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SYNOPSIS:
In this Master of Science Thesis
we investigate a number of mete-
orological variables and their in-
fluence on the daily incidences of
cardiovascular diseases (CVDs)
in Denmark along with their
lagged effect, since earlier studies
have shown that the occurrence
of incident CVDs varies accord-
ing to time of year with the high-
est daily rates of incident CVDs
during winter. The thesis is
divided into three parts. The
first part contains materials and
methods, including a descrip-
tion of CVDs and data sources
along with validation of diag-
noses and an analysis strategy.
The second part contains results
of the analyses conducted by
using generalized additive mo-
dels (GAMs) and dynamic lin-
ear models (DLMs). The third
part of the thesis consists of the
mathematical theory used for the
analyses. Results using GAMs
show that temperature has a sig-
nificant influence on CVDs, but
the results are not unequivocally
saying that temperature has the
highest impact on the daily in-
cidences of CVDs in the win-
ter. Results using DLMs give a
more consistent result which in-
dicates that high temperatures
have a negative effect on the
daily counts of incident CVDs in
Denmark.
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Reading instructions

References throughout the report will be presented according to the
Vancouver method.
We always refers to the project group. Figures, tables, mathematical
definitions, etc. are enumerated in reference to the chapter i.e. the
first figure in chapter 7 has number 7.1, the second has number 7.2
etc.
The project is divided into three parts: a materials and methods, a
results and a theory part. The materials and methods part contains
a description of the materials and methods used in the thesis; here
data sources, a short presentation of cardiovascular diseases, valida-
tion of the diagnoses used for the analysis, and an analysis strategy
are given. The second part contains results of the analyses using
generalized additive models and dynamic linear models and a syn-
thesis containing a conclusion, a discussion of the materials, method
and the results and further perspectives. The last part of the project
contains the mathematical theory used through the project.
Mathematical notation and symbols along with further results are
assembled in appendices in the end of the project. All illustrations
are available at http://homes.student.aau.dk/cbisga07/, also the
ones not shown in the thesis.
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Dansk Resumé

I 2008 skyldtes ca. 30% af alle dødsfald i verden kardiovaskulære
sygdomme. Kardiovaskulære sygdomme er en gruppe sygdomme, der
omhandler hjertet eller blodkarrene og inkluderer bl.a. akut koronar
syndrom, apopleksi, venøs tromboembolisme og atrieflimmer. I
forbindelse med kardiovasklulære sygdomme findes der mange
risikofaktorer. Disse kan være både genetiske, livsstilsrelaterede
og socialt relaterede. Kardiovaskulære sygdomme kan behandles
medicinsk og kirurgisk, og specielt den medicinske behandling
er blevet mere udbredt gennem de sidste år. I Danmark er
gennemsnitsomkostningerne af behandling steget fra ca. en milliard
kr. i 1994 til ca. 2 milliarder kr. i 2005, og omkostningerne for
indlæggelser ved kardiovaskulære sygdomme i 2005 var næsten fem
milliarder kr. Tidligere studier har vist, at antallet af incidenser af
kardiovaskulære sygdomme i Danmark er højest om vinteren, og det
er derfor oplagt at undersøge, om dette skyldes vejret.

Dette speciale omhandler den meteorologiske indflydelse på
de kardiovaskulære sygdomme akut koronar syndrom (blodprop i
hjertet), apopleksi (blodprop i hjernen), venøs tromboembolisme
(blodprop i benet) og atrieflimmer og er skrevet ved Institut
for Matematiske Fag, Aalborg Universitet i samarbejde med
Kardiovaskulært Forskningscenter, Aalborg Sygehus, Aarhus
Universitet Hospital. Projektet er delt op i tre dele. Første del
indeholder materialer og metoder, herunder beskrivelse af de
kardiovaskulære sygdomme, datakilder, validering af diagnoser samt
en analysestrategi. Anden del indeholder resultater af analyserne, og
den sidste del indeholder den matematiske teori brugt til analyserne.

Data brugt i projeketet består af personer i Danmark, der
er ældre end 20 år, med incidenser af ovenstående diagnoser i
perioden 1.1.1995-31.12.2006 identificeret ved hjælp af det Danske
Landspatientregister, samt meteorologiske variable fra DMI. For at
undersøge om vejret og incidenser af kardiovaskulære sygdomme
har en sammenhæng, laves der i projektet regressionsanalyser
vha. hhv. generaliserede additive modeller (GAM) og dynamiske
lineære modeller (DLM). I analyserne, der anvender GAM, er
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der undersøgt, om alle de givne meteorologiske variable har en
sammenhæng med incidenser af kardiovaskulære sygdomme, samt
om disse har en lagged effekt herpå. På baggrund af resultaterne
herfra bliver der i DLM analyserne kun testet, om temperaturen
har en sammenhæng med incidenser af kardiovaskulære sygdomme.
GAM analyserne viser, at temperaturen har en indflydelse på alle
diagnoser i forskellig grad. De viser også, at indflydelsen er størst
ved høje og lave temperature, men det er forskelligt fra diagnose til
diagnose, om den er positiv eller negativ. Der er i GAM analyserne
ikke noget entydigt svar på den laggede effekt af temperaturen på
incidenser af kardiovaskulære sygdomme. DLM analyserne giver
et mere realistisk og konsistent billede af, hvordan temperaturens
indflydelse er på incidenser af kardiovaskulære sygdomme, også
i forhold til lag. DLM analyserne giver et klart billede af, at
antallet falder om sommeren, svarende til, at høje temperature
har en negativ effekt på antallet af incidenser af kardiovaskulære
sygdomme. Begge analyser viser, at ugedagene har en indfly-
delse på antallet af incidenser med kardiovaskulære sygdomme.
Slutteligt beskrives den matematiske teori bag GAM og DLM, herun-
der maximum likelihood estimering, smoothing, filtrering og inferens.

Appendiks indeholder illustrationer af udvalgte resultater fra
analyserne lavet i projektet. Disse og resterende illustrationer kan
findes på http://homes.student.aau.dk/cbisga07/. Derudover
indeholder appendiks en nomenklaturliste.
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Introduction

The number one cause of death globally is cardiovascular diseases
(CVDs), which are responsible for approximately 30% of all deaths
in 2008. CVDs are a class of disorders involving the heart or
blood vessels and include among others acute coronary heart
syndrome (ACS), apoplexy (APO), veneous thromboembolism
(VTE) and atrial fibrillation (AF) [1]. There are many risk factors
associated with CVDs and these can be both genetic and a matter
of lifestyle and social relationships. Among them are unhealthy
diet, smoking, too much alcohol consumption and to little physical
activity. The exposure to risk factors is dependent on gender, age,
educational level and economics. Treatment of a CVD consists
of medical and surgical treatments and especially the extent of
medical treatment has increased in recent years. In Denmark
the average expenses of treatment of CVDs has doubled from
approximately one billion Danish kroner in 1994 to approximately
two billion Danish kroner in 2005 and the expenses for hospi-
talizations of CVDs in 2005 were almost five billion Danish kroner [2].

Earlier studies have shown that the first time occurrence of
a CVD varies according to time of year [3][4] and that the daily
rates of incident CVDs are highest during winter in Denmark [5][6].
However, there are conflicting results from country to country of
when the daily rate of incident CVDs is at its highest and this could
indicate that it varies between climatic areas [7]. Temperature has
been recognized as being able to induce health effects [8][9]; therefore
it is desirable to achieve a better understanding of the direct and
lagged effects of changes in the daily counts of incident CVDs
associated with the weather and especially with the temperature, as
it could help improve treatment and prevention of CVDs. Therefore
the purpose of this study is to investigate a number of meteorological
variables and their influence on the daily incidences of CVDs in
Denmark.

This study has taken its point of reference in a 2002 study
of Braga et al. [10]. Braga et al. conducted a time-series analysis
estimating both the acute and lagged effect of weather on respiratory
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and cardiovascular deaths in 12 US cities. In epidemiological
studies the relationship between the outcome and some variables
are expected to be nonlinear; therefore they used additive Poisson
regressions for each city, which fit non-parametric smooth functions
for these variables. A smooth function of time was used to capture
the long-term time-trend and to capture the lagged effect, Braga
et al. used a distributed polynomial lag model (PDLM), with the
motivation that the weather today can have an influence on deaths
not only occurring today, but also on several subsequent days.
The basis for the PDLM used was found in a study conducted by
Schwartz in 2000 [11], who examined the distributed lag between air
pollution and daily deaths, but the model was originally developed
by Almon in 1965 in a study examining the distributed lag between
the capital appropriations and expenditures [12]. Based on an
earlier study [13], Braga et al. chose the lag time to be three weeks
and estimated the effect of temperature and humidity. They found
that in cold cities both high and low temperatures were associated
with an increase in deaths caused by CVDs; furthermore the effect
of the low temperatures stayed for days, whereas the effect of
high temperatures only was on the same day or the day before.
In hot cities neither high nor low temperatures showed significant
effect. Nothing consistent showed for humidity, neither in lag nor
associated with high or low temperatures. In this study we followed
the basic ideas in the study of Braga et al. using additive Poisson
regressions with a LOESS smooth function of time and a factor
indicating the day of the week and holidays. The lagged effect of the
meteorological variables was captured using a PDLM with a third
degree polynomial and a three week lag.

Another method of analyzing the daily counts of incident
CVDs is by use of dynamic linear models (DLMs). DLMs are a
special case of state space models (SSMs), introduced by Harrison
and Stevens in 1976, that are both linear and Gaussian. SSMs are
a statistical tool appropriate to analyze multivariate time-series
and longitudinal data and a great advantage is that they allow the
parameters in the model to change over time; this could provide a
more clarifying description when analyzing the temperatures impact
on incident CVDs. Therefore the data in this thesis is also analyzed
using DLMs. The model includes two processes, a latent and an
observation process, where the observation process is considered to
be indirect observations of the latent process. Assessment of the
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latent process is performed by filtering the observations by Kalman
filtering techniques and indicates the potential impact on incident
CVDs in the population due to the temperature [14]. The lagged
effect of the meteorological variables is as in the GAM case captured
using a PDLM, but this time with a third degree polynomial, but
only 7 days of lag.

The data used in this study was constructed in Denmark from Janu-
ary 1st, 1977 through November 10th, 2011 using the Danish national
registry of patients from incident cases of acute coronary syndrome,
apoplexy, venous thromboembolism and atrial fibrillation. Further-
more, meteorological data was available on a daily basis from the
Danish Meteorological Institute in the same time period.

Structure of the thesis

The thesis is divided in three parts. The first part contains materials
and methods, the second part contains results of the analyses con-
ducted by regressions using GAMs and DLMs and the third part of
the thesis consists of the mathematical theory used for the analyses.
The chapters in the thesis contain the following:

Chapter 1 Description of data sources and the cardiovascular diag-
noses used for analysis along with validation of the diagnoses.
The chapter also includes data preparation and description of
data and study design.

Chapter 2 Analysis strategy for the statistical models.

Chapter 3 Results of the analysis using generalized additive mo-
dels.

Chapter 4 Results of the analysis using dynamic linear models.

Chapter 5 Synthesis including conclusion, discussion and perspec-
tives.

Chapter 6 Theory of generalized linear model including estimations
of parameters and models for count data.

Chapter 7 Theory of generalized additive models including
smoothing and estimation of parameters via local scoring.

5



CONTENTS

Chapter 8 Inference including goodness of fit, deviance and hypo-
thesis test; also the theory of model validation is outlined in
this chapter.

Chapter 9 Theory of state space models including filtering,
smoothing and forecasting.

Chapter 10 Theory of dynamic linear models. Kalman filtering,
smoothing and forecasting are derived along with model spe-
cification for regression models and direct maximum likelihood
estimation.
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Materials and Methods
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Chapter 1

Materials

In this chapter, materials and methods used for analysis in the thesis
are presented. Initially, a description of the three data sources, the
Central Person Registry, the Danish National Registry of Patients
and the Danish Meteorological Institute, is given followed by a de-
scription of the chosen cardiovascular diagnoses along with methods
of validation of these diagnoses. Lastly, a data description, an out-
line for data preparation, study design and analysis strategies are
presented.

1.1 Data Sources

1.1.1 The Danish National Registry of Patients

Since 1977, the Danish National Registry of Patients (LPR) has kept
information for every contact made with a hospital, and since 1995,
outpatient and emergency room contacts have been registered as well.
Furthermore, data were added from the psychiatric hospital depart-
ments and other separate registries and since 1995, LPR has included
information of all contacts made with clinical hospital departments
in the entire country. LPR records a lot of information every time a
contact is made to the Danish hospital service. It includes, among
other things, the civil registry number, hospital and ward name, dates
of admission and discharge, surgical procedures and diagnosis, which
is specified according to the Danish version of the international clas-
sification of diseases, revision 8 (ICD8) and from the beginning of
1995 revision 10 (ICD10). [15][16][17].

1.1.2 The Central Person Registry

The Central Person Registry (CPR) contains information about every
resident in Denmark since 1968 and on Greenland since 1972. Resi-
dents of Faroe Islands are not recorded. All residents are recorded
in the CPR from birth in Denmark or by settlement from the Faroe
Islands or foreign countries. In CPR all residents have a unique iden-
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1. MATERIALS

tification number. Also the CPR contains certain groups in other
countries, e.g. persons who are liable to pay taxes. When a person
dies or emigrates, their record is kept in the CPR. In 2011, the CPR
contained informations about approximately 8.4 million people. The
CPR includes, among other things, the date of birth, vital status,
civil registry number, civil status, residence and possible emigration
of every person registered. [18].

1.1.3 Danish Meteorological Institute

The Danish Meteorological Institute (DMI) was established in 1872
and handles the meteorological service of Denmark, the Faroe Islands
and Greenland including the surrounding waters and airspaces. This
includes surveillance, measuring and collecting information of the
weather, climate and other related environmental variables in the
atmosphere, on ground and in the ocean. DMI also does research
and innovation work in this field. For information, see www.DMI.dk.
[19].

1.2 Cardiovascular Diagnoses

Cardiovascular diseases (CVDs) are a class of disorders involving the
heart or blood vessels. It is the number one cause of death globally;
The World Health Organization estimates that 17.3 million people
died from CVDs worldwide in 2008, corresponding to 30% of all
deaths. [1]. Among others, CVDs include atherosclerosis, atrial
fibrillation, atrial flutter, coronary artery disease, apoplexy, acute
myocardial infarction and thromboembolism.

Atherosclerosis is a condition in which deposits of lipids such as
cholesterol cause a thickening of the arterial walls impeding blood
flow and reducing elasticity. The result of this is an atherosclerotic
plaque, a fatty mass formation in the lumen of the blood vessel. If
the condition persists, the inner wall of the vessel becomes swollen
with lipids and gaps can appear. To rectify the damage, platelets
will begin to adhere to the exposed collagen fibers. The combined
accumulation of lipids and platelets form a localized thrombus.[20,
pp. 713-714].

Coronary artery disease (CAD) refers to areas of blockage, partial
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1.2. CARDIOVASCULAR DIAGNOSES

or complete, of the coronary circulation. A reduction in blood
flow to the muscles of the heart will result in a reduction of
cardiac performance and thereby reduced circulatory supply,
called coronary ischemia. A consequence of CAD can be that
cardiac muscle cells die as a result of the lack of oxygen,
referred to as acute myocardial infarction (AMI) or heart
attack. When the condition is caused by thrombus formation,
it is referred to as coronary thrombosis. If the blockage is
situated near the start of a coronary artery, the consequences
will be comprehensive and the heart might stop beating. [20, p. 682].

Apoplexy (APO) or cerebrovascular accidents are interruptions in
the blood supply to a portion of the brain. APO can result in
aphasia, sensory and motor paralysis and can affect the ability to
draw and interpret spatial relations. [20, pp. 741-742].

Venous thrombosis is the formation of thrombi within a vein,
generally in the leg and often due to decreased rate of blood flow
e.g. in immobilized patients, damage to the walls of the blood, e.g.
after leg fractures, and hypercoagulability, an increased tendency of
the blood to clot. When a thrombi is formed in the deep veins of
the leg, it is called a deep venous thromboses (DVT). As the veins
return blood to the heart, a dislodged thrombus can be transported
to the heart and from there to the pulmonary vessel and cause the
pulmonary circuit to become blocked. A thrombus that has been
dislodged and is transported to another location of the body is called
an embolism and the process of forming a thrombus that becomes
embolic is called thromboembolism. An embolism that locates in
the lungs is a pulmonary embolism (PE). Venous thromboembolism
(VTE) refers to both DVT and PE. [20, p. 829].

Fibrillation is a condition of the heart where individual muscle fibers
contract independently. Fibrillation can occur in the muscles of both
the atria and the ventricles.
Atrial fibrillation (AF) is one of the most common arrhythmias and
during AF, the normal electrical impulses that prompt the contrac-
tion of the heart muscles are interrupted by disorganized electrical
impulses originating in the atria and pulmonary veins. The coordi-
nated contraction is replaced by fibrillation or quivering of the atria.
As a result a large amount of the blood in the atria is not moved to
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1. MATERIALS

the ventricles; this can increase the predisposition for thrombus for-
mation. [21]. Atrial flutter (AFL) is periodic or permanent presence
of rapid regular contractions of the atria of the heart. [22]. Patients
with AFL often have AF and vice versa; the two have a close clinical
interrelationship between them. [23].

In this thesis we focus on acute coronary syndrome (ACS), symp-
toms related to the heart, apoplexy, symptoms related to the brain,
venous thromboembolism, thromboembolism in the veins and
atrial fibrillation and therefore also atrial flutter, fibrillation or
quivering of the atria. ACS, APO and VTE can be divided into sub-
diagnoses. ACS is divided into AMI, unstable angina pectoris and
cardiac arrest as proposed by Joensen et al. (2009) [24]. Unstable
angina pectoris is a condition of chest pain and pressure occurring
when the heart does not receive enough blood and oxygen and cardiac
arrest is a condition where the heart ceases to contract effectively and
thereby ceases to circulate the blood normally. APO is divided into
subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH),
ischemic stroke and unspecified stroke as proposed by Johnsen et
al. (2002) [25]. The subarachnoid hemorrhage is located outside the
brain in the subarachnoid space between the arachnoid membrane
and pia matter, and an intracerebral hemorrhage is located inside
the brain. [22]. VTEs are divided into DVT and PE as proposed by
Severinsen et el. (2008) [26].

1.3 Validation of the Diagnoses

In four articles, Joensen et al. (2009) [24], Johnsen et al. (2002) [25],
Severinsen et al. (2008) [26] and Rix et al. (2011) [27], the authors in-
vestigated the positive predictive values (PPVs) of ACS, APO, VTE
and AF diagnoses, respectively, in the LPR. The studies in the arti-
cles are based on the Danish cohort Diet, Cancer and Health (DCH)
described by Tjønneland et al. (2007) [28]. In order to make the
DCH cohort, 160,725 subjects, 80,996 male and 79,729 female, were
invited to participate between December 1993 and May 1997. All
subjects were in the age group of 50-64 years and lived in urban
areas of Copenhagen or Aarhus, Denmark. None of the subjects had
a registered diagnosis of cancer at the time of invitation. In total,
57,053 subjects, 27,179 male and 29,876 female, agreed to participate.
For each of these, information about lifestyle and diet was received.
[28] [24]. The PPVs were calculated as proportions, i.e. the numer-
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1.3. VALIDATION OF THE DIAGNOSES

ator contained the number of patients with a verified diagnosis after
review and the denominator contained the total number of patients
registered in the LPR with this specific diagnosis. For high reliability
of the diagnoses for this project we have made criteria based on the
four studies. The criteria for each of the diseases ACS, APO, VTE
and AF are discussed further in the next sections. In table 1.1 the
diagnoses we have chosen to include in this project are listed with
the corresponding ICD8 and ICD10 codes and estimated PPVs.

