
Department Of Electronic Systems

Simulation of Random Linear
Network Coding in Ad-Hoc

Networks

Final thesis Group 995 MOB

Beatriz García Segovia

31st May 2012
Supervisors: Stephan Rein

Frank Fitzek
Morten V. Pedersen

Department of Electronic Systems I-8
Fredrik Bajers Vej 7
9220 Aalborg Øst
http://www.es.aau.dk/

Title:
Simulation of Random Linear Net-
work Coding in Ad-Hoc Networks

Theme:
WIRELESS MESH NETWORK.

Project Period:
10th Semester - Spring 2012

Project Group:
995

Member:

Beatriz García Segovia

Supervisors:
Stephan Rein

Frank Fitzek

Morten V. Pedersen

Number of copies printed and page:
5, 46

Finish 31st May 2012.

Synopsis:

The purpose of this project is to simulate
random linear coding using NS3. To get
this goal, it has been used NS3 as a li-
brary. In this way, it has been created
a program which can be easily tested in
NS3 without change the content of the
simulator. Moreover, during this the-
sis it has been investigated the benefits
of cooperative relaying in the Alice and
BOB topology, as well as it has been in-
vestigated the benefits of using recoding
in the relay.

iv

Contents

List of Figures 1

Notations 2

1 Introduction 5
1.1 Introduction . 5
1.2 Motivation . 6
1.3 Problem definition . 7
1.4 Project Overview . 8
1.5 Acknowledgements . 8
1.6 Notes and references . 8

2 Background 9
2.1 Random Linear Network Coding . 9
2.2 Definition . 9

2.2.1 Terminology related with Random Linear Network Coding . . . 9
2.2.2 Encoding . 10
2.2.3 Recoding . 10
2.2.4 Decoding . 11
2.2.5 How works RLNC . 11

2.3 NS3 Simulator . 12
2.3.1 OSI Model . 13
2.3.2 NS3 802.11 implementation . 13
2.3.3 WifiNetDevice . 15
2.3.4 Propagation models . 16
2.3.5 How NS3 produces usable programs 16

3 Implementation 19
3.1 Introduction . 19
3.2 Main processes . 19

3.2.1 Source . 19
3.2.2 Relay . 20
3.2.3 Sink . 20

v

CONTENTS

4 Protocols Description 23
4.1 Scenario . 23

4.1.1 Advantages and disadvantages of recoding in relay 24
4.2 Protocols in the network . 24

4.2.1 Protocol 1: Simplest case . 24
4.2.1.1 Analytical calculations 25

4.2.2 Protocol 2: Cooperative relaying case 25
4.2.2.1 Analytical calculations 25

4.2.3 Protocol 3: Cooperative relaying + recode case 26
4.2.3.1 Analytical calculations 26

4.2.4 Analytical results . 28
4.2.5 Simulation . 28

4.2.5.1 Discussion . 30
4.2.6 Improving protocol . 30

4.3 Contribution of this Project . 31
4.4 Assumptions . 31

5 Future work and conclusions 33
5.1 Conclusions . 33
5.2 Future work . 34

Bibliography 35

A How to use NS3 as a library 39
A.1 Creating the Waf folder . 39
A.2 How to create the wscript . 40

vi

List of Figures

1.1 Transmission using traditional routing versus using Network coding
[IFN11] . 6

1.2 Alice and Bob topology for the cooperative relay 7

2.1 RLNC in the project scenario . 12

2.2 OSI model and protocols . 14

2.3 WifiNetDevice architecture [311b] . 16

2.4 Propagation loss models [311a] . 17

3.1 Structure of processes in Source . 20

3.2 Structure of processes in Relay . 21

3.3 Structure of processes in Destination . 21

4.1 Communication between Alice and Bob 25

4.2 Scenario Alice, Bob and Relay . 26

4.3 Number of transmitted packet from Alice simulated by NS3 and by
analytical calculation . 29

1

LIST OF FIGURES

2

Notations

X is the new coded packet of size L (K/s symbols)
B are the original packets, also called information vector
C are the coding coefficients in Galois Field, also called encoding vector
j implies the generation
i has the maximum value of the number of packet to be combined
S Number of transmitted packet from Alice
N Number of received packet in Bob
NR Number of received packets on Bob from relay
NiR Number of innovative from relay
Pi probability of losses in the link A->B
P(i) Probability of having a useful packet in the relay
εR combination of εAR and εRB

εAR is the probability of losses in link Alice-Relay
εRB is the probability of losses in link Relay-Bob
εAB is the probability of losses in link Alice-Bob
ρ number of retransmissions
k number of iterations in the sum operation

3

LIST OF FIGURES

4

Chapter 1

Introduction

1.1 Introduction

Network coding has the potential to become a powerful tool for increasing performance
in packet networks. The fundamental principle which it is based on is the potential to
re-combine received packets in a node before forwarding it, instead of using traditional
routing where the network nodes simply forward packets. In this way, this technique
can help to improve the throughput by decreasing number of transmissions but ob-
taining the same number of packets in destination.

Network coding can be used in different topologies, for instance, the topology
of Alice and Bob consist of three nodes where one is the receiver, another is the
transceiver, and the third one is a relay. Figure 1.1 shows the difference in this topol-
ogy between using traditional routing, above in the figure, and using network coding,
below in the figure. Above can be observed that to sent a packet from Alice and Bob
using a relay, has to be used 2 transmissions, once from Alice to relay and another
one from relay to Bob. The same case can be observed when communication flows
between Bob and Alice. Therefore, 4 transmissions are needed in order to maintain
the communication using traditional routing. However, below in Figure 1.1, it can be
observed that to maintain the communication using network coding in relay, it can be
saved one transmission. Therefore, using network coding in this topology can give a
theoretical throughput gain of 25%.

In Figure 1.1 is used simple XOR coding, which is commonly known as inter-flow
network coding. Inter-flow network coding operates combining packets from different
sources. However, in our scenario all the combined packets are from the same source,
therefore in this thesis is going to be used intra-flow network coding.

