posture and coordination of lower limb movements.

11



3. RESTORING GAIT CONTROL WITH FES

Figure 3.1: Three different electrode setups: surface, percutaneous and im-
plant for a FES application. S: stimulator, A: Reference electrode,
C: Active electrode, ECU: External control unit.[Peckham and
Knutson, 2005]

An early approach involved stimulation of the peroneal nerve and quadriceps
muscle. A reflex of the hip, knee and ankle initiated the swing phase and knee
extension stance, as a response to the stimulation. This principle is incorpo-
rated in the Parastep® system, making walking over limited distances possible
for paraplegics with a walker. Parastep® utilize a stimulator located on the waist,
a controller in the handle of the walker and surface electrodes, allowing control
of the FES system. [Peckham and Knutson, 2005]

FES systems using percutaneous or implanted electrodes for stimulating mus-
cles of the legs have been tried. A hand operated switch was used to stimulate
48 muscles of the lower limb through a programmable microprocessor-based
external stimulator (Figure 3.2). The outcome was patients being able to walk
with a rolling walker as support for 300 m at a speed of 0.5 m/s. Some patients
even managed to climb stairs but both scenarios required continuous training.
[Popovic and Sinkjær, 2003]

Using an external branching such as the reciprocating gait orthosis is another ap-
plication of FES. The orthosis support the body weight and reduce the amount of
energy lost by solely using FES. This setup was not always cosmetically accepted
and was very time consuming in regards to mounting. [Popovic and Sinkjær,
2003]

A newer FES experiment for SCI patients utilized implanted intramuscular elec-
trodes in the legs, being controlled by a hand controller. Positive results were ac-
quired and subjects were able to walk for a maximum of 1000 m at a speed of 1.1
m/s. Additionally, patients were able to stand, climb stairs and walk backwards
with the given FES system. [Popovic and Sinkjær, 2003]

Research and usage of FES applications have shown a major need for physical ef-
forts of SCI patients in order to walk. An estimation of four to six folded effort has
been estimated compared with healthy persons. [Liverman et al., 2005; Popovic
and Sinkjær, 2003]

12



3.1. Functional electrical stimulation

Coupling
coil

External 
Controller

Implantable 
receiver 
stimulator

Figure 3.2: A FES system for stimulation of the lower limb which contain an
implanted receiver stimulator, stimulator electrode, a external
controller, and a coupling coil which transmit information and
power to the receiver stimulator. Modified from Peckham and
Knutson [2005]

A disadvantage of todays solutions is the limitations of control and the control
signal not being enough to convey the intentions of the patient. Control signals
for FES are often pre-programmed patterns for a specific movement, and does
not take the users intensions into consideration when eliciting an electrical burst
with the consequence of muscle fatigue and limited degree of freedom. [Bauman
et al., 2011; Popovic et al., 2002]
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4
Brain Machine Interface

Moving beyond the limitations of FES and neuroprotheses to improve prospec-
tive benefits of gait restoration would require another approach. An interesting
field is brain machine interface (BMI) applications, which seek to fill the gab be-
tween the brain and target device in e.g. a transected spinal cord. Research and
applications aimed towards restoration of gait seems limited, so leaning against
results from restoration of hand function is necessary.

Brain signals are commonly used as the starting point for BMI applications and
sensory-, cognitive- or motor signals are used as input. The aim of BMI applica-
tions is to understand and decode the information given by neural activity and
successfully correlate it with a given response. Bridging the gab and understand-
ing the interplay allows the BMI to operate as the communication pathway, sub-
stituting the spinal cord (Figure 4.1). [Sanchez and Principe, 2007]

Decoding of 
neural activty

Activation of FES
for gait controlRecording of neural activity

Figure 4.1: Overview of BMI application which contain recording and pro-
cessing of brain activity that can activate FES or a prosthetic.
Modified from [Sanchez and Principe, 2007]

Brain activity and insight in electrophysiology can be recorded and obtained in
various ways with invasive or non-invasive methods like epidural-, subdural- , IC
recording or EEG. IC recordings is a commonly used technique, since activity of
single neurons can be recorded. [Wolpaw et al., 2002]

IC recordings often deploy the use of microelectrodes inserted into motor cortex,
commonly in animal research. Adaption of the system interface is unnecessary
when using IC recordings for BMI, being an advantage compared with other ap-
plications needing training and adaption. A disadvantage of IC recordings is the
reliability of electrode performance over time. Chronical implanted electrodes
can not be removed and needs to be reliable for a long time. Cell death and
thereby changes in neural activity is another factor that must be taken into ac-
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4. BRAIN MACHINE INTERFACE

count when designing BMI applications to ensure stable recordings. [Sanchez
and Principe, 2007]

The signal-to-noise ratio (SNR) of IC recordings is good, which allow recordings
of local field potential over a brain region, multi-neuron activity and single neu-
ron activity. Information from single- or multi neurons give knowledge about
how motor neurons encode limb movements and provide important help in re-
gard to BMI applications. [Oby et al., 2010; Sanchez and Principe, 2007]

4.1 Restoring gait control
Several methods for activating FES exists by processing neural activity. Decod-
ing is a processing methods for BMI applications, where neural activity are used
to predict a given muscle activation. The predicted signal can be fed to a FES
application as control signal, stimulating the target muscles, according to neural
activity.

One of the first studies evaluating restoration of gait control was conducted by
Fitzsimmons et al. [2009], who also emphasized the lack of knowledge and lim-
ited documentation about the area. Restoring upper limb functionality have
been investigated thoroughly and demonstrated feasibility of using IC record-
ings for BMI applications to control hand function. [Fitzsimmons et al., 2009]

The study by Fitzsimmons et al. [2009] evaluated the use of BMI as means of
restoring gait after neurological injuries or SCI. BMI inputs consisted of neu-
ral activity recorded from M1 and S1, which were used to predict kinematics of
bipedal walking (backwards and forwards) in monkeys. EMG were recorded from
soleus, rectus femoris, and tibialis anterior. By use of a linear decoding algorithm
the group was able to predict forward walking patterns of EMG (SNR 1.55 ± 0.39).
Additional prediction of hip, knee and ankle location by XY coordinates resulted
in R values ranging from 0.42 to 0.87. Remarkably higher peak rates per unit was
observed during swing phase 261 ± 29 peaks/s compared to stance 87.2 ± 18.6
peaks/s. Findings suggested feasibility of cortical BMI as a rehabilitation method
for gait, if the brain areas encoding gait are intact. Outputs could potentially be
fed to a FES system targeting the implanted muscles, and prospectively increase
QOL for patients. [Fitzsimmons et al., 2009]

A later study by Song et al. [2009] evaluated a BMI application decoding kine-
matics for hindlimb/trunk using rats. Neural activity was recorded from M1 us-
ing tetrodes of 24 channels in total. Kinematics were obtained by video record-
ings of the rats while performing gait on a treadmill. Prediction of ankle-, knee-
and hip angles were done by a linear decoding model using neural activity as in-
put. Predictions of angles at the proximal joints gave R2 values of 0.47 (±5.0), 0.39
(±7.3) and 0.33 (±6.6) from the hip-, knee- and ankle angles, respectively. [Song
et al., 2009]
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4.2 Restoring of hand control
Restoration of upper limbs and grasp function have been the top priority for re-
gaining QOL (subsection 2.2.1) and thereby also a well studied area. [Ethier et al.,
2012; Fitzsimmons et al., 2009; Hochberg et al., 2006; Song et al., 2009; Wessberg
et al., 2000]

Examples include a study by Hochberg et al. [2006] where hand movement was
predicted, controlling a multi-jointed hand prosthetic for grasping tasks. IC sig-
nals was recorded from M1 in a tetraplegic patient, which reveled similar firing
patterns with monkeys. Monkey experiments have likewise shown promising re-
sults.

A study by Ethier et al. [2012] recorded IC signals from M1 in monkeys and pre-
dicted EMG activation patterns of hand movements and grasping tasks by de-
coding the provided information. Patterns were used as control signals for a FES
application targeting arm- and hand muscles, allowing the monkey to perform
hand movement and grasping tasks under temporary paralysis.

Wessberg et al. [2000] predicted 3D hand trajectories of hand movement in real
time using neural activity. The study compared decoding performance between
a traditionally linear model and a newer method of artificial neural networks
(ANN). Results reveled prediction accuracies of R = 0.72 (0.47 to 0.79) and 0.66
(0.42 to 0.71) for the linear model and ANN, respectively. [Wessberg et al., 2000]

4.3 Decoding of neural activity
Understanding and decoding the relationship between brain and effectuaters are
necessary, in order to act as a communication pathway between brain and target
muscles.

Restoration of gait require a so-called input-output mapping between neural
activity and muscle activity. This I/O mapping is defined as a black box model
relying on linear or non-linear solutions. Whether the input-output relation be-
tween neural- and muscle activity is linear or not is uncertain, so looking beyond
linear models might be beneficial for restoration of gait.

The strength of ANN lie in the ability to model a complex nonlinear relationship.
Furthermore, implementing and configuration can be done by users of minimal
prior knowledge. [Tu, 1996]

Performance wise an ANN rely on configurations such as network size, learning
rates and criteria for stopping to avoid over fitting. [Sanchez and Principe, 2007]

ANN have, compared with linear models, shown acceptable performance in I/O
mapping studies by Wessberg et al. [2000] and significantly better in prediction
of certain problems [Tu, 1996]. Further investigation of these will be conducted
and background information are found in Appendix B.
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5
Neurophysiology of gait control

To restore and repair gait control in SCI patients it is necessary to understand
how muscles work and interact with the nervous system in order to generate
movement. Gait and voluntary movements have a tight interplay between the
nervous system, the corticospinal pathway and the skeletal muscles [Martini,
2006].

Movements of the human body are carried out through contractions of the stri-
ated muscles in simple or complex patterns managed by the brain and spinal
cord. Inputs at different levels exist and dealing with lower- and upper motor
neurons. The system managing gait control is operating at different levels and
can be divided into three different levels consisting of the brain, spinal cord and
peripherals (Figure 5.1). Information are sent through a hierarchical structure
of upper motor neurons (UMN - α motor neurons) and lower motor neurons
(LMN). [Michael-Titus et al., 2010; Purves et al., 2004]

Figure 5.1: An overview of the four subsystems composing the structure for
gait control. Basal ganglia, cerebellum, descending systems and
local spinal cord and brainstem circuits constitute the structure.
[Purves et al., 2004]
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5. NEUROPHYSIOLOGY OF GAIT CONTROL

5.1 Gait control at peripheral level
Muscles, effectuators, are the last part of the chain from intention and initializ-
ing of gait to actually carrying out movement of the legs. The information sent
to the muscles are transmitted through LMN’s originating from the spinal cord
and brainstem and modulate or coordinate the innervated target muscles. Move-
ment of the legs might require fine or gross movements, which demands differ-
ent accuracy. Obtaining this accuracy require the possibility to control how many
muscle fibers to be stimulated. The total contraction of a muscle is expressed by
the sum of tension generated in the individual muscle fibers. LMN’s control a
wide amount of muscle fibers, ranging from a few and up to a thousands and are
innervating the striated muscles and control movements by being the last part in
the command chain. This constitution of LMN’s and related muscle fibers make
up a motor unit. Motor units innervating a low amount of fibers are able to gen-
erate fine movement whereas a high innervation of muscle fibers assist in rough
movements such as movement of the lower limb. [Everett and Kell, 2010; Martini,
2006; Purves et al., 2004]

5.2 Gait control at spinal cord and brain stem level
Local circuits of neurons in the spinal cord and brainstem control and feed the
appropriate information to the LMN’s. The appropriate information are fetched
from within the UMN’s in the brainstem and motor cortex or adjusted by sensory
inputs. Sensory inputs are used to modulate or coordinate the information sent
to the muscles if unforeseeable obstacles or other things require altering of the
gait pattern. [Purves et al., 2004]

Previous studies have shown that sensory inputs can affect and adjust the step-
ping patterns when altering are necessary because of changed demands due to
obstacles or bumpy ground. Inputs might descend from somatosensory input,
input from vestibular apparatus or visual input. [Kandel et al., 2000]

A distinction between propriocepters and exterocepters are made in somato-
sensory inputs. Propriocepters are found in joints and muscles, affected by
movement, whereas exterocepters remain in the skin, affected by external sti-
muli from surroundings and affecting the central pattern generators. This theory
is supported by experiments with stepping speed of spinal and decebrated cats
on a treadmill, indicating adjustments are made to match the speed of treadmill.
Additional studies with cats have lead to insight of golgi tendon organs and mus-
cle spindles regulating stepping, specifically postponing of swing phase and in-
creasing burst activity in extensor motor neurons when transitioning from stance
to swing. [Kandel et al., 2000]
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5.3 Gait control at brain level
At brain level gait control is planned and initiated before effectuators in terms of
muscles are carrying out the voluntary movement. Information are sent through
UMN’s, regulating LMN’s. Axons of the UMN’s form the corticospinal pathway
(pyramidal- and extrapyramidal tract) arising from motor cortex and the brain
stem. Initiating movements and ensure correct posture are some of the impor-
tant functions of the corticospinal pathway. [Purves et al., 2004]