Disease Diagnoses PPV
ACS 410, 42727, I21, I64 65.5%
APO 430-434, 436, I60-I64 79.3%
VTE I26, I80 58.5%
AF 42793, 42794, I48 92.6%

Table 1.1: The selected diagnoses for this project based on studies of Joensen
et al. [24], Johnsen et al. [25], Severinsen et al. [26] and Rix et al.
(2011) along with their PPVs.

1.3.1 Validation of Acute Coronary Syndrome Diag-
noses

In the study of Joensen et al. [24], PPVs of ACS diagnoses were
investigated in the LPR based on the DCH cohort. Participants to
be included in the study were based on available hospital discharge
history as participants in the DCH cohort with an ACS diagnosis.
They received hospital medical records of 1,577 out of 1,654 patients,
i.e. 95.3%, who had been hospitalized with an incident ACS diagno-
sis in the LPR. 96 patients could not be characterized because either
the medical record was not available (n=77) or because the medical
record was insufficient to classify the patients (n=19). Both pri-
mary and secondary diagnoses were included and patients diagnosed
with ACS before entering in the DCH cohort were excluded. Medi-
cal records corresponding to the discharge diagnosis and date were
retrieved from 54 hospitals. The overall PPV for ACS was 65.5%
(95%CI: [63.1;67.9]) after exclusion of patients with missing records.
Stratisfied by subdiagnoses, the PPV for AMI diagnoses was found
to be 81.9% (95%CI [79.5;84.2]), unstable angina pectoris had a PPV
of 27.5% (95%CI: [23.4;31.9]) and cardiac arrest had a PPV of 50.0%
(95%CI: [34.2;65.8]). Stratisfying on the type of department of dis-
charge, the PPV for patients receiving an ACS diagnosis in a ward

13



1. MATERIALS

was 80.1% (95%CI: [77.7;82.3]), whereas the PPV for patients re-
ceiving an ACS diagnosis in an emergency room or in an outpatient
clinic only was 16.1% (95%CI: [12.4;20.4]). After stratifying by type
of diagnosis, i.e. primary and secondary diagnosis, a higher PPV
for patients registered with a primary diagnosis was found compared
to patients registered with a secondary diagnosis , 67.1% (95%CI:
[64.6;69.5]) and 47.0% (95%CI: [37.6;56.5], respectively). [24]. Based
on the results of this study we only include primary diagnoses in our
project of AMI and cardiac arrest discharged from a ward.

1.3.2 Validation of Apoplexy Diagnoses

In the study of Johnsen et al. [25] PPVs of apoplexy diagnoses were
investigated in the LPR based on the DCH cohort. Participants who
had a diagnosis of a cardiovascular disease before entering the DCH
cohort were excluded from the study. Hospital medical records were
retrieved and validated for 377 out of 389 patients, i.e. 96.9%, who
had been hospitalized with an incident apoplexy diagnosis in the
LPR. The sample size is small, hence the results to come are rather
imprecise. The overall apoplexy PPV was 79.3% (95%CI: [74.9;83.3]),
however the PPV differed between apoplexy subgroups. After strati-
fying by subdiagnosis, the PPV of SAH and ICH were 48.3% (95%CI:
[29.4;67.5]) and 65.7% (95%CI: [47.8;80.9]), respectively. The PPV
of ischemic stroke was 87.7% (95%CI: [80.1;93.1]) and of unspecified
stroke 76.0% (95%CI: [69.5;81.7]). After stratifying by discharge de-
partment the PPV also differed. The diagnoses from non-speciality
departments had a PPV of 68.8% (95%CI: [61.3;75.5]) and specia-
lity departments had a PPV of 77.9% (95%CI: [72.3;82.7]), whereas
emergency rooms only had a PPV of 48.8% (95%CI: [39.9-57.8]).
This trend was also found in all subgroups. When stratisfying by
age and gender, the PPV did not differ. Hence, based on this study
we chose to include primary discharge diagnoses of SAH, ICH, ische-
mic stroke and unspecified stroke from ward and outpatient. The
discharge diagnoses identified by I62 (other and unspecified nontrau-
matic intracranical hemirrhage) are also included in our study as pro-
posed by Frost et al. (2006) [3], because many strokes are reported
as unspecified in the LPR.
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1.3.3 Validation of Venous Thromboembolism Diag-
noses

In the study of Severinsen et al. [26], PPVs of VTE discharge diag-
noses were investigated in the LPR based on the DCH cohort. All
incident VTE discharge diagnoses were identified and medical records
were retrieved from 1,100 of 1,135 participants, i.e. 96.3% with an
incident VTE diagnoses. For the last 35 participants, the medical
records were not available. Participants registered before entry in the
participants cohort with a diagnosis of VTE were excluded. The PPV
of VTE was 58.5% (95%CI:[55.5;61.4]). After being stratified by sub-
diagnosis, the PPV for DVT was 54.6% (95%CI: [50.9;58.2]), whereas
the PPV for PE was 66.5% (95%CI: [62.3;72.3]). Stratifying the dis-
charge diagnoses on department, the PPV of discharge diagnoses at
wards was 75.0% (95%CI: [71.9;77.9]), whereas discharge diagnoses
from emergency rooms only were 31.3% (95%CI: [27.0;35.8]). Strati-
fying on diagnosis, i.e. primary or secondary diagnosis, the primary
diagnosis had a PPV on 77.0% (95%CI: [73.7;80.1]) and secondary
diagnosis had a PPV of 66.5% (95%CI: [58.4;73.8]). When stratifying
by subdiagnosis and gender the PPV of DVT diagnosis was higher
among men than women, with PPVs of 77.2% (95%CI: [72.2;81.6])
and 63.2% (95% CI: [56.7;69,4]), respectively. The PPVs for PE
stratified by gender did not differ, nor did the PPV of VTE diagnosis
stratified by age. Based on this study we include both DVT and PE
discharge diagnosis from a ward and outpatient. Both primary and
secondary diagnoses are included.

1.3.4 Validation of Atrial Fibrillation Diagnoses

As mentioned previously AF and AFL have a clinical interrelation-
ship between them, so in the study of Rix et al. (2011) [27] both
AF and AFL were validated. The PPVs of AF and AFL discharge
diagnoses were investigated in the LPR based on the DCH cohort.
A random sample of patients with a AF and/or AFL discharge diag-
noses were identified and medical records were retrieved if possible
from 150 males and 150 females. Out of these 300 cases, 284 were
received, i.e. 94.6%. Of the last 16 participants, the clinical depart-
ment did not respond (n=4), the hospital or department was closed
(n=3), or the hospital records were not possible to retrieve (n=9).
Participants registered before entry in the DCH cohort with a diag-
nosis of AF and/or AFL were excluded. The PPV of AF and/or AFL
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was 92.6% (95%CI: [88.8;95.2]). The PPV when stratifying on diag-
nosis, i.e. primary or secondary diagnosis, gave similar results. For
diagnosis stratified on emergency rooms the PPV was significantly
lower than in-hospital and out-patient PPVs, with a PPV on 64.7%
(95%CI: [39.9;83.5]), where as in-hospital and out-patient was 94.0%
(95%CI: [90.4;96.3]). The PPVs for AF and/or AFL stratified by
gender did not have a significant difference [27]. Based on this study
we include AF and AFL discharge diagnosis from a ward or outpa-
tient in this project. Since the emergency room contact PPV was
based on very few cases we chose not to include these contacts. Both
primary and secondary diagnoses are included.

1.4 Data

1.4.1 Study Period and Population

The data for this study was obtained in Denmark from January 1st,
1977 to November 10th, 2011 using the LPR. In this time period
the Danish population has grown from approximately 5.08 million
people on January 1st, 1977 to 5.56 million people on January 1st,
2011. The population in Denmark consisted of 2.51 million men and
2.57 million women on January 1st, 1977 and on January 1st, 2011 of
2.76 million men and 2.80 million women. Subjects of interest in this
study are people of age 20 years and above. The total population of
people of age 20 years and above increased from approximately 3.58
million people on January 1st, 1977 to approximately 4.2 million on
January 1st, 2011. The population in Denmark in 1977 consisted
of approximately 1.74 million men and approximately 1.83 million
women on January 1st, 1977 of age 20+ and on January 1st, 2011 of
2.06 million men and 2.15 million women on age 20+, see figure 1.1.
[29].

1.4.2 Data Preparation

The data preparation was performed in Stata version 11 and as
mentioned in section 1.1, the data sources are the LPR, CPR and
DMI. The data from LPR is divided in two. The first data contains
a record number, classified diagnosis code and information about
the diagnosis e.g. is it a primary or secondary. The second data set
from LPR consists of additional information e.g. hospital number,
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(b) Total Danish population stratified by gender

Figure 1.1: Figure (a) shows the total Danish population from 1977 to 2011 of
age 20+. Figure (b) shows the Danish population from 1977 to 2011
stratified by gender of age 20+. The red line represents females and
the blue line represents males.

date of admission, date of discharge and municipality codes. The
LPR data sets are merged using the record number. By use of the
Stata function FindCardio written by Anette Luther Christensen
subjects having an incident discharge diagnosis of ACS, APO, VTE
or AF were identified along with the date of diagnosis. From CPR,
information about gender, birth date and possible date of death
was merged. An age at diagnosis variable was created using date
of diagnosis and birth date. Also the subjects were grouped into
two age groups: one containing 20-49 years, and one containing 50+
years. All subjects younger than 20 years were excluded from the
data. From DMI we got information about the weather in the ten
biggest municipalities in Denmark. If the subject did not live in
one of the ten biggest municipalities in Denmark, the subject was
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1. MATERIALS

excluded from the data set. Subjects who did not have an incident
CVD between 1.1.1995 and 12.31.2006 were excluded, because of the
shift from ICD8 to ICD10 in Denmark in 1995 and the municipal
merger in 2007. The data set ended up consisting of 104,672 subjects.

The data set was split into four different data set, each con-
taining subjects identified with either ACS, APO, VTE or AF.
Since we only include first time occurrences of either ACS, APO,
VTE or AF, each subject is only represented in one of the four data
sets. In some data sets secondary diagnosis and patient type 2, i.e.
outpatient, was deleted according to the validation of diagnoses in
section 1.3.

From Statistics Denmark we received information about the
Danish population size on January 1st every year since 1977.
The population size was linearly interpolated in order to get the
population size for each day since January 1st, 1977.

1.4.3 Data Description

In this section each of the four data sets for ACS, APO, VTE and
AF are described and illustrated.

Acute Coronary Syndrome

The ACS data set consists of 20,565 subjects, 12,293 males and 8,272
females, who have had an incident AMI or cardiac arrest found using
the diagnosis codes in table 1.1. Subjects in the data set have a
median age of 70.19 years (s.d. 13.92), 65.56 years for males (s.d.
13.44) and 76.31 years for females (s.d. 12.91). The age was grouped
with a five year interval and the distribution of the incident AMI and
cardiac arrest is listed in table 1.2.

Daily incidences of AMI and cardiac arrest from 1.1.1995 to
12.31.2006 is shown in figure 1.2.

The daily count of incident AMI and cardiac arrest in figure 1.2 starts
with a small decrease in cases until approximately the year 1996;
then it seems stable until approximately the year 2000, where there
is a rise in daily incidents of AMI and cardiac arrest. Shortly after
the daily cases of incident AMI and cardiac arrest begin to decrease
again. The increase in the daily counts of incidences around the year
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1.4. DATA

Male Female
n (%) n (%)

Age
20-24 12 (0.10) 3 (0.04)
25-29 41 (0.33) 19 (0.23)
30-34 96 (0.78) 25 (0.30)
35-39 216 (1.76) 65 (0.79)
40-44 471 (3.83) 129 (1.56)
45-49 837 (6.81) 203 (2.45)
50-54 1.233 (10.03) 305 (3.69)
55-59 1.478 (12.02) 465 (5.62)
60-64 1.562 (12.71) 630 (7.62)
65-69 1.603 (13.04) 787 (9.51)
70-74 1.427 (11.61) 1.165 (14.08)
75-79 1.450 (11.80) 1.341 (16.21)
80-84 1.052 (8.56) 1.400 (16.92)
85-90 581 (4.73) 1.103 (13.33)
90-94 204 (1.66) 525 (6.35)
95+ 30 (0.24) 107 (1.29)
Total 12.293 (59.78) 8.272 (40.22)

Table 1.2: Distribution of incident AMI and cardiac arrest cases with respect
to age for 20,565 subjects in Denmark from 1.1.1995 to 12.31.2006.

2000 can be a consequence of changes in the diagnostic definitions for
AMI, that happened in 2000. [2] [24]. However Joensen et al. [24]
found no change in the PPV before and after 2000, therefore we have
not stratified for the change in this study. The daily counts decrease
again after 2003.

In figure 1.3 the distribution of incidences are shown in percent with
respect to to age groups. It shows that male incidences of AMI and
cardiac arrest peak in the age group 65-69, whereas female incidences
does not peak until the age group 80-84. This is also evident by the
median age of male and female incidences, where the median age was
65.56 years for males and 76.31 years for females. Generally the males
tend to have more incidences than females in the age approximately
from 20-75 and in this time period the difference is increasing.
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1. MATERIALS

Figure 1.2: Daily counts of incidences of AMI and cardiac arrest per 100,000
from 1.1.1995-12.31.2006.

Figure 1.3: Incidences of AMI and cardiac arrest from 1.1.1995-12.31.2006 in
percent with to respect to age groups.

Apoplexy

The apoplexy data set consists of 29,822 subjects; 13,614 men and
8,272 females, who have had an incidence of APO found using the
diagnosis codes in table 1.1. Subjects in the data has a median age
at 73.80 years (s.d. 14.41), 69.53 years for males (s.d. 13.78) and
77.09 years for females (s.d. 14.40). The age was grouped with a five
year interval and the distribution of the incident apoplexy is listed
in table 1.3.

Daily incidences of apoplexy from 1.1.1995 to 12.31.2006 are shown
in figure 1.4.

The daily counts of incidences of apoplexy per 100,000 in figure 1.4
decrease from approximately year 2000. In 1995, the outpatient con-
tacts started to be recorded in the LPR. This would have increased
the number of recorded cases from 1995 and in the following years
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1.4. DATA

Male Female
n % n %

Age
20-24 44 (0.32) 56 (0.36)
25-29 80 (0.59) 98 (0.60)
30-34 125 (0.92) 129 (0.80)
35-39 175 (1.29) 208 (1.28)
40-44 387 (2.84) 346 (2.13)
45-49 629 (4.62) 490 (3.02)
50-54 1,029 (7.56) 623 (3.84)
55-59 1,430 (10.50) 816 (5.03)
60-64 1,473 (10.82) 1,041 (6.42)
65-69 1,588 (11.66) 1,297 (8.00)
70-74 1,841 (13.52) 1,946 (12.01)
75-79 1,949 (14.32) 2,770 (17.09)
80-84 1,598 (11.74) 2,855 (17.61)
85-90 939 (6.90) 2,290 (14.13)
90-94 291 (2.14) 1,020 (6.29)
95+ 36 (0.26) 223 (1.38)
Total 13,614 (45.65) 16,208 (54.35)

Table 1.3: Distribution of incident APO cases with respect to age for 29,822
subjects in Denmark from 1.1.1995 to 12.31.2006.

compared to years prior to 1995.

In figure 1.5 the distribution of incidences are shown in percent with
respect to age groups. It shows that male incidences of APO peak in
the age group 70-74, whereas female incidences do not peak until the
age group 80-84. This is also evident by the median age of the males
and females, where the median age was 69.53 years for males and
77.09 years for females. From approximately age 40-70 the females
have lower counts of incidences than males and from 70-95+ the
males have a lower counts of incidences than females. There is a
sizable change in both curves for age before and after 44 years old.

Venous Thromboembolism

The VTE data set consists of 14,045 subjects, 5,852 men and 8,193
females, respectively, who had an incidence of VTE found using the
diagnosis codes in table 1.1. Subjects in the data has a median age of
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Figure 1.4: Daily counts of incidences of apoplexy per 100,000 from 1.1.1995 to
12.31.2006.

Figure 1.5: Incidences of apoplexy from 1.1.1995-12.31.2006 in percent accord-
ing age groups, blue line representing males and red line represent-
ing females.

64.75 years (s.d. 18.79), 59.99 years for males (s.d. 16.92) and 68.76
years for females (s.d. 19.80). The age was grouped with a five year
interval and the distribution of the incidence VTE is listed in table
1.4.

Daily incidences of VTE from 1.1.1995 to 12.31.2006 are shown in
figure 1.6.

The daily cases of incidences of VTE per 100,000 in figure 1.6 seem
to be slightly increasing over the years.

In figure 1.7 the distribution of incidences are shown in percent with
respect to age groups. It shows that male incidences of VTE peak
in the age group 50-54, whereas female incidences does not peak
until approximately the age group 80-84. This is also evident by
the median age of the males and females, where the median age was
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Male Female
n % n %

Age
20-24 97 (1.66) 273 (3.33)
25-29 177 (3.02) 357 (4.36)
30-34 285 (4.87) 359 (4.38)
35-39 349 (5.96) 356 (4.35)
40-44 388 (6.63) 358 (4.37)
45-49 423 (7.23) 409 (4.99)
50-54 568 (9.71) 432 (5.27)
55-59 640 (10.94) 483 (5.90)
60-64 552 (9.43) 574 (7.01)
65-69 561 (9.59) 678 (8.28)
70-74 555 (9.48) 805 (9.93)
75-79 556 (9.50) 1,030 (12.57)
80-84 386 (6.60) 953 (11.63)
85-90 226 (3.86) 762 (9.30)
90-94 81 (1.38) 290 (3.54)
95+ 8 (0.14) 74 (0.90)
Total 5,852 (41.67) 8,193 (58.33)

Table 1.4: Distribution of incidences of VTE cases with respect to age for 14,045
subjects in Denmark from 1.1.1995 to 12.31.2006.

59.99 years for males and 68.76 years for females. From age 20-69
the daily counts of incidences of VTE for females is lower than for
males. Especially in the age group 55-59 there is a great difference
in the two curves.

Atrial Fibrillation

The AF data set consists of 30,457 subjects; 14,380 men and 16,077
females, who have had an incidence of AF found using the diagnosis
codes in table 1.1. Subjects in the data has a median age at 76.7
years (s.d. 13.67), 71.8 years for males (s.d. 14.28) and 80.2 years for
females (s.d. 11.71). The age was grouped with a five year interval
and the distribution of the incident AF is listed in table 1.5.

Daily incidences of AF from 1.1.1995 to 12.31.2006 is shown in figure
1.8.

The daily cases of incidences of AF per 100,000 in figure 1.8 is in-
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Figure 1.6: Daily counts of incidences of VTE per 100,000 from 1.1.1995 to
12.31.2006.

Figure 1.7: Incidences of VTE from 1.1.1995-12.31.2006 in percent with respect
to age groups. The blue line represents males and the red line
represents females.

creasing until approximately year 2001. After this the daily cases
seem stable.

In figure 1.9 the distribution of incidences are shown in percent with
respect to age groups. It shows that male incidences of AF peak in
the age group 75-79, whereas female incidences do not peak until the
age group 80-84. This is also evident by the median age of the males
and females, where the median age was 71.8 years for males and
80.2 years for females. From approximately 20-75 years the females
have lower counts of incidences than males and from 75-95+ years
the males have lower counts of incidences than females. There is a
sizable change in both curves for age before and after 44 years old.
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Male Female
n % n %

Age
20-24 74 (0.51) 18 (0.11)
25-29 110 (0.76) 33 (0.21)
30-34 139 (0.9) 51 (0.32)
35-39 204 (1.42) 67 (0.42)
40-44 313 (2.18) 94 (0.58)
45-49 523 (3.64) 153 (0.95)
50-54 884 (6.15) 328 (2.04)
55-59 1,244 (8.65) 527 (3.28)
60-64 1,445 (10.05) 794 (4.94)
65-69 1,616 (11.24) 1,184 (7.36)
70-74 1,905 (13.25) 1,869 (11.63)
75-79 2,216 (15.41) 2,800 (17.42)
80-84 1,888 (13.13) 3,263 (20.30)
85-90 1,221 (8.49) 3,012 (18.73)
90-94 501 (3.48) 1,493 (9.29)
95+ 97 (0.67) 391 (2.42)
Total 14,380 (47.2) 16,077 (52.8)

Table 1.5: Distribution of incidences of AF with respect to age for 30,457 sub-
jects in Denmark from 1.1.1995 to 12.31.2006.

