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ABSTRACT:

Medical imaging is being increasingly used,
and the demand for automatic segmentation
of structures of interest grow.
In this work a model-based segmentation
method is implemented: An active appear-
ance model based on principal component
analysis with a level-set representation of
shape is utilized in an iterative algorithm for
segmentation of 3-D images. The automatic
segmentation algorithm incorporates prior
knowledge to predict how to correct model
and pose parameters in order to achieve a
better fit of the model to the target image.
The segmentation method is tested on 42
prostate MR images and 27 CT images of
the L4 vertebra in a leave-one-out cross-
validation framework. The automatic seg-
mentations are compared to manual refer-
ence segmentations. A median Dice kappa of
0.81 is achieved for both structures.
The algorithm performs similar to previously
described methods, but in some cases it
fails to determine the correct size of the
prostate. Also the appearance model is not
large enough to fully segment the vertebral
processes. The algorithm is sensitive to the
initial location of the average model in the
target image. The active appearance model
presented can be applied on any imaging
modality and any structure of interest if the
shape of the structure is not too variable.
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CHAPTER 1

Introduction

A major challenge in the field of medical image analysis is to solve
the need for automatic segmentation of anatomical structures in 3-D
images. Segmentations are used both for diagnosis and treatment. In
diagnostics the segmentation of organs and other internal structures
can be used to identify e.g. abnormal changes in size and shape. An
example is the segmentation of the cerebral cortex to diagnose neu-
rodegenerative diseases [Eskildsen & Østergaard, 2006].

Segmentation is also used for radiotherapy planning, in which the
target volume and organs at risk are delineated to deliver a high
dose to the cancerous tissue while minimizing the exposure of sen-
sitive normal tissue. Another example is the emerging field of image-
guided surgery, where pre- and/or per-operative images are used for
guiding the surgeon during surgery, thus improving surgery outcome
and reducing the risk of side effects.

The limited resolution and quality of medical images pose a chal-
lenge to segmentation. Typical clinical 3-D images from X-ray com-
puted tomography (CT) or magnetic resonance imaging (MRI) have
voxel sizes in the order of 1–3 mm. This results in a blurring of the
image due to the partial volume effect, a result of each voxel repre-
senting an average of the tissue within the voxel. The image quality
can also be reduced by noise, patient movement, or artifacts intro-
duced as a result of the imaging modality. In CT imaging high density
structures, e.g. implanted metal objects, can introduce streak arti-
facts seen as radial beams emerging from the high-density objects. In
MRI intensity non-uniformities can arise as a result of radiofrequency
field inhomogeneities and patient anatomy, resulting in otherwise
homogeneous tissue having non-uniform intensity values [Erasmus
et al., 2004]. Similarly magnetic field inhomogeneities result in image
distortion.

These artifacts pose a challenge when developing automatic segmen-
tation techniques. As medical imaging is being increasingly used, the
demand for automatic techniques to reduce the manual labor asso-
ciated with segmentation grows.

Current segmentation methods span from the simpler region grow-
ing methods [Gonzalez & Woods, 2008] to model-based techniques,
e.g. active contours [Kass et al., 1988] and active shape/appearance
models [Cootes & Taylor, 2004]. In region growing techniques the
segmentation expands from a seed point into nearby voxels of sim-
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1. INTRODUCTION

ilar properties, but these techniques often fail when facing low con-
trast or some of the artifacts mentioned above, especially partial vol-
ume effects leading to leakage, or beam hardening causing the prop-
agation to stop prematurely. In a more sophisticated technique the
image is matched to a set of atlases, or manually labeled images, to
produce the segmentation. However, some structures in the human
body, e.g. the sulci of the brain, are so complex in their variability be-
tween humans that they can not be sufficiently represented by a set
of atlases [Caunce & Taylor, 1999].

Model-based techniques aim at describing this variability statistically
to generate new shapes from a description of the mean shape and the
shape variability. However, the training data for model-based meth-
ods are typically provided as manually identified anatomical land-
marks combined in a point distribution model to represent the shape
of the object of interest. A major problem with landmark-based ap-
proaches is that landmarks from different images in the training set
have to correspond with each other in an anatomically meaningful
way for the statistical point distribution model to make sense.

Another approach to shape representation is to use a signed distance
map [Tsai et al., 2003]. In this method the zero level-set of the dis-
tance map represents the surface of the object of interest. The level-
set shape representation has been combined with several model-
based segmentation methods, more recently the Active Appearance
Modeling (AAM) method [Hu & Collins, 2007]. This level-set AAM
method was applied to segment the ventricles of the brain from MRI,
but can be readily applied to other anatomical structures and imag-
ing modalities with the constraint that the shape must not vary too
much.

The aim of this project is to implement and evaluate the level-
set AAM segmentation method on other anatomical structures and
imaging modalities. Training data is available for the prostate (MRI)
and the L4 vertebra (CT), and these will be the subject of the eval-
uation. The goal is to build a statistical appearance model of the
anatomical structures, not including possible pathologies (tumors,
etc.). Pathologies cause a larger variation in shape and appearance,
requiring a much larger training set to build a statistical model, if it
is at all possible. Vertebral segmentation can be applied for image-
guided surgery in spondylodesis, and prostate segmentation can be
applied for radiotherapy planning in prostate cancer treatment.
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CHAPTER 2

The prostate

The prostate is a small round muscular gland encompassing the ure-
thra inferior to the bladder (Fig. 2.1). The organ has a diameter of
roughly 4 cm. It secretes prostatic fluid, which comprise 20–30% of
semen and has an antibiotic effect among others, which protects the
urethra from infections. The prostatic fluid is ejected into the ure-
thra by peristaltic contractions of the smooth muscle in the prostate.
[Martini, 2006]

Figure 2.1: Male anatomy, sagittal view. The prostate (outlined in red) is lo-
cated inferior to the bladder (outlined in yellow) and envelops
the urethra. The seminal vesicles are located posterior to the
prostate and bladder. [Gray, 1918].
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2.1 Prostate cancer
Prostate cancer originates in the secretory glands of the prostate
[Martini, 2006], and is the most frequent type of cancer among Dan-
ish males [Danish Health and Medicines Authority, 2009]. 14% of
cancer-related deaths among males are caused by prostate cancer,
or 4% of all deaths among males. This makes it the second most fre-
quent cause of cancer related deaths among males, with lung cancer
being the most frequent. [Danish Health and Medicines Authority,
2009]

In Denmark the incidence has increased from 91.1 per 100,000 males
in 2000 to 136.9 per 100,000 in 2007, which is a 50% increase. Part
of the rise in incidence can be explained by better diagnostics and
more focus on prostate cancer. In the same time-frame the preva-
lence increased from 336.3 per 100,000 males to 616.0 per 100,000, an
83% increase. However, the mortality rate is almost unchanged with
53.2 per 100,000 males in 2000 decreasing to 49.3 per 100,000 in 2007.
[Danish Health and Medicines Authority, 2009]

The risk factors for prostate cancer are not very well understood and
subject to research, but age and family history plays an important
role. It is estimated that 5–10% of prostate cancer cases are heredi-
tary [Brasso, 2007]. Most new cases are seen among 65–69 year-olds,
and prostate cancer is rare before the age of 55 [Danish Health and
Medicines Authority, 2009].

2.1.1 Diagnosis

The main procedures for diagnosing prostate cancer are palpation,
blood test for increased prostate-specific antigen (PSA) level, and ul-
trasound [Martini, 2006].

By doing palpation through the rectal wall a cancerous prostate ap-
pears as a hard, irregular nodule. This procedure is known as digi-
tal rectal exam (DRE), a relatively easy procedure which is performed
routinely on patients with possible prostate cancer. The positive pre-
dictive value is, however, rather low, but combining positive findings
during palpation with increased PSA levels the precision of the test is
improved. Prostate-specific antigen is secreted by the prostate, and
prostate cancer often causes increased levels of PSA in the blood-
stream. A test for increased PSA level is, however, not a good indi-
cator for prostate cancer on its own as there is a number of benign
causes of increased PSA level. PSA is not recommended for screening
purposes in Denmark. [Jønler & Pedersen, 2007]

Transrectal prostatic ultrasound (TRUS) is a more precise diagnos-
tic modality during which biopsies of the tumor and prostate can be
taken. Using TRUS more detailed information about tumor location
and size can be obtained. Typically around ten biopsies are taken for
subsequent histological studies. [Jønler & Pedersen, 2007]
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2.1. Prostate cancer

2.1.2 Treatment

The choice of treatment modality depends on the prognosis and tu-
mor state, but to some extent also on the patient’s preference. The
prognosis depends on PSA level, Gleason score (a tumor grading
system based on histological appearance), comorbidity, and the pa-
tient’s age [Jakobsen et al., 2007].

For patients with localized cancer, no metastases, a good prognosis,
and no other health problems present, the typical treatment choice
is active monitoring, in which the development of the tumor is fol-
lowed closely, but no actual treatment is initiated [Jakobsen et al.,
2007; Martini, 2006]. Patients with an expected lifespan of more than
10–15 years and no metastases can be offered surgical removal of
the prostate (prostatectomy) or radiotherapy, whereas patients with
a shorter expected lifespan are offered medical endocrine therapy
[Jakobsen et al., 2007; Jønler & Pedersen, 2007].

In Denmark the number of males undergoing medical therapy has
increased from 74.3 per 100,000 males in 2003 to 136.4 per 100,000
in 2007. During the same time-frame the number of males under-
going radiotherapy has increased from 32.9 per 100,000 to 57.4 per
100,000 males. The number of males undergoing prostatectomy has
increased from 4.1 per 100,000 males in 2000 to 22.8 per 100,000 in
2007. [Danish Health and Medicines Authority, 2009]

2.1.2.1 Prostatectomy
Prostatectomy is surgical removal of the prostate and possibly the
seminal vesicles and some surrounding tissue depending on tumor
size and location. The treatment is offered to patients with an ex-
pected lifespan of more than 10 years. Prostatectomy can be done
using open surgical techniques or laparoscopic techniques, possibly
robot assisted. The laparoscopic technique shortens admission time,
but does not otherwise reduce side effects or improve mortality rate.
[Jakobsen et al., 2007]

The most frequent side effect is loss of erectile function, as the two
pudendal nerves innervating the penis runs around the inferior part
of the prostate. Depending on the extent of the tumor one or both of
these nerves can be preserved during surgery. The nerve-preserving
surgical technique, as well as post-surgery medical prophylaxis, have
been found to improve recovery of erectile function. Whether to use
the nerve-preserving technique or not depends on the erectile func-
tion before surgery, because the erectile function deteriorates with
age. [Borre et al., 2008]

Urinary incontinence is another frequent side effect, but most pa-
tients recover within 3–6 months. Pre-surgical training of the pelvis
diaphragm is found to improve recovery time. Ideally less than 5%
should experience urinary incontinence after 12 months. [Jakobsen
et al., 2007]
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2.1.2.2 Radiotherapy
Radiotherapy can be given in the form of external beam radiother-
apy (EBRT) or brachytherapy (BT), in which radioactive beads are im-
planted in the prostate. Radiotherapy is offered to patients under 75
years of age having localized cancer [Jakobsen et al., 2007]. The treat-
ment has been reported to be as effective as prostatectomy [Fokdal &
Høyer, 2005].

Radiotherapy treatment of prostate cancer is the third most frequent
type of radiotherapy in Denmark, with 23,273 radiation fractions
given and 1411 patients being treated with prostate cancer using ra-
diotherapy in 2007. The number of patients with prostate cancer be-
ing treated using radiotherapy increased 20% from 2003 to 2007, and
it is expected that half of newly diagnosed patients will be treated us-
ing radiotherapy in the future. [Jensen et al., 2009]

The prostate can move up to 10 mm in each direction depending on
bladder filling and other factors [Jakobsen et al., 2007]. This and other
issues make it necessary to add a margin to the radiation target vol-
ume, causing surrounding normal tissue to receive a relatively high
dose of radiation. The side effects from radiotherapy are caused by
this exposure of normal tissue to radiation, and include anorectal,
bladder, and sexual dysfunctions [Fokdal & Høyer, 2005]. Late side
effects occur months to years after the treatment, and the damage
to normal tissue is irreversible. The severity of side effects depends
on radiation dose and volume of normal tissue included in the target
volume. [Fokdal & Høyer, 2005]

In conformal radiotherapy the target volume is delineated in 3-D im-
ages, thus determining the size, shape and location of the prostate.
This geometrical information is used for planning the shape, direc-
tion and intensity of the radiation beams to reduce the target volume
and exposure of normal tissue [Fokdal & Høyer, 2005; Jakobsen et al.,
2007] leading to fewer and less severe side effects [Dearnaley et al.,
1999; Vordermark et al., 2003]. The prostate size and shape are cur-
rently determined by manually outlining the prostate in each image
slice, a tedious and error-prone task.

2.2 Magnetic resonance imaging of the prostate
3-D images are used to plan the conformal radiotherapy in order to
deliver a high dose to the tumor and a low dose to the surround-
ing tissue. Traditionally CT is used, because radiotherapists need
the electron density values calculated from the CT image for dose
planning. However, MRI offer better soft tissue contrast using T2-
weighted recording, thus the anatomy of the prostate and tumor mar-
gins can be better visualized. The surrounding soft tissue has the
same attenuation coefficient as the prostate in CT images, and com-
bined with the partial volume effect this makes it virtually impossible
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2.2. Magnetic resonance imaging of the prostate

to determine which slice represents the lower apex of the prostate
in CT images. These factors make it easier to delineate the prostate
from MR images, resulting in a smaller target volume and decreasing
the inter-observer variance [Villeirs & Meerleer, 2007].

The delineation of the prostate from MRI can be transferred to CT im-
ages for use in radiotherapy planning. Current methods for MRI to CT
registration span from manually identifying anatomical landmarks in
each image volume and calculating the transformation between each
landmark set to fully automatic registration techniques. In a method
combining the two approaches a stent was placed in the prostatic
urethra and used as fiducial marker for landmark-based registration
[Østergaard et al., 2010]. The registration was then refined using an
automatic method based on mutual information [Collins et al., 1994].

Central gland

Peripheral zone

Bladder

Rectum

Figure 2.2: The prostate and surrounding structures as appearing on MRI.
The prostate consists of the nodular central gland and the higher
signal intensity peripheral zone. Image is prostate cancer pa-
tient 5 scan 1 from the data set.