5

Chapter 1. Introduction

Figure 1.1: Transmission using traditional routing versus using Network coding [IFN11]

The coding presented in Figure 1.1 relies on simple XOR coding, between two sep-
arate flows which has been successfully implemented in CATWOMAN [IFN11]. In
this report is going to be investigate the use of network coding in a different scenario,
which it will be called cooperative relaying where coding is performed within a single
flow. The basic idea in cooperative relaying is shown in Figure 1.2, where the relay
will improve the communication between Alice and Bob when the main link between
them is bad. Using simulations and analytical analysis it is going to be investigated
the usefulness of cooperative relaying in the used topology.
Like CATWOMAN [IFN11], the implemented protocols of this thesis are going to be
developed in MAC Layer. This fact is due to MAC layer provides addressing and
channel access control mechanisms that make it possible the communication between
nodes. Moreover, implementing this at the MAC layer also has the advantage that
existing system typically based on TCP/IP or UDP/IP do not have to be changed.
This thesis also investigates how this topology can be simulated in the NS3 network
simulator. NS3 is a discrete-event network simulator for Internet systems. NS3 is free
software, licensed under the GNU GPLv2 license.

1.2 Motivation

Nowadays wireless devices are more and more popular. Furthermore, the increased
amount of traffic generated by new services means that the networks are becoming

6

1.3. Problem definition

A

R

B

ᵋAB

ᵋAR ᵋRB

Figure 1.2: Alice and Bob topology for the cooperative relay

increasingly congested. Moreover, wireless devices are supplied by batteries, therefore
caring about energy consumption is something to take into account. For these reasons
it is necessary to continuously improve protocols and investigating new paths to obtain
an effective use of the available resources, saving the maximum amount of energy and
developing fast and reliable systems.

The simple relay model suggested could be applicable in a wise range of wireless
networks, for instance mesh networks but also in standard 802.11 infrastructure model
networks. Therefore, this topology service is a good starting point to investigate the
intra-flow network coding.

We will attempt to implement the proposed scenario in the NS3 network simulator.
NS3 was chosen in order to obtained robustness and throughput improvement, since it
provides a interface simulation where it is possible to filter all kind of errors and find
possible solutions which fit with the goal of the code. Besides, as free software, this
thesis can contribute to the community and set the basis of network coding in NS3 for
future developers.

1.3 Problem definition

The main goal of this thesis is to investigate if cooperative relaying can help in the
communication between two nodes, where cooperative relaying will be implemented
using intra-flow network coding and studying the benefits of using recoded packets in
the relay.
Also it is desired to evaluate the use of the NS3 network simulator as a platform for
implementing and simulating network coding based systems and protocols.
We will evaluate this through the implementation of simple protocols which will be
tested the use of cooperative relaying, and intra-flow network coding.

7

Chapter 1. Introduction

1.4 Project Overview

This report has been split in 5 chapters and one for the appendix. During this chapter,
a small introduction about the topic was made. In addition, the problem definition and
motivation have been presented. In the second chapter there are explained some basics
concepts used during this thesis, as random linear network coding, and an introduction
to NS3 simulator. In the third chapter, itis going to be explained an overview of the
implementation. In the fourth chapter, are going to be explained the protocols what
have been studied and simulated, as well as the comparison between the analytical
results and the simulations.

In the last chapter will be presented the conclusions and future works and in the
appendix is going to be explained how to use NS3 as a library to build our system out
of the simulator.

1.5 Acknowledgements

I do not have enough words to thank the effort and the patience than Morten V.
Pedersen and Peyman Pahlavani have had with me during the course of this thesis.
Their continued support and wise advice have made the difference in this report. Thank
you to make me feel as part of a team, despite my group team was just me.

1.6 Notes and references

For the bibliography it is used cites, which will be included at the end of the paragraph,
in the beginning of the section or in the caption. The bibliography will be cited using
the first 3 letters of the author surname and year of the publications if this is included
in the bibliography.

To get this report clear and easy to follow, it is established the notations that will
be used, which list can be read in the beginning of this document.

8

Chapter 2

Background

2.1 Random Linear Network Coding

[NCO09]

There are two main approaches for implementing intra-flow network coding: Deter-
ministic Network coding and Random Linear Network Coding (RLNC). Deterministic
network coding is suitable for static topologies, therefore it does not fit for dynamic
wireless channel as the channels used in our scenario. For this reason, this thesis is
focused in RLNC. In this section, it will be explained which are the main issues of this
concept and how it is used in the project environment.

2.2 Definition

[NCO09]

Network Coding is an in-network data processing technique that exploits the char-
acteristics of the wireless medium in order to improve the throughput of the network.

2.2.1 Terminology related with Random Linear Network Coding

[NCO09] Before to focus in the main processes carried out in Network Coding, it would
be explained some important concept, which will be used along this thesis:

• Link: The channel where the packets are forwarded between two nodes.

9

Chapter 2. Background

• Generation: In order to do feasible network coding, it is needed to create groups
of packets called generations, where only packets of the same generation can be
linearly combined. Each packet is assumed to consist of symbols over a finite
field.

• Galois Field: is a field that contains a finite number of elements.

• Coefficients: Choosing the coding coefficients could be a tough task. In order to
solve this problem, during this thesis is selected random coefficients over Galois
Field, using a uniform distribution.

RLNC consists in three main processes: encoding, recoding and decoding.

2.2.2 Encoding

[NCO09]

This is one of the main processes carried out in Network coding. Encoding needs
to be performed only at source nodes of the network. It is based on the formula :

Xj =
N∑

i=1
Cij ·Bi

Where,
X is the new coded packet of size L (K/s symbols),
B are the original packets, also called information vector
C are the coding coefficients in Galois Field, also called encoding vector
j implies the generation,
i has the maximum value of the number of packet to be combined.

Moreover, this expression can be calculate with a matrix multiplication, where the
coding coefficients(C) and the original packets(B) are matrices. The matrix expresion
is:

X = C ×B

2.2.3 Recoding

Recoding is performed at relay nodes of the network and is similar to the encoding
process. However, it is more complicated in comparison with encoding, because the
packets are already coded and the new coefficients has to be a linear combination of
the old coefficients.

