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SYNOPSIS:

The purpose of this report has been to design

a flow controller for a Digital Displacement

Pump (DDP). To achieve this result, a nonlin-

ear model of the pump has been developed

and implemented in MATLAB Simulink. The

nonlinear model has been validated by us-

ing measurement data from a source at Aal-

borg University. At the same time, the mod-

el has been analysed to identify the sensitiv-

ity of the pump’s output flow for changing

oil temperature. A flow filter and flow es-

timator has been developed in order to es-

timate the output flow from the pump and

to obtain its average value. Furthermore,

an Internal Model Controller has been de-

signed utilising a Smith Predictor to account

for the time-delayed DDP response. The

proposed controller applied on the nonlin-

ear model showed promising results. Poly-

nomial regression is utilised to construct an

input-output map based on the nonlinear

model. Additionally, two methods have been

proposed to adapt the map for changing

oil temperatures; an offset method and a

method based on convex optimisation. Both

methods utilises the predicted error to ad-

just the polynomial coefficients and better

results were achieved by using the optimisa-

tion method on the nonlinear DDP model.
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Preface

This report is a documentation of a master project written by Cemre Yigen at Aalborg University to

complete the Master of Science programme in Energy Engineering with specialization in Mechatronic

Control Engineering. The project period spans from 1st of February 2012 till 31st of May 2012. As-

sociate Professor Henrik Clemmensen Pedersen and PhD fellow Per Johansen has been supervising

during the project period.

The Harvard method is used for literature references where the surname of the author and year of

publication is enclosed in brackets, i.e. [Andersen, 2003]. Figures, tables and equation are numbered

with two digits separated by a period, i.e. equation 2.1. The first digit refers to the chapter and the

second digit refers to the number of the figure, table or equation. Appendix references are stated with

letters.

SI-units are used throughout the report. Vectors are marked with arrows and matrices with under-

lines, i.e. ~v and M accordingly. The first order time derivative is denoted by a dot above the symbol ẋ,

consequently the second order time derivative by two dots.

The attached DVD-ROM contains MATLAB scripts and SIMULINK models developed to support the

report. A digital copy of the report and paper references are also included in the DVD.

Aalborg University, 2012

Cemre Yigen

v





Summary

This report deals with the control design of a Digital Displacement Pump (DDP) that is characterized

by multiple cylinder outlets. This technology gives the possibility of controlling the output flow from

the pump energy efficiently.

A comprehensive nonlinear model of the six cylindered DDP is built that predicts the dynamics of

the pump. The model consists of a hydraulic and mechanical part. The hydraulic model includes

temperature variational effect on the oil parameters that affects the performance of the pump. The

mechanical part predicts the dynamic behaviour of the moving elements in the pump. The DDP

model is verified using data collected from a prototype by an external source and the parameters are

tuned accordingly.

The DDP model is intensively analysed to identify possible patterns and characteristics for control

design purposes. The pump speed and the input signal to the pump is determined based on consid-

ering the energy efficiency and the output power of the pump. A time-delay analysis is carried out

to determine the delay between an input signal and the resulting output flow. This information is

used to build a simplified model of the DDP with the intention of applying linear control theory. The

output-flow is examined as well in order to determine its characteristics and its sensitivity towards oil

temperature changes.

A method to measure the output flow is proposed based on the output flow response from the DDP

and the available transducers at the prototype. The intention of utilising a flow measurement device

is to use it in a negative feedback loop for closed loop control design. The method consists of an

output flow estimator and filter to obtain the average value of the output flow. The sensitivity of the

flow estimator towards uncertain parameters are assessed in order to verify utility.

A simplified model of the nonlinear DDP model is completed using step response analysis. The model

is deliberately made linear in order to apply linear control analysis. A control structure is proposed

consisting of a Feedforward Gain, Feedback Controller and an Internal Model Controller that utilises

a Smith Predictor. The Feedforward gain utilises a map between the input and the output of the

DDP. The Smith Predictor accounts for the time-delay present in the DDP. The closed loop controller

is build based on worst-case-scenario in order to make the control strategy stable for all operation

points.
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Possible methods of adapting the DDPs input/output-map is specified based on sparse sample con-

siderations. Firstly, polynomial regression is utilised relating the output flow, load pressure and the

input signal for a fixed oil temperature. When a deviation is observed between the map and the mea-

surement, an offset of the map is executed. Finally, the map is formulated as a convex optimisation

problem which is solved using a normalised steepest descent algorithm.
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1Introduction

This chapter is intended to give the reader an introduction of a Digital Displacement Pump. Section

1.1 gives a background of the technology and explores application areas. In section 1.2, the working

principles of the pump are introduced along with an overview of how its control mechanism works.

Section 1.3 briefly introduces the current state of the pump’s technology based on a review of the

available literature. The motivation for working with this pump and identifying the areas of further

improvement is discussed in section 1.4. A description of the problem covered in the report is de-

scribed in section 1.5 together with the project goals and limitations. Finally, section 1.6 presents an

overview of the chapters in the report.

1.1 Background

The Digital Displacement Pump (DDP) and Motor (DDM) was invented by Artemis Intelligent Pow-

er LTD. The company started as a derivative from a fluid-power and renewable energy research at

University of Edinburg in 1994 with the intention of reducing power-losses in hydraulic transmission

systems. The technology has exceptional controllability especially in synchronized applications and

it also comes with high efficiency at part-load conditions.

The efficiency of the technology at full displacement is to some extent similar to the efficiency of a

Bent Axis Pump and an Axial Piston Pump as seen in figure 1.1a. However, none of the other pump

technologies can match the efficiency of a DDP at partial displacement. This is one of the key proper-

ties of the pump, which is also evident in figure 1.1b. The figure shows an almost uniform efficiency

plot of an Artemis DDP obtained at 210[B ar ] load pressure at various rotor speeds and displacement

fractions.
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(a) Artemis DDP effiency comparison (b) Artemis DDP efficiency at different operating points.

Figure 1.1: The efficiency of (a) an Artemis DDP compared to different pump technologies for two different displacement fractions and (b)

an Artemis DDP for different operating points. [Artemis Intelligent Power LTD]

The company has identified a number of applications where a DDP or DDM can be beneficial. The

technology has been and currently is being implemented to demonstrate the energy efficiency of the

system compared to prevalent technology. The most well-known application is a Digital Displace-

ment Hybrid Transmission system for automotive application where an hydraulic power transmis-

sion system is used to replace the gearbox of a vehicle. A conventional combustion engine that runs

at maximum efficiency drives a DDP which is hydraulically coupled to a DDM. The DDM is directly

connected to the wheels. The gear ratio between the motor and the pump can be chosen arbitrarily,

and the change of gear-ratio is much faster than a normal gearbox. On top of this, the application can

make use of regenerative breaking energy by placing a hydraulic accumulator between the motor and

the pump. The company demonstrated the effects of the technology on a BMW 530i in 2008 where up

to 30% reduction of CO2 emmissions was obtained in a combination of city and highway driving. An-

other application that receives a lot of attention from the company is a Wind Turbine Transmission

system for offshore wind turbines. A 7[MW ] wind turbine prototype, SeaAngel, with 165[m] rotor

diameter is currently under development which is expected to be ready in 2013. A hydraulic trans-

mission system is used to decouple the rotor and the generator, thus making the gearbox redundant.

The synchronous generator is driven in steady state by the DDM independently of the rotor speed.

This makes the power converter surplus, which is the usual source of error for wind turbines. Since

the gearbox and the power converter together are a considerable weight contribution for the nacelle,

the requirements for load capacity of the tower is reduced NewScientist [2009]. This means that the

total cost of the tower of such a wind turbine is lowered and also the need for maintenance is less

frequent.
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1.2 Basics of the technology

A Digital Displacement Pump is similar to an axial piston pump in functionality. Both are capable of

adjusting the flow rate during a revolution. The axial piston pump uses a swash plate to adjust the

stroke length. The DDP uses two on-off valves to adjust the flow rate because the DDP’s stroke length

is fixed. At least one of the on-off valves has to be active in order to work as a pump.

The use of on-off valves gives access to rapid change in flow rate on demand compared to a axial

piston pump. Additionally, it expands the options for applying complex control strategies and also to

support multiple applications by connecting each cylinder to a separate application.

The geometry of a DDP matches an outside impinged radial piston pump. The chamber of the cylin-

ders are filled with fluid from the outside, hence the name outside impinged. Six cylinders are placed

in a housing in radial direction around a rotational drive shaft colored yellow in figure 1.2. The num-

ber of cylinders depends on the application and chosen arbitrarily in this report. Artemis used 68

cylinders in a hydraulic transmission system prototype for wind turbines that was completed in 2009

[NewScientist, 2009].

Figure 1.2: A Digital Displacement Pump with six cylinders with two different angles of the drive shaft.

Figure 1.2 is not an accurate drawing but it is used to illustrate the basics of the pump. It illustrates a

counter clock wise rotation of the drive shaft and the distribution of pressure in the cylinder chambers

at two different angles. A red color indicates high pressure and a blue color indicates low pressure.

The angle of rotation is the difference between the black rectangles along the external dashed line.

The hexagon shaped object is designed to have a cylindrical cavity that can fit an eccentric drive

shaft. This means that there is a distance between the hexagons center of mass and the drive shafts

rotation axis marked with an orange dot. As the shaft rotates inside the cavity, the hexagonal object is

pushed in a non-rotational manner reaching every cylinder port during a revolution. The hexagon’s
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center of mass follows the dashed line inside in the yellow area.

The piston inside the cylinders is supported by the face of the hexagon. For one complete revolution,

the piston makes a full stroke reaching the Top Dead Center (TDC) and the Bottom Dead Center

(BDC). The volume of the cylinder chamber decreases if the piston is moving upward (BDC→TDC)

which causes the enclosed fluid in the cylinder to pressurise and vice versa.

Throughout the report, the chambers in which the fluid is pressurised/depressurised are referred to

as the working chambers. That is analogous to the combustion chamber of a gasoline engine where

burned fuel pressurises the fluid.

The displacement from the working chamber is controlled by two valves; a high pressure (HP) valve

and a low pressure (LP) valve. The LP valve is a solenoid valve that is used to control the fluid intake

from the reservoir to the working chamber. The HP valve connects the load with the working cham-

ber. It can either be chosen as a passive poppet valve that opens for discharge when the pressure

difference tilts in favour of the working chamber or an active solenoid valve that makes it possible

to control the time of discharge. Control strategy of a DDP deals with the switching of the solenoid

valves.

A prototype of a single-cylinder DDP was developed by Johansen and Rømer [2011] at Aalborg Uni-

versity. The prototype contains an active solenoid LP valve and a passive HP poppet valve. This

prototype will serve as the basis of this report where the number of cylinders is expanded to six.

1.3 State of the art control

Even though the technology was invented more than 15 years ago by Artemis Intelligent Power LTD,

limited independent research about development and control of a DDP has been published. A review

of the available literature is conducted below.

Ehsan et al. [2000] proposes a decision making algorithm to either enable or disable a cylinder for full

displacement as a piston reaches its discharge stroke period BDC→TDC. A disabling decision leaves

the LP valve open so fluid can enter and leave the cylinder as the piston moves up and down. Time

delay is identified as a natural part of a DDP, thus a made decision is executed after a given time

period. A look-ahead angle is defined which is used to predict the projected flow in the time interval

between the decision-making instant and the look-ahead time. An open-loop pressure controller and

a closed-loop flow controller are proposed which uses negative feedback to suppress low frequency

resonance. The controllers make a decision based on the predicted displacement from already com-

mitted cylinders and the predicted load displacement. A third decision algorithm is proposed in the

article which is based on a look-up table that contains sequence of decisions that matches a given

output requirement, e.g. a series of specific decision would give approximately 10[L/mi n] load flow

and 200[B ar ] load pressure on average.

Armstrong and Yuan [2006] research is based on a seven chamber Gerotor in motoring mode which

is somewhat similar to a DDM. As an eccentric rotor rotates the volumes of some chambers are either

4



increasing or decreasing. A function is given in the article that describes the rate of change of each

chamber volume as the rotor rotates. The total instantaneous torque contribution to the rotor can be

predicted based on the change of volume and the pressure inside the chambers. At a given rotor angle

27 different torque configurations exists for the gerotor, e.g. five cylinder could be connected to the

supply pressure while the remaining two to the reservoir. A multi level control strategy is proposed

that makes a decision based on all possible configurations of the seven chambers to obtain a desired

instantaneous torque output from the motor. The control strategy uses a look-up table that gives a

chamber-configuration based on a desired output torque and the current rotor angle. Since multiple

configurations may give approximately the same torque levels, a torque configuration is selected that

changes as little as possible during a time-step.

Heikkilä et al. [2010] shows experimental results conducted on a prototype consisting of 6 cylinders

with active HP and LP valves. Due to the radial displacement around a shaft, a pair of 3 cylinders are

in opposite phase. They define six decision instants and for the pair of cylinders in question one is

chosen to be in pumping mode and the other in suction mode. The authors identify the possibility

for having multiple outlets connected to the pump, e.g. one outlet for each cylinder. Their control

strategy consist of an upper and lower threshold region around the reference load pressure. When

the pressure exceed the upper limit the cylinder in question is operated in suction mode and vice

versa. Additionally, the switching time of the valves are controlled that accounts for compression

time and valve delays.

Johansen and Rømer [2011] proposes two flow controllers and two pressure controllers. All con-

trollers utilises a model based linearisation that accounts for changes in load pressure. A decision

making trigger is fired as the pistons are about to enter the discharge stroke period where it is de-

cided if the cylinder should pump or idle. Among the flow controllers, there is a Direct Cylinder Dis-

placement (DCD) controller and a Delta Sigma Modulated Flow (DSMF) controller of which both are

open-loop. The DCD controller is a partial displacement control strategy that divides the desired out-

put flow evenly to all cylinders. The DSMF controller makes use of either full displacement operation

or idle operation as the decision trigger is fired to approximate the desired output flow. The two pres-

sure controllers are a PID pressure controller and a Volume Error Pressure (VEP) controller. The PID

pressure controller uses linear control theory to apply a PID controller, as the name suggests, on a

strongly simplified linear model with load pressure feedback. The VEP controller adds a partial dis-

placement functionality to the strategy proposed in Ehsan et al. [2000] that makes use of a look-ahead

time. The decision making is based on several estimations; the predicted load displacement, the dis-

placement needed for compressing the fluid and the predicted displacement from already committed

cylinders during the look-ahead time.

The common denominator for all the available publications is the use of control schemes that lose

their accuracies as the oil changes its characteristic. Johansen and Rømer [2011] accounts for the

changes in load pressure by applying a model based linearisation. Since the characteristic of oil is

highly dependent on not only the pressure but also the temperature and the amount of free air en-
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closed in the oil, an initiative is necessary to prevent loss in performance during operation.

1.4 Motivation

The scope of this report is to develop control schemes that accounts for changes in oil properties

during operation. The operation conditions greatly affects the pressurising/depressurising time and

the LP valve’s open/close time as identified by Heikkilä et al. [2010] and Johansen and Rømer [2011].

This means that the output flow is different at different operation conditions even if the LP valves

receive the same close-signal. Figure 1.3 shows an illustration of the actual displacement that takes

place after the LP valve receives a close-signal.

t

xp
tl p,cl

TDC

BDC

tpr
thp,cl

positive
discharge

negative
discharge

t1 t3 t4t2
t5

Figure 1.3: Conditions that has an impact on the actual displacement received at the load from a single cylinder.

The piston position xp inside a cylinder is plotted for a full period (TDC→BDC→TDC). The LP valve

receives a close signal at t1 and some time tl p,cl elapse before the valve actually closes (t2). At the next

step, the pressure starts to build up as the piston moves from bottom to top. The pressurising delay

is defined as tpr . The HP valve opens for discharge at t3 when the working chamber pressure exceeds

the level of the load pressure. From t3 till t4, a positive discharge takes place. The direction of the flow

reverses causing back flow after t4 because the pressure level falls below the load pressure level. The

back flow continues until the pressure difference is sufficient to close the valve (t5). This time period

where negative discharge is present is labelled thp,cl . The actual displacement from the cylinders to

the load is the difference between the positive and negative discharge.

The identified time delays have to be known by great accuracy, to precisely attain a desired displace-

ment from the cylinders. This is not an easy task since all the delays are nonlinearly dependent on

the properties of the oil. The pressurising tpr delay varies for one thing with the load pressure level

and the valve delays tl p,cl , thp,cl is for one thing affected by the viscosity of the oil.

1.5 Problem Statement

An accurate system model and good knowledge of parameter variation is needed in order to ensure

precise displacement from the DDP. Fluid mechanics is by nature a highly nonlinear discipline that
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entails a number of simplified models that are only valid when certain conditions are obeyed. As a

consequence of this, modelling errors are impossible to avoid in practice.

The intention of the research conducted in the project period covered by the report is to explore ar-

eas where significant development lacks with regards to the Digital Displacement Pump. With this in

mind, the report tries to answer the following main question.

How can the output flow of a Digital Displacement Pump be controlled regardless of the oil temperature

and load pressure.

The output flow should be able to vary between 0% output and 100% output with arbitrary precision.

100% output flow refers to the maximum flow capability of the DDP. Also, the steady state error of the

output flow should be less than 5% deviation.

The changes in operation condition refer to the load pressure and the oil temperature. In most appli-

cations, the load pressure changes rapidly while the oil temperature changes slowly.

As a consequency of this, the controller should compensate for the variation in load pressure within

seconds. Additionally, the controller should tune its parameters during operation to the temperature

of the oil. The convergence rate of the tuning process should be conducted within a minutes in order

to yield satisfactory results.

The DDP should be able to deliver a relatively high power output as energy efficiently as possible.

The flow controller should produce as small flow ripples as possible. For this reason, the project

is delimitated to only consider partial displacement control strategies as this gives less flow ripples

compared to a full displacement controls strategy.

The controller can directly be applied to many applications when the above mentioned requirements

are fulfilled. This will guarantee the stability and approximately streamline the performance of the

pump regardless of the operation condition.

1.6 Report Structure

The report consists of three chapters. These are Nonlinear Model of Digital Displacement Pump, Anal-

ysis of the Digital Displacement Pump Model, Flow Measurement on a Digital Displacement Pump and

Control of a Digital Displacement Pump. Additional information supporting the chapters are attached

in the Appendix.

In Nonlinear Model of Digital Displacement Pump the objective is to develop a model of the Digital

Displacement Pump that will serve as a testing unit. The model is going to be validated throughout

measurement data obtained from a prototype.

In Analysis of the Digital Displacement Pump Model the model is extensively analysed in order to de-

termine the input signals to the pump, the time delays of the pump and the output flow from the

pump. The most efficient operation mode of the DDP with high output power is going to be de-
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termined. The time delays in the system are going to be identified in order to help control design.

Additionally, a study of the output flow will be conducted in order to classify methods to perform flow

measurement.

Once the analysis is carried out, the design of a flow measurement device will be initiated. Through

a flow filter and flow estimator, the average output flow will be obtained. A sensitivity test is going to

be performed on the designed flow filter and estimator to verify its usability on the DDP.

This is followed by an initiation of control schemes research that takes advantage of the Nonlinear

model in Control of a Digital Displacement Pump. As a consequence of the limited time frame of the

project, a test of the control scheme on the prototype will not be conducted. The controller is only

tested on the Nonlinear Model and evaluated based on these results.

Finally, the design of a map will be carried out in Mapping Function to identify the DDP’s input-output

map. Moreover, methods to adapt the mapping function will be explored and tested on the nonlinear

model together with the designed controller.
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2Nonlinear Model of a Digital

Displacement Pump

This chapter describes a model of the Digital Displacement Pump and a model of a simple load. First-

ly, a system overview is given in this section. A brief summary of the used theories is introduced to

model the hydraulic system. This is followed by a derivation of a mechanical system model. Finally,

the model is verified using data obtained from a prototype at Aalborg University.

2.1 System overview

The system contains six single acting hydraulic cylinders where inflow and outflow is controlled by

on/off valves. The LP valve is a 2/2 way directional valve with electric actuation connecting the work-

ing chambers to the reservoir. The HP valve is a pressure relief valve connecting the working cham-

bers to a pressure node Pload . The position of the pistons are determined by an eccentric drive shaft.

The load is a restrictor with an adjustable orifice. A hydraulic schematic of the system is given in figure

2.1 using standardized symbols that follows DIN ISO 1219 [Andersen and Hansen, 2007, Chap.1].

Pl oad

Pt

QL,1

QL,2

QL,3

QL,4

QL,5

QL,6

QH ,1

QH ,2

QH ,3

QH ,4

QH ,5

QH ,6

Pc,1

Pc,2

Pc,3

Pc,4

Pc,5

Pc,6

Qload

Pt

Figure 2.1: The hydraulic circuit of the DDP pump and the load using standardized symbols.
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A thorough examination of the hydraulic components presented in the hydraulic circuit diagram is

carried out in the following sections.

