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PREFACE XI

Preface

This report covers the work from the Master’s thesis of Rasmus Olesen (group 11gr938/
12gr1038) at Aalborg University 2011/2012 that combines both 9-th and 10-th semes-
ters for a thorough work on the subject. The area of specialization is Intelligent Au-
tonomous Systems (IAS) at the section of Control Engineering under the Department
of Electronic Systems.

The report is divided into the four parts manipulator modeling, manipulator control,
system evaluation and appendix. Each of the parts include several chapters describing
the underlying theory in details. The appendix contains supporting information,
which is referred to when needed. A list of figures, a list of tables and a bibliography
is included in the appendix as well.

References to the bibliography list are given by a square bracket notation like e.g.
[2], which in this case refers to item number 2 in the bibliography list. A notation
like e.g. [2, 3] refers to the sources 2 and 3 at the same time. Images may be inspired
by other image sources, which will be clarified in the image caption. The caption will
be supported by a figure number from the particular source and the text inspired by
if the figure has been used as inspiration for an image in the report. If no sources are
stated, the image is generated by the author of this report. The university logo on
the cover and the title pages is from the local source [1].

An acknowledge chapter is given immediately after this preface. It lists the names
of the people that the author acknowledges for their support regarding technical/the-
oretical issues. A nomenclature is given after the acknowledge to make an overview of
the different variables and abbreviations used throughout the report. Terms listed in
the nomenclature will not be attached with a source (reference to the bibliography),
since they are derived from text in the report. In order to see the specific sources,
the terms must be located within the report.

If units are to be indicated after an equation, they are located to the right of
the equation. All units are SI-units if not otherwise noted. All other mathematical
punctuations are respecting common standards in typing mathematics if not otherwise
noted. Boxed equations are considered of great importance of the math in context or
as a final statement to a chapter/section.
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XII PREFACE

Two types of computational software has been applied in the work, including MAT-
LAB/Simulink1 from The MathWorks, Inc. and LabVIEW2 from National Instru-
ments Corporation. Both types of software will be referred to using their names, but
without their registered trademark icons, which is stated here as a footnote. Different
paragraphs are used throughout the report to state important issues.

Assumption: Specific hardware limitations or model simplifications

Convention: Special conventions like j , i+ 1

Example: Concepts clarified by an example, analytically or numerically

Notation: Special mathematical or linguistic notations

Definition: Something stricter than a convention

1MATLAB R© /Simulink R© are registered trademarks for The MathWorks, Inc.
2LabVIEW R© is a registered trademark for National Instruments Corporation
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NOMENCLATURE XV

Nomenclature

Symbol Description

α Actuator model constant, αi = Ri/Li [1/s]
α Diagonal matrix of αi constants
αcc Convex combination factor
β Actuator model constant, βi = Kei/Li [Arad]
β Diagonal matrix of βi constants
γ Actuator model constant, γi = Kmi/Ji [Vsrad / kgm2]
γ Diagonal matrix of γi constants
δ Actuator model constant, δi = Bi/Ji [Nms / kgm2]

Dirac delta function (not to be confused with actuator model constant)
∆ Determinant of second-order polynomial
∆s Limit of saturation function
δ Diagonal matrix of δi constants
ε General strain
εs Gain of saturation function
εja Random variable for encoder measurements [rad]
εgyro Random variable for gyroscope measurements [V]
εgyro
c Random variable for gyroscope measurements (converted) [rad/s]
εacc Random variable for accelerometer measurements [V]
εacc
c Random variable for accelerometer measurements (converted) [g]
εstr Random variable for strain measurements [V]
ζ General damping ratio
ζi Damping ratio of i-th eigenmode
η Scale factor for Laplace transforms
θ Generalized coordinate vector [rad]

θ̇ First derivative of generalized coordinate vector [rad/s]

θ̈ Second derivative of generalized coordinate vector [rad/s2]
θi Joint angle for the i-th joint (moving link i) [rad]
θa Generalized coordinate vector on actuator side [rad]
θi,max Maximum swivel range of i-th manipulator joint [rad]

θ̇i,max Maximum angular velocity of i-th manipulator joint [rad/s]
θi,0 Zero reference angle of i-th manipulator joint [rad]
θi,SWmax,+ Maximum positive swivel angle of i-th joint [rad]
θi,SWmax,÷ Maximum negative swivel angle of i-th joint [rad]
θi,off Offset on i-th encoder measurement [rad]
θ̌i Measurement of i-th manipulator joint angle [rad]
θ̄ Generalized coordinate vector operation point
ϑ System parameter vector
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XVI NOMENCLATURE