10

Definition

2.2.4 Decoding

[NCO09] Decoding needs to be performed only at received nodes of the network.
When the destination node receives a set of encoded packets, it is required to obtain
the original ones. For that reason, it is needed to solve the next equation:

B = C−1 ×X

This is a linear system with M equations and N unknowns. It is needed M ≥ N
to achieve decoding data. However, that is not enough, the combinations might be
linearly dependent also.

A packet is called innovative if it carries new information. The previous equation
is a matricidal equation which in practice is solve as follow:

• The encoding and information vectors are received with the packets and stores
in a matrix, which is called decoding matrix.

• Each encoded packet received is stores in the last row of the matrix.

• Each non-innovative packet is reduced to a row of 0s by Gaussian elimination
and is ignored.

In this way, the matrix can be transformed to a reduced row echelon form, where all
entries in a column below a leading entry are zeros.

2.2.5 How works RLNC

[NCO09] In this thesis RLNC will be applied RLNC in the following way, as is shown
in Figure 2.1:

• Alice generates several packets.

• Buffering them until a generation is collected in the queue.

• Once the generation is collected all these packets are encoded in one packet with
the same size, using linear coefficients which belongs to the Galois Field.

• This packet is forwarded.

• The relay node receives the packets, recoding them if it is needed it and forward
them, maintaining, in this way, the flown information in the network. If there
are too much intermediated nodes the probability of receive the packet increase.

11

Chapter 2. Background

Figure 2.1: RLNC in the project scenario

• When Bob receives some packets, it discards repeated packets or corrupted, and
starts decoding.

A significant difference between a coded packet by linear combination and a con-
catenation of packet is that despite both carries information about originals packets,
the coded packets just by itself does not allow to recover any part of the original ones.

2.3 NS3 Simulator

[8BW10]

This section describes how to use NS-3 Network Simulator and how to implement
RLNC into NS3 simulation. With the code that it will be generated, it will be simulate
a mesh network with the same behavior and parameters as it can be found in the real
world. Therefore, it is pretended to obtain a simulation as similar to real network
using random linear network coding as possible.

The NS-3 Network Simulator is specially focused on Internet-based systems. In
this simulator, codes and library components are written in C++, although is also
possible to write them in Python. In the next sections are going to be explained some
codes which have been generated in order to simulate the desired environment.

12

NS3 Simulator

The intention of use object-oriented languages and use a GNU license is to allow
to the user to create or modify models, which enrich the simulator itself.

NS3 has a modular architecture and is based on the NS3 supported libraries and
other ones that can be added by users. This libraries can belong to :

• Core library: For generic aspects, such as callbacks, debugging objects, etc.

• Simulator library: Schedules, events,etc.

• Common library: For independent objects as packets.

• Internet: Models and protocols related to internet such as TCP/UDP.

• Node library: Consist of abstract classes.

2.3.1 OSI Model

The Open System Interconnection (OSI) model is an effort at the International commu-
nity in order to define a networking framework for implementing protocols in abstract
layers. Achieving a system where is possible to work in a layer without taking into
account what happens above or below, is a goal of this model.

In our simulation, the information is generated and forwarded into the different
layers, but this thesis is going to be focus in the MAC layer, because is where the code
is set up. Figure 2.2 shows how the information flows in our simulation and which
kind of protocols are going to be found to work with them, in the MAC layer.

2.3.2 NS3 802.11 implementation

[8BW10]

The starting point to start programing is going to be the WIFI model developed in
NS3. This model is called WifiNetDevice, and next it is going to be shown its behavior.

Firstly, it is needed to talk about the simulation objects:

• Class Node can be considered as a base class in NS3. However, users are allowed
to create their own Node subclasses.

13

Chapter 2. Background

Figure 2.2: OSI model and protocols

14

NS3 Simulator

• Class NetDevice represents a physical interface on a node (such as an Ethernet
interface).

• Class Channel, which is closely coupled to the attached NetDevices, implements
a logical path over which the information flows.

• NS3 Packet objects contain a buffer of bytes where protocol headers and trailers
are serialized. The content of this buffer has to be the same as the content of a
real packet on a real network in the desired scenario. The design of this object
has been done in order to:

– Avoid changing the core, with different kind of packets.
– Maximize the integration with real-world code and systems.
– Make it easy the fragmentation, defragmentation and concatenation pro-

cesses.
– Make a efficiently use of memory.

• Applications generate traffic which it is needed in order to make simulations
of the network. Applications work down the protocol stack and maintain the
communication between nodes via sockets.

Now that these objects have been presented, it is possible to talk about the model
WifiNetDevice based on the IEEE 802.11 standard.

2.3.3 WifiNetDevice

[311b]

Configuration of WifiNetDevice is complex. For this reason, NS3 provides some
helper classes to perform common operations in a simple matter, and leverage the
NS3 attribute system to allow users to control the parametrization of the underlying
models. [311b]

In order to use a WifiNetDevice to a node, it must create an instance of a WifiNet-
Device and a number of constituent objects.

The generate code during this project is based in this structure, being modify only
the functions send and forwardUp and being create some others functions which calls
are made to/from this two functions. Above in Figure 2.3, it can be observe the
position of both functions in the WifiNetDevice architecture.

15

Chapter 2. Background

Figure 2.3: WifiNetDevice architecture [311b]

2.3.4 Propagation models

One of the most important parameters in order to do an accurate simulation is the
propagation loss. Due to interferences and obstacles and the phenomena which they
provoke, the signal strength decreases in different ways, and this fact must be taken
into account in simulations.

Due to the limitations in time and resources, it has been chosen a simple propa-
gation models where the only factor which matters is the distance, however, in future
develops, it has to be chosen or maybe even developed an appropriate propagation
loss model in order to achieved more realistic results. Figure 2.4 shows the models
currently available models in NS3.

2.3.5 How NS3 produces usable programs

Once the NS3 code is placed in a local system, it is needed to compile this code, in
order to create the desired programs. For this goal, NS3 uses Waf which is a Python-
based framework for configuring, compiling and installing applications.