2.2 Theoretical background to model a hydraulic system

The valve openings are modelled as an annular orifice with a sharp edge that makes a sudden reduc-

tion in the flow path. Moreoever, the annular orifice has a constant cross-sectional area.

Applying conservation of mass and Bernoulli’s equation on a streamlined and steady fluid flow, where

the fluid is incompressible and inviscid, results in the orifice equation. See appendix A.1 for deriva-

tions. The orifice equation that accounts for frictional losses is given in equation 2.1.

Q = Cd A0

√
2

ρ
(P1 −P2) (2.1)

where

Q Flow through orifice
[
m3/s

]
Cd Discharge coefficient [.]
A0 Area of orifice

[
m2

]
P1 −P2 Pressure drop from upstream to downstream [Pa]

The model is not valid for low Reynold numbers Re, typically for
p

Re < 10. Nevertheless, it is of-

ten used under this condition by defining the discharge coefficient Cd as a function of Re [Andersen,

2003, Chap.1]. The coherence between Re and Cd entails three parts; (1) a linear relation in the lam-

inar region, (2) a peak in the transitional region and (3) a saturation in the turbulent region. Lack of

comprehensive measurement data is often the reason why the transitional region is neglected in the

models. Therefore, a piecewise linear function is used to model part (1) and (3).

Cd =


Cd ,maxp
Ret

p
Re if 0 ≤ Re ≤ Ret

Cd ,max if Re > Ret

(2.2)

where

Cd ,max Saturated discharge coefficient for turbulent flow [.]
Ret Reynolds number for transition region [.]
Re Actual Reynolds number [.]

The Reynolds number is a dimensionless number that describes the ratio between the inertial forces

to the and viscous forces applied on a fluid. A large number indicates large inertial forces that re-

sults in turbulent flow while a low number results in laminar flow. The Re is calculated based on the

hydraulic diameter dH of the restrictor, the density of the fluid ρ, the velocity of the fluid v and the

dynamic viscosity of the fluid µ. The relations is given by Re = ρvdH

µ . The mean velocity of the fluid v

10



relative to the orifice wall can be computed as the ratio of the flow Q and the discharge area A0 by us-

ing the principle of continuity. This creates a conflict because Re is used to calculate the flow and the

flow is used to calculate Re. To avoid this, a time-delay is introduced so that Re for the current time

step k is calculated based on the flow calculations from the previous time step k −1. The accuracy of

this method depends on the sampling time and in general a high sampling time gives better results.

The Reynolds number for the flow through an orifice is modelled as in equation 2.3.

Re[k] = ρdh

µ

|Q[k −1]|
A0

(2.3)

where

ρ Density of the fluid
[
kg /m3

]
dH Hydraulic diameter of the orifice [m]
µ Dynamic viscosity of the fluid

[
N s/m2

]
In a system with movable parts leakage is inevitable. Fittings between a piston and its housing is

deliberately made with a small gap to minimise friction and wear as a result of a film of lubricating

oil. In reality, the lubricating oil is leakage flow in the gap. The gap has an annular shape and therefore

the leakage is modelled as laminar flow through an annular, see equation 2.4. This model is derived

from the Navier-Stokes equations with the assumption that a steady, axisymmetric, incompressible

and laminar flow is parallel to the wall [Munson et al., 2010, p.315-317].

Qannulus =
π∆P

8µL

r 4
o − r 4

i −
(
r 2

o − r 2
i

)2

ln
(

ro
ri

)
 (2.4)

where

Qleak Leakage fluid flow
[
m3/s

]
∆P Pressure difference across leakage path [Pa]
ri Annulus inner circle diameter [m]
ro Annulus outer circle diameter [m]
L Length of leakage path [m]

The pressure inside the working chamber is affected by several factors: the flow in and out of the

chamber, the volume of the chamber and the stiffness of the fluid. The pressure is modelled by utilis-

ing the continuity equation [Andersen, 2003]. It is based on the principle of conservation of mass, the

effective tangent bulk modulus of the fluid and the average density of the fluid entering and leaving

the control volume [Andersen, 2003, Chap.3].

Qi n −Qout = dV

d t
+ V

β

dP

d t
(2.5)

where
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Q The inlet and outlet fluid flow to the chamber
[
m3/s

]
V Volume of the work chamber

[
m3

]
P Pressure of the work chamber [Pa]
β Stiffness of fluid [Pa]

2.3 Hydraulic system model

The model of the hydraulic system is separated into three parts. The first part explores how the char-

acteristics of the hydraulic fluid changes mainly as a function of oil temperature and oil pressure. The

next part deals with a hydraulic model of the DDPs working chamber, i.e. flow equations and pres-

sure gradients. Lastly, a model of a simple load is given to function as a framework where control

strategies, developed in chapter 5, can be tested.

2.3.1 Hydraulic fluid

Oil is used as the hydraulic fluid in the DDP. The oil parameters are highly sensitive towards changes

in oil temperature and oil pressure. The parameters that describes the characteristics of the oil is the

dynamic viscosity of the oil µ, the effective bulk modulus of the oil β and the density of the oil ρ.

When these oil parameters changes as a result of for instance a higher temperature, the performance

of the DDP alters. As a result, the variation in the oil parameters can be designated as a disturbance

to the model. In order to account for these disturbances in the control design, it is important have a

model that predicts the variation in the oils parameters.

Oil density

A mineral oil that comply with the ISO VG 46 standard, with the brand name Shell Tello 46, is used

in the hydraulic system. The mineral oil base is assumed to be categorised as a HM type, because it

is the most common mineral-oil-based hydraulic fluid [Gilani]. The density of this oil is calculated

using the Dow and Fink equation given in equation 2.7.

ρ(T,P ) = ρ0(T )
(
1+ Aβ(T ) ·P −Bβ(T ) ·P 2) (2.6)

where

T Oil temperature [◦C ]
P Oil pressure [Pa]
αt Thermal expansion coefficient αt = 0.007 [1/◦C ]
ρ0(T ) Density at atmospheric pressure for given temperature T

[
kg /m3

]
Aβ The Dow and Fink temperature coefficient [1/Pa]
Bβ The Dow and Fink temperature coefficient

[
1/Pa2

]
This is an empirical model that predicts the density for any temperature and pressure as long as the oil

density at atmospheric pressure ρ0 and a thermal expansion coefficientαt ∈ [0.0065 : 0.007] is known.

The thermal expansion coefficient is independent on oil temperature and pressure. The coefficients
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to the Dow and Fink equation is calculated based on equation 2.8-2.10 where ρ0 is a function of a

reference density defined at 15◦C and atmospheric pressure [Andersen, 2003, Chap.2]. The reference

density for the Shell Tello 46 oil is defined at 15◦C as ρ15 = 879[kg /m3] [Shell, 2008].

ρ(T,P ) = ρ0(T )
(
1+ Aβ(T ) ·P −Bβ(T ) ·P 2) (2.7)

ρ0(T ) = ρ15

1+αt · (T −15)
(2.8)

Aβ(T ) = (−6.72 ·10−4 ·T 2 +0.53 ·T −36.02) ·10−11 (2.9)

Bβ(T ) = (2.82 ·10−4 ·T 2 −0.24 ·T +57.17) ·10−19 (2.10)

Oil viscosity

The dynamic viscosity of the mineral oil µ describes the resistance of the fluid towards laminar mo-

tion. It is calculated based on the Vogel equation at atmospheric pressure levels for a specific temper-

ature, see equation 2.11.

µ0(T ) = Kvo,a ·exp

(
Kvo,b

(T +273.15)−Kvo,c

)
(2.11)

where

Kvo,a Dynamic viscosity constant Kvo,a = 0.000020096463
[
kg /(m · s)

]
Kvo,b Absolute temperature constantKvo,b = 1050.325917381536 [K ]
Kvo,c Absolute temperature constant Kvo,c = 172.732548744080 [K ]

According to Knezevic and Savic [2006] this is the most accurate model of the oil viscosity among three

other models; Reynolds Equation, Slotte Equation and Walther Equation. The coefficients Kvo,a ,Kvo,b

and Kvo,c is obtained based on a data from a viscosity-temperature plot given in appendix A.3. Based

on readings from the plot, a convex optimisation problem is defined in order to obtain the optimal

coefficients of equation 2.11. The problem is solved using the simplex method in appendix A.5.

The viscosity-pressure relation is given by the Barus Equation, see equation 2.12. It uses a coefficient

α which is stated in equation 2.13. This coefficient is based on the Modulus Equation and its coef-

ficients has to be obtained from measurements. In Knezevic and Savic [2006], these coefficients are

computed for an oil that complies with the ISO VG 46 standard.

µ(T,P ) = µ0(T ) ·eα(T,P )·P (2.12)

α(T,P ) = (
Kpv,a1 +Kpv,a2 ·T + (

Kpv,b1 +Kpv,b2 ·T
)

P
)−1 (2.13)

where
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α(P,T ) Pressure viscosity coefficient for any temperature and pressure [Pa]
Kpv,a1 = 334 ·105 [Pa]
Kpv,a2 = 3.2557 ·105 [Pa/◦C ]
Kpv,b1 = 0.026266 [.]
Kpv,b2 = 0.000315 [1/◦C ]

Oil stiffness

The free air in hydraulic system influences the stiffness of the oil strongly, since air is much more

compressible than fluid. Therefore, it is important to accurately determine the amount of free air in

the system. This is not an easy task because the amount of air that can be dissolved in the oil changes

with the pressure. Henry-Daltons Law describes this phenomena in steady state conditions. Due

to pressure fluctuations in the working chambers caused by the pitons moving up and down, steady

state conditions are never fulfilled. As a consequence of this, the Henry Daltons law cannot be applied

to the DDP. Instead, it is assumed that the air molecules does not dissolve in the oil, hence there is the

same amount of free air molecules in the oil. A reference volumetric ratio of free air εA,0 is estimated

at atmospheric pressure levels from measurement data. The volume of the air changes as a function

of the pressure when adiabatic conditions are assumed. This causes the volumetric ratio of free air

to change as well. Using the above statements, the volumetric ratio of free air can be determined by

equation 2.14 [Andersen, 2003, Chap.2].

εA(P ) = 1.0(
1.0−εA,0

εA,0

)(
Patm

P

)−1/cad +1.0
(2.14)

where

εA,0 Volumetric ratio of free air in the oil at atmospheric pressure, εA,0 = 0.005 [.]
Patm Atmospheric pressure, Patm = 1[B ar ] [Pa]
P Absolute chamber pressure [Pa]

The effective oil stiffness given in equation 2.15 is a function of both the oil stiffness βoi l and the

stiffness of the free air βai r . It is upper saturated at β= 10000[B ar ] per recommendation because the

effective stiffness of the oil is not measured [Andersen, 2003].

β(T,P ) = 1
1

βoi l (T,P ) +εA(P )
(

1
βai r (P ) − 1

βoi l (T,P )

) (2.15)

The stiffness of the oil is derived based on the oil density given in equation 2.7 and the definition of

the tangential bulk modulus β= ρ dP
dρ [Andersen, 2003, Ch.2]. As a result, the stiffness of the oil can be

estimated for any temperature and pressure, see equation 2.16. The stiffness of the air is calculated

based on equation 2.17.
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βoi l (T,P ) = 1.0+ Aβ(T ) ·P −Bβ(T ) ·P 2

Aβ(T )−2 ·Bβ(T )P
(2.16)

βai r (P ) = cad ·Pa (2.17)

where

Pa Absolute pressure in a chamber [Pa]
cad Adiabatic constant of air cad = 1.4 [.]

2.3.2 Working chamber model

The hydraulic model of the working chamber consists of a pressure node and three flow equations.

The pressure node is influenced by the movement of the piston and the flows in/out of the chamber.

The pistons are constantly moving up and down, which means that the piston is constantly affecting

the pressure. As a consequence of this, first the pressure inside the working chambers is described

together with an analysis of the kinematics of piston. This is followed by a description of the in and

out flows to the working chamber.

Pressure in working chambers

The pressure gradient of the working chambers fluid is given by solving the continuity equation, see

equation 2.18.

Ṗc,i = β

V0 − Ap xp,i

(
QL,i −QH ,i −Qleak,i + Ap ẋp,i

)
(2.18)

where

V0 Working chamber dead volume at BDC, V0 = 0.5[L/mi n]
[
m3

]
The pressure gradient first of all depends on whether the cylinder is in enable or idle mode as this ef-

fects the in/out flow to the working chamber. A simplified schematic of the hydraulic circuit is shown

in figure 2.2.c where cylinder 1, 2 and 6 are within their discharge stroke period. Their respective LP

valves has received a close signal so that the entrapped fluid inside the working chambers becomes

pressurised by the movement of the pistons.

The six spring-loaded pistons are forced towards each face of the hexagonal nut. This means that the

pistons are radially displacement by 60◦. Each pistons position xp,i can be described as a function of

the shaft angle θpump when the pistons and the hexagon is assumed to be a single rigid body. Figure

2.2.a illustrates a stripped view of how the position of the pistons relates to the hexagons center of

mass. From this figure, one can see why the pistons in figure 2.2.c are displaced as illustrated.
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PC 6

PC 5

PC 4

PC 3

PC 2

PC 1xp,1

xp,2

xp,3

xp,4

xp,5

xp,6

0 2re

xp,1

xp,4

x p,2

x p,5

θpump

x
p,3

x
p,6

x p,2

θpump −60◦

0

2r
e

x p,2

re

(b) (c)

(a)

Figure 2.2: Simplified schematic of a DDP where (c) illustrates how the position of each piston is shifted at a snapshot, (b) the trigonometry

that relates piston position with pump shaft angle and (a) how the position of all the pistons relates to the position of the hexagon

Using trigonometry, the position of each piston can be derived. In figure 2.2.b, piston 2 is taken as

a reference. The position of piston 2 is shifted by 60◦ because θpump is defined with respect to TDC

of piston 1. Notice, when θpump = 60◦, piston 2 reaches its TDC. The inserted right triangle in figure

2.2 can be utilised to describe the position of piston 2 as a function of θpump . The hypotenuse is the

eccentric distance re between the shafts center, marked by a red circle, and the hexagons center of

mass. The distance a piston can travel is equivalent to the diameter of eccentricity, i.e. 2 · re . This

means that by defining BDC at xp,2 = 0 TDC is reached at xp,2 = 2 · re .

Above analysis shows that the position of the piston can be described using an offset of re and a cosine

function that maps a shaft angle θpump into R ∈ [−re : re ]. This relation is given in equation 2.19. The

velocity of the piston can be determined by taking the time-derivative of xp,i , see equation 2.20.

xp,i = re · cos

(
θpump − (i −1)π

3

)
+ re (2.19)

ẋp,i = −re · si n

(
θpump − (i −1)π

3

)
θ̇pump (2.20)

i The piston number i ∈ {1,2,3,4,5,6} [.]
re Radius of eccentric, re = 3.75[mm] [m]

Now, that the kinematics of the pistons are described the other variables that affects the pressure

gradient can be explored.
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Flow in and out of the working chamber

An illustration of working chamber 1 is shown in figure 2.3.

Control Volume

QH ,1

QL,1

Qleak,1

xp1

x p2

Ap xL,1

xH ,1

LLmax 0

0

LHmax

γL

γH

0

0

Figure 2.3: The control volume of a working chamber from a cylinder mounted radially around an eccentric shaft.

The control volume of the chamber is marked by a dashed red line. The size of the volume changes

according to the position of the piston xp,1. In this snapshot, piston 1 has just passed TDC and it is

moving towards BDC. This is defined as the intake-stroke. The flow into working chamber 1 comes

from the reservoir through the LP valve (QL,1). The flow out of the chamber goes trough the high

pressure valve to the load (QH ,1). The flow equations are given in equation 2.21 and 2.22.

QL,1 = Cd ,L(Re ) · AL(xL,1) ·
√

2

ρ

(|Pt −Pc,1|
) · sg n

(
Pt −Pc,1

)
(2.21)

QH ,1 = Cd ,H (Re ) · AH (xH ,1) ·
√

2

ρ

(|Pc,1 −Pl oad |
) · sg n

(
Pc,1 −Pl oad

)
(2.22)

where

AL Discharge area of low pressure valve
[
m2

]
AH Discharge area of high pressure valve

[
m2

]
Cd ,L Calculated based on eq. 2.2 with Ret = 175 and Cd ,max = 0.62 [.]
Cd ,H Calculated based on eq. 2.2 with Ret = 100 and Cd ,max = 0.50 [.]
sg n(·) Signum function returns the sign of the argument [.]

The discharge coefficients Cd and reynolds transition number Ret for the LP valve is found based on

an experiment conducted at T = 44◦ [Johansen and Rømer, 2011, p.114]. The source indicates a ref-

erence oil density of ρ = 870[kg /m3] at T = 15◦. However, it is not clear if the source compensates for

the effects of higher temperatures on the oil density when Cd ,L is determined. As a result of this, the
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announced discharge coefficients Cd is used in this report without modifications. The discharge co-

efficient and the Reynolds transition number of the HP valve is found iteratively through simulation.

The discharge area AL and hydraulic diameter dH ,H /dH ,L are a function of the valve position xp,i .

These are defined in equation 2.23 and 2.24 for the LP valve and equation 2.25 and 2.26 for the HP

valve [Johansen and Rømer, 2011, p.220-221].

AL
(
xL,i

) = πsi n(γL)DL xL,i − π

2
si n(γL)si n(2γL)x2

L,1 (2.23)

dh,L
(
xL,i

) =
4si n(γL)DL xL,i −2si n(γL)si n(2γL)x2

L,i

2DL − si n(2γL)xL,i
(2.24)

AH
(
xH ,i

) =
 DHπxH ,i for xH ,i < DH

4 .
π
4 D2

H for xH ,i ≥ DH
4 .

(2.25)

dh,H
(
xH ,i

) =
 2xH ,i for xH ,i < xH ,max .

DH for xH ,i ≥ xH ,max .
(2.26)

where

Dh,L LP valve hydraulic diameter where DL = 20.72[mm] [m]
Dh,H HP valve hydraulic diameter where DH = 7[mm] [m]
xL LP valve displacement from 0[mm] to LLmax = 1.55[mm] [m]
xH HP valve displacement from 0[mm] to 3[mm] [m]

γL Angle of LP valve head γ= pi
3 [r ad ]

Leakage Ql eak is flowing out of the chamber symbolised by a pink flow path in figure 2.3. As the figure

indicates, two main sources contributes to the leakage. One is the annular gap in between piston and

cylinder housing. The other is the gap between the hexagon and the piston foot. Since each opening

is a potential source of leakage, the leakage is most likely also present through the HP valve and LP

valve. It is therefore difficult to determine how much each part contributes to the total leakage flow.

An adjustment coefficient cleak is introduced in the annular leakage model to account for the total

leakage. This coefficient is determined based on measurements.

Ql eak,1 = cl eak
π

(
Pc,1 −Pt

)
8µLl

r 4
o − r 4

i −
(
r 2

o − r 2
i

)2

ln
(

ro
ri

)
 (2.27)

where

cleak Adjustment coefficient of leakage cleak = 300 [.]
Ll Leakage path ll = 15[mm] [m]
ri Inner annulus radius, ri = 11.5[mm]−8[µm] [m]
ro Outer annulus radius, ro = 11.5[mm] [m]

This concludes the model of the working chamber as all the variables affecting it are described. Next,

the model of the load can be described.
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2.3.3 Load model

The Digital Displacement Pump can be used in various applications. It could be used to drive a hy-

draulic motor, to move a piston in an actuator or to keep a steady pressure level for a hydraulic system.

In all cases, the load of the system boils down to become a pressure node that is disturbed by different

sources. Therefore, the load used in this report is assumed to be a chamber of fixed volume Vl oad , see

figure 2.4.

Vl oad

QH ,1

QH ,3
QH ,4
QH ,5
QH ,6

QH ,2

Figure 2.4: A fixed volume load with a fixed orifice that is dimensioned according to a nominal pressure and flow.

This model is chosen in order to keep the load simple to adjust, yet sufficient to challenge a flow

controller. The disturbance in the pressure node is provided by an orifice flow Ql oad from the load

chamber to a reservoir. The governing equation of the chamber is given in equation 2.28. The flow

equation of the load, given in equation 2.29, is calculated as a function of a nominal flow and pressure

at the load. The discharge coefficient and the fixed opening area at the load is included through the

nominal parameters. The volume of the chamber is chosen to be only V = 0.5[L] in order to provoke

large pressure gradients so the control strategy is challenged.

Ṗload = β

Vload

(
6∑

i=1
QH ,i −Qload

)
(2.28)

Qload = Qnomp
Pnom

·
√

(Pload −PT ) (2.29)

where

Qnom Nominal flow at load
[
m3/s.