In MR images the prostate appears as two regions; the central gland
and the peripheral zone (Fig. 2.2). This is especially the case in elderly
men, as the peripheral zone expands with age. The central gland ap-
pears as a nodular region with high signal intensity nodules repre-
senting glandular secretions and low signal intensity regions repre-
senting muscular and fibrous tissue. The peripheral zone lies pos-
terior to the central zone and has high signal intensity representing
the glandular tissue. The prostate is encapsulated by the prostatic
capsule, which appears as a dark rim around the prostate. [Villeirs &
Meerleer, 2007]
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2. THE PROSTATE

Seminal vesicles

Bladder

Colon

Figure 2.3: The seminal vesicles and surrounding structures as appearing
on MRI. Image is prostate cancer patient 4 scan 2 from the data
set.

The seminal vesicles are located superior to the prostate between the
bladder and the rectum/colon (Fig. 2.3). They appear on MRI as high
signal intensity pouches. [Villeirs & Meerleer, 2007]

Tumors typically have low signal intensity on T2-weighted MR im-
ages. About 70% of tumors appear in the peripheral zone where they
can be easily distinguished from the high signal intensity prostatic
tissue. However, tumors in the central gland may be indistinct from
the surrounding tissue. [Villeirs & Meerleer, 2007]

2.3 Prior work in prostate segmentation
Current methods for prostate segmentation can be roughly divided
into region growing, atlas matching and model-based methods.

A semi-automatic segmentation technique based on region growing
was evaluated using CT images [Mazonakis et al., 2001]. The aim was
to reduce the time for manual segmentation by first doing 3-D region
growing and then manually inspecting and correcting the results on a
slice-by-slice basis. Due to the low contrast between the prostate and
the surrounding tissue in CT images the region growing was manually
constrained to account for leakage.

A semi-automatic technique based on wavelets was able to segment
the prostate on 2-D MRI slices with a mean Dice kappa of 0.93±0.005
[Flores-Tapia et al., 2008].

Another study evaluated 3-D multi-atlas matching [Klein et al., 2008].
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2.3. Prior work in prostate segmentation

A set of manually labeled atlas images was registered to an unknown
image using non-rigid registration, and the labels were merged using
different weighing or selection schemes. This method was able to au-
tomatically segment the prostate with a Dice kappa of 0.85 which was
close to the inter observer variability of 0.87 [Klein et al., 2008].

Other studies have investigated the use of model-based segmenta-
tion techniques for fully automatic prostate segmentation. One study
implementing a landmark-based shape model using active contours
for deforming the model was able to segment the prostate on MRI
with a mean Jaccard similarity of 0.78±0.05 [Pasquier et al., 2007].

A landmark-based appearance model using Haar wavelets for ex-
tracting texture features was able to segment the prostate on MRI
with a mean Dice kappa of 0.88±0.06 and a mean absolute distance
of 3.97±2.74 mm [Ghose et al., 2010].

The main problem with landmark-based shape and appearance mod-
els is that landmark points in different training volumes have to
anatomically correspond to each other in some meaningful way. The
landmark representation of shape also puts some constraints on
the type and variability of the structures represented by the model
[Cootes & Taylor, 2004].

A different modeling approach used signed distance maps for repre-
senting the shape in a level-set framework, and used Chan-Vese ac-
tive contours for curve evolution [Tsai et al., 2001]. The technique was
also demonstrated on the problem of prostate segmentation [Tsai et
al., 2004]. A recent study applied the level-set shape representation
in a shape model to achieve simultaneous multi-modal segmenta-
tion of the prostate in MRI and CT images [Chowdhury et al., 2012].
Segmentation was done by fitting the shape model to binary images
extracted from MRI and CT using probabilistic atlases and a random
forest classifier based on Haar wavelet and gradient features. A mean
Dice kappa of 0.83± 0.056 and a mean absolute distance of 2.6 mm
were achieved for segmentation of the prostate from MRI [Chowd-
hury et al., 2012].

The level-set shape model has also been incorporated with the active
appearance model to yield an appearance model which does not de-
pend on landmarks [Hu & Collins, 2007], and that method is applied
in this project.
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CHAPTER 3

The vertebra

The main functions of the vertebral column are to support the upper
body and to protect the spinal cord. The vertebral column consists of
seven cervical vertebrae supporting the head, twelve thoracic verte-
brae supporting the ribs, five lumbar vertebrae supporting the upper
body, five fused sacral vertebral segments between the hips, and three
to five coccygeal segments constituting the coccyx (Fig. 3.1(a)). The
vertebrae are named sequentially according to segment and position
starting from the head.

(a) The five segments of
the vertebral column.

(b) A lumbar vertebra. Anterior side is in the top left
corner, posterior side in the bottom right.

Figure 3.1: Anatomy of the human vertebral column and lumbar vertebrae
[Reworked from Gray, 1918].
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Except for C1 and C2 the vertebrae consists of a vertebral body from
which the pedicles protrude on the posterior side (Fig. 3.1(b)). The
bodies of adjacent vertebrae are separated by an intervertebral disk.
The two pedicles merge forming the laminae and the vertebral arch.

The posterior surface of the vertebral body and the anterior surface
of the laminae form the spinal canal holding the spinal cord. The
spinous process arise from the posterior side of the vertebral arch,
and the two transverse processes arise from the sides. In the thoracic
vertebrae the transverse processes articulate with the ribs.

The superior and inferior articulate processes arise from the laminae,
and form facet joints with the adjacent vertebrae. The orientation of
the facet joint determines the range of movements permitted. The
cervical facet joints have an almost horizontal orientation favoring
rotation, while the lumbar facet joints have a more sagittal orienta-
tion favoring flexion and extension. [Hosten & Liebig, 2002]

3.1 Lumbar spondylodesis
In lumbar spondylodesis (spinal fusion) two or more vertebrae are
immobilized by inserting pedicle screws in the vertebrae and linking
the pedicle screws using metal wire. The technique is often used to
treat degenerative diseases like scoliosis, degenerative disc disease,
spinal stenosis, and tumors. The use of spondylodesis in the US has
increased over the last two decades and is accelerating [Deyo et al.,
2005, 2004] with the US having the highest incidence rate [Deyo &
Mirza, 2006]. In Denmark 1386 operations were performed in 2005
increasing to 1628 operations in 2006 [Rasmussen et al., 2009].

In the conventional surgical technique per-operative spinal naviga-
tion is based on both the surgeon’s anatomical knowledge and pre-
operative images. However, this navigation is difficult causing po-
tentially severe errors in screw placement. Using manual navigation,
error rates in the range of 20–30% have been reported [Koller et al.,
2008; Neo et al., 2005; Rajasekaran et al., 2007]. The error rate de-
pends heavily on the surgeon’s level of experience. Very experienced
surgeons can achieve significantly lower error rates [Kotil & Bilge,
2008]. Using image guiding or computer assistance the error rate is
also reduced [Fu et al., 2004; Ito et al., 2008; Kotani et al., 2007; Laine
et al., 2000; Ludwig et al., 2000].

In computer-assisted spondylodesis the surgical tools are tracked in
real-time visualizing their location and orientation in pre-operative
CT images. This requires registration of the pre-operative images to
the patient during surgery. Currently this is done manually and takes
approximately 10 min per vertebra [Arand et al., 2002], a significant
part of the procedure. Because the spinal column is flexible the ver-
tebrae move with respect to each other. Per-operative freehand ul-
trasound (US) can be used to verify the configuration of the verte-
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3.2. Computed tomography of the vertebrae

brae during surgery. An automatic technique for US-CT registration
has been developed [Mercier et al., 2005, 2011; Yan et al., 2011]. The
US-CT registration technique requires segmentation of the individ-
ual vertebrae from CT images, a task that is complicated by the fact
that CT images show no clear boundary between the vertebrae.

3.2 Computed tomography of the vertebrae
Examples of the appearance of a vertebra in CT images is shown in
Figure 3.2. The dense wall of the vertebra has a CT value of above 200
HU, while the interior body consisting of cancellous bone has a value
of 0–150 HU.

(a) Horizontal slice through the center of
the vertebral body.

(b) Appearance of the facet joints.

Figure 3.2: CT appearance of L4. Images from the data set.

The intervertebral disk separating adjacent vertebral bodies has CT
intensity values in the range 50–100 HU, making it easy to segment
from the denser wall of the vertebral body. The facet joints appear as
thin darker fissures between the dense articulate processes, but the
fissures are so narrow that they can partly disappear on CT images
due to the partial volume effect (Fig. 3.2(b)).

3.3 Prior work in vertebra segmentation
Prior work in vertebral segmentation has focused mainly on apply-
ing elastic models to X-ray or CT images, reporting segmentation er-
rors of around 1 mm [Cohen et al., 1992; Klinder et al., 2008; Mast-
meyer et al., 2006; Shen et al., 2008; Weese et al., 2001], or building
statistical shape models from CT data [Becker et al., 2011; Kaus et al.,
2003; Kirschner et al., 2011; Klinder et al., 2009; Lorenz & Krahnstover,
1999].
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3. THE VERTEBRA

Mastmeyer et al. [2006] applied a 3-D deformable model for segmen-
tation of the vertebral body, achieving a Dice kappa of 0.99 on phan-
tom data. Kirschner et al. [2011] evaluated different implementations
of active shape models on thoracic and lumbar vertebrae, achieving
a Hausdorff distance of 6.88±2.45 mm

Other authors have combined morphology, region growing and other
methods into hybrid methods for vertebral body segmentation [Aslan,
Ali, Chen, et al., 2010; Aslan et al., 2011; Aslan, Ali, Farag, et al., 2010]
or segmentation of full vertebrae [Kim & Kim, 2009]. A Jaccard simi-
larity coefficient of 0.95 for vertebral body segmentation has been re-
ported [Aslan, Ali, Chen, et al., 2010]. Also some work has been done
in segmenting X-ray images using either 2-D [Roberts et al., 2009] or
3-D shape models [Benameur et al., 2003].

So far no work has been published on applying active appearance
models to the problem of 3-D segmentation of individual vertebrae
from CT images of the spine.
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CHAPTER 4

Data and tools

The segmentation method was evaluated using prostate MRI data
provided by the Department of Medical Physics at Aalborg Hospi-
tal, Denmark, and vertebra CT images provided by McConnell Brain
Imaging Center, Montreal Neurological Institute, McGill University,
Canada.

Prostate images
The prostate images were axial T2 weighted fast relaxation fast spin
echo (FRFSE) MRI data from 25 patients. The images were acquired
as part of radiotherapy dose planning for treatment of prostate can-
cer. As part of the clinical procedure a stent had been inserted in
the prostatic urethra for automatic MRI-CT registration [Østergaard
et al., 2010]. The stent is not used in the current study.

The images contain manual delineations of the prostate and other
anatomical structures relevant for radiotherapy planning, but only
the prostate delineations are used in this study. The images were pro-
vided as anonymized DICOM format slices with delineations repre-
sented as DICOM-RT structures. The delineations are a set of slice-
by-slice contours defined by a series of points in the world coordinate
system. Thus the manual segmentations have sub-voxel precision,
however not necessarily sub-voxel accuracy. Each of the 25 patients
have had two MRI scans conducted as part of the radiotherapy, thus
a total of 50 image volumes with delineations are provided.

Each image slice is 512 × 512 voxels with a voxel size of 0.5469 to
0.5664 mm. The volumes range from 16 to 40 slices with a slice thick-
ness of 3 to 3.3 mm.

The manual segmentations had been made for radiotherapy plan-
ning purposes and were not originally intended for use as the basis
of a statistical model. The manual segmentations are the clinical tar-
get volume, which does not necessarily contain only the prostate or
even the full prostate. The scans from four patients were excluded be-
cause the delineations clearly contained other anatomical structures
or pathologies in addition to the prostate:

• Segmentation for patient 11 includes extra-prostatic tissue.

• Segmentation for patient 19 includes the seminal vesicles.

• Segmentation for patient 23 includes extra-prostatic tissue.
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• Segmentation for patient 24 includes part of one seminal vesi-
cle.

These patients were excluded because the statistical model should
only describe the variability of the prostate, and the extra tissue in-
cluded in the manual segmentations would otherwise affect the sta-
tistical model and method validation. After exclusion a total of 42
prostate image volumes were used in this study.

Vertebra images
CT images of the L4 vertebra from 27 patients were provided; one im-
age volume for each patient. Images were acquired with 130 kVp tube
potential and 175 A tube current. One image was acquired with 225 A
tube current. Patients are 22 females and 5 males, 48–79 years old
(median 67).

A manual voxel-based segmentation of the L4 vertebra was provided
for each image. The segmentations were made for this particular
study. Because the manual segmentation is voxel-based the preci-
sion is limited by the voxel size. The in-plane resolution is 512×512
voxels with a voxel size of 0.352× 0.352 mm. The number of slices
range from 55 to 200 with a slice thickness of 0.998 to 2.002 mm. The
images and segmentations were provided in MINC format.

4.1 Programming framework
The appearance model building and iterative segmentation algo-
rithm was implemented in MATLAB.

Image preprocessing and segmentation performance evaluation was
done using the NIAK image analysis kit [Bellec, 2011a] and PSOM
pipelining system [Bellec, 2011b; Bellec et al., 2012] for MATLAB, as
well as the MINC imaging tools [McConnell Brain Imaging Center,
2012]. The following MINC packages were used:

MINC: Main package and DICOM to MINC conversion.

EZminc: Resampling, distance map computation and metrics.

conglomerate: MNI .obj format1 to MINC conversion and vice versa.

bicpl: MNI .obj format tools.

mni_autoreg: Automatic registration and volume cropping.

1The MNI .obj format was developed by David MacDonald at Montreal Neuro-
logical Institute, and is used for representing objects within the MINC toolkit. Ob-
jects are represented by vertex coordinates, faces, and point normals. A reference
description of the file format is available at http://www.bic.mni.mcgill.ca/
users/mishkin/mni_obj_format.pdf.
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CHAPTER 5

Appearance modeling

A model of a class of objects has to be based on a certain way of rep-
resenting the object. One approach is to represent the object by its
geometrical properties, i.e. shape and size. Using this approach the
shape description has to be extracted from images of the object. De-
pending on the type of model and shape description this can be done
automatically or manually for a set of training data.

Another approach is to represent the object directly from the texture
in images of the object, eliminating the need for extraction of shape
descriptors. Models built using this approach do, however, not con-
tain any description of shape, and can thus not be used for segmen-
tation.

In the Active Appearance Model (AAM) a shape and a texture model of
the class of objects are combined. The models are statistical models
based on Principal Component Analysis (PCA) [Lay, 2006], modeling
the possible modes of variation from the average object. That is; the
shape model contains the mean shape, the possible modes of varia-
tion seen in the training data set (eigenvectors), and the typical range
of these modes of variation (eigenvalues), and likewise for the texture
model. The idea behind the Active Appearance Model is the reason-
able assumption that if the shape of an object changes, so does the
grayscale intensities in the image of the object [Cootes et al., 1998].
Thus the shape and texture models are combined using PCA, result-
ing in a statistical model of appearance describing both object shape
and texture with the same parameters.