16

NS3 Simulator

Figure 2.4: Propagation loss models [311a]

In order to build a program in a folder, it is required to have the Waf code and a
wscript in the same location. This folders are included in NS3 installation folder, how-
ever, if it is required to build and configure a program outside NS3 it is recommended
to download from [waf11].

Wscripts are python scripts containing functions and variables that may be used by
Waf. The commands of description files are simple functions. As it was said previously,
the wscript should be in the same folder that the Waf code and c++ code. However, it
is possible to create wscript in subfolders, which will be called by the top-level wscript.
For this reason, in the NS3 folder can be found several wscripts in different folders,
but all of them are call from Waf placed in the main NS3 folder, when it is required.

17

Chapter 2. Background

18

Chapter 3

Implementation

3.1 Introduction

As it has been mentioned in previous sections, this thesis is going to work in MAC
layer. Moreover, NS3 is going to be used as simulator and it is needed to set up the
scenario where we will work. In order to get this goal, some c++ codes and classes
have been developed and used as top of the WifiNetDevice class which was introduced
in the previous chapter.

The name of the new class is PepWifiNetDevice and it is used to hold on the
packets, doing some operations with the information (coding, recoding, decoding) and
forward up the information to the upper layers.

3.2 Main processes

The main processes are coding in source, recoding in relay and decoding in the sink.
In Figures 3.1, 3.2 and 3.3 can be observed how it is treated the information when it
reaches one of these nodes.

3.2.1 Source

In the source, it is going to be done the coding. In case that the packet which is going
to be sent is an ARP packet, it will be sent without encoding.
In order to encode the packets, they are going to be stored in a queue until it reaches

19

Chapter 3. Implementation

the generation number of packets in there. Once this is accomplished, the payload of
the packet is extracted, encoded with the Galois coefficients and create a new packet
with the result of encoding, which will be sent to destination. The basic flow diagram
in the source is shown in Figure 3.1.

SEND

ENCODE

CODING?

ARE ALL
PACKETS

ARRIVED?

ENQUEUE EXTRACT INFO
FROM PACKETS

CODING

PACK

YES

SEND IT WITHOUT
NETWORK CODING

NO

NO YES

Figure 3.1: Structure of processes in Source

3.2.2 Relay

In the relay, it can occur two facts: the packet is just forwarded or the packet is
recoding and then forwarded.
Moreover, the relay has a buffer to storage all the packets that reaches it, and this
packets will be used in the recoding over and over again. The basic flow diagram in
the relay is shown in Figure 3.2.

3.2.3 Sink

In the sink, it is going to be decoded the packets and also it is going to be send the
ACK packets to the source when a complete generation is decoded. The basic flow
diagram in the sink is shown in Figure 3.3.

20

Main processes

PROMISC

DESTINATION?

SEND PACKETS
EXTRACT INFO
FROM EACH

PACKET

REENCODING

PACK

REENCODING?

DECODING

NO SI

NO

SI

Figure 3.2: Structure of processes in Relay

DECODINGRECEIVE

CODING?

DESTINATION?

YES

DECODING

yes

HANDLE
INFORMATION

NO

Figure 3.3: Structure of processes in Destination

21

Chapter 3. Implementation

22

Chapter 4

Protocols Description

Wireless mesh networks is a suitable platform to use network coding. In this kind of
network, each node helps the communication increasing the information flow in the
network, due to each node receives and forwards packets. Since the wireless channel
is spread, the paths built by the routing protocols are artificial in the sense that more
than the source and the destination will overhear a specific packet, these nodes are
potential relays. However, the information flows in different routes, and it can occurs
that one node receives the same packet from two different paths. For this reason, it
want to be studied when the relay activity is worth it and when it can help to the
communication between two nodes and when it is just a resources wasted.

In addition, this fact can be apply to other kind of networks, where wireless commu-
nication is involved and somehow it can help the communication between two devices.

4.1 Scenario

In this context, it is set up the first scenario where testing will be done. The situation
is like this: two nodes, Alice and Bob, which are placed far away each other, want to
maintain a communication. Some packets are dropped because interferences, and as
it is used random linear network coding, some generation can not be decoded. That
means more losses in the network. However, there is a third node which has a good
quality link with both nodes. In this situation, the third node, called relay, helps the
communication forwarding the packets which it receives and belongs to one of the other
nodes. An example of this kind of situation can be observe in the picture 1.2

It has to be mentioned than all the nodes in the network are setting in promiscu-
ous mode. Promiscuous mode means that the communication between two nodes is

23

Chapter 4. Protocols Description

unicast, but the surrounded nodes can overhear the information that is flown between
these nodes.

During the simulation, it is going to be used random linear coding, such as a packet
to be send it has to be a combination of several packets. Moreover, in the relay it is
used recoding for increase the received packet probability in the destination. However,
this fact must be used with criteria because this process can make decoding process
more complex or even impossible.

4.1.1 Advantages and disadvantages of recoding in relay

When a packet is received by the relay, it can just forward the packet, or recode the
packets and then forward it. In this basic protocol it is going to be tested which are the
benefits of these actions, in to order to achieve more accurate protocols in the future.

The main advantage of using recoding is that it can be increased the number of
innovative packets in the destination. However, this fact has to be balance with the fact
of this process needs energy and time, so it introduces a delay in the arrival packets.

4.2 Protocols in the network

In this thesis has been studied three cases:

1. Simplest case: two nodes, source where coding is taking place and sink where is
made decoding.

2. Cooperative relaying case: three nodes, source where coding is taking place, sink
where is made decoding and where relay just forwards the packets.

3. Cooperative relaying + recode case: three nodes, source where coding is taking
place, sink where is made decoding and where relay recodes and forwards the
packets.

4.2.1 Protocol 1: Simplest case

This simplest case has been studied in order to compare the throughput obtained here
with the results obtained in cooperative relaying case protocols. The scenario of this
protocol is explained in Figure 4.1.

24

Protocols in the network

Figure 4.1: Communication between Alice and Bob

4.2.1.1 Analytical calculations

In this context, the number of packets S that have to be transmitted by Alice, to
achieve N packets in Bob, can be calculated as:

S = N

1 − εAB

4.2.2 Protocol 2: Cooperative relaying case

Coming back to our scenario, it can be found that there are 3 nodes:

• Alice

• Relay

• Bob

In this case, when a packet is received in the relay, this packet is just forwarded.
Figure 4.2 shows the error probability (ε) of each link.