]
Pnom Nominal pressure at load [Pa]

Vload Volume of the load chamber, Vl oad = 0.5[L]
[
m3

]

2.4 Mechanical system model

The mechanical system consists of three different elements; the high pressure valve, the low pressure

valve and the hexagonal nut. The equation of motion of the valves are modelled by using Newtons

second law. The equation of motion of the nut is derived by use of Euler-Lagrange. Euler-Lagrange

simplifies the derivations when dealing with a system that is affected by forces from various direc-
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tions. The gravitational forces are neglected due to the smaller masses of the valves which has an

insufficient impact on the valve response.

2.4.1 High pressure valve

The high pressure valve is an industry standard passive valve component. A basic model of the valve

is outlined by using evident knowledge. The pressure acting on the effective area on both sides of the

valve, the spring attached to the valve and frictional forces that dampens the pistons dynamics. How-

ever, the lack of information about the valve makes it difficult to determine its parameters accurately.

Therefore, the model and parameters proposed by a project group at Aalborg University is utilised

and given in equation 2.30 [Johansen and Rømer, 2011, p.42,221]. The viscous damping coefficient

BH and the stiffness of the spring kH is modified based on results from simulations.

mH ẍH = (Pci −Pload ) · AHe −BH · ẋH −kH · (xH +xH0)−F f low,hp (2.30)

where

mH Mass of the high pressure valve mH = 0.007
[
kg

]
Pload Load pressure [Pa]

AHe Effective area on both sides of HP valve AHe = pi
4 (7.0[mm])2

[
m2

]
kH High pressure valve spring stiffness kH = 350 [Pa/m]
BH Viscous damping coefficient BH = 13.6 [N s/m]
xH High pressure valve position [m]
xH0 Initial displacement of spring xH0 = 0.001 [m]

A flow force is added in the model and a discharge angle of γH = 58[◦] is chosen based on simulation

response. The flow force is derived by using Reynolds Transport Theorem on a control volume (CV ).

The rate of change of fluid momentum inside a CV contributes by a transient flow force. The net rate

of efflux of momentum through a control surface contributes with a steady state flow force [Andersen

and Hansen, 2007, Chap.3]. Only the steady state force contribution is modelled in this report. The

steady state flow force is given in equation 2.31.

F f low,hp = cos
(
γH

)
QH ,i

√
2ρ|Pc,i −Pload |sg n

(
Pc,i −Pload

)
(2.31)

2.4.2 Low pressure valve

The forces acting on the low pressure valve are throughly examined by Johansen and Rømer [2011].

These are an actuator force, a flow force, a friction force, a suction force and the pressure difference

across the valve. The valve is controlled by the electro magnetic actuation force. The fluid flowing

through the valves discharge area creates a flow-force acting to close the valve [Andersen, 2003, chap-

ter 2]. A viscous and coulomb friction force with increased damping at end positions to oppose the
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movement of the valve. Lastly, a suction force near end positions due to vacuum-like circumstances

hinders the valve to take off. When the valve takes off from an end point, a cavity is formed which

generates a force to oppose the valve movement. The purpose of this report is not to recreate a com-

prehensive model of the LP valve but to design a flow controller. Therefore, a simpler yet precise

nonlinear model that captures the main dynamics is build. Hence, the proposed suction force is left

out of the model as well as a thorough derivation of the parameters affecting the motion of the low

pressure valve. The equation of motion for the LP valve is given in equation 2.32.

mL ẍL,i = Fact −F f r i c,l p −F f low,l p − ALe ·
(
Pc,i −Pt

)
(2.32)

where

mL Mass of the low pressure valve mL = 0.0385
[
kg

]
ALe Effective area of the low pressure valve head ALe = 4.3[cm2]

[
m2

]
xL,i LP valve position constrained to move between 0[mm] and 1.55[mm] [m]

The friction force is modelled as a drag force and a viscous damping force, see equation 2.33.

F f r i c,l p = Bv ẋL,i +BD si g n
(
ẋL,i

)
ẋ2

L,i (2.33)

where

Bv Viscous friction model [N s/m]

BD Drag coefficient for LP valve BD = 170
[
N s2/m

]
The drag coefficient BD is iteratively determined through simulation. The model of the viscous fric-

tion Bv was derived in Johansen and Rømer [2011] and the same model with the defined coefficients

are used in this report, which is given in equation 2.34. The constant viscous friction coefficient B0 is

derived considering the movement of two parallel surfaces relative to each other and the shear-stress

in the lubricating oil film. The Navier-Stokes equation are used where gravitational effects are ne-

glected and a pure steady viscous flow in one direction is assumed. The source proposes a correction

coefficient for B0, but this is left out in this report as the simulations shows satisfying results. The

constant viscous friction coefficient B0 is given in equation 2.35.

Bv = B0 +Bnear,op e
− lL−xL,i

x0,op +Bnear,cl e
− xL,i

x0,cl (2.34)

B0 = µ ·
(

Al p,b

ll p,b
+ Al p,se

ll p,me

)
= 6.5509

[
N · s2

m

]
(2.35)

where
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lL LP valve stroke length, lL = 1.55[mm] [m]

ll p,b Distance between LP valve body surface and housing, ll p,b = 20[µm] [m]

ll p,me Distance between LP valve magnet extension surface and housing, ll p,me = 100[µm] [m]

Al p,b LP valve body surface area, Al p,b = 9.55[cm2]
[
m2

]
Al p,me LP valve magnet extension surface area, Al p,me = 5.31[cm2]

[
m2

]
x0,op Region of exponential damping near opening end [m]

x0,cl Region of exponential damping near closing end [m]

Bnear,op Exponential viscous friction coefficient near opening-end Bnear,op = 2000
[
N s2/m

]
Bnear,cl Exponential viscous friction coefficient near closing-end Bnear,op = 7500

[
N s2/m

]
B0 Viscous friction coefficient [N s/m]

The steady state flow forces for the LP valve is given in equation 2.36.

F f low,l p = cos
(
γL

)
QL,i

√
2ρ|Pt −Pc,i |sg n

(
Pt −Pc,i

)
(2.36)

The actuation force is the driving force on the LP valve. This force is created by an electro mag-

netic force from a conducting wire. First a comprehensive model based on electromagnetic circuit

theory was derived, then a simplified fourth order transfer function approximation was proposed in

[Johansen and Rømer, 2011, p.52,119] that effectively predicts the steady state value and the initial

transient force response. The same simplified model is also applied in this report without any modi-

fications.

Fact ,1(s)

Fr e f ,1(s)
=

(
ω2

n,e

s2 +2ζeωn,e s +ω2
n,e

)2

(2.37)

ωn,e Natural frequency of the electrical actuation system ωn,e = 2000 [r ad/s]

ζe Damping ratio of the actuation system ζe = 0.8 [.]

2.4.3 Actuation strategies for the LP valve

The cylinders can be operated through the LP valve in three different operation modes; full displace-

ment operation, partial displacement operation and idle operation. Each mode describes how the LP

valve is operated during a 360◦ cycle. The position of the pistons in each cylinder is described by a

local angular reference θlocal ,i such that BDC is at θl ocal ,i = 180◦ and TDC is at θlocal ,i = 360◦. The

applied forces in each operation mode are estimated based on the red curve in figure 2.5.
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Figure 2.5: LP valve actuation force estimated from current trajectory (red) given a force reference (black). [Johansen and Rømer, 2011,

p.89]

Full displacement mode takes advantage of a full stroke from BDC to TDC. The process is explained

beginning from θl ocal ,i = 0◦. The piston initiates a movement from TDC to BDC causing the pressure

Pc,i to decrease. The LP valve can be opened by an actuation force or by the pressure difference. The

later happens when the pressure in the working chamber gets below the tank pressure Pt and this is

also the chosen opening-actuation method for the LP valve. The opening angle θop,i is included in

figure 2.6 to illustrate how it could be applied. Once the valve is open, fluid flows into the chamber.

This is called the intake-stroke. A closing force is applied such that the solenoid valve closes latest at

180◦ This means that the time-delay before the LP valves has opened/closed is accounted for. The

closing strategy for a full displacement is given in equation 2.38 and the closing angle θcl ,i can be

defined individually for each valve.

Fr e f ,i =
 −90[N ] for θlocal ,i ≥ θcl ,i

0[N ] elsewhere
(2.38)

The outlet stroke is during the piston movement from BDC at 180◦ to TDC at 360◦. At this stroke the

volume decreases and the pressure increases in the working chamber. The fluid from the chamber

flows to the load when the pressure-force is high enough to open the HP valve.

θl ocal ,i0◦ 360◦θop,i θcl ,i

xp,i xL,iFop Fcl

TDC BDC TDC

Figure 2.6: Full displacement actuation strategy illustrated with the LP valve position and the piston position

23



In idling mode, the LP valve is held open by actuation force, see figure 2.7. The positive actuation

force is used to counteract the pressure forces experienced by the valve. The pressure in the working

chamber Pc,i increases as the piston initiates its discharge stroke. Therefore, the idle force is applied

so it is effective from BDC, see equation 2.39.

Fr e f ,i (s) =
 15[N ] for θlocal ,i ≥ 180◦

0[N ] elsewhere
(2.39)

Fluid is streaming between the working chamber and the reservoir with a low pressure drop. Thus,

energy efficient idle operation is obtained.

θlocal ,i0◦ 360◦θi ddl e = 180◦

xp,i xL,iFi ddle

TDC BDC TDC

Figure 2.7: Idle operation mode illustrated with the LP valve position and the piston position

Partial displacement mode is a combination of full displacement and idling operation. It is similar to

the full displacement operation mode during the intake stroke. Instead of using a fixed closing angle,

the closing angle is allowed to vary in between θcl ,i ∈ [0◦ : 360◦]. In order to prevent the LP valve to

close during the discharge stroke if θcl ,i > 180◦, a positive actuation force is applied in the period

θi dl e ∈ [180◦ : θcl [, see the strategy in equation 2.40.

Fr e f ,i (s) =


−90[N ] for θlocal ,i ≥ θcl ,i

15[N ] for θcl ,i ≥ θl ocal ,i ≥ 180◦

0 elsewhere

(2.40)

During idle mode, part of the fluid into the working chamber is pumped back into the tank. The

remaining fluid in the chamber is pumped into the load, hence a partial displacement is achieved

θlocal ,i0◦ 360◦θop,i θi ddle = 180◦
θcl ,i

xp,i xL,iFop FclFi ddle

TDC BDC TDC

Figure 2.8: Partial displacement actuation strategy illustrated with the LP valve position and the piston position
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2.4.4 Dynamics of the Hexagonal Nut

The pump shaft is driven by a motor in order to operate the DDP. The torque that is necessary to

rotate the shaft has to overcome a frictional torque, torque due to forces from the working chambers

and the inertia of the system. The six cylindered DDP has spring forces Fsp,i , pressure forces Fpr,i and

frictional forces F f ,i acting from 6 different directions as illustrated on figure 2.9 on a hexagonal nut.

The pistons and the hexagon is assumed to be a single rigid body. The nut is located near the cylinder

inlet to piston 1,2 and 3 in this configuration. A larger force is therefore expected from these pistons,

which is illustrated by the compressed springs and the longer arrows. The illustration is simplified

and the forces from the referred chambers are not identical.

θpump

Fpr,2

Fsp,2

Mmotor

Fsp,1

Fpr,1

Fsp,4

Fpr,4

Fsp,3
Fpr,3

Fpr,5

Fsp,5
Fsp,6

Fpr,6

M f r i c F f ,1

F f ,2

F f ,3

F f ,4

F f ,5
F f ,6

Figure 2.9: Forces acting on the hexagonal nut from multiple directions.

It is not a simple task to derive the equations of motion for the hexagon by applying Newtons second

law in conventional form. Instead, the Euler-Lagrange equation from calculus of variation is used

which is equivalent to Newtons second law. This approach yields the same results by use of a system-

atic method that starts from the potential V and kinetic T energies of the system. The lagrangian is

defined as the difference between the kinetic and potential energy L = T −V . The Euler-Lagrange is

solved for the polar coordinate θ in order to obtain the equation of motions for the hexagonal nut.

d

d t

(
∂L

∂θ̇pump

)
− ∂L

∂θpump
= Mexter nal (2.41)

The external torque Mexter nal is a collection of torques that are not defined in the Lagrangian L.

Mexter nal = Mmotor −Mpr essur e −M f r i ct i on (2.42)
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Among these are the input torque from a driving motor Mmotor , the frictional torque M f r i ct i on and

the torque generated by the pressure in the working chambers Mpr essur e . The frictional torque in-

cludes the frictional-forces from the cylinder and the viscous damping between hexagon cavity and

the eccentric piston. Even though the pressure torque and frictional torque are undoubtedly internal,

these are collected as external torques in order to avoid inconsequential details. They are respectively

given in equation 2.43 and 2.44.

Mpr essur e = −Acp re

[
6∑

i=1
si n

(
θpump − (i −1)π

3

)
Pc,i

]
(2.43)

M f r i ct i on = −Bp re

[
6∑

i=1
si n

(
θpump − (i −1)π

3

)
ẋp,i

]
+C f r Be θ̇pump (2.44)

The pistons are radially displaced 60◦ apart from each other. Their torque contribution to the hexagon

is given as the the spring and pressure forces multiplied by an arm w.r.t. the center of the shaft. The

arm varies with the rotation of the shaft θ and is illustrated in figure 2.9 for piston 6.

A model of the motor is not carried out in this report due the to limitations in the time frame. The

resulting equation of motion for the hexagonal nut is collected in appendix A.2 in case a motor model

is available.

The aim of the equation of motion is to obtain an angular velocity of the shaft θ because at a given time

instant, the angle of the shaft defines the position and velocity of each piston, thus the volume of the

working chambers. Therefore, the angular velocity will have a direct impact on the pressure gradient

of the working chambers as seen in equation 2.18. Nowadays, even basic motor control algorithms

are capable of keeping a steady state shaft speed. Changing load conditions might challenge the

precision of the controllers, but it is highly unlikely that a large velocity deviation will be observed

as long as the motor is dimensioned to carry the load. For this reason, it is assumed that the motor

is working approximately in steady state for the remainder of the report. To account for changing

loads, a pressure dependent term is added to the constant angular velocity θ̇p,const ant . This term is

modelled as a linear function, so that when the pressures in the working chambers reach the load

pressure level, this will reduce the angular velocity by a small amount ε.

θ̇pump = θ̇p,const ant

(
1−ε

[
6∑

i=1

Pc,i

Pload

])
(2.45)

where

ε Change in angular velocity as a function the working chamber pressure ε= 0.02 [.]

2.5 Verification of DDP model

A model of a Digital Displacement Technology is already verified at Aalborg University [Johansen and

Rømer, 2011, p.125-132]. It is therefore considered favourable to verify the model in this report based
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on the data obtained from previous work, in order to make use of existing knowledge and spend more

time on research in the reports focus area. A short summary of how the verification was carried out is

explained succeedingly.

2.5.1 Data acquisition and method of validation

The model was verified at 1500RPM, a load pressure of approximately 200[B ar ] and for opening-

closing actuation forces. The working chamber pressure Pc , the load pressure Pload and the position

sensor for the LP valve was logged during the tests. A combination of the signal amplifier and the

pressure sensor creates a bandpass filter with lower break frequency at 1[H z] and higher break fre-

quency at 100[kH z]. Steady state measurements could therefore not be obtained, hence no informa-

tion about absolute pressure levels was obtained. The pressure levels was estimated by an accuracy

of 1[B ar ] based on estimated intake pressure levels. Measured pressure data is offset so that at BDC

Pc,meas = 0[B ar ]. The sampling rate was defined to be 10[kH z]. At 1500[RP M ] this results in 0.9◦

difference between each sample.

The used method to validate the Digital Displacement Technology in this report is, simply, to create

the same plot by using the model in this report. The plots from the source contains simulation data

(Data B) and measurement data (Data C). The data obtained from the model in this report is named

Data A. Once the plots are obtained, the two figures are plotted side by side to compare the results.

2.5.2 Variations in the models

The parameters in this model is mainly found from the same source and therefore similar results

are expected. Furthermore, it is plausible that deviation between announced and applied parameter

values exists. Most parameters are known with an accuracy of two decimals. The models are not

identical and therefore deviations are expected. The main difference between the models lies in two

forces that are neglected in this report; a suction force which is used to oppose a valve movement

from the endpoints and a transient flow force for the LP valve. Instead, a steady state flow force is

used for both the HP and LP valve in this report. A model of the change in density and viscosity as a

function of both temperature and pressure is included at each chamber. Also, some of the parameters

are adjusted in order to reduce the deviation between model predictions (Data A) and measurement

data (Data C). The main changes is based on the fact that the LP valve dynamics are faster in the

measurements than in simulations. A number of reasons for this is identified;

• the closing force is increased from Fcl =−35[N ] to Fcl =−90[N ]

• the damping coefficients (viscous and drag) are reduced by more than 50%

These changes affects the output flow, hence the dynamics of the HP valve also needs to be adjusted:

• the viscous friction coefficient is changed from BH = 5[N s/m] to BH = 7[N s/m]
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• the stiffness of the spring constant is changed from KH = 500[N /m] to KH = 355[N /m]

• the maximum discharge coefficient is changed from Cd ,H ,max = 0.4 with a transition region at

Ret ,H = 200 to Cd ,H ,max = 0.5 and a transition region at Ret ,H = 150.

2.5.3 Comparison of simulated and measured data

Three plots are selected from the source in order to verify the model. These are respectively a flow

and a pressure plot both for a closing angle θcl = 165◦, and a plot of the output flow rate as a function

of the closing angle θcl .

The first plot can be seen in figure 2.10 for the pressures. A period of 360◦ is from TDC to TDC, i.e.

from t = 0.02[s] to t = 0.06[s]. A closing force F =−90[N ] is applied at θcl = 165◦.

The pressure gradients are similar in Data A and B, but both deviates from Data C. Data C contains

non-steady pressure ripples which is not observed in the simulations. The cause for this can be ex-

plained by a phenomena called water hammering if the transducer to measure Pc,i is not physically

protected appropriately.

At takeoff from the endpoints, Data B shows curving tendencies for xL . This gives a delay in closing

and opening times. As a consequence of this, deviations in flow rates are expected between Data B

and the others. The LP valve does not show the curving tendency in Data C because its position is

calibrated so the valve is fully closed at xL = 0. This is curving tenendcy is neither observed in Data A.

However, it is seen that the LP valve reaches bottom position slightly faster in Data A than Data C.
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(a) Model response. (b) Figure 13.5(a) from source

Figure 2.10: Simulated response of a working chamber pressure and an LP valve position from (a) the model and (b) from the source. A

negative solenoid actuation force step is applied every θcl = 165◦ in order to close the valve. Initial shaft angle is θ = 180◦. The shaft takes

one revolution from t = 0.02 to t = 0.06

Two plots are found from the sources to validate the flows. The first plot shows the flow through the

working chamber for a closing angle of θcl = 160◦, see figure 2.11. The internal flows such as the flow
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through the LP valve and leakage is not measured. The data is obtained from the same simulation as

in figure 2.10.

A deviation in the average flow rates are obtained between Data A,B and C. The back flow through

HP valve is predicted to be larger in Data A than in Data B, mainly due to the increased damping

coefficient BH . The opposite is observed for the LP valve. Here, Data A shows less back flow than Data

B and this is mainly because of the faster dynamics of the valve in data A. Because of this, the error in

the output flow compared to measurement Data C is reduced drastically in Data A. Data A deviates by

less than 2% in the whole operation range while Data B errors are more than 7%. The leakage flow in

data A and B shows comparable results and also the height of the peaks for flow through the LP valve.

Data A predicts a lower output flow peak than Data B, but it is not possible to determine which one is

correct without high resolution measured data.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−20

−10

0

10

20

30

40

50

Time [s]

F
lo

w
 [L

/m
in

]

 

 
Simulated Q

L

Simulated Q
H

, Mean: 2.23 L/min

Simulated Q
leak

Measured Q
out,meas

, Mean: 2.24 L/min

(a) Model response. (b) Figure 13.5(b) from source

Figure 2.11: Flow simulations obtained from (a) the model and (b) the source. The flow through the LP and HP valves are simulated along

with the leakage flow. An average of the measured output flow is displayed in the plot.

The second plot in figure 2.12 shows the average flow rate for different closing angles.
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Figure 2.12: Flow as a function of the closing angle θcl from (a) the model and (b) the source.

The model in this report generally predicts similar behaviour as the measurements. There are how-

ever some minor deviations in the curves. Data C shows a peak at a closing angle θcl = 165◦ while

the peak in Data A is approximately at θcl = 155. The deviation between Data A and C is kept below

0.2[L/mi n] at all data points. Data B does not capture the same tendencies as Data A and C. The peak

flow is given at θcl ≈ 120◦ where a 0.6[L/mi n] output flow error is observed. Data B does give accurate

estimates for θcl ≥ 200◦ even though the flow gradient deviates.