The Active Appearance Model is a generative model; by varying the
parameters of the AAM new images of objects from the class of ob-
jects in the training data set can be generated. At the same time a
representation of the shape of the object in the new image is gener-
ated by the model. In this way the model can be used for segmenting
previously unseen images by finding the model parameters that gen-
erate an image with the best possible match to the unseen image, and
then extracting the shape from the model.

5.1 Shape representation
The traditional approach to representing object shape is to identify
a set of landmark points on the surface of the object. A landmark
can be defined as an anatomical landmark, a mathematical land-
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mark or a pseudo-landmark. The placement of anatomical land-
marks is defined by the anatomy of the object and located at anatom-
ically meaningful points. Mathematical landmarks are defined by
geometrical properties such as high curvature or extreme points.
Pseudo-landmarks are constructed between anatomical or mathe-
matical landmarks and can be used for approximating continuous
curves. Landmarks for shape representation must be labeled so that
corresponding landmarks in different images share the same label.
[Dryden & Mardia, 1998]

From a set of labeled training images a point distribution model
(PDM) for the shape of the class of objects can be built [Cootes et al.,
1992]. The model describes the mean landmark location and vari-
ability by applying PCA on the landmark coordinates. It is important
that the training images are aligned and that landmarks correspond
to the same anatomical position in each training image. Establish-
ing the correspondence manually is a tedious task, especially for 3-D
images, and automatic methods are prone to errors. Furthermore,
point distribution models are not very good at handling topological
changes and are prone to numerical instability. [Stegmann & Gomez,
2002]

Figure 5.1: Example distance map of a vertebra. Left: A single slice of the
distance map with the zero level set outlined as a black contour.
Right: The same slice represented as a 3-D surface.

A more recent approach to shape representation is to represent the
shape as the zero level set of a signed distance map [Leventon et
al., 2000; Tsai et al., 2003]. The signed distance map is the shortest
distance from any point in the image to the surface of the object,
with outside points having positive values and inside points negative
(Fig. 5.1) [Borgefors, 1991]. Points having a value of zero thus im-
plicitly represent the surface of the object. A shape model based on
this shape representation also need correspondence between train-
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ing images, but this can be achieved by aligning the training im-
ages before building the model. The alignment will not produce per-
fect correspondence between the training images as the point-wise
matching of landmarks will. However, the level set shape represen-
tation is quite robust to small misalignments, as neighboring voxels
in the distance map are highly correlated because the distance only
varies slowly across the image volume [Leventon et al., 2000].

5.2 Texture
A model of image texture can be built using the grayscale values di-
rectly, as is done in the eigenface approach [Kirby & Sirovich, 1990;
Murase & Nayar, 1995; Turk & Pentland, 1991]. It can also be built us-
ing mathematically derived texture features like gradient images or
other texture enhancing operations. An example of this is the use
of Haar wavelets to extract texture features of interest [Ghose et al.,
2010].

Like with the shape model it is important that texture features are
comparable across training images [Cootes & Taylor, 2004]. Thus
when building a model using grayscale intensity values directly as
a texture feature the training images must be normalized to remove
global illumination differences and shape. In this way the training
images are transformed into the same grayscale intensity and shape
reference frame.

In MRI the grayscale intensity values are computed using the in-
verse Fourier transform, thus the mean is completely arbitrary. The
grayscale intensity variance depends on magnetic and radiofrequency
field strength, and thus does not provide any meaningful information
for segmentation. For MR images the grayscale intensity is normal-
ized to zero mean and a set standard deviation. The standard devia-
tion can be chosen arbitrarily. In this project the standard deviation
was set at 450, which is similar to the standard deviation in the train-
ing images. Each training image~I is normalized by applying a scaling
and offset:

~g = (
~I − Î

) 450

σI
(5.1)

The offset Î is the mean grayscale intensity, σI is the grayscale in-
tensity standard deviation, and ~g is the grayscale normalized tex-
ture. For CT images this grayscale normalization is not necessary as
the grayscale intensities are given in standardized values (Hounsfield
Units).

Shape normalization is done by aligning the training images in the
same way as when building the distance map shape model described
above.
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5.3 PCA-based models
A statistical model of an image feature is built from a vector of feature
values ~xi ; one vector for each image i in the training data set of n
images. Depending on the image feature to model this vector can
be a vector of landmark coordinates, voxel grayscale intensity values,
voxel distance map values, etc. For each training image the feature
offset ~δxi is calculated by subtracting the mean feature vector ~̂x:

~̂x = 1
n

∑
i=1..n

~xi (5.2)

~δxi =~xi −~̂x (5.3)

The set of all feature offset vectors from the training data set consti-

tute the variability matrix X =
[
~δx1 · · · ~δxn

]
of size m × n, where m

equals the number of feature elements (i.e. landmark coordinates or
image voxels) and n is the number of training image volumes.

Using Singular Value Decomposition (SVD) [Lay, 2006] the matrix Px

of eigenvectors is computed:

XXᵀ = PxΣxΣ
ᵀ
x Pᵀ

x (5.4)

Px is the eigenvectors of XXᵀ. The diagonal of Σx contains the square
root of the corresponding eigenvalues. The eigenvectors are the prin-
cipal modes of variation of the image feature, and the eigenvalues ex-
press the typical range of variation of each mode in the training data
set.

A new feature vector can be generated from the eigenvectors by mul-
tiplying a parameter vector ~bx and adding the mean feature vector
~̂x:

~x = ~̂x +Px
~bx (5.5)

By constraining the parameter vector~bx to within ±3 standard devi-
ations of each parameter (the diagonal of Σx) only plausible feature
vectors will be generated. [Cootes et al., 1998]

Spurious variations and noise in the training data set can be filtered
by removing the eigenvectors with the smallest corresponding eigen-
values, retaining only a certain fraction of the total variance in the
model. This also reduces the memory footprint of the model.

5.4 Level set appearance model
Utilizing the shape, texture, and statistical modeling concepts de-
scribed above a full appearance model is built. The appearance
model implemented in this project is based on a level set description
of shape and a direct grayscale value representation of texture [Hu &
Collins, 2007].
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The shape model is generated from the set of distance maps ~φi in the
training data set, resulting in the principal modes of shape variation
Ps . Likewise a texture model is generated from the set of grayscale in-
tensity values ~gi , resulting in the principal modes of texture variation
Pg . The full appearance (shape and texture) of an unseen image can

be described by the shape and texture parameters~bs and~bg . In the
appearance model these parameters are combined into the appear-
ance parameters~c.

A parameter matrix B is determined from the shape and texture pa-
rameters describing the training data set:

B =
[

Wsbs

bg

]
=

[
WsPᵀ

s S
Pᵀ

g G

]
(5.6)

The shape variability matrix S and texture variability matrix G are
computed from the training data set.

The weight matrix Ws is multiplied to account for the difference in
units between shape and texture. This weighing makes the shape and
texture parameters approximately the same scale. It is defined by the
ratio of the total grayscale intensity variance ΣgΣ

ᵀ
g to the total shape

variance ΣsΣ
ᵀ
s (1 is the identity matrix):

Ws = 1

√√√√∑(
ΣgΣ

ᵀ
g

)∑(
ΣsΣ

ᵀ
s
) (5.7)

The principal modes of appearance variation Pc can be computed by
applying PCA on the parameter matrix B containing the shape and
texture parameters of the training data set.

B = Pc c[
Wsbs

bg

]
=

[
Pcs

Pcg

]
c

(5.8)

Combining (5.5) and (5.8), new images and shapes can be synthe-
sized using the appearance model by varying the appearance param-
eters~c:[

~φ

~g

]
=

[
~̂φ

~̂g

]
+

[
Qs

Qg

]
~c (5.9)

The variability matrices Qs and Qg are:[
Qs

Qg

]
=

[
PsW−1

s Pcs

Pg Pcg

]
(5.10)

In summary the appearance model consists of the mean shape and

texture (~̂φ and ~̂g ) plus the modes of shape and texture variation (Qs

and Qg ). Plausible images and shapes can be generated by constrain-
ing values of~c to the interval between -3 and +3 standard deviations.
[Cootes et al., 1998]
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CHAPTER 6

Segmentation

The goal when using the appearance model for image segmentation
is to find the model parameters which generate a model image as
close to the target image as possible. This matching of the model to a
target image can thus be treated as an optimization problem in which

the squared difference
∣∣∆~I ∣∣2

between the target image~Is and the im-
age generated by the model~Im is minimized:

∆~I =~Is −~Im (6.1)

Because the appearance model typically has many parameters this
appears to be a high dimensional optimization problem. However,
each attempt at solving the problem is a similar optimization prob-
lem. Cootes et al. [1998] point out that the spatial pattern of ∆~I en-
codes information about how to adjust the model parameters, and
suggest to use this information to learn in advance how to adjust the
parameters in order to achieve a better model fit.

The target and model images are not necessarily comparable in
grayscale intensity values and 3-D pose. Thus the images must be
transformed into a common grayscale intensity reference frame in
which the mean and variance of the grayscale intensity values are
comparable. Likewise the images must be transformed into a com-
mon coordinate system to achieve the same 3-D pose.

The problem of applying the appearance model for image segmenta-
tion can be broken down into the following problems:

• Establish transformations of grayscale intensity and 3-D pose
between the target and model image reference frame.

• Learn the relationship between ∆~I and a change in model pa-
rameters in advance.

• Use this a priori information for image segmentation.

Each of these problems are addressed in turn in the following.

6.1 Transformation between reference frames
Transformation between image and model coordinate systems is
done through rotation, scaling and translation. To transform the tar-
get image into the model coordinate system the target image is sam-
pled at points defined by the transformation matrix T

(
~t
)
, where~t is
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the pose parameter vector:

~t = [
φ,θ,ψ, s, tx , ty , tz

]ᵀ (6.2)

The transformation is defined so that the zero vector represents
no change in pose

(
T

(
~0

)= 1
)
, and so that for small pose changes

T
(
~t1

)
T

(
~t2

)≈ T
(
~t1 +~t2

)
. These properties are necessary for the predic-

tion of pose parameter adjustments to be consistent [Cootes & Taylor,
2004]. The properties are straightforward to achieve for rotations and
translations. In order to achieve these properties for scale the param-
eter s is chosen to be the natural logarithm of the actual scaling. For
details of the pose representation see Appendix A.

To transform the target image grayscale intensity values into the
model grayscale intensity reference frame the target image is normal-
ized to zero mean, and a scaling is applied on the grayscale intensity
values:

~gs =
(
~Is − Îs

) 1

1+u
(6.3)

The texture scale parameter u is defined so that u = 0 represents no
change in grayscale intensity to achieve the same properties of the
transformation as described above.

Combining the appearance parameters~c, the pose parameters~t , and
the texture parameter u, the full set of model parameters ~p are:

~p =
~c~t

u

 (6.4)

6.2 Learning parameter adjustments
Using the full model parameters ~p the optimization problem is refor-
mulated to minimize the square error E

(
~p
)= ∣∣~r (

~p
)∣∣2 of the residuals

~r , where:

~r
(
~p
)=~gs

(
~t ,u

)−~gm (~c) (6.5)

~gm (~c) = ~̂g +Qg~c (6.6)

The synthesized model image~gm is defined in (5.9) which is repeated
above, and the sampled target image ~gs is the target image sampled
at points defined by the 3-D pose parameters~t and transformed into
the model grayscale intensity reference frame by (6.3).

A first order Taylor expansion of~r
(
~p
)

around ~p gives:

~r
(
~p +∆~p)=~r (

~p
)+ ∂~r

∂~p

(
~p
)
∆~p (6.7)

The
(
i , j

)
th element of the matrix ∂~r

∂~p is the partial derivative ∂ri
∂p j

.

28



6.2. Learning parameter adjustments

To achieve a better model fit in an iterative optimization framework
the objective is to find the parameter displacements ∆~p which mini-
mize

∣∣~r (
~p +∆~p)∣∣2, where ~p is the initial parameter estimates. Setting

(6.7) equal to zero the linear least squares solution gives:

∆~p =−R~r (6.8)

The parameter change prediction matrix R is the left inverse of the
partial derivative matrix ∂~r

∂~p :

R =
(
∂~r
∂~p

ᵀ ∂~r
∂~p

)−1
∂~r
∂~p

ᵀ
(6.9)

The matrix R depends on the current parameter estimates ~p and
should normally be recalculated at every step. However, R is assumed
to be relatively fixed, and can be estimated from the training data set
by displacing each parameter in turn from the known optimal value
and average over the training set [Cootes & Taylor, 2004].

The partial derivative for each parameter is estimated by a Gaussian
weighted sum of derivatives for different displacements around zero:

∂ri
∂p j

=∑
k

w (k)
ri

(
~p +δp j k

)− ri
(
~p
)

δp j k
(6.10)

The weighting factor w (k) is a Gaussian window normalized to make∑
k w (k) = 1, where k is the index of the current displacement. By ap-

plying the Gaussian window the derivatives for small displacements
are weighted higher than larger displacements in the derivative esti-
mation.

For the training data set the optimal values of the pose and texture
parameters are the zero vector, because the training volumes are al-
ready normalized in pose and grayscale texture. Thus the calculation
of the residuals displacement for pose parameters reduce to:

∆~r~t =~r
(
~p +∆~t)−~r (

~p
)

=~gs
(
∆~t ,0

)−~gm (~c)−~gs
(
~0

)+~gm (~c)

=~gs
(
∆~t ,0

)−~gs
(
~0

) (6.11)

A similar result is achieved for the texture parameter u. The deriva-
tive for the pose and texture parameters can thus be estimated as an
average over the training data set, without even knowing the appear-
ance model. This implies that the part of ∂ri

∂p j
corresponding to the

pose and texture parameters can be computed once for each training
image, and does not need to be recomputed if the choice of parame-
ters for model building change.
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The calculation of the residuals displacement for the appearance pa-
rameters~c reduce to:

∆~r~c =~r
(
~p +∆~p)−~r (

~p
)

=
(
~gs − ~̂g −Qg (~c +∆~c)

)
−

(
~gs − ~̂g −Qg~c

)
= Qg~c −Qg (~c +∆~c)

=−Qg∆~c

(6.12)

This can be estimated once directly from the model, and does not
need to be computed for each image in the training data set.

The range of parameter displacements for estimating the derivative
∂ri
∂p j

is chosen based on the suggestions by Cootes & Taylor [2004]. The

chosen ranges are:

Appearance~c: ±0.5 times the standard deviation (square root of the
eigenvalue) of each parameter.