Higher level inputs from the basal ganglia and cerebellum regulate the local cir-
cuits and LMN’s through modulation of UMN’s and ensure spatial and temporal
precision of movements, since the basal ganglia and cerebellum does not have
any direct connection to the LMN’s. [Martini, 2006; Michael-Titus et al., 2010;
Purves et al., 2004]

Neural recordings from areas at brain level have shown rhythmically patterns
during locomotion, indicating a participation in the more general motor pattern.
Visual input fed to the motor cortex has shown a huge influence on regulating
stepping patterns where visual information are critical, like walking on ladders
or other demanding tasks. [Kandel et al., 2000]
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6
Analysis of gait control

Locomotion, a degree of freedom and vital ability for humans and animals to
move from one place to another. Daily walking is a stereotypic action, carried
out without any further thoughts, being able to adapt the walking pattern to un-
foreseen obstacles or other sudden changes in the environment. Stereotypic and
repetitive actions imply automatically adjustments in the lower levels of the ner-
vous system, where intervention from higher level centers seems unnecessary.
Studying cats and dogs have to a great extent given knowledge of walking pat-
terns and neural mechanisms controlling movement. [Kandel et al., 2000; Roy
et al., 1991]

6.1 Decomposition of locomotion
The step cycle is often divided into swing and stance to get a better understand-
ing and examining locomotion in humans and animals. Swing (transfer) phase,
when the foot is without contact to the ground, can be divided into sub-phases
flexion (F) and first extension (E1), whereas stance (support) phase, when the
foot is in contact with the ground, can be divided into second extension (E2)
and third extension (E3) - (Figure 6.1). A greater insight into the phases can be
obtained with knowledge from a biomechanical point of view including kine-
tics, kinematics or EMG activity during locomotion. Further information can be
achieved through a neurological aspect. [Kandel et al., 2000; Rossignol, 1996]

Figure 6.1: Overview of the step cycle with swing- and stand phase divided
into flexion and extensions. Arrows indicate lift-off and landing.
[Kandel et al., 2000]

From swing phase, starting at lift-off, flexion of the hip, knee and ankle is car-
ried out and lifting the leg up under the body (F). Around halfway throughout
the swing phase and beginning of E1, the hip keeps flexing, while knee and ankle
starts counter moving due to extension. Moving the lower leg ahead and prepar-
ing for ground contact is the end of swing and beginning of stance. After the
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6. ANALYSIS OF GAIT CONTROL

transfer phase (F to E1) E2 is marking the beginning of the support phase (E2 to
E3). During the first part of stance knee and ankle are briefly flexing, while all
joints are extending during E3 shifting the body weight. Locomotion is executed
smoothly due to the tightly interaction between flexors and extensors during the
phases, defined as motor pattern for stepping. [Kandel et al., 2000; Rossignol,
1996]

6.2 Biomechanical point of view
Different approaches and techniques for analyzing and measuring gait exist. The
common approaches are kinetics, kinematics and EMG. Kinetics describe the
internal and external forces that causes movement and can be obtained through
different transducers. Kinematics leave out the kinetics and focus on the geo-
metry of movement, obtained by video recordings and subsequent digitization
of coordinates. EMG examine the activation patterns of specified muscles dur-
ing a repetitive task. [Back and Clayton, 2000]

Kinetics will not be elaborated since forces are outside the focus area.

6.2.1 Kinematics
When conducting kinematic analysis, the experimenters are interested in tempo-
ral, linear and angular information describing the gait. Video recording is com-
monly used for kinematic analysis in interplay with digitization software.

Video recording
Todays high-speed cameras make it suitable for kinematic analysis of gait in ani-
mals or humans. Studies have shown that recordings at 60 Hz is adequate for
equine locomotion, whereas other studies have used 125 Hz to 200 Hz for rats
[Back and Clayton, 2000; Gillis and Biewener, 2001; João et al., 2010]

The frequency should be determined in the light of event to examine. For short
cycles and fast movements a higher frequency is desired to ensure that no infor-
mation are lost. Lighting becomes an import factor when utilizing high-speed
cameras, since fast shutter speed require better lighting conditions to ensure a
sharp picture and accentuate markers attached to the skin. [Back and Clayton,
2000]

Markers
Skin markers are needed to define the line segments between points of interest.
Studies of locomotion often include hindlimb markers at the toe, heel, knee and
hip to quantify joint angles and temporal/linear movement of the hindlimb (Fig-
ure 6.2). [Back and Clayton, 2000; Gillis and Biewener, 2001; João et al., 2010;
Kandel et al., 2000; Leblond et al., 2003; Pearson et al., 2005; Rossignol, 1996]

For auto digitizing videos, well defined markers with sufficient contrast between
skin and markers are necessary. Black colored or retro reflective material markers
has shown to improve the contrast together with ambient lighting of 300 W to 800
W. [Back and Clayton, 2000; Gillis and Biewener, 2001]

The experimenters should consider the repeatability and reliability of position-
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6.2. Biomechanical point of view

ing the markers if these are removed or falling off in-between recordings. Espe-
cially at points where loose skin account for the movement, leaving the marker
more or less stationary.

Figure 6.2: An example of positioning markers on a mouse with retroreflec-
tive tape. [Pearson et al., 2005]

After digitizing the points and saving the coordinates of the individual points in
a two or three dimensional space, it is possible to do further calculations. De-
pending on the objectives of the study, temporal, linear or joint angles are know
possible to calculate. Dividing the locomotion into phases as described in sec-
tion 6.1 allow the calculation and defining phases by use of joint angles and video
synchronization.

NEUROMECHANICAL CONTROL OF LOCOMOTION IN THE RAT
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In addition, each joint angle trajectory was divided into
flexor and multiple extensor subphases as in Gruner et
al. (1980) (Fig. 2). The turning point (TP) between the
increasing to decreasing angle during stance identified
the beginning of flexion for the hip, knee, ankle, and el-

bow joints. Hip and shoulder joint angles were divided
into one flexion (F) and one extension (E) subphase (Fig.
2B,E). The knee, ankle, and elbow angle trajectories were
divided into one flexion (F) and three extension sub-
phases (E1, E2, and E3) (Fig. 2C,D,F). The turning point

FIG. 2. Typical three-dimensional (3D) kinematic analysis of gait. (A) 3D stick figure representation (perspective view, 0° hor-
izontal rotation, 75° vertical elevation) of the right hindlimb showing (top to bottom) pelvis-to-hip, hip-to-knee, knee-to-ankle,
and ankle-to-toe segments. The bold segments represent the limb at touch-down, while the bold dashed segments represent the
limb at lift-off. The short and long arrows show the direction and duration of the swing and stance phases, respectively, during
forward walking (left to right). (B–F) Angle trajectories (five cycles) of hip, knee, ankle, shoulder, and elbow along with lift-off
(dotted vertical line, up arrow) and touch-down (solid vertical line, down arrow) event markers for the right hindlimb. The ex-
tension (E, E1, E2, and E3) and flexion (F) subphases for one cycle are indicated for each angle trajectory. (G) 3D stick figure
representation of the right forelimb showing (top to bottom) shoulder to elbow and elbow to wrist segments. Other details as in
A. (H) Foot-fall pattern indicating swing (filled rectangles) and stance (empty rectangles) of all four limbs. HL, Hindlimb; FL,
forelimb; L, left; R, right.

Figure 6.3: Change in joint angles during five cycles for hip, knee, ankle,
shoulder, and elbow during rat locomotion. Lift-off and toe-
down is indicated with up arrow or down arrow, respectively.
Sub-phases F, E1,E2 and E3 are indicated. [Thota et al., 2005]

Plotting the change in joint angles during locomotion should yield a recognizable
cyclic pattern for each gait cycle (Figure 6.3).

Another common representation is by connecting the points, forming limb seg-
ments, for each video frame composing stick figures (Figure 6.4). These figures
can reveal modification in locomotion or differences between two tasks by visual
examination.
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6. ANALYSIS OF GAIT CONTROL

Figure 6.4: An example of a stick figure showing the sequential positioning
of forelimb movement in a rabbit during one gait cycle from lift-
off to lift-off. [Beloozerova et al., 2003]

6.2.2 EMG activity
EMG recordings are used to represent the activity of a single muscle or group of
muscles. In terms of locomotion EMG recordings from the hindlimb can help
describing the pattern of muscle activity. The amplitude of an EMG signal depict
the electrical intensity of a muscle contraction. [Webster, 2006]

Different types of electrodes are used to record the muscle activity, chosen upon
objective for the experiment. Generally EMG is separated into surface EMG
(sEMG) and intramuscular EMG (iEMG) having their disadvantages and advan-
tages. sEMG is often chosen if a general gross activity of a muscle group is de-
cided, whereas iEMG record from individual fibers and represents the individual
motor unit action potentials. [Bronzino, 1999; Webster, 2006]

In terms of locomotion, single unit information are desired to get a clear distinc-
tive pattern between muscles but choice of subjects and tasks may limit or favour
the type of EMG.

An example of raw iEMG signal obtained from hindlimb muscles of a mouse (Fig-
ure 6.5). It is clearly to identify the bursts due to contraction and the alternation
between activity in left and right leg during locomotion. This clearly distinction
of muscle activity pattern might not be as visible due to artifacts and noise from
the surroundings.

Figure 6.5: iEMG recordings from the hindlimb muscles (Tibialis Anterior
and Vastus Lateralis) in a mouse running on a treadmill. [Pear-
son et al., 2005]
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6.2. Biomechanical point of view

Therefore, post-processing of EMG signals in terms of locomotion analysis is ap-
plicable. Interesting information regarding locomotion may include recruitment
level of the muscles, activation pattern of elected muscles and synchronization
with kinematic results (subsection 6.2.1).

Detecting muscle activity pattern
EMG recordings from the hindlimb can help describe patterns of muscle activity
during locomotion. Defining the muscle activity is often done by rectifying the
raw signal and filtering with a low-pass filter or moving average filter. This ac-
tion produces an envelope of the EMG signal and emphasize the phases where
muscles are active or passive (Figure 6.6).

Figure 6.6: Demonstrating the steps in retrieving the envelope of an EMG
signal. Differences in the envelope is seen depending on the fil-
tering method. [Latash, 1998]

Calculating an envelope of the EMG signal ease the identification of the times-
tamp where the muscle is activated. Knowing the period of time where a muscle
is activated, can be valuable information in analysis of locomotion.

Observed muscle activity might vary between recordings/subjects due to factors
influencing the muscle activity. Factors like condition of the subject, physical
shape, walking pattern, fatigue and type of EMG electrodes/placement may af-
fect the results, just to mention a few, but previous studies have lead to a general
overview of muscle activity in cats with a consistent repetitive pattern across ex-
periments (Figure 6.7). [Rossignol, 1996]

Muscles of interest and implementation
A large amount of hindlimb muscles are activated during gait control (Figure 6.7).
Due to the size of smaller research animals implantation of intramuscular elec-
trodes in the lower limbs can influence the movement of the knee joint and affect
the gait pattern. Implanting intramuscular electrodes in the thigh region is there-
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Figure 6.7: Overview of hindlimb muscle activity from cats during trot. Toe-
down is stated by downward arrows and lift-off with upward ar-
rows. EMG patterns were obtained from different sources and
synchronized around toe-down. [Rossignol, 1996]

fore preferred to avoid mechanical stress and maintain a normal gait pattern.
When implanting intramuscular electrodes in smaller animals it is beneficial to
choose larger superficial muscles to ensure the electrodes will be implanted in
the correct muscles and depth. [Pearson et al., 2005]

6.2.3 Linking kinematics
Combining the different kinematic information will help getting an overview
or reveal characteristics/patterns in locomotion. By synchronizing joint angles,
EMG and muscle activity patterns around an event (typically lift-off or toe-down)
repeating patterns might appear (Figure 6.8).
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6.3. Evaluation of the treadmill for assessing gait

Figure 6.8: Synchronizing joint angles, EMG and stance time with respect to
activation of tibialis anterior. [Pearson et al., 2005]

6.3 Evaluation of the treadmill for assessing gait
The treadmill is a widely used tool for assessing e.g. locomotion, neuroscience
research or behavioral studies, whether it is rats or other animals [Back and Clay-
ton, 2000; Drew, 1988; Fitzsimmons et al., 2009; Pearson et al., 2005; Pereira et al.,
2006].

The force of treadmill usage lie in the control of speed and convenience of test
and training, allowing evaluation of other factors in a standardized and repro-
ducible environment [Pereira et al., 2006].

A study by Pereira et al. [2006] examined the comparability between rat loco-
motion on treadmill and overground and suggested comparability if adequate
velocity was chosen. Duration of step cycle and stance phase on treadmill were
significantly longer and overground running had a greater flexion at hip, knee
and angle joint.

A theoretical constant speed on the treadmill might deviate due to frictional
forces during stance phase. Especially for heavy animals, where a reduction of
9 % in speed has been observed for equine locomotion. [Back and Clayton, 2000]
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7
The rat as an experimental animal

Ethical rules are the limitational factor in the research field of SCI, motor function
and biomedical engineering applications for humans. Since human recordings
from the brain centers altering gait is not possible, a resort to rats are chosen and
this chapter will justify the aspect of comparability between humans and rats
as a human model. Furthermore, known and documented knowledge regarding
kinematics and intracortical recordings in animals will be examined.