The pump in idle operation mode is plotted in figure 2.13. The model approximately predicts the

same idle pressure dynamics as the simulation from the source. A fully open valve is identically locat-

ed at xL = 1.55[mm] for all data. The similar behavior in the simulations validates the pressure drop

over the LP valve, the discharge areas, the volume and dimensions of the working chamber.
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(a) Model response. (b) Figure 13.7 from source.

Figure 2.13: Idle operation of pump where the LP valve is fully open during 360◦ by use of an actuation force Fact ,op = 15[N ]
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This model is hereby deemed to be valid for test of control strategies since the model approximately

predicts the same dynamics as documented by the source at a temperature of Toi l = 20◦C . It is very

conservative to believe that the pump will only operate at this temperature. A hydraulic system with

movable parts is bound to loose energy as heat due to friction between the parts which causes the

temperature of the oil to rise. The substantial leakage coefficient results in a very high leakage flow at

increasing temperatures. This decreases the working chamber pressure and reduces the maximum

pressure that the pump is capable of supplying flow. As a consequence of this, it is necessary to review

the design of the pump in order to increase the temperature span that the pump can work within. A

solution for the great amount of leakage between the piston foot and the hexagon face is needed.

However, this is not the focus area of the project and therefore it is assumed in the following parts of

the report that the leakage coefficient is cl eak = 10.
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3Analysis of the Digital

Displacement Pump Model

This chapter contains an analysis of the nonlinear DDP model derived in section 2. The overall task

is to determine the input-output relation of the DDP. The purpose of using a DDP is due to its high

efficiency at a wide range of operation points. Therefore, it is adjacent to analyse the system starting

from the input signals. The input signals are chosen considering energy efficiency and an acceptable

output power range. Furthermore, a study of the time delays in the DDP is carried out for control

design purposes. This is followed by an analysis of the output flows. Here, the goal is to reveals the

sensitivity of the DDP’s output flow towards changing oil temperature and load pressures. Addition-

ally, the instantaneous output flow is examined to identify flow measurement methods. An overview

of the DDP system treated in this chapter, is illustrated in figure 3.1.

Qout

Ql oad

DDP

θcl ,1

Npump

Load
Pl oad

Toi l

θcl ,2

θcl ,3

θcl ,4

θcl ,5

θcl ,6

LP Valve 1

LP Valve 2

LP Valve 3

LP Valve 4

LP Valve 5

LP Valve 6

Cylinder 2

Cylinder 3

Cylinder 5

Cylinder 6

HP Valve 1

HP Valve 2

HP Valve 3

HP Valve 4

HP Valve 5

HP Valve 6

Cylinder 1

Cylinder 4
+

input time delay output

Figure 3.1: Simplified DDP system overview that illustrates the input signals, the delays and the output signal for a DDP.

The input signal to the DDP is a pump speed Npump and closing angles θcl ,i for each LP valve where
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i ∈ {1,2,3,4,5,6}. The delays in the DDP system is caused by LP valve’s closing-time, the pressurising-

time in working chamber of the cylinders and the HP valve’s closing-time. The output flow Qout from

the DDP consists of the the flow through the HP valve’s. The DDP system is disturbed by the oil

temperature Toi l and the load pressure Pload as illustrated.

Before the analysis is carried out, a short summary of the general elements used in this chapter is pre-

sented to the reader. Here, the reader is given facts regarding oil parameter variation and information

about how the simulations are performed can be read as well.

3.1 Preliminaries

The DDP model is implemented in an MATLAB Simulink environment and simulated using a third

order fixed-step Bogacki-Shampine solver. The states of the model in the next time step is explicitly

computed based on the current state and state derivatives. The order of the solver determines the

accuracy, i.e. a fourth order solver would be more accurate. The increased accuracy comes at the

expense of longer simulation times. However, simulations showed that the difference between the

results from a third order and fourth order solver was merely noticeable. The chosen step size is

iteratively determined as T = 1[µs] in order to obtain a large data resolution.

.

The reader is encouraged to review figures in appendix A.4 before reading this chapter to brush up on

how changes in oil temperature and pressure variations effects the bulk modulus, dynamic viscosity

and the density of the oil. To shortly summarise the main points:

• The dynamic viscosity increases with increasing pressure and decreasing oil temperature.

• The effective bulk modulus increases with increasing pressure. However, it is saturated at pres-

sure levels above approximately 100[B ar ] to β= 10000[B ar ].

• The density of the oil changes mainly as a function of oil temperature. The density increases as

oil temperature decreases. Additionally, the density increases vaguely with increasing pressure.

3.2 System input

The key property of a DDP is its ability to operate energy efficiently under variable displacement

conditions. First, the volumetric efficiency of the DDP is calculated using simulation data in order

to define a pump speed Npump . A higher volumetric effiency indicates that the DDP can operate

under higher pump speeds and still maintain a high output power. Next, a volumetric efficiency

study is conducted at two different oil temperatures. Using this analysis, the closing angles θcl ,i are

constrained to avoid redundancy in the input/output relation so two different θcl does not give the

same Qout (for fixed Pload and Toi l ). This is used in chapter 5 to simplify the control design. Finally,
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a total system efficiency of the DDP is computed to explore the energy efficiency of the pump. Here,

θcl ,i are identified that gives higher system efficiency.

3.2.1 Pump speed

The definition of volumetric efficiency is the ratio between actual pump flow over the theoretical

pump flow, see equation 3.1 [Andersen and Hansen, 2007, Chap.2].

ηvol = Qout

Qt ,out
(3.1)

The available theoretical pump flow, given in equation 3.2, is a function of the LP valves actual closing

angle and the velocity of the piston.

Qt ,out = Ac,p ·
∫ 360◦

θcl ,actual

ẋc,i (θpump )dθpump (3.2)

The average output flow rate from a single cylinder is integrated over one period of the pumping cycle

[0 : 360◦]. Likewise, the velocity of the piston is measured in the interval [θcl ,actual : 360◦].

Figure 3.2a shows the volumetric efficiency of the DDP for a range of pump speeds Npump and load

pressures Pload . The closing angle is defined as θcl = 155 and the oil temperature as T = 40◦C .
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(a) Volumetric efficiency
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(b) Output flow

Figure 3.2: Data obtained from simulations at 40◦C , a closing angle of θcl = 155◦ and various load pressures and pump speeds where (a)

shows the volumetric efficiency and (b) shows the total output flow from six cylinders.

The difference between the volumetric efficiency curves are due to a nonlinear increase in the dynam-

ic viscosity at low temperatures. When the viscosity increases, it increases the damping coefficients

of the valves causing a larger response time. Ultimately, it affects the amount of oil that can enter the

working chamber and the amount of back-flow there is. This is the reason why at lower temperatures,

the volumetric efficiency suddenly decreases.

35



At lower pressure levels the volumetric effiency curve is merely flat around 900[RP M ]. At higher pres-

sure levels the volumetric efficiency curve crumbs around 900[RP M ]. Figure 3.2b shows the corre-

sponding output flow at the mentioned operation points. Here, it is seen that for fixed Pload the out-

put flow Qout increases linearly with Npump . It is also known that the frictional torques increases with

Npump , see equation 2.44. If the increased Qout caused by higher Npump does not make up for the

increased frictional torques, it is not desirable to increase the pump speed further. At Pl oad = 50[B ar ]

the rate of increase in Qload attenuates for Npump > 1700[RP M ] and at Pload = 500[B ar ] it attenuates

for Npump > 1300[RP M ]. Without utilising a profound analysis, a compromise between these two is

chosen. Hence, the pump speed in the remainder of this report is defined as Npump = 1500[RP M ].

The output power at this pump speed ranges from 2.15[kW ] to 11.4[kW ] depending on the load pres-

sure level.

3.2.2 Closing angle

The closing angle θcl to the LP valves can in reality take any real number for R ∈ [0◦ : 360◦]. Due to a

back-flow phenomena, which is described in section 1.4 and identified in section 3.3.3, the pressure

in the working chamber is not necessarily decreased sufficiently when θlocal ,i = 0◦. This means that

the suction period can not be initiated before the back-flow stops. Nevertheless, when the piston in

the cylinder moves down from TDC at some point the suction period starts. Additionally, when the

piston in the cylinder moves up from BDC the discharge period starts. This causes the size of the

working chamber volume to change. The size of the working chamber volume is symmetric around

the point where the piston is at BDC. This is also evident from the volumetric efficiency plot of the

DDP, which is given in figure 3.3a and 3.3b for Toi l = 20◦ and Toi l = 40◦ respectively.
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Figure 3.3: Volumetric effiency at 20 and 40 degrees Celsius for different load pressures and closing angles at 1500[RPM].

Both plots of figure 3.3 shows that the volumetric effiency is to some extent symmetric in a region

around θcl ,i = 155◦. The piston reaches BDC at θl ocal ,i = 180◦, so a time delay between a given signal
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and actual execution is observed which is examined later in a succeeding section.

The same volumetric effiency at two different θcl ,i means that ratio of the theoretical output flow

rate and the simulated output flow is identical. In addition, figure 3.8 shows that the corresponding

simulated output flow rates are also nearly identical at the same θcl ,i ’s. If the output flows are nearly

identical at two closing angles, this unnecessarily increases the tasks complexity for a controller. For

that reason, the input signal to the LP valve is constrained to be in the domain θcl ∈ [155 : 360]. This

reduces the complexity of the control strategy because one less decision needs to be taken.

3.2.3 Total system efficiency

The total efficiency of a hydraulic system is defined as the volumetric efficiency ηvol multiplied by

the hydro mechanical efficiency ηhm . Another method to calculate the total efficiency is by using the

ratio between output power Pout and input power Pi n . The output power from the DDP is the product

between load pressure Pload and output flow Qout . The input power consist of the power to control

the LP valve and the power to rotate the pump shaft. The following assumptions are made to simplify

the calculations; there is no electro magnetic losses in the actuator and the pump speed is constant.

The total system efficiency can be calculated as in equation 3.3 [Andersen and Hansen, 2007, Chap.2].

ηtot al = ηvol ·ηhm = Pout

Pi n

=
∫

Pload ·Qout d t∫
Mmotor ·ωpump +Fact · ẋLd t

(3.3)

According to Andersen and Hansen [2007, Chap.2] the hydro mechanical efficiency decreases as the

pump speed increases. A low pump speed gives a lower maximum output flow rate which is not

desirable. A compromise is to keep the pump speed at 1500[RP M ], as defined, to avoid reducing the

hydro mechanical efficiency further and also to keep a large maximal output flow rate from the pump.
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Figure 3.4: Total system efficiency at an oil temperature of (a) T = 20◦C and (b) T = 40◦C .
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Figure 3.4a shows the system efficiency at T = 20◦C . It is seen that, the effiency is relatively high for

closing angles θcl < 220 where the efficiency is bounded by ηtot al ∈ [0.85 : 0.95]. The total efficiency of

the system for a temperature of T = 40◦ is shown in figure 3.4b. Again, relatively high effiency curves

are obtained which is bounded by ηtot al ∈ [0.85 : 0.95] for most of the operation points. The system

effiency again decreases for θcl < 220 and most rapidly at higher load pressure levels.

Both plots shows that the most energy efficient control strategy to apply on a DDP is one that utilis-

es a full-displacement operation mode as the partial displacement operation mode shows to be less

energy efficient. However, in agreement with the problem formulation, the partial displacement op-

eration mode is chosen. This is because it gives less output flow pulsations.

3.3 Time delay

This section analysis the time delays within the DDP. This delay comprise of the time it takes for an

input signal to propagate to the output. Additionally, it comprise of the time-length that an input

signal affects the output. Review section 1.4 for a thorough exposition of the time delays.

The analysis starts in a chronological order. First, the time it takes to fully close the LP valve tl p,cl is

identified. Next, the time it takes to pressurise the fluid tpr is analysed. Lastly, the time it takes to

close the HP valve thp,cl is examined.

The sum of the time delays tl p,cl and tpr is equivalent to the time it takes before an input signal starts

to affect the output flow. This is used to design a simplified model of the DDP for control purposes in

chapter 5.

The time delay thp,cl is used to identify the number of active cylinders within a time instant. This

information is, also, used in the control strategy to adapt the DDPs input/output map f (·), explained

in section 6.

3.3.1 LP closing time delay

The closing time of the LP valve is plotted in figure 3.5 for different oil temperatures. The load pressure

is irrelevant for this study because the LP valve opens and closes at pressure levels near reservoir

pressure Pt , which is assumed to be constant.

The closing time of the LP valve increases vaguely for decreasing temperatures. This is because the

damping coefficient increases due to a higher dynamic viscosity µ.

The time delay is larger when θcl < 180◦. This is due to the alternating expansion and contraction

period of the working chamber volume. The volume expands during θpump ∈ [0 : 180[ causing Pc,i to

decrease. Hence, the pressure drop over the LP valve forces the valve in open-direction, see equation

2.32. If the closing angle lies in this period, the actuator of the LP valve observes more resistance.

Contrary, the closing time is lower when θcl > 180◦. This is because Pc,i increases as the volume

contracts. It causes the pressure drop over the LP valve to work in the same direction as the actuator,

i.e. the pressure drop helps the actuator to close the LP valve.
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Figure 3.5: The time it takes to close the LP valve for various oil temperatures.

The peak at θcl = 120◦ and Toi l = 20◦ is caused by the exponential damping coefficient defined in

equation 2.34. The actuator force is not large enough to both overcome the exponential damping-

force and the pressure-force. The exponential damping coefficient are determined based on trial-

and-error and they are believed to be overestimated. However, this can not be concluded without a

series of measurement on the DDP prototype. This is not carried out in this report due to limitations

in the time frame.

3.3.2 Fluid pressurising time delay

The pressurising delay is shown in figure 3.6 where (a) is calculated for various load pressure levels at

Toi l = 20◦C and (b) is calculated for various temperatures at Pl oad = 200[B ar ].

120
140

160
180

200
220

240 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

Load pressure [Bar]
LP valve closing angle θ

cl

T
im

e 
of

 c
om

pr
es

si
on

 [m
s]

(a) Pressure variation
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(b) Temperature variation

Figure 3.6: The time duration for compressing the fluid to reach load pressure for (a) various load pressure levels at 20◦C and (b) various

temperatures at 200[B ar ] load pressure.
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A peak in compression time is observed at approximately θcl = 155◦. The compression time is expect-

ed to be largest when the working chamber contains most oil, i.e. when the LP valve actually closes at

θpump = 180◦ (piston at BDC). Considering the time it takes to close the LP valve, it is reasonable that

the largest compression time is located prior to θcl = 180◦.

When the working chamber contains less oil, the compression time decreases. In the figures, this is

observed for θcl > 155◦ and also for 130◦ < θcl < 155◦. But at closing angles lower than θcl < 130◦

the compression time increases unexpectedly. The reason for this is because the LP valves actuator

force is not large enough to close the valve. The LP valve is attempted to close as the working cham-

ber volume expands. The LP valve remains vaguely open due to an exponential damping coefficient

explained in the previous subsection.

At some operation points, the compression delay is relatively large. The time delay tpr = 5[ms] is

equivalent to a phase delay of 45◦. This delay could be reduced by decreasing the dead volume. Util-

ising the continuity equation for the case when both the LP and HP valves are closed gives

Ṗc = β

Vc,0 − Ac,p · xc
· (V̇c −Ql eak

)
(3.4)

Here it is seen that the chamber volume has a direct influence on the pressure gradient. Due to a

large dead volume Vc,0, the value of the denominator fluctuates between 14.75[cm3] and 17.9[cm3].

By decreasing the dead volume, larger volume fluctuates thus a larger pressure gradients could be

obtained.

3.3.3 HP valve closing time delay

The back flow time is defined as the time difference between the piston reaching TDC and the HP

valve closing. The duration of backflow is plotted in figure 3.7 as a function of the closing angle θcl

and respectively for (a) load pressure variations at Toi l = 20◦C and (b) oil temperature variations at

Pload = 200[B ar ].
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Figure 3.7: The time duration for back flow under (a) varies load pressures at 20◦C and (b) various temperature at fixed load pressure of

200[B ar ]

First of all, a symmetric pattern is observed, once again, around θcl = 155◦. See section 3.2.2 for more

details.

The simulations indicates that a lower temperature causes a larger back flow time as evident from

figure 3.7b. The damping coefficients increases proportionally with the viscosity. Accordingly, it takes

a longer time to close the HP valve.

The largest back flow time is observed at approximately 150[B ar ] in figure 3.7a. There are two con-

flicting reasons for this. First, higher pressure levels causes more leakage flow. This reduces the pres-

sure gradient Ṗc,i which consequently increases the pressure drop over the HP valve. The pressure

exerted on the HP valves surface, forces the HP valve to close faster. Contrary, at lower pressure levels

the viscosity decreases. This is especially noticeable at low oil temperatures, see appendix A.4. As a

consequence hereof, the HP valve closes faster.

3.4 System output

In this section the output flows sensitivity towards load pressure and oil temperature variations are

studied. This is followed by an analysis of the instantaneous output flow from single and multiple

cylinders.

3.4.1 Output flow sensitivity

The output flow from a DDP varies when the temperature of the oil changes or the load pressure Pl oad

changes for fixed closing angles θcl . This is shown in figure 3.8a and 3.8b where the output flow from

a single cylinder is measured for different θcl and Pload at Toi l = 20◦C and Toi l = 40◦C respectively.
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Figure 3.8: Output flow from a DDP as a function of θcl and Pl oad for the temperature (a) 20◦C and (b) 40◦C

A nearly quadratic relation is observed between Qout and θcl when the Pload and Toi l are constant.

The quadratic behaviour is more obvious at higher temperatures as seen in figure 3.8b.

The reason why the output flow changes with the temperature and the load pressure is due to the

changes in the oil parameters modelled in section 2.3.1. These parameters together affects the pres-

sure build up inside the working chambers, the flow in/out of the working chamber and the dynamics

of the valves.

The pressure gradient for the working chamber fluid decreases as a result of higher temperatures, due

to more leakage flow, see equation 3.4.

The bulk modulus of the oil directly affects the pressure gradient in the chambers which is evident

from the continuity equation. The β increases with the pressure of the oil and it saturates at pressure

levels above ≈ 100[B ar ]. This is evident from figure A.4b in appendix A.4.

The output flow capability of a six cylindered DDP shows to be highly dependent on the load pressure

and oil temperature. At T = 20◦C the maximum output flow capability changes between 12.0[L/mi n]

at 500[B ar ] and 21.7[L/mi n] at 50[B ar ]. At T = 40◦C the maximum output flow capability varies

between 13.7[L/mi n] at 500[B ar ] and 25.8[L/mi n] at 50[B ar ]. Fortunately, the oil temperature of

a hydraulic system is often close to T = 40◦C rather than T = 20◦C which means that the maximum

output flow capability of the pump increases.

3.4.2 Output flow shape from a single and multiple cylinders

The construction of a DDP is somehow inspired by pulse-width modulation (PWM) signals known

from electronics. The flow from the cylinders is rather a pulsating stream than a steady and contin-

uous one. As capacitors filters a PWM signal in electric circuits, the flow pulsations are filtered using

a manifold and sometimes in addition an accumulator. The accumulator is not considered in this

report as the manifold or load introduces sufficient filtering, which is explained later in section 4.4.

42



The output flow from a single cylindered and six cylindered DDP is shown in figure 3.9a and 3.9b

respectively.
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(a) Single cylinder
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(b) Six cylinders

Figure 3.9: Output flow from (a) a single and (b) multiple cylinders given a closing angle θcl = 160, load pressure Pload = 200[B ar ] and a

temperature of T = 40

The instantaneous output flow rate from a single cylinder varies largely during a discharge stroke

but it does not exactly resemble a PWM signal. First, the output flow rate creates a spike during the

pressure build up phase. The overshoot in the flow is caused by an overshoot in working chamber

pressure due to the dynamics of the HP valve. The flow rate becomes more steady when the pressure

and the output flow stabilises. Obviously, the output flow is constantly reduced as the pressure inside

the working chamber decreases. At some point approximately as the piston passes TDC, the flow

direction reverses until the HP valve closes due to decreasing working chamber pressure.

A similar flow pattern is observed regardless of load pressure, oil temperature and closing angle. Es-

pecially, the peak flow is almost uniform. The starting point of the flow is determined by the closing

angle θcl and the time of opening the LP valve and pressurising the oil as explained in section 3.3. The

ending point of the flow is a function of the HP valves closing time. This is also explained in section

3.3.