Symbol Description

ϑ N4SID matrix complete model estimate
κ Gauge factor and Actuator model constant, κi = 1/Li [A/Vs] (context

specific)
κw Curvature of beam deflection w(x, t) [1/m]
κ Diagonal matrix of κi constants
Λ Roots to second-order polynomial
λr Real part of root to second-order polynomial, λr = <{Λ}
λc Complex part of root to second-order polynomial, λc = ={Λ}
λi i-th eigenvalue [1/m]
µ Laplace shift parameter
µ̂ Sample mean
jνi Definition of origo for i-th frame in reference to j-th frame [m]
ξ Phasor angle [rad] and force vector [N] (context specific)
$ Angle between frames Fτ and Fe [rad]
ρ Density [kg/m3]
σgyro Standard deviation of gyroscope measurements [V]
σacc Standard deviation of accelerometer measurements [V]
τ Index representing tool frame Fτ
τe Excitation torque [Nm]
τf,i Nonlinear friction force on link i, Nm
τ i Torque on i-th link [Nm]
τ ′i Torque on i-th link on actuator side [Nm]
τa Torque from actuator [Nm]
τcor,i Coriolis torque affecting link i [Nm]
τcen,i Centrifugal torque affecting link i [Nm]

υ Linear vertical acceleration of tool frame, υ(θ̇, θ̈) , 0ν̈τ (θ̇, θ̈) [m/s2]
φi Mode shape of i-th eigenmode [m]
ϕDH
Xi

DH-parameter describing rotation of frames around Xi [rad]

ϕDH
Zj

DH-parameter describing rotation of frames around Zj [rad]

ψ Polynomial coefficient
ωi Eigenfrequency of i-th eigenmode [rad]
ωlc Limit cycle frequency
ωres Resulting frequency from relay tuning method
ω̄i Angular velocity vector of i-th link
ab Cross sectional area of beam [m2]
ac Constant for strain measurement
Alc Limit cycle amplitude
As Continuous Kalman filter system matrix
A Continuous system matrix
A Discrete system matrix
b Index representing base frame Fb
B Friction constant [Nms]
Bs Continuous Kalman filter input matrix
B Continuous input matrix
B Discrete input matrix
ci Digital count from i-th rotary encoder
Cs Continuous Kalman filter output matrix
C General mapping
cm Center of gravity / center of mass denotation
co(·) Convex hull
C Continuous out matrix
C Discrete out matrix
C Coriolis/centrifugal matrix
Cn n-dimensional complex value space
d Constant for solving second-order polynomial
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NOMENCLATURE XVII

Symbol Description

ds System disturbance and smoothing parameter for sig(s)-function
dm Measurement disturbance
diag(·) Constructor of diagonal matrix
dis(v, d) Mapping, displacement of d in v-direction
D Continuous direct term matrix
D Discrete direct term matrix
e Index representing end-effector frame Fe
e1 Elementary x-axis vector
e2 Elementary y-axis vector
e3 Elementary z-axis vector
E Exponential notation, e.g. 105 ∼ 1E5
E Young’s modulus [N/m2]
En n-dimensional Euclidean space (special case of Rn)
fM Nonlinear mass matrix vector field
fb Force from beam self-weight [N/m]
f General vector field or distributed force (context specific)
fi Eigenfrequency of i-th eigenmode [Hz]
fl Force from beam tip load [N/m]
f+ Vector field for subspace s > 0
f− Vector field for subspace s < 0
fcc Convex combination of fields f− and f+

fs Sampling frequency

f̂ Nominal system dynamics without uncertainties
Fi Frame i
F Point force [N]
F Friction vector with entries Fi
Fi Frame i notation
Ga Instrumental amplifier gain
G Gravity ”vector” (see appendix I)
g Gravitational constant, g = 9,82 [m/s2]
gi Gravity vector from center of gravity of link i
ḡ Inertial frame gravity vector
h Height of flexible beam and relay hysteresis (context specific)[m]
hb Height of beam [m]
H Hilbert operator
i, j Frame indices and general indices
Icm,k,i Inertia of i-th link around center of gravity and around k-th axis [kgm2]
Ii Inertia tensor matrix of link i [kgm2]
I Second moment of inertia [m4]
Ia Actuator current vector [A]
k General index
ja Joint angle denotation
J Inertia [kgm2]
J Jacobian matrix
Ke Electrical actuator constant [Vsrad]
Km Mechanical actuator constant [Vsrad]
Keq Equivalent gain
L Inductance [H]
`i Length of i-th link [m]
`cog
i Length from i-th joint to center of gravity point [m]
`str Length between tool frame Fτ and gauges [m]
`off Offset between frame Fb and F0 [m]
`DH
Xi