Rotations φ,θ,ψ: ±π, i.e. the full range of rotations.

Scale s: ±0.1, corresponding to the range 0.905–1.105 (or about±10%)
in actual scaling.

Translations tx , ty , tz : ±3 voxels, corresponding to ±3 mm.

Texture scale u: ±0.1, corresponding to ±10% in texture scaling.

6.3 Iterative segmentation algorithm
The learned relationship R between the residuals ~r and the change
in parameters ∆~p is used in an iterative algorithm for matching the
model to a target image (Algorithm 6.1). The algorithm is comparable
to gradient descent; the difference being that the gradient direction is
estimated using prior knowledge instead of being calculated in every
step.

The algorithm takes the target image ~Is , the appearance model,
the parameter change prediction matrix R, and an initial parameter
guess ~p as inputs.

The initial guess of parameters could be the zero vector for appear-
ance parameters ~c0 and texture scale u0. The pose parameters ~t0

should be initialized to a qualified guess of the location and pose of
the object of interest in the target image. One choice could be zero
change in rotations and scale and to initialize translation to the cen-
ter of the target image. The translations could also be a user-supplied
manual estimate of the location of the modeled object in the target
image.

The algorithm is initialized by computing the residuals~r and squared
error E for the initial parameter estimates (line 1–2). For each itera-
tion the proposed change in parameters∆~p is computed (line 4). The
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6.3. Iterative segmentation algorithm

Algorithm 6.1 Iterative segmentation algorithm using predictions of
parameter changes. Input is the target image ~Is , the appearance
model ~̂g and Qg , the parameter change prediction matrix R, and an
initial parameter estimate ~p, which could just be the zero vector. The
algorithm will change the parameters in the direction suggested by R
for different step sizes, but only as long as the parameter change im-
proves the overall grayscale fit between the model and target image.

Require: ~Is , ~̂g , Qg , R, ~p = (
~c0,~t0,u0

)ᵀ
1: ~r ←~gs

(
~t0,u0

)−~gm (~c0)
2: E ←~r ᵀ~r
3: repeat
4: ∆~p ←−R~r
5: for k = [1,1.5,0.5,0.25, . . . ] do
6: ~p ′ ← ~p +k∆~p
7: Constrain ~p ′ to plausible values.
8: ~r ←~gs

(
~t ′,u′)−~gm

(
~c ′

)
9: E ′ ←~r ᵀ~r

10: if E ′ < E then
11: E ← E ′

12: ~p ← ~p ′

13: break for-loop
14: end if
15: end for
16: until E’ > E
17: return ~p

proposed change ∆~p is the direction in the high dimensional param-
eter space in which the squared error is reduced.

A simplistic line search is performed to allow for a variable step size
k (line 5). Different pre-defined step sizes are tried in turn until one
is found which reduces the squared error E . For each step size the
new parameter values are computed from the estimated adjustments
(line 6), and the appearance parameters are constrained to within ±3
standard deviations of each appearance parameter. This is done to
ensure that only plausible shapes will be generated.

The updated squared error E ′ is computed. If E ′ is smaller than the
previous squared error E the estimate is accepted as an improve-
ment, and the line search is terminated to move to the next iteration
step. If the line search go through all step sizes without finding any
improvement of the squared error then convergence is declared and
the algorithm is terminated.
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CHAPTER 7

Image pre-processing

To build an appearance model the training images have to have the
same pose and be comparable in grayscale intensity characteristics.
The goal of image pre-processing is to register all training images to
a common volume of reference in order to remove pose difference
among training sets, to normalize the grayscale intensity, and to con-
vert images to a common format for further analysis.

Training image volumes for model building must be:

• Comparable in grayscale intensity characteristics.

• Registered in a common coordinate system.

• Represented in the same file format.

Manually segmented training shapes for model building must be:

• In the same common coordinate system as the images.

• Represented as a signed distance map.

The exact pre-processing steps necessary depend on the imaging
modality and file format of the original images.

7.1 Common reference
The training volumes are registered to a common reference volume
(Fig. 7.1(a)). This reference is manually created based on one of the
training images.

To create the common reference the image is rotated to make the
transverse plane of the patient correspond to the x-y plane in the im-
age and to make the sagittal plane correspond to the y-z plane. The
rotation center is set to the center of the manual segmentation (mean
of contour point coordinates), and the rotation parameters are deter-
mined manually by inspecting the image.

The image volume and segmentation shape are transformed accord-
ing to the chosen rotation.

7.2 Registration
Training images are registered to the common reference to remove
differences in pose. Registration was done using the minctracc tool
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[Collins et al., 1994]. The registration is done in three steps presented
below:

1. Remove translations using the location of the manual segmen-
tation.

2. Roughly remove rotations using the full image information.

3. Fine-tune rotations and scale using only image information
around the segmentation.

The first step is a simple computation, and only the last two steps use
minctracc. These last two registration steps are based on Mutual
Information [Collignon et al., 1995], and the center of rotation is set
to the center of the manual segmentation. An example of the result
of each step is shown in Figure 7.1 and 7.2, along with the common
reference.

The translation is removed by computing the transformation re-
quired to move the segmentation center to the center of the reference
segmentation. This makes a near-perfect alignment in translation, as
it is based on the manual segmentation. This transformation is used
as the initial transformation guess in the next step.

In step two a six parameter rigid body transformation (3 translations,
3 rotations) is computed using a simplex radius of 5 on a 3-D lattice
with a step size of 4 mm. Because this initial transformation guess
is quite good, translations are weighted by a factor of 0.01 to punish
large translations away from the initial guess. Thus the main function
of this step is to align the images in terms of rotations (Fig. 7.1(c)).

In the final registration step both the reference and the image vol-
ume are masked to a volume of interest (VOI) defined by the corre-
sponding manual segmentation dilated by a 26-connected kernel of
40 × 40 × 40 mm. This creates a VOI containing the segmented re-
gion plus a margin of 2 cm. The actual dilation kernel dimensions
depend on the voxel dimensions. The transformation result from the
previous step is used as the initial guess. A seven parameter pro-
crustes transformation (3 translations, 3 rotations, 1 scale) is com-
puted using a simplex radius of 1 on a 3-D lattice with the step size
reduced to 2 mm. Again translations are weighted by 0.01, and scaling
is weighted by 0.005 making a 0.5% change in scale weighted equal to
1 degree of rotation. This final step will fine-tune the rotations while
allowing for some scaling (Fig. 7.2(d) and 7.1(d)).

The result of the registration is a transformation matrix which can be
used for transforming the image volume and segmentation into the
common space of the reference.
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7.2. Registration

(a) Common reference. (b) After the first step; translations removed, initial
rotations kept.

(c) After the second step; rotations removed. (d) After the third step; rotations and scale further re-
fined.

Figure 7.1: Example of image registration after each step (transverse plane).
The top left image is the common reference. Each image is in
the space of the common reference. Notice how the image is
rotated first to roughly align the overall image (c), and later to
finely align the prostate and surrounding tissue (d), decreasing
the overall match but improving the local match around the
prostate. Image is prostate cancer patient 12 scan 1.
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7. IMAGE PRE-PROCESSING

(a) Common reference. (b) After the first step; translations removed, initial
rotations kept.

(c) After the second step; rotations removed. (d) After the third step; rotations and scale further re-
fined.

Figure 7.2: Example of image registration after each step (sagittal plane).
The top left image is the common reference. Each image is in
the coordinate system of the common reference. Notice how the
image is translated (b) to align with the reference (a). Image is
prostate cancer patient 12 scan 1.

7.3 Image volumes
Image volumes are preprocessed in the following steps:

1. Convert image volumes to the MINC file format.

2. (MRI only) Normalize grayscale intensities to zero mean and a
defined variance.

3. Transform the image volume into the common space and re-
sample to isotropic resolution.

4. Crop the volume to a VOI defined from manual segmentations.

First the image volumes are converted to the MINC file format.

For MR images the grayscale intensity values have to be normalized.
This is not necessary for CT images as the grayscale intensities are
given in Hounsfield Units. Details of normalization are given in sec-
tion 5.2.

The image volume is then transformed into the space of the com-
mon reference using the transformation computed during registra-
tion (section 7.2). The image is resampled to an isotropic resolution
of 1 mm using B-spline interpolation.

Finally the image is cropped to a volume of interest defined by the
union of all training segmentations.
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7.4. Manual segmentations

7.4 Manual segmentations
Manual segmentations represented as DICOM-RT structure sets are
pre-processed in the following steps:

1. Convert DICOM-RT structures to an MNI .obj format object.

2. Transform the object into the common space.

3. Convert the object to a high-resolution binary MINC mask
cropped to the desired VOI.

4. Compute the signed distance map from the high-resolution bi-
nary volume.

5. Downsample the distance map to normal resolution.

Examples of the original DICOM-RT shape representation, the MNI
.obj representation (step 1), and the distance map representation
(step 4–5) is shown in Figure 7.3.

Figure 7.3: Example of a manual segmentation represented as slice con-
tours, a triangular surface mesh (MNI .obj file format), and the
zero level set of a signed distance map, respectively. Based on
prostate cancer patient 4 scan 1.

In DICOM-RT the segmentations are represented as a series of con-
tour points defined slice-by-slice (Fig. 7.3). The points are extracted
from the DICOM-RT header and converted from the DICOM left-
posterior-superior coordinate system to the MINC right-anterior-
superior coordinate system. A Delaunay triangulation of the points is
computed, and the resulting tetrahedra are filtered to remove tetra-
hedra lying outside of the segmentation contours. For each tetrahe-
dron the circumcenter is computed and projected onto the nearest
x-y plane (image slice). If the circumcenter is outside of the segmen-
tation contour of the slice the tetrahedron is discarded. Next a trian-
gular surface mesh of the remaining tetrahedra is computed (Fig. 7.3).
The MNI .obj file format contains the mesh points, faces and point
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7. IMAGE PRE-PROCESSING

normals. The point normals are determined as a weighted average of
the face normals weighted by the reciprocal euclidean distance be-
tween the mesh point and the face circumcenter. The mesh points,
faces and point normals are written in the MNI .obj file format.

The object is transformed into the space of the common reference
using the transformation computed during registration (section 7.2).

The transformed object is converted to a high-resolution binary
MINC mask based on a cropped version of the reference volume with
an isotropic resolution of 0.2 mm. The resolution is a compromise
between the desired precision of the final distance map and the avail-
able amount of RAM for computation. A higher resolution will reduce
the uncertainties introduced by the voxelation of the shape. Crop-
ping is done also to reduce the memory requirement. The cropped
region is the same as for the image volumes (section 7.3).

The signed distance map is computed from the binary mask. It is
defined as the distance from the current voxel to the surface of the
segmentation with outside voxels having positive values and inside
voxels negative. Thus the surface of the segmented object is repre-
sented by the zero level-set of the signed distance map (section 5.1
and Figure 7.3).

Finally the high-resolution distance map is downsampled to the res-
olution of the final normalized and cropped image volume (sec-
tion 7.3).

If the segmentations are provided as binary volumes the distance
map is computed directly from the binary volumes and cropped to
the desired VOI.

7.5 Preprocessing pipeline implementation
The registration, image preprocessing, and manual segmentation
preprocessing steps are dependent upon each other; registration
cannot be done without a MINC image and an object representation
of the manual segmentation, and the image and segmentation pre-
processing cannot complete without the registration. Also the VOI
for cropping is determined from the manual segmentations.

To handle all the steps and dependencies the preprocessing tasks are
built into a PSOM pipeline. For an overview of the DICOM prepro-
cessing pipeline see Figure 7.4. The pipeline will handle failing steps
and regenerate missing outputs on subsequent runs, without having
to run all steps again. For more information about PSOM features re-
fer to Bellec et al. [2012]. The output of the preprocessing pipeline is
used for model building and performance evaluation. For more de-
tails on pipeline implementation and a description of the individual
steps, see Appendix B.
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DICOM to MINC DICOM-RT to 
object

Normalize 
intensity

Two-step 
registration

Compute initial 
transformation

Resample 
volume

DICOM 
images

DICOM-RT 
structures

Transform object

Object to MINC 
mask Merge masks

Make high-res 
template

Object to 
segmentation

Compute 
distance map

Downsample to 
normal resolution

Crop volume

Image 
volume Distance map

Common 
reference

Figure 7.4: Overview of the preprocessing PSOM pipeline for DICOM input
(simplified). Steps are color-coded according to: Image prepro-
cessing, Segmentation preprocessing, Registration, and Crop-
ping. Solid edges indicate primary input; dashed edges indi-
cate secondary input. Processing steps inside the box are done
for each input image, while the three cropping steps outside run
only once.
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CHAPTER 8

Performance evaluation

The performance of the appearance model-based segmentation al-
gorithm is evaluated using leave-one-out cross-validation, in which
the appearance model is trained on all patients but one and then ap-
plied for segmentation of the images from the one patient left out.
This is done for each patient in turn, and the real performance of
the segmentation is then estimated from the median and spread of
the individual performance results. By using this validation method
the number of training images for model building is maximized,
thus maximizing the possible amount of variability described by the
model. The validation framework is implemented as a PSOM pipeline
(Appendix B).

Training is done using the preprocessed images, but segmentation is
done on the original images to assess the segmentation performance
in a real clinical setting. The initial parameter estimate is initialized
to zero in appearance, rotations, scale, and texture scale. The trans-
lations are initialized to the center of the manual segmentation com-
puted from the MNI .obj representation. In a clinical setting the ini-
tial translations could be a user-supplied coordinate of the center of
the anatomical object in the image.

For each image the following segmentation metrics are computed,
comparing the manually delineated segmentation M to the auto-
matic segmentation A:

• Dice kappa

• Jaccard similarity

• Normalized volume difference

• Hausdorff distance

• Median signed distance

• Median absolute distance

The manual segmentations are used as “gold standard” reference,
even though the inter- and intra-rater variability can not be assessed.

Dice kappa
The Dice kappa, also known as the Dice similarity coefficient, is a
measure of overlap between regions, and is defined as the ratio of
the volume in common between the regions to the mean volume of
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8. PERFORMANCE EVALUATION

the regions [Feuerman & Miller, 2008; Zijdenbos et al., 1994; Zou et
al., 2004]:

κ (M , A) = 2 · V (M ∩ A)

V (M)+V (A)
(8.1)

The function V (R) is the volume of a segmented region R.

κ has a value between zero and one, and values close to one implies
that the two regions share many common voxels.

Jaccard similarity
The Jaccard similarity coefficient is a measure similar to the Dice
kappa, and is defined as the ratio of the common volume to the total
volume of segmented voxels:

J (M , A) = V (M ∩ A)

V (M ∪ A)
(8.2)

Like the Dice kappa a Jaccard similarity coefficient close to one indi-
cates a high level of agreement between the segmentations.