The output flow from a six cylindered DDP, given in figure 3.9b, is in effect six flow curves from a

single cylinder that is shifted by 60◦ which results in overlapping flow curves. The result is a periodic

pattern with a frequency of fpp = 6 ·25[H z] because the pump speed is operated at 1500[RP M ]. The

instantaneous output flow from each cylinder outlet, the total instantaneous output flow Qout from

all cylinders and the position of piston one xp,1 is shown in figure 3.10 at an arbitrary operation point

used only to identify overlapping flow pattern.
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Figure 3.10: Output flow from each outlet of a six cylindered DDP and the total output flow. Data obtained for Toi l = 20◦C , a closing angle

θcl = 160◦ and a load pressure of Pload = 200[B ar ]

The number of cylinders that either pumps or creates suction in any given time instant in the simu-

lated time period switches between 3 and 4. To give an example of these areas, a region of 3 active

cylinders is pointed out (3C ) and a region of 4 active cylinders (C 4). In region 3C , cylinder 3 and 4

contributes with positive discharge and cylinder 2 with negative discharge. In region 4C , cylinder 3,4

and 5 contributes with positive discharge and cylinder 2 with negative. The maximum number of

active cylinder would only by 3, if the back-flow phenomena, explained in section 3.7a, did not oc-

cur. Obviously, the number of active cylinder is also dependent on the control signal. If every second

cylinder receives an idle signal, the number of active cylinder decreases. Based on simulation of the

nonlinear DDP model, the maximum recorded active cylinders showed to be 4 for Toi l ∈ [20◦C : 70◦C ],

θcl ∈ [120◦ : 240◦] and Pload ∈ [50B ar : 500B ar ].
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4Flow Measurement on a Digital

Displacement Pump

The task in this chapter is to design a method to measure the output flow from the DDP to be used in

control design. Firstly, the possible locations to place a flow transducer is identified and the properties

of the available transducer are examined. Then, a frequency spectrum analysis is carried out of the

output flow Qout . The flow transducer has insufficient bandwidth to capture Qout without creating

aliasing artifacts. Thus, an estimator is introduced to predict the output flow. This is followed by an

anlysis of filtering methods that obtains the average output flow value. Finally, a flow filter is selected

based on its damping ability of the flow ripples and its transient response.

4.1 System overview

There are six different outlets from the DDP. The fluid is directly pumped into a manifold that has a

small volume VM without the use of hoses. The manifold is a ring formed cavity, placed externally

around the DDPs circular dimension, that acts as a buffer from which the load can subtract fluid, see

illustration in figure 4.1.

Vl oadQH ,1:6

DDP

Pload

Qout Qload

VM

Manifold

PM

Figure 4.1: System configuration including the DDP, the manifold and the load.
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Pressure transducer

A hose connects the manifold and the load. The cross sectional area of the hose is assumed to be

large enough to neglect any significant pressure drop between the manifold pressure PM and the

load pressure PL . Therefore, it is irrelevant whether the pressure transducer is placed at the manifold

or the load. The load side is chosen as indicated in figure 4.1.

The pressure transducer together with a current amplifier acts as a bandpass filter with lower cutoff

frequency at 1[H z] and higher cutoff frequency at 100[kH z] [Johansen and Rømer, 2011, p.213]. The

transducer is capable of measuring in the range 0− 250[B ar ] with a linearity deviation of less than

0.5% of full scale output [Kistler, 2010]. The confidential band is ±1.25[B ar ] at every reading. The

pressure tranducer is not capable of measuring DC values and therefore it is not qualified for the task.

However, this tranducer gives an idea of the what kind of properties a commercially available pressure

tranducer can have. Therefore, it is assumed that a pressure transducer is available with a bandwidth

of 10[kH z] that is able to measure in the pressure range 0−500[B ar ] and able to measure DC values.

The bandwidth of the tranducer is expected to be sufficient to measure the load pressure. In order to

utilise the full bandwidth of the transducer, the sampling frequency of the load pressure is defined to

be fs,p = 10000[H z].

Flow meter

The flow from the DDP can be measured from two distinct locations as seen in figure 4.1; either before

the actual load or after. The flow before the load refers to the output flow Qout and the flow after the

load refers to the load flow Qload . The difference between the two flows depends on the volume of

the cavities and the size of the orifices. Assuming that VM ¿ Vl oad , the ripples of the output flow

Qout remains intact because the filtering affects from the manifold volume becomes negligible. This

is also because the cross sectional area of hoses are assumed to be large as stated previously. Notice, a

cavity together with an orifice acts as a first order low pass filter. A large volume gives low bandwidth

and vice versa. Contrary, a small orifice gives low bandwidth and vice versa. This is explained more

thoroughly later in section 4.4.2. As a consequence of the larger load volume Vload , the load flow

Qload is a filtered flow with attenuated flow ripples. For that reason, the ideal location of the flow

transducer is to measure Qout in order to avoid the response time of the loads first order filtering

effects.

The flow meter currently available at the DDP test-setup at Aalborg University is a spring/piston

flow meter Parker SCQ-060-0-02 [Johansen and Rømer, 2011, p.210]. The range of the flow meter

is [−60 : 60][L/mi n] [Parker, 2006]. The response time of the spring/piston sensor is less than 2[ms].

A rule of thumb says that the bandwidth of transducer is approximately 1
4 th of the inverse of the re-

sponse time, i.e. B = 1
4 ·500 = 125[H z]. This is because the response time refers to the time it takes

before a flow change is reflected in the measurements. A sinusoidal flow curve roughly consist of four

flow changes; from zero to maximum, maximum to zero, zero to minimum, minimum to zero. The

sampling frequency of the flow measurement can be defined hereafter to be fs, f = 125[H z]. The fre-
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quency response is not given in the datasheet, however the accuracy is stated to be ±2% of full scale.

This gives a confidential band that is ±1.2[L/mi n] at every reading.

The frequency spectrum of Qout is analysed in the following section to determine if the flow meters

bandwidth is sufficient to avoid aliasing. The data is obtained from simulations of the nonlinear

model run with a pump speed of 1500[RP M ] and an oil temperature of Toi l = 30◦C .

Selecting an oil temperature for the remainder of the report

The reason why the oil temperature is chosen as 30◦ is based on two arguments. Firstly, the model is

validated at Toi l = 20◦C and secondly the oil temperature during operation is assumed to be larger

and probably near Toi l = 50◦C . However, it is not desirable to deviate too much from the validated

operation point (Toi l = 20◦C ), which is why 30◦C is considered as a good compromise.

4.2 Frequency spectrum

The output flow is a periodic curve as seen on figure 3.9b in section 3.4.2. In order to reveal the fre-

quency content of the signal, the Discrete Fourier Transform (DFT) of Qout is computed using the

Fast Fourier Transform (FFT) algorithm that transforms a time-domain signal into the frequency do-

main. The DFT is symmetric around the DC value, which means that the amplitude content of the

signal is divided into two distinct frequencies, ± f . Since there is no such thing as negative frequen-

cies, the amplitude at − f should be added to the amplitude at + f when reading the plots. The DFT

is calculated based on simulation data with the sampling frequency fs = 1[M H z], see the frequency

spectrum in figure 4.2.
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Figure 4.2: Frequency spectrum of the flow signal Qout from simulation using a closing angle θcl = 160, oil temperature T = 30◦ and step
size Tstep = 1 ·10−6.

The plot shows a peak at f ≈ 0[H z] and several peaks located at f = n · 150[H z] where n ∈ Z with

decreasing amplitude for increasing n. The sampling frequency is well above the Nyquist rate of any

significant frequency content. As a result, aliasing is avoided and this plot can be used as a reference.
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To identify the distortion created by aliasing artifacts from a flow meter, the DFT is calculated using

more realistic the sampling frequencies, i.e. fs, f = 125[H z] and fs, f = 500[H z]. See the respective

frequency spectrum in figure 4.3a and 4.3b.
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Figure 4.3: Frequency spectrum of the flow signal Qout from simulation using a closing angle θcl = 160 and sampling frequency of (a)
fs, f = 125[H z] and (b) fs, f = 500[H z].

At a sampling frequency of fs, f = 500[H z] the DC content deviates by less than 3% from the reference

given in figure 4.2. At fs, f = 125[H z] the error increases to more than 10%. The plot shows that a

flow tranducer of minimum 500[H z] would be sufficient to measure Qout when the flow ripples are a

multiple of 150[H z].

Based on the above analysis, the output flow Qout can not be measured accurately by use of the avail-

able flow meter. Instead, the flow meter has to be used to measure the load flow Ql oad and based on

knowledge of the load, Qout can be estimated. The DFT of the load flow is computed using a high

sampling frequency of fs = 1[M H z] to avoid aliasing, see the spectrum in figure 4.4.
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Figure 4.4: Frequency spectrum of the flow signal Qload from simulation using a closing angle θcl = 160 and a sampling frequency of
fs, f = 1[M H z]

Based on this plot, it is verified that the flow transducer is applicable to measure Qload because the
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load attenuates flow ripples sufficiently. In fact, the flow ripples at f = 150[H z] has been reduced by

more than 94% compared to the reference in figure 4.3.

4.3 Flow estimator

The simplest approach to design an estimator for Qout is to wait for the load pressure to reach a

steady state value. When the load pressure remains relatively constant, the average input flow to the

load Q̄out is equal the average load flow Q̄load . This can be seen by utilising the continuity equation

where the output flow is replaced by its estimated average ˆ̄Qout .

Ṗload = Vload

β

(
ˆ̄Qout −Q̄load

)
= 0 (4.1)

ˆ̄Qout = Q̄load (4.2)

This approach is relatively accurate when the load pressure stabilises. The disadvantage of using this

method is that it is relatively slow, because a new measurement ˆ̄Qout = Q̄load can only be taken ac-

curately when the load pressure settles. This inevitably increases the settling time of a flow controller

that uses a negative flow feedback, that is designed in chapter 5. It is therefore desirable to speed up

the estimator using another approach. Again, by utilises the continuity equation a new estimator can

be designed where the pressure gradient is approximated by a numerical differentiation. This method

estimates the instantaneous output flow Q̂out , see equation 4.4.

Q̂out = β

Vload
· Ṗl oad +Ql oad (4.3)

Q̂out = β

Vload
· Pload [n]−Pload [n −1]

Tsample
+Qload (4.4)

The estimator requires both flow feedback of Qload and pressure feedback of Pload . It is essential to

have accurate knowledge about the loads volume size Vl oad , the effective bulk modulus of the oil β

and a noise free sampling of Pload and Qload .

The parameters that are relatively easy to obtain is the Vl oad and Qload . The volume of the load

chamber can be measured. Additionally, the load flow Qload can be measured accurately because of

its low frequency content as seen in figure 4.4. Any high frequency noise content in the signal can

effectively be filtered by a low pass filter using a sampling frequency that was defined to be fs, f =
125[H z] in section 4.5.

The parameters that are difficult to obtain accurately is β and the noise free measurement of Pl oad .

The effective bulk modulus is assumed to be saturated at 10000[B ar ] and the estimator is therefore

sensitive to the accuracy of this value.

The pressure gradient is approximated by numerical differentiation based on two succeeding mea-

surements of Pload . This requires a noise free signal from the pressure transducer. It also requires a

high sampling frequency in order to capture pressure fluctuation so flow ripples can be replicated.
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The bandwidth of the pressure transducer and the sampling rate was defined to be fs,p = 10[kH z] in

section 4.1. Due to limitations in the time frame, the pressure samples are assumed to be noise free.

The performance of the flow estimator is tested in simulations using a closing angle step input from

θcl = 240◦ to θcl = 160◦ and the results are shown in figure 4.5 where the output flow Qout , the esti-

mated output flow Q̂out and the load flow Qload is included. The load flow is included to emphasize

that numerical differentiation contributes considerable.
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Figure 4.5: Flow estimator performance with a closing angle step from θcl = 240◦ to θcl = 160◦.

The performance of the estimator is relatively accurate both during the steady state and transient

period of Qload . The mean square error is computed for t ∈ [0s : 0.2s] to be

MSE(Q̂out ) = E
[
(Qout −Q̂out )2]= 8.04 (4.5)

It is worthwhile to notice that the estimator works even though the same flow samples are used mul-

tiple times in the flow estimator. The same flow samples is used because there is a difference between

the flow sample rate and the pressure sample rate, i.e. fs,p > fs, f . In fact, the same flow sample is used

80 times for every time a new pressure sample is taken.

In real applications, noise and disturbances overlays the measured signal and precaution is necessary

in order to attenuate the noise.

Sensitivity of the estimator

To test the sensitivity of the estimator for variation in the uncertain parameters, first the upper limit

of the effective bulk modulus is over and under estimated by 20%, then the numerical differentiation

of Pload is over and under estimated by 20%.

The over estimated effective bulk modulus is saturated at β = 120000[B ar ]. The linear range is de-

fined to be from P ∈ [1B ar : 140B ar ] where β ∈ [275B ar : 12000B ar ] based on data from appendix

A.4 as previously. The result is given in figure 4.6a.
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In case of under estimating β, the upper limit of the saturation changes to β= 80000[B ar ]. This gives

a linear range from P ∈ [1B ar : 60B ar ] where β ∈ [275B ar : 8000B ar ], see the results in figure 4.6b.
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Figure 4.6: Flow estimators sensitivity towards the (a) under estimation and (b) over estimation of the saturation level of the effective bulk
modulus by 20%

It is clear from the plots that an over estimation of β over estimates the flow ripples and vice versa

both in the transient period of Qload and the steady state period. The mean squared error for over

estimation is only MSE = 7.7656 and for under estimation it is MSE = 10.7499 calculated over the

time span t ∈ [0s : 0.2s]. The MSE values are relatively close to each other, which indicates that the

error on average does not increase even though the flow ripples are not correctly estimated. The

reasoning for this, is that the flow ripples are estimated wrong in both direction around an average

value of Qout . Its impact on the average value is therefore minimal. This is seen both in the transient

response and the steady state response. Notice, this method requires a relatively good model of β as

a function of Pl oad and Toi l as the linear approximations are based on this model.

The numerical differentiation is also a source of uncertainty if it is not possible to filter the noise

level effectively. The sensitivity of the estimator towards under and over estimating the numerical

differentiation showed similar deviations, see the figures in appendix B.1.1.

Based on the above observations, the estimator is deemed valid to be used in control strategies.Having

the estimated output flow Q̂out , the task is now to calculate its average value ˆ̄Qout to use in control

strategies.

4.4 Flow filter

The estimated output flow Q̂out contains a lot of ripples. The flow ripples are a natural part of a DDP

which is caused by the radial displacement between the cylinders. The ripples could be reduced by

implementing more cylinders. In case of a low number of cylinder as 6 in this report, some kind

of filtering is necessary to disregard the flow ripples and obtain the average output flow rate. The

51



average value is equivalent to the DC value, hence filter theory could be applied to obtain the value.

The volume of the load Vload together with an orifice acts as an analogue filter and therefore the

filtering effects from the load is analysed initially, to see if the filtering is sufficient to attenuate flow

ripples.

4.4.1 Analogue filtering

The filtering effects can be determined by analysing a linearised pump model. It is not a trivial task to

design a linear DDP since it consists of six working chambers and six orifices. The following deriva-

tions is therefore build on strongly simplified assumptions. The density of the oil, the discharge coef-

ficients and the effective bulk modulus of the oil β are assumed to be constant.

Figure 2.10a shows that the pressure difference between the working chamber Pc and the load Pload

is approximately constant during the discharge period of a single cylinder. Assuming that the same

observation is valid for six cylinders that contains overlapping discharge period, the DDP can be mod-

elled as a pressure source. As a result of this, the simplified model can be described by two chambers;

the load chamber and a single fictitious working chamber. See figure 4.7.

Vl oad

Pload
Qout Ql oad

V f c

P f c

Figure 4.7: System configuration including the DDP, the manifold and the load.

The fictitious working chamber volume V f c is infinitely large, which indicates that there is no pressure

variation in the fictitious working chamber, i.e. Ṗ f c = 0. The model simplifies to a continuity equation

for the load pressure with orifice equation to model the flow in/out of the chamber.

Ṗl oad = β

Vload
(Qout −Qload ) (4.6)

The variable parameters in the model are Pl oad , Qout and Ql oad . In fact, Qload only is a function of

Pload . This is because the load orifice area is constant and it is directly connected to a reservoir with

constant pressure, Pt = 1[B ar ], see equation 2.29. The Qout consists of flow through the six HP valves

that opens/closes during a revolution of the pump shaft. With the above assumptions, Qout becomes

a function of Pload and an average position of the active HP valves x f H .

The linearisation around the operation point (x f H ,0,Pl oad ,0) is carried out by utilising the Taylor ap-

proximation and neglecting higher order terms.
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Vl oad

β
∆Ṗload = δQout

δx f H

∣∣∣∣
0

∆x f H − δQout

δPl oad

∣∣∣∣
0
∆Pload − δQload

δPload

∣∣∣∣
0
∆Pl oad

Vl oad

β
∆Ṗload = KQX∆x f H −KQP∆Pl oad −Kload∆Pload (4.7)

where∆xH = x f H −x f H ,0 and∆Pl oad = Pload −Pload ,0. Notice that∆Ṗload = Ṗload due to the constant

operating point. The equation is transformed from the time domain into s-domain using the Laplace

Transform.

∆Pl oad (s)

(
Vload

β
s +KQP +Kl oad

)
− Vl oad

β
∆Pload (0) = KQX∆X f H (s) (4.8)

The system is initially at rest and therefore ∆Pl oad (0) = 0 at t = 0. Rearranging the equation, the first

order SISO transfer function is obtained which relates the HP valve position x f H to the load pressure

Pl oad .

∆Pload (s)

∆x f H (s)
=

KQX
β

Vl oad

s + (
KQP +Kload

) β
Vl oad

(4.9)

where

KQX = CD,H0DHπ

√
2

ρ0
|Pc,0 −Pl oad ,0| · si g n

(
Pc,0 −Pload ,0

)
(4.10)

KQP = CD,H0 AH ,0√
2ρ0|Pc,0 −Pl oad ,0|

si g n(Pc,0 −Pload ,0) (4.11)

Kload = Qnom

2
√

PnomPload ,0
(4.12)

The 0-subscript denotes the initial condition of the respective parameters. It is seen that the transfer

function is a first order system with a pole location that depends on several parameters. The pole

location is highly dependent on the operation point.

Additionally, the pole location can be affected by changing Vload and Kload that indirectly contains

the load orifice area. The location of the pole both determines the damping but also the settling time,

i.e. the time it takes for the filter to obtain a signals DC-value.

In figure 4.5 sufficient damping was obtained when Vload = 0.5[L] and Kload was a function of Pnom =
200[B ar ] and Qnom = 20[L/mi n]. However, the settling time showed to be too large. These parame-

ters could be tuned further to obtain faster response time on behalf of less damping, if this is accept-

able for a given application. The intention of this report is to build a controller that can be applied for

various applications. As a consequence of this, it is not desirable to restrict the demands for load that

the designed controller can be applied on.

With the above analysis in mind, it is now necessary to apply digital filtering in order to obtain the

average of the estimated output flow ˆ̄Qout .
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4.4.2 Digital filtering

A low pas filter can be utilised to dampen flow ripples and therefore obtain the average output flow

Q̄out . Low pas filtering can be obtained in several ways. The ones that will be examined in this sec-

tion is a first order low pass filter, a second order Butterworth filter and a moving average filter. It is

desirable to have a filter that attenuates the flow ripples sufficiently while keeping a fast settling time.

The first and second order filters are derived in appendix and the results are given succeedingly using

a sample time of Tsd f = 1/ fs,p = 0.1[ms]. The reason why fs,p is chosen is because the numerical

differentiation in the flow estimator uses this sampling rate. In order to keep the naming convention,

the sampling frequency in this section is defined as fsd f = fs,p = 10[kH z].

First order low pas filter

The flow ripples are located at 150[H z]. Placing the cutoff frequency of the filter one decade before

ωcut = 2π ·15[r ad/s], the damping will be 20[dB ] at the flow ripples or in nominal values it is a 90%

reduction of the amplitude. A continuous-time first order filter is converted to a discrete-time filter

using a bilinear transformation.

H f ,1(z) = ωc (z +1)

z
(

2
Tsd f

+ωc

)
+

(
ωc − 2

Tsd f

)
= 0.0046903(z +1)

(z −0.9906)
(4.13)

Second order Butterworth filter

The Butterworth filter is also known for its flat passband region. A second order Butterworth filter

gives 40[dB/dec] damping after the cutoff frequency. Additionally, it introduces more phase delay

than a first order filter. The filter can be tuned in order to obtain a faster response time. The down-

side of increasing the bandwidth of the filter is that the flow ripples becomes less damped. With this

in mind, the cutoff frequency is chosen to be ωc = 2π · 25[r ad/s] which gives 31.1[dB ] damping at

150[H z] and in nominal values its a 96.8% reduction. The second order Butterworth filter is equiva-

lent to a second order transfer function with a damping coefficient of ζ=p
0.5 and natural frequency

equal to the cutoff frequency ωn =ωc . The filter is derived in appendix B.1, and the result is given in

equation 4.14.