DMI Data

From DMI we have data about the following meteorological vari-
ables; temperature, humidity, wind velocity, atmospheric pressure
and downpour from the 10 largest weather stations in Denmark. In
table 1.6 the mean, minimum, maximum and standard deviation of
each variable is shown. Each meteorological variable is calculated as
the mean of the measurements from 10 meteorological variables.

The following figures show a spaghetti plot of the season for every year
and the mean of all the meteorological variables with a trend curve.
The same figures for maximum and minimum of the meteorological
variable can be found in appendix B.

Figure 1.10 shows the mean temperature and mean humidity. Both
the temperature and humidity trends seem to be the same through
the years with an increase in temperature in the summertime and
decrease in the temperature in the wintertime and the opposite in
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Figure 1.8: Daily counts of incidences of incidences per 100,000 of AF from
1.1.1995 to 12.31.2006

Figure 1.9: Incidences of AF from 1.1.1995-12.31.2006 in percent with respect
to age groups. The blue line represents males and red line represents
females.

humidity.

Figure 1.11 shows the mean wind velocity and mean atmospheric
pressure in the ten biggest municipalities in Denmark from 1.1.1995-
12.31.2006. The wind velocity have a small increase at summertime
and small decrease in the wintertime. It does however looks like
the wind velocity is decreasing during the years. The atmospheric
pressure trend seems to be the same through the years and it does
not seem to change much during the year.

Figure 1.12 shows the mean downpour in the ten biggest municipali-
ties in Denmark from 1.1.1999-12.31.2006. The downpour data was
not available from before 1999.

The downpour trend seems to be the same through the years, with
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Min. Mean Max. sd
Temp. -13.3◦C 8.28◦C 26.1◦C 6.73◦C

Humidity 36% 83.13% 100 % 10.34%
Wind 0 m/s 4.88 m/s 15.5 m/s 2.09 m/s

Pressure 968 hPA 1013.75 hPA 1045.7 hPA 10.00 hPA
Downpour -0.1 mm 1.65 mm 70 mm 3.80 mm

Table 1.6: Mean, minimum, maximum and standard deviation of each meteo-
rological variable. Each meteorological variable is calculated as the
mean of a measurement from the 10 largest weather stations from
1.1.1995 to 12.31.2006.

an increase in January 2006.

1.5 Study Design

In epidemiology a cohort is defined as a group of individuals who are
followed over a given time; the purpose is to measure incidences of a
disease in the study cohort. In our study the selected individuals to
be observed, i.e. the study population or cohort, are all inhabitants
in Denmark, and the period of time in which the study population
is observed, i.e. the study period, is from 1.1.1995 to 12.31.2006.
To be included in the study, the subjects must fulfill some predefined
criteria, also called the inclusion criteria. In our study all subjects has
to be 20+ years old. This criterion is included to avoid interference of
possibly different pathology in children compared with adults. Also,
subjects can only enter in one of the four data sets. An additional
characteristic of the cohort is, that the study population may change
during the study period, this is referred to as being an open cohort.
The primary endpoint of our study is incidents of ACS, APO, VTE
and AF and the study is merely observed through registries. [30] [31].
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(a) Mean temperature.

(b) Mean humidity.

Figure 1.10: Mean temperature and humidity in the ten largest municipalities
in Denmark from 1.1.1995-12.31.2006. The first figure shows a
spaghetti plot of the season through the years and the last figure
shows the temperature and humidity with trend through the years.
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(a) Mean atmospheric pressure.

(b) Mean wind velocity.

Figure 1.11: Mean air pressure and wind velocity in the ten largest municipali-
ties in Denmark from 1.1.1995-12.31.2006. The first figure shows
a spaghetti plot of the season through the years and the last fi-
gure shows the atmospheric pressure and wind velocity with trend
through the years.
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Figure 1.12: Mean downpour in the ten largest municipalities in Denmark from
1.1.1999-12.31.2006. The first figure shows a spaghetti plot of the
season through the years and the last figure shows the downpour
with trend through the years.
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Chapter 2

Methods

The purpose of this study is to examine a possible effect of meteoro-
logical variables on CVDs. For a first occurrence of incident diagnosis
of ACS, APO, VTE or AF it is desired to know:

- Does any of the meteorological variables show an effect on the
daily incidences of ACS, APO, VTE and AF?

- If there is an effect, does it change if the value of the variable
is high or low?

- Is there a lagged effect?

Besides this it is desired to know if the effects differ according to the
disease. First an analysis was made using generalized additive models
(GAMs). Another analysis is done by the use of dynamic linear
models (DLMs). The mathematical theories behind these models are
described later in the third part of the thesis.

2.1 Analysis Strategy

In this section the line-up of the two models are given. The models
are analyzed using procedures in R.

2.1.1 Generalized Additive Models

GAMs are an extension of generalized linear models (GLMs) and
specifies effects on the natural parameter scale as additive but possi-
ble nonlinear. The GAMs are chosen because it allows regressions to
include non-parametric smooth functions to model a potential non-
linear dependence of the log-frequency of daily counts of incidences
of either ACS, APO, VTE or AF on the meteorological variables. In
our model the response Y is the frequency of daily incidences of ACS,
APO, VTE or AF, so {Yt}, where t = 1, . . . ,N , are possibly serially
correlated count data. Subsequently we assume {Yt} is Poisson dis-
tributed with intensity parameter nt · µt · 100000, where µt · 100000
is the intensity per 100,000.
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The GAM is on the form

log(E[Yt]) = effects of covariates + s(t), (2.1)

where t is the time, Yt ∼ Po(nt · µt · 100000), nt is daily counts
of the number of residents in Denmark at time t and is included in
the link function as an offset variable log(nt · 100000) and is found
by using linear interpolation. E[Yt] is the expected value of the fre-
quency of daily incidences of ACS, APO, VTE or AF, s(·) are a
smooth function of time. For s(·), we used LOESS, a running-line
regression smoother. This allow us to model the potential nonlinear
dependence of the counts of daily incidences on time and captures the
long-term time trend in the data. A factor indicating the day of the
week was included as a covariate. To capture the long-term seasonal
variation in the data the model also included a seasonal component as
a covariate; sin

(
2πt
T

)
+ cos

(
2πt
T

)
, where T is the period of seasonality

examined, one year in our case, and t is our time variable.

A parallel analysis was performed for each of ACS, APO, VTE and
AF. To see the effect of the meteorological variables individually, they
are included in an updated model one at the time. The updated
model includes a lag model to see how far back in time the variable
have an effect, the lag chosen is three weeks i.e. lag 20. The lag
model included is a polynomial distributed lag model (PDLM) and
the realization behind it is that the meteorological variables can affect
the daily counts of incidences not only today, but also on several
subsequent days, but in such a way that the effect is modeled by a
polynomial.

Polynomial distributed lag model

The unconstrained Poisson distributed lag model assumes, modulo
season and long-term time-trends, that

log(E[Yt]) = α+ β0Xt + β1Xt−1 + . . .+ βLXt−L, (2.2)

where Xt−i is the meteorological variable i days before the incidence,
L is the assumed maximum lag and where β is to be estimated. The
lag period could be long and therefore cost a lot of degrees of freedom
(d.o.f).

The effects of the meteorological variables on daily incidences of ACS,
APO, VTE or AF are usually assumed nonlinear [10], with J-, U-, or
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2.1. ANALYSIS STRATEGY

V-shaped relations, therefore we have used a linear and a quadratic
term for the meteorological variables at each lag. This means that
our lag model has the form

log(E[Y ]) = α

 1
...
1

+ X

 β0
...
βL

+ X2

 γ0
...
γL

 ,

where X2 means that all the entrances in X is squared and e.g.
L = 20

X =


X21 X20 . . . X2 X1

X22 X21 . . . X3 X2
...

...
...

...
...

XN XN−1 . . . XN−19 XN−20

 .
i.e. the first column is the temperature on the same day and the last
column is the temperature on lag 20.

There exists correlation between the meteorological variables on days
close together, so regression (2.2) will have a high degree of colline-
arity. This will produce poor estimates of the distribution of the effect
over lag. The most common approach to overcome this problem is to
set at restriction of how the βi’s will evolve over time. This is done by
fitting the βi’s with lag number to a polynomial function. We used
third-degree polynomial constraints for the linear and quadratic tem-
perature terms, because it should be flexible enough to include any
plausible pattern of delayed effect over time, so

β = τ1

 1
...
1

+ τ2

 1
...
L

+ τ3

 1
...
L


2

+ τ4

 1
...
L


3

=

 1 1 12 13

...
...

...
...

1 21 212 213


 τ1

...
τ4

 = p3

 τ1
...
τ4

 .

and similar for the quadratic term γ. This means, modulo the inter-
cept, that

log(E[Y ]) = Xβ + X2γ

= Xp3τ + X2p3ϕ.
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2. METHODS

By doing this we will have to estimate four parameters for both the
linear and the quadratic term leaving us with a 8 d.o.f. surface of the
effect of a meteorological variable during the past 21 days on daily
incidences from each specific cause. [10] [11].

For the lag model the effect at each lag and its variance was
estimated as well as the overall effect and its variance.

An analysis using the difference in the meteorological vari-
ables from day to day was also conducted following the same
procedure.

The original model and the updated model are tested by
use of ANOVA.

2.1.2 Dynamic Linear Models

Again the four diseases ACS, APO, VTE and AF are examined
separately, i.e. we have four univariate state space models, each
describing a disease. The daily counts of cases divided by the
number of residents in Denmark at the given time follow Poisson
distributions. In order to apply the theories of dynamic linear
models, we transform to normally distributed data by raising the
relative daily counts to the power of 2/3. [32]

Each observation series of daily counts is treated as a sum
of independent components. These components describe the day of
the week (incl. an indicator for holidays), a seasonal component and
the effect of temperature on daily counts. The seasonal component
is described by

cos

(
2πt

T

)
+ sin

(
2πt

T

)
,

where t is the time measured in days since 12.31.1994 and T is the
period of seasonality examined, i.e. one year. The analyses were
performed with components consisting of both the temperature and
the temperature squared.

In the first analyses, each of the eight levels of the day of the week
component were allowed to have individual variances. We also
performed analyses where the variances of the weekday levels were
assumed to be the same, with the same arguments as in section 2.1.1.
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2.1. ANALYSIS STRATEGY

We also examined the lagged effect of temperature on the
daily counts of each disease. This was done similarly to the method
used in the GAM analysis using a polynomial distributed lag model,
described in section 2.1.1, this time with lags of 0-7 days prior to
the event.
The dynamic linear regression model for observations Yt on
covariates is x1,t, . . . , xp,t is outlined in section 10.4 and described by

Yt =

p∑
j=1

xj,tβj,t + vt.

If we concentrate on the effect of temperature, the explanatory vari-
ables are the temperature (here denoted xt) and the temperature
squared (x2t ) for each of the eight days of interest. Therefore, in our
case, Ft = [xt, xt−1, . . . ,xt−7, x2t , x

2
t−1, . . . , x

2
t−7] for each time t.

We create binary indicators of weekdays

zt = (z1,t, . . . ,z8,t)

and a vectors containing the eight weekday levels (one for each of the
seven days of the week and one for holiday)

ρt = (ρ1,t, . . . ,ρ8,t)
> .

If we let Xt denote the vector of temperatures 0-7 days before time
t, i.e.

Xt = (xt, . . . , xt−7) ,

then the dynamic linear regression has the form

Yt = ζ1 cos

(
2πt

T

)
+ ζ2 sin

(
2πt

T

)
+ztρt +Xtp3τt +X2

t p3ϕt + vt

where βt = p3η and γt = p3ϕ and where all states ζ1,t, ζ2,t, ρt, ηt
and ϕt have independent random walks. It is assumed that ζ1,t and
ζ2,t have the same variance.
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Chapter 3

Generalized Additive
Models

In the following, results from the analyses of daily incidences of CVDs
are presented. Results and figures are outlined thoroughly in the first
result section regarding ACS. APO, VTE and AF results are given
without comments, but are interpreted in the same way as ACS. In
this chapter results from the analysis with GAMs are presented. The
mathematical theory behind GAM is outlined in chapter 7 and the
analysis strategy in section 2.1.1.

3.1 Acute Coronary Syndrome

The daily counts of incidences of ACS were fitted by the use of
a GAM, including a time-trend described by a LOESS smoother.
The model also included a linear interpolation of the residents in
Denmark from 1.1.1995-12.31.2006 as an offset variable aswell as
a factor indicating the day of the week. To capture the long-term
seasonal variation in the data the model also included a seasonal
component as a covariate; sin

(
2πt

365.25

)
+ cos

(
2πt

365.25

)
, where t is our

time variable. To study the effect of the meteorological variables
on daily counts of incidences of ACS, the meteorological variables
were included in the model one at a time, and to see if the variable
significantly improved the model an ANOVA test was applied.

Figure 3.1 shows the trend in ACS incidences over time.

The y-axis on figure 3.1 is on the linear scale and since the family is
Poisson with canonical link, it is on the log scale and 0 corresponds
to the average number of daily counts. The average value of daily
counts of incidences of ACS is 4.74. From 1995 to 1998 there is a
small decrease in the incidences of ACS of approximately 10% to
the average value of daily cases. From 1998 to approximately 2002,
the curve is slightly increasing with approximately 7% from the
average value of daily counts. From 2002 and until late 2006 there
is a decrease of approximately 20% from the average value of daily
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Figure 3.1: Trend of ACS incidences over time, with an average value of daily
cases of incidences of ACS of 4.74.

counts of incidences of ACS.

Figure 3.2 shows the influence of the day of the week and
holidays on daily counts of incidences of ACS. The day of the week
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Figure 3.2: Influence of the day of the week on daily counts of incidences of
ACS.

has an influence on incidences of daily counts of ACS with a p-value
of < 2.2e − 16 and deviance difference of 135.75, with Monday
having the largest influence, with an increase of approximately 10%
and the weekends the least with a decrease of approximately 10%.
Holidays only show a slight decrease of 2%.

Figure 3.3 and figure 3.4 show the tendencies of the β and
γ values of the PDLM for the effect over time of the five
meteorological variables. In the left side of the figure the linear
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3.1. ACUTE CORONARY SYNDROME

and squared effects of the meteorological variables on the daily
counts of incidences are shown and in the right side the effects of
the differences from day to day in the meteorological variables are
shown.

The values on the y-axis show the risk difference (RD) in the daily
counts of incidences of ACS caused by the meteorological variables
in percent points (pp). If the RD is 0, there is no effect of the given
meteorological variable. If RD> 0, there is a positive effect, i.e.
the given meteorological variable contributes to an increase in daily
counts of incidences of ACS. If RD< 0, the meteorological variable
has a negative effect, i.e. it contributes to a decrease in daily counts
of incidences of ACS. Risk difference in pp is the change in risk
measured in percent for each person, when adding a covariate to the
model, e.g. if a subject has a 10% risk of developing an incidence of
ACS and the RD is −2 pp that subject now has a risk of only 8%.
The z-axis shows lag no. 0 to lag 20, where lag 0 is the same day,
lag 1 is the day before and so on. The x-axis shows the value of the
meteorological variable for the linear and squared effects and the
difference in the meteorological variable for the difference effects.
By looking at the linear and squared effects, it seems that for high
values on temperature there is a small negative effect at lag 0-2 of
approximately 2 pp. Small humidity values seems to have a small
negative effect at lag 0-5 with a RD of approximately 2 pp. For high
humidity values there is a small positive effect at lag 0-5 of 2 pp.
Downpour seems to have a small negative effect in the first couple
of lags in 2 pp and for for high values on downpour there is an effect
around lag 10 of approximately 4 pp. Wind velocity only seems to
have a negative effect for all values. Small values of atmospheric
pressure seems to have an immediate effect of approximately 1 pp.
For the daily difference in temperature it seems that large daily
differences have a positive effect of up to 3 pp; however it also seems
that a negative change could have an effect of up to 4 pp. The
same is the case for humidity, where large daily changes causes a
positive effect of up to 20 pp. A large daily difference in downpour
seems to have an effect at lag 5-20, where a positive difference
causes an positive effect of up to 3 pp and a negative difference
causes a negative effect of up to 2 pp. The only effect seen in a
daily difference in atmospheric pressure and wind velocity is a
small positive effect at lag 0- 2 where a negative difference causes a
positive effect of 5 pp and 4 pp, respectively.
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3. GENERALIZED ADDITIVE MODELS

(a) Risk difference (pp) caused by temperature (◦ C) with 0-20 days
of lag.

(b) Risk difference (pp) caused by humidity (%) with 0-20 days of
lag.

(c) Risk difference (pp) caused by downpour (mm) with 0-20 days
of lag.

Figure 3.3: Risk difference (pp) caused by the meteorological variables for daily
counts of incidences of ACS with 0-20 days of lag.
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3.1. ACUTE CORONARY SYNDROME

(a) Risk difference (pp) caused by atmospheric pressure (hPA) with
0-20 days of lag.

(b) Risk difference (pp) caused by wind velocity (m/s) with 0-20
days of lag.

Figure 3.4: Risk difference (pp) caused by the meteorological variables for daily
counts of incidences of ACS with 0-20 days of lag.

The deviance differences of the models for the various mete-
orological variables are shown in table 3.1 along with the p-values.

The deviance differences of the models for the daily diffe-
rence in various meteorological variables are shown in table 3.2
along with the p-values.

Table 3.1 shows that only temperature have a significant p-value of
the deviance difference for daily counts of incidences of ACS. Table
3.2 shows that in the daily difference none of the meteorological vari-
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3. GENERALIZED ADDITIVE MODELS

ACS
Meteorological Variable Deviance Difference p-value

Temperature 25 1.8e-03
Atmospheric Pressure 4 9.3e-01

Humidity 15 1.4e-01
Wind Velocity 6 8.0e-01
Downpour 11 3.3e-01

Table 3.1: Deviance difference and p-values for the models for the five different
meteorological values for counts of daily incidences of ACS.

ACS Daily Difference
Meteorological Variable Deviance Difference p-value

Temperature 3 9.3e-01
Atmospheric Pressure 4 8.2e-01

Humidity 13 1.2e-01
Wind Velocity 5 7.6e-01
Downpour 8 2.8e-01

Table 3.2: Deviance difference and p-values for the models for daily difference
in the five different meteorological variables for counts of daily inci-
dences of ACS.

ables have a significant p-value. Therefore only further analyses of
the temperature variable was made. For the temperature, binary
variables defining hot/cold days were made. Hot/cold days were de-
fined as the upper and lower 5% of the meteorological variable. High
temperatures are significant with a p-value of 1.5e−02 and a deviance
difference of 12.
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3.2. APOPLEXY

3.2 Apoplexy

Figure 3.5 shows the trend of daily counts of APO incidences over
time.
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Figure 3.5: Trend of daily counts of APO incidences over time, with an average
value of daily cases of incidences of APO of 6.82.

Figure 3.6 shows the influence of the day of the week and holidays
on daily counts of incidences of APO. The day of the week has an
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Figure 3.6: Influence of the day of the week on daily counts if incidences of
APO.

influence on the model with a p-value of < 2.2e − 16 and deviance
difference of 556.61.

Figure 3.7 and figure 3.8 show the trends of the β and γ values of the
PDLM for the effect over time of the five meteorological variables. In
the left side of the figure the linear and squared effects are shown and
in the right side the effects of the daily difference in the meteorological
variables are shown.

The deviance differences of the models for the various meteorological
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3. GENERALIZED ADDITIVE MODELS

(a) Risk difference (pp) caused by temperature (◦ C) with 0-20 days
of lag.

(b) Risk difference (pp) caused by humidity (%) with 0-20 days of
lag.

