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SYNOPSIS:
Disease surveillance is the systematic collec-
tion, analysis, interpretation and distribution
of health data for preventing health related
problems. The primary purpose of disease
surveillance is early detection of disease out-
breaks for prevention of further morbidity
and mortality. In Denmark disease surveil-
lance is carried out by Statens Serum Insti-
tut, which defines disease outbreaks as an
unusual high number of incidences of a di-
sease. The objective of this thesis is to com-
pare different statistical models for prospec-
tive detection of possible outbreaks. Adjust-
ments for seasonal variations, secular trends
and past outbreaks should be incorporated
into the model. Three different models are
used: Farringtons algorithm, a dynamic lin-
ear model and a multi-process dynamic lin-
ear model. Comparison of the models is pre-
sented applying data from Statens Serum In-
stitut consisting of all samples tested positive
for Mycoplasma pneumoniae infections from
July 1994 to July 2005. The analysis indi-
cate that the dynamic linear model and the
multi-process dynamic linear model are supe-
rior to Farringtons algorithm. The threshold
value in Farringtons algorithm is highly af-
fected by the baseline values used in the cal-
culations, where the dynamic linear model
and the multi-process dynamic linear model
are better at adapting to the seasonal varia-
tions and past outbreaks. The multi-process
dynamic linear model has the advantage that
it can identify outliers.





Preface

This master of science thesis is written by Tina Graungaard in the period from
September 2011 to June 2012. The thesis is composed at the Department of
Mathematical Sciences, Aalborg University, in cooperation with Center for Car-
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thor would like to thank Center for Cardiovascular Research for making data
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Reading instructions

References throughout the report will be presented according to the number
method, and when a reference is placed before a period, it refers to the previous
paragraph.
Figures, tables, mathematical definitions, etc. are enumerated in reference to
the chapter i.e. the first figure in chapter 4 has number 4.1, the second has
number 4.2 etc.

The project is divided into two parts: Analysis and theory. In the first part the
problem of detection of disease outbreaks is outlined, and the analysis of the
samples tested positive for Mycoplasma pneumoniae using three different me-
thods, Farringtons algorithm, the dynamic linear model and the multi-process
dynamic linear model, is presented. The first part is completed by a discussion
and a conclusion of the results. In the second part the basic theory for the three
methods is presented. First generalized linear models and in particular Poisson
regression are presented. Then state space models and dynamic linear model
are introduced, and the part is finished with a presentation of the multi-process
model.
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Mathematical notation and symbols

Throughout the rapport the following mathematical notation and symbols are
applied.

R The set of all real numbers
Rn Real vector space of n-dimensional real vector
AT Transpose of a real matrix A
A−1 Inverse of a real matrix A
f(·), π(·) The density- or probability function of arguments
f(·|·), π(·|·) Conditional density function of arguments
f ′ The derivative of f
N(µ, V ) Normal distribution with mean µ and variance V
Np(µ,Σ) Multivariate normal distribution of dimension p with mean

vector µ and variance matrix Σ
Po(µ) Poisson distribution with mean and variance µ
χ2(p) Chi square distribution with p degrees of freedom
∼ Distributed as
L(·) Likelihood function
`(·) Log-likelihood function
U(·) Score statistic
I The information matrix
λ(·),W (·) The likelihood ratio
ri Residuals
D The deviance
E[·] Expected value
Var[·] Variance
Var[·|·] Conditional variance
Cov[·, ·] Covariance
(Yt)t≥1 Time series
y1:t y1, y2, . . . , yt
Yt Observation at time t
θt State at time t
vt Observation error at time t
wt Evolution error at time t
Ft Design matrix at time t
Gt Evolution matrix at time t
Vt Observation variance matrix at time t
Wt Evolution variance matrix at time t
et Forecast error
ẽt Standard innovation
r The signal-to-noise ratio



Dansk resumé

Overv̊agning af sygdomme involverer systematisk indsamling, dynamisk model-
lering, analyse og fortolkning af sundhedsrelateret data for at forebygge og kon-
trollere sygdomme, skader og andre sundhedsrelaterede problemer. Det primære
form̊al med overv̊agning af sygdomme er at detektere udbrud og epidemier tidligt
for at forebygge yderligere morbiditet og mortalitet. Overv̊agning af sygdomme
udføres i Danmark af Statens Serum Institut, der definerer et udbrud som et
unaturligt højt antal af inficerede af en bestemt sygdom.

Form̊alet med dette speciale er at sammenligne tre forskellige metoder til de-
tektering af mulige udbrud. Metoder til automatisk detektering af mulige syg-
domsudbrud skal tage højde for forskellige ting. Systematiske variationer som
sæsonvariation og trend skal inkorporeres i modellen, og der skal tages højde for
tidligere udbrud.

Den første metode blev præsenteret af Farrington et al. i 1996 og bruges af
Statens Serum Institut til detektering af mulige sygdomsudbrud. Farringtons
algoritme er baseret p̊a en log-lineær regressionsmodel, som justeres for over-
spredning, sæsonvariation, trends og tidligere udbrud. En tærskelværdi udreg-
nes baseret p̊a baseline værdier fra tidligere år, og hvis det observerede antal
er højere end denne tærskelværdi, markeres observationen som et muligt udbrud.

Den anden metode, der bruges, er en dynamisk lineær model, hvor det an-
tages, at data er normalfordelt. Denne model bruger data fra tidligere uger
til at forudsige et interval en tidsenhed frem, hvor det forventes at næste ob-
servation ligger indenfor. Hvis det observerede antal ligger over dette interval,
markeres observationen som et muligt udbrud.

Den sidste metode er en multi-proces dynamisk lineær model, hvor det antages,
at en enkelt dynamisk lineær model ikke kan beskrive data. I stedet for bruges
tre dynamisk lineære modeller til at beskrive tre forskellige tilstande, som det
antages, at data kan være i. De tre tilstande er stabil tilstand, hvor der ikke er
udbrud, outlier, hvor en observation afviger uden der er udbrud og den tredje
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mulighed er muligt sygdomsudbrud. Der bruges en første ordens Markov struk-
tur til at beskrive overgangen mellem de tre forskellige modeller.

De tre metoder sammenlignes ved at analysere data fra Statens Serum Institut,
som best̊ar af alle prøver, som er testet positiv for Mycoplasma pneumoniae
infektioner fra juli 1994 til juli 2005. I denne periode er der to udbrud, som
er identificeret af Statens Serum Institut. Analysen viser, at Farringtons al-
goritme p̊avirkes meget af hvilke baseline værdier, som bruges til udregning af
tærskelværdien. Hvis baseline værdier falder sammen med tidligere udbrud, af-
spejles dette i tærskelværdien, og hvis der kun haves en begrænset mængde data,
bliver sæsonvariation detekteret som mulige udbrud. Dette giver stor usikkerhed
i, hvorn̊ar et muligt sygdomsudbrud detekteres. Den dynamiske lineære model
og den multi-proces dynamisk lineære model er derimod bedre til at tilpasse sig
sæsonvariationen og bliver ikke p̊avirket af tidligere udbrud. Begge modeller
giver færre falsk positive alarmer end Farringtons algoritme. Det ser ud til, at
den dynamiske lineære model detekterer udbruddene før multi-proces dynamisk
lineære modellen. Multi-proces dynamiske lineære modellen har den fordel, at
posterior sandsynligheder for de tre mulige tilstande f̊as, og derfor er muligt at
identificere outliers.
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Chapter 1

Introduction

Disease surveillance is the systematic collection, analysis, interpretation and dis-
tribution of health data for preventing and controlling disease, injury and other
health related problems. In public health services disease surveillance has se-
veral purposes, where the primary purpose is the detection of disease outbreaks
and epidemics. Early detection is important, because more effective disease in-
tervention can prevent further morbidity and mortality [1]. Interventions could
be removal of contaminated food, vaccination or preventively treating indivi-
duals at risk [2]. Disease surveillance can also give information about the natu-
ral development of diseases, for example how long the incubation period is, or it
can be used to determine the size and range of an outbreak or epidemic. Finally
disease surveillance can be used for evaluating and monitoring how interventions
affect the public health [1],[3].

Ongoing advice and 
communication

Identification of a problem 
e.g. an outbreak

Advice and 
guidance

Intervention

Effect

Surveillance

Figure 1.1: Illustration of surveillance system [3].
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2 1. Introduction

Figure 1.1 illustrates a surveillance system consisting of several components,
that are part of a cycle. During the surveillance, data is collected and registered,
then the data is analysed, and possible problems are identified, for example an
outbreak. Afterwards, if necessary, interventions can be made, and new data
can be collected for analysis to study the effects of the interventions. Not all
diseases are under surveillance, only diseases of serious character, and diseases
that can be prevented e.g. through vaccinations [3].

In disease surveillance one critical problem is the definition of an outbreak. The
Centers for Disease Control and Prevention, which carry out disease surveil-
lance throughout the United States, define an outbreak as two or more cases
of infection, that are epidemiologically connected. This definition can be useful
in retrospective analysis, when detailed epidemiological information is available,
but in prospective analysis this definition is of little help [2]. In Denmark the
surveillance is carried out by Statens Serum Institut under the Danish Ministry
of Health [4]. Statens Serum Institut defines disease outbreaks as an unusual
high number of incidences of a specific disease [5]. This definition, however,
can be used for prospective detection of outbreaks, where the aim is to detect
unusual high number of incidences as they occur. Thus an outbreak is first iden-
tified, when the number of reported infected is higher than an expected level.
When the number of reported infected exceeds the expected level, it is called
an aberration. Further epidemiological investigations have to be carried out to
determine if it is an actual outbreak, or it is clusters caused by the reporting
system [2].

In prospective analysis the data must be analysed, as it is collected, and it
is therefore not possible to accurately account for potential reporting delays as
in retrospective analysis, where complete data often are available. Because it is
difficult to determine the exact time of infection, the date of report is often used
as a reference date. Alternatively the delay can be estimated and incorporated
into the model, thereby introducing additional uncertainty. Thus it is important
to reduce the variability of the reporting delay for example by standardizing the
procedure for identification of infected individuals throughout the area under
surveillance. Another problem in prospective analysis is validation of data be-
cause of the importance of early intervention for prevention of further morbidity
or mortality. Therefore the uncertainty is higher in prospective analysis. The
need for early interventions is also further complicated by the reporting delay [2].

During the last century the development in public health surveillance has been
monumental, and the demand from diseases under surveillance exceeds the ca-
pabilities for manual scanning [1],[6]. Therefore a computer-aided detection
system for detection of potential outbreaks is desired [6].
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A computer-aided detection system has to fulfill several requirements for it to be
reliable. One requirement is that the detection system has high sensitivity and a
low false detection rate, where the sensitivity is given by the proportion of true
outbreaks detected by the system, and the false detection rate is the proportion
of false positives i.e. the proportion of observations marked as abnormal but
not associated with outbreaks. If the detection system had low sensitivity or
a high number of false positive the confidence in the system would be compro-
mised. Reporting delays also affect the detection sensitivity and specificity of
the system as well as the timeliness [2].

A robust algorithm is needed to handle a wide variety of organisms with differing
epidemiologies and frequencies. In other words it must be capable of handling
rare organisms with low frequency counts, and common organisms with high
frequency count [2].

Disease surveillance can be applied to various diseases, but the most common
area is infectious diseases, which also will be the focus of this project. Infec-
tious diseases can go through systematic variations without it being an actual
outbreak. The systematic variations can for example follow seasonal cycles or
secular trends. The climate might influence the number of incidences, and some
infectious diseases might peak in early winter or late winter/early spring [2]. The
weekly counts reported to the Communicable Disease Surveillance Centre from
1990 to 1995 are shown in figure 1.2. In figure 1.2(a) the weekly counts for ro-
tavirus are shown, which is a virus that can cause diarrhea in infants and young
children. Rotavirus shows seasonal fluctuations that peak in the beginning of
the year. Figure 1.2(b) shows the Clostridium difficile, which is an infection
in the intestinal system. Clostridium difficile shows a slight trend during the
period [6],[7].
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4 1. Introduction

Systematic variations should be incorporated into the system when calculating
baselines and thresholds to reduce the false detection rate. Past aberrations or
outbreaks also needs to be included in the model to reduce the false detection
rate. The easiest way to do this is by omitting the data corresponding to past
aberrations or outbreaks from baselines and thresholds calculations. Alterna-
tively a weight function can be used, where data relating to past aberrations or
outbreaks are down-weighted [2].

In 1996 Farrington et al. presented an algorithm for early detection of out-
breaks of infectious diseases based on a log-linear regression model. The model
accounts for overdispersion, seasonality, trends and past outbreaks. Historical
data is used to calculate a threshold value, and if the observed count is above
this threshold it is declared an aberration [6]. Farringtons algorithm is a widely
used algorithm for detection of disease outbreaks, and is currently being used by
Statens Serum Institut in Denmark to monitor the gastrointestinal pathogens
Salmonella, Campylobacter, Yersinia enterocolitica, Shigella and E. coli [8],[9].
In England and Wales Farringtons algorithm is used by the Health Protection
Agency to detect outbreaks in laboratory-based surveillance data [10].

In 2006 Cowling et al. compared three different methods for monitoring in-
fluenza surveillance data. The focus was to find a valid and reliable way to
detect the onset of a peak season, which did not require more than 9 weeks of
baseline data. The first method was a dynamic linear model, which is a special
case of a state space models. This model uses the previous information to cal-
culate a forecast interval, and if the observed count falls outside this interval,
then the count is identified as an aberration. The second method is a regression
model, where a forecast interval is calculated based on the normal distribution
from the preceding weeks. The third method is a cumulative sum method,
CUSUM, where the prediction error from the past d weeks is summed up, and
if it exceeds a predefined threshold, it is defined an aberration. The comparison
is made using data from Hong Kong and the United States, where the dynamic
linear model was superior to the other models in the data from Hong Kong, and
in the data from the United States the dynamic linear model and the CUSUM
method performed similarly but better than the regression model. Thus the
dynamic linear model is the preferred method of the three [11].

In 1983 Smith et al. used a multi-process dynamic linear model for monitoring
renal transplants. The interest was in developing an on-line statistical proce-
dure for monitoring the kidney function of patients who had received kidney
transplants, specially changes that indicated rejection of the transplant. They
assumed that the system could be in different states: Steady state, changes in
the system or outlier [12]. Similarly to the model presented by Smith et al.
Whittaker et al. presented a dynamic change-point model for detecting the



5

onset of growth in bacteriological infections. They used an on-line decision pro-
cedure to determine whether bacteriological infections were present in feedstuff
[13].

Aim of the thesis

The aim of this thesis is to compare different methods for detection of outbreaks.
The first method is the algorithm presented by Farrington et al. and is currently
being used by Statens Serum Institut for detection of aberrations [6],[8]. The
second method is a dynamic linear model equivalent to that presented by Cow-
ling et al. [11]. The last method is a multi-process dynamic linear model, which
is similar to the model presented by Smith et al. and the change-point model
by Whittaker et al. for detection of abrupt changes in patterns [12],[13].

The comparison is presented applying data from Statens Serum Institut in Den-
mark consisting of all samples tested positive for Mycoplasma pneumoniae in-
fections from July 1994 to July 2005.
Mycoplasma pneumoniae is the cause of a broad spectrum of respiratory infec-
tions. Incidences occur all year but is most frequent in the fall and the winter.
In Denmark outbreaks occur every four to six years, where they typically begin
slowly during the late summer and have a duration of 3 to 4 months. My-
coplasma pneumoniae is diagnosed by detection of Mycoplasma pneumoniae
DNA in respiratory secretion. It is not possible to prevent Mycoplasma pneu-
moniae infections, but they can be limited by treatment and isolation of infected
individuals [14].





Part I

Analysis: Detection of
Disease Outbreaks
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Chapter 2

Materials and Methods

In this chapter the materials and methods of analysis are described. First the
data preprocessing is presented, then the method described by Farrington et al.,
Farringtons algorithm, which is currently being used by Statens Serum Institut,
is introduced [6],[8]. Furthermore a dynamic linear model and a multi-process
dynamic linear model are presented.

2.1 Mycoplasma pneumoniae

Mycoplasma pneumoniae is a microorganism that causes of a broad spectrum
of respiratory infections e.g. pneumonia, bronchitis and infections in the upper
respiratory system. The transmission of the microorganism occur in areas with
many people, and the incubation time is about 2 to 3 weeks. The symptoms are
dry cough, fever, headache, sore throat, rash and ear complications. No effective
vaccine exist, but the duration of the disease can be shortened by treatment e.g.
antibiotics [15]. Mycoplasma pneumoniae infections occur all year, but is most
common in the fall and early winter. Epidemics occur every 4 to 6 years and
the extent varies with average about 3 to 4 months [14].
There were two outbreaks of Mycoplasma pneumoniae in the period Juli 1st
1994 to Juli 29th 2005. The first outbreak was in 1998/1999, and the second
outbreak was in 2004/2005 [16],[17].

2.2 Data preprocessing

The data was received as a csv file containing 4047 observations obtained daily
from Juli 1st 1994 to Juli 29th 2005. Each observation consist of the observation

9



10 2. Materials and Methods

Figure 2.1: Number of infected in days



2.2 Data preprocessing 11

number, the date, and the number of samples tested positive for Mycoplasma
pneumoniae the current day. The data analysis using Farringtons algorithm was
preformed using R 2.10.0 and the R-package surveillance [18], which includes
Farringtons algorithm. The analysis using the dynamic linear model and the
multi-process dynamic linear model were carried out using R 2.15.0 and the
R-package dlm [19].

The number of infected each day is shown in figure 2.1. The days are num-
bered from 1 to 4047 i.e. number 1 correspond to Juli 1st 1994 and so on. The
total number of infected is 5295. The distribution of the number of infected
over the week is shown in figure 2.2, which shows that during the weekend the
number of infected drops compared to Monday to Friday.

Figure 2.2: Number of samples recorded
on each day. Figure 2.3: Number of infected.

In figure 2.3 the number of infected from Friday December 11th 1998 to Tuesday
December 29th 1998 is shown. The figure illustrates that there are no obser-
vations in the weekend. Therefore the data is aggregated from daily counts to
weekly counts, where each week is from Thursday to Wednesday. In Farringtons
algorithm and the dynamic linear model it is assumed, that there are 52 weeks
in a year, i.e. it does not account for leap years and years with 53 weeks. In the
multi-process dynamic linear model it is assumed that there is 7

365.25 weeks in a
year. The number of infected each week is shown in figure 2.4. The first year is
used for baseline calculations for all three methods, and it is therefore omitted
through the rest of the report, which means that week 1 through the rest of the
report correspond to the week beginning June 29th 1995.
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Figure 2.4: Number of infected in weeks
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Figure 2.5 is a frequency plot of the observations, which shown that the distri-
bution is skewed. Four observations, where the number of observed is higher
than 140, are omitted from the figure. The weeks omitted are week 230 to 233,
where the number of infected is 383, 246, 246, and 235, respectively.

Figure 2.5: Frequency of observations

2.3 Farringtons algorithm

In this section the first method for analysis is presented. The described method
is a generalized linear model or more specifically a log-linear regression model
presented by Farrington el al. in 1996 [6].

Farringtons algorithm is an algorithm for epidemiological surveillance and was
developed to assist in early detection of outbreaks of infectious diseases [6]. This
algorithm is being used by Statens Serum Institut in Denmark for monitoring of
the gastrointestinal pathogens pathogens Salmonella, Campylobacter, Yersinia
enterocolitica, Shigella, and E. coli [8]. Farringtons algorithm is also being used
by the Health Protection Agency in England and Wales to detect outbreaks in
laboratory-based surveillance data [10].

The primary purpose is to detect outbreaks early enough to have time for in-
tervention. The algorithm must take seasonal cycles, secular trends and past
outbreaks into consideration, and it must be sufficiently robust to handle a wide
range of different diseases. Data collected for surveillance systems are often sub-
ject to bias and delays in reporting. This makes the use of such data problematic
for early detection of outbreaks [6].