H f ,2(z) =
(
ωc ·Tsd f

2

)2 (
z2 +2z +1

)
z2

(
1+ 2

p
0.5ωc Tsd f

2 +
(
ωc ·Tsd f

2

)2
)
+ z

(
−2+ (ωc ·Tsd f )2

2

)
+

(
1− 2

p
0.5ωc Tsd f

2 +
(
ωc ·Tsd f

2

)2
)

= 6.1004 ·10−5 (z +1)2

(z2 −1.978z +0.978)
(4.14)
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Moving average filter

The moving average filter should at least have a window length that covers the discharge stroke be-

tween two decision instants. At a sampling rate of 10[kH z] there are 400 samples per period when

the pump speed is 1500[RP M ]. The distance between two decision instants is 60◦. Thus, the number

of samples the moving average filter should be applied over is 60
360 ·400 which is approximately 66−67

samples. The moving average filter is less sensitive to noise if more samples are included but this also

introduces more phase delay.

H f ,mv g (z) = 1

67

66∑
i=0

z−i (4.15)

Filter performance

The frequency response of the filters are showed in figure 4.8
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Figure 4.8: Bode plot of a first order filter H f ,1(z), second order Butterworth filter H f ,2(z) and a moving average filter H f ,mv g (z) with a

window size of 67 samples. The sample time is fsd f = 10[kH z]

The three filters have low pass characteristic with a flat passband and amplitude attenuation of fre-

quencies higher than the cutoff frequency ωc . The moving average filter shows an extremely large

phase-delay which is irrelevant in this connection because the filter is not used in the traditional

sense. Here, it is only used to calculate an average value between two decision instants (input sig-

nals). If the filter was used with a window size that covered more decision instants, the phase-delay

could be of interest to examine. After the cut-off frequency, the first order low pass filter dampens

with 20[dB/dec] while the second order filter dampens with 40[dB/dec].

The filters are tested in simulations with various closing angles steps and applied on the estimated

flow Q̂out . Section showed that the system response is faster for larger orifice areas. Additionally, the
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analogue-filtering effects are insignificant for larger orifice areas. As a result of this, a large orifice area

is chosen where Pnom = 80[B ar ] and Qnom = 16[L/mi n].

The response of the filters and the reference output Qout are shown in figure 4.9. The reference value

Qout is obtained using a moving average filter on the actual output flow and not the predicted. A

high sampling frequency of 1[M H z] is utilised for the reference flow and a window size is chosen that

covers the period between two decision instants, i.e. 60◦. See the results in figure 4.9
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Figure 4.9: Flow filter test in simulation where the orifice area is determined based on Qnom = 16[L/mi n] and Pnom = 50[B ar ]. The tested

filters includes a first order and second order low pass filter and also a moving average filter along with the original output flow.

The moving average filter output Q̂av g gives the most accurate steady state flow response, however

the transient response show oscillating behaviour compared to the other filters. The fastest transient

response is observed at the moving average filter followed by the second order Butterworth filter out-

put Q̂ f ,2. All filters estimates the correct output with an error margin of 2.5[L/mi n] after 0.05[s] after

a step is applied. In the plot, is is seen that the filters converges to Qout before the load flow Qload .

The first order low pass filter output Q̂ f ,1 also shows great transient and steady state response but

the flow ripples are not well damped. Similar results are also obtained at other oil temperatures and

orifice areas. The second order Butterworth filter is chosen as this shows well damped behavior and

it shows less oscillations than the moving average filter.

In agreement with section 4.3, the filter and the estimator together are tested for variation in uncertain

parameters. Again, the bulk modulus of the oil and the numerical differentiation are both over and

under estimated by 20%. The results are given in figure 4.10a for deviation in β and in figure 4.10b for

deviation in numerical differentition.

The load flow is also plotted in the figures in order to compare the performance of the estimator. It

is seen that the estimator shows superior performance in transient response. However, the estimator

output only converges vaguely before the load flow. The best performance is observed when bulk

modulus is under estimated Q f ,2,βL and the numerical differentiation is over estimated Q f ,2,dPH . The

reason for this is due to a constant bulk modulus value. At pressure levels below ≈ 100[B ar ] the bulk

modulus decreases, see appendix A.4. In order to compensate for this a simple approximation is

utilised of the bulk modulus curve given in figure A.4b. The bulk modulus can be approximated by
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(a) Bulk modulus
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Figure 4.10: The performance of the estimator and filter (a) when bulk modulus is 20% over and under estimated and (b) when numerical
differentiation is over and under estimated by 20%.

a linear increase with load pressure when Pload < 100[B ar ]. The lower limit is iteratively defined as

50[B ar ] in order to avoid under estimation of bulk modulus which causes excessive pressure spikes

in the numerical differentiation. The results are shown in figure 4.11.
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Figure 4.11: A flow filter test to compare the performance of linearly varying bulk modulus. The orifice area is determined based on

Qnom = 16[L/mi n] and Pnom = 50[B ar ].

The transient response of the estimator is clearly superior whenβ varies linearly with Pload (Qout , f ,2,l i nβ).

The downside of this approach is that the method introduces a new source of uncertainty, i.e. the

model of the bulk modulus which is plotted in appendix A.4. However, this estimator is chosen for

control design purposes due to its better transient performance. The control design can be initiated

using the designed flow filter and the flow estimator in order to obtain Qout .
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5Control of a Digital

Displacement Pump

This chapter documents the design process of a flow controller for a Digital Displacement Pump. The

overall task is to design a linear and closed loop flow controller that accounts for the DDP’s time-delay.

The designed controller is tested on the nonlinear pump model described in section 2. There exists a

wide range of options to tackle the control paradigm and therefore an outline is given to describe the

methods that is used in this report in order to construct the flow controller.

5.1 Method outline

The DDP is a nonlinear system that contains state saturation. Therefore, the nonlinear model is sim-

plified by use of a linear time-invariant SISO transfer function. The linear system approximates the

average output flow from six cylinders given a closing angle input θcl and a specific operation point,

i.e. oil temperature Toi l and load pressure Pload . This gives access to apply linear control theory on

the simplified DDP model. The closed loop controller is designed based on worst-case-damping-

scenario in order to account for nonlinearities in the DDP’s response.

A linear closed loop feedback controller is designed based on analysis of the DDP’s transfer function

by utilising partial displacement operation-mode. It is possible to identify the poles and zeros in

order to analyse the stability of the system. The system is converted from continuous to discrete time

to include the effects of sample and hold. Moreover, the controllers are directly designed in the z-

domain using a root locus plot. The closed loop controller is designed based on worst-case-damping-

scenario because DDP actually is nonlinear. As a consequency hereof, a single linear transfer function

can not capture the DDP response for all operation points.

A necessity to fulfill before linear control theory can be applied is to obtain an input-output map

f (·). This map is described in chapter 6 and used in this chapter without further remarks. Notice,

the controllers looses their performance when the map deteriorates due to for instance changing oil

temperatures. For instance, the map might predict a closing angle input θcl ,i = 160◦ where in fact it

should have been θcl ,i = 190◦.
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5.2 Simplified DDP model

The simplified DDP model is derived based on the analysis conducted in section 3. The analysis

identified the following characteristics of the DDP:

• Four active cylinders was identified at a given time instant. This means that four cylinders are

affecting the output flow. Giving the same θcl to four cylinders in a row, results in an instan-

tanious output flow Qout that is solely a function of the given θcl . See more details in section

3.4.2.

• The output flow is a time variant signal for fixed θcl , Toi l and Pl oad . However, the average

output flow is constant. This is explained in section 4.

• There is a time delay between the input/output relation for the DDP. This time delay varies

nonlinearly with the θcl as well as the operation condition. See section 3.3.

• The maximum output flow rate is observed at θcl ≈ 155◦ regardless of load pressure Pload and

oil temperature Toi l . The output flow is nearly identical at θcl ≈ 160◦, hence in this section

the maximum output flow is defined for θcl = 160◦. An output flow rate of Qout = 0[L/mi n] is

observed for θcl > 220◦ depending on the operation point, see appendix C for details.

5.2.1 Continuous time transfer function

A simplified DDP model can be designed based on step response analysis on the nonlinear model.

The average output flow is obtained using the flow estimator and flow filter designed in chapter 4.4.

In the same chapter, it was shown that a larger orifice area yielded faster system response. Since a

faster system response challenges the controller more a large profoce area os chosen, i.e. Qnom =
16[L/mi n] and Pnom = 80[B ar ]. This way, a worst-case-scenario principle is somehow utilised. The

step responses are performed at Toi l = 30◦C , see the results in figure 5.1. The time-delay in the DDP

results in step responses starting at different times. In order to avoid this, the time scale is offset for

each step response so the flow step response start at the same time. This makes it easier to compare

the performed steps inputs.

In figure 5.1a a second order transfer function fit is carried out with basis in the smallest step size. In

figure 5.1b the transfer function fit is based on the largest step size. A similar test is conducted for a

larger orifice area that showed to similar results, see appendix C.2 for more details.

Above analysis shows that the simplified DDP model can be designed using a delayed second order

transfer function. The continuous-time transfer function of the simplified DDP is given in equation

5.1.

Gp (s) = G(s) ·e−s·Td = w2
n

s2 +ζ ·ωn · s +ω2
n
·e−s·Td (5.1)
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Figure 5.1: Simplified (blue) and nonlinear (red/black) pump flow response for Qnom = 16[L/mi n] and Pnom = 80[B ar ].

where Td is the time delay that is explained in section 3.3. The transfer function is a linear time

invariant SISO system. The input to the system is a desired average output flow Q̄out ,d and the output

is an average output flow rate Q̄out . In fact, the actual input signal to the DDP is a closing angle θcl

which is obtained utilising a function f : (Qout ,d ,Pload ) → θcl that is derived in chapter 6. Assuming

the map f (·) is accurate, the input to the transfer function can be considered as the desired output

flow rate Qout ,d .

The input to the transfer function is bounded by 0 ≤ Q̄d ,out ≤ Q̄out ,max where Q̄out ,max is defined to be

a function of Pload and θcl = 160◦. The relation is approximately linear and the fit is given in equation

5.2, see more details in appendix C.1.

Q̄out ,max = Kqom1 ·Pload +Kqom2 (5.2)

where

Kqom1 Coefficient Kqom1 =−0.031975
[
m3/(Pa · s)

]
Kqom2 Coefficient Kqom2 = 25.06

[
m3/(Pa · s)

]

Damping ratio and natural frequency

The second order transfer function is defined based on observation of the nonlinear pump models

output flow response. The model is constructed based on the settling time and overshoot of the step

response from which the systems natural frequency ωn and the damping coefficient ζ is obtained.

The settling time Ts and the overshoot differs for inputs with large and small flow steps. In figure

5.1, it was seen that the overshoot and Ts is larger for a larger step input. This indicates an operation

point that is less damped. If the system is stable for at operation points with low damping ratio ζ,
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the system is also stable at operation points with high ζ. As a result herof, the second order transfer

function is designed based on the flow response from a large step input. The natural frequency ωn is

obtained by first measuring the settling time Ts ≈ 0.04[s] without considering the time delay. Next, the

time constant is computed based on the relation Ts ≈ 4 ·τp . The natural frequency can be obtained

from a second order systems equivalent time constant τp = 1
ζ·ωn

. Moreover, the damping ratio can

be obtained by inspecting step response plots of a standard second order system Phillips and Harbor

[2000, p.123]. The damping ratio and the natural frequency of the second order system is defined as

ωn = 153[r ad/s] (5.3)

ζ = 0.65[.] (5.4)

Time delay

The time delay is the time that elapses before the DDP ’s output flow reacts to a closing angle. The time

delay Td changes nonlinearly as a function of the oil temperature, load pressure and closing angle. In

agreement with previous decision, the time-delay is defined based on a worst-case-scenario. This

means that the largest observed time delay is chosen at T = 30◦C .

The time delay consist of the closing time of the LP valve and the pressurising time of the oil in the

working chamber as identified in section 3.3. Additionally, the delay also consists of the length of the

idle period illustrated in figure 2.8.

The LP-valve introduces approximately a constant time-delay regardless of oil temperature. The clos-

ing delay is ≈ 2.5[ms], see figure 3.5. This corresponds to a phase delay of θl p,close = 22.5◦ because

the pump speed is 1500[RP M ].

As the idle period increases the output flow decreases. At some point, the output flow is barely ex-

isting, i.e. Qout > 0[L/mi n]. In this case, the pressurising-time is not relevant as there is no output

flow. Considering a shorter idle period results in more output flow, thus the pressurising-time starts

to have an impact. Nevertheless, since the idle period decreases and the pressure delay increases the

changes are assumed to be equal. A more comprehensive study could have been carried out but the

implications of doing so are deemed to be insignificant.

In figure C.2, the idle period that gives Qout > 0[L/mi n] is identified as θcl = 280◦ for T = 30◦C .

If the decision instant is defined as θlocal ,i = 160◦, the largest time delay becomes

Td = 2π

ωpump
· (280+22.5−160)

360
= 15.8[ms] (5.5)

5.2.2 Discrete time transfer function

The discrete time version of the continuous time transfer function includes a sample and hold device.

This device keeps a signal steady between two sampling instants. It is used to replicate the effects of a

digital filter on a continuous time system. The sampled data system of the pump along with a digital

controller is shown in figure 5.2.
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Qout ,d QoutHc (z) 1−e−s·Tz

s Gp (s)
Tz

Sample and hold

DSP

Figure 5.2: Discrete time effects on the pump system

A control signal is given every θpump = 60◦ which is equivalent to a time delay of Tz = 6.67[ms]. This

is defined to be the sampling time of the digital controller.

The sample and hold device is modelled using the Zero-Order-Hold (ZOH) method. The ZOH in s-

domain is modelled as Gzoh = 1−e−s·Tz

s and the equivalent model in z-domain is given in equation 5.6.

Hzoh(z) = (
1− z−1) ·Z {

1

s

}
(5.6)

The transfer function of the DDP needs to be discretised in order to design a controller in the z-

domain. The discrete time approximation of the continuous transfer function given in equation 5.1,

is derived in the following parts. Notice, the time delay is not included in the derivations as this is

simply just a multiplicatoin by z−k . The overall task is to perform the z-transform of equation 5.7

Hp (z) = (
1− z−1) ·Z {

w2
n

s
(
s2 +ζ ·2ωn · s +ω2

n
)}

(5.7)

Using a table of z-transforms from Phillips and Harbor [2000, p.652] shows that the z-transform of the

following transfer function

a2 +b2

s
(
s2 +2as +a2 +b2

) (5.8)

is given by

z (Az +B)

(z −1)
(
z2 −2ze−aTz cos(bTz )+e−2aTz

) (5.9)

where

A = 1−e−aTz

(
cos(bTz )+ a

b
si n(bTz )

)
(5.10)

B = e−2aTz +e−aTz

( a

b
si n(bTz )− cos(bTz )

)
(5.11)

The coefficents a and b is calculated using ζ, Tz and ωn .

T = 6.7[ms] (5.12)

a = ζ ·ωn = 0.65 ·153.8462 = 100 (5.13)

b =
√
ω2

n −a2 =
√

153.84622 −1002 = 116.9 (5.14)
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Inserting the constants defined in equation 5.12-5.14 in to equation 5.10 and 5.11 gives the the fol-

lowing results; A = 0.3256 and B = 0.2068. Inserting all the obtained coefficient in equation 5.9 results

in

z (0.3256z +0.2068)

(z −1)
(
z2 −0.7315z +0.2639

) (5.15)

Applying the ZOH-effects 1− z−1 to the obtained z-transform, the final expression for the discrete

DDP transfer function is obtained as

Hp (z) = (0.3256z +0.2068)(
z2 −0.7315z +0.2639

) (5.16)

5.3 Controller Structure

The chosen control structure is a combination of a feedback and feedforward controller. The feed-

forward controller H f (z) predict the input that is required to obtain a desired output flow by using a

nonlinear input-output map f (·) given in equation 6.1. The feedback controller Hc (z) is used to sup-

press modelling uncertainties and disturbances while driving the system state to a desired set-point.

Traditional closed loop feedback controllers used on a system with time delay can have destabilising

effects on the system. This is seen in the closed loop transfer function, see equation 5.17.

Hcl (z) = Qout (z)

Qout ,d (z)
= Hc (z) ·Hp (z) · z−k

1+Hc (z) ·Hp (z) · z−k
(5.17)

The closed loop systems characteristic equation, given in the denominator of equation 5.17, includes

the pump systems time delay. Using a Smith Predictor, this time delay can be avoided. Hereby, under

ideal circumstances the Smith Predictor can improve the phase response of the system [Massimiliano,

2003].

A smith predictor is used in the feedback control loop because of the time delay of k samples in

the pump system Hp (z) · z−k . The Smith Predictor is an Internal Model Controller that contains two

feedback loops, see figure 5.3.

Qout ,d
Qout+ Qi n

Hc (z)-
Hp (z) · z−k

+
+

Ĥp (z) z−k

+
-

+

+

Q̂out

Q̂out ,p

H f (z)

Figure 5.3: Internal Model Control utilising a Smith Predictor to adjust the closed loop feedback through predicted model output [Massi-

miliano, 2003].
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The error signal applied to the controller Hc (z) is defined as

e[n] = Qout ,d [n]−Q̂out ,p [n]−Qout [n −k]+Q̂out [n −k] (5.18)

The inner loop uses a model of the pump to predict the immediate response Q̂out ,p for a given control

input by disregarding the time delay z−k . This is used to adjust the error signal given to the controller

Hc (z) before the actual response takes place. The outer loop uses the difference between the mea-

sured system response Qout and the predicted system response Q̂out inclusive the time delay to adjust

the error signal. If the predicted response and the actual response is equal, the error signal is zero and

the controller does not take further actions. This is more evident when block diagram reduction is

applied to figure 5.3. The inner loop is closed which results in the Internal Model Controller given in

figure 5.4.

Qout ,d
Qout+ Qi n

-

+
+

(1− z−k ) · Ĥp (z)

-

H f (z)

Hc (z) Hp (z) · z−k

Figure 5.4: Equivalent block diagram of the smith predictor.

The closed loop transfer function for the inner loop is given by

Hcl ,i (z) = Qi n(z)

Qout ,d (z)
= Hc (z)

1+Hc (z)Ĥp (z)
(
1− z−k

) (5.19)

Applying Hcl ,i (z) as the control input to the outler closed loop by neglecting the feedforward gain,

results in the following transfer function (see a detailed derivation in appendix B.2.1).

Hcl (z) = Hc (z) ·Hp (z) · z−k

1+Hc (z)Ĥp (z)+Hc (z) · (Hp (z) · z−k − Ĥp (z) · z−k
) (5.20)

Here, it is seen that if the predicted model response z−k Ĥp (z) is equal to the actual system response

z−k Hp (z), the closed loop transfer function reduces to the following

Hcl (z) = Qout (z)

Qout ,d (z)
= Hc (z) ·Hp (z) · z−k

1+Hc (z) ·Hp (z)
(5.21)

With the structure of the DDP control system defined, it is possible to design the controller.

65



5.4 Controller design

The design of the linear controller is based on the simplified pump model using root locus analysis in

z-domain. The controllers utilises the partial displacement capability of the DDP in order to minimise

the flow ripples. The designed controller is validated after it has been designed and tested on the

nonlinear DDP model described in chapter 2.

5.4.1 Proportional integral controller

The requirements for the controller is to obtain a fast, damped and accurate flow response. The accu-

racy of the flow response is measured for a step input to the linear pump system Hp (z). The first step

in designing a controller is to analyse the open loop transfer function of Hp (z) without the time delay

due to using a Smith predictor. The open loop root locus plot of Hp (z) is shown in figure 5.5a. The

proportional controller Kp can be defined to guarantee stable control for the simplified DDP model

by using the root locus plot. In the plot, it is seen that the root locus starts from a complex conjugated

pole pair at z ≈ 0.36± j ·36. As Kp increases one of the poles moves towards a zero at z ≈ −0.63 and

the other towards a zero at z →−∞. For a gain up to Kp = 3.3, the poles remains inside the unit cir-

cle, which indicates that the system is stable. The root locus extracting from the complex conjugated

pole pair indicates a system that gets more under damped for high gain. Additionally, Hp (z) does not

have a free integrator at z = 1 and can consequently be classified as a type 0 system. Notice, a free

integrator s = 0 is mapped into z = 1 in the z-domain. According to the final value theorem, the lack

of free integrators gives a steady state error for a step input [Phillips and Harbor, 2000, p.170]. Using a

P-controller is therefore not sufficient in order to control Hp (z) as it does not fulfill the requirements

given initially in this discussion.
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Figure 5.5: Root locus plot of the open loop discrete time system where (a) shows the open loop root loci of the pump Hp (z) and (b) shows
it including a PI-controller Hp (z) ·Hc (z)

A free integrator is necessary in the controller Hc (z) in order to remove the steady state error for
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a step input to Hp (z). The free integrator introduces infinite dc gain, hence ideally it removes the

steady state error for a step input. The PI-controller is tuned by using the MATLAB toolbox sisotool,

which immediately shows the effects of adjusting the open loop gain. The root locus of the open

loop system containing a PI-controller is shown in figure 5.5b. The gain is chosen with the intend of

increasing the bandwidth of the closed loop system while keeping the system damped. This means

that the dominating pole located at z = 1 is dragged away from the low frequency region towards z = 0

while keeping the complex conjugated pole pair within the region of the well damped area. Notice,

this area is the elliptic shaped grid lines near the positive real axis. This results in a proportional gain

of Kp = 34 and utilising a bilinear transform of the continuous time PI-controller Gc = Kp

s gives

Hc (z) = 0.1132z +0.1132

z −1
(5.22)

Usually, a PI-controller is not applied for systems where fast response is a requirement. However, in

the case of the simplified DDP model the PI-controller shows to fulfill the task sufficiently. In continu-

ation hearof, the closed loop controller is not further improvement with to instance a PID-controller.