7.1 The rat as a human model for assessing gait
Rats and humans are at first glance different by appearance. Factors as size or gait
pattern due to quadrupedalism seems evident. Rats are widely used in research
areas as immunology, physiology, neuroscience and aging in spite of these visual
deviations [Gill et al., 1989].

Opinions by Cenci et al. [2002]; Gill et al. [1989] seek to justify and discuss the
comparability between rats and humans and the usage of rats as an experi-
mental animal. Overall audit agrees in homology in between rats and primates
through comparative studies. Motor patterns across species in rats and primates
seems comparable, though differences in brain structure and neural system ex-
ists. Motor cortex and somatosensory cortex are organized differently and partly
overlap each other in rats, whereas primates are clearly separated.

Neuroanatomical studies have shown functional similarities for neural systems
controlling movement and organization of circuits such as basal ganglia, impor-
tant for motor responses. There is no denying that rat studies are inexpensive
and serve as an effective complement to primate studies, where comparability
seems adequate. [Cenci et al., 2002; Gill et al., 1989]

The muscle contraction related to a gait cycle can be divided into four phases for
humans and quadrupeds, these phases are flexion, first extension, second exten-
sion, and third extension(Figure 6.1) [Kandel et al., 2000]. Muscle activity from
the hindlimb during gait show similarities between humans and quadrupeds,
where several muscles have same activation patterns which e.g. include vastus
lateralis, biceps femoris and tibialis anterior. [Vaughan et al., 1999]
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7. THE RAT AS AN EXPERIMENTAL ANIMAL

Similarities in phase duration of gait exist between humans and rats. The ratio
between swing- and stance phase for humans are in the range of 38% to 40% /
60% to 62% (Figure 7.1) compared with approximately 36% to 37% / 63% to 64%
in rats walking at speeds lower than 48 cm

s (Figure 7.3). [Gillis and Biewener, 2001;
Vaughan et al., 1999]

Figure 7.1: Percent wise duration of phases in the human gait. [Vaughan
et al., 1999]

Motor- and somatosensory cortex
Similaritites within the corticospinal tract between humans and rats have been
documented, although the amount of corticospinal neurons are greater in hu-
mans due to differences in brain weight and size. The corticospinal tract origi-
nate from layer V in the cerebral cortex. The majority of corticospinal neurons are
located in primary motor cortex (M1) and primary somatosensory (S1) cortex for
humans and rats (Figure 7.2). Corticospinal neurons originating from the ventral
premotor cortex (PMv) in humans can be linked to the rostral forelimb area (RFA)
in rats. Differences exist in the subdivision of M1, where a subdivision into sup-
plementary motor area (SMA), dorsal premotor cortex (PMd), cingulate motor
areas (C) and PMv is possible. Studying the rat has revealed a subdivision in only
two motor areas, caudal forelimb area (CFA) and RFA. This finer subdivision is
also maintained for the somatosensory areas S1 and S2, where areas in primates
include 3a, 3b, 1 and 2. Subdivision of the areas (Figure 7.2), where the rat brain
also reveal an overlap between M1 and S1. [Nudo, 2007]
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Figure 7.2: A comparison between primates (A) and the rodents (B) reveal
differences in regard to motor- and somatosensory areas. Same
overall division maintain between primates and rodents but fur-
ther subdivision of M1 (PMd, PMv, SMA and C) and S1 (3a, 3b,
1 and 2) is possible in primates. [Nudo, 2007]

7.2 Previous research and findings
Previous studies have assessed kinematics, intracortical signals and EMG within
rats.

Electromyography and kinematics
In Gillis and Biewener [2001] EMG and kinmatics was investigated during gait
from biceps femoris and vastus lateralis, which are two of the largest muscles of
the rat hindlimb. The results showed that biceps femoris and vastus lateralis were
activated in bursts and overlapped each other during the stance phase, as seen in
7.3. Regarding kinematics for a gait cycle the hip angle interval was found to be
90o at stance and 110o at lift-off, and the knee angle interval was found to be 110o

at stance and 75o at lift-off. Results from different gait speeds showed different
muscle activation patterns for each muscle and between the two muscles at dif-
ferent times. Within the different gait speeds the EMG activity of biceps femoris
generally activates just before the start of the stance phase and stops in the last
half of stance phase. The vastus lateralis has quite the same activation pattern as
biceps femoris except for a low EMG activity in the end of the swing phase. The
EMG intensity for both muscles increases in regards to higher gait speeds. [Gillis
and Biewener, 2001]

Figure 7.3: The EMG mean activation period with standard diviation is rep-
resented from the horizontal bars from biceps femoris and vas-
tus lateralis. The gait cycle is divided into stance and swing
phase and the walking speed are 36 cm

s . [Gillis and Biewener,
2001]
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Intracortical recordings
Chapin et al. [1999] recorded IC signals from the forlimb motor cortex area in
six rats. Cortical microwire electrodes were implanted from where neural motor
activity were recorded when the rat pressed a lever. In the six rats activity from
21-46 single neurons were recorded during the experiment. With the recorded
motor responses it was possible to predict 87% of the lever movements in all ani-
mals with simple thresholding of the neuronal population. Prediction with ANN
was also performed which gave accurate results, R = 86.

In Jensen et al. [2006] IC recordings were made from the M1 in a rat. A 16 channel
tungsten wire array was inserted in the forelimb area of the MI and the ulnar
nerve was stimulated. When stimulating the ulnar nerve it was possible to record
the corresponding motor response in M1.
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Motivation of choices

Restoring and aiding hand function through BMI and neuroprostheses have
been investigated to a great extent and shown promising results. Same inves-
tigation and results are still lacking in regard to restoration of gait and conducted
research are limited. Showing promising results could be crucial for spinal cord
injured with lower limb paralysis and a step towards restoration or aiding gait.
Benefits would not only be in terms of lowered expenses associated with SCI but
also improved quality of life among the afflicted.

Success criteria for restoration of gait through BMI could be extracting informa-
tion about speed, direction, position of joint angles or gait duration, but an ulti-
mate success criteria would be to retrieve neural activity of intended movement,
decode activity and generate a dynamic control signal for FES to target muscles.

In order to extract neural activity of intended movement, it is decided to do
recordings from M1 because this area handle planning, initializing and direct-
ing voluntary movements. This choice imply invasive procedures not applicable
for human research, so it is necessary to involve experimental animals. Rats are
chosen on the basis of allowed research animals in Denmark, since they are rel-
atively inexpensive (compared with other animals), decent in size for handling
and easy to train.

Rats have proven reliability in several experiments and shown similarities with
human physiology. Especially similarities in motor patterns and neuroanatomy
advocate the use of rats. Furthermore, mapping of the rat brain has been done in
great details and motor centers and underlying structures controlling gait have
been located with high precision.

An experiment is set up where neural activity from M1 are extracted in healthy
rats during normal gait at a treadmill with constant speed. The treadmill allow
a well controlled environment with constant speed and opportunity of applying
inclination. Recordings from M1 will be done under two behavioral tasks, while
running horizontal on treadmill and running with inclination. It is believed that
neural activity patterns and muscle activation regarding gait are enhance during
demanding tasks.

Muscle activity will be recorded by EMG electrodes implanted in the hindlimb
muscles biceps femoris (BF) and vastus lateralis (VL), being a hip and knee ex-
tensor, respectively. Choice of muscles is a tradeoff between desired muscles and
invasiveness. The muscles are located in the thigh, fairly superficial and easy to
access, making the operation less invasive and improve the survival rate of the
rats. Muscle activity of BF and VL have been evaluated in previous studies allow-
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ing the opportunity to compare results and lean against their methodology.

Kinematic analysis will be carried out in order to asses further information de-
scribing gait pattern. Neural activity will be fed to an ANN with muscle activity
as target.

ANN has shown positive results in predictions based on cortical neurons and can
potentially be trained to any complex input-output relations.

Sensory input and obstacles requiring alterations of gait are left out of the scope
and focus will be on stereotypic and repetitive patterns of gait.

FES

ANN model

Voluntary 
gait

Prediction 
of EMG

Control 
signals

Stimulation
pattern

IC signals
Output

Input

Figure 8.1: A schematic overview of the desired ANN model for predicting
EMG.

8.1 Project hypothesis

Intracortical neural activity, extracted from M1, can predict EMG
activity of the hindlimb muscles BF and VL in healthy rats with the
use of ANN. The experiment seek to decode and understand correla-
tion between neural activity and muscles for horizontal and inclined
treadmill walking at constant speed, in order to predict activity by
use of an ANN.
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Experimental protocol

The experiment seek to decode and understand correlation between
neural activity and muscles for horizontal and inclined treadmill
walking at constant speed, in order to predict activity by use of an
ANN. To reach this aim neural activity from the hindlimb area of M1,
iEMG signals from BF and VL and kinematics will be recorded from
healthy rats during locomotive tasks on a treadmill.

The experimental protocol is based on experience from a pilot study
where surgical procedures was practiced and experimental setups
tested.

9.1 Equipment
The following materials were used during the experiment.

Tucker-Davies Technologies System (TDT)

• RX5 Pentusa Base Station
• RA16PA 16-channel medusa pre-amplifier for IC
• RA16CH 16-channel chronic headstage for IC
• IC electrode array with custom made adaptor
• RA4PA 4-channel medusa pre-amplifier for EMG
• RA4LI 4-channel headstage for EMG
• EMG electrodes with custom made adaptor

Camera

• High-speed camera (Basler A602fc-2)
• 2 x 400 W telescope work lamps (SARTANO)
• Black markers

Treadmill

• Treadmill including perspex cage - conveyor belt with a width of
40 cm and length of 100 cm (Letica Scientific Instruments AUC
Institute 8 no. 33558)

• Mini lifting jack
• Voltmeter
• Resisters with 15Ω and 22Ω
• 12 V Battery (MFD. by YUASA corp. for ENERSYS inc.)

Computer

• DT340 card (PCI bus digital I/O and counter/timer board)
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• Video recording and processing software Vicon Motus 9.2 (Vicon
Systems, Oxford, Great Britain)

• Real-time Processor Visual Design Studio (RPvdsEx) software

Miscellaneous

• Grass stimulator (Model: SD9J, S/N: 99A0543G)
• Grass Photoelectric stimulus isolation unit (Model: PSI06, S/N:

03K01026)
• Shaver
• Tape

9.2 Experimental setup
The following part describing the experimental setup is divided into
two parts, a hardware and software part, and a part describing the
preparation process of the rats.

Hardware and software
The experimental setup is depicted in Figure 9.1

• Voltmeter

• Breadboard

• 100 Ohm potentiometer / xx Ohm restistor

• 12 V Battery (MFD. by YUASA corp. for ENERSYS inc.)

5.4 Others

• Grass stimulator (Model: SD9J, S/N: 99A0543G)

• Grass Photoelectric stimulus isolation unit (Model: PSI06, S/N: 03K01026)

• Shaver

• Tape

5.5 Experimental setup

The experimental setup consisted of four main components which can be seen the figure below

5.1. For the experimental task the rat was walking on a motor-driven treadmill. Kinematic

data were obtained from a high-speed camera, and EMG and IC signals were recorded with a

Tucker-Davis Technologies (TDT) system. The collected data from the camera and the TDT

system were stored on a computer and an external hard-drive.

Figure 5.1. Experimental setup showing the equipment used for simultaneous analysis of high-speed

video, IC signals and iEMG in rats while performing locomotion on a motor-driven

treadmill.

Treadmill setup

The motor-driven treadmill was enclosed in a Plexiglas cover to prevent escape. Adjustable

barriers were used to provide a running surface of 30 cm length and 10 cm width. The incline

of the treadmill was adjusted manually by using a mini lifting jack and the angle was measured

with a protractor. The treadmill was powered by a 12 V battery. To change the velocity of the

treadmill a voltage divider and a resistance (10.6 Ohm) was used to alter the input power. The

input power was set to 9,5V which correspond to the speed 28 cm/s.

Camera setup

The high-speed camera (Basler A602fc-2) was placed laterally to the right hindlimb of the

rat (Height 10 cm; length 20 cm). Vicon Motus 9.2 motion analysis system (Vicon Motion

27

Figure 9.1: The experimental setup of equipment for continuous recording
of high-speed video, EMG and IC snippets during rat locomotion
on a treadmill.