4.2.2.1 Analytical calculations

In this context, the number of received packets in Bob from relay can be calculated as:

NR = S · (1 − εAR) · (1 − εRB)

The probability of an innovative packets is arrived from relay to destination, is an
important issue to study in this thesis, because this value can help to make decisions
in the behavior of the relay. Taking into account this fact and the previous equation,
it can be found that the number of innovative packets from relay can be calculated as:

NiR = S · εAB · (1 − εAR) · (1 − εRB)

25

Chapter 4. Protocols Description

Figure 4.2: Scenario Alice, Bob and Relay

where it is considered:

εR = −εAR − εRB + εAR · εRB

Therefore,

NiR = S · εAB · (1 − εR)

And the number of packets that have to be transmitted from Alice to achieve N packets
in Bob are calculated as:

N −NiR = S · (1 − εAB)

NiR = S · εAB · (1 − εR)

S = N

(1 − εAB) + εAB · (1 − εR)

4.2.3 Protocol 3: Cooperative relaying + recode case

Figure 4.2 shows the scenario for this case, but in this occasion it is added the recoding
processes in the relay.

4.2.3.1 Analytical calculations

In this context, the number of receiving packets in Bob from relay can be calculated as:

NR = S · (1 − εAR) · (1 − εRB)

In this scenario the calculation of innovative packet is more complicate than previous
case. For this reason, it has been developed a formula, that if it is not completely

26

Protocols in the network

exact it can be considered really accurate. When in the relay is applied recoding, the
probability to obtain an innovative packet depends on the link quality between the
nodes, but also it depends on the forwarded history. If one packet reaches the relay, is
storage in a buffer where it will be recoded together with the rest of the packets store
in this buffer, creating a new packet that it will be forward to Bob. For these reason,
when the number of transmission packet increases, it also increases the probability of
obtaining an innovative packet which it has been lost in previous transmission but that
is contained in the buffer.
In order to get the probability that a packet contained in the relay is useful it has been
used some iterations:

1. First packet is received in the relay. There is nothing useful in the history because
it is just the first packet.

2. Second packet is received in the relay. Here the history is useful when it was
received a packet, but it was lost or not forwarded.

3. Third packet is received in the relay. Two fact can occur to get at least one
useful packet in the history; either it was received the first packet and it was
not forwarded or lost in the last two transmissions or the other case is that
it was received the second packet but it was lost or not forwarded in the last
transmission.

4. Fourth packet is received in the relay. Now, there are 3 possibilities:

• the first packet was received but it was lost or not forwarded during the last
three transmissions.

• the second packet was received but it was lost or not forwarded during the
last two transmissions.

• the third packet was received but it was lost or not forwarded during the
last transmissions.

In this way, it can be achieved the following formula to calculate the probability of
having a useful packet in the relay:

P (i) =
j<i∑
j=0

(1 − εAR) · εi−j
RB

This formula has been used in order to get the number of innovative packets on
Bob as follow:

NiR(i) = εAB·(1−εAR)·(1−εRB)+P (i)·(1−εAB)·(1−εAR)·(1−εRB)·(1−(εAB·(1−εAR)·(1−εRB)))

27

Chapter 4. Protocols Description

This formula has been used in order to calculate the probability of get a innovative
packet in Bob from both paths as follow:

Pi = (1 − εAB) +NiR(i)

where i means the number of packets.
Now, in order to obtained the number of packet that has to be transmitted by Alice
to obtain N packets on Bob, it is used the next approximation:

S∑
i=0

Pi < N

Where S is the number of packets that have to be transmitted by Alice.

4.2.4 Analytical results

Figure 4.3 shows the theoretical number of packets that have to be transmitted by
Alice in order to achieve a fixed number of packet in Bob, depending on the error
probability on the main link, or said with other words, depending on the link quality
between Alice and Bob, in the case shows in Figure 4.3 with the blue *, and also
depending on the error probability on the Alice-Relay-Bob link, for the cases show in
Figure 4.3 with red and green *. It has to be mentioned that green * has been obtained
using recode in the relay, saving an average of 9% of trasnmissions, in this way.

These plots has been obtained using a 74% of error probability in link Alice-Bob
and a 57% in the link Alice-Relay-Bob. The reason of that is that it has been used the
same values, that it have been used during the simulations. After some time developing
the scenario, and make it works, it have been observed that playing with this values
in the simulation is a tough task and it has not been possible to make the simulations
with different values in time to handle this report.

4.2.5 Simulation

Figure 4.3 shows the NS3 simulation of the relation between the number of transmitted
packets from Alice and the number of received packets in Bob depending on the link
quality between them, shows in Figure 4.3with blue line, between them and the relay,
shows in Figure 4.3 with red line, and also using recoding in the relay, shows in Figure
4.3 with green line, after 9 simulations.

28

Protocols in the network

100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of packet received in Bob

T
ra

sn
m

itt
ed

 p
ac

ke
ts

 fr
om

 A
lic

e

74% AB No relaying theoretical
74% AB,57% AR 58% RB relaying theoretical
74% AB, 57% AR, 58% RB,relaying+recoding theoretical
74% AB No relaying simulated
74% AB,57% AR 58% RB relaying simulated
74% AB, 57% AR, 58% RB,relaying+recoding simulated

Figure 4.3: Number of transmitted packet from Alice simulated by NS3 and by ana-
lytical calculation

29

Chapter 4. Protocols Description

4.2.5.1 Discussion

NS3 is an environment which it is pretended to simulate a real network. Therefore,
NS3 generates a simulated traffic as similar to real world as is possible. In this context,
it can be explained the differences between the analytical results and the simulated
results.

Figure 4.3 shows how if the number of received packets increases in Bob, also is
increasing the number of transmission from Alice. Also Figure 4.3 shows that when
the amount of packets received in Bob is low, the analytical result are close to the
simulated results. This fact is due to NS3 tries to make a real network where if the
number of packets flows in the network is high, there will be more problems with the
packets like collisions and therefore, Alice will do more transmission. Therefore, there
are differences between the analytical results and simulated results due to in simula-
tions are included more factors which can affect in the packet behavior.