DH-parameter describing translation between frames in Xi-direction [mm]

`DH
Zj

DH-parameter describing translation between frames in Zj-direction [mm]

` Length of beam [m]
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XVIII NOMENCLATURE

Symbol Description

L Laplace transform
L−1 Inverse Laplace transform
Li 4-tuple DH-parameter link description
mi Mass of i-th manipulator joint [kg]
m′i Mass of i-th actuator [kg]
ml Mass of payload [kg]
mb Mass of beam [kg]

mt Mass of tool, mt , ml +mb [kg]
M Number of modes in solution
M Mass matrix
n Number of degrees of freedom
nA Size of system matrix A
nu Number of inputs to general system identification model
ns Number of strain gauges in Wheatstone bridge
nx Number of states in general system identification model
ny Number of outputs from general system identification model

N̂ Normal vector
N Normal (Gaussian) distribution function
Ni Gear ratio of i-th drive train
N Diagonal matrix of gear ratios Ni
o Index representing workbench frame Fo
p Index representing production cell frame Fp
pi Center of gravity position vector of link i
ptcp Spatial position of TCP
P General polynomial
Pi Generalized polynomial of order i
qc Component tolerance measure
qi Modal coordinate for i-th eigenmode
q Scaled tool strain state
qref Scaled tool strain state reference
q+ Constant acceleration in subspace s > 0
q− Constant acceleration in subspace s < 0
q̃ Tracking error of scaled tool strain, q̃ = q − qref

Qk Constants for derivation of PDE solution
Q Process noise covariance matrix
r Mass ratio between beam and payload
rgyro Actual angular velocity to measure by gyroscope [rad/s]
racc Actual acceleration to measure by accelerometer [g]
rw Radius of osculating circle on beam deflection w(x, t) [m]
r1, r2 Roots in characteristic polynomial (RT)
i
jR Pure rotation from i-th frame to j-th frame

R Resistance [Ω] and sensor noise covariance matrix (context specific)
Rg Instrumental amplifier gain resistance [Ω]
Ri Strain gauge resistance of i-th gauge [Ω]
rot(v, θ) Mapping, rotation of θ rad around v
R+ Real number set [0,∞)
Rn n-dimensional real value space
sgn() Signum function
sat() Saturation function
sig() Sigmoid function
s Laplace operator and sliding function (context specific)
srw(v, d, θ) Mapping, rotation of θ rad around v and displacement of d in v-direction
Sp Set of stabilizing control signals yielding specific performance
S Wheatstone bridge sensitivity
Su Set of possible control signals



i
i

i
i

i
i

i
i

NOMENCLATURE XIX

Symbol Description

Ss Set of stabilizing control signals
t Time [s]
tset Settling time [s]
tnom Nominal settling time without controller[s]
tr Reaching phase time [s]
ts Sliding mode time [s]
tshift Phase shift for mapping function (RT)
Ts Sampling time
T Time delay for Dirac delta and Heaviside step function [s]
j
iT Rotational transformation from i-th frame to j-th frame

u Control signal to servo amplifiers, u , τ̇ = NF(θ̈) [V]
u+ Control signal in subspace s > 0
u− Control signal in subspace s < 0
ueq Equivalent control signal
Ua Actuator voltage vector [V]
U Input data series for N4SID method
v General vector
vstr
o Voltage signal from Wheatstone bridge [V]
vstr
o2 Voltage signal from Wheatstone bridge (amplified) [V]
vstr
s Voltage supply to strain measurement bridge [V]
vacc
o Voltage signal from accelerometer [V]
vgyro
o Voltage signal from gyroscope [V]
v̄i Linear velocity vector of i-th frame
v̄cm,i Linear velocity of center of gravity of link i [m/s]
w Beam deflection w(x, t) depending on location and time [m]
wb Width of beam [m]
wh Homogeneous part of deflection [m]
wp Particular part of deflection [m]
wb Deflection from self-weight [m]
wl Deflection from tip load [m]