(c) Risk difference (pp) caused by downpour (mm) with 0-20 days
of lag.

Figure 3.7: Risk difference (pp) caused by the meteorological variables for daily
counts of incidences of APO with 0-20 days of lag.

46



3.2. APOPLEXY

(a) Risk difference (pp) caused by atmospheric pressure (hPA) with
0-20 days of lag.

(b) Risk difference (pp) caused by wind velocity (m/s) with 0-20
days of lag.

Figure 3.8: Risk difference (pp) caused by the meteorological variables for daily
counts of incidences of APO with 0-20 days of lag.

variables are shown in table 3.3 along with the p-values.

The deviance differences of the models for the daily difference in
meteorological variables are shown in table 3.4 along with the
p-values.

For apoplexy none of the values in table 3.3 and table 3.4 are signi-
ficant.
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APO
Meteorological Variable Deviance Difference p-value

Temperature 14 8.4e-02
Atmospheric Pressure 6 6.2e-01

Humidity 2 9.0e-01
Wind Velocity 5 8.0e-01
Downpour 6 6.1e-01

Table 3.3: Deviance differences and p-values for the models for the five different
meteorological variables for daily counts of incidences of APO.

APO Daily Difference
Meteorological Variable Deviance Difference p-value

Temperature 8 4.9e-01
Atmospheric Pressure 3 9.2e-01

Humidity 8 3.4e-01
Wind Velocity 9 3.7e-01
Downpour 8 5.6e-01

Table 3.4: Deviance differences and p-values for the models for daily difference
in the five meteorological values for daily counts of incidences of
APO.

3.3 Venous Thromboembolism

Figure 3.9 shows the trend of daily counts of VTE incidences over
time.
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Figure 3.9: Trend of the daily counts of VTE incidences over time, with an
average value of daily counts of incidences of VTE of 3.46.

Figure 3.10 shows the influence of the day of the week and holidays on
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daily counts incidences of VTE. The day of the week has an influence
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Figure 3.10: Influence of the day of the week on daily counts of incidences of
VTE.

on the model with a p-value of < 2.2e− 16 and deviance of 996.97.

Figure 3.11 and figure 3.12 show the trends of the β and γ values
of the PDLM for the effect over time of the five meteorological vari-
ables. In the left side of the figure the linear and squared effects are
shown and in the right side the effects of the daily difference in the
meteorological variables is shown.

The deviance differences of the models for the various meteorological
variables are shown in table 3.5.

VTE
Meteorological Variable Deviance Difference p-value

Temperature 10 2.8e-01
Atmospheric Pressure 13 1.0e-01

Humidity 8 4.5e-01
Wind Velocity 4 8.7e-01
Downpour 6 6.6e-01

Table 3.5: Deviance differences and p-values for the models for the five meteo-
rological variables for daily counts of incidences of VTE.

The deviance differences of the models for the daily difference in
meteorological variables are shown in table 3.6 along with the
p-values.

For VTE none of the values in table 3.5 and table 3.6 were significant.
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(a) Risk difference (pp) caused by temperature (◦ C) with 0-20 days
of lag.

(b) Risk difference (pp) caused by humidity (%) with 0-20 days of
lag.

(c) Risk difference (pp) caused by downpour (mm) with 0-20 days
of lag.

Figure 3.11: Risk difference (pp) caused by the meteorological variables for
daily counts of incidences of VTE with 0-20 days of lag.
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3.4. ATRIAL FIBRILLATION

(a) Risk difference (pp) caused by atmospheric pressure (hPA) with
0-20 days of lag.

(b) Risk difference (pp) caused by wind velocity (m/s) with 0-20
days of lag.

Figure 3.12: Risk difference (pp) caused by the meteorological variables for
daily counts of incidences of VTE with 0-20 days of lag.

3.4 Atrial Fibrillation

Figure 3.13 shows the trend of the daiy counts of AF incidences over
time.

Figure 3.14 shows the influence of the day of the week on daily counts
incidences of AF. The day of the week has an influence on the model
with a p-value of < 2.2e− 16 and deviance of 2809.4.

Figure 3.15 and figure 3.16 show the trends of the β and γ values
of the PDLM for the effect over time of the five meteorological vari-
ables. In the left side of the figure the linear and squared effects are
shown and in the right side the effects of the daily difference in the
meteorological variables is shown.
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VTE Daily Difference
Meteorological Variable Deviance Difference P-value

Temperature 8 6.2e-01
Atmospheric Pressure 8 5.0e-01

Humidity 8 5.0e-01
Wind Velocity 8 8.5e-01
Downpour 8 5.1e-01

Table 3.6: Deviance differences and p-values for the models for difference in the
five meteorological variables for daily counts of incidences of VTE.
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Figure 3.13: Trend of daily counts of AF incidences over time, with an average
value of daily cases of incidences of AF of 7.00.

The deviance differences of the models for the various meteorological
variables are shown in table 3.7.

The deviance differences of the models for the daily difference in
the meteorological variables are shown in table 3.8 along with the
p-values.

Temperature is only meteorological variables, that has significant p-
values in the deviance difference for daily counts of incidences of
AF, therefore further analysis of this variable were made by defining
hot/cold days. Only high temperatures have a significant effect with
a p-value of 1.5e− 02 and a deviance difference of 12.
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Figure 3.14: Influence of the day of the week on daily counts of incidences of
AF.

AF
Meteorological Variable Deviance Difference p-value

Temperature 26 1.2e-03
Atmospheric Pressure 10 2.9e-01

Humidity 11 2.1e-01
Wind Velocity 11 2.0e-01
Downpour 5 7.9e-01

Table 3.7: Deviance differences and p-values for the models for the five meteo-
rological variables for daily counts of incidences of AF.

AF Daily Difference
Meteorological Variable Deviance Difference p-value

Temperature 10 2.7e-01
Atmospheric Pressure 10 2.6e-01

Humidity 14 8.9e-02
Wind Velocity 8 6.2e-01
Downpour 5 7.5e-01

Table 3.8: Deviance differences and p-values for the models for the daily dif-
ference in the five meteorological variables for daily counts of inci-
dences of AF.
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(a) Risk difference (pp) caused by temperature (◦ C) with 0-20 days
of lag.

(b) Risk difference (pp) caused by humidity (%) with 0-20 days of
lag.

(c) Risk difference (pp) caused by downpour (mm) with 0-20 days
of lag.

Figure 3.15: Risk difference (pp) caused by the meteorological variables for
daily counts of incidences of AF with 0-20 days of lag.
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(a) Risk difference (pp) caused by atmospheric pressure (hPA) with
0-20 days of lag.

(b) Risk difference (pp) caused by wind velocity (m/s) with 0-20
days of lag.

Figure 3.16: Risk difference (pp) caused by the meteorological variables for
daily counts of incidences of AF with 0-20 days of lag.
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Chapter 4

Dynamic Linear Models

In this chapter results from the analysis with DLMs are presented.
The mathematical theory behind DLM is outlined in chapter 10 and
the analysis strategy in section 2.1.2. In the GAM analysis tempe-
rature showed the most effect on the daily counts of incidences of
CVDs; therefore the DLM analysis is only conducted for this variable.

The daily counts of incidences of ACS, APO, VTE and AF
all follow Poisson distributions and are positively skewed data. In
order to apply DLM, it is necessary that the observations are nor-
mally distributed. Therefore, the data is transformed by raising the
daily count vectors to the power of 2

3 , since this transformation makes
the distribution as symmetrical as possible. Hereafter, the response
is approximately normally distributed. Histograms and QQ-plots
can be seen on http://homes.student.aau.dk/cbisga07/.

As in the GAM analysis, the DLM included a seasonal com-
ponent, sin

(
2πt

365.25

)
+ cos

(
2πt

365.25

)
, where t is our time variable. The

seasonal component entered the model as a covariate to capture the
long-term seasonal variation in the data. The model also included a
factor indicating the day of the week along with both a linear and
quadratic term of the temperature variable.

As in the GAM results, the results from ACS are outlined
and the results for APO, VTE and AF are given without comments.
Results when stratifying on gender are available in appendix C and
http://homes.student.aau.dk/cbisga07/.

4.1 Acute Coronary Syndrome

Figure 4.1 shows the effect of the day of the week on the fitted values.
As in the GAM results it is clear that Monday and Tuesday are the
days of the week with the most daily cases. As mentioned in GAM,
this tendency is possibly caused by some people putting off seeking
out medical attention during the weekend until they can see their
personal general practitioner on weekdays.
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Figure 4.1: The effect of the day of the week on daily counts of ACS.

Figure 4.2 shows a plot the effect of both a linear and quadratic effect
of temperature of the day in question on the fitted values of the daily
counts of ACS. There is a consistent tendency of a negative effect on
the counts during summertime of up to approximately 0.15 persons
per day compared to wintertime. It tells us that high temperatures
have some protective effect on ACS compared to low temperatures.
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Figure 4.2: Effect of linear and quadratic components of temperature on daily
counts of ACS. Turn of the year is indicated by vertical lines.

Finally the model was fitted using linear and quadratic components
of temperature for 0-7 days of lag prior to the event of ACS, as
described in 2.1.2. This yielded the results shown in figure 4.3.

The tendency of fewer daily cases during summer seem quite con-
sistent in this plot. There are up to about 0.3 fewer daily cases of
ACS per day in the summer than in the winter, again indicating the
protective effect of high temperatures on ACS.
The individual effects of each of the lags are plotted in figure 4.4.
The lags all show consistently fewer daily cases in the summer. It
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Figure 4.3: Effect of linear and quadratic components of temperature with 0-7
days of lag on daily counts of ACS. Turn of the year is indicated by
vertical lines.

appears that the temperature on lag 7 has the largest negative effect
on daily cases, but the difference between the lags are small.
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Figure 4.4: Individual lag effect of linear and quadratic components of tempe-
rature on daily counts of ACS. Turn of the year is indicated by
vertical lines.
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4.2 Apoplexy

Figure 4.5 illustrates the influence of the day of the week on the fitted
values.
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Figure 4.5: The effect of the day of the week on daily counts of incidences of
APO.

Figure 4.6 illustrates the effect of both a linear and quadratic effect
of temperature of the day in question on the fitted values of the daily
counts of incidences of APO.
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Figure 4.6: Effect of linear and quadratic components of temperature on daily
counts of incidences of APO. Turn of the year is indicated by vertical
lines.

The results from the analysis using 0-7 days of lag are shown in figure
4.7.

The individual effects of each of the lags are plotted in figure 4.8.
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Figure 4.7: Effect of linear and quadratic components of temperature with 0-7
days of lag on daily counts of incidences APO. Turn of the year is
indicated by vertical lines.
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Figure 4.8: Individual lag effect of linear and quadratic components of tem-
perature on daily counts of incidences APO. Turn of the year is
indicated by vertical lines.

4.3 Venous Thromboembolism

Figure 4.9 illustrates the influence of the day of the week on the fitted
values.

Figure 4.10 illustrates the effect of both a linear and quadratic effect
of temperature of the day in question on the fitted values of the daily
counts of incidences of VTE.

The results from the analysis using 0-7 days of lag are shown in figure
4.11.

The individual effects of each of the lags are plotted in figure 4.12.
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Figure 4.9: The effect of the day of the week on daily counts of VTE.

Figure 4.10: Effect of linear and quadratic components of temperature on daily
counts of incidences of VTE. Turn of the year is indicated by
vertical lines.

4.4 Atrial Fibrillation

Figure 4.13 illustrates the influence of the day of the week on the
fitted values.

Figure 4.14 illustrates the effect of both a linear and quadratic effect
of temperature of the day in question on the fitted values of the daily
counts of incidences of AF.

The results from the analysis using 0-7 days of lag are shown in figure
4.15.

The individual effects of each of the lags are plotted in figure 4.16.
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Figure 4.11: Effect of linear and quadratic components of temperature with 0-7
days of lag on daily counts of incidences of VTE. Turn of the year
is indicated by vertical lines.
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Figure 4.12: Individual lag effect of linear and quadratic components of tem-
perature on daily counts of incidences of VTE. Turn of the year is
indicated by vertical lines.
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Figure 4.13: The effect of the day of the week on daily counts of incidences of
AF.
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4. DYNAMIC LINEAR MODELS

Figure 4.14: Effect of linear and quadratic components of temperature on daily
counts of incidences of AF. Turn of the year is indicated by vertical
lines.
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Figure 4.15: Effect of linear and quadratic components of temperature with 0-7
days of lag on daily counts of incidences of AF. Turn of the year
is indicated by vertical lines.
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Figure 4.16: Individual lag effect of linear and quadratic components of tem-
perature on daily counts of incidences of AF. Turn of the year is
indicated by vertical lines.
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Chapter 5

Synthesis

5.1 Conclusion

In this Master of Science Thesis we have investigated a number of
meteorological variables and their influence on the daily incidences
of CVDs in Denmark along with their lagged effect. First an analysis
using GAMs was conducted. GAMs were chosen since they allow re-
gressions to include non-parametric smooth functions to model a po-
tential nonlinear dependence of the log-frequency of daily incidences
of CVDs of interest on the meteorological variables. This model con-
sists of an offset variable of daily counts of the number of residents
in Denmark at time t, a LOESS smooth function of time to capture
the long-term time-trend in data and a factor indicating the day of
the week included as a covariate. To capture the long-term seasonal
variation in the data the model also included a seasonal component
as a covariate. To capture the lagged effect of the meteorological
variables a PDLM was included in the model, with the motivation
that the weather today can have an influence on incidences of CVDs
not only occurring today, but also on several subsequent days. For
the DLM analysis the daily counts of incidences was divided by the
relative change in the number of residents in Denmark with respect to
the mean population at the given time and transformed to normally
distributed data by raising the relative daily counts to the power of
2/3. Like the GAMs, the DLMs also included a factor indicating the
day of the week, a seasonal component and a PDLM. Both models
included both a linear and a quadratic term of the meteorological
variable. For both models parallel analyses were conducted for each
of ACS, APO, VTE and AF.

GAM

The GAM analysis gave significant results for temperature, that
showed some effect on all diagnoses, but it changes from diagnosis to
diagnosis when the effect is highest during the year. Analysis made
on the daily difference in the weather did not give any significant
results. For all GAM analyses the day of the week had a significant
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effect on incidences of CVDs. All CVDs showed a large increase on
Mondays and a large decrease in the weekends and a small decrease
on holidays.

DLM

The analysis using DLMs did not give any significant effects of the
temperature variable. However it gives a more realistic and consistent
image of how the temperature influence the daily counts of incidences
of CVDs today and with a lag of up to 7 days. On all diagnoses the
analyses show a decrease in the counts of daily incidences caused by
high temperatures in the summer. As in the GAM analyses the day
of the week had an significant effect on incidents of CVDs. For DLM
the data was separated to analyze the age groups 20-49 and 50+ and
each gender individually. However most of the subjects in the data
were age 50+ and because of this we could not normalize data for
the age group 20-49, since there were too few subjects per day in this
group. Making the analysis for the age group 50+ made no change in
the results, since most of subjects in data already was in this group.
Analyzing males and females separately showed the same tendencies
as when not separated, i.e. the temperature has the same influence
on daily counts of incidences on both males and females.
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5.2. DISCUSSION

5.2 Discussion

The first issue related to the data in this thesis was to decide
whether we would look at all the diagnoses separately or together.
Ongoing studies are trying to show that ACS, APO and VTE are
basically the same disease, which is interesting, since the approach
now is to look at each diagnosis individually. A problem in this is
however that the cases of ACS and APO completely outweigh the
VTE cases (20,565 and 29,822, respectively against 14,045 subjects)
so when looking at CVDs in relation to meteorology it would make
more sense to look at them separately. Pathologically AF is different
from the other diseases, and therefore it was always meant for this
to be studied alone.
Another discussion in relation to the data was which diagnosis codes
to use. Since all hospitalizations in Denmark are registered in the
LPR from hospitals and wards nationally, and since the registration
of diagnosis codes is a subjective consideration, they are not always
correct. Validation studies were made on each of the diseases and
from these studies we decided which diagnosis codes, diagnosis types
and which patient types to include in the study. The sample size for
the APO validation is small and therefore the results of this could
be rather imprecise. A larger validation study of APO is ongoing,
but results of the study was not available at the deadline of this
thesis. A brief discussion of this is given in chapter 1.3.

The original data set consists of incidences of CVDs, from
subjects of age 20 and above, from all of Denmark from 1980 up
until 2011 and was a large data set. The reason the subjects are age
20+ is because we are interested in subjects with arteriosclerosis.
If subjects get a CVD before they turn 20 it is almost always
because of a congenital disease. When collecting data we also
chose the criterion, that the subjects only should be included with
the first occurrence of one of all four diagnoses. We could have
chosen, that subjects could enter in all four data sets if they had
all diagnosis, but we do not know if one disease could cause one of
the other diseases. In this case the occurrence of the disease could
be because of the old disease and not because of the weather. The
ICD diagnosis codes changed from ICD8 to ICD10 in Denmark
in 1994 and here some definitions were changed, so to make sure
all definitions were the same we chose to narrow the data down
to only consist of incidences of CVDs from 1995 and above. We
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decided to narrow the data further down by only looking at the
10 biggest municipalities, since the subject from this population
probably will give us the same results, as including all incidents.
Because of the municipal merger in 2007 we only used data from
incidents up to this year giving us 12 years with incident CVDs in
the 10 biggest municipalities in Denmark. From DMI we got the
meteorological variables from these municipalities and originally we
wanted to match each subject to the meteorological variable from
the municipality they stayed in for the last three weeks; this idea did
however not work in practice, since a lot of the subjects municipality
codes was not consistent with the municipality codes from the CPR.
The reason for this is that the subjects not necessarily live in the
same municipality as the hospital they are admitted to. Ideally we
would had assigned each subject the meteorological variables that
corresponded to the municipality they have stayed in for the last
three weeks, but since this is not possible we decided to take the
mean of the meteorological variables for the 10 municipalities. Since
Denmark is a relatively small country and the weather therefore
does not change notably depending on location, we decided the
mean of the variables were suitable.

Our analysis took its point of reference in a study of Braga
et al.[10], who conducted a time-series analysis estimating both the
acute and lagged effect of weather on respiratory and cardiovascular
deaths in 12 US cities. Braga et al. used additive Poisson regressions
for each city, with a smooth function of time to capture the
long-term time-trend. To capture the lagged effect they used a
PDLM. When looking at the time-trend for all diagnoses, ACS
and APO incidences decrease from the year 2000, whereas VTE
incidences increase. This could indicate, that VTE has replaced
ACS and APO in some cases.

When doing the analysis we expected to find that the weather, and
especially the temperature, had high influence on the incidences of
CVDs when low and high temperatures occurred, but the results
using this method was equivocal on this point for the four diagnoses.
Actually, for temperature, APO was the only diagnosis, which gave
the outcome we expected. The results are shown in chapter 3 and
we would say that conclusions should be drawn with care, meaning
that in the model we included both a linear and quadratic term and
in the PDLM we fitted to a polynomial of degree three, this way we
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force the effect of the meteorological variables on the incidence CVDs
to look a certain way and it is not clear if the effect shown on the
figures are actually real or we created them ourselves, e.g. the effects
showing on lag 20 are rather high and are probably only presence
because we force it to fit a polynomial of third degree. Ideally we
would see the effect starting high and decreasing the further away
from lag 0 we get, but this was not possible to do with the chosen
model. An obvious idea was to not only look at the meteorological
variables, but also look at the difference from day to day to see
if it was the change in the weather that caused more or fewer
incidences of CVDs. These results was as equivocal as the previous
results and showed that there has to be quite a large change in the
weather for it to have an effect. None of the variables showed signi-
ficant effect, so we chose not to include this analysis when using DLM.