Seasonal variations affect many diseases, and the number of affected individuals
may peak at different times of the year or show long-term trends. The primary
interest of the surveillance system is to detect increases greater than the seasonal
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variability and the trends. Some variation is not of primary interest such as
abnormally low counts, or if the count is unusual high but does not constitute
an outbreak [6].

A routine scanning system has to fulfill different requirements such as timeliness,
sensitivity, specificity, and the output has to be easy to interpret. The statistical
features of the system is determined by these requirements, and one algorithm
that can analyse all diseases is developed [6].

2.3.1 Model structure

A flexible algorithm that takes seasonal patterns, underlying trends and noise
in the data into account is designed. This is done by developing a log-linear
regression model which is adjusted for overdispersion, seasonality, secular trend
and past outbreaks. The model is used to calculate a threshold value, where it
is expected that the next observed count is below. If the observed count for the
next observation is above the threshold value, the count is considered unusual
[6].

There will occur delays between the time of infection and when it is reported
because it takes time to diagnose diseases. Since it is difficult to determine the
exact time of infection the date of report is used as reference date. Trends are
taken into account in the model by fitting a linear time variable in the regression
model, and seasonality is considered by calculating the threshold value based
on comparable baseline periods from previous years [6].

Baseline

The baseline periods in weeks are calculated by letting b be the number of years
back in time and w be half of the width of a chosen window. The present week
is denoted x of year y, and data for weeks x−w to x+w of years from y− b to
y − 1 is used, which gives n = b(2w + 1) baseline weeks. The value of n affect
the precision, the need for a high n value for high precision, must be considered
in relation to the width of the window and the seasonal variations [6].

Regression model

Let yi denote the baseline count connected to baseline week ti, which is assumed
to be distributed with mean µi and variance φµi, and the baseline values are
assumed to be independent of each other. If the frequency of the disease is low
the assumption of independence between the baseline counts is expected, but
for diseases of high frequency correlation between baseline counts are expected.
Farrington et al. examined the correlation between baseline values for organisms
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with high frequency count and found that is has a small effect on the threshold
values. Correlation between baseline counts is therefore not included in the
model.

The systematic component of the model is given by

log(µi) = α+ βti,

where trend is the only effect included, and the estimates α̂ and β̂ are fitted
using Poisson regression. If historical data is available for minimum 3 years, if
β is significant at the 5% level and if

µ̂0 ≤ max{yi|i = 1, . . . , n},

then the linear time trend is included in the model.

The dispersion parameter φ is estimated by a quasi-likelihood method

φ̂ = max

{
1

n− p
n∑

i=1

ωi
(yi − µ̂i)2

µ̂i
, 1

}
,

where ωi is a weight, which will be explained later, and p = 1 if no time trend
is fitted, or p = 2 if a time trend is fitted [6]. A quasi-likelihood method is a
method that allows for overdispersion when using the Poisson distribution by
specifying a variance function depending on the mean value. The introduction
of the dispersion parameter allows the variability to be larger than the expected
variability [20, pp. 258-260]. The expected count is estimated by

µ̂0 = exp
(
α̂+ β̂t0

)
s,

where t0 is the current week and y0 is the current count of infected individuals. It
is assumed that the frequency count of infected individuals is Poisson distributed
if the frequency count is small. For more frequent types of infections the data
is assumed to be normal distributed.

Farrington et al. [6] tested the model using simulated data, where overdispersion
is generated by assuming that the Poisson mean varies according to a gamma
distribution with mean µ and variance µ(φ− 1). This is the same as assuming
that the data is negative binomial distributed with mean µ and variance φµ [6].

Threshold

The distribution is highly skewed for diseases with low frequency counts, which
have to be taken into account in the calculation of the threshold value. To correct
for the skewness a 2

3 -power transformation of the data is used, which gives a more
symmetric distribution if the data is Poisson distribution, and the threshold
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become more accurate. High frequency data remains almost unaffected by the
transformation.

Given that the data is Poisson distributed and using the delta method, then

f(y0) = y
2/3
0

can be approximated by

f(y0) ≈ f(µ0) + f ′(µ0)(y0 − µ0),

and the mean value of f(y0) is given by

E
[
y
2/3
0

]
= µ

2/3
0 .

The variance of f(y0) is

Var
[
y
2/3
0

]
= f ′(µ0)2Var [y0]

=

(
2

3
µ
−1/3
0

)2

· φµ0

=
4

9
φµ

1/3
0 ,

and

Var
[
µ̂
2/3
0

]
=

4

9
µ
−2/3
0 Var[µ̂0],

where Var[µ̂0] is given as the variance of the fitted Poisson regression. On the
2
3 -power scale the prediction error variance is given by

Var
[
y
2/3
0 − µ̂2/3

0

]
=

4

9
τµ

1/3
0 ,

where

τ = φ+
Var[µ̂0]

µ0
.

Then an approximate 100(1− 2α)% prediction interval (L,U) for y0 is defined
as

U = µ̂0

{
1 +

2

3
zα

(
τ̂

µ̂0

)1/2
}3/2

,

L = µ̂0 max





{
1− 2

3
zα

(
τ̂

µ̂0

)1/2
}3/2

, 0



 ,

where zα is the 100(1−α)-percentile of the normal distribution. If the frequency
count of infected individuals is outside this interval it is considered as unusual,
and if it is above the threshold U it is considered a possible outbreak [6].
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Past outbreaks

When calculating the baseline count, the calculations are based on historical
data. If there has been an outbreak in the historical data used, this must be
considered in the model. If past outbreaks are included in the calculations, then
the threshold will be to high and the sensitivity will be reduced. Past outbreaks
are included in the model by using a reweighting procedure that reduces the
influence of high baseline counts. Residuals are given by

si

(
φ̂
)

=
3

2φ̂1/2

y
2/3
i − µ̂2/3

i

µ̂
1/6
i (1− hii)1/2

where hii are the elements on the diagonal of the hat matrix. The hat matrix is
a matrix that maps the vector of observed values into the vector of fitted values.
If the data is Poisson distributed, where φ = 1, the residuals are known as the
standardised Anscombe residuals. The weights are given by

ωi =

{
γsi(1)−2 if si > 1,

γ otherwise ,

i.e. corresponding to φ̂ = 1, and where γ is a constant which satisfy
∑
ωi = n.

Empirical data is used to give low weights to counts with large residuals. The
reweighting reduces the effect of past outbreaks, but it does not eliminate it [6].

The algorithm

When a new observation is available, the following algorithm is applied to the
vector of counts. First an initial model is fitted, and the initial estimated µ̂i and
φ̂ are calculated. Then the weights are calculated and the model is fitted once
more. The dispersion parameter φ is estimated again, and the model is rescaled.
The trend is left out if it is not significant and the procedure is repeated. The
threshold value is computed using historical data.

The analysis is carried out with the following parameters. For baseline cal-
culations the number of years back in time used are b = 5, if available, and half
of the chosen window is w = 3, which gives maximum n = 35 baseline weeks.
The data did not show a significant trend, which was therefore omitted. A 2

3 -
power transformation was used for threshold calculations, and a weight function
was used to reduce the influence of past outbreaks. To reduce the number of
sporadic cases detected as possible outbreaks for organisms with low frequency
counts, the restriction that the number of infected within the last 4 weeks has
to exceed 5 for an alarm to occur, is implemented [6].
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2.4 The dynamic linear model

In this section the dynamic linear model used in the analysis is presented. The
model developed is based on the theory presented in section 7.1 on page 54. In
the dynamic linear model it is assumed that the data is normally distributed.
Because the data is count data, it is assumed to be Poisson distributed, therefore
a 2

3 -power transform is applied to the data for skewness correction [21]. This
is the same transform used for normalization in the threshold calculations in
Farringtons algorithm.

Model structure

The dynamic linear model used is defined as the sum of two independent com-
ponents: A random walk plus noise component and a seasonal component. A
dynamic linear model, as defined in definition 7.2 on page 54, is then given by
a normal prior distribution

θ0 ∼ N(m0, C0),

and by the observation and state equations

Yt = Ftθt + vt , vt ∼ N(0, V )

θt = Gtθt−1 + wt , wt ∼ N(0,W ),

where m0, C0, V and W are estimated using the observation in the steady
periods without outbreaks, i.e. observation 0 to 200 and 250 to 500. The
parameters in the model have the following parameters

m0 =




1.887749085
0.021707174
0.001223346


 ,

C0 =




0.30877187 −0.15352297 0.08173705
−0.15352297 0.19556025 −0.01283034
0.08173705 −0.01283034 0.23292694




and

F =
[

1 1 0
]
, G =




1 0 0
0 0.9927089 0.1205367
0 −0.1205367 0.9927089


 ,

V = 0.7947231 and W =




0.0403078 0 0
0 0.005419615 0
0 0 0.005419615


 .
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A significant level of α = 0.01 was used, and if an observation was above the 99%
prediction interval when running the Kalman filter, then an alarm was given.
If an observation was above the 99% prediction interval it was changed to NA
in the data, and the Kalman filter was run again. The standard innovations
is analysed to determine whether the observations in the steady periods are
normally distributed for checking of the model assumptions.

2.5 The multi-process dynamic linear model

In this section the multi-process dynamic linear model used for analysis is pre-
sented. The model developed is based on the theory presented in section 8.2 on
page 78. As for the dynamic linear model a 2

3 -power transform of the observation
is used for skewness correction.

Model structure

A multi-process model class II is used for the analyses, where the probabilities
with which the model is selected are first-order Markov. Three different model
states are defined:

1. Steady state

2. Outlier

3. Possible outbreak

The three different states are modeled using a dynamic linear model, and the
models are defined as the sum of two independent components: A random walk
plus noise component and a seasonal component. The matrices Ft and G are
for all three models given as

G = I3 and Ft =
[

1 cos(2π 7
365.25 · t) sin(2π 7

365.25 · t)
]
.

The steady state model is defined as model 1 with variance parameters

V = 0.7947231 and W =




0.0403078 0 0
0 0.005419615 0
0 0 0.005419615


 ,

which is the same parameters as in the dynamic linear model described in the
last section.
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The outlier model is defined as model 2, and it is assumed that the obser-
vation variance is 10 times the observation variance of the steady state model,
but the state variance is the same. Thus the variance parameters are

V = 7.947231 and W =




0.0403078 0 0
0 0.005419615 0
0 0 0.005419615


 .

The model for possible outbreaks is defined as model 3. The variance param-
eters are the same as for the outlier model, but the two models differ in the
transition probabilities, which are defined as

Steady
Outlier
Outbreak

Steady Outlier Outbreak

0.985

0.010

0.005

0.985

0.010

0.005

0.090

0.010

0.900

1

.
The transition probabilities should be read as there is a 98.5% probability of
staying in steady state if the previous model was steady state. If the previous
state was outbreak, then there is a 9% probability that the new state is steady.
The transition probabilities are chosen so 98.5% of the time series is in steady
state.

For each time t the filtering distribution is approximated using the multi-process
Kalman filter, proposition 8.2 presented on page 82, but instead of using mixture
collapses the aim is to retain the most probable model sequences. The number
of possible model sequences at time k is 3k. Suppose that at time t ≥ k there
are stored 3k model sequences. Then for t + 1 the likelihood for all 3k+1 pos-
sible model sequences are calculated, and the 3k model sequences with highest
likelihood are saved, i.e. if k = 4 then 81 model sequences are saved. So at a
given time t ≥ k there are the model sequences

Mj = (α1j , . . . , αtj)

and their likelihoods Lj for j = 1, . . . , 3k. Let

Im = {j|αtj = m} , m = 1, 2, 3,

then the posterior probability of model m at time t is approximated by

P̂r(αt = m) =

∑
j∈Im Lj∑
Lj

.

The most likely model sequences are selected at each time, because of the large
number of mixture components as time progress, which increases the complexity
of the calculations, thus the components where the posterior probabilities are
small are ignored.



Chapter 3

Results

In this chapter the results of the analysis using the three different methods are
presented. Statens Serum Institut has identified two outbreaks of Mycoplasma
pneumoniae in the period Juli 1st 1994 to Juli 29th 2005, the first in 1998/1999
and the second in 2004/2005 [16],[17]. The years 1998/1999 correspond to the
week 132 to 208, and the years 2004/2005 correspond to the week 445 to 525,
i.e. it is expected to detect an outbreak in each of these time periods. It is
assumed, that there are no outbreaks in the weeks outside these periods, i.e.
there are no outbreaks in week 1 to 131 and week 209 to 444. If there is an
alarm in the periods with no outbreak, it is considered a false positive alarm.

Farringtons algorithm

In figure 3.2 the results of the analysis using Farringtons algorithm are presented,
where the number of infected, the threshold and alarms are shown. In the first
years there are a number of alarms indicating a possible outbreak without there
being a high number of infected. As time passes more data become available
for baseline values, thereby increasing the amount of data used for threshold
calculations. The threshold is affected by the first outbreak up to 5 years after,
even though a weight function is used to reduce the effect of past outbreaks by
giving low weights to counts with high residuals. The threshold values during
the second outbreak are not affected by the first outbreak, because the threshold
is only calculated using historical data up to 5 years back.

Dynamic linear model

Figure 3.3 shows the result of the analysis using the dynamic linear model, in-
dicating the number of infected, the threshold and the alarms. There are no

21
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alarms in the first two years and only one false alarm before the period, where
the first outbreak is expected. The threshold values are not affect by past out-
breaks, and it easily adapt to the seasonal variations.

The dynamic linear model rely on the assumption that the observations are
normally distributed. This can be examined by checking that the standard in-
novations in the steady periods are normally distributed. Figure 3.1 is a QQ-plot
of the standard innovations in the steady periods, where it is shown, that the
standard innovations deviate slightly from the normal distribution, which could
indicate systematic deviation. This is, however, disregarded, and it is assumed
that the standard innovations are normally distributed.

Figure 3.1: QQ-plot of the standard innovations in the steady periods.

Multi-process dynamic linear model

In figure 3.4 the results of the analysis using a multi-process dynamic linear
model are presented. The most likely sequence of models is shown, where the
number of infected, outliers and the alarms are indicated. This shows that there
are two clusters of alarms corresponding to the two periods where outbreaks
are expected. Two outliers are identified, where the first outlier in week 152
correspond to an unusual high number of infected that week, and the second in
week 339 is an unusual low number of infected that week.
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Figure 3.2: Result of analysis using Farringtons algorithm.
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Figure 3.3: Result of analysis using the dynamic linear model.
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Figure 3.4: Results of analysis using multi-process dynamic linear model.
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Comparison

Table 3.1 shows week 145 to 178 along with the number of infected, the thres-
hold values and the alarms using Farringtons algorithm and the dynamic linear
model, DLM, and the weeks with alarms using the multi-process dynamic linear
model, MDLM. These weeks correspond to part of the years 1998/1999, where
the first alarms are indicated by the three methods. Farringtons algorithm gives
the first alarm in week 148, but the number of infected is only 3 this week, and
it therefore questionable whether this is the beginning of the outbreak. The
same argument applies to the alarms indicated by Farringtons algorithm in the
following weeks, even thought the number of infected become more frequent. In
week 176 the number of infected is 38, but in the following week 177 the number
is 129, which is well above the threshold values given by Farringtons algorithm.

The first alarm given by the dynamic linear model is in week number 152,
but there are no alarms in the next 12 weeks, i.e. the next alarm is in week 165.
This could indicate that the alarm in week 152 is a false positive, but further
epidemiological investigations need to be carried out to determine this. There
are no alarms in the three weeks following week 165, and it is not until week
171, that there are alarms in each week until the number of infected decreases
again. The threshold values for the dynamic linear model are higher than the
threshold for Farringtons algorithm.

The multi-process dynamic linear model gives the first alarm in week 174, and
there are alarms from this week to week 200 except week 186.

Week
No. Farringtons algorithm DLM MDLM

infected Threshold Alarm Threshold Alarm Alarm
145 2 2.180402 No 6.379180 No No
146 1 1.443721 No 6.596930 No No
147 1 1.443721 No 6.364031 No No
148 3 1.443721 Yes 6.206510 No No
149 1 1.443721 No 6.888621 No No
150 3 1.443721 Yes 6.658264 No No
151 3 1.915426 Yes 7.298282 No No
152 13 2.321480 Yes 7.832231 Yes No
153 2 2.321480 No 8.100284 No No
154 4 2.268024 Yes 8.071196 No No
155 2 2.038544 No 8.897144 No No
156 6 2.154036 Yes 8.729422 No No
157 4 2.249601 Yes 10.067662 No No
158 5 2.294297 Yes 10.450053 No No



27

159 8 1.952740 Yes 11.097567 No No
160 6 2.087300 Yes 12.561153 No No
161 12 2.466892 Yes 13.078961 No No
162 14 2.905565 Yes 15.290707 No No
163 11 2.905565 Yes 17.625298 No No
164 9 2.905565 Yes 18.576575 No No
165 21 2.871391 Yes 18.627691 Yes No
166 14 2.871391 Yes 19.233855 No No
167 12 2.887439 Yes 20.711052 No No
168 12 2.887439 Yes 21.022993 No No
169 24 2.742993 Yes 21.189470 Yes No
170 13 3.520094 Yes 21.608446 No No
171 25 4.202538 Yes 21.790446 Yes No
172 30 4.924282 Yes 22.074671 Yes No
173 31 5.715024 Yes 22.292990 Yes No
174 47 7.056105 Yes 22.443546 Yes Yes
175 44 8.247032 Yes 22.525668 Yes Yes
176 38 8.382453 Yes 22.539931 Yes Yes
177 129 8.883971 Yes 22.488170 Yes Yes
178 383 8.858443 Yes 22.373464 Yes Yes

Table 3.1: Results of analysis using the three different methods. Weeks, the number
of infected, the threshold and alarms for weeks 145 to 178 are shown.

In table 3.2 week 478 to 492 are shown and again the number of infected, the
threshold values and the alarms for Farringtons algorithm and the dynamic lin-
ear model, and the alarms for the multi-process dynamic linear model are given.
These weeks corresponds to part of the years 2004/2005, which are equivalent
to the weeks where the second outbreak is expected. The first alarm given by
Farringtons algorithm is in week 484, and except for week 486 there is an alarms
each week until the number of infected decreases again.

The dynamic linear model gives the first alarm in the period, where the sec-
ond outbreak is expected, in week 481, and there are alarms each week until
the number of infected decreases again. The threshold values for the dynamic
linear model are lower than the threshold values for Farringtons algorithm.

For the multi-process dynamic linear model alarms occur from week 484 to
513.
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Week
No. Farringtons algorithm DLM MDLM

infected Threshold Alarm Threshold Alarm Alarm
478 3 11.45655 No 10.75522 No No
479 3 11.97124 No 10.71925 No No
480 4 12.39311 No 10.66690 No No
481 13 14.32504 No 10.97631 Yes No
482 14 14.92616 No 11.47859 Yes No
483 14 16.89924 No 11.97497 Yes No
484 33 16.75521 Yes 12.45902 Yes Yes
485 21 18.76398 Yes 12.92430 Yes Yes
486 15 19.46819 No 13.36456 Yes Yes
487 39 21.59929 Yes 13.77388 Yes Yes
488 42 22.87034 Yes 14.14687 Yes Yes
489 63 23.26654 Yes 14.47881 Yes Yes
490 65 22.80209 Yes 14.76576 Yes Yes

Table 3.2: Results of the analysis of the three different methods. Weeks, the number
of infected, the threshold and alarms for weeks 478 to 490 are shown.

During the entire period of analysis Farringtons algorithm gives 95 alarms, and
16 of them are in the periods with no outbreaks. This means that at least 16.8%
of the alarms are false positive. The false positive alarms in the first years of
analysis, where the number of baseline values is limited, could just be seasonal
variation detected as possible outbreaks. Some of the alarms in the beginning
of the period, where the first outbreak is expected, could also be false positive,
but it is not possible to determine when the outbreak actually begins without
further epidemiological investigations.

The dynamic linear model gives 54 alarms in the entire period, where 5 alarms
are in the periods with no outbreaks i.e. at least 9.3% are false positive alarms.