TDT setup
A TDT system was used to record IC- and EMG signals while the rat
was walking on the treadmill. Custom made IC electrode arrays was
connected to a RA16PA pre-amplifier through a RA16CH headstage
with a custom made adaptor. The EMG electrodes were connected
to a RA4PA pre-amplifier through the RA4LI headstage with a custom
made adaptor for the EMG electrodes. The pre-amplifiers were con-
nected through fiber-optics to the RX5 Pentusa Base Station. Data
were streamed to a computer equipped with a DT340 card (PCI bus
digital I/O and counter/timer board) for offline processing. [TDT,
2011]
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DSP 100 MHz Sharc ADSP 21161, 600 MFLOPS Peak
Memory 128 MB SDRAM (Shared)
D/A 16-bit PCM
Sample Rate Up to 97.65625 kHz
Voltage out +/- 10.0 V
S/N (typical) 84 dB (20 Hz to 25 KHz)
Output impedance 10Ω

Table 9.1: RX5 Pentusa Base Station [TDT, 2011]

Headstage gain 20x
Highpass filter 2.2 Hz
Lowpass filter 7.5 kHz
Input impedance 106 Ω

Table 9.2: RA4LI headstage [TDT, 2011]

Headstage gain Unity (1x)
Input impedance 1014 Ω

Table 9.3: RA16CH headstage [TDT, 2011]

A/D RA4PA: 4-channels 16-bit PCM
RA16PA: 16-channels 16-bit PCM

Maximum Voltage In +/- 4 millivolts
Frequency Response 3 dB 2.2 Hz - 7.5 kHz
Highpass filter 2.2 Hz
Anti-Aliasing Filtering 7.5 kHz (3 dB corner, 1st order, 6 dB per octave)
Input impedance 105 Ω

S/N (typical) 60dB

Table 9.4: RA4PA/RA16PA pre-amp [TDT, 2011]

Camera
A high-speed camera (Basler A602fc-2) operating at a framerate of
100 Hz was used to record locomotion of the rat. The camera was
placed in front of the plexiglas cage containing the rat during loco-
motion. Adherent black markers were pasted on the skin of the rat
on anatomical locations of the hindlimb (toe, hell, knee, hip and a
reference). The camera was connected to the computer through a 10
pin RJ-45 jack and an IEEE 1394 socket connector. The camera was
externally clocked through a connection to a DT340 card to synchro-
nize video and TDT data. [Basler, 2010]

Treadmill
The motor-driven treadmill was enclosed in a plexiglas cover to pre-
vent the rat from escaping during experiments. An adjustable back
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9. EXPERIMENTAL PROTOCOL

Pixels 656 (H) x 490 (V)
Max. Frame Rate (at full resolution) 100 fps in 8 bit output modes

Table 9.5: Basler A602fc-2 [Basler, 2010]

wall was used to provide a running surface of at least 30 cm length
and 10 cm width. Inclination of the treadmill was manually adjusted
by use of a mini lifting jack and the angle was measured with a pro-
tractor. The treadmill was powered by a 12 V battery. To change the
velocity of the treadmill a voltage divider and a resistor was used to
alter the input voltage depending on behavioral task. Changing the
inclination angle reduced the initial speed of the treadmill.

A treadmill speed of 29 cm
s was decided in the light of studies by Gillis

and Biewener [2001], where speed of rats were categorized in walk
(17-48 cm

s ), trot (59-71 cm
s ) and gallop (60-122 cm

s ).

Computer and software setup
Real-time Processor Visual Design Studio (RPvdsEx) running on a
computer was used to communicate with the RX5 Pentusa Base Sta-
tion (TDT system). The Vicon Motus 9.2 (Vicon Systems, Oxford,
Great Britain) software was used to record the video data from the
high-speed camera and afterwards for digitizing. All the data were
stored on an external hard drive for later processing.

Electrodes
Selfmade intracortical electrodes and EMG electrodes were produced
and implanted in the rats prior to recording. Surgical procedures are
described in section 9.4 and manufacturing in Appendix C and Ap-
pendix D.

IC electrode design
IC electrodes were designed as depicted in Figure 9.2. Tungesten wire
used for the electrodes had a diameter of 100 µm coated and 50 µm
bare. The finished electrode covers an area of 2 mm x 2 mm with an
internal distance of 2/3 mm.

This design was chosen on the basis of previous studies investigating
mapping of the rat brain in stereotaxic coordinates [Leergaard et al.,
2004].

9.3 Preparation of rats
Ten male Sprague-Dawley rats were trained for two weeks and the
four best performing rats were selected for the experiment. After suc-
cessful surgery, rats were individually caged and placed in a temper-
ature controlled room with a 12/12 hour light/dark cycle. Food and
water were available during all time in the cage.
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{2/3 mm

2 mm

{

{

50 mm

{ 8 mm

{
8 mm

Dental acrylic base {

Figure 9.2: Dimensions of the IC electrode from a side view (left) and top
view (right). Diameter of the tungsten wire is 100 µm coated, 50
µm bare

Figure 9.3: Mapping of rat brain in stereotaxic coordinates. The hindlimb
areas are approximately constituted by 2 mm x 2 mm (red
square). [Leergaard et al., 2004]

Performance of the rats was based upon observations and notes dur-
ing training sessions. Being able to walk on the treadmill for at least
30 consecutive seconds was the inclusion criteria. This criteria was
chosen in subject to reach sufficient gait cycles. The body mass of
the rats had to be above 350 g the day of surgery to make sure the
rats were fully developed before implementing electrode. The exper-
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9. EXPERIMENTAL PROTOCOL

iment was carried out with approval from the Danish Committee for
the ethical use of animals.

Hand training
The rats were hand trained for the first two days after arriving to the
animal. This action was done in order to accustoms them to the new
environment and human contact.

Treadmill training
Prior to the experiment the rats were trained on a treadmill for two
weeks with two sessions a day.

For the initial training session the rats were placed on the treadmill
for 10 minutes to get familiarized with the environment. The first
time walking on the treadmill was with a low speed at 23 cm

s to get
the rat familiarized to walk on the treadmill. A training session on
the treadmill consisted of 60 s trials with a break of 90 s in between.
In case the rats received two training sessions per day a break of at
least one hour was left between both sessions. If the rat performed
good at a speed level of 23 cm

s for the first session the speed level
was increased in the next sessions. This was done until 29 cm

s was
reached as final speed level of the experiment. After the first week
of training the rats was excluded from the experiment if they failed
to run regularly (frequent immobility, stressful behavior or contact
of the forelimbs on the treadmill walls). The different training tasks
consisted of following:

• Locomotion on the horizontal treadmill with speeds ranging
from 23 cm

s to 29 cm
s .

• Locomotion on the treadmill with a 15o inclination at speeds
rangning from 23 cm

s to 29 cm
s .

It was important that the rat had a steady locomotion to assure good
video recordings for kinematic analysis. Notes and comments for
each rat were noted to follow progression.

• Performance, estimated in seconds of steady running.

• Performance of the rat was rated with a grade, ranging from 0
(not running) to 6 (fluently running).

Markers
Adherent black markers were pasted on the skin of the rat on anatom-
ical locations of the hindlimb and a reference point on the side.
Markers included toe, heel, knee, hip and a reference, allowing seg-
ments to be made between toe-heel, heel-knee and knee-hip (Fig-
ure 9.4).
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Heel angle

Knee Angle

Toe angle

Figure 9.4: Location of markers at toe, heel, knee, hip and a reference point
on the side.

9.4 Surgical procedures
Prior to recordings IC electrodes and EMG electrodes were implanted
by a surgical operation. The surgery is divided into:

• Pre-operational preparations
• Preparation of the rats
• Implanting EMG electrodes
• Implanting IC electrode array
• Post surgery

List of materials
The following lists the materials used during surgery.

Workspace

• Non-sterile materials

– Two tables with chairs

– Microscope

– Stereotaxic frame

• Sterile materials

– Sterile fields

– T-shirt (to cover microscope)

Surgeon

• Sterile materials

– Masks and hats

– Gloves
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Preparation of rat

• Non-sterile materials

– Shaver

– Hypnorm/dormicum and sterile water (anaesthesia)

– Lidocaine (local anesthetic)

– Vaseline

• Sterile materials

– Iodine sponge

Surgery tools and materials

• Non-sterile materials

– Components for making cold-curing resins prosthetics (Heraeus
Kulzer Paladur)

– Cork boards

– Sand bags

• Sterile materials

– Towels

– Gauze

– Syringes

– Sutures (size 4.0 and 5.0)

– Spongostan (absorbable haemistatic gelatin sponge)

– Saline

– Aluminium tray

– Cotton sticks

– Rubber bands

– LiquidBand Surgical S (surgical glue)

– Scalpel

– Clamps (curved)

– Rongeur (for opening the skull)

– Surgical spreader

– Screw-driver

– Drill

– Needles

– Ruler

– Tissue forceps

– Long forceps

– Blunt scissors

– Delicate scissors

– Trocar

– Bone screws with/without attached ground wires.

– IC electrode

– EMG electrodes
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9.4. Surgical procedures

Part 1 - Pre-operational preparations
Sterilizing tools/materials and preparation of workspace were done
prior to every operation. All tools to be sterilized (except IC- and
EMG electrodes) were sterilized using an autoclave for steam ster-
ilization. Tools were sterilized with a steam cycle of 3 min (steam)/3
min (dry) at 121oC , whereas 10 min (steam)/10 min (dry) were used
for towels and clothes. IC- and EMG electrodes were wrapped in
green sterilization plastic bags and sterilized with gamma emission.

The operation room was organized with two tables, one being sterile
and one non-sterile. The sterile table was covered with sterile fields
and a sterile t-shirt was used to enclose the non-sterile microscope.
A tray with sterile tools is placed at the sterile table and sand bags
wrapped in sterile towels were put at the work area to support the rat
(Figure 9.5).

Figure 9.5: The sterile and non-sterile table with tools and materials used
during surgery.
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Part 2 - Preparation of the rats
The surgical procedure was performed under anaesthesia, which was
maintained with a 0.02-0.03 ml Hypnorm (Fentanyl/fluanisone) and
Dormicum (Midazolam) booster mixed with sterile water, when nec-
essary. Level of anesthesia was monitored by checking the hindlimb
withdrawal reflex on a regular basis. Every rat was weighed before
surgery to estimate initial dosage. An initial dosage of 0.6 ml anesthe-
sia was given and no more than 0.2 ml/100 g within the first hour of
operation.

Shaving the skull and hindlimb was done after the rat was anesthe-
tized by the initial dosage to expose the areas for implantation. The
skin was prepared for surgery by use of an 1% iodine brush. Vase-
line was applied to the eyes of the rat in order to prevent them from
drying out during surgery (Figure 9.6).

Figure 9.6: Preparation of the rat before surgery. Shaving, cleaning skin
with iodine and applying vaseline to the eyes.

Part 3 - Implanting EMG electrodes
Description of the EMG electrode design and manufacturing can be
found in Appendix D.

The rat was adjusted on the work area by using sand bags to sup-
port the body. An initial incision was made at the skull along the
midline and another incision at the hindlimb for accessing biceps
femoris and vastus lateralis. Separating the skin from the muscles in
the hindlimb area was performed with use of a blunt scissor. A trocar
was used to loosen the skin from the muscles and tunneling from the
skull incision to the hindlimb incision before EMG electrodes were
prepared and pulled through the tunnel from skull to hindlimb with
help from a long forceps (Figure 9.7).

Electrodes were inserted into the muscles with use of needles and
sutures. Extra wire was looped and attached to the hindlimb area to
provide slack and preventing restriction of movement. Ground wires
of different lengths from the electrodes were left under the skin in the
tunnel. The incision at the hindlimb was stitched together and sur-
gical glue applied, finishing up the EMG implantation (Figure 9.8).
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Figure 9.7: Tunneling and pulling EMG electrodes through the tunnel were
done with use of a long forceps.

Figure 9.8: Finishing up the EMG implantation by stitching together the
hindlimb incision and applying surgical glue.

Part 4 - Implanting IC electrode array
Description of the IC electrode manufacturing can be found in Ap-
pendix C.

The rat was fixated in a stereotaxic frame, lidocaine applied to the
skin and ear bars of the frame and vaseline reapplied to the eyes.
(Figure 9.9)

Figure 9.9: Fixating the rat in a stereotaxic frame during IC implantation.
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The skull area was cleaned and the thin membrane covering the skull
put aside. Four holes were drilled in the skull of the rat for inserting
bone screws and allowing craniotomy with a hand drill of 2 mm dia-
meter. A craniotomy was made with a rongeur above the primary
motor cortex of the rat connected with the right hindlimb. The area
for craniotomy was measured by use of the anatomical landmark,
bregma, and the midline with a ruler and covered 3 mm x 3 mm, leav-
ing some room for adjusting the implant site if blood vessels were
blocking (section 9.2). Three screws were put in the remaining holes,
whereas two of the screws had a ground connector attached. (Fig-
ure 9.10)

Figure 9.10: Location of screw holes, screws with ground wires (G) and cran-
iotomy area on the rat skull.

Any sharp points at the edges of the craniotomy were removed and
the membrane, dura, covering the brain was removed. This was done
with a needle or scissor, exposing the area of motor cortex.

A dummy socket was inserted on top of the IC electrode ease the in-
sertion process and provide a better overview during insertion. The
IC electrode was fixated in a holder and navigated to the desired lo-
cation with a micro manipulator on the stereotaxic frame. Lowering
the electrode until the wires were resting on the surface ensured cor-
rect measuring of depth. A desired end depth for the electrode of 1.7
mm was obtained by quickly lowering the electrode 2 mm to pene-
trate followed by 0.3 mm retraction. (Figure 9.11)

Spongostan was put around the exposed motor cortex to prevent
dental acrylic from reaching. Finally, dental acrylic was applied
around the EMG- and IC connectors to finish up the surgery and
eventually residue of acrylic were removed. (Figure 9.12)

Part 5 - Post surgery
After completed surgery, rats were returned to their cages and moni-
tored the following days and given pain killers daily for 5 days. Rats
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Figure 9.11: a) Exposing the skull by retracting the skin and removing the
membrane b) Drilling holes in the skull for bone screws and
craniotomy c) Inserting bone screws and making the cran-
iotomy d) Measuring the exposed area to ensure fit of the elec-
trode e) Removing dura f) Inserting electrode

Figure 9.12: Finishing up the surgery, applying dental acrylic around the
connectors.

were allowed a minimum of two days recovery before recording be-
gan.
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9.5 Behavioral tasks
All rats included in the experiment were familiarized with a speed of
29 cm

s and had undergo treadmill training for two weeks. Each task
consisted of walking on the treadmill at 29 cm

s without inclination or
with 15o inclination. These tasks were chosen to examine any differ-
ences in modulation of IC or EMG signals of the rats. Each task was
completed four times with a break of 4 min in between to minimize
fatigue. Each recording session was ended with a steady recording
with the treadmill turned off.