Normalized volume difference
The normalized volume difference is the absolute difference between
the volume of the two regions normalized by the mean volume:

D (M , A) = 2 · |V (M)−V (A)|
V (M)+V (A)

(8.3)

A value close to zero indicates that the two regions have roughly the
same volume.

Distance metrics
The Hausdorff distance is the longest distance between any voxel m
in M and any voxel a in A, and is defined as:

H (M , A) = max(h (M , A) ,h (A, M)) (8.4)

where h (M , A) is the shortest distance from the point m in M , which
is farthest away from any point in A, to the point a closest to m:

h (M , A) = max
m∈M

min
a∈A

|m −a| (8.5)

Thus all points in one region lie within the Hausdorff distance from
a point in the other region [Huttenlocher et al., 1993; Rockafellar &
Wets, 1998]. The larger the Hausdorff distance, the more mismatch
between the two segmentations.

The Hausdorff distance is estimated using signed distance maps. The
signed distance map and MNI .obj representation of each segmenta-
tion is computed. The object representation can be computed from
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Figure 8.1: Example of the intersection of an object on a distance map. Left:
Automatic segmentation colored by the value of the manual dis-
tance map. Right: Manual segmentation (black contour) over-
laid on the automatic distance map (automatic segmentation
shown as gray contour). The value of the distance map on each
point of the object surface is the shortest distance from that point
to the surface of the other object. Color scale is the same in both
figures.

the signed distance map by extracting the zero level-set using march-
ing cubes. These level-sets represent the surface of the segmented
objects.

By intersecting the surface of one object with the distance map of the
other object the distance to the other object from each point on the
surface can be found (Fig. 8.1). The value of the distance map at a
point on the surface represents the shortest distance from that point
to the other object. By spline interpolation of the distance map to the
exact coordinate given by the object representation sub-voxel preci-
sion of the distance from the point to the object can be achieved.

The maximum distance from a point on the surface of one object to
the other object is the value h (. . . ) in (8.4). An estimate of the Haus-
dorff distance H (M , A) is found by computing the distances from
each object to the other and finding the signed maximum distance.
Negative distances represent points on the surface which are inside
the other object, and thus the real distance from that point to the
other object is zero.

Much of the variability of the vertebrae is in the spinous and trans-
verse processes, which are elongated structures. The Hausdorff dis-
tance (or maximum distance) is quite sensitive to variation in such
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8. PERFORMANCE EVALUATION

structures, and does not measure the overall match between the seg-
mentations. The median signed distance is less sensitive to varia-
tions in such structures, but more sensitive to variation in the overall
match. The sign of the distance is defined so that the distance is pos-
itive if the automatic segmentation lies inside (is smaller than) the
manual reference.

If the objects are roughly the same size, but offset from each other,
the median signed distance will be close to zero because the surface
of one object will intersect with approximately the same number of
positive and negative distances on the signed distance map of the
other object. The median absolute distance will reveal such a con-
figuration.
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CHAPTER 9

Prostate segmentation

An appearance model is trained and tested on 42 MR image volumes
of the prostate (chapter 4) in a leave-one-out cross-validation frame-
work (chapter 8). As suggested by Cootes & Taylor [2004] and Hu &
Collins [2007] a threshold is applied to remove the least significant
eigenvectors from the shape, texture and appearance model. 98% of
the variance in each model is retained, reducing the size of the model
and the number of parameters [Cootes & Taylor, 2004; Hu & Collins,
2007].

Based on predictions of parameter change learned from the training
data set the appearance model is applied for prostate segmentation
(chapter 6).

9.1 Appearance model
The appearance model is trained on pre-aligned images. Figure 9.1
gives a visual assessment of the alignment of the training data.
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(a) Transverse slice.
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(b) Sagittal slice.

Figure 9.1: Summation image for visual assessment of the alignment of the
prostate training data set.

To explore the properties of the appearance model it is trained on the
full prostate training data set, and the implications of the parameters
are examined. The appearance model is a combination of a shape
and a texture model (chapter 5). The contribution of each shape and
texture parameter to the total variability in each model is shown in
Figure 9.2.
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9. PROSTATE SEGMENTATION
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Figure 9.2: Scree plot of shape and texture eigenvalues showing the propor-
tion of variance and cumulative variance for each eigenvector.
18 shape and 37 texture eigenvectors are retained after thresh-
olding.
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Figure 9.3: Scree plot of appearance eigenvalues. 33 appearance eigenvec-
tors are retained after thresholding.
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9.1. Appearance model

Only relatively few parameters describe the majority of the variability
in the shape model; three parameters describe roughly 80% of the
shape variability. After applying the threshold 18 shape parameters
are retained.

The variability in the texture model is described by a larger number
of parameters. After applying the threshold on the texture model 37
parameters are retained.

The shape and texture models are combined into a full appearance
model. The scree plot of the appearance model is shown in Figure 9.3.
After applying the threshold 33 appearance parameters are retained.
These parameters describe the appearance of the prostate in MR im-
ages.

Figure 9.4: Shape variability of the three most significant appearance pa-
rameters. Each appearance parameter (rows) is adjusted ±3
standard deviations (columns).

Figure 9.4 shows the effects on prostate shape of varying the three
most significant parameters in the appearance model. Figure 9.5
shows the effects on texture of varying the same parameters. The
first parameter corresponds roughly to the overall size of the prostate
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9. PROSTATE SEGMENTATION

−3σ1 −2σ1 −1σ1 0σ1 1σ1 2σ1 3σ1

−3σ2 −2σ2 −1σ2 0σ2 1σ2 2σ2 3σ2

−3σ3 −2σ3 −1σ3 0σ3 1σ3 2σ3 3σ3

Figure 9.5: Texture variability of the three most significant appearance pa-
rameters in model slice 27. Each appearance parameter (rows)
is adjusted ±3 standard deviations (columns). The model shape
is outlined in green, and the mean shape is outlined in red.

and the ratio between height and diameter in the transverse plane. It
also to some extent describes the roundness of the outer surface of
the peripheral zone. The second parameter describes the size and
extent of the central gland, as well as the length in the lateral di-
rections. The third parameter roughly describes whether the central
gland points upwards or forwards, as well as several other more subtle
shape changes. The parameters indicate that prostates in the training
data set differ most in overall size as well as in the shape of the central
gland compared to the peripheral zone.

9.2 Parameter adjustment predictions
To estimate the performance of the parameter adjustment predic-
tions in the iterative segmentation algorithm (chapter 6) each param-
eter is systematically displaced from the optimal value, and the pre-
dicted parameter adjustment is computed based on the difference
between the model and image. This is done for each image in the
training data set.
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9.3. Segmentation performance
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Figure 9.6: Actual vs. predicted displacement of the three most significant
prostate appearance parameters. Error bars are one standard
deviation.

There is a linear relationship between the predicted adjustment and
the actual displacement of the appearance parameters (Fig. 9.6). For
rotations there is a linear relationship within approximately ±10°,
and the predictions have the same sign as the displacement within
±60° (Fig. 9.7). Translations show a linear relationship between pre-
dicted and actual displacements within ±2 mm, and predictions have
the correct sign within displacements of ±10 mm. For displacements
in scale the predictions are weak, but have the correct sign within
±20% change in scale. Texture scale shows a near perfect linear re-
lationship.

9.3 Segmentation performance
Examples of prostate segmentations using the iterative segmenta-
tion method (chapter 6) are shown in Figure 9.8 and 9.9. The first
figure compares the manual and automatic segmentation on 2-D
slices, and the second compares the manually and automatically seg-
mented shape in 3-D. Each segmentation is computed using a model
trained on all images except the segmented image.

Figure 9.10 and Table 9.1 show the performance metrics computed in
the leave-one-out cross-validation (chapter 8). The outliers in Dice
kappa, Jaccard similarity, and median absolute distance are images
from the same patient in which the model fail to estimate the correct
scale or translations. The outlier in Hausdorff distance is a patient
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Figure 9.7: Actual vs. predicted displacement of prostate pose and texture
parameters. Error bars are one standard deviation.

in which the manual segmentations contain significant amounts of
extra-prostatic tissue.

Metric 25th 50th 75th

Dice kappa 0.7435 0.8073 0.8453

Jaccard similarity 0.5917 0.6769 0.7321

Normalized volume difference 0.101 0.2167 0.4613

Hausdorff distance [mm] 6.236 7.528 9.19

Median signed distance [mm] −1.302 1.63 2.468

Median absolute distance [mm] 1.885 2.375 3.279

Table 9.1: The 25th percentile, the median, and the 75th percentile of the
prostate segmentation performance metrics.
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9.3. Segmentation performance

Figure 9.8: Examples of prostate segmentation of scan 1 from patient 2, 3
and 4 respectively (rows). Left column is a transverse slice, right
column is a sagittal slice. The automatic segmentation is shown
in green, average model in red, and the manual segmentation is
shown in blue for reference.
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9. PROSTATE SEGMENTATION

Figure 9.9: Examples of prostate segmentation of scan 1 from patient 2, 3
and 4 respectively (rows). Left column is manual segmentations,
right column is automatic segmentations.
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Figure 9.10: Performance metrics computed by leave-one-out cross-valida-
tion. Red line is the median, edges of the blue box are the 25th

and 75th percentiles, whiskers are the lowest and highest values
not considered outliers, and red plusses are outliers. Distance
metrics are in units of mm.
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CHAPTER 10

Vertebra segmentation

An appearance model is trained and tested on 27 CT image volumes
of the L4 vertebra (chapter 4) in a leave-one-out cross-validation
framework (chapter 8). The vertebra appearance model is trained
using the same parameters as the prostate appearance model (chap-
ter 9).

10.1 Appearance model
The vertebra appearance model is trained on pre-aligned images.
Figure 10.1 gives a visual assessment of the alignment of the training
data.
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(a) Transverse slice.
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(b) Sagittal slice.

Figure 10.1: Summation image for visual assessment of the alignment of the
vertebra training data set.

The contribution of each shape and texture parameter to the total
variability of the L4 vertebrae is shown in Figure 10.2. A threshold is
applied on the parameters to retain 98% of the variance in the model.
After applying the threshold 21 shape parameters and 24 texture pa-
rameters are retained.

The vertebra shape and texture models are combined into a full ap-
pearance model. The scree plot of the appearance model is shown in
Figure 10.3. After applying the threshold, 22 appearance parameters
are retained in the L4 vertebra model.

Figure 10.4 shows the effect on vertebra shape of varying the four
most significant appearance parameters. Figure 10.5 shows the ef-
fects on texture of varying the same parameters. The first parameter
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Figure 10.2: Scree plot of shape and texture eigenvalues showing the propor-
tion of variance and cumulative variance for each eigenvector.
21 shape and 24 texture eigenvectors are retained after thresh-
olding.
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Figure 10.3: Scree plot of appearance eigenvalues. 22 appearance eigenvec-
tors are retained after thresholding.
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10.1. Appearance model

Figure 10.4: Shape variability of the four most significant appearance pa-
rameters. Each appearance parameter (rows) is adjusted ±2
standard deviations (columns).

is roughly related to the length and shape of the spinous process as
well as the upper facet joints. The second parameter is related to the
length of the transverse processes and the shape of the lower facet
joints. The third parameter is related to the length of the spinous and
transverse processes compared to the size of the vertebral body. The
fourth parameter is related to the height of the vertebral body in rela-
tion to the length of the spinous process.

The parameters indicate that the L4 vertebrae in the training data set
differ most in length of the spinous process, shape of the facet joints
and length of the transverse processes.

59



10. VERTEBRA SEGMENTATION

−2σ1 −1σ1 0σ1 1σ1 2σ1

−2σ2 −1σ2 0σ2 1σ2 2σ2

−2σ3 −1σ3 0σ3 1σ3 2σ3

−2σ4 −1σ4 0σ4 1σ4 2σ4

Figure 10.5: Texture variability of the four most significant appearance pa-
rameters in model slice 35. Each appearance parameter (rows)
is adjusted ±2 standard deviations (columns). The model
shape is outlined in green, and the mean shape is outlined in
red.

10.2 Parameter adjustment predictions
The relationship between parameter adjustments predicted by the al-
gorithm and the true displacements is shown in Figure 10.6 for ap-
pearance parameters and in Figure 10.7 for pose and texture param-
eters. The relationship between the actual and predicted parameter
displacements for the vertebra model is similar to the prostate model
(section 9.2).

10.3 Segmentation performance
Examples of vertebra segmentations using the iterative segmentation
method (chapter 6) are shown in Figure 10.8 and 10.9, comparing the
automatic segmentation to the manual. Each segmentation is com-
puted using a model trained on all images except the segmented im-
age.
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Figure 10.6: Actual vs. predicted displacement of the three most significant
vertebra appearance parameters. Error bars are one standard
deviation.

Figure 10.10 and Table 10.1 show the performance metrics computed
in the leave-one-out cross-validation (chapter 8). The outliers in Dice
kappa, Jaccard similarity, and distance metrics are caused by an im-
age in which the model fail to estimate the correct translations, be-
cause the initial translation estimates are too far from the real posi-
tion of the vertebra.

Metric 25th 50th 75th

Dice kappa 0.7816 0.8086 0.8265

Jaccard similarity 0.6415 0.6788 0.7043

Normalized volume difference 0.2285 0.2949 0.3356

Hausdorff distance [mm] 11.37 13.06 15.67

Median signed distance [mm] 1.832 1.93 2.414

Median absolute distance [mm] 1.875 1.978 2.414

Table 10.1: The 25th percentile, the median, and the 75th percentile of the
vertebral segmentation performance metrics.
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Figure 10.7: Actual vs. predicted displacement of vertebra pose and texture
parameters. Error bars are one standard deviation.
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10.3. Segmentation performance

Figure 10.8: Examples of vertebra segmentation from patient 2, 3 and 4 re-
spectively (rows). Left column is a transverse slice, right col-
umn is a sagittal slice. The automatic segmentation is shown
in green, average model in red, and the manual segmentation
is shown in blue for reference.
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10. VERTEBRA SEGMENTATION

Figure 10.9: Examples of vertebra segmentation from patient 2, 3 and 4 re-
spectively (rows). Left column is manual segmentations, right
column is automatic segmentations.
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Figure 10.10: Performance metrics computed by leave-one-out cross-vali-
dation. Red line is the median, edges of the blue box are the
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CHAPTER 11

Discussion

An active appearance model with level-set representation of shape
has been developed for 3-D segmentation of medical images in an
iterative segmentation algorithm. The appearance model was based
on the work by Cootes et al. [1998], which has been extended with
a level-set description of shape by Hu & Collins [2007]. Cootes et
al. [1998] implemented an iterative segmentation framework in 2-D
based on prior knowledge of parameter adjustments, which also in-
corporated pose changes. Hu & Collins [2007] implemented a recur-
sive least squares search for segmentation in 3-D, but without incor-
porating pose changes.