For the multi-process dynamic linear model there are 58 alarms throughout
the period of analysis, and 2 alarms are in the period with no outbreaks, i.e.
3.4% are false positive alarms. The number of infected in the weeks with the
two false positive alarms are unusually low.
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Discussion

In this project different methods for detection of outbreaks were compared by
analysing weekly counts of Mycoplasma pneumoniae. The different methods
presented in this project are intended as an aid to automatic detection of out-
breaks, because the demands from diseases under surveillance exceeds the ca-
pabilities for manual scanning. The three methods are Farringtons algorithm,
the dynamic linear model and the multi-process dynamic linear model. For each
method the weeks with alarms were presented, and the number of alarms that
are clearly false positive were given. The weeks, where an outbreak was expected
to occur, were further investigated to evaluate the possible onset of the outbreak.

The data analysed in this project was collected by Statens Serum Institut, which
carries out surveillance in Denmark [8]. In the analyses it is assumed that the
data is collected from the same region and that the diagnoses are validated.
However, if these assumptions are not true it should be taken into account in
formulation of the models. It is also assumed that there are no variation in the
reporting delay throughout the period of analysis. The date of report is used
as reference date thereby ignoring the reporting delay. Another approach could
have been to apply a correction factor to the data based on an estimate of the
delay distribution. This, however, requires the date of infection, which are not
available. The disadvantage of estimating the reporting delay is that additional
uncertainty is introduced into the system. The timeliness of the system is af-
fected by the mean of the reporting delay, because the longer the delay is, the
longer it takes for an outbreak to be detected. The sensitivity of the detection
system is affected by the variance of the reporting delay, since the variability
reduces the change that a threshold will be exceeded [2].

In this project data is aggregated from days into weeks to reduce the varia-
bility throughout the week. This also reduces the number of observations with

29
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no infected and small counts. An alternative approach, if analysis on daily ba-
sis is desired, could be to use a weight function that account for weekends and
holidays.

There is not adjusted for an increase in the population throughout the period
either, and the influence of the change in population size has not been further
analysed, but an increase would also affect the results. There was an increase
of about 214000 people in the population size in the period January 1st 1994 to
January 1st 2005 [22].

The distribution of the data is assumed to be Poisson, because it is count data.
Farringtons algorithm accommodate this assumption by using a log-linear re-
gression model, but a 2

3 -power transformation for normalization is used in the
threshold calculation, which is based on a normal prediction interval. The dy-
namic linear model and the multi-process dynamic linear model rely on the as-
sumption that the data is normally distributed. To achieve normally distributed
data a 2

3 -power transformation is used for skewness correction. To validate the
assumption that the data is normally distributed the standard innovations dur-
ing the steady period have to be normally distributed. The QQ-plot of the stand-
ard innovations shows that the standard innovations deviate from the normal
distribution and the assumption of normality may not be meet. Alternatively a
generalized dynamic linear model or a multi-process generalized dynamic linear
model could be used. These types of models allows the observations and the
state process to follow other distributions than the normal distribution e.g. the
Poisson distribution.

The threshold value in Farringtons algorithm is highly affected by the base-
line values used in the calculations. When a small amount of data is available
for baseline values, Farringtons algorithm is likely to detect seasonal variations
as possible outbreaks resulting in false positive alarms. Past outbreaks also have
an effect on the threshold value even though a reweighting procedure is used to
give low weights to counts with high residuals. Both Farringtons algorithm and
the dynamic linear model are based on a forecast interval when defining the
threshold, but where Farringtons algorithm is highly affected by the baseline
used, the dynamic linear model is better at adapting to the underlying expected
seasonal variation.

The parameters in the dynamic linear model and the multi-process dynamic
linear model are estimated based on the steady period of the time series. This
introduces bias, because the time series under analysis is also used for estimation
of the unknown parameters. Ideally the parameters should be estimated based
on a period not under analysis. The threshold defined in Farringtons algorithm
is only based on the previous history of the time series.
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The dynamic linear model and the multi-process dynamic linear model are de-
fined as consisting of two components: a random walk plus noise and a seasonal
component, where the seasonal component is defined as having a period of 52
week. There was not included a trend in Farringtons algorithm, because it was
not significant. Therefore a trend component was not used when formulating
the dynamic linear model and the multi-process dynamic linear model.

For both Farringtons algorithm and the dynamic linear model it is assumed
that there are 52 weeks in a year i.e. 364 day. In Farringtons algorithm this is
used to identify the corresponding baseline weeks previous years for threshold
calculations, and in the dynamic linear model it is used in definition of the sea-
sonal component. Thus the assumption of 52 weeks in a year shift the baseline
values and the estimated seasonal variation, since there are 365 days in a year
and leap years is not taken into account. In the multi-process dynamic linear
model, however, it is assumed that there are 365.25 days in a year, thereby
accounting for the 365 days in a year and leap years.

A 99% prediction interval is used to define the threshold for Farringtons al-
gorithm and the dynamic linear model. The size of the prediction interval was
chosen to reduce the number of false positives, but the size of the interval also
affect how early an outbreak is detected. A smaller prediction interval could
mean that outbreaks are detected earlier, but it could also give more false po-
sitive alarms.

It is not possible to define the precise onset of the outbreaks, and which model
is the first to detect the two outbreaks, but the alarms still gives an indication
of when the outbreaks are detected by the three methods. For the first outbreak
Farringtons algorithm indicates an outbreak before the dynamic linear model
and the multi-process dynamic linear model. The number of infected in the
first weeks, where Farringtons algorithm gives alarms, is on the other hand low,
and it is therefore questionable when the outbreak is detected at early. The
possible false positive alarms in the first years of analysis could be caused by
the limited baseline values available for threshold calculations. In the period
where the first outbreak is expected, the dynamic linear model has few sporadic
alarms in the week 160 to 170, but it is not until week 171, that there is alarm
each week until the number of incidences decreases again. The multi-process
dynamic linear indicate an outlier in the beginning of the period, where the first
outbreak is expected, and indicate that the onset of the outbreak is week 174 i.e.
three weeks after the dynamic linear model. The second outbreak is indicated
by Farringtons algorithm to begin in week 484, but then there is a week without
alarm in week 486. The first alarm given by the dynamic linear model is three
weeks before Farringtons algorithm in week 481, and the multi-process dynamic
linear model indicates an outbreak from week 484.
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Farringtons algorithm gave 16 identified false positive alarms, and the dynamic
linear model indicated 5 false positive alarms. The multi-process dynamic lin-
ear model gave 2 false positive alarms in the steady period between the two
identified outbreaks, but these alarms were in weeks, where the number of in-
fected was unusually low. The number of false positive is considerable higher
for Farringtons algorithm than the dynamic linear model and the multi-process
dynamic linear model. The multi-process dynamic linear model is defined so it
detect observations, where the variance of the state process is high, as outliers
or outbreaks. This is why both unusual high counts or unusual low counts is
detected as possible outliers or outbreaks.

The multi-process dynamic linear models has the advantages over both Farring-
tons algorithm and the dynamic linear model that it can differentiate between
several possible models; in this case steady state, outlier and outbreaks. This
means that it is possible to detect outliers separately, whereas both Farringtons
algorithm and the dynamic linear model only distinguish between no outbreak
and possible outbreak. The results reflect this, where week 152 is marked as a
possible outbreak by Farringtons algorithm and the dynamic linear model, but
is identified as an outlier by the multi-process dynamic linear model.

In the multi-process dynamic linear model the different models are selected
at each time with known probability. The dependence structure of the models
is first-order Markov, i.e. the model at each time t only depend on the model at
time t− 1. It is, however, possible that the model at time t depends on models
prior to time t − 1. This dependence structure could be achieved by using a
higher-order Markov structure of the models. The transition probabilities are a
qualified guess based on the assumption that 98.5% of the time the time series
is in steady state. The probabilities should, however, be analysed further, since
an outbreak of Mycoplasma pneumoniae occur every 4 to 6 years with a dura-
tion of 3 to 4 months according to Statens Serum Institut, which correspond to
more than 1.5% of the time. It is also assumed that the transition probabilities
are fixed throughout the year, but the time of the year, where outbreaks occur,
could depend on the seasonal variation. Thus an outbreak could be more likely
to occur in a period, if there is a higher number of infected because of seasonal
variation.

The complexity of the calculations of the multi-process dynamic linear model is
reduced by ignoring possible model sequences with low posterior probability. It
is, however, possible that sequences with low posterior probability in the begin-
ning, which is ignored, later could be relevant.
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The comparisons of Farringtons algorithm, the dynamic linear model and the
multi-process dynamic linear model are only performed by analysing the number
of samples tested positive for Mycoplasma pneumoniae. One of the requirements
of the detection system is that it should be able to handle a wide variety of
organisms with varying organism count. Mycoplasma pneumoniae is one of
the more common microorganisms, the methods should also be compared using
other data with lower and higher organism count than Mycoplasma pneumoniae.





Chapter 5

Conclusion

The aim of this project was to compare different methods for detection of di-
sease outbreaks. The three different methods were Farringtons algorithm, the
dynamic linear model and the multi-process dynamic linear model. Farringtons
algorithm is currently being used by Statens Serum Institut.

Analysis of Mycoplasma pneumoniae using the three different methods indicates
that the dynamic linear model and the multi-process dynamic linear model are
superior to the log-linear regression model presented by Farrington et al. Far-
ringtons algorithm is highly affected by the baseline values used for threshold
calculations, where the dynamic linear model and the multi-process dynamic
linear model are better at adapting to the underlying expected seasonal varia-
tion. The dynamic linear model seems to detect the onset of the outbreaks
slightly before the multi-process dynamic linear model. The multi-process dy-
namic linear model has the advantage over the dynamic linear model that the
posterior probabilities of each model is given. Thus it is possible to differentiate
between the models; steady state, outliers and possible outbreaks. Farringtons
algorithm and the dynamic linear model only differentiate between steady state
and possible outbreaks.
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Part II

Theory
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Chapter 6

Generalized linear models

In the following chapter generalized linear models are presented. Generalized
linear models allow the response variables to have other distributions than the
normal distribution, and they are not restricted to be continuous. The response
variable Y in a generalized linear model belongs to a distribution in the expo-
nential family, which is introduced in the next section [23, p. 45].

6.1 Exponential family

A probability distribution of a random variable Y depending on a single para-
meter θ belongs to the exponential family, if the probability function is on the
form

f(y|θ) = exp(a(y)b(θ) + c(θ) + d(y)), (6.1)

where a(y), b(θ), c(θ) and d(y) are known functions, and b(θ) is called the natural
parameter. The distribution is on canonical form if the function a(y) = y. If
there are more parameters, than the parameter of interest θ, then they are
considered as nuisance parameters, and are part of the functions a(y), b(θ), c(θ)
and d(y), which are known [23, p. 46].

6.1.1 Expected value and variance of a(Y )

For the exponential family distribution the expected value of a(Y ) can be ob-
tained by differentiation of the probability density function, and using that the
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differential of a density function must integrate to 0. This gives

∫
∂f(y|θ)
∂b

dy = 0⇔
∫

∂

∂b
exp(a(y)b+ c(θ(b)) + d(y))dy = 0⇔

∫ (
a(y) +

∂c(θ(b))

∂b

)
f(y|θ)dy = 0⇔

∫
a(y)f(y|θ)dy +

∫
∂c(θ(b))

∂b
f(y|θ)dy = 0⇔

E[a(Y )] =
−∂c(θ(b))

∂b
⇔

E[a(Y )] =
−∂c(θ)
∂θ

· ∂θ
∂b
⇔

E[a(Y )] =
−∂c(θ)
∂θ
∂b
∂θ

⇔

E[a(Y )] =
−c′(θ)
b′(θ)

. (6.2)

To obtain the variance of a(Y ) the density function is differentiated twice and
because the second differential of a density function must integrate to zero, then

∂2

∂b2

∫
f(y|θ)dy = 0⇔

∫
∂

∂b

((
a(y) +

∂c(θ(b))

∂b

)
f(y|θ)

)
dy = 0⇔

∫
∂2c(θ(b))

∂b2
f(y|θ) +

(
a(y) +

∂c(θ(b))

∂b

)
∂

∂b
f(y|θ)dy = 0⇔

∫
∂2c(θ(b))

∂b2
f(y|θ) +

(
a(y) +

∂c(θ(b))

∂b

)(
a(y) +

∂c(θ(b))

∂b

)
f(y|θ)dy = 0⇔

∫
∂2c(θ(b))

∂b2
f(y|θ)dy +

∫
(a(y)− E[a(Y )])

2
f(y|θ)dy = 0⇔

Var[a(Y )] = −∂
2c(θ(b))

∂b2
⇔

Var[a(Y )] = −
(
∂b

∂θ

)−1
∂

∂θ

(
∂c(θ(b))

∂b

)
⇔

Var[a(Y )] = −
(
∂b

∂θ

)−1
∂

∂θ

(
∂c(θ)
∂θ
∂b
∂θ

)
⇔
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Var[a(Y )] = − 1

b′(θ)

(
c′′(θ)b′(θ)− c′(θ)b′′(θ)

(b′(θ))2

)
⇔

Var[a(Y )] =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

(b′(θ))3
(6.3)

[23, pp. 48-49].

6.1.2 The score statistic and the information

For a distribution of the exponential family the log-likelihood function is given
by

`(θ; y) = a(y)b(θ) + c(θ) + d(y).

The score statistic U is the derivative of the log-likelihood function `(θ; y)

U(θ; y) =
d`(θ; y)

dθ
= a(y)b′(θ) + c′(θ).

Because the score statistic is dependent on y it can be considered as a random
variable

U = a(y)b′(θ) + c′(θ).

The expected value of U is given as
∫

exp(`(y; θ))dy = 1⇔

∂

∂θ

∫
exp(`(y; θ))dy = 0⇔

∫
U exp(`(y; θ))dy = 0⇔

E[U ] = 0.

The information I is the variance of U , which is given by

I = Var[U ]

= (b′(θ))2Var[a(Y )]

= (b′(θ))2
(
b′′(θ)c′(θ)− c′′(θ)b′(θ)

(b′(θ))3

)

=
b′′(θ)c′(θ)
b′(θ)

− c′′(θ).

The variance of U can also be written as

Var[U ] = E[U2] + (E[U ])2

= E[U2],
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and

∂2

∂θ2

∫
exp(`(y; θ))dy = 0⇔

∫
∂

∂θ
(U exp(`(y; θ)))dy = 0⇔

∫
U ′ exp(`(y; θ))dy +

∫
U2 exp(`(y; θ))dy = 0⇔

E[U ′] + E[U2] = 0⇔
Var[U ] = −E[U ′]

[23, p. 50].

6.2 Generalized linear models

A generalized linear is defined from independent random variables Y1, . . . , YN ,
where each variable belongs to a model on the same form from the exponential
family. The distribution of the variables Yi only depend on a parameter θi, and
it is on canonical form. The probability density function of Yi is given by

f(yi|θi) = exp(yib(θi) + c(θi) + d(yi)),

and the joint probability density function of Y1, . . . , YN is

f(y1, . . . , yN |θ1, . . . , θN ) =

N∏

i=1

exp(yib(θi) + c(θi) + d(yi))

= exp

(
N∑

i=1

yib(θi) +

N∑

i=1

c(θi) +

N∑

i=1

d(yi)

)
.

Let E[Yi] = µi, where µi is a function of θi, which may depend on some ex-
planatory variables xi. Then for a generalized linear model it is assumed that
there is a transformation of µi so that

g(µi) = xTi β = ηi.

This function is called the link function and is a monotone, differentiable func-
tion. The vector xTi represent the ith row of the design matrix X, and it is a
p× 1 vector, which contains the explanatory variables. The vector β is a p× 1
vector containing the parameters of interest β1, . . . , βp, p < N .

Therefore a generalized linear model contain three elements:

1. Independent random response variables Y1, . . . , YN , which belongs to a
distribution of the same form from the exponential family.
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2. The parameters of interest

β =



β1
...
βp


 ,

and the explanatory variables

X =




xT1
...

xTN


 =




x11 · · · x1p
...

. . .
...

xN1 · · · xNp


 .

3. The link function

g(µi) = xTi β = ηi, where µi = E[Yi].

[23, pp. 51-52].

6.3 Maximum likelihood estimation

Given independent random variables Y1, . . . , YN which satisfy the properties of
a generalized linear model. Maximum likelihood estimation is used to estimate
the parameters β, which are connected to Y1, . . . , YN through the expected value
E [Yi] = µi and the link function g(µi) = xTi β. The log-likelihood function for
each Yi is given by

`i = yib(θi) + c(θi) + d(yi),

where the function b, c and d are given by the exponential family defined by
equation (6.1). The expected value of Yi is defined in equation (6.2), the variance
of Yi is given by equation (6.3), and the link function is g(µi) = xTi β = ηi, where
xTi is the ith row of the design matrix X with elements xij for j = 1, . . . , p.
Because all the Yi’s is independent the log-likelihood function is given by

` =

N∑

i=1

`i =

N∑

i=1

yib(θi) +

N∑

i=1

c(θi) +

N∑

i=1

d(yi).

The score vector U is used to find the maximum likelihood estimator, β̂, for the
parameter β

Uj =
∂`

∂βj
=

N∑

i=1

(
∂`i
∂βj

)
=

N∑

i=1

(
∂`i
∂θi
· ∂θi
∂µi
· ∂µi
∂βj

)
(6.4)
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for j = 1, . . . , p. The maximum likelihood estimator, β̂, is given by the solution
of the equation U(β) = 0. The differential with respect to θi of the log-likelihood
function is

∂`i
∂θi

= yib
′(θi) + c′(θi)

= yib
′(θi)− b′(θi)

(−c′(θi)
b′(θi)

)

= b′(θi)(yi − µi), (6.5)

the differential of θi with respect to µi is

∂θi
∂µi

= 1

/(
∂µi
∂θi

)

= 1

/(−c′′(θi)b′(θi) + c′(θi)b′′(θi)
(b′(θi))2

)

= 1 /b′(θi)Var[Yi] , (6.6)

and the differential of µi with respect to βj is

∂µi
∂βj

=
∂µi
∂ηi
· ∂ηi
∂βj

=
∂µi
∂ηi
· xij (6.7)

using the definition of the link function. Combining equation (6.4), (6.5), (6.6)
and (6.7) the score function is

Uj =

N∑

i=1

(
(yi − µi)
Var[Yi]

xij

(
∂µi
∂ηi

))
(6.8)

for j = 1, . . . , p. The elements of the information matrix I is then defined as

Ijk = E[UjUk]

= E

[
N∑

i=1

(
(Yi − µi)
Var[Yi]

xij
∂µi
∂ηi

) N∑

l=1

(
(Yl − µl)
Var[Yl]

xlk
∂µl
∂ηl

)]

=

N∑

i=1

E[(Yi − µi)2]xijxik
(Var[Yi])2

(
∂µi
∂ηi

)2

=

N∑

i=1

xijxik
Var[Yi]

(
∂µi
∂ηi

)2

, (6.9)

since the Yi’s are independent and E[(Yi − µi)(Yl − µl)] = 0 for i 6= l. The
method of scoring is used to find the maximum likelihood estimate of β, which
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is the solution to U(β) = 0. A numerical solution is obtained using the Taylor
series approximations

U(β) ≈ U
(
β̂
)

+

{
∂2`

∂βi∂βj

}(
β − β̂

)

= U
(
β̂
)

+ E

[
∂2`

∂βi∂βj

](
β − β̂

)

= U
(
β̂
)
− I

(
β − β̂

)

= −I
(
β − β̂

)
.

This means that β̂ = I−1U(β) + β, which leads to the general estimating equa-
tion

b(m) = b(m−1) +
(
I(m−1)

)−1
U(m−1),

where the vector of estimates of the parameters β1, . . . , βp is b(m) at the mth

iteration,
(
I(m−1)

)−1
is the inverse of the information matrix with elements Ijk

defined in equation (6.9), and U(m−1) is a vector of elements defined in equation
(6.8) evaluated at b(m−1) [23, pp. 64-65].