9.6 Data acquisition
IC microstimulation
Microstumulation of the IC electrode array was performed two-three
days after successful surgery. The aim for stimulation was to identify
which channels corresponded to the hindlimb area in M1.

Each of the 16 channels was stimulated with a start current of 100
µ A and increased in steps of 100 µ A until a maximum of 500 µ A
was reached. Stimulation current was decreased with 50 µ A If any
response was observed to find the lowest threshold current necessary
to generate muscle contraction in the hindlimb. [Jensen et al., 2006;
Neafsey et al., 1986]

Applied current and responses, if any, were noted down and available
in Appendix E

Control recordings
A control recording of 30 s video at a speed of 29 cm

s without inclina-
tion was recorded for all rats prior to surgery. This step was taken to
identify possible alterations of normal gait due to the surgical proce-
dures.

IC recording
IC signals were recorded using a 16 channel fine-wire electrode ar-
ray located in the hindlimb area of motor cortex. The recordings
was made using an automatic threshold of RMS of the signal multi-
plied by 1.2. Waveforms of action potentials and corresponding time
stamps (snippets), when the automatically threshold was exceeded,
were sampled at 24.414 kHz and bandpass filtered (LP: 8000 Hz, HP:
800 Hz) and stored as snippets of spike activity.

EMG recording
EMG was recorded in a bipolar configuration from chronic implanted
electrodes in the biceps femoris and vastus lateralis in the right
hindlimb. The continuous EMG signal was sampled at 4882.8 Hz and
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bandpass filtered (LP: 2500 Hz, HP: 20 Hz).

Video recording
Video recordings of the rats were recorded with a Basler A602fc-2
high speed camera. Video recordings were made in order to synchro-
nize EMG and IC activity and analyzing kinematics of gait. Record-
ings were in addition used to compare with control recordings to de-
tect if any alteration of gait occurred due to surgery.

9.7 Storing data
Data from EMG-, IC-, synchronization signals and kinematics/an-
gles (described later) are stored in a MATLAB struct for easy access
(Figure 9.13).

Figure 9.13: The MATLAB structure for storing data for each rat in order to
ease the data import and analysis in MATLAB. Variable names
for each object are shown to the right.
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Signal processing and data

analysis
This chapter describe the steps of data processing, data analysis and
building a decoding model. Analysis of data are divided into three
different parts: video recordings, intracortical signals and EMG sig-
nals. Analysis of data aims to characterize recorded signals and pro-
cess features and information to feed as appropriate I/O for an ANN.

10.1 Artificial Neural Network strategy
An ANN is utilized for prediction of muscle activity on the basis of
neural activity recorded from M1. ANN in general is explained in
Appendix B. Initial configuration of the ANN is based on previous
studies by Sanchez and Principe [2007]; Wessberg et al. [2000]:

• Feedforward network

• Single hidden layer

• 15-20 neurons

• Powell-Beale conjugate gradient training algorithm

Due to the fact of a limited amount of hindlimb associated channels
(Appendix E), different approaches of ANN inputs will be tested. The
data sets (individual channels) will be divided into two categories be-
ing dependent on results from microstimulations:

• Group A: Channels associated with hindlimb

• Group B: Channels with visible modulations in PSTH’s

Evaluation and analysis of the data are performed before channels of
Group B are selected (described in section 10.2).

10.1.1 Analysis of video recordings
All video recordings from the behavioral tasks were digitized by track-
ing the coordinates of the attached markers (chapter 9). A total of
nine points were tracked (x1, x2, y1, y2, toe, heel, knee, hip, ref),
whereof the cage markers x1, x2, y1 and y2 were stationary points.
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Raw XY-coordinates for each point were saved and imported as KIN-
data to the MATLAB struct for the corresponding rat (Figure 9.13). If
the markers for any reasons were not visible, e.g. if the foot marker
was hidden under the back wall, a fictive point was chosen resulting
in clearly identifiable outliers when calculating angles. (Figure 10.1)

Heel angle

Knee Angle

Toe angle

Figure 10.1: Tracking the nine markers in Vicon Motus. Joint angles are pre-
sented in the figure.

10.1.1.1 Kinematics
The raw digitized XY-coordinates were imported into MATLAB and
joint angles for knee, heel and toe are calculated by generating seg-
ments from the XY-coordinates (Figure 10.1).

Angles were plotted and inspected for any characteristics revealing
unique parts of the gait cycle. By finding the peaks and valleys for
each angle indicated a lift-off time could be correlated with the peak
of the toe angle. This angle showed a consistent pattern with very
distinguishable peaks (Figure 10.2).

Inspection of different peaks within the toe angle and manually com-
paring with the video recordings, indicated a convergence between
lift-off and location of peaks.

Durations of gait cycles were calculated after retrieving all index-
values for lift-off. This duration, together with joint angles, were used
to set up criteria for inclusion and exclusion of gait cycles.

Location of toe-down was detected by finding the valleys within x-
coordinate of toe marker movement. X-coordinate of the toe marker
was subtracted from the x-coordinate of the reference marker in
order to normalize and make a smooth plot (Figure 10.3). Inspec-
tion of different peaks within the x-coordinate and manually com-
paring with the video recordings, indicated a convergence between
toe-down and location of valleys.
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Figure 10.2: A segment of the angular changes at the toe during a behav-
ioral task. Locations of angular peaks are detected and saved
in MATLAB. An example of angular outlier is shown.
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Figure 10.3: A segment of the x-coordinate changes of the toe marker during
a behavioral task. Locations of peaks are detected and saved in
MATLAB.

Criteria for good gait cycles
Defining a good gait cycle was important in order to have well char-
acterized signals as input to the ANN.

Duration time of the gait cycles varied accordingly to the behavior of
the rat on the treadmill. By manual inspection of the videos it was
found, getting stuck under the back wall resulted in fast short gait
cycles and standing still on the treadmill without moving returned a
very long gait cycle.

Mean gait duration was calculated for each rat for two different days
and mean duration was compared. The criteria for a good gait cycle
was decided to be 55 frames ±15 frames (1 frame = 10 ms).

Visual inspection of the angular range for the joint angles was done
by plotting cyclograms. The cyclograms revealed a range from 80o-
125o (knee) 0o-120o (toe) 20o-100o (heel) (Figure 10.4 and Figure 10.5).
Gait cycles with joint angles exceeding these ranges were excluded
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as input for the ANN. Index of gait cycles fulfilling the requirements
were saved for further analysis.
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Figure 10.4: Cyclogram illustrating the coordination between knee and hip
of the right hindlimb.
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Figure 10.5: Cyclogram illustrating the coordination between knee and toe
of the right hindlimb.

10.1.2 Preprocessing of intracortical signals
The interesting information, when analysing intracortical signals,
were the timing of the action potentials firing. An easy way to visual-
ize the firing of neurons were by inspecting a raster plot. The raster
plot substitute the time when the threshold are exceeded with a tick,
which is done for each event time.

Peri-stimulus time histograms were then made to retrieve an average
neural response centered around the event time. Timings from the
raster plot were summarized in windows (bins) of desired size.

PSTH’s of neural activity during gait cycles from lift-off to lift-off were
calculated for each session of behavioral tasks within a dynamic bin-
size ranging from 1% of gait durations from 40-70 samples accord-
ing to mean duration (bin-sizes ranging from 8.33 ms to 11.66 ms)
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due to normalization. PSTH’s were normalized in percentage of gait
cycle according to the mean duration. An example of PSTH’s calcu-
lated for each channel of the IC electrode are depicted in Figure 10.6
with a bin-size normalized in regard to percentage of gait cycle. Mean
values for each PSTH were subtracted in order to normalize the dia-
grams and omit high background activity.
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Figure 10.6: An overview of neural activity for all 16 IC channels. Normal-
ized to percentage of full gait cycle, according to the mean du-
ration of gait cycles. Channel 1, 2, 3, 4, 7 and 9 showed hind
limb responses according to micro stimulation.

An envelope was made by using a moving average filter with window
length of 5 samples. This envelope was plotted to see any tenden-
cies in modulation due to gait (Figure 10.7). The PSTH’s are used as
feature for input to the ANN.
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Figure 10.7: PSTH from channel 7 corresponding to hindlimb activity. An
envelope is plotted (red) to visualize tendencies in modulations
and toe down is marked with a vertical black line.
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10.1.3 Preprocessing of EMG signals
A few large spikes appear in the raw EMG-signal, for which reason
a band-pass filter (20-500 Hz) was applied to reduce spikes but still
maintain the shape of the EMG. Furthermore a band-stop filter was
applied (49.5-50.5 Hz). Signals from the two recording sites within
the two muscles were subtracted to retrieve the actual signal due to
the bipolar configuration. Full-wave rectification of the signals were
done before normalization in terms of maximal EMG value is calcu-
lated. An outline of muscle activity was visible for each muscle, vas-
tus lateralis in particular (Figure 10.8 and Figure 10.9). A small ini-
tial burst of VL seemed to be visible in the rectified signal and more
distinct in the envelope (Figure 10.11). This was in agreement with
findings of Gillis and Biewener [2001]. The envelope was made by a
5 Hz low-pass filter.
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Figure 10.8: Full-wave rectified EMG signal from biceps femoris. EMG sig-
nals are normalized according to maximal EMG value.
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Figure 10.9: Full-wave rectified EMG signal from vastus lateralis. EMG sig-
nals are normalized according to maximal EMG value.

Calculating the mean maximal EMG value for both muscles for each
behavioral task indicated a general pattern with vastus lateralis be-
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10.1. Artificial Neural Network strategy

ing the primary active muscle during gait, compared with biceps
femoris. Furthermore, mean maximal EMG value levels increased
significantly for biceps femoris in rat 1 for recordings with 15o incli-
nation compared with horizontal (Table 10.1 and Table 10.2).

Rat 1
Biceps femoris Vastus lateralis

Horizontal 0.0420 (SD ± 0.0055) 0.1087 (SD ± 0.0056)
Inclination 0.0693 (SD ± 0.0047) 0.1109 (SD ± 0.0060)

Table 10.1: Mean values of normalized EMG for rat 1.

Rat 2
Biceps femoris Vastus lateralis

Horizontal 0.0601 (SD ± 0.0055) 0.0395 (SD ± 0.0054)
Inclination 0.0697 (SD ± 0.0064) 0.0449 (SD ± 0.0037)

Table 10.2: Mean values of normalized EMG for rat 2.

Index-values for good gait cycles (subsubsection 10.1.1.1) were used
to extract corresponding EMG-activity from lift-off to lift-off (full-
wave rectified) for further conditioning. A low-pass filter (5 Hz But-
terworh) was applied to get an envelope of the EMG (Figure 10.10
and Figure 10.11). A downsampling of the envelope are performed
with a moving average filter with a window length of variable sam-
ples, since an ANN expects input and output of same length. The
mean of downsampled EMG was calculated and consisted of 100 val-
ues corresponding to the 100 PSTH bins. Mean EMG activity were
used as feature for output of the ANN. Input-output relation for the
ANN model is depicted in Figure 10.12.
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Figure 10.10: Envelope of EMG-signals for biceps femoris, fulfilling the re-
quirements for a good gait cycle from rat 1. Mean activity is
outlined in black.
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Figure 10.11: Envelope of EMG-signals for vastus lateralis, fulfilling the re-
quirements for a good gait cycle from rat 1. Mean activity is
outlined in black.

10.2 Artificial Neural Network
Designing a Neural Network is divided into the following steps below.

1. Collect data

2. Create the network

3. Configure the network

4. Initialize the weights and biases

5. Train the network
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Figure 10.12: Syncronized PSTH from hindlimb channel 7 with the corre-
sponding mean muscle activity of vastus lateralis.

These steps will be examined individually in this section by use of the
Neural Network Toolbox T M User’s Guide [Beale et al., 2012].

Step 1 - Collect data
Five days of recordings was performed on each rat with four se-
ssions for each task per day. Due to missing event detections from IC
recordings, several sessions had to be excluded and the total amount
of available sessions for data analysis is shown in Table 10.3.

Sessions available

Rat 1
Horizontal walking 16

Inclined walking 16
Rat 2

Horizontal walking 12
Inclined walking 7

Table 10.3: The table show the amount of sessions available for each rat.

Extraction of features (PSTH and EMG) used for the ANN are de-
scribed in subsection 10.1.2 and subsection 10.1.2. Normalization of
the data are critical when preparing the data, since the network will
not be better than the data it is trained on, due to lack of ability to
extrapolate beyond the input range.