In this project the active appearance model with level-set shape rep-
resentation by Hu & Collins [2007] was utilized in the iterative seg-
mentation framework originally suggested by Cootes et al. [1998]
to allow for pose changes during segmentation. The segmentation
framework was extended to 3-D and tested on two different anatom-
ical structures.

Data
The modeling and segmentation algorithm was tested on prostate
MRI data and vertebra CT data. Original manual segmentations were
represented as slice contours and voxel-based binary masks respec-
tively.

Depending on the representation of the manual segmentations dif-
ferent kinds of segmentation errors are seen. It can be clearly dis-
tinguished from a 3-D rendering of a segmentation which repre-
sentation has been used. A segmentation based on slice contours
will appear layered with continuous curves in the slice plane, but
with a more irregular outline orthogonal to the slice plane. A voxel-
based segmentation will easily appear jagged with spurious spikes
and holes, especially if the segmentation is not carefully done, which
is a difficult task in three dimensions. The goal of modeling is to de-
scribe the variability in the underlying anatomical structure and to
exclude the segmentation errors.

In the lack of a true gold standard the manual segmentations were
used for training and evaluation of the segmentation performance.
The segmentation errors mentioned above affected the outcome of
the performance metrics. If the appearance model is to make per-
fect correspondence with the manual segmentations the model must
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11. DISCUSSION

include the segmentation errors, which is not desirable. The model
should exclude the segmentation errors and only describe the under-
lying structure. Thus a good appearance model will achieve lower
than ideal performance metrics when compared to the manual seg-
mentations. The model should achieve better performance metrics if
compared to true gold standard segmentations.

This could be dealt with in several ways. A gold standard could be
established by evaluating the inter- and intra-rater variability of the
manual segmentations, and by computing reference segmentations
based on a set of segmentations of the same image. This would,
however, require a lot of manual labor to segment each image sev-
eral times. Another way to deal with the problem is to use simulated
data, in which the gold standard is known. Such simulated data could
be generated from the model with additive noise as suggested by Be-
trouni et al. [2011].

Appearance modeling
The parameters of the appearance models are related to the phys-
ical properties and anatomical variability of the modeled object.
Prostates have a relatively simple shape, and can thus be described
by relatively few parameters. The main variability is in size, possibly
caused by age-related prostate hypertrophy.

Vertebrae have a more complex shape with several articulations (e.g.
spinous and transverse processes) varying in length and size relative
to each other. This is also seen in the vertebra appearance model,
where a larger ratio of parameters are retained after thresholding.
The overall size of the L4 vertebra is more constant in adults than the
prostate size.

The threshold applied on the model parameters determine the amount
of variability in the training data set to include in the model. If all
variability is included the training data will be perfectly described,
but the model will over-fit to the errors in the manual segmentations
described above. This will result in lower segmentation performance
compared to gold standard segmentations. If too few parameters are
retained the model will not be able to sufficiently describe the nat-
ural variability of the object, again resulting in lower segmentation
performance.

In this project the threshold was chosen at 98%, but the threshold
could also be determined by evaluating the segmentation perfor-
mance for models trained at different thresholds and selecting the
threshold resulting in the best segmentation performance. However,
the training phase is a slow and computationally expensive task, and
training the model at different thresholds will take quite some time
(approximately one week with the current MATLAB implementation,
depending on the number of thresholds to test).
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Parameter adjustment predictions
The segmentation algorithm utilize prior knowledge of how to adjust
the model parameters in order to achieve a better fit of the model to
the target image. The learned information is an approximation of the
relationship between changes in the grayscale intensity residuals and
changes in the model parameters.

Ideally there is a linear relationship between the parameter adjust-
ments predicted by the algorithm and the actual displacement from
the optimal parameter values. For model and texture parameters the
relationship is close to linear. For rotations and translations the re-
lationship is linear for small parameter displacements, but the lin-
ear relationship breaks down for larger displacements. However, as
long as the predicted and actual parameter displacements have the
same sign and the algorithm does not over-predict too far it should
still converge [Cootes et al., 1998]. For scaling the linear relationship
is almost non-existing, which results in segmentation failure if the
scale of the object in the target image is too far from the mean object
scale. The relationships between predicted and actual parameter dis-
placements are similar for the prostate and vertebra model, and are
also consistent with the relationships found by Cootes et al. [1998] for
a 2-D appearance model of human faces.

To improve the robustness to large displacements in pose parame-
ters Cootes et al. [1998] suggest to implement a multi-resolution algo-
rithm, in which the model is trained at different resolutions in a Gaus-
sian image pyramid. During segmentation the model would then be
fitted to the target image starting at the lowest resolution to achieve
a coarse fit for large pose displacements, continuing to finer resolu-
tions to refine the model fit. This could be the focus of future work.

Segmentation algorithm
The segmentation algorithm is a rather simple iterative algorithm
similar to gradient descent, with the difference that the gradient is es-
timated using prior knowledge and not recalculated at every step. To
allow for different step sizes in the gradient descent a simplistic line
search is applied, in which different step sizes are tried in turn until
a better fit is found. This might not be the most efficient approach,
and if speed is an issue it would be relevant to investigate the effect of
using other optimization methods (e.g. golden section search [Kiefer,
1953] or Brent’s method [Brent, 1973]) in the line search.

The current MATLAB implementation is able to segment an image in
about 15 seconds, which may be fast enough for typical clinical ap-
plications.

Prostate segmentation results
Prostate segmentation results show a median Dice kappa of 0.81,
which is lower than most previously reported results. A previous
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atlas-based method achieved a mean Dice kappa of 0.85, but the re-
sults were achieved using data with thinner slices than in the cur-
rent study (1 mm), and the algorithm was significantly slower than
the algorithm presented in this study (15 min compared to 15 sec in
this study) [Klein et al., 2008]. A landmark-based appearance model
achieved a Dice kappa of 0.88±0.06 using Haar wavelets for extracting
texture features [Ghose et al., 2010]. This approach could also be ap-
plied in the current appearance model instead of using the grayscale
intensity values as texture features directly. The segmentation re-
sults are similar to a level-set shape model achieving a Dice kappa
of 0.83±0.06 by fitting the model to binary images extracted by voxel
classification [Chowdhury et al., 2012]. The median Jaccard similarity
of 0.68 is also lower than a previously reported mean Jaccard coeffi-
cient of 0.78 [Pasquier et al., 2007] achieved using active shape mod-
els, but that method was more an aid in manual segmentation in that
it applied manual re-initialization or corrections of erroneous con-
tours. Also the method was quite slow with an estimated segmenta-
tion time of 1 hour per patient, which was only in some cases faster
than manual segmentation.

The median signed distance of 1.6 mm show that the automatic
prostate segmentation is in general smaller than the manual refer-
ence, indicating that the algorithm fails to determine the correct
prostate size. The larger median absolute distance of 2.4 mm indicate
that the two segmentations are also somewhat misaligned. This re-
sult is similar to a previous shape model-based segmentation achiev-
ing a mean absolute distance of 2.6±0.6 mm [Chowdhury et al., 2012]
and an appearance model-based segmentation achieving a mean ab-
solute distance of 3.97±2.74 mm [Ghose et al., 2010]. Outliers in the
results are cases in which the algorithm fail to determine the cor-
rect scale and/or translations. These findings are consistent with the
comparison of actual vs. predicted pose parameter displacements in
that the scale prediction is very weak and the translation predictions
break down for large displacements.

The results show that some scale is described by the appearance
model, and some scale is described by the scale parameter. To re-
move scale completely from the appearance model the initial regis-
tration of the training data should be improved. Another approach
is to include scale completely in the appearance model and discard
the scale parameter from pose. This implies the assumption that the
prostate size varies in a way that can be described statistically, which
may be a reasonable assumption.

It should be noted that the distance maps are computed from a vox-
elated segmentation representation, introducing an uncertainty of
±0.1 mm in the distance map for manual prostate segmentations and
±0.5 mm for automatic segmentations.
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The median Hausdorff distance of 7.5 mm indicate that the model
fails to describe protrusions in the prostate shape. Looking at the
manual reference it is evident that these protrusions are extra-prostatic
tissue included in the clinical target volume, which should proba-
bly not be included in gold standard prostate segmentations. This
is especially the case for the single outlier in Hausdorff distance. The
model fails to represent these structures, because they are not suffi-
ciently represented in the training data set. This is also shown by the
3-D example renderings of manual and automatic segmentations,
where the automatic segmentations are closer to the mean model
shape than the manual segmentations. For use in radiotherapy plan-
ning it is important that the Hausdorff distance is as small as possi-
ble to ensure that the complete prostate volume receive full radiation
dose.

Vertebra segmentation results
Vertebra segmentations show results similar to the prostate segmen-
tations. The median Dice kappa is 0.81, the Jaccard coefficient is
0.68, and the normalized volume difference is 0.29, but all three met-
rics have a lower spread than for prostate segmentations. No authors
have reported these metrics for full vertebra segmentations in the lit-
erature, thus a direct comparison with other methods is not possible.

The outlier in Dice kappa and Jaccard similarity coefficient is a case
in which the initial translation guesses are too far from the actual ver-
tebra location causing the algorithm to fail to converge to the correct
location.

The lower spread in metrics are probably due to the fact that the man-
ual references contain only the vertebra with no surrounding tissue,
as in the prostate data set. Another factor could be that the vertebra
shape is more distinct than the prostate, and that the grayscale inten-
sity contrast with the background is higher.

The median signed distance and median absolute distance are both
very similar with a median value of 1.9 mm, indicating that the seg-
mentations are well aligned (except for the mis-aligned outlier), but
that the automatic segmentations are 1–2 mm smaller than the man-
ual references. The median Hausdorff distance of 13 mm indicate
that the model fails to segment the vertebral protrusions correctly.
Note that the distance map uncertainty introduced by the voxelated
segmentation representation is ±0.5 mm for both manual and auto-
matic vertebra segmentations.

The 3-D example renderings of automatic and manual segmenta-
tions show that the model describes less variability than what is
present in the manual segmentations. This is actually an advantage
of the vertebra appearance model, because the manual segmenta-
tions contain quite a bit of shape “noise”, i.e. errors introduced by the
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voxel-based manual segmentation method, but it also results in less
accurate segmentations of the vertebral protrusions. An appearance
model trained on more data will contain more shape variability, while
at the same time be able to exclude the manual segmentation errors
from the model.

11.1 Conclusion and directions for future work
The project has shown that it is possible to build an active appear-
ance model based on clinical manual segmentations with fair results,
but also that validation requires true gold standard reference seg-
mentations, in which segmentation errors and the inter- and intra-
rater variability are minimized. The active appearance model can be
applied on any structure of interest if the structure shape is not too
variable and varies in a statistical manner. The segmentation results
are slightly poorer than in previous studies applying similar shape or
appearance model based-methods, but a true comparison is difficult
because different data sets are used, and because different degrees of
manual intervention are involved.

The results show that the segmentation algorithm must be more ro-
bust to variation in size and to translation displacements caused by
erroneous initial pose estimates. This could possibly be achieved
by implementing a multi-resolution segmentation algorithm as sug-
gested by Cootes et al. [1998].

In radiotherapy dose planning for treatment of prostate cancer it
is relevant to expand the method for segmentation of surrounding
structures like the seminal vesicles as well. This is straightforward to
do with the current shape representation, and it has been shown us-
ing a shape model by Tsai et al. [2004].

An interesting question is how the size of the training data set affects
the segmentation performance. Intuitively more variable structures
require more training data to be fully described by a statistical model,
but it is not straightforward to determine the sufficient amount of
training data for a given structure. The current and previous stud-
ies seem to indicate that statistical models perform reasonably well
with small training sets because the mean shape is quite close to the
actual shape of the object of interest, but also that large training sets
are required for the models to perform as well as more specialized
segmentation methods.

74



Bibliography

Arand, M., Hartwig, E., Kinzl, L., & Gebhard, F. (2002, June). Spinal
navigation in tumor surgery of the thoracic spine: First clinical re-
sults. Clinical Orthopaedics and Related Research, 399, 211–218.

Aslan, M., Ali, A., Chen, D., Arnold, B., Farag, A., & Xiang, P. (2010,
September). 3D vertebrae segmentation using graph cuts with
shape prior constraints. In Image processing (ICIP), 2010 17th IEEE
international conference on (pp. 2193–2196). IEEE. doi: 10.1109/
ICIP.2010.5652849

Aslan, M., Ali, A., Farag, A., Abdelmumin, H., Arnold, B., & Xiang, P.
(2011). A new segmentation and registration approach for verte-
bral body analysis. In Biomedical imaging: From nano to macro,
2011 IEEE international symposium on (pp. 2006–2009). IEEE. doi:
10.1109/ISBI.2011.5872805

Aslan, M., Ali, A., Farag, A., Rara, H., Arnold, B., & Xiang, P. (2010,
August). 3D vertebral body segmentation using shape based graph
cuts. In Pattern recognition (ICPR), 2010 20th international confer-
ence on (pp. 3951–3954). IEEE. doi: 10.1109/ICPR.2010.961

Becker, M., Kirschner, M., Fuhrmann, S., & Wesarg, S. (2011). Au-
tomatic construction of statistical shape models for vertebrae. In
G. Fichtinger, A. Martel, & T. Peters (Eds.), Medical image comput-
ing and computer-assisted intervention – MICCAI 2011 (Vol. 6892,
pp. 500–507). Springer Berlin / Heidelberg. doi: 10.1007/978-3-642
-23629-7_61

Bellec, P. (2011a). Neuroimaging analysis kit for matlab and octave
(NIAK). Retrieved from http://code.google.com/p/niak/

Bellec, P. (2011b). Pipeline system for octave and matlab (PSOM).
Retrieved from http://code.google.com/p/psom/

Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J., Zijdenbos,
A., & Evans, A. C. (2012, April). The pipeline system for octave and
matlab (PSOM): a lightweight scripting framework and execution
engine for scientific workflows. Frontiers in Neuroinformatics, 6(7),
1–18. doi: 10.3389/fninf.2012.00007

Benameur, S., Mignotte, M., Parent, S., Labelle, H., Skalli, W., & de
Guise, J. (2003). 3D/2D registration and segmentation of scoliotic
vertebrae using statistical models. Computerized Medical Imaging
and Graphics, 27(5), 321–337. doi: 10.1016/S0895-6111(03)00019
-3

75

http://code.google.com/p/niak/
http://code.google.com/p/psom/


BIBLIOGRAPHY

Betrouni, N., Iancu, A., Puech, P., Mordon, S., & Makni, N. (2011).
Prostatlas: A digital morphologic atlas of the prostate. European
Journal of Radiology. doi: 10.1016/j.ejrad.2011.05.001

Borgefors, G. (1991). Another comment on “a note on ‘distance trans-
formations in digital images’”. CVGIP: Image Understanding, 54(2),
301–306. doi: 10.1016/1049-9660(91)90070-6

Borre, M., Iversen, P., Bendixen, A., Iversen, M. G., & Kehlet, H. (2008,
August). Organisation og tidlige operationsresultater efter radikal
prostatektomi i Danmark 2004–2007. Ugeskrift for Læger, 170(34),
2545–2549.