6.4 Inference

In this section inference for generalized linear models will be described.

Sampling distribution for score statistics

Let Y1, . . . , YN be independent random variables in a generalized linear model
with parameters β, where E[Yi] = µi and g(µi) = xTi β = ηi. The score statistics
defined in equation (6.8) is given by

Uj =

N∑

i=1

(
(yi − µi)
Var[Yi]

xij

(
∂µi
∂ηi

))
, (6.10)

for j = 1, . . . , p. Equation (6.10) is a sum of independent terms, which may be
approximated by a normal distribution. The expected value is E[Uj ] = 0 for
j = 1, . . . , p, because E[Yi] = µi for all i, and the variance-covariance matrix for
the score statistic is given by the information matrix I with elements
Ijk = E[UjUk]. For one parameter β the asymptotic sampling distribution for
the score statistic is

U − E[U ]√
Var[U ]

=
U√
I
∼ N(0, 1)
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implying

(U − E[U ])2

Var[U ]
=
U2

I
∼ χ2(1),

since E[U ] = 0 and Var[U ] = I.
For a vector of parameters β = [β1 · · ·βp]T the score vector U = [U1 · · ·Up]T
has the asymptotic multivariate normal distribution U ∼ Np(0, I) and for large
samples [

U − E[U ]
]T
V −1

[
U − E[U ]

]
= UTI−1U ∼ χ2(p)

[23, pp. 74-75].

Sampling distribution for maximum likelihood estimators

The sampling distribution of the maximum likelihood estimator b = β̂ can be
obtained using Taylor approximation of the score function for a vector parameter
β given by

U(β) ≈ U(b) + U ′(b)(β − b)
≈ −I(b)(β − b),

where it is used that the derivative of the score function can be approximated
by its expected value E [U ′(b)] = −I, evaluated at β = b. Given that the
information I is invertible, this can be written as

(b− β) ≈ −I−1U,

and if I is regarded as a constant, then E [b− β] = 0, since E [U ] = 0. This
means that asymptotically E [b] = β and b is a consistent estimator of β. The
variance-covariance matrix V for b is given by

V = E
[
(b− β)(b− β)T

]

= I−1E
[
UUT

]
I−1

= I−1,

since E
[
UUT

]
= I and I is symmetric i.e.

(
I−1

)T
= I−1. Then for b the

asymptotic sampling distribution is b ∼ Np(β, I−1) and

[
b− E[b]

]T
V −1

[
b− E[b]

]
=
[
b− β

]T
I(b)

[
b− β

]
∼ χ2(p), (6.11)

which is the Wald statistic. Equation (6.11) is an exact result if the response
variables in a GLM are normally distributed [23, pp. 77-78].
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The likelihood ratio

Let Y be a random vector with density function f(y;β). The hypothesis to be
tested is

H0 : β ∈ B0
H1 : β ∈ B1 , B = B0 ∪ B1,

where B0 and B1 are disjoint parameter sets. Generally the likelihood ratio test
at level α has the rejection region

R = {y|λ(y) ≤ λα},
where the likelihood ratio is given by

λ(y) =
supβ∈B0

L(β; y)

supβ∈B L(β; y)
,

and the critical value λα is selected so

sup
β∈B0

Pr{λ(y) ≤ λα;β} = α.

An equivalent test statistic, which is still called the likelihood ratio, is

W (y) = −2 log(λ(y)) = −2
[
`
(
β̂0; y

)
− `
(
β̂; y

)]
.

This test statistic measures the difference between the log-likelihood at β̂ and

β̂0. If B is defined as the set of parameters β = (β1, . . . , βp)
T , and B0 is obtained

by the p− q equations,




g1(β1, . . . , βp) = 0,
...
gp−q(β1, . . . , βp) = 0,

where g1, . . . , gp−q are regular functions, then W (y)
d→ χ2

p−q [20, pp. 112-
113,116].

Deviance

The deviance can be used to analyse how well the model fit the data by com-
paring two GLMs, M1 and M2. The two models have the same distribution and
link function, but M2 ⊂ M1 i.e. M2 is nested within M1. First consider the
situation where β1 is the parameter vector for M1 with p parameters, and β2 is
the parameter vector for M2 containing q parameters, where q < p. Then using
the likelihood ratio

W (y) = −2 log

(
L(β̂2; y)

L(β̂1; y)

)
d→ χ2(p− q). (6.12)
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Second consider the situation where M1 is the saturated model, which is the
model with the maximum number of parameters, N , that can be estimated,
and M2 is the model of interest, which is a restriction of M1, with q parameters.
Let βmax be the parameter vector for M1, and let β̂max be the maximum
likelihood estimate of βmax. The deviance is then defined as

D = −2[`(β̂2; y)− `(β̂max; y)],

and D ∼ χ2(N − q). Then equation (6.12) can be rewritten using the deviance

W (y) = −2 log

(
L(β̂2; y)

L(β̂1; y)

)

= −2 log

(
L(β̂2; y)

L(β̂max; y)
· L(β̂max; y)

L(β̂1; y)

)

= −2 log

(
L(β̂2; y)

L(β̂max)

)
+ 2 log

(
L(β̂1; y)

L(β̂max)

)

= D(M2)−D(M1),

where D(M1) is the deviance of M1, and D(M2) is the deviance of M2 [20, pp.
242-244].

6.4.1 Confidence interval

Confidence intervals can be used for statistical inference. The width of a confi-
dence interval provides a measure of precision with which inference can be made.
For an estimate µ̂ it is desirable to assess the degree of accuracy of the estimate
and provide a set of possible values of the parameter µ, that contains µ̂. This
set of possible values is called an interval estimate. The set C(y) is a confidence
set of level 1−α for µ if the probability that the random set C(Y ) includes the
true parameter µ is 1− α for any possible value of µ, i.e.

Pr {C(Y ) 3 µ;µ} = 1− α.

This statement holds a priori, when C(Y ) is a random set, but a posteriori the
statement does not hold for the observed set C(y). A posteriori it is said that
a specific interval (c1, c2) is a (1− α)% confidence interval.
Let y be the sample mean of a sample of size n from a normally distributed,
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N(µ, σ2), random variable. Then Y − µ ∼ N(0, σ
2

n ) and

1− α = Pr

{(
Y − µ

) √n
σ
∈
(
−zα

2
, zα

2

)}

= Pr

{
−zα

2
· σ√

n
< µ− Y < zα

2
· σ√

n

}

= Pr

{
Y − zα

2
· σ√

n
< µ < Y + zα

2
· σ√

n

}

= Pr

{(
Y − zα

2
· σ√

n
, Y + zα

2
· σ√

n

)
3 µ
}
,

where Φ
(
−zα

2

)
= α

2 . Thus the interval
(
y − zα

2
· σ√

n
, y + zα

2
· σ√

n

)
is a confi-

dence interval of level 1− α [20, pp. 115,141-142].

6.5 Poisson distribution

A discrete random variable Y is Poisson distributed if the probability function
is given by

f(y; θ) =
θye−θ

y!

= exp(y log(θ)− θ − log y!), (6.13)

where y = 0, 1, 2, . . . is the number of events and θ is the average number of
events as shown below. The Poisson distribution is part of the exponential
family, where a(y) = y, b(θ) = log(θ), c(θ) = −θ and d(y) = − log(y!), and it is
on canonical form. The expected value for the Poisson distribution is

E [Y ] = E [a(Y )] =
−c′(θ)
b′(θ)

=
−(−1)

1/θ
= θ,

where it is used that the expected value of a(Y ) is given by equation (6.2).
Similarly the variance calculated using the variance of a(Y ) is given by equation
(6.3),

var [Y ] = var [a(Y )] =
b′′(θ)c′(y)− c′′(θ)b′(θ)

(b′(θ))3

=

(
− 1
θ2

)
· (−1)− 0 ·

(
1
θ

)
(
1
θ

)3 =

(
1
θ

)2
(
1
θ

)3 = θ

[23, p. 47, 165].
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6.6 Poisson regression

Consider Y1, . . . , YN independent random variables, where Yi is the number of
events observed from exposure ni for the ith covariate pattern. For example
could Yi be the number of incidences of a disease in a specific area, which would
depend on the total number of individuals in the area, ni, and other variables,
such as previous medical history. The subscript i indicates the different combi-
nations of disease and medical history. The expected value of Yi is given by

E [Yi] = µi = niθi,

where θi may depend on some other explanatory variables xi, which is modelled
by

θi = exp(xTi β).

The generalized linear model is

E[Yi] = µi = ni exp(xTi β),

where Yi ∼Po(µi) and the logarithmic function is the link function, which gives
a linear component

log(µi) = log(ni) + xTi β.

The term log(ni) is the offset and is a known constant, and xi is the covariate
pattern and β is the parameters. The Poisson regression model is sometimes
called a log-linear model.

The fitted values of Yi are

Ŷi = µ̂i = ni exp(xTi b),

where i = 1, . . . , N and b is the maximum likelihood estimate of β. The fitted
values are estimates of the expected values and is therefore also denoted ei. The
Pearson residuals are given by

ri =
oi − ei√

ei
,

where oi is the observed value of Yi and the standard error is estimated by√
ei because the variance and the expected value are equal for the Poisson

distribution. The Pearson residuals and the χ2 goodness of fit statistic are
related for the Poisson distribution by

X2 =
∑

r2i =
∑ (oi − ei)2

ei

[23, pp. 166-167].
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Deviance for a Poisson model

Let the response variables Yi ∼ Po(λi), i = 1, . . . , N , be independent, then the
log-likelihood function is

`(β; y) =
∑

yi log(λi)−
∑

λi −
∑

log(yi!).

The maximum value of the likelihood function is

`(bmax; y) =
∑

yi log(yi)−
∑

yi −
∑

log(yi!),

where the maximum likelihood estimate of λ̂i = yi. The log-likelihood function
of the model of interest with p parameters evaluated at the maximum likelihood
estimate for β, b, is

`(b; y) =
∑

yi log(ŷi)−
∑

ŷi −
∑

log(yi!)

The deviance for the Poisson model is defined as

D = 2[`(bmax; y)− `(b; y)]

= 2
[∑

yi log(yi/ŷi)−
∑

(yi − ŷi)
]

= 2
∑[

oi log

(
oi
ei

)
− (oi − ei)

]
,

where oi is the observed value yi and ei is the estimated expected value ŷi. The
deviance residuals are

di = sign(oi − ei)
√[

oi log

(
oi
ei

)
− (oi − ei)

]
,

for i = 1, . . . , N . The deviance and the deviance residuals are related as D =∑
d2i , and the deviance and the χ2 goodness of fit statistic are also related

approximately in the following way

D ≈ 2

N∑

i=1

[
(oi − ei) +

1

2

(oi − ei)2
ei

− (oi − ei)
]

=

N∑

i=1

(oi − ei)2
ei

= X2,

where the Taylor series expansion o log
(
o
e

)
= (o − e) + 1

2
(o−e)2
e + . . . is used.

Both the deviance and the χ2 statistic can be used as a measure of goodness of
fit. They can be obtained from the data and the fitted model and are compared
with the χ2 distribution with N − q degrees of freedom, where q is the number
of estimated parameters [23, pp. 83-84,166-168].





Chapter 7

State space models

With state space models we consider time series, which are the output of a dy-
namic system affected by random noise. State space models are a flexible class
of models, that can be used in a wide variety of applications including, when
the time series are non-stationary, have structural changes or display irregular
patterns. The model can consists of a combination of several components; for
instance trend, seasonal or regressive components, that gives a natural inter-
pretation of the parameters and the output. Recursive computations of the
conditional distribution of the parameters of interest given the available infor-
mation are used for estimation and forecasting [24, p. 31].

Let (Yt)t≥1 be a time series. The joint distribution of (Y1, . . . , Yt) for any t ≥ 1
is defined using Markovian dependence structure,because assumptions of inde-
pendence or exchangeability would make time irrelevant, which is often not true
for most time series. The time series (Yt)t≥1 is a Markov chain if

π(yt|y1:t−1) = π(yt|yt−1)

for any t > 1, and the joint finite-dimensional distribution is given by

π(y1:t) = π(y1) ·
t∏

j=2

π(yj |yj−1).

In many situations it is not appropriate to assume a Markovian structure for
the observations. Therefore it is assumed in state space models that there is
a state process, which is an unobservable Markov chain (θt), and that Yt is a
measurement of θt affected by random disturbance. Figure 7.1 shows a directed
acyclic graph, which illustrates the dependence structure in a state space model.
The graph can be used to deduce conditional independence properties of random
variables, for example variables A and B are conditionally independent given a
third set C, if and only if C separates A and B [24, pp. 39-41].
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θ0
- θ1

- θ2
- · · · - θt−1

- θt
- θt+1

- · · ·

?
Y1

?
Y2

?
Yt−1

?
Yt

?
Yt+1

1

Figure 7.1: Dependence structure in a state space model [24, p. 41]

Definition 7.1 (State space model)
A state space model consists of to time series: An Rp-valued time-series
(θt : t = 0, 1, . . .), and (Yt : t = 1, 2, . . .) an Rm-valued time series. The time
series satisfy the following assumptions:

1. (θt) is a Markov chain.

2. Conditionally on (θt), the Yt’s are independent and Yt depends on θt only.

[24, p. 40]. �

The joint distribution of (θ0, θ1, . . . , θt, Y1, . . . , Yt) for any t > 0 is then given by

π(θ0:t, y1:t) = π(θ0) ·
t∏

j=1

π(θj |θj−1)π(yj |θj). (7.1)

This distribution can be used to derive distributions of interest by conditioning
or marginalization. If the states are discrete-valued random variables the state
space models is sometimes called hidden Markov models [24, pp. 40-41].

7.1 Dynamic linear models

Dynamic linear models, also known as Gaussian linear state space models, are
a particular class of state space models. Let (Yt)t≥1 be a time series, then a
dynamic linear model is defined as follows.

Definition 7.2 (Dynamic linear model)
A dynamic linear model (DLM) is defined by a Normal prior distribution

θ0 ∼ Np(m0, C0) (7.2a)

for the p-dimensional state space vector at time t = 0 and the pair of equations
for each time t ≥ 1,

Yt = Ftθt + vt , vt ∼ Nm(0, Vt) (7.2b)

θt = Gtθt−1 + wt , wt ∼ Np(0,Wt) (7.2c)
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where Ft is a known m× p-matrix and Gt is a known p× p-matrix, and (vt)t≥1
and (wt)t≥1 are two independent sequences of independent Gaussian random
vectors with zero mean and known variance matrices (Vt)t≥1 and (Wt)t≥1, re-
spectively. The state vector at time t = 0, θ0 is independent of (vt) and (wt).
Equation (7.2b) is the observation equation and equation (7.2c) is the state
equation or system equation [24, p. 41]. �

In dynamic linear models it is assumed, that the distribution is Gaussian, which
is true in many applications [24, p. 42].

7.2 State estimation and forecasting

State space models can be used in many applications. Let a model be specified by
the densities π(yt|θt) and π(θt|θt−1). The main objective of state space models is
to make inference on unobserved states and predict future events based on past
events. Calculating the conditional distribution given the previous informations
is used for estimation and forecasting. The conditional densities π(θs|y1:t) are
calculated to estimate the states. This involves three different tasks, filtering
is when s = t, state predicting is when s > t, and smoothing is when s < t.
Filtering is done by calculating the conditional density π(θt|y1:t), which for a
DLM is carried out by the Kalman filter, that update the inference of the states
when new observations are obtained. Filtering can be be implemented as a
recursive algorithm. When smoothing the conditional distribution of θ1:t given
y1:t is calculated, which also can be implemented as a recursive algorithm.

The one-step-ahead forecasting is prediction of θt+1 and Yt+1 based on the pre-
vious observations y1:t. First the state θt+1 is estimated and then the observation
Yt+1 is estimated. The state predictive density of the one-step-ahead forecast is
given by π(θt+1|y1:t), and the one-step-ahead predictive density is π(yt+1|y1:t).
Similarly the k-step-ahead forecasts Yt+k can be calculated by first estimating
the state θt+k for k ≥ 1 and then predicting Yt+k. The state predictive density
of the k-step-ahead forecast is given by π(θt+k|y1:t), and the k-step-ahead pre-
dictive density is π(yt+k|y1:t). The forecasts become more uncertain for large
values of k [24, pp. 49-51].

7.2.1 Filtering

In this section the recursive steps in calculations of the filtering densities π(θt|y1:t)
in a state space model is described. The filtering and predictive densities can be
calculated recursively because of the assumptions in definition 7.1. The following
proposition present the filtering recursive steps.
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Proposition 7.1 (Filtering recursions)
For a general state space model specified by definition 7.1 the following is true

(i) The one-step-ahead predictive density for θt is calculated using the filtered
density π(θt−1|y1:t−1), which gives

π(θt|y1:t−1) =

∫
π(θt|θt−1)π(θt−1|y1:t−1)dθt−1. (7.3a)

(ii) The one-step-ahead predictive density for Yt is calculated using the predic-
tive density for the states as

π(yt|y1:t−1) =

∫
π(yt|θt)π(θt|y1:t−1)dθt. (7.3b)

(iii) The filtering density can be calculated using (i) and (ii)

π(θt|y1:t) =
π(yt|θt)π(θt|y1:t−1)

π(yt|y1:t−1)
. (7.3c)

Proof. The state θt is conditionally independent of Y1:t−1 given θt−1. Then (i)
is proved by

π(θt|y1:t−1) =

∫
π(θt−1, θt|y1:t−1)dθt−1

=

∫
π(θt|θt−1, y1:t−1)π(θt−1|y1:t−1)dθt−1

=

∫
π(θt|θt−1)π(θt−1|y1:t−1)dθt−1.

The observation Yt is conditionally independent of Y1:t−1 given θt and (ii) is
proved by

π(yt|y1:t−1) =

∫
π(yt, θt|y1:t−1)dθt

=

∫
π(yt|θt, y1:t−1)π(θt|y1:t−1)dθt

=

∫
π(yt|θt)π(θt|y1:t−1)dθt.

The proof of (iii) uses Bayes’ rule and the conditional independence of Yt and
Y1:t−1 given θt. Then

π(θt|y1:t) =
π(θt|y1:t−1)π(yt|θt, y1:t−1)

π(yt|y1:t−1)

=
π(θt|y1:t−1)π(yt|θt)

π(yt|y1:t−1)
.
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[24, pp. 51-53].

7.2.2 Kalman filter for DLM

Proposition 7.1 showed the principle of filtering and forecasting, but calculating
the conditional distributions required is not always easy. One of the advantages
of the DLM is that all the relevant distributions are Gaussian, which means that
they can be completely determined by their means and variances. The following
proposition shows this result.

Proposition 7.2 (Kalman filter)
Let a DLM be defined by definition 7.2, let the prior distribution be given by
θ0 ∼ N(m0, C0), and let

θt−1|y1:t−1 ∼ N (mt−1, Ct−1) .

Then the following statements are true.

(i) The one-step-ahead predictive distribution of θt given y1:t−1 is Gaussian
with parameters

at = E[θt|y1:t−1] = Gtmt−1,

Rt = Var[θt|y1:t−1] = GtCt−1G
T
t +Wt.

(ii) The one-step-ahead predictive distribution of Yt given y1:t−1 is Gaussian
with parameters

ft = E[Yt|y1:t−1] = Ftat,

Qt = Var[Yt|y1:t−1] = FtRtF
T
t + Vt.

(iii) The filtering distribution of θt given y1:t is Gaussian with parameters

mt = E[θt|y1:t] = at +RtF
T
t Q
−1
t et,

Ct = Var[θt|y1:t] = Rt −RtFTt Q−1t FtRt,

where et = Yt − ft is the forecast error.

Proof. The joint distribution of (θ0, θ1, . . . , θt, Y1, . . . , Yt) is given by equation
(7.1), where the marginal and conditional distributions are Gaussian. Thus it
follows that the joint distribution for the random vector (θ0, θ1, . . . , θt, Y1, . . . , Yt)
is also Gaussian for any t ≥ 0, and the distribution of any subvector or con-
ditional distribution of some components given others is also Gaussian. This
means, that it is enough to compute the means and variances of the predic-
tive distributions and the filtering distributions, because they are Gaussian dis-
tributed.