DLM allows the parameters to change over time and this is
perhaps why the results from the analysis using these models give a
more consistent image of the impact of temperature on daily counts
of CVDs. Unlike GAM, high temperature seems to have a negative
effect in the daily incidences of CVDs for all diagnoses. In the
DLM analysis the eight levels of the day of the week have separate
variances. The analysis was also made by letting the variances of
the day of the week levels be the same, which seems to be a fair
assumption looking at the time-trend for each day of the week
during the years. When doing this the cycles turned odd; therefore
we chose to give the levels separate variances. It is worrying that
the cycle can vary this much by changing such a small thing in
the model and it is perhaps an indication that there is not a lot of
information in data. Therefore conclusion of the results should be
drawn with care.

When looking at age groups, the subjects aged 50+ more
often develop incidences of CVDs in comparison with subjects
aged 20-49, this is due to the fact that arteriosclerosis biologically
is something that comes with age. When analyzing on each
gender separately the temperature did not show different influence
according to gender and we do not see a reason why this should not
be correct.

Originally the lag time was chosen to be 20 days, since the
study og Braga et al. used this amount of lag. We do not however
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find it probable that the temperature has an influence on the daily
counts of CVDs for such a long period; therefore we chose the lag
time to be a week when conducting the DLM analyses. Optimally
one could test all lag times to see when there is the largest effect on
the daily counts of incidences of CVDs.

For all analyses the variable showing the most interesting
pattern was the factor indicating the day of the week/holiday. All
days had an significant effect on incidences of CVDs and for all
CVDs it showed a large increase on Monday and a large decrease
in the weekends and small decrease on holidays. The explanation
for this could be that people have a tendency not to go to the
hospital and/or call a general practitioner in the weekends and
holidays, they wait until Monday. Therefore you do not have
increased risk of getting a incidence of CVD on Monday, the
results simply reflect the general behavior of people regarding the
hospital services in Denmark. Another explanation could also be
that people relax in their holidays and weekends and the beginning
of a new week can be stressful. This may lead to an incidence of CVD.

Earlier studies have shown that the daily incidence rate for
CVDs in Denmark was highest during the winter [5][6] and it was
therefore obvious to think that the weather had a say in this.
According to our results the weather do not have a lot of influence
on the incidences of CVDs, but in clarifying the etiology of CVDs,
it it worth investigating further and future work could encompass
the influence of the temperature on the reappearance of CVDs in
subjects. Study in this field is still essential, because it contributes
to clarifying the etiology of CVDs, and it could therefore improve
treatment and preventive strategies. Future work in this field could
include analyses of the association between incidences of CVDs and
air-pollution. It is well known, that meteorological conditions and
air pollution are closely related, [14], and low temperatures prevent
air pollutants from dispersing. This could maybe be an explanation
of why the incidence rate og CVDs are highest during the winter in
Denmark. Other things that could be interesting to investigate, that
we did not include in this study is the hours of sun and change in
lifestyle. When receiving a lot of sun we also receive a lot of vitamin
D and maybe the lack of vitamin D in the winter period in Denmark
could cause an increase in the daily incidence rate for CVDs. The
season can also cause people to change their lifestyle, e.g. change in
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the diet and amount of exercise, which could also very well cause a
increase in the daily incidence rate for CVDs during the winter in
Denmark.

As mentioned before, subjects are only allowed in one of the
four data sets since we do not know if one of the diseases could
cause one of the other diseases. Another issue in the same category
is to adjust for other possible comorbid diseases, such as diabetes
and cancer since these diseases could possibly increase the risk of
getting CVDs and therefore it would not be the weather causing
this. This is not adjusted for in our study.
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5.3 Perspectives

To firmly establish the results presented in this thesis, further analy-
sis needs to be conducted. Conclusion of the results should be drawn
with care, but assuming they are reliable the hospital services in Den-
mark should definitely take the temperature and therefore season of
the year into consideration when evaluation risk factors and people
at risk.
Optimally this means that everyone with high risk of developing
a CVD should travel to warmer climates during the winter season
in Denmark or alternatively stay indoor with higher temperatures.
More realistically people at risk should look into their lifestyle, exer-
cise habits and other risk factors during cold weather and perhaps
make a diet/exercise plan that could counteract the damaging effects
of the cold weather.
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Chapter 6

Generalized Linear
Models

In this chapter the basic theory of generalized linear models is
covered including the theory behind exponential families. Also a
method for estimating parameters is described.

A statistical model includes parameters that describe the
patterns of the data. A simple model is a linear model connecting
the two quantities y and x through a parameter pair (α, β). The
linear model has the form

y = α+ βx,

so if the values of α and β are known, the values of y can be recon-
structed for a given x. However, in practice the relationship between
y and x is only approximately linear and therefore we choose values of
α and β, say a and b, that are suitable to describe the approximately
linear relationship. The quantities a + bx1, . . . , a + bxn, denoted by
ŷ1, . . . , ŷn, are the fitted values and are generated by the model and
the data. In fitting a linear relationship we need to choose the pair
of parameter values (a,b) that makes the ŷ’s as close to the observed
data as possible. [33, p. 4].

One might think a good model is a model, that fits the observed
data well, but in making a model that fits data perfectly there is
no reduction in complexity. Therefore simplicity is desired in any
model, so parameters that are not needed should not be in the model.
A substantially simple model gives better predictions than a more
complex model. Also if a model fits very closely to a particular data
set it will probably not fit very well to another data set related to
the same phenomenon. [33, pp. 7-8].

6.1 The Exponential Family and Generalized
Linear Models

Linear models on the form

75



6. GENERALIZED LINEAR MODELS

E[Yi] = µi = x>i β, (6.1)

are the basis of analyses of continuous data, with Gaussian errors.
In the model, yi, i = 1, . . . , n are independent random variables,
where each yi ∼ N(µi, σ

2), with mean µi and variance σ2 and xi is
the i’th row of a n × p design matrix X containing the covariates.
Associated with each covariate is an usually unknown parameter
β = (β1, β2, . . . , βp)

>, that needs to be estimated from the data.
The reason to model the dependence of yi on xi is to learn more
about the process that produces yi to asses the relative contributions
in explaining yi and to predict yi for some xi. [34, p.45] [33, p.9]. In
our case yi describes the daily counts of incidences of CVDs and xi
consists of seasonality, day of the week/holiday and meteorological
variables for day i.

By using linear models there are some clear limitations e.g.
the response variables have a normal distribution and the
relationship between the response and covariates have to be on the
simple linear form in equation (6.1). A class of models that allows
more possible situations is called generalized linear models (GLMs).
GLMs are a class of models that can be used if the response
variables yi have distributions other than the normal distribution.
Furthermore the relationship between the response and explanatory
variables does not need to be of the simple linear form in equation
(6.1). Finally, the GLMs have the advantage of allowing a common
approach for a set of relevant specific models. In GLM these appear
as special instances of the same approach. [35, p. 224] [34, p.45].

The Exponential Family

GLMs are defined in terms of the exponential family. Let Y be a
random variable, which probability distribution depends on a single
parameter θ. The distribution is part of the exponential family, if
the density function can be written on the form

f(y|θ) = s(y)t(θ)ea(y)b(θ), (6.2)

where a, b, s and t are known functions. Equation (6.2) can be
rewritten as
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f(y|θ) = exp (a(y)b(θ) + c(θ) + d(y)) , (6.3)

where s(y) = exp(d(y)) and t(θ) = exp(c(θ)).

The distribution is said to be on canonical form if a(y) = y. This is
the standard form. The function b(θ) is called the natural parameter
of the distribution. If there are other parameters than the one of
interest, θ, they are regarded as nuisance parameters forming parts
of the functions a, b, c and d. Nuisance parameters are treated as if
they are known.
Many well-known distributions belong to the exponential family, e.g.
the normal, Poisson and binomial distributions. [34, p. 46].

Some Properties of the Exponential Family

Here some of the most important properties of the exponential
family are stated.

Expected Value
From the definition of a probability density function the area under
the curve is ∫

f(y|θ)dy = 1. (6.4)

If this equation is differentiated on both sides with respect to θ,

d

dθ

∫
f(y|θ)dy =

d

dθ
1 = 0. (6.5)

If the differential and integral are interchanged∫
df(y|θ)

dθ
dy = 0. (6.6)

If equation (6.5) is differentiated twice with respect to θ and the
integral and differential are interchanged, the equation is∫

d2f(y|θ)

dθ2
dy = 0. (6.7)

From equation (6.3) the distribution of an exponential family is

f(y|θ) = exp (a(y)b(θ) + c(θ) + d(y)) ,
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so

df(y|θ)

dθ
=
(
a(y)b′(θ) + c′(θ)

)
f(y|θ).

From equation (6.6)∫
(a(y)b′(θ) + c′(θ))f(y|θ) = 0,

since
∫
a(y)f(y|θ)dy = E[a(Y)] from the definition of the expected

value and since
∫
c′(θ)f(y|θ)dy = c′(θ) and because of the area

under the curve is one according to equation (6.4) we get

b′(θ)E[a(Y)] + c′(θ) = 0

m

E[a(Y)] = −c
′(θ)

b′(θ)
. (6.8)

Variance
In the same way we obtain the variance. By use of simple differential
rules

d2f(y|θ)

dθ2
=

(
a(y)b′′(θ) + c′′(θ)

)
f(y|θ)

+
(
a(y)b′(θ) + c′(θ))2f(y|θ

)
. (6.9)

The second term on the right hand side of equation (6.9) can be
rewritten as(

a(y)b′(θ) + c′(θ)2
)
f(y|θ) = b′(θ)2 ·

(
a(y) +

c′(θ)

b′(θ)

)2

f(y|θ)

= b′(θ)2 (a(y)− E[a(Y)]) f(y|θ),

so the right hand side of equation (6.9) is

(
a(y)b′′(θ) + c′′(θ)

)
f(y|θ) + b′(θ)2 (a(y)− E[a(Y)]) f(y|θ).

By the use of equation (6.7) and since per definition∫
(a(y)− E[a(Y)])2 f(y|θ)dy = Var[a(Y)]
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and because of the calculations already shown in finding the expected
value,∫

d2f(y|θ)

dθ2
dy = b′′(θ)E[a(Y)] + c′′(θ) + b′(θ)2Var[a(Y)] = 0.

This can be rearranged to

Var[a(Y)] = −b
′′(θ)E[a(Y)] + c′′(θ)

b′(θ)2

= −
b′′(θ)−c

′(θ)
b′(θ) + c′′(θ)

b′(θ)2

=
b′′(θ)c′(θ)− c′′(θ)b′(θ)

b′(θ)3
. (6.10)

Score Statistic and Information
From equation (6.3) the log-likelihood function for the distribution
of the exponential family is

l(θ|y) = a(y)b(θ) + c(θ) + d(y), (6.11)

and the score statistic and the information are derived from the
derivatives of the log-likelihood function w.r.t. θ. The score statistic
is

U(θ|y) =
dl(θ|y)

dθ
= a(y)b′(θ) + c′(θ).

As U depends on y, it can be regarded as a random variable, i.e.

U = a(Y)b′(θ) + c′(θ).

Using equation (6.8), the expected value of U is

E [U ] = E [a(Y)] b′(θ) + c′(θ)

= −c
′(θ)

b′(θ)
b′(θ) + c′(θ)

= 0. (6.12)

The information J is the variance of U and, using equation (6.10),
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it is given by

J = Var [U ]

= b′(θ)2Var [a(Y)]

= b′(θ)2
b′′(θ)c′(θ)− c′′(θ)b′(θ)

b′(θ)3

=
b′′(θ)c′(θ)

b′(θ)
− c′′(θ). (6.13)

Furthermore

J = E
[
U2
]

= −E
[
U ′
]
,

where the first equality comes from the fact that for any random
variable

Var(U) = E[U2]− (E[U ])2

and from equation (6.12). The second equality comes from differen-
tiation of U w.r.t. θ

U ′ =
dU

dθ
= a(Y)b′′(θ) + c′′(θ),

and taking the expected value of this using equation (6.8) and equa-
tion (6.13):

E[U ′] = E[a(Y)]b′′(θ) + c′′(θ)

= −c
′(θ)

b′(θ)
b′′(θ) + c′′(θ)

= −Var[U ] = −J .

Generalized Linear Models

In a GLM, Y = [Y1, . . . , Yn]> is a set of independent random vari-
ables, each with a distribution from the exponential family and it has
mean vector µ = [µ1, . . . , µn]>. If Y satisfies the following properties
it can be described by a GLM:

1. The distribution of each Yi is on canonical form and depends
on a single parameter θi, i.e.

f(yi|θi) = exp (yibi(θi) + ci(θi) + di(yi)) .
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2. The distributions of all the Yi’s are of the same form, so the
indices on b, c and d are not needed. Thus the joint pdf of
Y1, . . . , YN is

f(y1, . . . , yn | θ1, . . . θn) =
n∏
i=1

exp (yib(θi) + c(θi) + d(yi))

= exp

(
n∑
i=1

yib(θi) +

n∑
i=1

c(θi) +

n∑
i=1

d(yi)

)
.

Usually, for model specification, it is a smaller set of unknown para-
meters β1, . . . , βp, where p ≤ n that is interesting rather than the θi’s.

Suppose that E[Yi] = µi, where µi is some function of θi
and that xi is a p × 1 vector of covariates, then the linear predictor
η, a linear combination of the covariates, is given by

η =

p∑
i=1

x>i β.

For a GLM there also exists a link function

g(µi) = ηi = x>i β, (6.14)

for i = 1, . . . , n, where g is a monotone, differentiable function, that
describes the relationship between the expected value and the linear
predictor. xi is a p× 1 vector of explanatory variables:

xi =

 xi1
...
xip

 , so x>i = [xi1 . . . xip] ,

where x>i is the i’th row of the design matrix X. The parameter
vector β is a p× 1 vector:

β =

 β1
...
βp

 .

Thus the GLM has three components:
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1. Response variables Y1, . . . , YN , which are assumed to share the
same distribution from the exponential family.

2. A set of parameters β and covariates

X =

 x>1
...
x>n

 =

 x11 . . . x1p
...

. . .
...

xn1 . . . xnp


3. A monotone, differentiable link function g such that

g(µi) = ηi = x>i β,where µi = E[Yi]

for i = 1, . . . ,n.

[34, pp. 51-52] [33, pp. 26-28].

6.2 Estimation of Parameters

When a model is chosen, it is required to estimate the unknown pa-
rameters and to obtain the precision of these. This section describes
how to obtain these parameter estimates for GLMs using methods
based on maximum likelihood estimation (MLE).

6.2.1 Maximum Likelihood Estimation

Let Yi, . . . , Yn be independent random variables that satisfy the pro-
perties of GLMs described in section 6.1. It is desired to estimate
the parameters β, which are related to the Yi’s through E[Yi] = µi
and through the link function g(µi) = x>i β. For GLMs the estima-
tion is done by defining a measure of the goodness of fit between
the observed data and the fitted values. Described in this section is
estimates obtained by maximizing the likelihood of the parameters
for the observed data.

Assuming canonical form and using equation (6.11), the
log-likelihood function for each Yi is defined as

li = yib(θi) + c(θi) + d(yi),
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where i = 1, . . . ,n and the functions b, c and d are as in section 6.1.
The joint log-likelihood function for all the Yi’s is therefore

l =
N∑
i=1

li =
N∑
i=1

yib(θi) +
N∑
i=1

c(θi) +
N∑
i=1

d(yi).

Also, since GLMs are defined in terms of the exponential family, E[Yi]
and Var[Yi] are given by

E[Yi] = µi = −c
′(θi)
b′(θi)

, (6.15)

Var[Yi] =
b′′(θi)c′(θi)− c′′(θi)b′(θi)

b′(θi)3
, (6.16)

as shown in section 6.1. The link function is given by

g(µi) = ηi = x>i β. (6.17)

To maximize the log-likelihood function it is necessary to find the
derivative with respect to the parameter βj . This is the score function
and is found by use of the multivariable chain rule:

∂l

∂βj
= Uj =

n∑
i=1

∂li
∂βj

=

n∑
i=1

(
∂li
∂θi

∂θi
∂µi

∂µi
∂βj

)
, (6.18)

for all j = 1,2, . . . , p.

Each of the terms on the right hand side of equation (6.18) is com-
puted separately. Using equation (6.15), the first term is

∂li
∂θi

= yib
′(θi) + c′(θi) = b′(θi)(yi − µi).

The second term can be rewritten as
∂θi
∂µi

=
1
∂µi
∂θi

.

Differentiation of equation (6.15) yields

∂µi
∂θi

=
−c′′(θi)b′(θi) + c′(θi)b′′(θi)

b′(θi)2

= b′(θi)Var [Yi] ,
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using equation (6.16). Therefore,

∂θi
∂µi

=
1

b′(θi)Var [Yi]
.

The last term is rewritten using equation (6.17) and the chain rule:

∂µi
∂βj

=
∂µi
∂ηi

∂ηi
∂βj

=
∂µi
∂ηi

xij .

Thus, the scores Uj are given by

Uj =
N∑
i=1

b′(θi)(yi − µi)
1

b′(θi)Var [Yi]

∂µi
∂ηi

xij

=

N∑
i=1

[
yi − µi
Var [Yi]

xij

(
∂µi
∂ηi

)]
, (6.19)

for all j = 1,2, . . . , p.

The expected information matrix J is found in terms of the variance-
covariance of the Uj ’s:

Jjk = E[UjUk] = E
[
∂l

∂βj

∂l

∂βk

]
.

By use of the score function given in equation (6.19), the information
matrix is

Jjk = E

[(
n∑
i=1

[
Yi − µi
Var [Yi]

xij

(
∂µi
∂ηi

)])
(

n∑
h=1

[
Yh − µh
Var [Yh]

xhk

(
∂µh
∂ηl

)])]
.

Since the Yi’s are independent, E[(Yi − µi)(Yh − µh)] = 0 for i 6= h,
and therefore

Jjk =

N∑
i=1

E
[
(Yi − µi)2

]
Var [Yi]

2 xijxik

(
∂µi
∂ηi

)2

. (6.20)

Equation (6.20) can be simplified by applying that
E[(Yi − µi)2] = Var[Yi]:

Jjk =
N∑
i=1

xijxik
Var [Yi]

(
∂µi
∂ηi

)2

, (6.21)

for all j and k.
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Fisher Scoring Method

The MLE is the solution in which the scores are all equal to zero.
In order to solve this equation, a Newton-Raphson algorithm can be
used. Normally this algorithm uses the Hessian matrix, but using
Fisher scoring it will be replaced by the expected information J .
This is done, since it is easier to calculate. Let β̂(m) denote the
estimation of the vector β at the m’th iteration. Then the (m+1)’th
estimate is given by

β̂(m+1) = β̂(m) − J−1U(β̂(m)), (6.22)

where β̂(m+1) is the vector of estimates of the vector parameter β
at the (m + 1)’th iteration. The term

[
J (m)

]−1 is the inverse of
the expected information matrix with elements Jik given in equation
(6.21) evaluated at β̂(m), and U(m) is the vector of elements given in
equation (6.19), both evaluated at β̂(m).

If both sides of equation (6.22) are multiplied by J (m), we get

J (m)β̂(m+1) = J (m)β̂(m) + U(β̂(m)), (6.23)

and from equation (6.21) the information J can be written as

J = X>WX,

where W is a n× n diagonal matrix with elements

wii =
1

Var[Yi]

(
∂µi
∂ηi

)2

. (6.24)

The expression on the right side of equation (6.22) evaluated at β̂(m).
is the vector with elements

p∑
k=1

n∑
i=1

xijxik
Var[Yi]

(
∂µi
∂ηi

)2

β̂
(m)
k +

N∑
i=1

(yi − µi)xij
Var[Yi]

(
∂µi
∂ηi

)

=

p∑
k=1

n∑
i=1

xijw
(m)
ii xikβ̂

(m)
k +

N∑
i=1

xijw
(m)
ii

(
∂µi
∂ηi

)
(yi − µi)

=
n∑
i=1

xijw
(m)
ii

(
p∑

k=1

xikβ̂
(m)
k +

(
∂µi
∂ηi

)
(yi − µi))

)

=
n∑
i=1

xijw
(m)
ii z

(m)
i ,
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where z(m)
i =

∑p
k=1 xikβ̂

(m)
k +

(
∂µi
∂ηi

)
(yi − µi)) and with µi and ∂ηi

∂µi

evaluated at β̂(m). This follows from equations (6.21) and (6.19).
Therefore the right hand side of equation (6.23) can be written as

X>Wz,

where z has elements

zi =

p∑
k=1

xikβ̂
(m)
k + (yi − µi)

(
∂ηi
∂µi

)
, (6.25)

with µi and ∂ηi
∂µi

evaluated at β̂(m) and is called the adjusted depen-
dent variable. Hence equation (6.23) can be written as

X>WXβ̂(m+1) = X>Wz. (6.26)

This is on the same form as normal equations for a linear model
obtained by weighted least squares, except this has to be solved ite-
ratively. Thus by using the Fisher scoring method to solve the scores
the MLE of β is equivalent to the MLE of β produced by the iterative
weighted least squares procedure.