In respect to simulations, Figure fig:sim shows that the number of transmission
from Alice in red line, decreases to achieve the same amount of packet in Bob, in
comparison with blue line, that was shown in the case where the cooperative relaying
is not used. Also, it can be compared in Figure 4.3 the green and the red lines, and
check how using recoding on the relay, it can be improve the throughput gain in a
5.7% by saving transmissions.

Also it was achieved than when there are more packets in the network, the relay
will be more efficient and it will forward more innovative packets due to its history.

4.2.6 Improving protocol

Once this environment is developed and tested, the protocol can be improve in order
to get a more efficient green system and save energy. In this case, the relay has to
make a choice between forward packets or ignore them, depending on the link quality
where the communication is pretended to be maintained. For this reason, some limits
have to be set in order to discern where to place the bounded, to achieved a good QoS.

Moreover, the relay also can decided if it is good for the network recoding the pack-
ets or just forward them, taking into account also the quality required in the network
and the amount of information flow in there.

Once, all of these goals are accomplished, the scenario can be expanded and then
can be simulated a network more realistic, using several sources and destinations.

30

4.3. Contribution of this Project

4.3 Contribution of this Project

During this thesis has been simulated some cases of Random Linear Network Coding
in a multipath network. When a suitable result will be achieved, the generate code use
together NS3 libraries to make some simulations, which it is possible since NS3 has a
GNU license. Therefore, this thesis will contribute to the community making possible
the simulation of network coding using NS3 simulator libraries.

In fact, this contribution will make possible that other people use this code like
a starting point for future investigation of network coding in multiple situations and
topologies. Moreover, all these simulations and codes have been documented making
easy the understanding of how works NS3, how to create suitable codes in this envi-
ronment and how Random Linear Network Coding works in a multipath network.

4.4 Assumptions

Since there are limitations in time and resources, and in order to make the problem in
this project more feasible and accessible, the following delimitations and assumptions
are made.

• Same packet size during the simulation. This decision was make in order to sim-
plify the code and be more focus on its behavior. If the packet size is different in
each packet, it is needed somehow a dynamic stored, that means, it is needed a
buffer with the packet size of each stored packet. In order to solve this situation,
some paths can be follow:

– Link together all the packets in an array with fixed size.
– Create a matrix with a fixed number of position and maximum position size

and add a field where the exactly size of each packet which is placed in this
position, is added.

In both cases padding with zeros will be needed in the remaining positions.

• The number of nodes during the simulations is two or three (depending on the
protocol), considering fixed the destination and source nodes.

• Propagation losses only depends on distance.

31

Chapter 4. Protocols Description

32

Chapter 5

Future work and conclusions

5.1 Conclusions

To sump up all results obtained in this report, firstly it is going to be explained briefly
what it has done during this project:

1. It has been implemented some protocols in order to incorporate network coding
to NS3. This fact is remarkable since until now, no one has been done that before
as far as our knowledge reaches. In order to get this goal, it have been used NS3
libraries to simulate our scenario and some results have been obtained.

2. It has been studied the benefits of using cooperative relaying in a network.

3. Also it has been studied the benefits of using recoding in the relay.

Therefore, it has been studied some issues and some conclusions can be achieved,
these are:

• It has been set up the basis for future developers of network coding on NS3. This
is a good starting point, due to the fact that NS3 is a powerful tool where it can
be simulated different scenarios.

• It has been discovered than the utilization of the relay is worth it as far as the
main link quality in the communication is worse than the link between the nodes
and the relay. This fact has been studied theoretically, and also it has been done
one simulation, however due to the complexity of the simulations focusing in
link quality parameters and the lack of time, it was not possible to make more
simulations in order to studied the effect of the link quality in the utilization of
the relay. However, these tests can be achieved by future developers easily, now
than the environment is set up.

33

Chapter 5. Future work and conclusions

• It has been found that using recoding in the relay improves the throughput gain
in a 5.7% in comparison with the case where it is not used recoding.

5.2 Future work

Due to the lack of time during this thesis, it was not possible to make some simulation
to back up the conclusion that it was achieved during the analytical evaluation. For
this reason, it would be a good starting point for future work to make some simula-
tions based on the different link qualities and to discern when the relay is actually
needed in the communication, based on these parameters, and also improving the pro-
tocol making possible that the relay turns on or turns off itself depending on the link
qualities.

In the developed protocols, it has been set that the only issue able to affect the
communication is the distance. In future work it can be added other parameters as
fading, to achieve an accurate simulation.

One goal to achieve in future work is to make possible a node to decide if turn on
or off itself. For this reason, it has to be decided a threshold for each parameter which
affects to communication and specially in some services. For that reason, It is going
to be studied in each service which parameters are important and where it would be
placed the threshold of them.
The parameters,to take into account, are listed as follow:

• Minimum overhead. This phenomena is considered as a waste of bandwidth,
caused by the additional information (control, sequence,etc.) which must be
forwarded in addition to data packets in a communication medium. The overhead
affects the throughput of a connection.

• Corrupted packets. Interferences and noise can provoke some errors in arrived
packets, which leaves as a consequences, an increase in the traffic, in the amount
of loss packets, in the overhead and in the throughput.

• Latency is the delay between a packet is through and the packet is received.

• Loss and consecutively loss packets.

• Jitter is produced when the packets from the same source are received with
different delays in the destination.

• Throughput is the amount of data per unit time that are delivered through a
medium physical or logical, in a network node.

34

Future work

• Channel use. This term is concern to a efficient use of bandwidth.

When the service involved in the communication has relation with streaming, VoIP,
online games, or videochat the main parameters to achieve quality of service would be:

• Enough bandwidth.

• Jitter, It should be less than 100 ms.

• The rule of thumb is that no more than 10% of packets should be lost in VOIP
networks otherwise the voice quality will be compromised.

• A maximum delay of 150 ms is the rule of thumb for one-way latency to achieve
similar quality to POTS voice.

However, for Plane Data transfer this limits can be more flexible.