Data are split in subsets of training data and validation data, in order
to train and monitor the performance. The ANN is configured to ran-
domly divide input data into training/validation sets of ratio 70/30.
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10. SIGNAL PROCESSING AND DATA ANALYSIS

Division of data
Channels for Group A are based on microstimulation responses of
the hindlimb, yielding:

• Rat 1 Group A: 1, 2, 3, 4, 7, 9

• Rat 2 Group A: 2, 3, 8

Due to the low amount of channels resulting in hindlimb responses
from micro stimulation, further investigation of the remaining chan-
nels were done. Distinct activation patterns were observed in some
channels which were consistent across days and sessions(Figure 10.13)
compared to other channels without hindlimb responses(Figure 10.14).
The channels with distinct activation patterns are all located within
the hindlimb area of the motor cortex documented by [Leergaard
et al., 2004], and are therefore included in the group B as potential
channels with hindlimb associations.

PSTH activity from rat 1 day 1 and 3 during horizontal walking of channel 11

0 20 40 60 80 100

−40

−20

0

20

40

60

80
Day 1

% of mean gait cycle

#
 s

p
ik

e
s

0 20 40 60 80 100

−40

−20

0

20

40

60

80
Day 3

% of mean gait cycle

#
 s

p
ik

e
s

Figure 10.13: PSTH activity from action potential firing from channel
11(Group B) in rat 1 day 1 and 3 during horizontal walking.

PSTH activity from rat 1 day 1 and 3 during horizontal walking of channel 10
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Figure 10.14: PSTH activity from action potential firing from channel 10 in
rat 1 day 1 and 3 during horizontal walking.

• Rat 1 Group B: 11,16

• Rat 2 Group B: 6,7,11

Different combinations of ANN models are created to evaluate and
find the best performing network, measured by the coefficient of de-
termination for predictions. A model will be created for each rat with
the following cases:
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10.2. Artificial Neural Network

• Case 1: Use 1 day of horizontal recordings to test model trained
on the remaining 3 days of horizontal.

• Case 2: Use 1 day of inclined recordings to test model trained
on the remaining 3 days of incline.

• Case 3: Use all days of horizontal to test model trained on all
days of inclined data.

• Case 4: Use 1 day of horizontal and incline to test model trained
on the remaining day.

Step 2-4 - Create, configure and initialize the network
A multilayer feedforward net (fit net) with 20 neurons in a single
hidden layers, able to map input/output relations, is used for the
problem. A Conjugate gradient backpropagation with Powell-Beale
restarts is used as training function with transfer function being tan-
sigmoid in the hidden layer and linear transfer function for the out-
put layer. Before training the weights of the network are initialized.

Figure 10.15: Configuration of the ANN.

Step 5 - Train the network
The artificial Neural Network is trained and re-initialized 10 times to
get the best R2 value as possible, since weights and bias changes for
every initialization. The ANN specifications used for prediction by
Wessberg et al. [2000] was trained with the data from the experiment,
where neural activity were used as input and EMG data as output

With the same ANN specifications used in Wessberg et al. [2000] the
data from the experiment was used for training the ANN model, with
neural activity as input and EMG activity as output. The ANN was
tested with input from group A, B and AB. The output was provided to
the ANN with EMG activity from biceps femoris and vastus lateralis
and the results are shown in Table 10.4.

The ANN results from Wessberg et al. [2000] showed R2 values rang-
ing from 0.2025-0.6241 which are high compared to the R2 values
from the prediction with the experimental data of 0.1020 for bi-
ceps femoris and 0.0002 for vastus lateralis (Figure 10.16 and Fig-
ure 10.16).

65



10. SIGNAL PROCESSING AND DATA ANALYSIS

Improvements of the ANN is therefore necessary in order to optimize
the performance. This can be accomplished by trying different con-
figurations of the ANN.

Biceps femoris Vastus lateralis
A 0.0795 0.0181
B 0.0268 0.0159
AB 0.0975 0.0197

Table 10.4: R2 values obtained by the model for different test groups and
different muscles.
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Figure 10.16: Prediction of biceps femoris from the AB experimental data
with settings from Wessberg et al. [2000].
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Figure 10.17: Prediction of vastus lateralis from the AB experimental data
with settings from Wessberg et al. [2000].
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Optimization of Artificial

Neural Network
Optimization of the ANN was needed in order to achieve a better
prediction of muscle activity from the data sets. Optimization of the
ANN model can be subdivided into the parts: optimization of config-
uration and parameters of the ANN, optimization of input-data and
optimization of output-data.

11.1 Strategy
To optimize the performance of the ANN network, a systematical ap-
proach was decided. Each part of the optimization (ANN configu-
ration, input and output) was evaluated individually before moving
on.

Results obtained by initial training (Table 10.4) were used as refer-
ences, in order to evaluate and test the performance of the ANN. Pre-
diction of a single muscle was chosen in order to simplify the opti-
mization process. Evaluating the results in Table 10.4 yield a better
prediction for biceps femoris regardless of division of data. The AB
group is chosen since the model gave the highest R2 values.

Re-initialization of the model was done 10 times for each change,
since the initial bias and weights determined the end results. The
best R2 value of the 10 iterations was saved as the final result

Initial configuration of the ANN:

• Group: AB
• Muscle: Biceps femoris
• Hidden layers: 1
• Neurons: 20
• Training function: Conjugate gradient backpropagation (Powell-

Beale restarts)

To test the final optimized configuration of the ANN and evaluate
capabilities to generalize across behavioral tasks, several cases were
tested:

• Case 1: Use 1 day of horizontal recordings to test model trained
on the remaining 3 days of horizontal.
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11. OPTIMIZATION OF ARTIFICIAL NEURAL NETWORK

• Case 2: Use 1 day of inclined recordings to test model trained
on the remaining 3 days of incline.

• Case 3: Use all days of horizontal to test model trained on all
days of inclined data.

• Case 4: Use 1 day of horizontal and incline to test model trained
on the remaining day.

11.1.1 Part 1 - optimization of ANN configuration
The easiest way to optimize the results was by tweaking the ANN con-
figuration. Adjusting the amount of neurons and number of hidden
layers seems obvious, since increasing these parameters would en-
able the ANN to encounter more complex data sets and enhance the
linearity of the data. [Beale et al., 2012; Sanchez and Principe, 2007]

Combinations of layers ranging from 1 to 5 and number of neurons
from 10 to 50 were tested. Results are shown in Table 11.1.

1 layer 2 layers 3 layers 4 layers 5 layers
10 neurons 0.1044 0.131 0.1148 0.1225 0.1084
20 neurons 0.1271 0.1229 0.1167 0.1147 0.1412
30 neurons 0.1384 0.1336 0.1307 0.1281 0.1263
40 neurons 0.1337 0.1370 0.1572 0.1542 0.1192
50 neurons 0.1224 0.1370 0.1264 0.1410 0.1440

Table 11.1: Performance of the model in R2 values with combinations of
hidden layers and neurons.

Highest R2 values were obtained with 3 hidden layers consisting of
40 neurons. Memory usage and training time increase significantly,
when changing amount of neurons and hidden layers. Results of this
configuration is seen in Figure 11.1.
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Figure 11.1: Prediction of biceps femoris from the AB experimental data
with 3 hidden layers and 40 neurons.

The last essential parameter of the ANN was the training function.
According to several studies (Sanchez and Principe [2007]; Wessberg
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et al. [2000]) backpropagation algorithms were recommended. Mat-
lab offer an extensive list of backpropagation training algorithms, of
which several were chosen and tested (Table 11.2). Different train-
ing functions could be used for the ANN and varies in computation
speed, memory usage and efficiency depending on size of data sets.
Choosing a single training function could therefore be difficult and
must be adjusted according to desired goal (optimal speed, memory
usage or efficiency). [Beale et al., 2012]

R2

Levenberg-Marquardt backpropagation 0.2237
Conjugate gradient backpropagation (Powell-Beale restarts) 0.1572
Bayesian Regulation backpropagation 0.1466
RPROP backpropagation 0.1396
Scaled conjugate gradient backpropagation 0.1352
One step secant backpropagation 0.1252
Gradient descent w/momentum & adaptive lr backpropagation 0.0984
Gradient descent backpropagation 0.0416

Table 11.2: R2 values obtained by the model for different training algo-
rithms.

The trade-off for this value was training speed being >3 hours. The
four best performing algorithms were kept for further optimization.
Results from Bayesian Regulation backpropagation, Levenberg Mar-
quardt backpropagation, Conjugate gradient backpropagation and
RPROP backpropagation are shown in Figure 11.2, Figure 11.3, Fig-
ure 11.1 and Figure 11.4.
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Figure 11.2: Prediction of biceps femoris from the AB experimental data
with 3 hidden layers, 40 neurons and Bayesian Regulation
backpropagation training algorithm.
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Figure 11.3: Prediction of biceps femoris from the AB experimental data
with 3 hidden layers, 40 neurons and Levenberg-Marquardt
backpropagation training algorithm.
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Figure 11.4: Prediction of biceps femoris from the AB experimental data
with 3 hidden layers, 40 neurons and RPROP backpropagation
training algorithm.

Highlight

• Group: AB
• Muscle: Biceps femoris
• Hidden layers: 3
• Neurons: 40
• Training function(s):

– Bayesian Regulation backpropagation (BR)

– Levenberg-Marquardt backpropagation (LM)

– RPROP backpropagation (NRP)

– Conjugate gradient backpropagation (CGB)

The standard ANN training function, and recommended first choice
was LM which had good performance and generally the fastest train-
ing function with a low mean square error, though with a high mem-
ory usage. [Beale et al., 2012]
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11.1.2 Part 2 - optimization of input data
Next step included optimization of the input data, which for the ANN
model was PSTH’s. Shape of the PSTH’s were dependent on the bin-
size of the plots. Changing the size, and thereby resolution, could
alter possible modulation patterns visible in the PSTH. Bin-sizes of
0.5%, 1%, 2% and 5% were tested (Table 11.3).

NRP CGB LM BR
0.5% 0.1818 0.0825 0.1188 -

1% 0.1396 0.1572 0.2237 0.1466
2% 0.1925 0.1950 0.3028 -
5% 0.3044 0.2825 0.5774 -

Table 11.3: R2 values obtained by the model for different bin-sizes and
training functions.

The BR function does not use an early stop criteria but Bayesian regu-
larization, giving a better generalization performance. Since the val-
idation data were not separated from the training data and all data
were analyzed, a heavy computation time was needed due to the
large amount of iterations (>8 hours) [Beale et al., 2012]. Therefore
the BR function was discarded and only trained with a bin-size of
0.5%. LM was chosen as the optimal choice with a bin-size of 5%.
Results are seen in Figure 11.5.
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Figure 11.5: Prediction of biceps femoris from the AB experimental data
with 3 hidden layers, 40 neurons, bin-size of 5% and LM train-
ing algorithm.

Beside the bin-size, inclusion criteria for gait durations might have
affected the outcome. Different durations were tested in order to
evaluate the affect of gait durations. Beside the original range of 0.4 s
to 0.7 s, 0.45 s to 0.65 s and 0.50 s to 0.60 s were tested (Table 11.4).

The results from testing different gait durations did not reveal any
advantages of changing the original duration interval. Further con-
ditioning of the input PSTH was filtering with a moving average filter
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R2

50-60 0.3849
45-65 0.3613
40-70 0.5774

Table 11.4: R2 values obtained by adjusting criteria for gait durations in-
cluded.

of different spans. Strong fluctuations were eliminated or reduced by
filtering the PSTH. Spans of 5, 10, 15 and 20 samples were tested. In
addition a time-delay of the EMG signal existed, due to the fact that
neural activity were recorded and occur before any effects were seen
in the EMG. Different shifts of the EMG were for that reason tested
together with smoothing of the signal (Table 11.5).

0 samples 5 samples 10 samples 15 samples 20 samples
0% 0.5774 0.7274 0.6583 0.5943 0.5881
5% 0.4351 0.6281 0.5501 0.5260 0.6022

10% 0.3863 0.6406 0.6493 0.5970 0.5715
15% 0.3699 0.5829 0.5885 0.4858 0.5906

Table 11.5: R2 values obtained with different spans of a moving average fil-
ter and shifting of the EMG.

Reducing the time-delay between neural activity and EMG did not
seem to have a positive effect for the prediction, if no smoothing was
applied. Performance at 5 sample window stood out and results are
shown in Figure 11.6.
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Figure 11.6: Prediction of biceps femoris from the AB experimental data
with 3 hidden layers, 40 neurons, bin-size of 5%, LM training
algorithm and a moving average filter with 5 samples span.
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The optimal configuration so far:

• Group: AB
• Muscle: Biceps femoris
• Hidden layers: 3
• Neurons: 40
• Training function: Levenberg-Marquardt backpropagation (LM)
• Bin-size: 5%
• Shifting: 0%
• Moving average span: 5 samples

11.1.3 Part 3 - optimization of output data
After an optimization of input data, the last step was optimization
of the output data. Using FES in practice rely on the ability to de-
tect whenever the muscles were to be stimulated or not. A so-called
on/off curve would provide a signal to determine when to stimulate.

Activation pattern for biceps femoris was made in Matlab, by finding
the peak of contraction and include 3 samples before and 7 samples
after (Figure 11.7).