Most statistical packages that includes procedures for fitting GLM
have an algorithm based on equation (6.26). Begin by using an ini-
tial approximation β̂(0) to evaluate z and W . Then equation (6.26)
is solved to yield β̂(1), which in turn is used to obtain better approxi-
mation for z and W , and so on until the change between succeeding
iterations β̂(m) and β̂(m−1) are sufficiently small. When the diffe-
rence is sufficiently small, β̂(m) is chosen as the maximum likelihood
estimate. [34, ch.4] [33, pp. 23-25] [36, pp. 137-139].

6.3 Models for Count Data

In this thesis we are dealing with count data. Count data is for
example a number of certain events within a fixed period of time or
frequencies in cells of contingency tables. In our case we have daily
counts of incidences of CVDs as response. When modeling count data
it is often reasonable to assume an underlying Poisson distribution
Po(µ). The Poisson distribution is defined as follows
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Definition 6.1 (Poisson Distribution)
Let Y be the number of occurrences, then the probability distribu-
tion can be written as

f(y) =
µye−µ

y!
,

where y = 0,1,2, . . . and µ is the average number of occurrences.
For the Poisson distribution, E[Y ] = µ and Var[Y ] = µ.

The parameter µ is often described as a rate in terms of units of
exposure. The effect of covariates on the response Y is modeled
through µ.

In this chapter two situations are described. In the first situation the
events are subject to varying amounts of exposure, which needs to be
taken into account in the modeling of the events. The other covariates
may be continuous or categorical. In this situation Poisson regression
is used. In the other situation the events have a constant amount of
exposure and the covariates are usually categorical. If there is only
a few covariates the data is usually summarized in a cross-classified
table, where the response is the frequency in every cell of the table.
The variables which define the table is treated as covariates. The
study design can cause constraints on the cell frequencies e.g. the
population is equal to 400. These constraints need to be taken into
account in the modeling. The term log-linear model is used for GLMs
appropriate for this situation. [34, pp.165-166].

6.3.1 Poisson Regression

Let Y1, . . . , Yn be independent random variables with Yi denoting the
number of events observed from the exposure ni for the ith covariate
pattern. The expected value of Yi can be written as

E[Yi] = µi = niθi.

For example, suppose Yi is the number of insurance claims for a
particular make and model of a car. This number Yi will depend on
the number of cars of this type that are insured at the insurance
company, ni, and other variables that effect θi, such as age of the
car and where it is used.
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The dependence of θi on the explanatory variables is usually modeled
by

θi = exp(x>i β), (6.27)

so the GLM is

E[Yi] = µi = ni exp(x>i β), Yi ∼ Po(µi)

and the natural link function is the logarithmic function

log(µi) = log(ni) + x>i β.

Here the term log(ni) is called the offset and is a known constant,
which is readily incorporated into the estimation procedure. xi is
the covariate pattern and β is the parameter vector as usual.

6.3.2 Log-Linear Models

Before specifying log-linear models in contingency tables it is impor-
tant to consider how the study design has limited the data, since
the limitations will influence the choice of the probability models to
describe the data.

Probability models for contingency tables

Let y be a vector describing the frequencies Yi in N cells of the
cross-tabulated table.

Poisson Model

If there is no constraints on the Yi’s they can be modeled as inde-
pendent random variables with parameters E[Yi] = µi and joint pdf

f(y,µ) =

N∏
i=1

µyii e
−µi

yi!
,

where µ is a vector of the µi’s.
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Multinomial Model

If the only constraint is, that the sums of the Yi’s is n, then a multi-
nomial model is used:

f(y,µ|n) = n!

n∏
i=1

θyii
yi!
,

where
∑n

i=1 θi = 1 and
∑N

i=1 yi = n. Here E[Yi] = nθi. For a 2
dimensional table, let j denote the rows and k denote the columns,
then the most common hypothesis is if the rows and columns are
independent, so

θjk = θj·θ·k,

where θj· and θ·k is the marginal probabilities with
∑

j θj· = 1 and∑
k θ·k = 1. This hypothesis can be tested by comparing the fit of

two linear models for the logarithm of µjk = E[Yjk];

log(µjk) = log(n) + log(θjk) and
log(µjk) = log(n) + log(θj·) + log(θ·k).

Product Multinomial Model

If there are more fixed marginals than just the total n, then an ap-
propriate product of multinomial distributions can be used as model.

For example a three dimensional table with J rows, K columns and
L layers, if the row totals are fixed in every layer the joint pdf of the
Yjkl’s is

f(y|yj·l, j = 1, · · · , J, l = 1, · · · , L) =

J∏
j=1

L∏
l=1

yj·l!
K∏
k=1

θ
yjkl
jkl

yjkl!
,

where
∑

j

∑
k θjkl = 1 for l = 1, . . . , L and E[Yjkl] = y··lθjkl.

All the above mentioned is based on the Poisson distribution and the
E[Yi]’s can be written as a product of parameters and other terms.
Therefore the natural link function for the Poisson distribution yields
a linear component

log(E[Yi]) = constant + x>i β.
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The term log-linear model is used to describe all these GLMs. They
are typically hierarchical, which means that if a higher order term is
included in the model, all the related lower order terms have to be
included in the model as well. [34, pp. 171-178].
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Chapter 7

Generalized Additive
Models

A generalized additive model (GAM) is an extension of the GLM,
covered in chapter 6.

7.1 Additive Models

Let y = (y1, . . . , yn) denote the response variable and let
x>i = (xi1, . . . ,xip) be the i’th row of an n×p design matrix X, where
each x>i is a 1× p vector of explanatory variables associated with yi.
It is desired to model the dependence of yi on xi. As mentioned in
section 6.1, the reason to do this is to learn more about the process
that produces yi and to asses the relative contributions in explaining
yi and maybe to predict yi for xi.

A standard tool for this is a multiple linear regression given by

E [Y |xi] = α+ xi1β1 + . . .+ xipβp + εi,

where E[εi] = 0, Var[εi] = σ2 and i = 1, . . . , n. The problem with
this regression model is that it assumes the dependence of yi on x>i
is linear. A way to generalize this model, so the dependence of yi
on x>i is no longer linear is by use of a smoothing function, often
just called a smoother. This can be thought of as a description of
the dependence of yi on x>i and as nonparametric estimates of the
regression model

E [Yi|xi] = s(xi1, . . . , xip) + εi,

where i = 1, . . . , n . Smoothers are described further in the next
section.

An additive model (AM) extends the standard linear regres-
sion by modeling the mean of the response yi as an additive sum of
smoothed effects from the covariates and is defined by

E [Yi|xi] = αi +

p∑
j=1

sj(xij) + εi,
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where i = 1, . . . ,n and the errors εi are independent of the xij ’s,
E[εi] = 0 and Var[εi] = σ2. The smoothers, sj(·), are arbitrary
univariate functions for each covariate and E [sj(xij)] = 0. [36, pp.
1-5, 82-89].

7.1.1 Smoothing

A smoother is a tool that summarizes the trend of the response yi as
a function of measurements x>i , but has less variation than yi itself.
An important property of a smoother is that it is nonparametric,
i.e. that the smoother does not assume a rigid form for dependence
of yi on x>i . For a single covariate we have E [Yi|xi] = s(xi) + εi,
where i = 1, . . . , n and s(xi) is an arbitrary smooth function to be
estimated by any scatterplot smoother, e.g. a running mean, running
line, kernel estimate or a spline. A scatterplot smoother is defined as
following

Definition 7.1 (Scatterplot Smoothing)
Suppose we have data of the form (x1,y1), . . . , (xn, yn) and let
y = (y1, . . . , yn)> be the response and x = (x1, . . . , xn)> denote the
covariates. A scatterplot smoother of y against x is then defined as
a function

s(x) = S(x|x,y),

which at each x ∈ R ∈ {x1, . . . ,xn} estimates the response yi on x.

Often there is more than one covariate, and for p covariates
x>j = (x1j , x2j , . . . , xnj), where j = 1, . . . , p it can be solved as in the
single covariate case, by adding polynomial terms in a p-dimensional
scatterplot smoother, but it will be rather difficult to choose which
terms will be appropriate. For simplicity, let the p covariates be
denoted x>j = (x1j , x2j , . . . , xnj) = Xj . Let X = (X1, . . . , Xp). The
additive model is described by E [Yi|X] =

∑p
j=1 sj(Xj) and can be

estimated iterative by a so called Backfitting Algorithm. Consider
two covariates X1 and X2 then E [Yi|X1, X2] =

∑2
j=1 sj(Xj). The

estimate of s1 is found as in the single-case manner. Given the
estimate of s1 an intuitive way to estimate s2 is by smoothing
the residual y − s1 on X2. With this estimate of s2 an improved
estimate of s1 is given by smoothing the residual y − s2 on X1 an
so on until the estimates of s1 and s2 are such that the smooth of
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y − s1 on X2 is the estimate of s2 and the other way around. This
iterative smoothing process is an example of a backfitting algorithm.

There are two main uses for smoothers. The first is descrip-
tion; the scatterplot smoother can be used visually to see the trend
in a scatterplot of yi against xij , j = 1, . . . , p. The second use of
the smoother is to estimate the dependence of the mean of yi on
x>i , and thus serve as a foundation for the estimation of AMs.
An example of a simple smoother is in the case of a categorical
predictor, e.g. gender. In this case, to smooth y, the values of y
can be averaged in each category. This satisfies the requirements
for a scatterplot smooth; it captures the trend of yi on x>i and is
smoother than the y values themselves. This is the basic concept
for smoothing in the most general setting. Most smoothers imitate
this category averaging through local averaging, that is, averaging
the y-values of observations having the covariate values close to a
target value. The averaging is then done in neighborhoods around
the target value. This sums up to two main decisions that has to be
made in scatterplot smoothing:

1. How to average the y values in each neighborhood.

2. How large the neighborhoods should be.

How to average the y values in a neighborhood is a question of
which type of smoother to use, since smoothers differs mainly in their
method of averaging.Intuitively, large neighborhoods will produce an
estimate with low variance but potentially high bias, and vice versa
for small neighborhoods. Thus there is a fundamental trade-off be-
tween bias and variance, determined by the smoothing parameter.
[36, pp. 1-13] [37].

Smoothers

There are a lot of different smoothers, e.g. parametric regression,
bin smoother, running-mean and splines. For the GAM analysis in
this thesis we have used a LOESS smoother.

Let the target value x0 denote one of the xjs, and assume
there are no duplicates of it. If there is, the average of the y values
for the x0’s is simply used as the estimate of s(x0). If there are no
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duplicates of x0, the y values corresponding to the x values close to
x0 is averaged, this is what a running-mean smoother does. A way
to choose which x values are close to x0 is to choose x0 itself and
the k points that are closest to x0 on the left and right side. This is
called a symmetric nearest neighborhood and is denoted N s(x0). A
definition for a symmetric nearest neighborhood for a arbitrary xi is
given by

N s(xi) = {j|max(i− k, 1) ≤ j ≥ min(i+ k, n)},

and the running-mean for the target value x0 is then defined as

s(x0) =

∑
j∈Ns(x0)

(yi)

|N s(x0)|
.

If it is not possible to choose k points at each side of xi, as many as
possible are chosen. How to define the symmetric nearest neighbors
at target points x0 other than the xi in the sample is not obvious.
The fit between the two values in x in the sample adjacent to x0
can be interpolated linearly, or alternatively the symmetry can be
ignored and the r points closest to x0, no matter which side, are
chosen. This is called nearest neighborhood. In practice this simple
smoother does not work very well and tends to be very wiggly and
have a tendency to flatten out near the endpoints. Because of this,
it can be severely biased. A generalization of the running-mean that
eases the bias problem is to compute a least-squares line instead of
a mean in each neighborhood. The running-line smoother is defined
by

s(xi) = α̂(xi) + β̂(xi)xi.

were α̂(xi) and β̂(xi) are least-square estimates for the data
points (xj , yj), where j ∈ N s(xi). The estimated smooth at xi
is then the value of the fitted line at xi. This is done for each
xi. The running-line captures the trend in the data, but is still jagged.

The appearance of the running-line smoother is controlled
by the parameter k. Large values of k tend to produce smoother
curves than small values of k. In extreme cases where each
neighborhood contains all the data, the running-line is the
least-squares. If each neighborhood consists of only the point itself
and one neighbor, the smoother interpolates the data.
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A way to improve the appearance of the running-line smooth is by
using weighted least-squares fit in each neighborhood. The running-
line can produce jagged output because points outside the neighbor-
hood are given zero weight and points inside the neighborhood are
given equal (nonzero) weight. Thus as the neighborhoods move from
left to right, there are changes in the weight given to the leftmost
and rightmost points. This problem can be solved by giving the high-
est weight to xi and let the weight smoothly decrease when moving
further away from xi. This is called a locally-weighted running-line
smoother (LOESS), where the weights are assigned to each data point
in the neighborhood by use of the tri-cube weight function

W

(
|x0 − xj |
δ(xj)

)
,

where δ(x0) = maxj∈Ns(x0) |x0 − xj | is the distance of the nearest
neighbor furthest away and the weights are then assigned by

W (u) =

{
(1− u3)3 for 0 ≤ u < 1

0 otherwise.

[36, pp. 14-18] [38].

7.2 Generalized Additive Models

In section 6.1 GLMs were defined. GLMs, that themselves are a
generalization of linear regression models can also have an additive
extension. As in linear models the predictor effects in a GLM are
assumed to be linear, GAMs extend these models the same way ad-
ditive models extend a linear regression model, by replacing some of
the linear terms

∑p
j=1Xjβj with smoothers.

7.2.1 Estimation of a GAM via local scoring

In section 6.2.1 a way to compute the MLE for a GLM was presented.
The method was Fisher scoring and was shown to be equivalent to
the iterative weighted least squares procedure, where the estimates
were found by repeatedly regressing the adjusted dependent variable
zi, equation (6.25), on xi with weights wi from equation (6.24). This
technique can also be used to estimate the smoothing functions s(·)’s
in GAMs, by repeatedly smoothing the adjusted dependent variable
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on X. Therefore the estimation of the s(·)’s is done by replacing the
linear predictor ηi =

∑p
j=1Xjβj in the adjusted dependent variable,

equation (6.25), with the additive predictor ηi =
∑p

j=1 sj(Xj), where
some of the functions sj may be linear. Apart from this change in zi
the procedure is the same as shown in section 6.2.1 and is called local
scoring since local averaging is used to generalize the procedure. [37]
[36, pp. 136-141].
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Chapter 8

Inference and Model
Validation

8.1 Inference

A main tool for statistical inference is hypothesis testing, where two
related models are compared to see how they fit data. For a GLM, the
two models in the hypothesis test should have the same probability
distribution and the same link function, but the parameters of the
linear component of one model is an extension of the parameters of
the linear components of the other model. To make comparisons of
the two models, summary statistics are used. The summary statistics
are used to describe how well the model fits the data and are therefore
called goodness of fit statistics. Goodness of fit statistics can among
others be score, Wald or likelihood ratio statistics.

8.1.1 Goodness of Fit and Deviance

The goodness of fit of a statistical model describes how well the
model fits the data. Goodness of fit can be assessed using a number
of measures that generally compare the observed values with the
fitted values generated by the model.

Two models can be tested by comparing their goodness of
fit. The two models need to be either nested or hierarchical, in other
words the models have to have the same probability distribution
and the same link function, but the linear component of the simpler
model M0 is a special case of the linear component of the more
general model M1.

Let β̂max denote the MLE of the parameter vector for the saturated
model, i.e. the model with as estimated parameters number of ob-
servations. Let β̂ denote the MLE for the simpler model M0. The
likelihood function for the saturated model evaluated at β̂max is de-
noted by L(β̂max|y) and L(β̂|y) denotes the maximum value of the
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likelihood function of the model M0 evaluated at β̂. Then the likeli-
hood ratio is given by

λ =
L(β̂max|y)

L(β̂|y)
.

Often the logarithm of the likelihood ratio is used. It gives the diffe-
rence between the log-likelihood functions,

log(λ) = l(β̂max|y)− l(β̂|y). (8.1)

Large values of equation (8.1) imply that the model of interest, M0,
does not fit the data well compared to the saturated model.

The likelihood ratio statistic, which is also called the deviance, has
a chi-squared distribution and for that reason it is more used than
log(λ). The deviance is given by

D = 2 log(λ)φ = 2(l(β̂max|y)− l(β̂|y)).

If O is an adequate model, then D has a χ2
(m−p) distribution, where

m is the number of parameters in the saturated model and p is the
number of parameters in the simpler model. [39, section 2.1.6] [34,
chapter 5]

8.1.2 Hypothesis testing

Consider a hypothesis H1, corresponding to an extensive model M1

of p parameters. The null hypothesis H0 states that a simpler model
M0 of q parameters, of which M1 is an extension, is as suitable to
describe data as M1. The hypotheses are

H1 : β =



β1
...
βq
βq+1
...
βp


,

H0 : βq+1 = . . . = βp = 0,

where q < p < N and N is number of observations, i.e. the null hypo-
thesis states that the extra parameters in modelM1 are all zero. The
two hypotheses are tested by using the difference in the deviances:
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4D = D1 −D0 = 2
(
l(β̂1|y)− l(β̂0|y)

)
,

where β̂1 is the MLE of model M1 and β̂0 is the MLE of model M0.
If both of the models describe data well then D0 ∼ χ2

(n−q),
D1 ∼ χ2

(n−p), and 4D ∼ χ
2
(p−q). If 4D is consistent with the χ2

(p−q)
distribution, the model M0 is chosen, since it is the simplest one. If
D0 is larger than what is expected from χ2

(n−q), then model M0 does
not describe the data well. If M1 describes data well, but M0 does
not, then 4D is bigger than what would be expected from χ2

(p−q).
For nonparametric and additive models, the deviance still makes
sense in assessing models and their differences, but distribution
theory is undeveloped. [34, chapter 5] [36, pp. 155-158].

If M0 and M1 do not satisfy that M0 ⊆ M1 the above de-
scribed goodness of fit test does not apply. Instead Akaike’s
Information Criterion (AIC) can be used. AIC is also based on the
log-likelihood function and has an adjustment for the number of
parameters estimated and for the amount of data. For a model AIC
is defined as

AIC = −2l(β̂|y) + 2p,

where p is the number of estimated parameters. AIC is calculated for
both models and the one with the lowest AIC is chosen. [34, p.137].

8.1.3 Goodness of Fit for Poisson Models

In this study we use models with Poisson distributions; therefore the
goodness of fit for Poisson models is given.
The fitted values of a Poisson model are given by

ŷi = µ̂i = ni exp(x>i β̂),

where i = 1, . . . , N . For a Poisson distribution E[Yi] = Var[Yi], so the
standard error of yi is estimated by

√
ŷi and the Pearson residuals

are given by

ri =
yi − ŷi√

ŷi
, (8.2)

where yi is the observed values of Yi.
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In the Poisson distribution the Pearson residuals in equation (8.2)
and the chi-squared goodness of fit statistic are related by

X2 =
n∑
i=1

r2 =
n∑
i=1

(yi − ŷi)2

ŷi
.