58 7. State space models

Let θt|y1:t−1 ∼ N(at, Rt), then (i) is proved using equation (7.2c), and at and
Rt can be specified as

at = E[θt|y1:t−1] = E
[
E[θt|θt−1, y1:t−1]

∣∣∣y1:t−1
]

= E[Gtθt−1|y1:t−1] = Gtmt−1,

and

Rt = Var[θt|y1:t−1]

= E
[
Var[θt|θt−1, y1:t−1]

∣∣∣y1:t−1
]

+ Var
[
E[θt|θt−1, y1:t−1]

∣∣∣y1:t−1
]

= Wt + Var[Gtθt−1|y1:t−1]

= Wt +GtCt−1G
T
t .

Let Yt|y1:t−1 ∼ N(ft, Qt), then (ii) is proved using equation (7.2b), and ft and
Qt can be specified as

ft = E[Yt|y1:t−1] = E
[
E[Yt|θt, y1:t−1]

∣∣∣y1:t−1
]

= E[Ftθt|y1:t−1] = Ftat,

and

Qt = Var[Yt|y1:t−1]

= E
[
Var[Yt|θt, y1:t−1]

∣∣∣y1:t−1
]

+ Var
[
E[Yt|θt, y1:t−1]

∣∣∣y1:t−1
]

= Vt + Var[Ftθt|y1:t−1]

= Vt + FtRtF
T
t .

The conditional covariance of Yt and θt is given by

Cov[Yt, θt|y1:t−1] = Cov[Ftθt + vt, θt|y1:t−1]

= FtCov[θt, θt|y1:t−1] + FtCov[vt, θt|y1:t−1]

= FtVar[θt|y1:t−1]

= FtRt,

because Cov[vt, θt|y1:t−1] = 0 since vt and θt are conditionally independent.
From multivariate Gaussian theory the distribution of Yt and θt given y1:t−1 is

(
Yt
θt

∣∣∣∣ y1:t−1
)
∼ N

((
ft
at

)
,

{
Qt FtRt

RtF
T
t Rt

})
.

This means that θt is Gaussian with the following expected value and variance
conditionally on y1:t

mt = E[θt|yt, y1:t−1] = at +RtF
T
t Q
−1
t (yt − ft),
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and

Ct = Var[θt|yt, y1:t−1] = Rt −RtFTt Q−1t FtRt.

The predictive and filtering distributions can be calculated recursively using the
Kalman filter beginning at θ0 ∼ N(m0, C0) and then calculate π(θ1), π(y1) and
π(θ1|y1), when new data is obtained [24, pp. 53-55].

Filtering with missing observations

Sometimes time series contain missing observations, which needs to be taking
into account in the filtering recursions. A missing observation does not contain
any information, so the observation at time t is missing, yt = NA, and

π(θt|y1:t) = π(θt|y1:t−1). (7.5)

Thus the filtering distribution at time t is the one-step-ahead predictive distri-
bution at time t− 1. This means that in the filtering recursion, proposition 7.1,
equation (7.3c) has to be replaced with equation (7.5). The filtering distribution
at time t for a DLM is given by setting the mean value mt = at and the variance
Ct = Rt, because θt|y1:t−1 ∼ N(at, Rt) [24, p. 59].

7.2.3 Smoothing

In state space models estimation and forecasting can be applied sequentially,
when new data are collected. Often information about a time series Yt is avail-
able for a period of time, and it is desired to retrospectively reconstruct the
behavior of the system. This can be done using a backward recursive algorithm,
which compute the conditional distribution of θt given y1:T for any t < T , start-
ing from the filtering distribution π(θT |y1:T ) and estimating the states back-
wards. This method is called smoothing and is presented for general state space
models in the following proposition.

Proposition 7.3 (Smoothing recursion)
For a general state space model specified by definition 7.1 the following is true

(i) The state system (θ0, . . . , θT ) given y1:T has backward transition probabi-
lities specified by

π(θt|θt+1, y1:T ) =
π(θt+1|θt)π(θt|y1:t)

π(θt+1|y1:t)
.
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(ii) Conditional on y1:T the smoothing distribution of θt can be calculated using
the backward recursion in t starting from π(θT |y1:T )

π(θt|y1:T ) = π(θt|y1:t)
∫

π(θt+1|θt)
π(θt+1|y1:t)

π(θt+1|y1:T )dθt+1.

Proof. The state θt and the observation Yt+1:T are conditionally independent
given θt+1, and given θt, θt+1 and Y1:T are conditionally independent. Then (i)
is proved using Bayes formula

π(θt|θt+1, y1:T ) = π(θt|θt+1, y1:t)

=
π(θt|y1:t)π(θt+1|θt, y1:t)

π(θt+1|y1:t)

=
π(θt|y1:t)π(θt+1|θt)

π(θt+1|y1:t)
.

The density π(θt, θt+1|y1:T ) with respect to θt+1 is marginalized to prove (ii)

π(θt|y1:T ) =

∫
π(θt, θt+1|y1:T )dθt+1

=

∫
π(θt+1|y1:T )π(θt|θt+1, y1:T )dθt+1

=

∫
π(θt+1|y1:T )

π(θt+1|θt)π(θt|y1:t)
π(θt+1|y1:t)

dθt+1

= π(θt|y1:t)
∫
π(θt+1|θt)

π(θt+1|y1:T )

π(θt+1|y1:t)
dθt+1.

The smoothing recursion can be expressed using the means and variances of the
smoothing distributions for a DLM. This is presented in the following proposi-
tion.

Proposition 7.4 (Kalman smoother)
Given a DLM as defined in definition 7.2, if θt+1|y1:T ∼ N(st+1, St+1), then
θt|y1:T ∼ N(st, St), where

st = mt + CtG
T
t+1R

−1
t+1(st+1 − at+1)

St = Ct − CtGTt+1R
−1
t+1(Rt+1 − St+1)R−1t+1Gt+1Ct.

Proof. The conditional distribution of θt given y1:T is Gaussian, because of
properties of the multivariate Gaussian distribution, which means that it is
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sufficient to calculate the mean and the variance. The mean value of θt given
y1:T is

st = E[θt|y1:T ] = E
[
E[θt|θt+1, y1:T ]

∣∣∣y1:T
]

= E
[
E[θt|θt+1, y1:t]

∣∣∣y1:T
]
,

since θt and yt+1:T are conditional independent given θt+1, thus

π(θt|θt+1, y1:T ) = π(θt|θt+1, y1:t).

The variance of θt given y1:T is

St = Var[θt|y1:T ] = E
[
Var[θt|θt+1, y1:T ]

∣∣∣y1:T
]

+ Var
[
E[θt|θt+1, y1:T ]

∣∣∣y1:T
]

= E
[
Var[θt|θt+1, y1:t]

∣∣∣y1:T
]

+ Var
[
E[θt|θt+1, y1:t]

∣∣∣y1:T
]
.

The likelihood π(θt+1|θt, y1:t) = π(θt+1|θt) is θt+1|θt ∼ N(Gt+1θt,Wt+1) given
by the state equation (7.2c) and the prior θt|y1:t ∼ N(mt, Ct). Because both
the likelihood and prior are Gaussian distributed the posterior is also Gaussian.
The expected value of θt given θt+1 and y1:t can then be written as

E[θt|θt+1, y1:t]

=E[θt|y1:t] + Cov[θt, θt+1|y1:t]Var[θt+1|y1:t]−1(θt+1 − E[θt+1|y1:t])
=mt + CtG

T
t+1R

−1
t+1(θt+1 − at+1),

since

Cov[θt, θt+1|y1:t] = Cov[θt, Gt+1θt + vt|y1:t]
= Var[θt|y1:t]GTt+1

= CtG
T
t+1.

The variance of θt given θt+1 and y1:t is

Var[θt|θt+1, y1:t]

=Var[θt|y1:t]− Cov[θt, θt+1|y1:t]Var[θt+1|y1:t]−1Cov[θt, θt+1|y1:t]T

=Ct − CtGTt+1R
−1
t+1Gt+1C

T
t ,

and

Var
[
E[θt|θt+1, y1:t]

∣∣∣y1:T
]

= CtG
T
t+1R

−1
t+1Var[θt+1|y1:T ]R−1t+1Gt+1C

T
t .

It is assumed that E[θt+1|y1:T ] = st+1 and Var[θt+1|y1:T ] = St+1. The mean
value and variance of θt given y1:T is then

st = E
[
E[θt|θt+1, y1:t]

∣∣∣y1:T
]

= mt + CtG
T
t+1R

−1
t+1(st+1 − at+1)
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and

St = E
[
Var[θt|θt+1, y1:t]

∣∣∣y1:T
]

+ Var
[
E[θt|θt+1, y1:t]

∣∣∣y1:T
]

= Ct − CtGTt+1R
−1
t+1Gt+1Ct + CtG

T
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct

= Ct − CtGTt+1R
−1
t+1(Rt+1 − St+1)R−1t+1Gt+1Ct.

The distribution of θt|y1:T can be computed recursively backwards beginning at
t = T − 1 and then proceed with t = T − 2 and so on, given that
θt|y1:T ∼ N(sT = mT , ST = CT ) [24, pp. 60-62],[25, p. 114].

7.2.4 Forecasting

In state space models forecasting future values of the observations, Yt+k, or of
the state vectors, θt+k, of a time series, when knowing the time series up to time
t is one of the main tasks. The forecast can be computed recursively as new ob-
servations are obtained. The one-step-ahead predictive distribution for a general
state space model was presented in proposition 7.1 and for a DLM in proposition
7.2. Sometimes one is interested in forecasting k-steps-ahead into the future.
The following proposition, proposition 7.5, present the distributions of the state
and the observation at time t+ k. The filtering distribution at time t acts as an
initial distribution for the forecast distribution. This means that in a state space
model the distribution containing information about present and future states
(θt+k)k≥0 and future observations (Yt+k)k≥1 are the conditional distributions
π(θt+k|θt+k−1) and π(yt+k|θt+k), and the initial distribution π(θt|y1:t). For a
DLM it is sufficient to calculate the mean and the variance of π(θt|y1:t), mt and
Ct, for prediction of future values. Figure 7.2 illustrates, that the observations

θt

Y1:t

- θt+1
- · · · - θt+k

? ?
Yt+k

1

Figure 7.2: Forecasting of states and observations

Y1:t gives information about θt, which gives information about future values of
the time series. In the next proposition, proposition 7.5, the forecast recursions
for a general state space model is presented.
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Proposition 7.5 (Forecasting recursion)
For a general state space model specified by definition 7.1 the following is true
for any k > 0.

(i) The k-step-ahead forecast distribution of the state is

π(θt+k|y1:t) =

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t)dθt+k−1.

(ii) The k-step-ahead forecast distribution of the observation is

π(yt+k|y1:t) =

∫
π(yt+k|θt+k)π(θt+k|y1:t)dθt+k.

Proof. The state θt+k is conditionally independent of Y1:t given θt+k−1, and (i)
is proved by

π(θt+k|y1:t) =

∫
π(θt+k, θt+k−1|y1:t)dθt+k−1

=

∫
π(θt+k|θt+k−1, y1:t)π(θt+k−1|y1:t)dθt+k−1

=

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t)dθt+k−1.

The observation Yt+k is conditionally independent of Y1:t given θt+k, and (ii) is
proved by

π(yt+k|y1:t) =

∫
π(yt+k, θt+k|y1:t)dθt+k

=

∫
π(yt+k|θt+k, y1:t)π(θt+k|y1:t)dθt+k

=

∫
π(yt+k|θt+k)π(θt+k|y1:t)dθt+k.

For DLM it is sufficient to calculate the means and variances of the forecast
distributions, since all the distributions are Gaussian. The following proposition
present the forecast recursions for a DLM.

Proposition 7.6
Let a DLM be defined by definition 7.2, then the following is true for k ≥ 0.

(i) The state θt+k|y1:t ∼ N(at+k, Rt+k), with

at+k = E[θt+k|y1:t] = Gt+kat+k−1,

Rt+k = Var[θt+k|y1:t] = Gt+kRt+k−1G
T
t+k +Wt+k,

where at+0 = mt and Rt+0 = Ct.
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(ii) The observation Yt+k|y1:t ∼ N(ft+k, Qt+k), with

ft+k = E[Yt+k|y1:t] = Ft+kat+k,

Qt+k = Var[Yt+k|y1:t] = Ft+kRt+kF
T
t+k + Vt+k.

Proof. The proposition is proved using induction. For k = 1 the proposition
is equivalent to proposition 7.2 (i) and (ii), and thereby the result holds. For
k > 1 (i) and (ii) is proved by

at+k = E[θt+k|y1:t]
= E

[
E[θt+k|θt+k−1, y1:t]

∣∣∣y1:t
]

= E[Gt+kθt+k−1|y1:t]
= Gt+kat+k−1,

Rt+k = Var[θt+k|y1:t]
= Var

[
E[θt+k|θt+k−1, y1:t]

∣∣∣y1:t
]

+ E
[
Var[θt+k|θt+k−1, y1:t]

∣∣∣y1:t
]

= Var[Gt+kθt+k−1|y1:t] +Wt+k

= Gt+kRt+k−1G
T
t+k +Wt+k,

ft+k = E[Yt+k|y1:t]
= E

[
E[Yt+k|θt+k, y1:t]

∣∣∣y1:t
]

= E[Ft+kθt+k|y1:t]
= Ft+kat+k,

Qt+k = Var[Yt+k|y1:t]
= Var

[
E[Yt+k|θt+k, y1:t]

∣∣∣y1:t
]

+ E
[
Var[Yt+k|θt+k, y1:t]

∣∣∣y1:t
]

= Var[Ft+kθt+k|y1:t] + Vt+k

= Ft+kRt+kF
T
t+k + Vt+k.

The forecasts become more imprecise as k gets larger, because more uncertainty
enters the system. In the following the forecast error is defined.
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7.3 The innovation process and model checking

The one-step-ahead forecasts ft = E[Yt|Y1:t−1] for DLMs are given by the
Kalman filter, proposition 7.2, and the forecast error is defined as

et = Yt − E[Yt|Y1:t−1]

= Yt − ft
= Ftθt + vt − Ftat
= Ft(θt − at) + vt.

In the following proposition different properties of the sequence (et)t≥1 of fore-
cast errors are presented.

Proposition 7.7
The sequence (et)t≥1 of forecast errors of a DLMs has the following properties.

(i) The expected value of et is zero, i.e. E[et] = 0

(ii) The random error vector et is uncorrelated with any function of Y1, . . . , Yt−1,
i.e. Cov[et, Z] = 0, where Z = g(Y1, . . . , Yt−1).

(iii) The error et and the observation Ys are uncorrelated for any s < t.

(iv) The errors et and es are uncorrelated for any s < t.

(v) The error et is a linear function of Y1, . . . , Yt.

(vi) The process (et)t≥1 of forecast errors is a Gaussian process.

Proof. (i) The expected value of et is

E[et] = E
[
E[Yt − ft|Y1:t−1]

]
= 0

using that E[Y ] = E
[
E[Y |X]

]
.

(ii) The covariance of et and Z is

Cov[et, Z] = E[etZ]

= E
[
E[etZ|Y1:t−1]

]

= E
[
E[et|Y1:t−1]Z

]

= 0.

(iii) For univariate observations it follows from (ii) by setting Z = Ys. Or else
use (ii) on each component of Ys.
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(iv) Again for univariate observations it follows from (ii) by setting Z = es.
Or else use (ii) on each component of es.

(v) The error et is a linear function of Y1, . . . , Yt, because ft = E[Yt|Y1:t−1]
is a linear function of Y1, . . . , Yt−1, since Y1, . . . , Yt have a joint Gaussian
distribution.

(vi) From (v) it follows that for any t the sequence (e1, . . . , et) is a linear
transformation of (Y1, . . . , Yt), which has a joint Gaussian distribution.
Then (e1, . . . , et) has a joint Gaussian distribution, and the process (et)t≥1
is Gaussian, since all finite distributions are Gaussian.

The observation Yt = ft + et is the sum of a component ft, which is predictable
from past observations, and a component, et, independent of the past and con-
taining the new information given by Yt. Because of this the forecast errors et
are also called innovations.

The sequence of standardized innovations for univariate observations is given by

ẽt =
et√
Qt
,

which is Gaussian white noise. Gaussian white noise are independent, identically
distributed random variables with zero mean. The standardized innovations
can be used to check the model assumptions. This means that, if the model
assumptions are correct, then the sequence ẽ1, . . . , ẽt should be a sample of size
t from a standard normal distribution. A QQ-plot can be used to check if the
standard innovations are normal distributed, and the empirical autocorrelation
function to check if they are uncorrelated [24, pp. 73-75].

7.4 Model specification

In this section different classes of DLMs are presented. These classes can be
used alone or added together to model univariate time series. Specification of
the model can be difficult, but one approach is to consider a time series as
a combination of different components for instance trend or seasonality. Each
component of the time series is represented by a DLM and then added together in
a DLM. A univariate time series (Yt) can be produced as the sum of independent
components

Yt = Y1,t + . . .+ Yh,t,
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where Yi,t represent a component such as trend or seasonality. A DLM can be
used to describe the ith component Yi,t for i = 1, . . . , h as

Yi,t = Fi,tθi,t + vi,t , vi,t ∼ N(0, Vi,t)

θi,t = Gi,tθi,t−1 + wi,t , wi,t ∼ N(0,Wi,t),

where each of the pi-dimensional state vectors θi,t are unique and for all i 6= j
the time series (Yi,t, θi,t) and (Yj,t, θj,t) are mutually independent. To achieve
the DLM for the time series (Yt) the independent components are added so

Yt =
∑h
i=1 Yi,t is expressed by the DLM

Yt = Ftθt + vt , vt ∼ N(0, Vt)

θt = Gtθt−1 + wt , wt ∼ Nh(0,Wt),

where the state vector is given by θt = [θ1,t · · · θh,t]T , Ft = [F1,t| · · · |Fh,t], Gt
and Wt are given by the block diagonal matrices

Gt =



G1,t

. . .

Gh,t


 , Wt =



W1,t

. . .

Wh,t,




and Vt =
∑j
i=1 Vi,t [24, pp. 88-89].

7.4.1 Trend models

Trend can be described as a smooth development of the series over time, which
can be modeled using polynomial DLMs. A polynomial model of order n is
defined as a DLM with constant matrices Ft = F and Gt = G, which are
determined by a forecast function. The forecast function gives the expected
trend at time t and is defined as

ft+k = E[Yt+k|y1:t] = at+0 + at+1k + . . .+ at+n−1k
n−1 , k ≥ 0 (7.6)

where the parameteres at+0, . . . , at+n−1 are linear functions of mt and are in-
dependent of k. This means that the forecast function is a polynomial of order
n− 1, and the forecast function can also be written as

ft+k = E[Yt+k|y1:t]
= Fat+k

= FGat+k−1
= . . .

= FGk−1at+1. (7.7)

Usually small values of n are used. The polynomial model of order n = 1 is the
random walk plus noise model, and the polynomial model of order n = 2 is the
linear growth model [24, p. 89].
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Random walk plus noise

The random walk plus noise model, also known as a local level model, is a
polynomial model of order n = 1, given by the equations

Yt = θt + vt , vt ∼ N(0, V )

θt = θt−1 + wt , wt ∼ N(0,W ),

where (vt) and (wt) are independent, and Ft = Gt = 1. The observations (Yt)
are modeled as a level θt plus noise vt, which is affected by random changes over
time [24, p. 42].