0 50 100 150 200 250 300 350
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Biceps femoris

Sixteen gait cycles [20 sample each]

M
a
x
im

a
l 
E

M
G

 v
a
lu

e
 [
%

]

 

 

Actual EMG

On/off curve

Figure 11.7: The on/off curve found by the peak of contraction.

Prediction of original EMG were then compared against the on/off
curve (Table 11.6).

on/off curve Original EMG
Optimal configuration found 0.3993 0.7274

Table 11.6: R2 values obtained with optimal configuration found for input
data, while testing original EMG compared with an on/off curve.
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Figure 11.8: Prediction of on/off curve for biceps femoris from the AB exper-
imental data with 3 hidden layers, 40 neurons, bin-size of 5%,
LM training algorithm and a moving average filter with 5 sam-
ples span.

11.2 Summary of optimization
Initial configuration adapted from Wessberg et al. [2000] indicated
a need for optimization in order to encounter prediction of EMG
activity on the basis of IC signals. The evaluation of ANN parame-
ters and input/output data revealed a room for improvements. Var-
ious parameters had been adjusted in order to find the best combi-
nation of settings to configure the ANN. Stepwise improvements of
the model is shown in Table 11.7 with an initial R2 = 0.0975 and final
R2 = 0.7274.

Steps of optimization R2

Initial configuration 0.0975
Increasing neurons to 40 0.1337
Increasing hidden layers to 3 0.1572
Using LM training algorithm 0.2237
Increasing bin-size to 5% 0.5774
Adding shift of 0% 0.5774
Smoothing signal with span of 5 samples 0.7274

Table 11.7: Summary of optimization process.
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Results

Optimized configuration of ANN and input/output data from rat 1
described in chapter 11 are applied to following cases:

• Case 1: Use 1 day of horizontal to test the model trained on the
3 days of horizontal.

• Case 2: Use 1 day of inclined to test the model trained on the 3
days of inclined.

• Case 3: Use 4 days of horizontal to test the model trained on 4
days of inclined.

• Case 4: Use 1 day of horizontal and inclined to test model
trained on the 3 days of horizontal and inclined.

Case 1
Results from the AAN trained solely with data from 3 days of horizon-
tal and tested with 1 day for biceps femoris (Figure 12.1) and vastus
lateralis (Figure 12.2). A gross prediction of EMG for both muscles
are noticeable but high fluctuations are represented during the shift
between phases.
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Figure 12.1: Actual (blue) and predicted (red) EMG activity for biceps
femoris, based on a data set consisting of horizontal treadmill
walking.
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Figure 12.2: Actual (blue) and predicted (red) EMG activity for vastus lat-
eralis, based on a data set consisting of horizontal treadmill
walking.

Case 2
Results from the AAN trained solely with data from 3 days of inclined
and tested with 1 day for biceps femoris (Figure 12.3) and vastus lat-
eralis (Figure 12.4). A gross prediction of biceps femoris is notice-
able but high fluctuations are represented during the muscles pas-
sive phase.
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Figure 12.3: Actual (blue) and predicted (red) EMG activity for biceps
femoris, based on a data set consisting of treadmill walking
with incline.
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Figure 12.4: Actual (blue) and predicted (red) EMG activity for vastus later-
alis, based on a data set consisting of treadmill walking with
incline.

Case 3
Results from the AAN trained with data from 4 days of horizontal and
tested with 4 days of inclined for rat 1 for biceps femoris (Figure 12.5)
and vastus lateralis (Figure 12.6). Results from rat 2 trained on 2 days
of horizontal and tested on 1 day of inclined for biceps femoris and
vastus lateralis (Figure 12.7 and Figure 12.8).
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Figure 12.5: Actual (blue) and predicted (red) EMG activity for biceps
femoris in rat 1, based on a data set consisting of horizontal
treadmill walking tested on inclined data.
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Figure 12.6: Actual (blue) and predicted (red) EMG activity for vastus later-
alis in rat 1, based on a data set consisting of horizontal tread-
mill walking tested on inclined data.
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Figure 12.7: Actual (blue) and predicted (red) EMG activity for biceps
femoris in rat 2, based on a data set consisting of horizontal
treadmill walking tested on inclined data.
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Figure 12.8: Actual (blue) and predicted (red) EMG activity for vastus later-
alis in rat 2, based on a data set consisting of horizontal tread-
mill walking tested on inclined data.

Case 4
Results from the AAN trained with data from 3 days of horizontal and
inclined and tested with 1 day of horizontal and inclined for rat 1 for
biceps femoris (Figure 12.9) and vastus lateralis (Figure 12.10). Re-
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sults from rat 2 trained on 10 sessions of horizontal and 5 sessions of
inclined and tested on 2 sessions of horizontal and 2 sessions of in-
clined data for biceps femoris and vastus lateralis (Figure 12.11 and
Figure 12.12).
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Figure 12.9: Actual (blue) and predicted (red) EMG activity for biceps
femoris in rat 1, based on a data set consisting of 3 full days
of data and tested on 1 day of data.
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Figure 12.10: Actual (blue) and predicted (red) EMG activity for vastus lat-
eralis in rat 1, based on a data set consisting of 3 full days of
data and tested on 1 day of data.
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Figure 12.11: Actual (blue) and predicted (red) EMG activity for biceps
femoris in rat 2, based on a data set consisting of 15 sessions
(10 horizontal/5 inclined) of data and tested on 4 sessions (2
horizontal/2 inclined) of data.
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Figure 12.12: Actual (blue) and predicted (red) EMG activity for vastus lat-
eralis in rat 2, based on a data set consisting of 15 sessions (10
horizontal/5 inclined) of data and tested on 4 sessions (2 hor-
izontal/2 inclined) of data.
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Discussion

The ANN models created based on the experimental data were used
to predict EMG patterns of locomotion from modulations in neural
activity recorded in M1 of rats. Results of kinematics and modula-
tion in neural activity during locomotion were expected due to sim-
ilar findings in previous animal studies (Gillis and Biewener [2001];
Rossignol [1996]).

Though, limited knowledge and studies exist for evaluating restora-
tion of locomotion by means of BMI applications (Fitzsimmons et al.
[2009]; Song et al. [2009]), and therefore it was uncertain if neural
activity from M1 in rats could be sufficient to predict EMG activity
of target muscles. The findings of kinematics and visible modulation
patterns of several PSTH’s resemble previous findings to an extent,
so we believe that research and focus could improve results in future
BMI applications.

Improving prediction of the ANN
Performance of the ANN model rely on the inputs and outputs used
for training. Quality of the inputs could be enhanced during several
steps in the process: surgery, recordings and preparation of data.

The optimization process
In order to achieve prediction accuracies similar to those found by
Wessberg et al. [2000], an optimization process of the ANN was per-
formed. The chosen optimization approach gradually increased the
prediction accuracy of the ANN. It is uncertain if the order and se-
quence of optimization steps had effect on the final predictions.

Surgery
The implanted electrode array in M1 gave a low amount of hindlimb
responses from microstimulation, restricting the amount of hindlimb
associated inputs and accuracy of the ANN. Leergaard et al. [2004]
presented an adapted mapping of the rat brain on the basis of pre-
vious maps, with a fairly small hindlimb area. Individual anatomy
of each rat could be a reason for variations and the depth of 1.7
mm should be adjusted accordingly. In a study predicting walk-
ing in monkeys by Fitzsimmons et al. [2009], neural activity from 60
neurons were needed for a sufficient prediction of constant walking
which reveal the need of recording from more neurons.
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13. DISCUSSION

Behavior of the rats was not monitored after surgery, where the rats
might have bumped into edges of the cage and pushed the electrode
further down or destroying neurons.

Recordings
Time stamps of IC spike activity were recorded using automatic
thresholding. This threshold was set for each day of recording and
therefore probably not the same. If the rat was not calm while setting
the threshold, neural activity would force the threshold higher, op-
pressing information. One could avoid this by recording continuous
data and manually do thresholding afterwards, leaving all informa-
tion intact.

The used configuration of recording multi neurons could possibly
decrease the characteristics of gait, due to the fact that a majority
of channels were not associated with hindlimb activity. Microstimu-
lations were performed before and after the experiment and showed
different results. This give rise to uncertainty about the PSTH’s and
their reliability since the time of change is unknown. In addition, a
low number of channels associated with hindlimb activity could have
limited the performance of the ANN and oppress any clear modula-
tion pattern in the neural activity.

Selection of speed for behavioral tasks can alter the gait cycle in rats,
since stance phase decrease as result of increase in speed, whereas
swing and stance in humans are stable around 40%/60%. Choosing
a wrong speed could possible reduce the comparability between rats
and humans.

A gait cycle duration ranging from 0.4 s to 0.7 s could be too much
according to variations in length and ratio of swing and stand phase.
Biceps femoris and vastus lateralis have shown to be active from the
end of swing phase and throughout approximately 80 % of stance
phase. This shift could have eliminated or reduced characteristics
in the signals since signals are summed after normalization. Choice
of speed have an unknown effect on fatigue and how it impact the
characteristics of neural activity and EMG signal. Distinct changes
might be unseen due to averaging signals.

Preparation of data
The total amount of data were recorded over five days but reduced
due to exclusion of two rats and missing event detections. A larger
amount of data with more days of recording and more rats would
provide the ANN more information and cover a larger span of the
input range.

Previous studies have stated an uncertainty in kinematics due to un-
stable markers because of skin movements. [Back and Clayton, 2000]

Skin movement could have affected the final outcome due to er-
rors in digitizing markers and day to day variability in attaching the
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markers. Especially the knee markers seemed to be influenced by
skin movements, yielding a greater variation in knee angle. Sugges-
tions by Fitzsimmons et al. [2009]; Gillis and Biewener [2001]; Thota
et al. [2005] implied permanent ink or tattooing of the rats. Another
approach to lower variability is to let the same experimenter apply
markers.

A common process of preparing IC data is spike sorting. This option
could have been applied if the recordings were continuously stored
and reveal activity of single neurons. Spike sorting of the neural data
could maybe indicate a more distinct pattern of activity during gait.

Performance of the ANN
The results from rat 1 generally showed a better prediction accuracy
and a more distinctive prediction shape of the actual EMG signal for
biceps femoris compared to vastus lateralis. This could maybe be
explained by the fact that the optimization process of the ANN was
based on biceps femoris.

The highest prediction accuracies were found in Case 4 for rat 1 with
R2 of 0.4146 for biceps femoris and Case 3 for rat 1 with R2 of 0.1604
for vastus lateralis. Compared to Case 1 and 2 these better predic-
tions are probably caused duo to the larger amount of data provided
for the ANN in these cases. Wessberg et al. [2000] showed R2 values
ranging from 0.2025-0.6241 for muscle prediction using ANN which
make the R2 value from biceps femoris found in Case 4 for rat 1 ac-
ceptable.

Fast fluctuations are observed in most of the predictions, and could
be caused by extrapolation occurring if the training model receive
unknown test data, this could occur while training with horizontal
waking and testing using data from inclined walking.

Case 1 and 2 were not calculated for rat 2 due to the low amount of
sessions caused by missing event detections from IC recordings. The
results from rat 2 in Case 3 and 4 showed low R2 values compared to
rat 1, which again probably are caused by the lower amount of data
provided to the ANN. If the same amount of sessions were available
for both rats it would have been possible to compare the prediction
results between rats.

Scaling problems in Case 3 could yield an issue in regards to general-
izing a prediction model, being unable to generalize between differ-
ent tasks and environments. Day to day variability of IC recordings
could change and was observed by results of microstimulation (Ap-
pendix E). [Song et al., 2009]

Similar findings were shown by Fitzsimmons et al. [2009] who com-
pared backward trained models with forward walking and reverse.
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13. DISCUSSION

Future prospects
Involving obstacles could probably invoke a clearer neural activity
pattern, since M1 is main responsible for gait associated with visual
demands. A clearer activity pattern could enhance the correlation
between neural activity and muscle activity, resulting in a better pre-
diction accuracy of the ANN.

Additional data for each rat could give a better generalized perfor-
mance of the ANN. A larger amount of neural data could be obtained
from each individual rat by implanting tetrodes. Using tetrodes
would increase the number of recording sites and quantity of neu-
ral information. After establishing a robust ANN model with high
quality inputs, further inclusion of additional muscles would allow
complex movements to be carried out.

If a robust ANN is working well in offline mode, the next step would
be to implement it in real-time BMI applications for restoring loco-
motion of SCI patients with FES.
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Conclusion

Spinal cord injury and related complications with reduced mobility
have a great impact on quality of life. Restoration and aiding of gait
control using BMI is still an unexplored and unevaluated area with
only few studies and knowledge about possibilities.

An experiment has been conduced during the project period, in
order to obtain neural data from M1 and EMG signals from biceps
femoris and vastus lateralis in healthy rats for use in an ANN. An opti-
mization process of the ANN was performed by trying different con-
figurations and parameters of the ANN together with optimization
of the data provided. Through this optimization process the perfor-
mance accuracy of R2 was increased from 0.0975 to 0.7274.