Brasso, K. (2007, May). Prostatacancer – forekomst og risikofaktorer.
Ugeskrift for Læger, 169(20), 1883–1886.

Brent, R. (1973). Algorithms for minimization without derivatives. In
(chap. 4). Prentice-Hall.

Caunce, A., & Taylor, C. (1999). Using local geometry to build 3D sul-
cal models. In A. Kuba, M. Šáamal, & A. Todd-Pokropek (Eds.), In-
formation processing in medical imaging (Vol. 1613, pp. 196–209).
Springer Berlin / Heidelberg. doi: 10.1007/3-540-48714-X_15

Chowdhury, N., Toth, R., Chappelow, J., Kim, S., Motwani, S., Punekar,
S., . . . Madabhushi, A. (2012, Apr). Concurrent segmentation of
the prostate on MRI and CT via linked statistical shape models for
radiotherapy planning. Med Phys, 39(4), 2214–2228. doi: 10.1118/
1.3696376

Cohen, I., Cohen, L. D., & Ayache, N. (1992). Using deformable
surfaces to segment 3-D images and infer differential structures.
CVGIP: Image Understanding, 56(2), 242–263. doi: 10.1016/1049
-9660(92)90041-Z

Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., &
Marchal, G. (1995). Automated multi-modality image registration
based on information theory. In Information processing in medical
imaging (Vol. 3, pp. 264–274).

Collins, D., Neelin, P., Peters, T., & Evans, A. (1994). Automatic 3D
intersubject registration of MR volumetric data in standardized ta-
lairach space. Journal of computer assisted tomography, 18(2), 192–
205.

Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active appearance
models. In Computer vision – ECCV’98 (Vol. 1407, pp. 484–498).
Springer Berlin / Heidelberg. doi: 10.1007/BFb0054760

Cootes, T. F., & Taylor, C. J. (2004, March). Statistical models of appear-
ance for computer vision (Tech. Rep.). University of Manchester.

76



Bibliography

Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1992). Train-
ing models of shape from sets of examples. In Proceedings of
the british machine vision conference (pp. 9–18). Springer. doi:
10.1.1.141.4020

Danish Health and Medicines Authority. (2009, November). Kræft-
profil: Prostatakræft 2000-2007 (Tech. Rep.). Danish Health and
Medicines Authority.

Dearnaley, D. P., Khoo, V. S., Norman, A. R., Meyer, L., Nahum, A., Tait,
D., . . . Horwich, A. (1999). Comparison of radiation side-effects
of conformal and conventional radiotherapy in prostate cancer: a
randomised trial. The Lancet, 353(9149), 267–272. doi: 10.1016/
S0140-6736(98)05180-0

Deyo, R. A., Gray, D. T., Kreuter, W., Mirza, S., & Martin, B. I. (2005,
June). United States trends in lumbar fusion surgery for degen-
erative conditions. Spine, 30(12), 1441–1445. doi: 10.1097/01.brs
.0000166503.37969.8a

Deyo, R. A., & Mirza, S. K. (2006, February). Trends and variations
in the use of spine surgery. Clinical Orthopaedics and Related Re-
search, 443, 139–146. doi: 10.1097/01.blo.0000198726.62514.75

Deyo, R. A., Nachemson, A., & Mirza, S. K. (2004). Spinal-fusion
surgery – the case for restraint. New England Journal of Medicine,
350(7), 722–726. doi: 10.1056/NEJMsb031771

Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. John
Wiley & Sons.

Erasmus, L., Hurter, D., Naudé, M., Kritzinger, H., & Acho, S. (2004).
A short overview of MRI artefacts. South African Journal of Radiol-
ogy, 8(2).

Eskildsen, S., & Østergaard, L. (2006). Active surface approach for
extraction of the human cerebral cortex from MRI. In R. Larsen,
M. Nielsen, & J. Sporring (Eds.), Medical image computing and
computer-assisted intervention – MICCAI 2006 (Vol. 4191, pp. 823–
830). Springer Berlin / Heidelberg. doi: 10.1007/11866763_101

Feuerman, M., & Miller, A. R. (2008). Relationships between statistical
measures of agreement: sensitivity, specificity and kappa. Journal
of Evaluation in Clinical Practice, 14(5), 930–933. doi: 10.1111/j
.1365-2753.2008.00984.x

Flores-Tapia, D., Thomas, G., Venugopal, N., McCurdy, B., & Pisto-
rius, S. (2008, August). Semi automatic MRI prostate segmen-
tation based on wavelet multiscale products. In Engineering in

77



BIBLIOGRAPHY

medicine and biology society, 2008. EMBS 2008. 30th annual in-
ternational conference of the IEEE (pp. 3020–3023). doi: 10.1109/
IEMBS.2008.4649839

Fokdal, L. U., & Høyer, M. (2005, September). Senbivirkninger efter
kurativ strålebehandling for cancer prostatae. Ugeskrift for Læger,
167(37), 3502–3507.

Fu, T.-S., Chen, L.-H., Wong, C.-B., Lai, P.-L., Tsai, T.-T., Niu, C.-C., &
Chen, W.-J. (2004). Computer-assisted fluoroscopic navigation of
pedicle screw insertion an in vivo feasibility study. Acta Orthopaed-
ica, 75(6), 730–735. doi: 10.1080/00016470410004102

Ghose, S., Oliver, A., Martí and, R., Lladó and, X., Freixenet, J., Vi-
lanova, J., & Meriaudeau, F. (2010, December). Prostate segmen-
tation with texture enhanced active appearance model. In Signal-
image technology and internet-based systems (SITIS), 2010 sixth in-
ternational conference on (pp. 18–22). doi: 10.1109/SITIS.2010.14

Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (third
ed.). Pearson/Prentice Hall.

Gray, H. (1918). Gray’s anatomy plates. Retrieved from http://
commons.wikimedia.org/wiki/Gray’s_Anatomy_plates

Hosten, N., & Liebig, T. (2002). CT of the head and spine. Thieme.

Hu, S., & Collins, D. L. (2007). Joint level-set shape modeling and ap-
pearance modeling for brain structure segmentation. NeuroImage,
36(3), 672–683. doi: 10.1016/j.neuroimage.2006.12.048

Huttenlocher, D., Klanderman, G., & Rucklidge, W. (1993, Septem-
ber). Comparing images using the hausdorff distance. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 15(9),
850–863. doi: 10.1109/34.232073

Ito, Y., Sugimoto, Y., Tomioka, M., Hasegawa, Y., Nakago, K., & Yagata,
Y. (2008). Clinical accuracy of 3D fluoroscopy – assisted cervical
pedicle screw insertion. Journal of Neurosurgery, 9(5), 450–453.
doi: 10.3171/SPI.2008.9.11.450

Jakobsen, H., Iversen, P., Mikines, K. J., Nørgaard, N., & Høyer, M.
(2007, May). Behandling af lokaliseret prostatacancer. Ugeskrift
for Læger, 169(20), 1902–1904.

Jensen, C. M., Hermann, N., de Neergaard, L., Sørensen, A. J.,
Krausing-Vinther, J., Hartling, S., . . . Arndal, J. (2009, May). Bilag
til årsrapport for arbejdet i task force vedr. strålebehandling 2008
(Tech. Rep.). Danish Health and Medicines Authority.

78

http://commons.wikimedia.org/wiki/Gray's_Anatomy_plates
http://commons.wikimedia.org/wiki/Gray's_Anatomy_plates


Bibliography

Jønler, M., & Pedersen, K. V. (2007, May). Diagnose, udredning og
opfølgning af patienter med prostatacancer. Ugeskrift for Læger,
169(20), 1889–1891.

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour
models. International Journal of Computer Vision, 321–331.

Kaus, M., Pekar, V., Lorenz, C., Truyen, R., Lobregt, S., & Weese, J.
(2003, August). Automated 3-D PDM construction from segmented
images using deformable models. Medical Imaging, IEEE Transac-
tions on, 22(8), 1005–1013. doi: 10.1109/TMI.2003.815864

Kiefer, J. (1953). Sequential minimax search for a maximum. Pro-
ceedings of the American Mathematical Society, 4(3), 502—506. doi:
10.2307/2032161

Kim, Y., & Kim, D. (2009). A fully automatic vertebra segmentation
method using 3D deformable fences. Computerized Medical Imag-
ing and Graphics, 33(5), 343–352. doi: 10.1016/j.compmedimag
.2009.02.006

Kirby, M., & Sirovich, L. (1990, January). Application of the karhunen-
loeve procedure for the characterization of human faces. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 12(1),
103–108. doi: 10.1109/34.41390

Kirschner, M., Becker, M., & Wesarg, S. (2011). 3D active shape model
segmentation with nonlinear shape priors. In G. Fichtinger, A. Mar-
tel, & T. Peters (Eds.), Medical image computing and computer-
assisted intervention – MICCAI 2011 (Vol. 6892, pp. 492–499).
Springer Berlin / Heidelberg. doi: 10.1007/978-3-642-23629-7_60

Klein, S., van der Heide, U. A., Lips, I. M., van Vulpen, M., Staring, M.,
& Pluim, J. P. W. (2008). Automatic segmentation of the prostate in
3D MR images by atlas matching using localized mutual informa-
tion. Medical Physics, 35(4), 1407–1417. doi: 10.1118/1.2842076

Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., & Lorenz,
C. (2009). Automated model-based vertebra detection, identifi-
cation, and segmentation in CT images. Medical Image Analysis,
13(3), 471–482. doi: 10.1016/j.media.2009.02.004

Klinder, T., Wolz, R., Lorenz, C., Franz, A., & Ostermann, J. (2008).
Spine segmentation using articulated shape models. In Medi-
cal image computing and computer-assisted intervention – MICCAI
2008 (Vol. 5241, pp. 227–234). Springer Berlin / Heidelberg. doi:
10.1007/978-3-540-85988-8_28

Koller, H., Acosta, F., Tauber, M., Fox, M., Martin, H., Forstner, R., . . .
Kässmann, H. (2008). Cervical anterior transpedicular screw fix-
ation (ATPS) – part II. accuracy of manual insertion and pull-out

79



BIBLIOGRAPHY

strength of ATPS. European Spine Journal, 17(4), 539–555. doi:
10.1007/s00586-007-0573-x

Kotani, Y., Abumi, K., Ito, M., Takahata, M., Sudo, H., Ohshima, S., &
Minami, A. (2007). Accuracy analysis of pedicle screw placement in
posterior scoliosis surgery: Comparison between conventional flu-
oroscopic and computer-assisted technique. Spine, 32(14), 1543–
1550. doi: 10.1097/BRS.0b013e318068661e

Kotil, K., & Bilge, T. (2008). Accuracy of pedicle and mass screw
placement in the spine without using fluoroscopy: a prospective
clinical study. The Spine Journal, 8(4), 591–596. doi: 10.1016/
j.spinee.2007.04.002

Laine, T., Lund, T., Ylikoski, M., Lohikoski, J., & Schlenzka, D. (2000).
Accuracy of pedicle screw insertion with and without computer as-
sistance: a randomised controlled clinical study in 100 consecu-
tive patients. European Spine Journal, 9(3), 235–240. doi: 10.1007/
s005860000146

Lay, D. C. (2006). Linear algebra and its applications (Third ed.). Pear-
son.

Leventon, M., Grimson, W., & Faugeras, O. (2000). Statistical shape
influence in geodesic active contours. In Computer vision and pat-
tern recognition, 2000. proceedings. IEEE conference on (Vol. 1, pp.
316–323). doi: 10.1109/CVPR.2000.855835

Lorenz, C., & Krahnstover, N. (1999). 3D vertebrae segmentation us-
ing graph cuts with shape prior constraints statistical shape mod-
els for medical image segmentation. In 3-D digital imaging and
modeling, second international conference on (pp. 414–423). IEEE.
doi: 10.1109/IM.1999.805372

Ludwig, S. C., Kramer, D. L., Balderston, R. A., Vaccaro, A. R., Foley,
K. F., & Albert, T. J. (2000, July). Placement of pedicle screws in the
human cadaveric cervical spine: Comparative accuracy of three
techniques. Spine, 25(13), 1655–1667.

Martini, F. H. (2006). Fundamentals of anatomy & physiology (sev-
enth ed.). Pearsson Education.

Mastmeyer, A., Engelke, K., Fuchs, C., & Kalender, W. A. (2006). A
hierarchical 3D segmentation method and the definition of verte-
bral body coordinate systems for QCT of the lumbar spine. Med-
ical Image Analysis, 10(4), 560–577. (Special Issue on Functional
Imaging and Modelling of the Heart (FIMH 2005)) doi: 10.1016/
j.media.2006.05.005

80



Bibliography

Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., & Gourt-
soyiannis, N. (2001). Image segmentation in treatment planning
for prostate cancer using the region growing technique. British
Journal of Radiology, 74(879), 243–249.

McConnell Brain Imaging Center. (2012, April). Minc tool
kit. Retrieved from http://www.bic.mni.mcgill.ca/
ServicesSoftware/ServicesSoftwareMincToolKit

Mercier, L., Langø, T., Lindseth, F., & Collins, L. D. (2005). A re-
view of calibration techniques for freehand 3-D ultrasound sys-
tems. Ultrasound in Medicine & Biology, 31(2), 143–165. doi:
10.1016/j.ultrasmedbio.2004.11.001

Mercier, L., Maestro, R. F. D., Petrecca, K., Kochanowska, A., Drouin,
S., Yan, C. X. B., . . . Collins, D. L. (2011). New prototype neuronav-
igation system based on preoperative imaging and intraoperative
freehand ultrasound: system description and validation. Interna-
tional Journal of Computer Assisted Radiology and Surgery, 6(4),
507–522. doi: 10.1007/s11548-010-0535-3

Murase, H., & Nayar, S. (1995). Visual learning and recognition of 3-D
objects from appearance. International journal of computer vision,
14(1), 5–24.