The Kalman filter of the random walk plus noise model is given by the one-step-
ahead predictive distribution of θt given y1:t−1

θt|y1:t−1 ∼ N(mt−1, Rt = Ct−1 +W ),

the one-step-ahead predictive distribution of Yt given y1:t−1

Yt|y1:t−1 ∼ N(ft = mt−1, Qt = Rt + V ),

and the filtering distribution of θt given y1:t

θt|y1:t ∼ N(mt = mt−1 +Ktet, Ct = KtV ),

where et = Yt−ft and Kt = RtQ
−1
t . The behavior of the process (Yt) is affected

by the signal-to-noise ratio, which is the ratio between the two error variances
r = W/V . The structure of the estimation and forecasting reflect this ratio.
The mean value of the filtering distribution can be written as

mt = mt−1 +Ktet = mt−1 +Kt(yt − ft)
= mt−1 +Kt(yt −mt−1) = mt−1 +Ktyt −Ktmt−1
= Ktyt + (1−Kt)mt−1.

This shows that mt is a weighted average of yt and mt−1. The weight of the
current observation yt is called the adaptive coefficient and is given by

Kt =
Rt
Qt

=
Ct−1 +W

Ct−1 +W + V
,

where 0 < Kt < 1. For any C0, the adaptive coefficient Kt is small and the
observation yt receives little weight, if the signal-to-noise ratio is small. On the
other hand if the variance of the error of the observation V = 0, then Kt = 1,
and the one-step-ahead forecast is given by the previous data point, thus mt = yt
[24, pp. 55-56].

In summary if the signal-to-noise ratio is small, the model is trusted more than
new data points, and if the signal-to-noise ratio is large, new data points are
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90 3 Model specification

(Yt) is greatly influenced by the signal-to-noise ratio r = W/V , the ratio be-
tween the two error variances. Figure 3.1 shows some simulated trajectories
of (Yt) and (µt) for different values of the ratio r (see Problem 3.1).
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Fig. 3.1. Trajectories of the random walk plus noise, for different values of the
signal-to-noise ratio. The trajectory of the state µt is shown in gray and is the same
in the four plots

The k-steps-ahead predictive distribution for this simple model is

Yt+k|y1:t ∼ N(mt, Qt(k)) , k ≥ 1 , (3.7)

where Qt(k) = Ct+
∑k
j=1Wt+j+Vt+k = Ct+kW+V . We see that the forecast

function ft(k) = E(Yt,k|y1:t) = mt is constant (as a function of k). For this
reason this model is also referred to as the steady model. The uncertainty on
the future observations is summarized by the variance Qt(k) = Ct+ kW +V ,
and we clearly see that it increases as the time horizon t+k gets further away.

The controllability and observability matrices of the model are

C =
[
W 1/2

]
,

O = F = [1],

which are trivially of full rank, as long as W > 0. It follows from the results
of Section 2.11 that the Kalman filter for this model is asymptotically stable,
with Rt, Ct, and the gain matrix Kt converging to limiting values R,C, and
K, respectively. It can be shown (see West and Harrison; 1997, Theorem 2.3)
that

(a) r = 0.1
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The k-steps-ahead predictive distribution for this simple model is

Yt+k|y1:t ∼ N(mt, Qt(k)) , k ≥ 1 , (3.7)

where Qt(k) = Ct+
∑k
j=1Wt+j+Vt+k = Ct+kW+V . We see that the forecast

function ft(k) = E(Yt,k|y1:t) = mt is constant (as a function of k). For this
reason this model is also referred to as the steady model. The uncertainty on
the future observations is summarized by the variance Qt(k) = Ct+ kW +V ,
and we clearly see that it increases as the time horizon t+k gets further away.

The controllability and observability matrices of the model are

C =
[
W 1/2

]
,

O = F = [1],

which are trivially of full rank, as long as W > 0. It follows from the results
of Section 2.11 that the Kalman filter for this model is asymptotically stable,
with Rt, Ct, and the gain matrix Kt converging to limiting values R,C, and
K, respectively. It can be shown (see West and Harrison; 1997, Theorem 2.3)
that
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(Yt) is greatly influenced by the signal-to-noise ratio r = W/V , the ratio be-
tween the two error variances. Figure 3.1 shows some simulated trajectories
of (Yt) and (µt) for different values of the ratio r (see Problem 3.1).
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The k-steps-ahead predictive distribution for this simple model is

Yt+k|y1:t ∼ N(mt, Qt(k)) , k ≥ 1 , (3.7)

where Qt(k) = Ct+
∑k
j=1Wt+j+Vt+k = Ct+kW+V . We see that the forecast

function ft(k) = E(Yt,k|y1:t) = mt is constant (as a function of k). For this
reason this model is also referred to as the steady model. The uncertainty on
the future observations is summarized by the variance Qt(k) = Ct+ kW +V ,
and we clearly see that it increases as the time horizon t+k gets further away.

The controllability and observability matrices of the model are

C =
[
W 1/2

]
,

O = F = [1],

which are trivially of full rank, as long as W > 0. It follows from the results
of Section 2.11 that the Kalman filter for this model is asymptotically stable,
with Rt, Ct, and the gain matrix Kt converging to limiting values R,C, and
K, respectively. It can be shown (see West and Harrison; 1997, Theorem 2.3)
that
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The k-steps-ahead predictive distribution for this simple model is

Yt+k|y1:t ∼ N(mt, Qt(k)) , k ≥ 1 , (3.7)

where Qt(k) = Ct+
∑k
j=1Wt+j+Vt+k = Ct+kW+V . We see that the forecast

function ft(k) = E(Yt,k|y1:t) = mt is constant (as a function of k). For this
reason this model is also referred to as the steady model. The uncertainty on
the future observations is summarized by the variance Qt(k) = Ct+ kW +V ,
and we clearly see that it increases as the time horizon t+k gets further away.

The controllability and observability matrices of the model are

C =
[
W 1/2

]
,

O = F = [1],

which are trivially of full rank, as long as W > 0. It follows from the results
of Section 2.11 that the Kalman filter for this model is asymptotically stable,
with Rt, Ct, and the gain matrix Kt converging to limiting values R,C, and
K, respectively. It can be shown (see West and Harrison; 1997, Theorem 2.3)
that

(d) r = 100

Figure 7.3: Random walk plus noise models for different values of the signal-to-noise
ratio. The observations (Yt) is the black line and the state (θt) is the gray line [24, p.
90].

trusted more than the model. This is illustrated in figure 7.3, where a random
walk plus noise model is shown with different signal-to-noise ratios. In figure
7.3(a) the signal-to-noise ratio is small, and the model is trusted more than
the data, but in figure 7.3(d) the signal-to-noise ratio is large, and the data is
trusted more than the model.

The k-step-ahead predictive distribution is given by

Yt+k|y1:t ∼ N(mt, Qt+k) , k ≥ 1,

where

Qt+k = Ct +

k∑

j=1

Wt+j + Vt+k

= Ct + kW + V,

since the terms in the error sequence (wt) are independent. The forecast function
of the model is constant, ft+k = E[Yt+k|y1:t] = mt, which is why the model is
also called a steady model. The variance Qt+k contain the uncertainty on the
future observations, which increases linearly as k gets larger. The random walk
plus noise model can be used to model data without any clear trend or seasonal
variability [24, p. 90].



70 7. State space models

7.4.2 Linear growth model

A linear growth model is also called a local linear trend model. The model
is similar to the random walk plus noise model, but a time-varying slope is
included in the state dynamics. This is defined in the following equations

Yt = µt + vt, vt ∼ N(0, V )

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N(0, σ2
µ),

βt = βt−1 + wt,2, wt,2 ∼ N(0, σ2
β),

where µt is the local level, βt is the local growth rate and the errors (vt), (wt,1)
and (wt,2) are independent. The local level µt is a cumulated random walk.
This model is a polynomial DLM of order 2, where the parameters are given by

θt =

[
µt
βt

]
, G =

[
1 1
0 1

]
, W =

[
σ2
µ 0
0 σ2

β

]
, F =

[
1 0

]
.

The variances of the system σ2
µ and σ2

β can be equal to zero. In the model a
current level µt is assumed to change linearly over time, and the growth rate

can also change. Let mt−1 =
[
µ̂t−1 β̂t−1

]T
, then the one-step-ahead point

forecasts and filtering state estimates are

at = E[θt|y1:t−1] = Gmt−1 =

[
1 1
0 1

] [
µ̂t−1
β̂t−1

]
=

[
µ̂t−1 + β̂t−1

β̂t−1

]
,

ft = E[Yt|y1:t−1] = Ftat =
[

1 0
]
[
µ̂t−1 + β̂t−1

β̂t−1

]
= µ̂t−1 + β̂t−1,

and

mt = at +Ktet =

[
µ̂t−1 + β̂t−1

β̂t−1

]
+

[
kt1
kt2

]
et =

[
µ̂t−1 + β̂t−1 + kt1et

β̂t−1 + kt2et

]

where Kt =
[
kt1 kt2

]T
. The forecast function is a linear function of k given

by equation (7.7)

ft+k = FGk−1at+1 =
[

1 0
] [ 1 k − 1

0 1

] [
µ̂t + β̂t
β̂t

]
= µ̂t + kβ̂t

[24, pp. 42,96].

7.4.3 Seasonal models

Time series showing cyclical behavior can be modeled using Fourier-form sea-
sonal models. Consider a discrete-time periodic function with period s, which is
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described by the values it takes at time t = 1, 2, . . . , s. Let gt = αt, t = 1, . . . , s,
be a function, where the values of gt is repeated every s-times, so gs+1 = α1,
gs+2 = α2 and so on. Thus the periodic function gt is related to a s-dimensional
vector α = [α1, . . . , αs]

T . Assume that s is even and let the Fourier frequencies
be defined as

ωj =
2πj

s
, j = 0, 1, . . . ,

s

2
,

and let s s-dimensional vectors be given by

e0 = [1, 1, . . . , 1]T

c1 = [cos(ω1), cos(2ω1), . . . , cos(sω1)]T

s1 = [sin(ω1), sin(2ω1), . . . , sin(sω1)]T

...
cj = [cos(ωj), cos(2ωj), . . . , cos(sωj)]

T

sj = [sin(ωj), sin(2ωj), . . . , sin(sωj)]
T

...
cs/2 = [cos(ωs/2), cos(2ωs/2), . . . , cos(sωs/2)]T ,





(7.8)

where ss/2 is a vector of zeros and is therefore not considered, and
cs/2 = [−1, 1,−1, . . . ,−1, 1]T . The vectors in equation (7.8) are orthogonal and
thereby a basis, which means that every vector in Rs can be written as a linear
combination of e0, c1, s1, . . . , cs/2, so

α = a0e0 +

s/2−1∑

j=1

(ajcj + bjsj) + as/2cs/2.

This representation is helpful, since the basis vectors can be extended to periodic
functions very easily because of the trigonometric functions. For example the
tth component of sj is sj(t) = sin(2πtj/2) for any 1 ≤ t ≤ s. The function sj
extended to a periodic function is sj(t) = sj(t+ ks), so

sin

(
2π(t+ ks)j

s

)
= sin

(
2πtj

s
2πkj

)
= sin

2πtj

s
.

This means that the extension of sj(t) to any integer t is given by putting t in
the trigometric expression defining sj . The representation of the basis vectors in
equation (7.8) goes from smooth to rough, where the constant vector e0 corre-
spond to a constant periodic function and cs/2 is the maximal oscillation, where
the periodic function goes back and forth between −1 and 1. The expression
2πtj
s , for any j, extends the interval (0, 2πj] and the cosine function cj runs

through a complete period j times as t goes from 1 to s. This means that as
j gets higher the rougher cj is, and the function oscillates more frequent. The
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functions sj and cj with the same oscillation frequency can be grouped together,
and the jth harmonic of gt can be defined as

Sj(t) = aj cos(tωj) + bj sin(tωj), j = 1, . . . , s/2,

where bs/2 = 0. Because the mean is modeled separately from the seasonal
component, a0 is set to zero, and since the basis vectors are orthogonal the sum
of any harmonic over an entire period is zero. Then the function gt can be
written as

gt =

s/2∑

j=1

Sj(t). (7.9)

Let j be fixed, then the development of Sj as time goes from t to t+ 1 is

Sj(t) 7−→ Sj(t+ 1) = aj cos((t+ 1)ωj) + bj sin((t+ 1)ωj).

If j < s/2 then it is impossible to calculate Sj(t+1) from Sj(t) without knowing
aj and bj . But if the conjugate harmonic

S∗j (t) = −aj sin(tωj) + bj cos(tωj)

is also known, then Sj(t+ 1) can be calculated explicitly. So

Sj(t+ 1) = aj cos((t+ 1)ωj) + bj sin((t+ 1)ωj)

= aj cos(tωj + ωj) + bj sin(tωj + ωj)

= aj(cos(tωj) cos(ωj)− sin(tωj) sin(ωj))

+bj(sin(tωj) cos(ωj) + cos(tωj) sin(ωj))

= aj cos(tωj) cos(ωj)− aj sin(tωj) sin(ωj)

+bj sin(tωj) cos(ωj) + bj cos(tωj) sin(ωj)

= (aj cos(tωj) + bj sin(tωj)) cos(ωj)

+(−aj sin(tωj) + bj cos(tωj)) sin(ωj)

= Sj(t) cos(ωj) + S∗j (t) sin(ωj). (7.10)

Similarly the conjugate harmonic S∗j can be computed as

S∗j (t+ 1) = S∗j (t) cos(ωj) + Sj(t) sin(ωj). (7.11)

By merging equation (7.10) and equation (7.11) then
[
Sj(t+ 1)
S∗j (t+ 1)

]
=

[
cos(ωj) sin(ωj)
− sin(ωj) cos(ωj)

] [
Sj(t)
S∗j (t)

]
.

The jth harmonic fits in a DLM by considering the bivariate state vector
[Sj(t), S

∗
j (t)]T with evolution matrix

Hj =

[
cos(ωj) sin(ωj)
− sin(ωj) cos(ωj)

]
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and observation matrix F =
[

1 0
]
. When j = s/2, then Ss/2 changes sign

for every unit time increase, since

Ss/2(t+ 1) = cos((t+ 1)π) = − cos(tπ) = −Ss/2(t).

In a DLM this can be seen as s univariate state vector with evolution matrix
Hs/2 = [−1] and observation matrix F = [1]. To obtain a DLM representa-
tion the different harmonics can be combined to attain equation (7.9). This is
managed by considering the state vector

θt = (S1(t), S∗1 , . . . , S s2−1(t), S s
2−1(t)∗, S s

2
(t))T , t = 0, 1, . . .

with the evolution matrix

G =



H1 0

. . .

0 H s
2


 ,

and the observation matrix

F =
[

1 0 1 0 . . . 0 1
]
.

By letting all the evolution and observation variances be zero, a DLM represen-
tation of the seasonal component is achieved [24, pp. 102-106].

7.5 Estimation of unknown parameters

Until now it has been assumed that the system matrices Ft, Gt, Vt and Wt were
known. This is not always the case, and if not the model matrices are set to
depend on a vector of unknown parameters ψ. The vector ψ can be estimated
using maximum likelihood estimation, MLE.

Let Y1, . . . , Yn be random vectors having distributions depending on an unknown
parameter ψ. The joint density of the observations for a specific value of the
parameters is given by p(y1, . . . , yn;ψ) and the likelihood of ψ is

L(ψ) = c · p(y1, . . . , yn;ψ),

where c is a constant. For a DLM the joint density of the observations can be
written in terms of the conditional density of yt given y1:t−1 and the unknown
parameter ψ, so

p(y1, . . . , yn;ψ) =

n∏

t=1

p(yt|y1:t−1;ψ).
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The conditional densities are Gaussian with mean ft and variance Qt, which
implicitly depend on ψ, thus the log-likelihood can be expressed as

`(ψ) = −1

2

n∑

t=1

log |Qt| −
1

2

n∑

t=1

(yt − ft)TQ−1t (yt − ft). (7.12)

Equation (7.12) is numerically maximized to attain the MLE of the unknown
parameters

ψ̂ =
argmax
ψ `(ψ).

Choosing the right starting point is essential in the numerical optimization.
Because the log-likelihood function for a DLM expressed in equation (7.12) can
have many local maxima, the MLE should be obtained using different starting
values and then compared [24, pp. 143-144]. Other methods can also be used
for estimation of the unknown parameters e.g. the expectation-maximization
algorithm, EM-algorithm, or Markov chain Monte Carlo, MCMC, methods.



Chapter 8

Multi-process models

In the previous chapter it is assumed that a single DLM is sufficient to represent
the behavior of the entire time series, but in some situations one DLM is insuf-
ficient for describing the behavior of the time series. Then various DLMs can
be considered, and a combination of different DLMs is called a multi-process
model. Multi-process models are also called mixture models, because they com-
bine effects using mixtures of DLMs.

A DLM is defined in definition 7.2 by the matrices Ft, Gt, Vt and Wt, which
here are denoted Mt. When defining a DLM there can be uncertainty about
some parameters in the model if the time series contain growth or outliers.
A parameter α includes these uncertainties, and the choice of α then defines
the model. The dependence of the model on these uncertainties is denoted
Mt = Mt(α), t = 1, 2, . . ., and for each time t and α, Mt(α) is a standard DLM
as defined in definition 7.2. Let the set of all possible values of α be denoted A,
then the set of all possible DLMs at time t is

{Mt(α) : α ∈ A}.

There are two different types of multiprocess models. The first model, multi-
process model class I, satisfy the following

• Mt(α0) holds for all t, α0 ∈ A.

Here α is constant over time, thus a single DLM is appropriate for all time, but
the exact value of α is uncertain. The second model, multi-process model class
II, satisfy

• Mt(αt) holds at time t for some sequence of values αt ∈ A.

75
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In this model different values of α are appropriate at different times, and thereby
no single DLM can describe the entire time series [25, pp. 427-428]. The two
types of multi-process models are presented in the following sections.

8.1 Multi-process model class I

Definition 8.1 (Multi-process model class I)
Let the discrete set A be the parameter space for α, and assume that there exists
an α ∈ A so Mt(α) holds for all t. The time series Yt then follow a multi-process
model class I. �

Here α is constant over time, but the exact value is not known. The DLM
Mt(αt) can be analysed as described in chapter 7 given any specific value of
αt ∈ A. The filtering distribution of θt is given by π(θt|αt, y1:t), the smoothing
distribution of θt is π(θt|αt, y1:T ) and the predictive distribution of Yt+k, k > 0,
is π(Yt+k|αt+k, y1:t). The problem is that the exact value of αt is not known,
but this can be solved using the marginal distribution.
The marginal distribution of the filtering distribution is

π(θt|y1:t) =
∑

αt∈A
π(θt|αt, y1:t)π(αt|y1:t), (8.1a)

where π(θt|αt, y1:t) is the distribution given model αt, and the probability
π(αt|y1:t) is a weight. For the smoothing distribution the marginal distribu-
tion is given by

π(θt|y1:T ) =
∑

αt∈A
π(θt|αt, y1:T )π(αt|y1:T ), (8.1b)

and the marginal distribution of the predictive distribution is

π(Yt+k|y1:t) =
∑

αt+k∈A
π(Yt+k|αt+k, y1:t)π(αt+k|y1:t). (8.1c)

Inference about αt and αt+k is obtained using the probabilities π(αt|y1:t) and
π(αt+k|y1:t) at time t and t + k. These probabilities are recursively calculated
beginning with a prior distribution of αt and updated using Bayes theorem

π(αt|y1:t) = π(αt|yt, y1:t−1)

=
π(αt|y1:t−1)π(yt|αt, y1:t−1)∑

α∈A
π(yt|α, y1:t−1)π(α|y1:t−1)

, (8.2)

where π(yt|αt, y1:t−1) is the one-step-ahead predictive distribution given by the
Kalman filter, proposition 7.2.
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To summarize the uncertainty about α requires the following calculations.

i) Calculate each of the quantities of interest, i.e. the filtering distribution
π(θt|αt, y1:t), the smoothing distribution π(θt|αt, y1:T ) or the predictive
distribution π(Yt+k|αt+k, y1:t), for all αt, αt+k ∈ A.

ii) Calculate equation (8.2) for each αt ∈ A.

iii) Calculate for each of the quantities of interest the corresponding marginal
distribution i.e. the marginal filtering distribution, equation (8.1a), the
marginal smoothing distribution, equation (8.1b) or the marginal predic-
tive distribution, equation (8.1c).