The predictions from Case 1 and Case 2 did not follow the activa-
tion pattern of the actual EMG pattern and had corresponding low
prediction accuracies. Case 3 showed amplitude scale problems
compared with actual EMG, but demonstrated visible activation pat-
terns with R2 = 0.2632 and R2 = 0.1604 for biceps femoris and vas-
tus lateralis from rat 1, respectively. The results from rat 1 in Case 4
showed better prediction results, and especially the prediction of bi-
ceps femoris showed a high accuracy of R2 = 0.4146 which lies within
the range of the R2 = 0.2025-0.6241 found by [Wessberg et al., 2000].
The predictions accuracies from rat 2 in Case 3 and 4 were low due
to the limited amount of data provided to the ANN. The best predic-
tion results were achieved with data from 4 days used for training,
indicatings that more data are needed in order to secure good pre-
dictions.

Further advancement and usage of prediction for FES control signals
need further attention and evaluation, since predictions are rough
and possess suddenly fluctuations. Muscle contractions should be
gradually and smooth, without sudden fluctuations as seen in the
results. Predictions did a better job defining beginning and end of
the muscle activation, which with improvements could be used for
predicting when and when not to stimulate with FES. Possibilities
of ANN optimization and fine tuning were demonstrated and im-
plied individual adjustments are necessary for individual data sets
and BMI applications.

Evaluating an ANN as a decoding model in pursuing restoration of
gait, for instance by interaction with BMI applications, showed po-
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14. CONCLUSION

tential results and, by a refinement could lead to better predictions
and bring restoration of gait one step closer to realization
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A
Northwestern University,

Chicago

The 3rd semester of the master education in medical systems took
place as graduate students at Northwestern University (NWU), Chi-
cago, as interns in the Miller Lab (the Miller laboratory of Limb
Motor Control). Additional, in cooperation with the lab of Matthew
Tresch, other graduate students and Rehabilitation Institute of Chi-
cago (RIC).

We took part in the start-up phase of a project evaluating a strat-
egy for restoring motor function following paralysis, together with
a lab colleague. Experiments were conducted on rats, with the long
term prospectives of increasing quality of life for spinal cord injured
patients, by simplifying control of limb movements by using func-
tional electrical stimulation.

The intended goal was to return to Denmark with pilot data and fur-
ther work planned for easy transition from 3rd to 4th semester. Al-
though this was not the case due to complications, we returned with
practical experience, knowledge and experimental ideas. This out-
come forced us to start from scratch, with a new experiment based
on ideas.

A.1 Practical experience
Being a part of the new project implied experimental work and rat
surgeries. Before any experiments we attended a course with the-
oretical and practical exercises dealing with handling, care and eu-
thanasia of rats, mice and non-human primates. A few acute and
chronic surgeries were seen with procedures for sterile surgery, im-
planting intracortical (IC) electrodes, stimulation and recordings from
single wire electrodes, monitoring of vital signs and recovery, before
these task where performed several times without supervision.

A Tucker-Davies Technologies (TDT) system was set up for record-
ings and controllable artificial neural activity were used to test the
system. Neural activity from implanted rats were recorded while
walking around in their cages, and later on while running on a tread-
mill.
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Furthermore, we observed dissection of the rat hindlimb and im-
plantation of EMG electrodes in several muscles. EMG signals were
tested while the rat walked on a treadmill with markers, which were
captured by a VICON motion capture system.

A.2 Complications
We did not return with the desired data as expected due to compli-
cations. Complications in the surgery or recovery phase resulted in
euthanasia of rats and postponing of system test with the TDT and
VICON recording. EMG implantation on a rat went well and good
signals were recorded while walking on a treadmill. Unfortunately,
the rat teared out the connecter attached to the back a few days after
initial EMG recordings.

A.3 Additional experience
Additional experience were gained during the stay at NWU. Several
non-human primate experiments focussing on hand grasp were ob-
served and assistance provided by means of regulating anesthesia,
inserting electrodes and noting down progress during the experi-
ments. Furthermore, we took part of a 24 hours terminal non-human
primate experiment assisting monitoring of vital signs etc.

By observing and visiting other laboratories at NWU we obtained in-
sight in other areas of neuroscience experiments.

Experience of manufacturing tetrodes was obtained by learning from
a graduate student, who used these refined electrode for recording.
The advantage of tetrodes is the four-site recording possibilities and
adjustment of insertion depth in the brain. Further distinction and
spike sorting becomes easier and adjustment of depth can encounter
possible cell death.

General knowledge about current research in rehabilitation and neu-
roscience were obtained through talks and presentations at RIC and
attendance at the annual Society for Neuroscience conference.

A.4 Summary
Due to complications with animal experiments and recordings dur-
ing our stay, we did not accomplish final recordings with combined
IC signals from primary motor cortex, EMG from hindlimb muscles
and VICON data, while running on a treadmill.

Although we did not return with pilot data for immediately process-
ing and analysis on our 4th semester, we gained valuable experimen-
tal ideas and experience which have been beneficial for making new
experiments. Familiarity with the TDT system, handling and exper-
iments with animals, surgery procedures for implanting electrodes
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and motion capture recordings have been valuable knowledge for 4th
semester.
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Artificial Neural Network

An artificial neural network (ANN) requires no physical insight of the
system investigated and is therefore suitable for many applications.
The ANN is robust, easy to implement and are able to find accurate
approximations relations between input and output which can be
used for prediction. [Sanchez and Principe, 2007]

The ANN is organized in simple elements, which can be connected to
expand computational performance. Neurons are the base elements
of a network (Figure B.1) and consists of inputs, weights and a trans-
fer function. [Beale et al., 2012] The input P can either be recorded

Figure B.1: Set up of a simple neuron. [Beale et al., 2012]

signals or be signals from other neurons, which is sent into the neu-
ron where weights are multiplied with the input P. A constant bias
weight is added before sending the net input into a transfer function.
The transfer function can have various forms and the most common
ones are linear, log-sigmoid or tan-sigmoid. [Beale et al., 2012]

Standard configuration of ANN is a two layer network consisting of 10
neurons which is powerful. But if the result is not sufficient, increas-
ing the number of neurons and hidden layers containing nonlinear
function improve (multilayer network - Figure B.2) the flexibility of
the network and allow the network to encounter complex nonlinear
relationships. [Beale et al., 2012]

but by increasing the amount of neurons more computation time is
needed and overfitting has to be taken into account. [Beale et al.,
2012]

Training, validation and test
Training of the network is necessary after ended configuration. To
ensure good performance of the model it is important to cover as
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Figure B.2: Structure of a three layered ANN model [Beale et al., 2012]

much of the expected input-range in the training data, since ANNs
are not good at extrapolating. Normalization of input- and output
data are often carried out to improve performance of training. [Beale
et al., 2012]

Input data are divided into two different groups in order to evaluate
and train the network. A training group is used to update the weights
and bias. The validation group is comparing the performance by
mean square error and detection of over fitting and a test group with
unused data. The ANN is created from the best performing network
and belonging weights and bias chosen upon the lowest error from
validation, and is ready to be taken into use and tested on new data.
[Beale et al., 2012]

Different training functions can be used for the ANN and varies in
computation speed, memory usage and efficiency depending on size
of data sets. Choosing a single training function can therefore be
difficult and must be chosen from the complexity of the problem
and according to desired goal (optimal speed, memory usage or effi-
ciency). [Beale et al., 2012]

Backpropagation is an often used training method. The method use
the inputs and targets until a function can be approximated for pre-
dicting the output vectors from the input vectors. First, the training
method compute the propagation and the error signal of the system.
The error signal is multiplied with the weights of the network back-
wards in the system and finally the output of the network is com-
puted forwards again. A well trained backpropagation network is
able to generalize and produce a good output result when provided
with unknown test data. [Beale et al., 2012; Hagan et al., 1996]
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Intracortical electrode

manufacturing

This appendix describes the process of manufacturing a 4x4 (16)
intracortical electrode array for implantation in motor cortex of the
rats for assessment of intracortical signals.

List of materials

• 2 x board-to-board-connector with 2x4 rows, 2mm pitch and
dimensions of (4.4 mm x 8 mm x 4 mm) (Harwin M22-7140442)

• Teflon Insulated tungsten wire (100 µm in coated diameter, 50
µm in bare diameter), length of 50 mm

• Custom made mold with 4x4 holes of 2/3 mm in between.
• Dental acrylic (Heraeus Kulzer Paladur)
• Superglue
• Microscope
• Tweezer
• Wooden sticks
• Soldering iron and tin solder
• Candle and lighter
• 4 pin male-to-male array
• 16 x crocodile clamps
• Acupuncture needle
• Tape
• Scissor
• Paper towel with distilled water
• Scalpel
• Frame/stand
• Yellow paper and graph paper
• Voltmeter

Step 1 - Preparation of workspace
A yellow piece of paper is fixated above a graph paper on the work-
space table. The Yellow paper is used as background for storing elec-
trode wires and easy visibility. The microscope is adjusted and fo-
cused for proper handling. (Figure C.1)
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Figure C.1: The workspace with a fixated piece of yellow paper and graph
paper.

Step 2 - Preparation of wires
The tungsten wire is handled with a tweezer and cut into 16 pieces,
with a length of 5 cm each, measured on the graph paper. The candle
is lit and used to remove insulation in the end of the wires. Paper tow-
els with distilled water are used to remove possible dirt and improve
contact.

Step 3 - Attaching wires to connector
A board-to-board-connector is fixated in the frame and wires are at-
tached by soldering to the pins. Each wire is firmly stretched after
attachment to check robustness. Connection between uninsulated
wire and connecter is tested with a voltmeter when all wires are at-
tached to the connector. A 4 pin male-to-male array is inserted in
the board-to-board-connector to make testing easy. The uninsu-
lated ends are cut off after testing and step 3 is repeated for the other
board-to-board-connector and the two connecters are put together
with superglue. (Figure C.1)

Step 4 - Attaching wires to connector
The mold for arranging the wires are fixated in the stand together
with the connector. A piece of tape is put over the holes in the mold
and pierced with a puncture needle, preventing the dental acrylic to
stick to the mold later. Each wire is put into corresponding holes in
the mold with a tweezer to form the 4x4 shape and a crocodile clamp
is attached in the end to straighten and make tension. This proce-
dure can be done with/without use of a microscope. (Figure C.2)
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Figure C.2: The wires are guided through the holes in the mould and a
clamp attached to the end to hold the wires in place.

Step 5 - Applying dental acrylic base
Dental acrylic is mixed under a fume hood to a desired consistence
and applied to the electrode wires and connector until fully covered.
Wooden sticks are attached to the side of the connector before cut-
ting the wires. Unnecessary acrylic is removed with a scalpel. The
finished IC electrode array is sent to be laser cut. (Figure C.3)

Figure C.3: Applying dental acrylic in layers to cover the wires and adding
wooden sticks before laser-cutting.
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EMG electrode design and

manufacturing
This appendix describes the process of manufacturing a bipolar EMG
electrode for implantation in biceps femoris and vastus lateralis of
the rats for assessment of EMG signals.

List of materials
• Multi-stranded Teflon coated annealed stainless steel wire (A-M

systems, Catalog Number 793200) Bare diameter: 0.0762 mm,
coated diameter: 0.14 mm

• Cooner wire AS631, coated diameter 0.26 mm
• Board-to-board-connector with 2x4 rows, 2mm pitch and di-

mensions of (4.4 mm x 8 mm x 4 mm) (Harwin M22-7140442)
• Microscope
• Ruler
• Scissor
• Frame/stand
• Soldering iron and special solder for stainless steel
• Dental acrylic (Heraeus Kulzer Paladur)
• Voltmeter
• Needle

Step 1 - Preparation of workspace
A yellow piece of paper is fixated above a graph paper on the work-
space table. The Yellow paper is used as background for storing elec-
trode wires and easy visibility. The microscope is adjusted and fo-
cused for proper handling.

Step 2 - Preparation of wires
The electrode exists of two multi-stranded wires each with a length
of 68 cm. On each wire two left-handed overhand knots and a right-
handed overhand knot are made on top of each other 28 cm from the
ends of the wires (Figure D.1). A de-isolation of 2 mm are made with
a scalpel 1 mm and 5 mm after the knots on the remaining part of 6
cm under a microscope. Two pieces of ground wire (5 cm and 10 cm)
are cut off and de-isolated in both ends.
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Figure D.1: A figure of the EMG electrode which show the dimensions and
the de-isolated parts of the electrode which are marked with red
color.

Step 3 - Soldering
The multi-stranded wire and ground wires are soldered to a board-
to-board-connector and the connection tested with a voltmeter. When
connection is ensured, dental acrylic is applied to the socket to se-
cure from physical stress.

Figure D.2: The picture show a manufactured EMG electrode ready to be im-
plemented.

108



A
P

P
E

N
D

I
X

E
Results from microstimulation

Microstimulation was done twice for each rat during the time of ex-
periment. First stimulation was made a few days after surgery, allow-
ing the rat to recover, and a second stimulation after ended experi-
ments to see possible changes and causes of changed signals.

Responses of the micro stimulation were divided into categories of
hindlimb response, other response and no response.
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Figure E.1: Rat 1: Responses from microstimulation on day 1 (A) and day
2 (B). Green represents responses in hindlimb area, Yellow other
responses and Red no response.
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Figure E.2: Rat 2: Responses from microstimulation on day 1 (A) and day
2 (B). Green represents responses in hindlimb area, Yellow other
responses and Red no response.
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