It is also possible to determine whether the PI-controller stabilises the system by looking at the bode

plot of the open loop transfer function. This is given in figure 5.6a and it shows that the open loop

system has a phase margin of 66.7◦ and a gain margin of 12.1[dB ]. As a result, the system is stable and

well damped in its closed loop response. The closed loop bode plot shows that the bandwidth of the

system is relatively high compared to the sampling frequency, see figure 5.6b.
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Figure 5.6: Bode plot of open loop and closed loop system of the controller Hc (z) and the system Hp (z)

The performance of the designed controller can be examined by looking at the step response of the

closed loop system that is given in equation 5.21. The step response reveals information about the

rise time, settling time and the overshoot. Figure 5.7a show the step response and figure 5.7b shows

the input signal to the system. The mapping function f (·) given in equation 6.1 is utilised to show the

actual input signal. From the plot, it can be seen that the input signal stays within the θcl ∈ [160◦ :
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θmi n, f low ] where θmi n, f low = f (0,Pload ) = f (0,200[B ar ]) = 313◦. From the step response, it can be

seen that the overshoot is less than 4%, the rise time is less than 46[ms] and the settling time is less

than 90[ms].
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Figure 5.7: Plod of (a) step response of the linear model inclusive time-delay and ZOH effects and (b) the corresponding controller output.

From the above analysis, it is concluded that the designed controller should be able to satisfying

control of the output flow when applied to the nonlinear model.

The Smith Predictor is implemented utilising equation 5.19 with k = 3. The results is given in equation

5.23.

Hsmi th(z) = 0.1132z6 +0.0304z5 −0.05293z4 +0.02988z3

z6 −1.695z5 +1.056z4 −0.2405z3 −0.03687z2 −0.06029z −0.02342
(5.23)

In addition, the smith predictor can draw benefit of a feedforward gain by utilising the mapping func-

tion f (·). In this case, a closed-loop description can not be obtained. Instead, the controller defined

in equation 5.22 is utilised along with a negative feedback gain given in equation 5.24.

Hsmi th, f b(z) = 0.3256z4 +0.2068z3 −0.3256z −0.2068

z5 −0.7315z4 +0.2639z3 (5.24)

The closed loop controllers with and without the feedforward gains are tested on the nonlinear model,

see respectively Qout , f f and Qout in figure 5.8 for a comparison. The test consist of a flow reference

step at t = 0.5[s], t = 1[s] and t = 2[s]. Additionally the step consist of a decrease in orifice area at

t = 1.5[s] of 75% from Qnom = 20[L/mi n] to Qnom = 5[L/mi n] at Pnom = 50[B ar ]. The operation

points deviates from which linear control is designed and therefore figure 5.8 and 5.7a can not be

compared directly.

The step at t = 1.5[s] is essentially a step that changes the load pressure. It is seen that the flow

controller is capable of correcting the output flow within 100[ms]. It is seen that the controller with

feedforward gain generally performs better. However, the step at t = 1[s] shows more overshoot than
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Figure 5.8: Comparison of smith predictor with (Qout , f f ) and without (Qout ) a feedforward gain applied on nonlinear pump model.

expected. This indicates that either the mapping function f (·) is not sufficiently accurate or opera-

tion point where the damping is lower than the ones indicates in appendix C.2. This uncertainty in

parameters results in over design of the gains for the PI controller. Decreasing the proportional gain

Kp would lower the bandwidth of the closed loop system and most likely increase the damping. The

controller will not be tuned further, instead focus is pointed towards increasing the accuracy of the

map f (·). The map is known to change with the oil temperature (see section 3.4.1) and this is another

reason for pointing focus towards the map. To illustrate how the changing temperatures affects the

mapping function, thus also the performance of the controller, a test is conducted where Toi l = 20◦C ,

Toi l = 30◦C and Toi l = 70◦C . See figure 5.9.
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Figure 5.9: The performance of the smith predictor with feedforward gain for different oil temperatures. The controller is tested with the
T = 20◦C , T = 30◦C and T = 70◦C . Test conducted on nonlinear pump model.

Notice, both the mapping function f (·) and the controller is designed for T = 30◦C . The performance

is clearly superior at T = 30◦ depicted in Qout , f f ,30 for most step inputs except at the step at t = 1[s]

for reasons explained previously. From the above analysis, it can be concluded that it is necessary

to make the controller less sensitive towards temperature changes by increasing the accuracy of the

mapping function.
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6Mapping function

The mapping function describes the input-output relation for the DDP which is sensitive towards

changing oil temperatures. Initially, an input-output map is designed based on simulation of the

nonlinear model. Hereupon, several polynomial regressions are applied and a polynomial chosen by

considering a high accuracy and a low number of coefficients. The map is only accurate if the model

captures the actual pump response precisely. Since this can not be expected in reality, possible meth-

ods to adapt the map are explored and developed in this chapter. Finally, the developed algorithms

are tested and compared on the nonlinear model DDP.

6.1 Polynomial regression

A multivariate polynomial regression of the input-output data obtained from simulation is performed

using the Matlab toolbox Surface Fitting Tool. Regression is applied on polynomials of different order

and the polynomials are compared on their coefficient of determination r 2 (an r 2 value close to 1

indicates a better fit).

The data is obtained for an oil temperatures of Toi l = 30◦. The map utilises the following variables;

the closing angle θcl , the output flow Qout and the load pressure Pload .

The most accurate fit is observed when polynomial regression is applied on Qout as a function of

the other variables. Despite the great accuracy this approach is not chosen, as it is more practical to

obtain θcl as a function of the other variables. The reason for this is due to θcl being the input signal

to the DDP.

Figure 6.1a shows the resulting coefficient of determination r 2 for a range of polynomials where re-

gression is applied. The name Pol y52 indicate a 5th order polynomial in Pl oad and a 2nd order poly-

nomial in Qout .

In the plots of figure 6.1a it is seen, that a higher order polynomial gives a better r 2. This can indicate

that the data is over fitted, but inspecting a plot of the polynomials reveals a smooth surface fit. The

best fit on average considering all the temperatures Toi l ∈ [20◦C : 70◦C ] is the Poly55 polynomial. The

disadvantage of using Poly55, is that it has 21 coefficients. This gives 21 degrees of freedom in an
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Figure 6.1: The results of the polynomial regression where (a) shows the coefficient of determination as a function of oil temperature for
multiple polynomial fits and (b) the evolution of the coefficient for a single polynomial fit

optimisation problem. Another good fit is Poly23 that only has 9 coefficients and still an accuracy

above r 2 > 0.99.

A plot of how the coefficient in Poly23 evolves for changing oil temperatures is shown in figure 6.1b.

The coefficients are normalised by their respective maximum absolute values because some values

are above hundreds and others below one. The coefficients follows a smooth path for T ∈ [30◦ : 70◦].

The pattern is interrupted in the temperature range T ∈ [20◦ : 30◦].

A Poly23 regression that is valid for T = 30◦ is given in equation 6.1 for a single cylinder output flow.

This means that a flow reference of for instance 20[L/mi n] is divided into 20/6[L/mi n]. Thus, each

cylinder contributes with their part to generate a flow of 20[L/mi n] with minimum flow ripples. This

is also known as the partial displacement operation mode.

θcl = f (Pload ,Qout )

f (Pl oad ,Qout ) = c00 + c10 ·Pload + c01 ·Qout + c20 ·P 2
l oad + c11 ·Pl oad ·Qout

+c02 ·Q2
out + c21 ·P 2

l oad ·Qout + c12 ·Pl oad ·Q2
out + c03 ·Q3

out (6.1)

where the values of the coefficients are given in table 6.1.

c00 c10 c01 c20 c11 c02 c21 c12 c03

286.7 −0.1388 −37.58 4.684e −005 0.1119 10.89 −0.0001786 −0.03304 −2.131

Table 6.1: Polynomial coefficients

Even though the polynomial shows promising accuracy, in figure 5.9 it was seen that the flow response

resulted in an unexpected overshoot at some operation points (Qout , f f ,30). The results indicate that

a higher order fit is necessary in order to increase the accuracy of the map. Nevertheless, Poly23 is a
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starting point from which adaptation of the mapping function can be performed. Possible methods

to perform adaptation is examined in the following part.

6.2 Adaptation of the mapping function

Correct sample data from the DDP is a necessity in order to perform adaptation of the mapping func-

tion. This means that a sample can only be taken in steady state, i.e. when the set-point reference

and the output flow is equal. A sample can most often be taken every 250[ms] when considering the

response in figure 5.9. Consequently, there is not an abundance of sample data to utilise in the adap-

tation algorithms. The developed approaches aims to takes this into consideration in order to obtain

acceptable convergence rates.

Initially, an offset method is introduced as the simplest approach to perform adaptation. This is fol-

lowed by an approach that utilises optimisation theory. Finally, both methods are tested on the non-

linear model and their results are compared.

6.2.1 Adaptation by offset

The simplest approach is to take basis in the map already defined in equation 6.1. The entire map

can simple be offset if it is assumed that the characteristics captured at Toi l = 30◦C is preserved for all

temperatures. Previous simulations showed that this was not the case, see for instance figure 3.8 in

chapter 3. However, it is believed that the error is reduced by applying the offset. The offset method

is illustrated in figure 6.2

Initialise

f (·)−θcl

Terminate

C00 =C00 − y

y

Reset (Hc (z), Hsmi th, f b(z))

Save(Pload ,Qload ,θcl )New sample

Figure 6.2: Offset algorithm to adapt the polynomial mapping function.

First, a sample of θcl , Qout and Pload is taken when the output flow reaches a steady state value. Next,

the mapping function is utilised in order to obtain the estimated θ̂cl = f (·) at the operation point
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where the measurement is taken. The difference between the estimated and the actual θcl is defined

as an error. The error is used to offset coefficient c00 in the mapping function. finally, the controller

Hc (z) and the negative feedback gain from the smith predictor Hsmi th, f b(z) is reset.

The feedforward gain predicts the correct θcl for the specified operation points after the adaptation

method has been performed. This is the reason why a rest of the controller and feedback gain is

necessary.

6.2.2 Adaptation by convex optimisation

A convex optimisation problem is formulated in order to adapt the mapping function f (·) given in

equation 6.1. The general form of the optimization problem can be presented as

argmin
~c

n∑
i=0

(
f (~xi ,~c)−θcl ,i

)2 (6.2)

where~xi = [Pload ,i Qout ,i ]T , n is the number of samples and~c is the coefficient of the mapping func-

tion. The idea is to minimise a convex cost function ε=∑n
i=0

(
f (~xi ,~c)−θcl ,i

)2 based on measurement

data by adjusting the argument~c. Ultimately, when the optimisation problem is solve, the set of mea-

sured values θcl ,i is in coherence with the set of predicted output f (·)values.

The steepest descent algorithm can be used to solve the optimisation problem. However, the steepest

descent algorithm is a local-minimum solver. If the steepest descent algorithm guides the coefficients

towards a local minimum, the algorithm does not include any features to move away from this mini-

mum and search for a global minimum.

In order to reach the global minimum, it is essential to have a rich set of samples. This means that

it is necessary to excite a wide range of operation points. In case this is not possible, the accuracy of

the mapping function f (·) most likely becomes biased towards a small domain containing the sample

points.

The number of samples that can be obtained from the DDP depends on how often a step input is

given to the pump. This depends largely on the application where the pump is utilised. Assuming a

step input is given every t = 0.5[s] as in the test of figure 5.9, the number of samples are 5 in a time

span of 2.5[s]. The cost function is defined based on these samples which indicates that n = 4 in

equation 6.2.

To initialise the optimisation algorithm, five samples are obtained from the polynomial map given in

equation 6.1 with the intention of exciting a wide range of operation points. The collected data points

are given in table 6.2.
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Pl oad ,i [B ar ] Qout ,i
[ L

mi n

]
θcl ,i [◦]

1 100 3.33 185

2 400 2.08 164

3 200 2.5 198

4 300 1.33 219

5 250 0.83 238

Table 6.2: Samples points from mapping function based on Toi l = 30◦C

The algorithm to perform optimisation is illustrated in figure 6.3.

New sample

Oldest sample?

Replace sample

Initialize

Yes

No

Update law

Converge?
No

Yes

Max iteration?
No

Yes

Terminate

Figure 6.3: Optimisation algorithm to adapt the polynomial mapping function.

First, a sample data is taken when the output flow reaches a steady state value. Next, the oldest sam-

ple among the five is identified. The new sample replaces the oldest sample. The steepest descent

algorithm is initiated in the update law that iterates until convergence is reached or an iteration-limit

is exceeded.

A reset of the controller and feedback gain is not utilised in this algorithm because an exact solution

most likely does not occur. The steepest descent algorithm to be implemented on the DDP is given as

~cn+1 = ~cn −µ∇~cε (6.3)

where µ is the learning rate. The interpretation of this algorithm is that by moving in small steps in

the opposite direction of the gradient of the error, eventually the minimum error value is reached.
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In order to evaluate the algorithm, first the gradient must be found. Taking the gradient of the cost

function ε with respect to~c gives,

∇~c[ j ]ε = 2
n∑

i=0

{(
f (~xi ,~c)−θcl ,i

) ·~ui [ j ]
}

(6.4)

where ~ui = [1 Pl oad ,i Qout ,i P 2
load ,i Pload ,i ·Qout ,i · · · Q3

out ,i ]T which is defined based on the mapping

function, see equation 6.1. Inserting the gradient into equation 6.3 gives the final update law of the

coefficients.

~cn+1 = ~cn −2µ
n∑

i=0

{(
f (~xi ,~c)−θcl ,i

)} ·~u (6.5)

Since the power of some of the element in ~u differs by more than a factor 100, the normalised version

of the update law is utilised. This update law normalises by the power of the signal which gives

~cn+1[ j ] = ~cn[ j ]+ 2µ
∑4

i=0

{(
f (~xi ,~c)−θcl ,i

) ·~ui [ j ]
}

u0[ j ]2 +u1[ j ]2 +u2[ j ]2 +u3[ j ]2 +u4[ j ]2 (6.6)

The normalisation is inspired from the Normalised Least Mean Square algorithm that applies to linear

filters [Valin and Collings, 2007]. The convergence rate heavily depends on the learning rate µ. The

learning rate is chosen iteratively based on convergence speed considerations. A Poly23 fit at Toi l =
30◦C is used as the initial polynomial. Five arbitrary samples are chosen from a Poly23 fit at Toi l =
70◦C to test the update law. A learning rate of µ = 0.1 gave the convergence results shown in figure

6.4.
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Figure 6.4: Convergence of the optimisation method where the mapping function is initialised at Toi l = 30◦ and data is obtained from
Toi l 70◦. (a) shows the convergence rate for the sum of the errors and (b) shows the evolution of the errors for each of the 5 data points.

In the figure 6.4a, it is seen that the sum of the errors squared, which is equivalent to ε, is minimised

after approximately 10 iterations. However, the coefficient are still tuning vaguely after 50 iterations.

The errors does not converge towards zero, and some errors in fact increases after reaching the zero
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error line. This indicates that a local minimum is reached and not a global minimum. Since, the

optimisation method is carried out every time a new sample is taken it is plausible that Poly23 will

converge towards a new local minimum at the next sample.

Due to the convergence of the coefficients, the algorithm is deemed valid to be tested on the nonlinear

model with the specified learning rate.

6.3 Comparison of adaptation methods

A test is conducted in order to compare the proposed adaptation methods of the mapping function.

Before the proposed algorithms are tested, a Poly23 fit is initially tested on the nonlinear model where

the coefficients are tuned for 30◦C and 70◦C . See the results in figure 6.6. Notice that the oil temper-

ature is defined as Toi l = 70◦ in the simulations.
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Figure 6.5: In the simulations the oil temperature is Toi l = 70◦. A poly23 fit is utilised where the coefficients are tuned for respectively a
temperature of Toi l = 30◦ and Toi l = 70◦.

In the plot, it is seen that by tuning the coefficient of a Poly23, it is possible to obtain good response at

Toi l = 70◦C . It is therefore deemed acceptable to test the algorithms in the nonlinear model. In order

to do so, the same input signals are used as in figure 5.9. The results from the offset method and the

optimisation method is given in figure 6.6.
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Figure 6.6: Adaptation of the mapping function that is initialised for Toi l = 30◦ but the simulations are carried out for an oil temperature
of Toi l = 70◦. The offset-method and the optimisation-method is illustrated, where the later learning rate of optimisation-method is tuned
to µ= 0.01.
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The offset-method shows promising results but with relatively large oscillations at the t = 1[s] step

input. Additionally, the offset method clearly overestimates the input signal at the t = 2[s] step input.

The output flow is offset from the steady state value for a longer period.

The solution of the optimisation-method withµ= 0.1 diverges after≈ 2[s]. This shows that it is impor-

tant to tune the learning rate correctly. By gradually decreasing the learning rate, a value was found

to be µ = 0.01 that gave satisfying results. The lower learning rate attenuates the large oscillations

compared to the offset method. Considered the step at t = 1[s] and t = 2[s]. However, the method

introduces more flow ripples which could indicates that the map is biased towards recent sample

data.

Some of the flow ripples can be explained by the way the optimisation algorithm is constructed. Each

time a steady state value is approached, the optimisation algorithm is initiated. This causes the coef-

ficient to change as well as the feedforward input. The immediate effect of this, is that the output flow

makes a sudden decline or incline in its flow response. It is therefore necessary to revise the algorithm

in order avoid excessive adaptation.

The evolutions of the Poly23 coefficients during adaptation are plotted in figure 6.7.
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Figure 6.7: Evolution of the coefficients as a result of the step response given in figure 6.6. (a) The offset-method, (b) the µ= 0.1 optimisa-
tion method and (c) the µ= 0.01 optimisation method is illustrated.

The only evident coefficient is c00 > 300 in all three plots. Comparing this coefficient between the

adaptation methods, it is seen that the coefficient follows a smooth path in both the offset method

and the optimisation method where µ = 0.01. This is not the case for the overly tuned optimisation

method, see the evolution of the coefficients in figure 6.8b. Here the jumps are more rapid and sud-

den, clearly a new local minimum is found that causes instability and divergence.

The evolution of the remaining coefficients can be revealed by looking at the normalised plots which

is given in figure 6.8

This figure shows that the coefficient c20 evolves mostly during the adaptation process, while the

other coefficient does not change more than 20%.

In overall, the optimisation method shows most promising results but the offset method does also

give acceptable results. However, there is mostly room for improvement in the optimisation method.

The benefits of using such an approach is the large set of tools that can be adjusted in order to make

the algorithm more efficient. To mention some of the possibilities, the number of sample points
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Figure 6.8: Normalised evolution of coefficients as a result of adaptation based on figure 6.6.(a) The offset-method, (b) the µ= 0.1 optimi-
sation method and (c) the µ= 0.01 optimisation method is illustrated.

could be increased, the learning rate tuned and the cost function could even be defined differently.

The limited time frame of the project did not permit time to tune the optimisation algorithm further.
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7Conclusion

The aim of this project has been to design a flow controller for the Digital Displacement Pump (DDP)

that is stable regardless the oil temperature and load pressure.

In order to fulfil this goal, a nonlinear model of the DDP was developed and verified by using mea-

surement data from an existing prototype. The model showed to be in good agreement with the flow

characteristics measured from the prototype. To further improve the model, oil parameter variations

were included to determine the impact of the temperature changes. This gave access to test the per-

formance of the designed controller at different oil temperatures.

Furthermore, the nonlinear model was intensively analysed in order to determine the input signal

to the DDP. This was carried out by considering the DDP’s energy efficiency and the DDP’s output

power. Even though the full-displacement operation mode showed to be most energy efficient, the

partial-displacement operation mode was selected because it reduces the output flow ripples. In that

way, the output flow from the DDP could be controlled more accurately. Moreover, it gave access to

identify an input-output map of the DDP during online operation. The pump has been operated at

1500[RP M ] based on the DDP’s volumetric efficiency. At this speed the maximum output power has

been documented to be 11.4[kW ] at 500[B ar ] load pressure and 13.7[L/mi n] output flow.

Based on the analysis, it was shown that the output flow from the DDP contains high frequency flow

ripples. Limitations in the flow-sensor bandwidth entailed a development of output flow estimator.