The set A in definition 8.1 is a discrete set, and the calculations in i) to iii) can
be carried out without problems. If the parameter space A is continuous, there
are an infinite number of possibilities for αt and the calculations in i) to iii)
can be difficult. When A is continuous, a discrete set that spans the parameter
space can be chosen, and the calculations can be performed.

The distributions in equations (8.1) are discrete probability mixtures as they
are sums of multiple distributions, and because the distributions are normal,
they are probability mixtures of k normal distributions. The mean value and
the variance of the marginal filtering distribution can be calculated using the
properties of probability mixtures. Let ht = E[θt|y1:t], Ht = Var[θt|y1:t],
ht(αt) = E[θt|αt, y1:t] and Ht(αt) = Var[θt|αt, y1:t] for αt ∈ A. The mean
value for probability mixtures is calculated as

E[θt|y1:t] =
∑

αt∈A
E[θt|αt, y1:t]π(αt|y1:t),

thus the mean value of the marginal filtering distribution is given by

ht = E[θt|y1:t] =
∑

αt∈A
ht(αt)π(αt|y1:t). (8.3)

The variance of probability mixtures is given by

Var[θt|y1:t] =
∑

αt∈A

(
Var[θt|αt, y1:t] + Var

[
E[θt|αt, y1:t]

])
π(αt|y1:t)

and thereby the variance of the marginal filtering distribution is

Ht = Var[θt|y1:t]
=

∑

αt∈A

(
Ht(αt) + Var

[
E[θt|αt, y1:t]

])
π(αt|y1:t)

=
∑

αt∈A

(
Ht(αt) + [ht(αt)− ht][ht(αt)− ht]T

)
π(αt|y1:t). (8.4)
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Similarly the means and variances of the marginal smoothing distribution and
the marginal predictive distribution can be calculated.

In the posterior probabilities, equation (8.1), the supported values of α are
identified, and those with high weights, i.e. π(αj |y1:t) is high, influence the
multi-process more than the values with low weights. These probabilities can
change over time, but under general conditions all the posterior probabilities
will converge to zero except one value in A, this probability will go towards
one. A large number of samples are often necessary to identify a single value of
α, thus a single DLM. When α is continuous, the value in the chosen discrete
set that spans A closest to the true value is identified. A mixture model is

12.2 Multi-Process Models: Class I 433

Model 1

Model 2

Model 3

Mixture Model

Figure 12.1 Mixtures of three distinct models

very general conditions, however, the posterior probabilities will converge
to zero on all but one value in A, the probability on that value tending
to unity. This convergence may take a very large number of observations,
but if suitable in the context of the application, can serve to identify a
single value for α and hence a single DLM. The use of a representative set
of values A hopefully suitably spanning a larger, continuous space is the
usual setup, and here convergence to a particular value identifies that model
closest to the data, even though no single model actually generates the se-
ries. This basic principle of mixture modelling is schematically illustrated
in Figure 12.1, where four DLMs are symbolically displayed. The generic
model Mt(α) is seen to lie in the convex hull of the mixture components
Mt(αj) (j = 1, 2, 3) and is identified as one possible DLM represented as
a mixture of the three components with respect to particular values of the
posterior model probabilities.

If, as is usually the case in practice, no single DLM actually generates
the series, the mixture approach allows the probabilities to vary as the data
suggest thus adapting to process change.

A rather different context concerns cases when α is simply an index for
a class of distinct, and possibly structurally different, DLMs. An example
concerns the launch of a new product in a consumer market subject to

Figure 8.1: Illustration of a mixture model [25, p. 433].

illustrated in figure 8.1, where the generic model Mt(α) is in the middle of the
three mixture components Mt(αj), j = 1, 2, 3, and is recognized as a mixture of
the three components with respect to particular values of the posterior model
probabilities. This means that, as is often the case, no single DLM constructs
the time series, but a mixture of components let the probabilities change to
adapt to changes in the process [25, pp. 427-433].

8.2 Multi-process model class II

In this section multi-process models class II and their properties will be pre-
sented.

Definition 8.2 (Multi-process model class II)
Let the discrete set A be the parameter space for α, and suppose that at each
time t, there exists an α ∈ A so Mt(α) holds. The time series Yt then follow a
multi-process model class II. �
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In this type of model α can take different values at different times, and it is
assumed that no single DLM can describe the entire time series. Instead a
discrete collection of DLMs can be used, which is often the situation in practice.
In theory α can take a different value for each observation and the possibilities
for multi-process model class II are enormous, but often a small number of α
values are used for easy interpretation and calculations.
In the definition of a multi-process model class II, definition 8.2, it is not defined
how α should be selected at each time. Here the focus is on a type of model
called multi-process model class II mixture, where α is selected at time t with
known probability.

Definition 8.3 (Multi-process model class II mixture)
Suppose that in a multi-process model class II, definition 8.2, α = αt at time t,
which defines the model Mt(αt), is selected with known probability

π (αt|α1:t−1, y1:t−1) = π
(
Mt (αt) |{Ms(αs)}t−1s=1, y1:t−1

)
,

where {Ms(αs)}t−1s=1 are the models from time 1 to t−1. The time series Yt then
follow a multi-process model class II mixture. �

Here the probability π(αt|α1:t−1, y1:t−1) depends on the history of the time se-
ries.

In the following special cases of the multi-process model class II mixture are
presented.

1) Fixed probability model:
The probabilities with which the model is selected are fixed so

π(αt|α1:t−1, y1:t−1) = π(αt), αt ∈ A,

for all t. This means that the probabilities are constant and are indepen-
dent of what has previously occurred. The dependence structure of a fixed
probability model is illustrated in figure 8.2.
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- · · · - θt−1
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?
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?
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Yt+1

	 	 	 	 	

1

Figure 8.2: Dependence structure of the fixed probability model.
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2) First-order Markov model:
The probabilities with which the model is selected are first-order Markov
i.e. the model at time t depends only on the model at time t − 1. The
transition probabilities are known constants, so

π(αt|α1:t−1, y1:t−1) = π(αt|αt−1), αt, αt−1 ∈ A,

and the prior probabilities

π(α1) = π(M1(α1))

are known for α1 ∈ A. The dependence structure of the first-order Markov
model is illustrated in figure 8.3.
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Figure 8.3: Dependence structure of the first-order Markov model.

The subsequent analysis will focus on the second type of model [25, pp. 443-445].

8.2.1 First-order Markov

The joint distribution of (θ0, θ1, . . . , θt, Y1, . . . , Yt, α1, . . . , αt) for any t > 0 is
then given by

π(θ0:t, y1:t, α1:t) = π(θ0) ·
t∏

j=1

π(yj |θj , αj)π(θj |θj−1, αj)π(αj |αj−1), (8.5)

where π(α1|α0) = π(α1). This distribution can be used to derive distributions
of interest by conditioning or marginalization.

Multi-process filtering

In the following proposition the filtering recursions for multi-process model class
II mixture is presented.
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Proposition 8.1
For a multi-process model class II mixture, where the probabilities with which
the model is selected are first-order Markov, the following statements hold.

(i) The one-step-ahead joint predictive density for θt and αt given y1:t−1 is
calculated using the filtered density π(θt−1, αt−1|y1:t−1), which gives

π(θt, αt|y1:t−1) =

∫ ∫
π(θt|θt−1, αt)π(αt|αt−1)

·π(θt−1, αt−1|y1:t−1)dθt−1dαt−1.

(ii) The one-step-ahead predictive density for Yt given y1:t−1 is

π(yt|y1:t−1) =

∫ ∫
π(yt|θt, αt)π(θt, αt|y1:t−1)dθtdαt.

(iii) The filtering density for θt and αt given y1:t can be calculated using (i)
and (ii)

π(θt, αt|y1:t) =
π(yt|θt, αt)π(θt, αt|y1:t−1)

π(yt|y1:t−1)
.

Proof. The state θt is conditionally independent of Y1:t−1 given θt−1, and αt is
conditionally independent of Y1:t−1 given αt−1. Then (i) is proved by

π(θt, αt|y1:t−1) =

∫ ∫
π(θt, θt−1, αt, αt−1|y1:t−1)dθt−1dαt−1

=

∫ ∫
π(θt, αt|θt−1, αt−1, y1:t−1)π(θt−1, αt−1|y1:t−1)dθt−1dαt−1

=

∫ ∫
π(θt, αt|θt−1, αt−1)π(θt−1, αt−1|y1:t−1)dθt−1dαt−1

=

∫ ∫
π(θt|θt−1, αt)π(αt|αt−1)π(θt−1, αt−1|y1:t−1)dθt−1dαt−1.

The observation Yt is conditionally independent of Y1:t−1 given θt and αt, and
(ii) is proved by

π(yt|y1:t−1) =

∫ ∫
π(yt, θt, αt|y1:t−1)dθtdαt

=

∫ ∫
π(yt|θt, αt, y1:t−1)π(θt, αt|y1:t−1)dθtdαt

=

∫ ∫
π(yt|θt, αt)π(θt, αt|y1:t−1)dθtdαt.
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Bayes’ rule and the conditional independence of Yt and Y1:t−1 given θt and αt
is used to prove (iii). Then

π(θt, αt|y1:t) =
π(θt, αt|y1:t−1)π(yt|θt, αt, y1:t−1)

π(yt|y1:t−1)

=
π(θt, αt|y1:t−1)π(yt|θt, αt)

π(yt|y1:t−1)
.

[24, pp. 51-53],[25, pp. 443-445].

The multi-process Kalman filter

In the following it is assumed, that the model Mt(αt) is a DLM, and the ma-
trices Gt, Ft, Vt and Wt are given by specific values for each value of αt ∈ A,
i.e. Gt(αt), Ft(αt), Vt(αt) and Wt(αt). The exact predictive and filtering dis-
tributions are probability mixtures. If A = {1, . . . , k}, then at time t = 1
there are k components, giving k possible models, at t = 2 there are again k
components, which gives k2 possible model sequences, and at time t there are
kt possible model sequences. This can give computational difficulties because
of the large number of mixture components as time proceeds. The complexity
of the computations can be reduced by ignoring components where the poste-
rior probabilities are small. The multi-process Kalman filter is presented in the
next proposition using mixture collapse. Mixture collapse is a method, where
probability mixtures is represented by an approximating distribution.

Proposition 8.2
Consider a multi-process model class II mixture, where the probabilities with
which the model is selected are first-order Markov. Let the prior distribution
θ0 ∼ N(m0, C0) and π(αt−1|y1:t−1) be given, and assume the approximation

θt−1|y1:t−1 ≈ N(mt−1, Ct−1).

Then the following statements hold.

(ia) The one-step-ahead predictive distribution of θt given y1:t−1 and αt is ap-
proximately normal with parameters

at(αt) = E[θt|y1:t−1, αt] = Gt(αt)mt−1,

Rt(αt) = Var[θt|y1:t−1, αt] = Gt(αt)Ct−1Gt(αt)
T +Wt(αt).
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(ib) The one-step-ahead predictive distribution of θt given y1:t−1 is approxi-
mately normal with parameters

at = E[θt|y1:t−1] =
∑

αt∈A
π(αt|y1:t−1)at(αt),

Rt = Var[θt|y1:t−1]

=
∑

αt∈A

(
Rt(αt) + (at(αt)− at) (at(αt)− at)T

)
π(αt|y1:t−1),

where
π(αt|y1:t−1) =

∑

αt−1∈A
π(αt|αt−1)π(αt−1|y1:t−1) (8.6)

is the one-step-ahead approximation of the predictive distribution of αt
given y1:t−1.

(iia) The one-step-ahead predictive distribution of Yt given y1:t−1 and αt is
approximately normal with parameters

ft(αt) = E[Yt|y1:t−1, αt] = Ft(αt)at,

Qt(αt) = Var[Yt|y1:t−1, αt] = Ft(αt)RtFt(αt)
T + Vt(αt).

(iib) The one-step-ahead predicitve distribution of Yt given y1:t−1 is approxi-
mately normal with parameters

ft = E[Yt|y1:t−1] =
∑

αt∈A
π(αt|y1:t−1)ft(αt),

Qt = Var[Yt|y1:t−1]

=
∑

αt∈A

(
Qt(αt) + (ft(αt)− ft) (ft(αt)− ft)T

)
π(αt|y1:t−1),

where π(αt|y1:t−1) are given as in equation (8.6).

(iiia) The filtering distribution of θt given y1:t and αt is approximately normal
with parameters

mt(αt) = E[θt|y1:t, αt] = at +RtFt(αt)
TQ−1t et

Ct(αt) = Var[θt|y1:t, αt] = Rt −RtFt(αt)TQ−1t Ft(αt)Rt,

where et = Yt − ft is the forecast error.

(iiib) The filtering distribution of θt given y1:t is approximately normal with
parameters

mt = E[θt|y1:t] =
∑

αt∈A
π(αt|y1:t)mt(αt)

Ct = Var[θt|y1:t]
=

∑

αt∈A

(
Ct(αt) + (mt(αt)−mt) (mt(αt)−mt)

T
)
π(αt|y1:t),
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and the filtering distribution of αt given y1:t is approximated by

π(αt|y1:t) ≈ π(αt|y1:t−1)π(yt|y1:t−1, αt)∑
α∈A

π(α|y1:t−1)π(yt|y1:t−1, α)
,

where π(α|y1:t−1) is given by equation (8.6), and π(yt|y1:t−1, αt) is given
by (iia).

Proof. The joint distribution of (θ0, θ1, . . . , θt, Y1, . . . , Yt, α1, . . . , αt) is given by
equation (8.5). The marginal and conditional distributions and the distribution
of any subvector or conditional distributions of some components given others
can be approximated with a Gaussian distribution using mixture collapses.
Since the model Mt(αt) is given by a DLM for any value of αt ∈ A, and the
matrices Gt(αt), Ft(αt), Vt(αt) and Wt(αt) are known for all values of αt ∈ A,
then (ia), (iia) and (iiia) are proved using the Kalman filter, proposition 7.2.
The means and variances in (ib), (iib) and (iiib) are given by the mean and
variance for probability mixtures, which are equivalent to equation (8.3) and
equation (8.4) for multi-process model class I. The probability π(αt|y1:t) is given
using Bayes’ theorem

π(αt|y1:t) = π(αt|y1:t−1, yt)

=
π(αt|y1:t−1)π(yt|y1:t−1, αt)∑

α∈A
π(α|y1:t−1)π(yt|y1:t−1, α)

.

[24, pp. 53-55],[25, pp. 443-445,448,450].

Multi-process smoothing

The multi-process smoothing recursions are presented in the following proposi-
tion.

Proposition 8.3
For a multi-process model class II mixture, where the probabilities with which
the model is selected are first-order Markov, the following statements hold.

(i) The state system (θ0, . . . , θT ) and (α1, . . . , αT ) given y1:T have backward
transition probabilities specified by

π(θt, αt|θt+1, αt+1, y1:T ) =
π(θt+1|θt, αt+1)π(αt+1|αt)π(θt, αt|y1:t)

π(θt+1, αt+1|y1:t)
.
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(ii) Conditional on y1:T the smoothing distribution of θt and αt can be calcu-
lated using the backward recursion starting from π(θT |y1:T )

π(θt, αt|y1:T ) = π(θt, αt|y1:t)
∫ ∫

π(θt+1|θt, αt+1)π(αt+1|αt)
π(θt+1, αt+1|y1:t)

·π(θt+1, αt+1|y1:T )dθt+1dαt+1.

Proof. The state θt and αt are conditionally independent of Yt+1:T given θt+1

and αt+1, and given θt and αt, θt+1 and αt+1 are conditionally independent of
y1:T . Then (i) is proved using Bayes formula

π(θt, αt|θt+1, αt+1, y1:T ) = π(θt, αt|θt+1, αt+1, y1:t)

=
π(θt+1, αt+1|θt, αt, y1:t)π(θt, αt|y1:t)

π(θt+1, αt+1|y1:t)

=
π(θt+1, αt+1|θt, αt)π(θt, αt|y1:t)

π(θt+1, αt+1|y1:t)

=
π(θt+1|θt, αt+1)π(αt+1|αt)π(θt, αt|y1:t)

π(θt+1, αt+1|y1:t)
.

The density π(θt, αt, θt+1, αt+1|y1:T ) with respect to θt+1 and αt+1 is marginal-
ized to prove (ii)

π(θt, αt|y1:T ) =

∫ ∫
π(θt, αt, θt+1, αt+1|y1:T )dθt+1dαt+1

=

∫ ∫
π(θt+1, αt+1|y1:T )π(θt, αt|θt+1, αt+1, y1:T )dθt+1dαt+1

=

∫ ∫
π(θt+1|θt, αt+1)π(αt+1|αt)π(θt, αt|y1:t)

π(θt+1, αt+1|y1:t)
·π(θt+1, αt+1|y1:T )dθt+1dαt+1

= π(θt, αt|y1:t)
∫ ∫

π(θt+1|θt, αt+1)π(αt+1|αt)
π(θt+1, αt+1|y1:t)

·π(θt+1, αt+1|y1:T )dθt+1dαt+1.

[24, pp. 60-61],[25, pp. 443-445].

Multi-process Kalman smoothing

In the following proposition it is assumed that the smoothing distributions are
approximately normal and that the model Mt(αt) is a DLM. Again the matrices
Gt, Ft, Vt and Wt are given by specific values for each value of αt ∈ A, i.e.
Gt(αt), Ft(αt), Vt(αt) and Wt(αt).
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Proposition 8.4
Consider a multi-process model class II mixture, where the probabilities with
which the model is selected are first-order Markov. Assume the approximation

θt+1|y1:T ≈ N(st+1, St+1)

is given, then the following statements hold.

(i) The smoothed distribution of θt given y1:T and αt is approximately normal
with parameters

st(αt) = E[θt|y1:T , αt] = mt(αt) + Ct(αt)G
T
t+1R

−1
t+1(st+1 − at+1)

St(αt) = Var[θt|y1:T , αt]
= Ct(αt)− Ct(αt)GTt+1R

−1
t+1(Rt+1 − St+1)R−1t+1Gt+1Ct(αt).

(ii) The smoothed distribution of θt given y1:t−1 is then approximately normal
with parameters

st = E[θt|y1:T ] =
∑

αt∈A
π(αt|y1:T )st(αt)

St = Var[θt|y1:T ]

=
∑

αt∈A

(
St(αt) + (st(αt)− st)(st(αt)− st)T

)
π(αt|y1:T ),

where it is assumed that π(αt|y1:T ) can be approximated by

π(αt|y1:T ) ≈
∑

αt+1∈A
π(αt|αt+1)π(αt+1|y1:T ).

Proof. Because the model Mt(αt) is given by a DLM for any value of αt ∈ A,
and the matrices Gt(αt), Ft(αt), Vt(αt) and Wt(αt) are known for all αt ∈ A,
then (i) is proved using the Kalman smoother, proposition 7.4. The mean and
variance in (ii) given by the mean and variance for probability mixtures, which
are equivalent to equation (8.3) and equation (8.4) for multi-process model class
I.

[24, pp. 61-62],[25, pp. 443-445].

Multi-process forecasting

The multi-process filtering recursions presented in proposition 8.1 gives the one-
step-ahead predictive distribution. In the following proposition the k-step-ahead
predictive distribution is presented.
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Proposition 8.5
For a multi-process model class II mixture, where the probabilities with which
the model is selected are first order Markov, the following statements hold for
any k > 0.

(i) The k-step-ahead forecast distribution of the state is

π(θt+k, αt+k|y1:t) =

∫ ∫
π(θt+k|θt+k−1, αt+k)π(αt+k|αt+k−1)

·π(θt+k−1, αt+k−1|y1:t)dθt+k−1dαt+k−1.

(ii) The k-step-ahead forecast distribution of the observation is

π(yt+k|y1:t) =

∫ ∫
π(yt+k|θt+k, αt+k)π(θt+k, αt+k|y1:t)dθt+kdαt+k.