Deviance for a Poisson Model
If the responses Y1, . . . , Yn are independent and Yi ∼ Po(λi), the
log-likelihood function is

l(θ|y) =
n∑
i=1

yi log(λi)−
n∑
i=1

λi −
n∑
i=1

log(yi!).

In the saturated model the λi’s are all different, so β = [λ1, . . . , λN ]>.
The maximum value of the log-likelihood function are

l(β̂max|y) =
n∑
i=1

yi log(yi)−
n∑
i=1

yi −
n∑
i=1

log(yi!),

since the maximum likelihood estimates are λ̂i = yi. Suppose that
the model of interest have p < N parameters. The MLE β̂ can be
used to calculate estimates λ̂i and, hence, fitted values ŷi = λ̂i, since
E[Yi] = λi. In this case the maximum value of the log-likelihood is

l(β̂|y) =
n∑
i=1

yi log(ŷi)−
n∑
i=1

ŷi −
n∑
i=1

log(yi!).

Hence, the deviance is

D = 2(l(β̂max|y)− l(β̂|y))

= 2

n∑
i=1

[
yi log

(
yi
ŷi

)
− (yi − ŷi)

]
. (8.3)

The goodness of fit statistic X2 and the deviance D are closely re-
lated; by the use of the Taylor expansion

y log

(
y

ŷ

)
= (y − ŷ) +

1

2

(y − ŷ)2

ŷ
+ . . . ,
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so approximately from equation (8.3)

D = 2
∑
i

[
(yi − ŷi) +

1

2

(yi − ŷi)2

ŷi
− (yi − ŷi)

]

=
N∑
i=1

[
(yi − ŷi)2

ŷi

]
= X2.

The statistics D and X2 can be used directly as measures of goodness
of fit, since they both can be calculated from the data and the fitted
model, because they do not contain any nuisance parameters. They
can be compared with the central chi-squared distribution with N−p
d.o.f., where p is the number of estimated parameters. [34, pp. 166-
171].

8.2 Model Validation

Model validation is an essential part of statistics. It is an important
tool used to asses the accuracy of the chosen model and the achieved
results, and any thorough statistical analysis is completed by
checking the model. When a model fits the data well, the predicted
data generated by the model are similar to the observed data.

The residuals from the fitted model are the difference be-
tween the observed data, y = (y1, . . . ,yn), and the predicted data,
ŷ = (ŷ1, . . . ,ŷn), generated by the chosen model, i.e. for each
i = 1, . . . ,n the i’th residual is

ri = yi − ŷi.

If the model is adequate, the residuals should appear completely ran-
dom and should, since presumably random, not have any structural
relationship. On the other hand, if there seem to be a non-random
structure the model fits the data poorly. The residuals can be evalu-
ated graphically. The different aspects of the model can be evaluated
using different types of plots.

Standardized Residuals Plot and QQ-plot

Residuals are standardized by subtracting the mean of the residuals
and dividing by their standard deviation, i.e. if the model is appropri-
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ate, the standardized residuals approximately follow a standard nor-
mal distribution. When plotted against the fitted values in a scatter
plot, the standardized residuals should lie close to the line y = 0, ty-
pically within y = ±2, and an equal number of points should be above
and below the line and should appear non-systematic. When plotted
in a QQ-plot, the standardized residuals should follow a straight line.

Leverage Plot

Leverage points are observations made at extreme or outlying values
of the independent variables. The measure of leverage is given by the
diagonal of the hat matrix, i.e. the matrix that maps the vector of
observations into the vector of fitted values. The leverages, denoted
hii, can be plotted on the y-axis against the squared residuals on the
x-axis. Observations with large residuals and large leverages indicate
that the model fits the data poorly. [33, pp. 404-405][36, p. 75].

Cook’s Distance

Cook’s distance is commonly used as an estimate of the influence
of an observation on the regression model; it measures the effect it
would have to delete a given observation from the dataset. Especially
observations with large residuals or high leverage are of interest and
could possibly distort the outcome of the regression. Cook’s distance
is calculated as

Di =

∑n
j=1

(
ŷj − ŷj(i)

)2
p ·MSE

,

where ŷj is the prediction from the full regression model, ŷj(i) is the
prediction from the model where observation i is omitted, p is the
number of fitted parameters, and MSE is the mean square error of
the regression model. The larger Di is, the more influence the i’th
observation has on the model. [36, p. 256][33, pp. 406-407].

Plots from the validation of our model can be found at
http://homes.student.aau.dk/cbisga07/.
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Chapter 9

State Space Models

When serial correlation is present in data, GLMs, chapter 6, may
not be adequate for analysis. One approach to solve this problem
is to use dynamic generalized linear models (DGLM), also referred
to as state space models (SSMs). In this chapter, general SSMs are
defined, and the filtering, smoothing and forecasting processes for
SSMs are derived.

Consider a time series (Yt)t≥1. Let y1:t denote the set of observations
{y1, y2, . . . ,yt−1, yt}. The time series is said to be a Markov chain if,
for any t > 1,

p (yt|y1:t−1) = p (yt|yt−1) ,

that is, if the future state of the time series depends only on the
present state and not on past states. This can also be expressed as
Yt and Y1:t−2 being conditionally independent given yt−1.
For a Markov chain the finite-dimensional joint distributions can be
written as

p (y1:t) = p (y1)
t∏
i=2

p (yi|yi−1) .

A SSM is defined as follows.

Definition 9.1 (State Space Model)
A state space model consists of a latent Rp-valued time series
(θt), t = 0,1, . . . , and an observed Rm-valued time series (Yt),
t = 1,2, . . . , that satisfy the following conditions:

1. (θt) is a Markov chain.

2. Conditionally on (θt), the Yt’s are independent and Yt de-
pends on θt only.

As a result of definition 9.1, a SSM is completely specified by the
initial distribution p (θ0) and the conditional densities p (θt|θt−1) and
p (yt|θt) for t ≥ 1. Therefore, for any t > 0, the following equation
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holds:

p (θ0:t,y1:t) = p (θ0)
t∏

j=1

p (θj |θj−1) p (yj |θj) . (9.1)

Any other distribution of interest can be derived from equation (9.1).
The information flow of the SSM is illustrated in figure 9.1. The
figure illustrates the Markov property of the θt’s and that for any t,
Yt depends only on θt. [40, chapter 2], [41, chapter 4].

✓0
- ✓1

- ✓2
- . . . - ✓t�1

- ✓t
- ✓t+1

- . . .

?
Y1

?
Y2

?
Yt�1

?
Yt

?
Yt+1

1

Figure 9.1: The information flow of a SSM

9.1 Filtering

For a SSM the challenge is to make inference on the unobserved
states or to predict future observations based on the observation
sequence. This is done by computing the densities of interest given
the available information.
Estimation of the state vector θ is done by computing the density
p (θt|y1:s), where t is the time of interest. If t = s, i.e. if all
observations up to the time of interest are available, the process is
called filtering and can be performed using the following theorem.
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Theorem 9.2 (Filtering Recursions)
For a general SSM, the following statements hold.

a) The one-step-ahead predictive density for the states can be com-
puted from the filtering density p (θt−1|y1:t−1) as

p (θt|y1:t−1) =

∫
p (θt|θt−1) p (θt−1|y1:t−1)dθt−1.

b) The one-step-ahead predictive density for the observations can
be computed from the predictive density for the states as

p (yt|y1:t−1) =

∫
p (yt|θt) p (θt|y1:t−1)dθt.

c) The filtering density can be computed from the predictive den-
sities for the states and observations as

p (θt|y1:t) =
p (yt|θt) p (θt|y1:t−1)

p (yt|y1:t−1)
.

Proof . a) Given θt−1, θt is independent of Y1:t−1, according to the
definition of a SSM, definition 9.1. Therefore,

p (θt|y1:t−1) =

∫
p (θt,θt−1|y1:t−1)dθt−1

=

∫
p (θt|θt−1,y1:t−1) p (θt−1|y1:t−1)dθt−1

=

∫
p (θt|θt−1) p (θt−1|y1:t−1)dθt−1.

b) Given θt, Yt is independent of Y1:t−1. Therefore,

p (yt|y1:t−1) =

∫
p (yt,θt|y1:t−1)dθt

=

∫
p (yt|θt,y1:t−1) p (θt|y1:t−1)dθt

=

∫
p (yt|θt) p (θt|y1:t−1)dθt.

c) Given θt, Yt and Y1:t−1 are conditionally independent. There-
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fore, using Bayes’ formula:

p (θt|y1:t) =
p (y1:t−1,yt|θt) p (θt)

p (y1:t−1,yt)

=
p (yt|θt,y1:t−1) p (y1:t−1|θt) p (θt)

p (yt|y1:t−1) p (y1:t−1)

=
p (yt|θt,y1:t−1) p (θt|y1:t−1) p (y1:t−1)

p (yt|y1:t−1) p (y1:t−1)

=
p (yt|θt) p (θt|y1:t−1)

p (yt|y1:t−1)
.

[40, chapter 2], [41, chapter 4].

9.2 Smoothing

When t < s, calculation of the density p (θt|y1:s) and estimation
of the state vector is referred to as smoothing. It is quite
similar to filtering, but is used when e.g. all observations are
available up to the time of interest and beyond. We let n
denote the number of observations used in the smoothing process.
Theorem 9.3 (Smoothing Recursions)
For a general SSM, the following statements hold.

a) Conditional on y1:n, the state sequence (θ1, . . . ,θn) has back-
ward transition probabilities given by

p (θt|θt+1,y1:n) =
p (θt+1|θt) p (θt|y1:t)

p (θt+1|y1:t)
,

where t < n.

b) Conditional on y1:n, the smoothing distributions of θt can be
computed according to the following backward recursion in t,
starting from p (θn|y1:n):

p (θt|y1:n) = p (θt|y1:t)

∫
p (θt+1|θt)
p (θt+1|y1:t)

p (θt+1|y1:n)dθt+1.
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Proof . a) By definition of a SSM, definition 9.1, θt and Yt+1:T are
conditionally independent given θt+1. Furthermore, θt+1 and
Y1:t are conditionally independent given θt. Therefore, using
Bayes’ formula,

p (θt|θt+1,y1:T ) = p (θt|θt+1,y1:t)

=
p (θt|y1:t) p (θt+1|θt,y1:t)

p (θt+1|y1:t)

=
p (θt|y1:t) p (θt+1|θt)

p (θt+1|y1:t)
.

b) Using the result of a), we obtain

p (θt|y1:T ) =

∫
p (θt,θt+1|y1:T )dθt+1

=

∫
p (θt+1|y1:T ) p (θt|θt+1,y1:T )dθt+1

=

∫
p (θt+1|y1:T )

p (θt|y1:t) p (θt+1|θt)
p (θt+1|y1:t)

dθt+1

= p (θt|y1:t)

∫
p (θt+1|θt)
p (θt+1|y1:t)

p (θt+1|y1:T )dθt+1.

[40, chapter 2], [41, chapter 4].

9.3 Forecasting

When t > s, state estimation and the calculation of the density
p (θt|y1:s) is referred to as state prediction or forecasting.
After observing y1:t, prediction of the latent process and future
observations may be of interest. This requires that the distri-
butions of θt+k|y1:t and yt+k|y1:t are determined for the k of interest.
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Theorem 9.4 (Forecasting Recursions)
For a general SSM, the following statements hold for any k > 0.

a) The k-steps ahead forecast distribution of the state is

p (θt+k|y1:t) =

∫
p (θt+k|θt+k−1) p (θt+k−1|y1:t)dθt+k−1.

b) The k-steps ahead forecast distribution of the observation is

p (yt+k|y1:t) =

∫
p (yt+k|θt+k) p (θt+k|y1:t)dθt+k.

Proof . a) Using the conditional independence property of θt+k and
y1:t given θt+k−1, pertaining to a SSM, definition 9.1, we obtain

p (θt+k|y1:t) =

∫
p (θt+k,θt+k−1|y1:t)dθt+k−1

=

∫
p (θt+k|θt+k−1,y1:t) p (θt+k−1|y1:t)dθt+k−1

=

∫
p (θt+k|θt+k−1) p (θt+k−1|y1:t)dθt+k−1.

b) Similarly,

p (yt+k|y1:t) =

∫
p (yt+k,θt+k|y1:t)dθt+k

=

∫
p (yt+k|θt+k,y1:t) p (θt+k|y1:t)dθt+k

=

∫
p (yt+k|θt+k) p (θt+k|y1:t)dθt+k,

using the conditional independence property of yt+k and y1:t

given θt+k.

[40, chapter 2], [41, chapter 4].
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Chapter 10

Dynamic Linear Models

In this chapter, the important class of Gaussian linear SSMs, also
called dynamic linear models (DLMs), are defined. Furthermore, the
Kalman filtering, smoothing and forecasting processes are derived.
These are special cases of the processes derived in chapter 9, utilizing
the linearity and normality of the DLM.

First a DLM is defined

Definition 10.1 (Dynamic Linear Model)
Let Yt ∈ Rm denote an observation vector and θt ∈ Rp denote a
state vector.
A DLM is characterized by an initial Normal prior distribution for
the parameter vector,

θ0 ∼ Np (m0, C0) , (10.1)

where m0 and C0 is the mean and variance, respectively, and a
dynamic set of four matrices {Ft, Gt, Vt,Wt}, that for each time
t ≥ 1 are known matrices of appropriate dimensions.
The set {Ft, Gt, Vt,Wt} defines the model relating the observation
vector Yt to the state vector θt at time t, and the θt sequence
through time by satisfying the equations

Yt = Ftθt + vt, vt ∼ Nm (0, Vt) , (10.2)
θt = Gtθt−1 + wt, wt ∼ Np (0,Wt) . (10.3)

Furthermore, it is assumed that θ0 is independent of both (vt) and
(wt), which are independent noise sequences.

Equation (10.2) is called the observation equation for the model,
and equation (10.3) is the state equation.
From equation (10.3) it is easy to see that, given the known
matrices Gt and Wt, θt depends only on the previous state θt−1
and not on earlier information, i.e. (θt) is a Markov chain. From
equation (10.2) it is clear that, conditionally on (θt), the Yt’s are
independent and Yt depends on θt only. In other words, a DLM
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satisfies the two properties of a SSM, stated in definition 9.1, with
Yt|θt ∼ Nm (Ftθt, Vt) and θt|θt−1 ∼ Np (Gtθt−1,Wt). The DLM is
completely specified by these conditional densities combined with the
initial prior distribution of equation (10.1), as mentioned in chapter 9.

If the matrices Ft and Gt are constant for all t, the model
is referred to as a time series DLM (TSDLM). A TSDLM with
constant variance matrices Vt and Wt for all t is called a constant
DLM. Thus a constant DLM is characterized by a single set of
matrices {F,G, V,W} for all times t. This special case of DLMs
includes essentially all classical linear time series models.

10.1 Kalman Filtering

The filtering for a general SSM is done by use of theorem 9.2. For
DLMs the computations needed for filtering are considerably simpli-
fied, as stated in the next theorem. The conditional distributions are
derived by induction in time, where the initial step at time t = 0 is
specified by equation (10.1).
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10.1. KALMAN FILTERING

Theorem 10.2 (Kalman Filter)
Consider a DLM. Let

θt−1|y1:t−1 ∼ Np (mt−1, Ct−1) . (10.4)

Then the following statements hold.

a) The one-step-ahead predictive distribution of θt given y1:t−1 is
Gaussian with mean and variance

at = Gtmt−1,

Rt = GtCt−1G>t +Wt.

b) The one-step-ahead predictive distribution of Yt given y1:t−1 is
Gaussian with mean and variance

ft = Ftat,

Qt = FtRtF
>
t + Vt.

c) The filtering distribution of θt given y1:t is Gaussian with mean
and variance

mt = at +RtF
>
t Q

−1
t et,

Ct = Rt −RtF>t Q−1t FtRt,

where et = yt − ft is the forecast error.

Proof . The theorem is proved by induction using the theory of the
multivariate normal distribution, see [40, appendix A, p. 233].

a) The state equation (10.3) and the assumption of equation (10.4)
yield

θt|y1:t−1 = Gt · (θt−1|y1:t−1) + wt

∼ Np
(
Gtmt−1, GtCt−1G>t +Wt

)
,

using the rules for multiplying a normal distribution by a
matrix and adding two independent normal distributions.
Using the notation defined in the theorem statement, we
obtain θt|y1:t−1 ∼ Np (at, Rt).
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b) Similarly, using the observation equation (10.2) and a),

Yt|y1:t−1 = Ft · (θt|y1:t−1) + vt

∼ Nm
(
Ftat, FtRtF

>
t + Vt

)
.

Using the notation defined in the theorem statement,
Yt|y1:t−1 ∼ Nm (ft, Qt).

c) From Theorem 9.2 c) it is known, that

p (θt|y1:t) =
p (yt|θt) p (θt|y1:t−1)

p (yt|y1:t−1)
∝ p (yt|θt) p (θt|y1:t−1) , (10.5)

where p (θt|y1:t−1) is already known from a):

p (θt|y1:t−1) ∝ exp

(
−(θt − at)

>R−1t (θt − at)

2

)
.

The first density is found using the observation equation (10.2):

Yt = Ftθt + vt, vt ∼ Nm (0, Vt)

⇓

p (yt|θt) ∝ exp

(
−(yt − Ftθt)> V −1t (yt − Ftθt)

2

)
.

Taking the logarithm and multiplying equation (10.5) by −2
yield

−2 log (p (θt|y1:t)) = (θt − at)
>R−1t (θt − at) (10.6)

+ (yt − Ftθt)> V −1t (yt − Ftθt) + c1,

where c1 is a constant not depending on θt. Rearranging equa-
tion (10.6) yields

−2 log (p (θt|y1:t)) = θ>t
(
R−1t + F>t V

−1
t Ft

)
θt (10.7)

− 2θ>t
(
R−1t at + F>t V

−1
t yt

)
+ c2,

where c2 is a new constant not depending on θt.
Using Ct defined in the theorem statement,(

R−1t + F>t V
−1
t Ft

)
Ct = I,
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where I is the p× p identity matrix. Thus

R−1t + F>t V
−1
t Ft = C−1t .

Using mt defined in the theorem statement,

C−1t mt = R−1t at + F>t V
−1
t yt.

Therefore, equation (10.7) becomes

−2 ln (p (θt|yt)) = θ>t C
−1
t θt − 2θ>t C

−1
t mt + c3

= (θt −mt)
>C−1t (θt −mt) + c4,

where c3 and c4 are constants. Hence,

p (θt|yt) ∝ exp

(
−(θt −mt)

>C−1t (θt −mt)

2

)
,

i.e. θt|yt ∼ Np (mt, Ct).

[40, section 2.7.2]

10.2 Kalman Smoothing

For a DLM the smoothing recursions can be expressed more
specifically, as stated in the next theorem, which is a special case of
theorem 9.3.

Theorem 10.3 (Kalman Smoother)
Consider a DLM. Let θt+1|y1:n ∼ Np (st+1, St+1) for t < n. Then
θt|y1:n ∼ Np (st,St), where

st = mt + CtG
>
t+1R

−1
t+1 (st+1 − at+1) , (10.8)

St = Ct − CtG>t+1R
−1
t+1 (Rt+1 − St+1)R

−1
t+1Gt+1Ct. (10.9)

Proof . By the definition of a DLM, the distributions of θ1:n and
y1:n are Gaussian. It follows from the properties of the multivariate
normal distribution, see [40, appendix A, p. 233], that θt given y1:n
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is also Gaussian. Therefore it suffices to compute the mean and
variance of this distribution, which are

st = E [θt|y1:n]

= E [E [θt|θt+1,y1:n] |y1:n] ,

and

St = Var [θt|y1:n]

= Var [E [θt|θt+1,y1:n] |y1:n] + E [Var [θt|θt+1,y1:n] |y1:n] .