Even though the estimator is sensitive towards uncertainty in parameters such as the oil bulk modu-

lus, the benefits from using it were noticeable. A second order Butterworth Filter has been designed

to obtain the average value of the estimated output flow. This gave access to apply negative flow

feedback in the control design.

The time delays in the DDP were explored from which a simplified, linear DDP model was built. The

model approximates the average output flow originating from multiple cylinder outlets. By using

this, an Internal Model Controller has been designed that uses a PI-controller and a Smith Predictor.

The PI-controller has been used to remove the steady-state error completely for a flow reference step-

input. The Smith Predictor has been utilised to improve the phase response of the DDP by accounting

for its time-delay. Furthermore, the flow controller has been shown to be able to compensate for

load pressure variations. The closed loop response showed large rise time. To increase the rise time,
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without destabilising the closed loop system, a feedforward gain has been utilised. This initiative

improved the performance of the controller.

A requisite that gave access to apply linear control theory was the development of an input-output

map that predicts the behaviour of the DDP. This map has been developed based on the nonlinear

model for the oil temperature of 30◦C using polynomial regression. Unfortunately, when the tem-

perature changes the accuracy of the map degrades to the point where the linear controller is oscil-

lating heavily. To compensate for the temperature changes, adaptation methods has been applied

on the map. The first method that was developed, applies an offset to the polynomial based on the

prediction error. The results from this approach was acceptable but the approach was not capable

of reducing the oscillations sufficiently. For that reason, a second method has been developed using

optimisation theory. A normalised version of the steepest descent algorithm is applied on a cost func-

tion that minimises the prediction error by adjusting the coefficients of the polynomial. This method

showed promising results for a learning rate of µ= 0.01. However, it was deemed necessary to revise

the algorithm in order to avoid excessive adaptation.

7.1 Future Work

The aim of this section is to point out the initiatives that could further improve the research conduct-

ed in this report. Four main subjects has been treated in this report: modelling, estimation, control

and optimisation. The modelling and prototype development is used interchangeably because pro-

totype development would be based on a model. Each subject will be examined succeedingly.

The nonlinear model of the DDP showed large back-flow through the passive HP valve. This could

be improved by utilising an active HP valve to close the valve at optimal points. This way, the DDP’s

output power capability could be improved further.

The estimator was highly sensitive towards the accuracy of bulk modulus and numerical differenti-

ation. The estimator could be further improved by making it less sensitive towards these uncertain

parameters. This could for instance be applied by using adaptive control theory to tune the parame-

ters or nonlinear state observer.

The controller was designed considering the worst-case-damping-scenario. However, the worst-case

was not identified and therefore research on identifying this could be conducted. Based on this

knowledge, a robust controller could be designed to guaranteed stability naturally on the expense

of the flow performance. Gain-scheduling is another interesting controller that could be explored in

order to avoid a decrease in performance and design optimal gains for different operation points.

The most obvious area of research is exploring different optimisation algorithms to be applied on the

mapping function. Especially, global optimisation techniques could make the coefficients converge

to their optimal values. This technique could also be applied on a more accurate mapping function,

i.e. by increasing the order of the polynomial. Finally, another obvious research subject is Neural Net-

work which is an universal function approximator that can estimate a map with arbitrary precision.
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AModel Theories

A.1 Orifice Equation

An orifice is a decrease of area along a fluid path that alters the potential and kinetic energy of the

fluid, see figure A.1 as a reference. The flow is seperated into laminar and turbulent regions. The

laminar flow is streamline, parralel and in-order paths, while turbulent flow is circular, un-ordered

and swirly paths. The upstream particles are accelerated into the narrow path of the orifice with the

area A0 past the smallest stream area, vena contracta A2, to the downstream flow where the effects of

the orifice is no longer present.

A2

A0

1 3

Separated flow

Figure A.1: An illustration of an orifice restriction along a fluid path. [Andersen, 2003, p.21]

To analyse the relation between the upstream flow at point 1 and the flow at vena contracta at point

2 Bernoulli’s Equation is introduced which is valid along a streamline of a steady, incompressible and

inviscid fluid. This equation states that the sum of the kinetic, potential and pressure energies is

constant at any arbitrary point along a streamline.

u2
1

2
+Gz1 + P1

ρ
= u2

2

2
+Gz2 + P2

ρ
(A.1)

where
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u1/2 Fluid velocity at point 1 or 2 [m/s]

G Gravitational acceleration
[
m2/s

]
ρ Fluid density at all points along the streamline

[
kg /m3

]
P1/2 Pressure at point 1 or 2 [Pa]

z1/2 Pizometric head at point 1 or 2 [m]

Assuming the streamline is horizontal, the potential energy on both sides of the equation becomes

equal. Therefore, the gravitational forces are neglected in the following deriviations. Using this as-

sumption on equation A.1 and solving for the fluid velocities gives the following result. [?, p.99-101]

u2
2 −u2

1 =
2

ρ
(P1 −P2) (A.2)

The principle of mass conservation is used to isolate the fluid velocity u2 in equation A.2, see figure

A.2.

1 2

Qout

CV

Qi n

Figure A.2: Conservation of mass for an incompressible fluid in an orifice [Fox et al., 2010, p.359]

Under the previous assumptions, the inlet mass in a given control volume is equal to the outlet mass.

∑
C S

~V ·~A = 0 (A.3)

A1u1 = A2u2 (A.4)

Combining equation A.4, equation A.2 and the fact that flow is given as Q = Au results in a theoretical

orifice equation. [Munson et al., 2010, p.118-120]

u2
2 −

(
A2

A1
u2

)2

= 2

ρ
(P1 −P2)

u2
2

(
1−

(
A2

A1

)2)
= 2

ρ
(P1 −P2)

u2 = 1√
1−

(
A2
A1

)2

√
2

ρ
(P1 −P2)

Q2 = A2√
1−

(
A2
A1

)2

√
2

ρ
(P1 −P2) (A.5)
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where

Q2 Fluid flow through vena contracta
[
m3/s

]
The contraction coefficient is defined as the ratio between the opening area at vena contracta and

the orifice Cc = A2/A0. To account for losses such as viscous friction and deviation from the assump-

tions behind the Bernoulli Equation an emperical coefficient Cv is applied to obtain a practical orifice

equation.

Q2 = Cv A2√
1−

(
A2
A1

)2

√
2

ρ
(P1 −P2)

Q2 = CvCc A0√
1−

(
Cc A0

A1

)2

√
2

ρ
(P1 −P2)

where

Cv Emperical correction coefficient [.]

Cc Contraction coefficient [.]

Due to difficulties in determining Cc a unitless discharge coefficient Cd is defined that accounts for

all losses.

Q2 = Cd A0

√
2

ρ
(P1 −P2) (A.6)

[Andersen, 2003, p.21-23]

A.2 Euler Lagrange Deriviations

The partial derivative within the Euler-Lagrange equation is carried out in the following parts. First

the position vector is defined and the time-derivatives taken for the pistons~xp and the nut~xn .

~xp =



xp,1

xp,2

xp,3

xp,4

xp,5

xp,6


= re



cos (θ)

cos
(
θ− π

3

)
cos

(
θ− 2π

3

)
cos (θ−π)

cos
(
θ− 4π

3

)
cos

(
θ− 5π

3

)


+ re~1 ~̇xp =−re



si n (θ)

si n
(
θ− π

3

)
si n

(
θ− 2π

3

)
si n (θ−π)

si n
(
θ− 4π

3

)
si n

(
θ− 5π

3

)


θ̇ (A.7)

~xn = re

 −si n(θ)

cos(θ)

 ~̇xn =−re

 cos(θ)

si n(θ)

 θ̇ (A.8)
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where~1 is a vector in R6 and ~xp,i ni t ∈ R6 is the initial conditions of each piston. The kinetic and

potential energies of the system is given as:

T = 1

2
J θ̇2 + 1

2
mn~̇x

T
n ~̇xn + 1

2
mp~̇x

T
p ~̇xp (A.9)

V = 1

2
kp ~xp

T ~xp + 1

2
kp~x

T
p,i ni t~xp,i ni t +kp ~xp

T~xp,i ni t (A.10)

where

J Moment of inertia of shaft and eccentric mass, J = 4.49 ·10−4
[
kg m2

]
mn Mass of nut, mn = 0.33

[
kg

]
mp Mass of piston, mp = 0.08

[
kg

]
kp Spring constant at piston, kp = 5830 [N /m]

xp0 Initial spring displacement, xp0 = 0.0125 [m]

~xp Vector containing the position of each piston [m]

~xn Vector containing x- and y- position of the nut [m]

The Langrangian L is defined as the difference between the kinetic T and potential V energies of the

system.

L =
(

1

2
J θ̇2 + 1

2
mn ~̇x

T
n ~̇xn ++1

2
mp ~̇x

T
p ~̇xp

)
−

(
1

2
kp ~xp

T ~xp + 1

2
kp~x

T
p,i ni t~xp,i ni t +kp ~xp

T~xp,i ni t

)
(A.11)

The derivative of the lagrangian w.r.t. the generalized coordinate θ is carried as follows.

∂L

∂θ
= ∂

∂θ

(
1

2
mn ~̇x

T
n ~̇xn + 1

2
mp ~̇x

T
p ~̇xp − 1

2
kp ~xp

T ~xp −kp ~xp
T~xp,i ni t

)

= ∂

∂θ

1

2
mnr 2

e

(
si n2(θ)+ cos2(θ)

)︸ ︷︷ ︸
=1

θ̇2 + 1

2
mp ~̇x

T
p ~̇xp − 1

2
kp ~xp

T ~xp −kp ~xp
T~xp,i ni t


= ∂

∂θ

(
1

2
mp ~̇x

T
p ~̇xp − 1

2
kp ~xp

T ~xp −kp ~xp
T~xp,i ni t

)
(A.12)

An expansion of the three terms results in the following expression when the initial spring displace-

ment xp,i ni t is the same for all pistons.

1

2
mp ~̇x

T
p ~̇xp = 1

2
mp r 2

e θ̇
2

[
6∑

i=1
si n2

(
θ− (i −1)π

3

)]
(A.13)

1

2
kp ~xp

T ~xp = 1

2
kp r 2

e

[
6∑

i=1
cos2

(
θ− (i −1)π

3

)]
+ 6

2
kp r 2

e

+kp r 2
e

[
6∑

i=1
cos

(
θ− (i −1)π

3

)]
(A.14)

kp ~xp
T~xp,i ni t = kp re xp,i ni t

[
6∑

i=1
cos

(
θ− (i −1)π

3

)]
+6kp re xp,i ni t (A.15)
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Taking the derivative of the expanded terms yields the following.

∂

∂θ

(
1

2
mp ~̇x

T
p ~̇xp

)
= mp r 2

e θ̇
2

[
6∑

i=1
si n

(
θ− (i −1)π

3

)
cos

(
θ− (i −1)π

3

)]
(A.16)

∂

∂θ

(
1

2
kp ~xp

T ~xp

)
= −kp r 2

e

[
6∑

i=1
si n

(
θ− (i −1)π

3

)
cos

(
θ− (i −1)π

3

)]

−kp r 2
e

[
6∑

i=1
si n

(
θ− (i −1)π

3

)]
(A.17)

∂

∂θ

(
kp ~xp

T~xp,i ni t
) = −kp re xp,i ni t

[
6∑

i=1
si n

(
θ− (i −1)π

3

)]
(A.18)

Collecting all the tems yields the final result of the derivative w.r.t the generalized coordinate.

∂L

∂θ
= mp r 2

e θ̇
2

[
6∑

i=1
si n

(
θ− (i −1)π

3

)
cos

(
θ− (i −1)π

3

)]

−kp r 2
e

[
6∑

i=1
si n

(
θ− (i −1)π

3

)
cos

(
θ− (i −1)π

3

)]

−kp r 2
e

[
6∑

i=1
si n

(
θ− (i −1)π

3

)]

−kp re xp,i ni t

[
6∑

i=1
si n

(
θ− (i −1)π

3

)]
(A.19)

The derivative of the lagrangian w.r.t. the time-derived generalized coordinate θ̇ is carried in the

following maner.

∂L

∂θ̇
= ∂

∂θ̇

(
1

2
J θ̇2 + 1

2
mn ~̇x

T
n ~̇xn ++1

2
mp ~̇x

T
p ~̇xp

)

= ∂

∂θ̇

1

2
J θ̇2 + 1

2
mnr 2

e

(
si n2(θ)+ cos2(θ)

)︸ ︷︷ ︸
=1

θ̇2 + 1

2
mp ~̇x

T
p ~̇xp


= J θ̇+mnr 2

e θ̇+mp r 2
e

[
6∑

i=1
si n2

(
θ− (i −1)π

3

)]
θ̇ (A.20)

The time derivative becomes

d

d t

(
∂L

∂θ̇

)
= J θ̈+mnr 2

e θ̈+mp r 2
e

[
6∑

i=1
si n2

(
θ− (i −1)π

3

)]
θ̈ (A.21)
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A.3 Fluid viscosity

The used oil is a Shell Tellus Oil 46. It complies with the ISO VG 46 standard. The kinematic viscosity

for a number of differetn temperatures is determined from figure A.3. The kinematic ν and dynamic

viscosity µ relates through the following equation:

µ = ν ·ρ (A.22)

The density of the oil at the specified temperatures is needed in order to find the dynamic viscosity.

The data is collected in table A.1.

Temperature [◦] Kinematic viscosity ν Oil density [kg /m3] Dynamic viscosity [Pa · s]

10 300 910.86 0.2733

20 145 849.25 0.1231

40 46 748.07 0.0344

44 40 730.65 0.0292

60 22 668.42 0.0147

80 11 604.11 0.0066

Table A.1: Kinematic viscosity data for a typical ISO VG 46 mineral oil and density estimations for Shell Tellus Oil 46 at different tempera-

tures.

Figure A.3: Viscosity-temperature plot for mineral oils that comply with different ISO VG standards [Andersen, 2003, Chap.2]
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A.4 Oil parameter variation

The variation in oil parameters in the range T ∈ [0 : 100]◦C and P ∈ [1 : 400]B ar is calcualted by use of

the models given in the report. The change in oil viscosity, oil stifness and oil density is given in figure

A.4a, A.4b and A.5.

(a) Oil viscosity (b) 40 degrees

Figure A.4: (a)Oil viscosity as a function of pressure and temperature, (b) Oil stifness (bulk modulus) as a function of pressure and temper-
ature

Figure A.5: Oil density as a function of pressure and temperature
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A.5 Optimal coefficients for the vogel equation

The optimal coefficient values for the vogel equation is solved using an optimisation problem. The

problem is defined as

argmin
Kvo,a ,Kvo,b ,Kvo,c∈R

C (Kvo,a ,Kvo,b ,Kvo,c ) (A.23)

where

C = (
µ0,1 −µ0(T1)

)2 · s2
1 +·· ·+ (

µ0,5 −µ0(T5)
)2 · s2

3 (A.24)

The values (µ0,i ,Ti ) for i ∈ {1,2,3,4,5,6} consists of datapoints obtained from figure A.3. The scal-

ing coefficients si normalises the coefficients so each term is equally weighted. In practice, this is

achieved by finding the maximum viscosity reading. Let this be µ0,1 without loss of generality. The

scaling coefficients are then determined by

si = µ0,1

µ0,i
(A.25)

The problem is solved in MATLAB using the simplex method and the obtained values are

Kvo,a = 0.000020096463
[
kg /(m · s)

]
Kvo,b = 1050.325917381536 [K ]
Kvo,c = 172.732548744080 [K ]
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BFilters and Controllers

B.1 Filters

A deriviation of the filter used in this report is given below. The moving average filter is derived in the

report as it only contains a number of samples. The first order low pass filter and the second order

butterworth filter is given below.

First order low pas filter

H f ,1(z) = ωc
2
T

z−1
z+1 +ωc

∣∣∣∣∣
s= 2

T
z−1
z+1

(B.1)

= ωc (z +1)
2
T (z −1)+ωc (z +1)

(B.2)

= ωc (z +1)

z
( 2

T +ωc
)+ (

ωc − 2
T

) (B.3)

= 0.00469Z−1 +0.00469

z−1 −0.9906
(B.4)

Second order butterworth filter

H f ,2(z) = ω2
c

s +2
p

0.5ωc s +ω2
c

∣∣∣∣
s= 2

T
z−1
z+1

(B.5)

= ω2
c( 2

T
z−1
z+1

)2 +2
p

0.5ωc
( 2

T
z−1
z+1

)+ω2
c

(B.6)

= ω2
c

(T
2 (z +1)

)2

(z −1)2 +2
p

0.5ωc
( 2

T
z−1
z+1

) · (T
2 (z +1)

)2 +ω2
c ·

(T
2 (z +1)

)2 (B.7)

=
(
ωc ·T

2

)2 (
z2 +2z +1

)
(
z2 −2z +1

)+ 2
p

0.5ωc T
2

(
z2 −1

)+ (
ωc ·T

2

)2 · (z2 +2z +1
) (B.8)
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H f ,2(z) =
(
ωc ·T

2

)2 (
z2 +2z +1

)
z2

(
1+ 2

p
0.5ωc T

2 +
(
ωc ·T

2

)2
)
+ z

(
−2+ (ωc ·T )2

2

)
+

(
1− 2

p
0.5ωc T

2 +
(
ωc ·T

2

)2
) (B.9)

= 6.1 ·10−5z−2 +0.000122z−1 +6.1 ·10−5

z−2 −1.978z−1 +0.978
(B.10)

B.1.1 Flow estimator response for deviation in numerical differentiation

A deviation of 20% is assumed and the results for under estimating is given in figure B.1a and over

estimating in figure B.1b.
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(a) Under estimation
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(b) Over estimation

Figure B.1: Flow estimators sensitivity towards the (a) under estimation and (b) over estimation of the numerical differentiation of the load
pressure of by 20%

Again, the estimator performes very well with a MSE = 7.3342 for under estimation and a MSE =
10.0634 for over estimation.
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B.2 Controllers

B.2.1 Smith predictor

Derivation of closed loop transfer function including inner and outler loop excluding a feedforward

gain is derived to be

Hcl (z) = Qout (z)

Qout ,d (z)
= Hcl ,i (z) ·Hp (z) · z−k

1+Hcl ,i (z) · z−k ·Hp (z)
(B.11)

=
Hc (z)

1+Hc (z)Ĥp (z)(1−z−k )
·Hp (z) · z−k

1+ Hc (z)
1+Hc (z)Ĥp (z)(1−z−k )

·Hp (z) · z−k
(B.12)

= Hc (z) ·Hp (z) · z−k

1+Hc (z)Ĥp (z)
(
1− z−k

)+Hc (z) ·Hp (z) · z−k
(B.13)

= Hc (z) ·Hp (z) · z−k

1+Hc (z)Ĥp (z)+Hc (z) · (Hp (z) · z−k − Ĥp (z) · z−k
) (B.14)

= Hc (z) ·Hp (z) · z−k

1+Hc (z)Ĥp (z)
(B.15)
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CDDP Flow Response

The output flow response from the DDP given input signals θcl ∈ [160 : 280] for load pressure variation

at Pload ∈ [50B ar : 500B ar ] and oil temperature variation of T ∈ [15◦ : 70◦] is showed in figure C.1
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Figure C.1: Output flow as a function of the closing angle from 6 cylinders given different operation conditions.

When the temperature is fixed at T = 30◦ the flow response given the input signals θcl ∈ [160 : 280] for

load pressure variation at Pload ∈ [50B ar : 500B ar ] is showed in figure C.2
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Figure C.2: Output flow as a function of the closing angle from 6 cylinders given different operation conditions for fixed oil temperature at

T=30.

C.1 Maximum flow rate

The maximum output flow rate is a function of the load pressure and θcl = 160◦. The relation is

approximately linear as seen in figure C.3 and the linear fit is

Q̄out ,max = −0.031975 ·Pload +25.06 (C.1)
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Figure C.3: Linear approximation of data obtained from simulation that shows Q̄out as a function of Pl oad for θcl = 160◦
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C.2 Simplified pump response

Reducing the orifice size so that Qnom = 20[L/mi n] and Pnom = 200[B ar ] does not alter the response

drastically, see figure C.4.
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Figure C.4: Simplified pump flow response and nonlinear pump flow response with Qnom = 20[L/mi n] and Pnom = 200[B ar ].

It is observed that the response deviates largely for different step sizes. The transfer function that

is accurate for large step sizes is chosen because the gain of the system is large in this case. If the

designed controller is stable for large gain, it will also be stable for small gain systems.

The simplified pump model is based on a standard second order system

Gp (s) = ω2
n

s2 +2 ·ζ ·ω2
n · s +ω2

n
(C.2)

where the damping factor ζ= 0.65 and natural frequencyωn = 82[r ad/s] for the low step size. For the

large stepsize ζ= 0.65 and ωn = 153[r ad/s].
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