w(k) k-th derivative of deflection w
W General Laplace transformation of deflection w
Wk Constants for derivation of PDE solution
x Longitudinal position on beam [m]
x, y Denotations of X0 and Z0, respectively (for simplicity)
x0 Initial state vector for PEM
xIMU Distance from tool frame origo to center of IMU (x-direction) [m]
X, Xi General/local x-axis in i-th frame
X State data series for N4SID method

y Vertical position of tool frame Fτ , y , −Yτ 6 m
yIMU Distance from tool frame origo to center of IMU (y-direction) [m]
Y, Yi General/local y-axis in i-th frame
y Vertical position of tool frame origo
Y Output data series for N4SID method
Z, Zi General/local z-axis in i-th frame
Zo Instrumental amplifier input impedance [Ω]
∗ Complex conjugated
! Factorial
T Matrix transpose
7→ Linear mapping
∴ Therefore
Ik k × k identity matrix
0k k × k zero matrix
0̄, 1̄ Zero and one column vector, respectively

, Definition
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XX NOMENCLATURE

Symbol Description

< Real part of complex number
= Imaginary part of complex number

j Imaginary number indicator, j ,
√
−1

∀ For any
∈ Included in
∇s Gradient of s
2 End of example and definition
3 End of convention, assumption and notation
〈f(x), g(x)〉 Inner product brackets of functions
A ⊂ B Set A a subset of B
DSMC Discrete sliding mode controller
DOF Degrees of freedom
EKF Extended Kalman filter
FPGA Field programmable gate array
IMU Inertial measuring unit
mod Modulus notation
ODE Ordinary differential equation
PDE Partial differential equation
PEM Prediction error method
PRBS Pseudo random binary sequence
QSMB Quasi sliding mode band
RT Relay tuning
SMC Sliding mode controller
TCP Tool center point

• Clashing variables will not be mixed up in the specific context where it is used
• Variables missing from the nomenclature are explained when used
• i and j may be used at random as indices when they are not used in the same equation
• Some variables are indexed to emphasize the fact that they are related to a manipulator link
• Variables like W and Wi can mean two different things

The following short nomenclature is reserved for the describing function part of the
chatter suppression section in chapter 9. This is introduced to avoid renaming com-
mon notations or creating confusing notations. If the variables are used elsewhere in
the report, it will be announced beforehand.

Symbol Description

ϕ Nonlinear dynamics phase function
φ Phase shift
ψ Linear dynamics phase function
ω Response frequency
A Amplitude (gain of linear dynamics)
B Amplitude (gain of nonlinear dynamics)
G Linear dynamics amplitude function
N Nonlinear dynamics amplitude function
u(t) Response of nonlinear dynamics (Similar to control signal u(t))

Appendix I does also have its own nomenclature list.
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NOMENCLATURE XXI

Symbol Description

αi Angular acceleration of link i [rad/s2]
ai Linear acceleration of link i (at the bottom of the link)
fi Force propagation down to link i [N]
Fi Force on link i center of gravity [N]
L Lagrangian, L = T − U [J]
Mk Generalized inertia tensor matrix of link k
ni Torque propagation down to link i [Nm]
Ni Torque on link i center of gravity [Nm]
N Index representing Newtonian approach
U Potential energy [J]
Um Potential energy of manipulator alone [J]
Ut Potential energy of tool alone [J]
T Kinetic energy [J]
Tm Kinetic energy of manipulator alone [J]
Tt Kinetic energy of tool alone [J]
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Chapter 1

Introduction

Industries relying on robotics to perform various repetitive and/or specialized tasks
must ensure, that the systems are flexible and quickly readjustable to new productions
in order for the manufactures to benefit from them. If the reconfiguration cost exceeds
the profit from investing in robotic equipment in the first place there is no need for
the equipment. This is only applicable to productions/operations where the robots
are performing tasks accomplished by humans. Dangerous or highly complex tasks
may in some cases only be ascribed for robots to perform.

A number of different elements can be used to characterize the efficiency of a pro-
duction cell, and also to assist the optimization process. Time, energy consumption,
acceleration of load, distance traveled, mechanical wear and so on can be defined prior
to installation of the production cell. Depending on the specific requirements of the
process considered, different subsets of the parameters can be selected as parts of the
optimization problem. Since the parameters are somewhat related, the underlaying
dependency must be included within the optimizer, such that the parameters cannot
be selected independently by the user. The definition of a production cell used in this
report is a local, possible enclosed, environment in a production factory including a
number of machines focused on performing a certain subtask of a production.