As in the proof of theorem 9.3, θt and yt+1:n are conditionally inde-
pendent given θt+1. Thus, p (θt|θt+1,y1:n) = p (θt|θt+1,y1:t). This
posterior density can be calculated using Bayes’ formula. Applying
the conditional independence of θt+1 and y1:t given θt, the likelihood
is p (θt+1|θt,y1:t) = p (θt+1|θt), which can be derived from the state
equation (10.3) as

θt+1|θt ∼ Np (Gt+1θt,Wt+1) .

As for the prior, θt|y1:t ∼ Np (mt,Ct) according to theorem 10.2 c).
Hence, the posterior is

p (θt|θt+1,y1:t) ∝ p (θt|y1:t) p (θt+1|θt)

∝ exp

(
−1

2
(θt −mt)

>C−1t (θt −mt)

)
· exp

(
−1

2
(θt+1 −Gt+1θt)

>Wt+1

· (θt+1 −Gt+1θt))

⇓
−2 log (p (θt|θt+1,y1:t)) = (θt −mt)

>C−1t (θt −mt)

+ (θt+1 −Gt+1θt)
>Wt+1

· (θt+1 −Gt+1θt) + c1

= θ>t
(
C−1t +Gt+1W

−1
t+1Gt+1

)
θt

−2θ>t
(
C−1t mt +G>t+1W

−1
t+1Gt+1θt+1

)
+c2,

where c1 and c2 are constants not depending on θt. Furthermore,(
C−1t +Gt+1W

−1
t+1Gt+1

) (
Ct − CtG>t+1R

−1
t+1Gt+1Ct

)
= I,

114



10.3. KALMAN FORECASTING

so

C−1t +Gt+1W
−1
t+1Gt+1 =

(
Ct − CtG>t+1R

−1
t+1Gt+1Ct

)−1
.

Furthermore,(
Ct − CtG>t+1R

−1
t+1Gt+1Ct

)−1 (
mt + CtG

>
t+1R

−1
t+1 (θt+1 − at+1)

)
= C−1t mt +G>t+1W

−1
t+1Gt+1θt+1.

Therefore,

E [θt|θt+1,y1:t] = mt + CtG
>
t+1R

−1
t+1 (θt+1 − at+1) ,

Var [θt|θt+1,y1:t] = Ct − CtG>t+1R
−1
t+1Gt+1Ct.

From this, it follows that

st = E [E [θt|θt+1,y1:n] |y1:n]

= mt + CtG
>
t+1R

−1
t+1 (st+1 − at+1) ,

and

St = Var [E [θt|θt+1,y1:n] |y1:n] + E [Var [θt|θt+1,y1:n] |y1:n]

= Ct − CtG>t+1R
−1
t+1Gt+1Ct + CtG

>
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct

= Ct − CtG>t+1R
−1
t+1 (Rt+1 − St+1)R

−1Gt+1Ct,

where E [θt+1|y1:n] = st+1 and Var [θt+1|y1:n] = St+1, by assumption.

Kalman smoothing is performed after Kalman filtering and runs back-
wards in time using the recursions (10.8) and (10.9). The starting
point for the algorithm is θn|y1:n ∼ Np (mn, Cn), obtained using the
Kalman filter.

10.3 Kalman Forecasting

The next theorem concerning forecasting for a DLM is a special case
of theorem 9.4.
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Theorem 10.4 (Kalman Forecaster)
For a DLM, let at,0 = mt and Rt,0 = Ct. For any k ≥ 1, the
following statements hold.

a) The distribution of θt+k given y1:t is Gaussian with mean and
covariance

at,k = Gt+kat,k−1,

Rt,k = Gt+kRt,k−1G
>
t+k +Wt+k.

b) The distribution of Yt+k given y1:t is Gaussian with mean and
covariance

ft,k = Ft+kat,k,

Qt,k = Ft+kRt,kF
>
t+k + Vt.

Proof . Similarly to the the proof for theorem 10.3, the forecast dis-
tributions are Gaussian by definition of a DLM, and it suffices to
derive the parameters of the distributions. This is done by induc-
tion. Both statements hold for k = 1 according to theorem 10.2 a)
and b).

a) For k > 1, assume that the statement holds for k − 1. Then,

at,k = E [θt+k|y1:t]

= E [E [θt+k|y1:t,θt+k−1] |y1:t]

= E [Gt+kθt+k−1|y1:t]

= Gt+kat,k−1,

and

Rt,k = Var [θt+k|y1:t]

= Var [E [θt+k|y1:t,θt+k−1] |y1:t]

+E [Var [θt+k|y1:t,θt+k−1] |y1:t]

= Gt+kRt,k−1G
>
t+k +Wt+k.

b) For k > 1, assume that the statement holds for k−1. Then, using
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a),

ft,k = E [Yt+k|y1:t]

= E [E [Yt+k|y1:t,θt+k] |y1:t]

= E [Ft+kθt+k|y1:t]

= Ft+kat,k,

and

Qt,k = Var [Yt+k|y1:t]

= Var [E [Yt+k|y1:t,θt+k] |y1:t]

+E [Var [Yt+k|y1:t,θt+k] |y1:t]

= Ft+kRt,kF
>
t+k + Vt+k.

[40, chapter 2], [41, chapter 4].

10.4 Model Specification

The Kalman filter and smoother provide methods for estimation
and prediction when the DLM is completely specified, i.e. when
all of the matrices Ft, Gt, Vt and Wt are known. However, that is
rarely the case in practice. In fact, completely specifying a DLM
can be very difficult.
A general approach is to decompose the time series into simple
components that each capture a specific feature of the time series,
e.g. seasonal component, trend or dependence on covariates
(regression). Each of these components can be thought of as
individual time series, each described by a DLM that, when added
together, form the DLM that describes the complete time series.

Consider a time series (Yt) and assume that it can be
written as the sum of h independent components, i.e.

Yt = Y1,t + · · ·+ Yh,t,

where each time series (Yi,t), i = 1, . . . ,h represents a component of
the model and is described by a DLM:

Yi,t = Fi,tθi,t + vi,t, vi,t ∼ Nm (0, Vi,t) ,

θi,t = Gi,tθi,t−1 + wi,t, wi,t ∼ Npi (0,Wi,t) ,
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where the pi-dimensional state vectors θi,t are distinct. We assume
that the time series (Yi,t,θi,t) and (Yj,t,θj,t) are mutually indepen-
dent for all i 6= j. By assumption of independence it follows that
Yt =

∑h
i=1Yi,t is described by the DLM

Yt = Ftθt + vt, vt ∼ Nm (0, Vt) ,

θt = Gtθt−1 + wt, wt ∼ Np (0,Wt) ,

where

θt =

 θ1,t
...
θh,t

 ,
Ft = [F1,t| . . . |Fh,t] ,

Vt =
h∑
i=1

Vi,t,

and where Gt and Wt are the block diagonal matrices

Gt =

 G1,t

. . .
Gh,t

 , Wt =

 W1,t

. . .
Wh,t

 .
10.4.1 Regression Models

In our study we wish to find the dependence of the response on the
covariates, i.e. regression. A linear regression model for univariate
observations Yt on p covariates x1, . . . , xp is described by

Yt = x1,tβ1 + · · ·+ xp,tβp + vt

=

p∑
j=1

xj,tβj + vt,

where vt
iid∼ N

(
0,σ2t

)
per definition. If the observations are taken over

time, the assumption of i.i.d. errors is often not very realistic. A
solution to this problem is to assume that the relationship between
y and the xj ’s evolves over time, i.e. to assume a dynamic linear
regression model

Yt = x1,tβ1,t + · · ·+ xp,tβp,t + vt

=

p∑
j=1

xj,tβj,t + vt,

118



10.5. PARAMETER ESTIMATION

and model the temporal evolution of (β1,t, . . . , βj,t). This would yield
a DLM with the parameters Ft = [x1,t, . . . , xp,t], θt = [β1,t, . . . ,βp,t]

>

and Vt = σ2t .
The model is completed by a state equation. An often used default
approach is to choose the evolution matrix Gt to be the identity
matrix and Wt as a diagonal matrix, corresponding to modeling the
regression coefficients as independent random walks. [40, chapter 3].

10.5 Parameter Estimation

In previous sections, the matrices Ft, Gt, Vt and Wt have been
assumed known. This was done to more easily study their properties,
but it is rarely the case in practice. In this section we assume the
matrices depend on an unknown parameter vector ψ consisting of
so-called hyper parameters ψt. These are often constant, but may
also evolve over time.

The hyper parameters, ψt, can be estimated using different
methods. The estimation can be of interest in itself or used for
smoothing or forecasting using the methods discussed in previous
sections of this chapter.

This section presents the method for estimating the hyper
parameters used in our study, the direct MLE. [40, chapter 4].

10.5.1 Direct Maximum Likelihood Estimation

Suppose n random vectors Y1, . . . ,Yn to have distributions
depending on an unknown parameter vector ψ. The joint density
of the observations for a given value of the parameter is denoted by
p (y1, . . . ,yn|ψ). The likelihood of the hyper parameters conditional
on the observations is L (ψ|y1, . . . ,yn) = p (y1, . . . ,yn|ψ). The
likelihood and loglikelihood are therefore

L (ψ|y1, . . . ,yn) =
n∏
t=1

p (yt|y1:t−1,ψ) ,

l (ψ|y1, . . . ,yn) =

n∑
t=1

log (p (yt|y1:t−1,ψ)) . (10.10)
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From theorem 10.2 b) it is known, that the densities on the right
hand side of equation (10.10) are m-dimensional Gaussian densities
with means ft and variances Qt. Hence, the loglikelihood is

l (ψ|y1, . . . ,yn) = −mn
2

log (2π)− 1

2

n∑
t=1

log |Qt|

−1

2

n∑
t=1

(yt − ft)
>Q−1t (yt − ft) , (10.11)

where ft and Qt depend implicitly on ψ.

In this way, for a given parameter vector ψ, the loglikeli-
hood can be obtained from the Kalman filter, theorem 10.2, and
equation (10.11) can be maximized numerically w.r.t. ψ to obtain
the MLE, denoted ψ̂. [40, section 4.1].
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Appendix A

Nomenclature

Throughout the thesis the following mathematical notation and
symbols are applied.

Rn Vector space of n dimensional real vectors

f(·) Notation for the density function of argument ·

f(·|·) Notation for the conditional density function

f(·, ·) Notation for the joint density function

p(·) Notation for the probability function of argument ·

p(·|·) Notation for the conditional probability function

N(µi, σ
2) Normal distribution with mean vector µi and variance σ2

Nm(µ,Σ) Multivariate normal distribution of dimension m with mean
vector µ and covariance matrix Σ

χ2
n Chi-square distribution with n degrees of freedom

L(·) Notation for the likelihood function

l(·) Notation for the log-likelihood function

E[·] Expected value of argument ·

E[·|·] Conditional expected value of arguments · and ·

Var[·] Variance of argument ·

Var[·|·] Conditional variance of arguments · and ·

i.i.d. Notation for independent and identically distributed random
variables

∝ Notation for proportionality

95%CI:[·; ·] 95% confidence interval

s.d. Standard deviation

129



A. NOMENCLATURE

d.o.f. Degrees of freedom

w.r.t. With respect to

U Score statistic

J Information

Po(λ) Poisson distribution with intensity parameter λ

I Identity matrix

∼ Distributed as

Generalized Linear and Additive Models

yt Response to time t

nt Number of residents in Denmark at time t

µt Intensity per resident

s(·) Smoothing function of time t

X n× p design matrix consisting of covariates

xi The i’th row of X

X Matrix consisting of lagged meteorological variables

X2 Design matrix consisting of all entrances in X squared

θ Vector of parameter estimates

β Vector of parameter estimates

γ Vector of parameter estimates

τ Vector of parameter estimates. β is a linear combination of
the entries in τ

ϕ Vector of parameter estimates. γ is a linear combination of
the entries in ϕ

p3 Third-degree polynomial

ŷ Fitted values of y
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(α, β) Parameter pair

(a,b) Parameter pair

η Linear predictor

g(µi) Link function

β̂(m) Estimation of β at the (m)’th iteration

β̂max Maximum likelihood estimate

zi Adjusted dependent variable

α Intercept

εi Error term

N s(xi) Symmetric nearest neighborhood

W tri-cube weight function

λ Likelihood ratio

D Notation for deviance

ri Pearson residuals

Di Cook’s distance

State Space Models

Yt Observation at time t

θt State at time t

Ft Observation matrix at time t

Gt State transfer matrix at time t

Vt Observation variance at time t

vt Observation error at time t

Wt State variance at at time t

wt State error at time t

{Ft, Gt, Vt,Wt} Quadruple defining a state space model at time t
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A. NOMENCLATURE

xj,t The j’th covariate at time t

Xt Vector of lagged covariates

βj,t Vector of parameter estimates at time t for the j’th covariate

zt Binary indicator of day of the week at time t

ρt Vector containing 8 weekday levels

ζi Parameter estimates for seasonal components

τ Vector of parameter estimates. β is a linear combination of
the entries in τ

ϕ Vector of parameter estimates. γ is a linear combination of
the entries in ϕ

p3 Third-degree polynomial

at Mean of the one-step-ahead predictive distribution of θt|y1:t−1
at time t

Rt Variance of the one-step-ahead predictive distribution of
θt|y1:t−1 at time t

ft Mean of the one-step-ahead predictive distribution of
Yt|y1:t−1 at time t

Qt Variance of the one-step-ahead predictive distribution of
Yt|y1:t−1 at time t

mt Mean of filtering distribution of θt|y1:t at time t

Ct Variance of filtering distribution of θt|y1:t at time t

et The forecast error at time t

st Mean of the smoothing distribution at time t

St Variance of the smoothing distribution at time t

ψt Hyper parameter at time t

ψ̂t MLE of the hyper parameter at time t
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Appendix B

Plots of Meteorological
Variables

The following figures show the maximum and minimum of all the
meteorological variables, a spaghetti plot of the season for every
year and a trend curve.
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B. PLOTS OF METEOROLOGICAL VARIABLES

(a) Monthly maximum temperature.

(b) Monthly minimum temperature.

Figure B.1: Monthly maximum and minimum temperature in the ten biggest
municipalities in Denmark from 1.1.1995-12.31.2006. The x-axis
shows the the number of the month. The first figure shows the tem-
perature through the years. The second figure shows a spaghetti
plot of the season through the years and the last figure shows the
trend through the years.
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(a) Monthly maximum humidity.

(b) Monthly minimum humidity.

Figure B.2: Monthly maximum and minimum humidity in the ten biggest mu-
nicipalities in Denmark from 1.1.1995-12.31.2006. The x-axis shows
the the number of the month. The first figure shows the tempera-
ture through the years. The second figure shows a spaghetti plot
of the season through the years and the last figure shows the trend
through the years.
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B. PLOTS OF METEOROLOGICAL VARIABLES

(a) Monthly maximum air pressure.

(b) Monthly minimum air pressure.

Figure B.3: Monthly maximum and minimum air pressure in the ten biggest
municipalities in Denmark from 1.1.1995-12.31.2006. The x-axis
shows the the number of the month. The first figure shows the tem-
perature through the years. The second figure shows a spaghetti
plot of the season through the years and the last figure shows the
trend through the years.

136



Figure B.4: Monthly maximum and minimum wind velocity in the ten biggest
municipalities in Denmark from 1.1.1995-12.31.2006. The x-axis
shows the the number of the month. The first figure shows the tem-
perature through the years. The second figure shows a spaghetti
plot of the season through the years and the last figure shows the
trend through the years.
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Appendix C

Further Results Using
DLMs

ACS
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Figure C.1: The effect of the day of the week on daily counts of ACS for fe-
males. The y-axis shows the absolute change in the daily counts of
incidences.
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C. FURTHER RESULTS USING DLMS
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Figure C.2: The effect of the temperature on daily counts of incidences of ACS
for females.
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Figure C.3: The effect of the temperature on daily counts of incidences of ACS
for females for each lag. The y-axis shows the absolute change in
daily incidences of ACS for each lag.

140



1996 1998 2000 2002 2004 2006

1.
6

1.
9

Friday

Years

1996 1998 2000 2002 2004 2006

1.
6

1.
9

Holiday

Years

1996 1998 2000 2002 2004 2006

1.
6

1.
9

Monday

Years

1996 1998 2000 2002 2004 2006

1.
6

1.
9

Saturday

Years

1996 1998 2000 2002 2004 2006

1.
6

1.
9

Sunday

Years

1996 1998 2000 2002 2004 2006

1.
6

1.
9

Thursday

Years

1996 1998 2000 2002 2004 2006

1.
6

1.
9

Tuesday

Years

1996 1998 2000 2002 2004 2006

1.
6

1.
9

Wednesday

Years

Figure C.4: The effect of the day of the week on daily counts of ACS for males.
The y-axis shows the absolute change in the daily counts of inci-
dences.
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Figure C.5: The effect of the temperature on daily counts of incidences of ACS
for males.
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Figure C.6: The effect of the temperature on daily counts of incidences of ACS
for males for each lag. The y-axis shows the absolute change in
daily incidences of ACS for each lag.
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APO
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Figure C.7: The effect of the day of the week on daily counts of APO for fe-
males. The y-axis show the absolute change in the daily counts of
incidences.
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Figure C.8: The effect of the temperature on daily counts of incidences of APO
for females.
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Figure C.9: The effect of the temperature on daily counts of incidences of APO
for females for each lag. The y-axis show the absolute change in
daily incidences of APO for each lag.
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Figure C.10: The effect of the day of the week on daily counts of APO for
males. The y-axis show the absolute change in the daily counts
of incidences.
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Figure C.11: The effect of the temperature on daily counts of incidences of
APO for males.

145



C. FURTHER RESULTS USING DLMS

1996 1998 2000 2002 2004 2006

-0
.1
5

0.
00

Lag 0

Year

1996 1998 2000 2002 2004 2006
-0
.1
5

0.
00

Lag 1

Year

1996 1998 2000 2002 2004 2006

-0
.1
5

0.
00

Lag 2

Year

1996 1998 2000 2002 2004 2006

-0
.1
5

0.
00

Lag 3

Year

1996 1998 2000 2002 2004 2006

-0
.1
5

0.
00

Lag 4

Year

1996 1998 2000 2002 2004 2006

-0
.1
5

0.
00

Lag 5

Year

1996 1998 2000 2002 2004 2006

-0
.1
5

0.
00

Lag 6

Year

1996 1998 2000 2002 2004 2006

-0
.1
5

0.
00

Lag 7

Year

Figure C.12: The effect of the temperature on daily counts of incidences of
APO for males for each lag. The y-axis show the absolute change
in daily incidences of APO for each lag.
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VTE
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Figure C.13: The effect of the day of the week on daily counts of VTE for
females. The y-axis show the absolute change in the daily counts
of incidences.
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Figure C.14: The effect of the temperature on daily counts of incidences of
VTE for females.
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Figure C.15: The effect of the temperature on daily counts of incidences of VTE
for females for each lag. The y-axis show the absolute change in
daily incidences of VTE for each lag.
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Figure C.16: The effect of the day of the week on daily counts of VTE for
males. The y-axis show the absolute change in the daily counts
of incidences.
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Figure C.17: The effect of the temperature on daily counts of incidences of
VTE for males.
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Figure C.18: The effect of the temperature on daily counts of incidences of
VTE for males for each lag. The y-axis show the absolute change
in daily incidences of VTE for each lag.
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AF
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Figure C.19: The effect of the day of the week on daily counts of AF for fe-
males. The y-axis show the absolute change in the daily counts
of incidences.
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Figure C.20: The effect of the temperature on daily counts of incidences of AF
for females.
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Figure C.21: The effect of the temperature on daily counts of incidences of AF
for females for each lag. The y-axis show the absolute change in
daily incidences of AF for each lag.
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Figure C.22: The effect of the day of the week on daily counts of AF for males.
The y-axis show the absolute change in the daily counts of inci-
dences.
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Figure C.23: The effect of the temperature on daily counts of incidences of AF
for males.
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Figure C.24: The effect of the temperature on daily counts of incidences of AF
for males for each lag. The y-axis show the absolute change in
daily incidences of AF for each lag.
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