Neo, M., Sakamoto, T., Fujibayashi, S., & Nakamura, T. (2005). The
clinical risk of vertebral artery injury from cervical pedicle screws
inserted in degenerative vertebrae. Spine, 30(24), 2800–2805.

Østergaard, L., Eskildsen, S., Nielsen, J., Holmberg, A., Larsen, E., Fab-
rin, K., . . . Carl, J. (2010). The use of a prostate stent for MR-CT
registration in image-guided radiotherapy of prostate cancer. Ra-
diotherapy & Oncology, 96(Suppl. 1), S 417–S 418, No. 1238.

Pasquier, D., Lacornerie, T., Vermandel, M., Rousseau, J., Lartigau, E.,
& Betrouni, N. (2007). Automatic segmentation of pelvic structures
from magnetic resonance images for prostate cancer radiother-
apy. International Journal of Radiation Oncology*Biology*Physics,
68(2), 592–600. doi: 10.1016/j.ijrobp.2007.02.005

Rajasekaran, S., Vidyadhara, S., Ramesh, P., & Shetty, A. P. (2007,
January). Randomized clinical study to compare the accuracy of
navigated and non-navigated thoracic pedicle screws in deformity
correction surgeries. Spine, 32(2), E56–E64. doi: 10.1097/01.brs
.0000252094.64857.ab

Rasmussen, S., Jensen, C. M., Iversen, M. G., & Kehlet, H. (2009,
September). Lumbal spondylodese for degenerativ ryglidelse i
Danmark i 2005–2006. Ugeskrift for Læger, 171(39), 2804–2807.

81

http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit
http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit


BIBLIOGRAPHY

Roberts, M., Cootes, T., Pacheco, E., Oh, T., & Adams, J. (2009). Seg-
mentation of lumbar vertebrae using part-based graphs and active
appearance models. In G.-Z. Yang, D. Hawkes, D. Rueckert, A. No-
ble, & C. Taylor (Eds.), Medical image computing and computer-
assisted intervention – MICCAI 2009 (Vol. 5762, pp. 1017–1024).
Springer Berlin / Heidelberg. doi: 10.1007/978-3-642-04271-3_123

Rockafellar, R. T., & Wets, R. J.-B. (1998). Variational analysis.
Springer.

Shen, H., Litvin, A., & Alvino, C. (2008). Localized priors for the pre-
cise segmentation of individual vertebras from CT volume data.
In Medical image computing and computer-assisted intervention –
MICCAI 2008 (Vol. 5241, pp. 367–375). Springer Berlin / Heidelberg.
doi: 10.1007/978-3-540-85988-8_44

Stegmann, M. B., & Gomez, D. D. (2002, March). A brief in-
troduction to statistical shape analysis (Tech. Rep.). Informatics
and Mathematical Modelling, Technical University of Denmark,
DTU. Retrieved from http://www2.imm.dtu.dk/pubdb/views/
publication_details.php?id=403

Tsai, A., Wells, W., Tempany, C., Grimson, E., & Willsky, A. (2004).
Mutual information in coupled multi-shape model for medical im-
age segmentation. Medical Image Analysis, 8(4), 429–445. doi:
10.1016/j.media.2004.01.003

Tsai, A., Yezzi, J., A., Wells, I., W., Tempany, C., Tucker, D., Fan, A.,
. . . Willsky, A. (2001). Model-based curve evolution technique for
image segmentation. In Computer vision and pattern recognition,
2001. CVPR 2001. proceedings of the 2001 IEEE computer society
conference on (Vol. 1, pp. I-463–I-468). doi: 10.1109/CVPR.2001
.990511

Tsai, A., Yezzi, J., A., Wells, W., Tempany, C., Tucker, D., Fan, A.,
. . . Willsky, A. (2003, February). A shape-based approach to the
segmentation of medical imagery using level sets. Medical Imag-
ing, IEEE Transactions on, 22(2), 137–154. doi: 10.1109/TMI.2002
.808355

Turk, M., & Pentland, A. (1991, 2011/08/16). Eigenfaces for recogni-
tion. Journal of Cognitive Neuroscience, 3(1), 71–86. doi: 10.1162/
jocn.1991.3.1.71

Villeirs, G. M., & Meerleer, G. O. D. (2007). Magnetic resonance imag-
ing (MRI) anatomy of the prostate and application of MRI in radio-
therapy planning. European Journal of Radiology, 63(3), 361–368.
doi: 10.1016/j.ejrad.2007.06.030

82

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=403
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=403


Bibliography

Vordermark, D., Schwab, M., Ness-Dourdoumas, R., Sailer, M., Flen-
tje, M., & Koelbl, O. (2003). Association of anorectal dose–volume
histograms and impaired fecal continence after 3D conformal ra-
diotherapy for carcinoma of the prostate. Radiotherapy and Oncol-
ogy, 69(2), 209–214. doi: 10.1016/j.radonc.2003.07.002

Weese, J., Kaus, M., Lorenz, C., Lobregt, S., Truyen, R., & Pekar, V.
(2001). Shape constrained deformable models for 3D medical im-
age segmentation. In Information processing in medical imag-
ing (Vol. 2082, pp. 380–387). Springer Berlin / Heidelberg. doi:
10.1007/3-540-45729-1_38

Yan, C. X. B., Goulet, B., Pelletier, J., Chen, S. J.-S., Tampieri, D.,
& Collins, D. L. (2011). Towards accurate, robust and practi-
cal ultrasound-CT registration of vertebrae for image-guided spine
surgery. International Journal of Computer Assisted Radiology and
Surgery, 6(4), 523–537. doi: 10.1007/s11548-010-0536-2

Zijdenbos, A. P., Dawant, B. M., Margolin, R. A., & Palmer, A. C.
(1994). Morphometric analysis of white matter lesions in MR im-
ages: method and validation. Medical Imaging, IEEE Transactions
on, 13(4), 716–724. doi: 10.1109/42.363096

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M., Kaus, M. R.,
Haker, S. J., . . . Kikinis, R. (2004, Feb). Statistical validation of im-
age segmentation quality based on a spatial overlap index. Acad
Radiol, 11(2), 178–189.

83





Appendices





APPENDIX A

Representing 3-D pose

Three-dimensional pose is represented by translation in each direc-
tion, rotation around each axis, and scaling.

Translation is represented by the translation parameters~t = [
tx , ty , tz

]ᵀ.
In homogeneous coordinates translation is applied by multiplying
the point coordinates and the following matrix:

Tt =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 (A.1)

Rotation is represented by the rotation angles φ, θ, and ψ, represent-
ing rotation around the x, y and z axis respectively. In homogeneous
coordinates rotation is applied by first translating the image to put
the center of rotation in (0,0,0), multiplying the coordinates with one
or more of the following matrices, and finally translating back to the
original location:

Tφ =


1 0 0 0
0 cosφ −sinφ 0
0 sinφ cosφ 0
0 0 0 1

 (A.2)

Tθ =


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

 (A.3)

Tψ =


cosψ −sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1

 (A.4)

The center of rotation is represented by~c = [
cx ,cy ,cz

]ᵀ, and the trans-
lation matrix is:

Tc =


1 0 0 −cx

0 1 0 −cy

0 0 1 −cz

0 0 0 1

 (A.5)
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Scaling is applied by multiplying this matrix:

Ts =


e s 0 0 0
0 e s 0 0
0 0 e s 0
0 0 0 1

 (A.6)

where s is the natural logarithm of the desired scaling. This makes
s = 0 correspond to no change in scale.

By combining the transformation matrices and pose parameters,
pose is represented by the pose vector ~t . A set of coordinates ~x is
transformed by multiplying each transformation matrix in turn:

~t = [
φ,θ,ψ, s, tx , ty , tz

]ᵀ (A.7)

~x ′ = Tt T−1
c TsTψTθTφTc~x (A.8)

Note that first the center of rotation is moved to the origin, and then
rotations are applied to rotate around this center. After rotations scal-
ing is applied, which also depends on the center of rotation. Then
the image is translated back to the original position, and finally the
desired translation is applied.

This way of representing pose (especially scaling) ensures the follow-
ing properties, which are important for the AAM predictions of pa-
rameter change [Cootes & Taylor, 2004]:

• The zero parameter vector must imply no change in pose:
~t = 0 =⇒ T

(
~t
)= 1.

• The pose change must satisfy (at least for small pose changes):
T

(
~t1

)
T

(
~t2

)≈ T
(
~t1 +~t2

)
.
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APPENDIX B

Pipeline implementation

The preprocessing and validation steps are implemented as PSOM
pipelines. Each pipeline is composed of a series of bricks, and each
brick takes files as inputs and produces files as outputs. The pipelin-
ing system handles dependencies between the bricks, and re-runs a
brick if the inputs or options change. All child bricks will be re-run
too, because their inputs have changed. [Bellec et al., 2012]

B.1 Pipelines
Pipelines can be combined into larger pipelines by routing the out-
put of one pipeline to the input of another pipeline. The following
pipelines are implemented:

DICOM preprocessing
This pipeline takes DICOM and DICOM-RT images as input, and pro-
duces a MINC format volume, binary segmentation, distance map,
and MNI .obj representation of the manual segmentation (Fig. B.1).
All outputs are produced both in the original coordinate system and
in the coordinate system of the common reference. The pipeline
also computes the parameter change prediction matrix for changes
in pose and texture.

MINC preprocessing
This pipeline takes MINC images and segmentations as input, and
produces the same output as the DICOM preprocessing pipeline
(Fig. B.2).

Training
This pipeline trains the appearance model on the input. It takes pose
parameter change prediction matrices, MINC volumes, and MINC
distance maps as input, and computes an appearance model and full
parameter change prediction matrix.

Validation
This pipeline runs leave-one-out cross-validation on the input. It
takes the same input as the training pipeline, as well as the original
image volumes, segmentations, distance maps and MNI .obj repre-
sentations for validation (Fig. B.3). The pipeline produces a MATLAB

mat-file with combined performance metrics for analysis.
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Figure B.1: The DICOM preprocessing pipeline. Bricks named with _n are
run for each input image, other bricks are run only once. Steps
are color-coded according to: Image preprocessing, Segmenta-
tion preprocessing, Registration, and Cropping.

The training and validation pipelines can be combined with one of
the preprocessing pipelines, depending on the file format of the orig-
inal data.

B.2 Bricks
The pipelines utilize a number of commands, or bricks. Each brick
runs independently from other bricks, and is only dependent on in-
put files and options. A brick produces a set of output files, which can
be used as input for subsequent bricks. Many bricks are wrappers for
underlying MINC command-line tools, while other bricks are pure
MATLAB operations. The pipelines use a combination of the follow-
ing bricks:

DICOM to MINC (dcm2mnc)
Wrapper for dcm2mnc from the MINC tool kit. Converts a set of DI-
COM image slices to a single MINC volume.
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Figure B.2: The MINC preprocessing pipeline. Bricks named with _n are run
for each input image, other bricks are run only once. Steps are
color-coded according to: Image preprocessing, Segmentation
preprocessing, Registration, and Cropping.

DICOM-RT to MNI .obj (rtss2obj)
Convert structures in a DICOM-RT input file to MNI .obj representa-
tion. Each structure is saved as an individual object file. Optionally
only structures with names matching a given regular expression are
saved.

MINC to distance map (mnc2distmap)
Wrapper for itk_distance. Computes the signed distance map of
the input volumes. The input volumes must have uniform resolution
for the distance values to be meaningful, or the input can optionally
be resampled to uniform resolution before computing the distance
map. The distance map is resampled back into the resolution of the
input image.

MINC to MNI .obj (mnc2obj)
Wrapper for marching_cubes. Computes the MNI .obj representa-
tion of the input image using marching cubes. The input should be a
signed distance map or binary image. Inside voxels must have larger
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Figure B.3: The validation pipeline. Bricks ending in _n are run for each
input image, the last brick is run only once. For each image an
appearance model is trained on the other images and used for
segmentation, before computing performance metrics.

values than outside voxels. To fulfill this constraint the input volume
can optionally be negated before running marching cubes.

MNI .obj to MINC (obj2mnc)
Wrapper for surface_mask2. Computes a binary MINC mask with
the same sampling as a reference volume. Optionally performs ero-
sion or dilation of the binary mask (see below for details).

Morphology (mncmorph)
Performs erosion or dilation of a binary MINC volume using MATLAB

imerode or imdilate. A 26-connected morphology kernel of a spec-
ified radius is used. The radius is in units of mm, and the actual size
of the kernel depends on the voxel size.

MINC to crop mask (mnc2crop)
Merges a set of MINC masks into a single mask. The output is the
union of the input masks.
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Crop (crop)
Wrapper for autocrop. Crops an image volume to the rectangular
bounds in a binary mask.

Volume registration (register)
Wrapper for minctracc. Supports all minctracc options, including
center of translations and rotations, initial transformation guess, and
volume masks. Outputs the transformation matrix transforming the
input volume to the target.

Resample MINC volume (mncresample)
Wrapper for mincresample and itk_resample. Resamples the in-
put MINC volume with specified settings. The volume can optionally
be transformed using an input transformation matrix. The sampling
options of a specified reference volume can be used, and the image
can be resampled to uniform resolution. Interpolation is done using
nearest neighbor (mincresample) or B-splines (itk_resample).

Transform MNI .obj file (objtransf)
Wrapper for transform_objects. Transforms an MNI .obj file using
an input transformation matrix.

Grayscale normalization (normalize)
Normalizes an input MINC volume to zero mean and a specified
standard deviation of grayscale intensity values.

Train appearance model (train_model)
Trains an appearance model on the input MINC volumes and dis-
tance maps. Outputs the appearance model as a MATLAB mat-file.

Train appearance parameter displacements (train_displace_model)
Systematically displaces each parameter in the input appearance
model and computes the parameter change prediction matrix. Out-
puts the matrix as a mat-file.

Train pose parameter displacements (train_displace_pose)
Systematically displaces each pose parameter and computes the pa-
rameter change prediction matrix for pose parameters using the in-
put MINC volume. Outputs the matrix as a mat-file.

Segmentation (segmentation)
Does segmentation of a MINC volume using a specified appearance
model, parameter change prediction matrix, and initial parameter
guess. Outputs the binary segmentation and computed distance map
of the appearance model as MINC files with the same sampling op-
tions as the input volume.
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Metrics (metrics)
Computes performance metrics by comparing two segmentations.
See chapter 8 for details. Output is a MATLAB mat-file containing
the metrics. Some metrics are computed using volume_similarity,
others are computed using a combination of Matlab and other tools.

Collect metrics (collect_metrics)
Combines mat-files containing performance metrics into a single
mat-file.
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