Introducing intelligent control and optimization of a production cell work flow de-
creases reconfiguration time from one production to another as well as ensuring opti-
mal handling of objects according to operator specified instructions. The objects may
be known in details or automatically identified by a vision system or other system
identification methods.

Two different interpretations of the term flexible are considered. The first interpre-
tation deals with a robotic production cell being flexible in relation with reconfigu-
ration. Whenever the task changes and/or the items are changing, the cell must be
either reconfigured with the robotic equipment being relocated or the programming
must be updated. Different topics can be considered in this case. The location of the
robotics equipment to minimize reconfiguration costs in case of changes in production.
Also, the control of one or multiple robots to intelligently adapt to changes in pro-
duction may be considered, where vision systems are included to allow for automatic
trajectory planning and handling of unknown objects. Intelligent controlling tech-
niques are also beneficial if they are capable of performing complex real-time analysis
of the production environment used for minimizing the energy consumption along
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2 CHAPTER 1. INTRODUCTION

with maintaining a fast unit production time and producing a high quality product.
Second interpretation of the term flexible deals with robotics being flexible in con-
struction. The flexibility has a number of advantages as well as drawbacks. One
drawback emerges, when the mass of the manipulator payload is opposing the mass
of the manipulator. This causes bending of the manipulator links, and the payload is
no longer at the expected spatial location as estimated by a rigid model. Non-rigid
controllers are therefore not applicable to this kind of construction. Oscillations can
also arise in the links, making the location of the payload a function not only of the
actuator excitation but also depending on dynamics of the manipulator links them-
selves. Even with these drawbacks, the advantages enables manipulators to operate
in formerly impassible spaces as well as twisting through corners due to an increase
in the number of links possible. Other benefits include faster response and safer oper-
ation near humans. Also the decrease in weight makes it consume less energy, which
is also beneficial [95].

A project description follows this introduction in the sequel chapter and describes
the general purpose of this project. Because the scope of robotics and control is large a
project delimitation will ensure, that the project can be completed before submission
date.
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Chapter 2

Project description

Industrial robotic manipulators are used in many different areas, but efficient trajec-
tory planning and control is common for them all. Production cells may include static
and/or dynamic obstacles. Stationary equipment is referred to as static obstacles
whereas dynamic obstacles covers moving objects, other manipulators and human
workers. A certain schedule must be followed by the manipulator in order to keep
the flow running in the production chain, and the trajectory must be optimized to
achieve efficient motion. A schedule is defined as an ordered list of tasks to execute
and will in most cases be of circular shape for repetitive productions.

Based on a dynamic model of the different manipulators, payloads and static ob-
stacles an optimal schedule can be designed. Performance can then be bounded from
above, which can be compared to given requirements for that particular configura-
tion. By performance is included accuracy of end-effector positioning, mechanical
stress requirements, motion of the load etc. An end-effector is defined as the tool at
the end of a manipulator. To avoid decreasing performance according to the given
requirements, numerous elements within the schedule can be considered.

One special relationship involves time and accuracy. Increasing production through-
put (shorter production time) and requiring increased accuracy as well (larger energy
consumption) stresses each manipulator in the production chain. It is therefore im-
portant to define a ratio between energy consumption and production time, because
they are inversely proportional. Another element that may be considered is the topic
of rigidity. If manipulators are considered rigid structures, the end-effector position
is absolutely known in Euclidean space. However, if the manipulator is fitted with
a tool that shows flexible behavior, the performance will be decreased if the flexible
dynamics are not included in the control. Non-rigidity contributes with more com-
plex system dynamics and oscillations that must be counteracted when positioning
the end-effector.
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2.1 Problem formulation

Based on this short introduction to manipulator optimization, the following general
question can be asked, which has been selected as the overall goal of the project. It
includes the relevant elements of task optimization and forms the basis of the thesis
described in this report.

How to improve end-effector position/orientation control of industrial robotic ma-
nipulators in terms of accuracy and operating time when handling flexible tools?

The term operating time is referring to the time from when then manipulator is
ordered to move from one steady state to another (possible also back to the starting
point). In order to proceed with the development, three methods are listed below. The
methods are expected to answer the question on how to improve performance when
handling flexible tools. All methods will comply with the project theme autonomous
systems aiming for systems capable of working independently. Later on, a definition
will describe the meaning of the term improvement when dealing with manipulator
control.