35

Chapter 5. Future work and conclusions

36

Bibliography

[311a] ns 3. Api documentation. http://www.nsnam.org/docs/release/3.13/
doxygen/index.html, 2011.

[311b] ns 3. Wifi. http://www.nsnam.org/docs/release/3.13/models/html/
wifi.html, 2011.

[8BW10] 802.11s based wireless mesh network (wmn) test-bed. 2010.

[IFN11] Inter-flow network coding for wireless mesh networks. 2011.

[Nag11] Thomas Nagy. The waf book. http://docs.waf.googlecode.com/git/
book_16/single.html#_introduction, 2011.

[NCO09] Network coding on the gpu. 2009.

[waf11] Waf. http://code.google.com/p/waf/, 2011.

37

http://www.nsnam.org/docs/release/3.13/doxygen/index.html
http://www.nsnam.org/docs/release/3.13/doxygen/index.html
http://www.nsnam.org/docs/release/3.13/models/html/wifi.html
http://www.nsnam.org/docs/release/3.13/models/html/wifi.html
http://docs.waf.googlecode.com/git/book_16/single.html#_introduction
http://docs.waf.googlecode.com/git/book_16/single.html#_introduction
http://code.google.com/p/waf/

BIBLIOGRAPHY

38

Appendix A

How to use NS3 as a library

The goal of this thesis is to introduce Random Linear Coding to NS3. In order to
achieve that, two ways can be follow:

• Introduce the new code inside our local NS3, doing necessary make some changes
or a new installation of NS3 in the local machine of each new user.

• Or creating a project as a application which will use NS3 as a library, without
any modification of NS3.

In this particular case, it has been chosen the second one. It has been create a
folder with the Waf code and a wscript where it is specified the path of the libraries
which are going to be use for the design. In this way, in the local machine it can be
found a folder where is installed NS3, another folder which content a library where the
linear network coding C++ codes are stored and a folder where it is placed Waf and
wscript and where the applications are built. The last folder, since now will be called
Waf folder in this project.

A.1 Creating the Waf folder

[Nag11] In order to create a systems as it is required here, it is needed to download
the Waf code. These are the steps to follow:

Firstly, It is needed to download the code:

39

Chapter A. How to use NS3 as a library

wget http://waf.googlecode.com/files/waf-1.6.11.tar.bz2
tar xjvf waf-1.6.11.tar.bz2
cd waf-1.6.11
python waf-light

The result of this actions will be something like:

Configuring the project
’build’ finished successfully (0.001s)
Checking for program python : /usr/bin/python
Checking for python version : (2, 6, 5, ’final’, 0)
’configure’ finished successfully (0.176s)
Waf: Entering directory ‘/waf-1.6.11/build’
[1/1] create_waf: -> waf
Waf: Leaving directory ‘/waf-1.6.11/build’
’build’ finished successfully (2.050s)

Changing the permits of waf folder and execute:

$ chmod 755 waf
$./waf --version

The result will be something like:

waf 1.6.11 (a769d6b81b04729804754c4d5214da063779a65)

A.2 How to create the wscript

Once the Waf folder is created, the wscript has to specified which will be the behavior
of Waf. In this case, these lines will be included:

import os 1
APPNAME = ’adhoc_simulations’
VERSION = ’1.0.0’

40

How to create the wscript

These lines are in top of the wscript and its behavior is described as:

• 1. To import some functionality of the operative system where the project is
taken place.

def recurse_helper(ctx, name):
if not ctx.has_dependency_path(name):

ctx.fatal(’Load a tool to find %s as system dependency’ % name)
else:

p = ctx.dependency_path(name)
ctx.recurse(p)

The lines above are placed in order to handle the dependencies, and make a warning
if it is not possible.

The following line describes the name of a NS3 shared library. Where %s is used
to add the correct string which fits in each case.

ns3_lib_name = "ns3-dev-\%s-\%s"

The wscript is consist of 3 functions; option, configure and build. Option function
is where it is configured the options what are required in order to run the program:

def options(opt):
opt.load(’toolchain_cxx’)
opt.load(’dependency_bundle’)
import waflib.extras.dependency_bundle as bundle
import waflib.extras.dependency_resolve as resolve
bundle.add_dependency(opt,

resolve.ResolveGitMajorVersion(
name = ’gtest’,
git_repository = ’git://github.com/steinwurf/
external-gtest.git’,
major_version = 1))

bundle.add_dependency(opt,
resolve.ResolveGitMajorVersion(
name = ’boost’,

41

Chapter A. How to use NS3 as a library

git_repository = ’git://github.com/steinwurf/
external-boost.git’,
major_version = 1))

bundle.add_dependency(opt,
resolve.ResolveGitMajorVersion(
name = ’sak’,
git_repository = ’git://github.com/steinwurf/
sak.git’,
major_version = 2))

bundle.add_dependency(opt,
resolve.ResolveGitMajorVersion(
name = ’fifi’,
git_repository = ’git://github.com/steinwurf/
fifi.git’,
major_version = 2))

bundle.add_dependency(opt,
resolve.ResolveGitMajorVersion(
name = ’kodo’,
git_repository = ’git://github.com/steinwurf/
kodo.git’,
major_version = 2))

The lines above are placed in order to download, in the case that is necessary, the
library kodo and its dependencies, where the network coding code is placed. This step
is done in order to make easier the use and installation of the project enviroment.

opt.load(’compiler_cxx’) 1
opt.add_option(’--run’, 2

help=(’Run a locally built program; argument
can be a program name,’

’ or a command starting with the program name.’),
type="string", default=’’, dest=’run’)

opt.add_option(’--ns3-path’, 3
help=’Install path to ns3’,

action="store", type="string", default=None,
dest=’ns3_path’)

42

How to create the wscript

opt.add_option(’--ns3-type’, 4
help=’The build type used when building ns3

[debug|release]’,
action="store", type="string", default=’debug’,

dest=’ns3_type’)

Where,

1. To look for a C++ compiler.

2. To run a locally built program.

3. To add the path where NS3 is placed.

4. To specify is ns3 is a debug or release (the libraries names have a slightly change
depending on that, however this fact may cause some problems.)