Proof. The state θt+k is conditionally independent of y1:t given θt+k−1, and
αt+k is conditionally independent of y1:t given αt+k−1. Then (i) is proved by

π(θt+k, αt+k|y1:t) =

∫ ∫
π(θt+k, θt+k−1, αt+k, αt+k−1|y1:t)dθt+k−1dαt+k−1

=

∫ ∫
[π(θt+k, αt+k|θt+k−1, αt+k−1, y1:t)

·π(θt+k−1, αt+k−1|y1:t)] dθt+k−1dαt+k−1
=

∫ ∫
[π(θt+k, αt+k|θt+k−1, αt+k−1)

·π(θt+k−1, αt+k−1|y1:t)] dθt+k−1dαt+k−1
=

∫ ∫
[π(θt+k|θt+k−1, αt+k)π(αt+k|αt+k−1)

·π(θt+k−1, αt+k−1|y1:t)] dθt+k−1dαt+k−1.

The observation Yt+k is conditionally independent of y1:t given θt+k and αt+k,
and (ii) is proved by

π(yt+k|y1:t) =

∫ ∫
π(yt+k, θt+k, αt+k|y1:t)dθt+kdαt+k

=

∫ ∫
π(yt+k|θt+k, αt+k, y1:t)π(θt+k, αt+k|y1:t)dθt+kdαt+k

=

∫ ∫
π(yt+k|θt+k, αt+k)π(θt+k, αt+k|y1:t)dθt+kdαt+k.

[24, p. 70],[25, pp. 443-445].
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Multi-process Kalman forecasting

If it is assumed that the forecasting distributions are approximately normal, the
multi-process Kalman forecasting recursions can be given as in the following
proposition.

Proposition 8.6
Consider a multi-process model class II mixture, where the probabilities with
which the model is selected are first-order Markov, then the following is true for
k ≥ 0.

(ia) The distribution of θt+k given y1:t and αt+k is approximately normal with
parameters

at+k(αt+k) = E[θt+k|y1:t, αt+k] = Gt+k(αt+k)at+k−1
Rt+k(αt+k) = Var[θt+k|y1:t, αt+k]

= Gt+k(αt+k)Rt+k−1Gt+k(αt+k)T +Wt+k(αt+k).

(ib) The state forecast θt+k given y1:t is approximately normal distributed, i.e.
θt+k|y1:t ≈ N(at+k, Rt+k), with parameters

at+k = E[θt+k|y1:t] =
∑

αt+k∈A
π(αt+k|y1:t)at+k(αt+k)

Rt+k = Var[θt+k|y1:t]
=

∑

αt+k∈A
π(αt+k|y1:t) ·

(
Rt+k(αt+k) + (at+k(αt+k)− at+k)(at+k(αt+k)− at+k)T

)
,

where the model forecast is approximated by

π(αt+k|y1:t) ≈
∑

αt+k−1∈A
π(αt+k|αt+k−1)π(αt+k−1|y1:t). (8.7)

(iia) The distribution of Yt+k given y1:t and αt+k is approximately normal with
parameters

ft+k(αt+k) = E[Yt+k|y1:t, αt+k] = Ft+k(αt+k)at+k

Qt+k(αt+k) = Var[Yt+k|y1:t, αt+k]

= Ft+k(αt+k)Rt+kFt+k(αt+k)T + Vt+k(αt+k).
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(iib) The observation Yt+k given y1:t is approximately normal distributed, i.e.
Yt+k|y1:t ≈ N(ft+k, Qt+k), with parameters

ft+k = E[Yt+k|y1:t] =
∑

αt+k∈A
π(αt+k|y1:t)ft+k(αt+k)

Qt+k = Var[Yt+k|y1:t]
=

∑

αt+k∈A
π(αt+k|y1:t) ·

(
Qt+k(αt+k) + (ft+k(αt+k)− ft+k)(ft+k(αt+k)− ft+k)T

)
,

where π(αt+k|y1:t) is given as in equation (8.7).

Proof. Since the model Mt(αt) is given by a DLM for any value of αt ∈ A,
and the matrices Gt(αt), Ft(αt), Vt(αt) and Wt(αt) are known for all values of
αt ∈ A, then (ia) and (iia) is proved using proposition 7.6. The means and
variances in (ib) and (iib) are given by the mean and variance for probability
mixtures, which are equivalent to equation (8.3) and equation (8.4) for multi-
process model class I.

[24, p. 71],[25, pp. 443-445].
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Appendix A

Codes

A.1 Data preprocessing

##Load of original data##

#csv file containing the observation number (time),

#the date (dato) and the number of infected (mycoplasma)

Data<-read.csv(file="mycoplasmaCounts.csv",header=TRUE)

##Plot of number of infected in days##

plot(Data$mycoplasma,type="h",main="",xaxt="n",xlab="Time in days",

ylab="No. infected")

axis(1,at=c(365*(0:length(Data$time))))

##Total number of infected##

sum(Data$mycoplasma)

##Number of samples recorded on each week day##

n<-floor(length(Data$time)/7)

a<-0;b<-0;c<-0;d<-0;e<-0;f<-0;g<-0

for (i in (7*(1:n)-6)){

a<-a+Data$mycoplasma[i] #Friday

b<-b+Data$mycoplasma[i+1] #Saturday

c<-c+Data$mycoplasma[i+2] #Sunday

d<-d+Data$mycoplasma[i+3] #Monday

e<-e+Data$mycoplasma[i+4] #Tuesday

f<-f+Data$mycoplasma[i+5] #Wednesday

g<-g+Data$mycoplasma[i+6] #Thursday

}
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Weeksum<-c(d,e,f,g,a,b,c)

plot(Weeksum,type="h",xlab="",ylab="No. infected",ylim=c(0,1300),

xaxt="n")

n<-length(Weeksum)

axis(1,at=c(1,2,3,4,5,6,7),labels=FALSE)

labels=c("Monday","Tuesday","Wednesday","Thursday","Friday",

"Saturday","Sunday")

text(1:n,par("usr")[3]-5,labels=labels,srt=45,adj=c(1.1,1.4),

xpd=TRUE,cex=.9)

labelmonday=c("1052","","","","","","")

text(1:n,par("usr")[1]-10,labels=labelmonday,adj=c(0.5,-24),

xpd=TRUE,cex=.9)

labeltuesday=c("","1187","","","","","")

text(1:n,par("usr")[1]-10, labels=labeltuesday,adj=c(0.5,-27),

xpd=TRUE,cex=.9)

labelwednesday=c("","","1061","","","","")

text(1:n,par("usr")[1]-10, labels = labelwednesday,

adj=c(0.5,-24.3),xpd=TRUE,cex=.9)

labelthursday=c("","","","901","","","")

text(1:n,par("usr")[1]-10,labels=labelthursday,adj=c(0.5,-20.6),

xpd=TRUE,cex=.9)

labelfriday=c("","","","","922","","")

text(1:n,par("usr")[1]-10,labels=labelfriday,adj=c(0.5,-21.1),

xpd=TRUE,cex=.9)

labelsaturday=c("","","","","","110","")

text(1:n,par("usr")[1]-10,labels=labelsaturday,adj=c(0.5,-3),

xpd=TRUE,cex=.9)

labelsunday=c("","","","","","","62")

text(1:n,par("usr")[1]-10,labels=labelsunday,adj=c(0.5,-1.9),

xpd=TRUE,cex=.9)

##No. infected from December 11th 1998 to December 29th 1998##

Section<-Data$mycoplasma[1625:1643]

plot(Section,type="h",xlab="",ylab="No. Infected",xaxt="n")

axis(1,at=1:length(Section),labels=FALSE)

labels=c("Fri Dec. 11th","Sat Dec. 12th","Sun Dec. 13th",

"Mon Dec. 14th","Tue Dec. 15th","Wed Dec. 16th","Thu Dec. 17th",

"Fri Dec. 18th","Sat Dec. 19th","Sun Dec. 20th","Mon Dec. 21th",

"Tue Dec. 22th","Wed Dec. 23th","Thu Dec. 24th","Fri Dec. 25th",

"Sat Dec. 26th","Sun Dec. 27th","Mon Dec. 28th","Tue Dec. 29th")

text(1:length(Section),par("usr")[3]-0.2,labels=labels,srt=45,

adj=c(1.1,1.1),xpd=TRUE,cex=.9)
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##Change data from dayly counts to weekly counts##

n<-floor(length(Data$time)/7)

obsorg<-c()

for(i in (7*(1:n)-6)){

y<-Data$mycoplasma[i:(i+6)]

weekobs<-sum(y)

obsorg<-c(obsorg,weekobs)

}

##Plot of the number of infected in weeks##

plot(obsorg,type="h",main="",xaxt="n",xlab="Time in weeks",

ylab="No. infected")

axis(1,at=c(52*(0:length(obsorg))))

##Frequency of observations##

obsorg[230]<-NA #383 infected in week 230

obsorg[231]<-NA #246 infected in week 231

obsorg[232]<-NA #246 infected in week 232

obsorg[233]<-NA #235 infected in week 233

hist(obsorg,breaks=140,main = paste(""),xlab = "No. infected",

ylim=c(0,150),xlim=c(0,140),right=FALSE)

box(lty="solid")

A.2 Farringtons algorithm

##Load of surveillance package##

#which includes Farringtons algorithm

library(surveillance)

##Change of function from surveillance package ##

#changed to make reweight function work correctly

algo.farrington.fitGLM.fast <- function(response, wtime,

timeTrend = TRUE, reweight = TRUE){

if (timeTrend) {

design <- cbind(intercept = 1, wtime)

Formula <- response ~ wtime

}

else {

design <- matrix(1, nrow = length(wtime))

Formula <- response ~ 1

}

model <-glm.fit(design,response,family=quasipoisson(link="log"))
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if (!model$converged) {

if (timeTrend) {

model <- glm.fit(design[, 1, drop = FALSE], response,

family = quasipoisson(link = "log"))

Formula <- response ~ 1

cat("Warning: No convergence with timeTrend -- trying without.\n")

}

}

class(model) <- c("glm", "lm")

phi <- 1 #max(summary.glm(model)$dispersion, 1) #Changed here

if (reweight) {

s <- anscombe.residuals(model, phi)

omega <-algo.farrington.assign.weights(s)

model <-glm.fit(design,response,family=quasipoisson(link="log"),

weights = omega)

phi <- max(summary.glm(model)$dispersion, 1)

}

model$phi <- phi

model$wtime <- wtime

model$response <- response

model$terms <- terms(Formula)

class(model) <- c("algo.farrington.glm", "glm")

return(model)

}

##Disease prognosis object created##

week<-1:578

state<-rep(0,length(week))

Mycoplasma<-create.disProg(week=week,observed=obsorg,

state=state,freq=52)

##Analysis using Farringtons algorithm##

control<-list(b=5,w=3,range=53:length(week),reweight=TRUE,

trend=FALSE,verbose=FALSE,alpha=0.01,limit54=c(5,4))

result<-algo.farrington(Mycoplasma,control=control)

##Plot of results##

plot(result,xaxis.years=FALSE,xaxt="n",xlab="Time in weeks",

legend.opts=list(x="top",legend=c("Infected", "Threshold", "Alarm"),

lty=NULL,pch=NULL,col=NULL))

axis(1,at=c(52*(0:length(week))))
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##Result tables##

beg<-145

end<-178

tableoutbreak.one<-data.frame(week=beg:end,

Infected=obsorg[(beg+52):(end+52)],

Threshold=result$upperbound[beg:end],

Alarm=result$alarm[beg:end])

View(tableoutbreak.one)

beg<-478

end<-490

tableoutbreak.two<-data.frame(week=beg:end,

Infected=obsorg[(beg+52):(end+52)],

Threshold=result$upperbound[beg:end],

Alarm=result$alarm[beg:end])

View(tableoutbreak.two)

A.3 The dynamic linear model

##Skewness correction##

obs<-obsorg^(2/3)

##Load of dlm package##

library(dlm)

##Function for estimation of unknown parameters##

build<-function(parm){

dlmModPoly(1, dV = exp(parm[1]), dW = exp(parm[2]))+

dlmModTrig(s = 52, q = 1, dV = 0,dW = exp(rep(parm[3],2)))

}

##Steady period for estimation of unknown parameters##

est<-obs[0:200]

est<-append(est,rep(NA,49),after=length(est))

est<-append(est,obs[250:500],after=length(est))

##Estimation of unknown parameters using MLE##

fit<-dlmMLE(est,rep(0,3),build)

##Model with estimated parameters##

model<-dlmModPoly(order=1,dV=exp(fit$par[1]),dW=exp(fit$par[2]))+

dlmModTrig(s=52,q=1,dV=0,dW=exp(rep(fit$par[3],2)))
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##Kalman filter##

filter<-dlmFilter(est,model)

##The variances##

variance<-dlmSvd2var(filter$U.C,filter$D.C)

##The mean value of the prior##

model$m0<-apply(filter$m,2,mean)

##The variance of the prior##

model$C0<-variance[[125]]

##Analysis function##

OneStep<-function(X,lev=0.99){

L<-length(X$res)

if(L==length(X$y)) stop("The End")

f<-dlmFilter(X$y[L+1],X$mod)

fc <- dlmForecast(X$mod)

up<-(fc$f[1,1]+qnorm(lev)*sqrt(fc$Q[[1]][1,1]))^(3/2)

X$upper<-c(X$upper,up)

r<-(X$y[L+1]-fc$f[1,1])/sqrt(fc$Q[[1]][1,1])

if(r>qnorm(lev)){

X$res<-c(X$res,NA)

f<-dlmFilter(NA,X$mod)

}

else{

X$res<-c(X$res,r)

}

f<-dlmSmooth(f)

X$mod$m0<-f$s[2,]

X$mod$C0<-dlmSvd2var(f$U.S,f$D.S)[[2]]

X

}

##List containing the model and observations##

surv<-list(mod=model,y=obs,res=NULL)

##Analysis##

for(i in 1:length(obs)) surv<-OneStep(surv)

##Weeks with alarms##

ii<-(1:578)[is.na(surv$res)]
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##Plot of results##

plot(obsorg[53:578],type="h",main="",xaxt="n",xlab="Time in weeks",

ylab="No. infected")

axis(1,at=c(52*(0:length(obsorg))))

legend("top",c("Infected","Threshold","Alarm"),

lty=c(1,2,NA_integer_),pch=c(NA_integer_,NA_integer_,2),

col=c("black","blue","red"))

for(i in ii) points(c(i-52,i-52),c(-10,-10),col="red",pch=2)

lines(surv$upper[53:578],lty=2,col="blue")

##QQ-plot of the standard innovations##

qqnorm(surv$res,xlab="Normal Theoretical Quantiles")

abline(0,1)

##Tables with results##

Alarm<-is.na(surv$res)

beg<-145

end<-178

tableoutbreak.one<-data.frame(week=beg:end,

Infected=obsorg[(beg+52):(end+52)],

Threshold=surv$upper[(beg+52):(end+52)],

Alarm=Alarm[(beg+52):(end+52)])

View(tableoutbreak.one)

beg<-478

end<-490

tableoutbreak.two<-data.frame(week=beg:end,

Infected=obsorg[(beg+52):(end+52)],

Threshold=surv$upper[(beg+52):(end+52)],

Alarm=Alarm[(beg+52):(end+52)])

View(tableoutbreak.two)

A.4 The multi-process dynamic linear model

##Skewness correction##

obs<-obsorg^(2/3)

##Load of dlm package##

library(dlm)

##Function for estimation of unknown parameters##

build<-function(parm){

dlmModPoly(1, dV = exp(parm[1]), dW = exp(parm[2]))+
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dlmModTrig(s = 52, q = 1, dV = 0,dW = exp(rep(parm[3],2)))

}

##Steady period for estimation of unknown parameters##

est<-obs[0:200]

est<-append(est,rep(NA,49),after=length(est))

est<-append(est,obs[250:500],after=length(est))

##Estimation of unknown parameters using MLE##

fit<-dlmMLE(est,rep(0,3),build)

##The estimated variances##

vars<-exp(fit$par)

##Filter function and calculation of 2*log-likelihood##

filter.likelihood <- function(y,Ft,mod,hist,trans){

at <- hist$mt

Rt <- hist$Ct+mod$w

ft <- sum(Ft[1,]*at)

Qt <- (Ft%*%Rt%*%t(Ft))[1,1]+mod$v

hist$mt <- at+Rt%*%t(Ft)*(y-ft)/Qt

hist$Ct <- Rt-Rt%*%t(Ft)%*%Ft%*%Rt/Qt

hist$Qt <- Qt

hist$ft <- ft

L <- length(hist$al)

al0 <- hist$al[L]

hist$lp <- hist$lp-log(Qt)-(y-ft)^2/Qt+trans[mod$al,al0]

hist$alpha <- c(hist$al,mod$al)

hist

}

##Calculate the filtering distribution of the models##

probAlpha<- function(H,nM){

lps <- unlist(lapply(H,function(x) x$lp))

lps <- lps-lps[1]

ps <- exp(lps)

ps <- ps/sum(ps)

L <- length(H[[1]]$al)

m0 <- unlist(lapply(H,function(x) x$al[L]))

res <- c()

for(i in 1:nM) {

ii <- m0==i

if(sum(ii)==0) res <- c(res,0) else res <- c(res,sum(ps[ii]))
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}

res

}

##The design matrix is defined##

Design <- model.matrix(~cos(2*pi*time*7/365)+sin(2*pi*time*7/365),

data=data.frame(time=1:length(obs)))

dimTheta <- dim(Design)[2]

##The variances##

vars <- c(vars,vars[3])

##The steady state model##

steady <- list(v=vars[1],w=diag(vars[-1]),al=1)

##The outlier model##

outlier <- steady

outlier$v=steady$v*10

outlier$al <- 2

##The outbreak model##

outbreak <- outlier

outbreak$al <- 3

##(2*log) The transition probabilities##

transition <- 2*log(matrix(c(.985,.01,.005,.985,.01,.005,

.09,.01,.9),3))

##The models##

models <- list(steady=steady,outlier=outlier,

outbreak=outbreak)

##The number of models##

numMod <- length(models)

##The history##

history <- list()

for(i in 1:numMod) history<-c(history,

list(list(lp=transition[i,1],

mt=rep(0,3),Ct=diag(rep(1,3)),alpha=i)))

##The lag##

lag<-3



102 A. Codes

##The number of models saved##

savenum <- numMod^(lag+1)

##Probability of each model##

alpha.probability <- c()

##Analysis##

for(i in 1:lag){

H <- list()

Ft <- matrix(Design[i,],1)

y <- obs[i]

for(mod in models){

for(hist in history)

H <- c(H,list(filter.likelihood(y,Ft,mod,hist,transition)))

}

history <- H

alpha.probability <- cbind(alpha.probability,

round(probAlpha(history,numMod),3))

}

for(i in (lag+1):length(obs)){

H <- list()

Ft <- matrix(Design[i,],1)

y <- obs[i]

for(mod in models){

for(hist in history)

H <- c(H,list(filter.likelihood(y,Ft,mod,hist,transition)))

}

lps <- unlist(lapply(H,function(x) x$lp))

history <- H[order(lps,decreasing=T)][1:savenum]

alpha.probability <- cbind(alpha.probability,

round(probAlpha(history,numMod),3))

}

##The most likely sequence of models##

pickMax<-function(x){

mx<-max(x)

ii<-(1:length(x))[x==mx]

min(ii)

}

mostLikely<-apply(alpha.probability,2,pickMax)
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##Alarms and outliers##

alarms<-(1:578)[mostLikely==3]

outlier<-(1:578)[mostLikely==2]

##Plot of results##

plot(obsorg[53:578],type="h",main="",xaxt="n",

xlab="Time in weeks",ylab="No. infected")

axis(1,at=c(52*(0:length(obsorg))))

legend("top",c("Infected", "Alarm", "Outlier"),

lty=c(1,NA_integer_,NA_integer_),pch=c(NA_integer_,2,2),

col=c("black","red","yellow"))

for(i in alarms) points(c(i-52,i-52),c(-10,-10),col="red",pch=2)

points(c(outlier-52,outlier-52),c(-10,-10),col="yellow",pch=2)