To configure waf some of these options have to be specified or the program could not
be built. This is an example of that:

./waf configure --ns3-path=../../repo/ns-3-allinone/ns-3-dev/
--ns3-type=debug

Where there are specified the NS3 path and the NS3 type in this system. Both val-
ues will be changed for each user in his own system, adding his own NS3 path and type.

In the configure function are added the following lines whose behavior is explained
below:

def configure(conf):
if not conf.options.ns3_path: 1

conf.fatal(’Please specify a path to ns3’)

ns3_path = os.path.abspath(os.path.expanduser(conf.options.ns3_path)) 2

if not os.path.isdir(ns3_path): 3
conf.fatal(’The specified ns3 path "%s" is not a valid ’

’directory’ % ns3_path)

43

Chapter A. How to use NS3 as a library

ns3_build = os.path.join(ns3_path, ’build’)4
if not os.path.isdir(ns3_build): 5

conf.fatal(’Could not find the ns3 build directory ’
’in "%s"’ % ns3_build)

ns3_type = conf.options.ns3_type 6
if not ns3_type: 7

conf.fatal(’You must specify the build type’)
conf.env[’NS3_BUILD’] = [ns3_build] 8
conf.env[’NS3_TYPE’] = ns3_type 9
conf.check_cxx(header_name = ’ns3/core-module.h’,
includes = [ns3_build]) 10
conf.check_cxx(lib = ns3_lib_name % (’core’, ns3_type),
libpath = [ns3_build]) 11
conf.load(’toolchain_cxx’) 12
conf.load(’dependency_bundle’) 13

recurse_helper(conf, ’boost’)
recurse_helper(conf, ’gtest’)
recurse_helper(conf, ’sak’)
recurse_helper(conf, ’fifi’)
recurse_helper(conf, ’kodo’)

where,

1. To warn to the user about adding the NS3 path

2. To add the ns3 path introduced by the user in the sentence waf configure.(An
example is shown above)

3. To warn to the user about the NS3 path added in waf configure is incorrect.

4. To add the string build to the NS3 path to go inside the build folder.

5. To warn to the user about the NS3 build folder path added in waf configure is
incorrect.

6. To get the type of NS3 introduced by the user in a string variable.

7. To warn to the user about adding the type of NS3 debug or realese.

8. To check header of the function core-modules which is included in the code
through the sentence include.

44

How to create the wscript

9. To check the library where is included the body of core-modules, and it adds the
path where the library is placed.

10. To add the path where the libraries are placed to a environment variable, and
use this value in other functions.

11. To add the type of the libraries to a environment variable, and use this value in
other functions.

12. To load toolchain_cxx

13. To load dependency_bundle

In the build function are added the following lines whose behavior is explained below:

def build(bld):
bld.load(’dependency_bundle’)
recurse_helper(bld, ’boost’)
recurse_helper(bld, ’gtest’)
recurse_helper(bld, ’sak’)
recurse_helper(bld, ’fifi’)
recurse_helper(bld, ’kodo’)
ns3_build = bld.env[’NS3_BUILD’] 1
ns3_type = bld.env[’NS3_TYPE’] 2
ns3_libs = [ns3_lib_name % (’internet’, ns3_type),

ns3_lib_name % (’config-store’, ns3_type),
ns3_lib_name % (’core’, ns3_type)] 3

ns3_lib_dir = bld.root.find_dir(ns3_build) 4
ns3_libs = ns3_lib_dir.ant_glob(’*.so’) 5

ns3_libs = [str(lib).split(’/’)[-1] for lib in ns3_libs] 6
ns3_libs = [lib[3:] for lib in ns3_libs] 7
ns3_libs = [lib[:-3] for lib in ns3_libs] 8
bld.program(source = [’adhoc.cc’, ’pep-wifi-helper.cc’,

’code-header.cc’, ’pep-wifi-net-device.cc’], 9
target = ’adhoc’,
libpath = ns3_build,
rpath = ns3_build,
includes = ns3_build,

defines = ["NS3_LOG_ENABLE"], 10
lib = ns3_libs,
cxxflags = bld.toolchain_cxx_flags(),
features = ’cxx cxxprogram’,
use = [’kodo_includes’, ’boost_includes’,

’fifi_includes’, ’sak_includes’])

45

Chapter A. How to use NS3 as a library

where,

1. To extract the path where are placed the libraries from the environment variable.

2. To extract the type of the libraries from the environment variable.

3. To create a list with the libraries used for a code.

4. To go from the root to the path where the libraries are placed.

5. To create a list with all the libraries placed in this folder.

6. To cut the name of the library, as this example:
from : //path/to/libraries/build/libns3-dev-wimax-debug.so
to: libns3-dev-wimax-debug.so

7. To cut the three letters from the beginning: now, the name will be something
like ns3-dev-wimax-debug.so.

8. To cut the three letters from the end: now, the name will be something like
ns3-dev-wimax-debug.

9. To declare a program to compile and built.

10. To enable NS3 LOG.

46

	List of Figures
	Notations
	Introduction
	Introduction
	Motivation
	Problem definition
	Project Overview
	Acknowledgements
	Notes and references

	Background
	Random Linear Network Coding
	Definition
	Terminology related with Random Linear Network Coding
	Encoding
	Recoding
	Decoding
	How works RLNC

	NS3 Simulator
	OSI Model
	NS3 802.11 implementation
	WifiNetDevice
	Propagation models
	How NS3 produces usable programs

	Implementation
	Introduction
	Main processes
	Source
	Relay
	Sink

	Protocols Description
	Scenario
	Advantages and disadvantages of recoding in relay

	Protocols in the network
	Protocol 1: Simplest case
	Analytical calculations

	Protocol 2: Cooperative relaying case
	Analytical calculations

	Protocol 3: Cooperative relaying + recode case
	Analytical calculations

	Analytical results
	Simulation
	Discussion

	Improving protocol

	Contribution of this Project
	Assumptions

	Future work and conclusions
	Conclusions
	Future work

	Bibliography
	How to use NS3 as a library
	Creating the Waf folder
	How to create the wscript