• Tool/load dynamics must be estimated from analyzing the response to various
excitations

• Measurements from several sensors must be combined to improve the estimation
of end-effector dynamics

• Oscillations in flexible tools must be reduced by a controller

Each of the methods include the load of the manipulator. If the tool is flexible, the
load specifications and possible dynamics are important for the overall performance.
Flexible behavior must be counteracted by the controller based on the load specifica-
tions. When the tool/load dynamics are unknown in advance, they must be estimated
from analyzing the system response using different sensors.

The control improvement implies achieving a better performance regarding faster
response, improved repeatability/precision combined with minimizing the trajectory
length for each joint. Accuracy however, will always affect the pace of the manipulator
if energy must be minimized simultaneously. Other production requirements/restric-
tions will provide further constraint to the optimization problem.

Previous work has been performed on similar projects considering identifying the
parameters of industrial robotics equipment, adaption of controllers to varying loads
and trajectory optimization. A selection of papers concerning these similar subjects
are described in the sequel section. Later on, the delimitation of this project will be
outlined, which will contain some of the elements from previous work.
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2.2 Previous work on the subject

The field of robotics is well-studied, and a lot of material is thus available on the sub-
ject. Three significant parts have so far been considered for this project as introduced
in the latter section. They include trajectory optimization (increase pace), manipula-
tor/load dynamics estimation (improve model for control) and adaptive manipulator
control (improve control for different loads). The first part is described in a number of
different ways using either a high order polynomial to represent the trajectory [10] or
transforming the trajectory optimization problem before solving it in order to apply
different solving techniques [101, 75].

A set of other techniques involves cubicsplines [28, 29], Béziercurves [23] or B-splines
+ Rational Bézier curves [106] to approximate the trajectory with a smooth path,
which can be described parametrically and then outlined as an optimization problem.
Although within the same type of problem, the paper [23] is based on mobile robotics.
This paper tries to use a number of chained line segments to complete the trajectory.
The advantage is, that the straight line is always shorter than a curved one and faster
to compute. By setting up requirements to the gradient variation at the point of
discontinuity, the segmented path will at some point form a trajectory that will seem
smooth to the manipulator and still be capable of clearing obstacle spaces.

The second part was the estimation of manipulator/load dynamics through response
analysis. A number of papers work with making parameter estimation algorithms
faster when working in real-time [92], identifying the parameters of robots being
described by integral models [34] and constructing linear manipulator models for
specific manipulator models on the market [77]. An integral model is derived using
the concept of energy equations (Lagrange) [55].

A handful of papers consider the friction parameters, that are often difficult to
model precisely. They may be nonlinear and they significantly influences the precision
of robotic motion. The paper [37] considers identifying the friction parameters of a
manipulator, whereas [44, 45] models and identifies the friction parameters depending
on the angular velocity of the robot joints and a varying load mass. Lastly, [3]
describes the estimation of a load mass.

The last part of the project is the adaptive control part, which enables the manipu-
lator controller to adapt to changes in the manipulator response and thus maintain an
optimal closed-loop response. The paper [39] considers 1-DOF flexible manipulators
and adapts the controller according to the load dynamics. Different techniques can be
used whether they work online (while the manipulator is operating) or offline (while
setting up the manipulator).

This project will not contain all the elements introduced above, but will be delim-
ited. However, the scope of the project will still be sufficiently enough to answer the
proposed question. The previous work within the field of robotics described above
will contribute with methods and ideas to complete the work. A delimitation of the
project is given in the following section.
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2.3 Project delimitation

In order to answer the main question of the project within the project time window the
project must be delimited. It was considered to optimize the joint trajectories in an
attempt to exclude trajectories that will cause the flexible tool to oscillate. However,
oscillations are only to be damped close to the destination point. If the oscillations are
damped during the entire trajectory travel, the time performance will be decreased.
A trajectory model consisting of a simple path is therefore developed, which is moving
the end-effector from an initial state to the destination point without any obstacle
avoidance involved. The project will be considering positioning/orienting the end-
effector, which can be translated to a tool center point (TCP) to define a specific path
for a specific point on the end-effector [22]. A flexible tool designed for the purpose
of this project will simulate an end-effector during testing.

Secondly, the load dynamics are considered constant during each individual test,
and therefore not able to change mass/shape during operation. Further, the mass is
estimated as a point mass and inertia is therefore not included. The main focus of
the project involves damping of oscillations in the tool, and the work will be fully ap-
plicable to handling tasks. Whenever a known item is lifted, the tool eigenfrequencies
are changed, which the controller must adapt to. In this case, it can be performed by
switching between two controllers. If the new loads on the other hand are unknown,
the tool eigenfrequencies can be estimated using techniques introduced later in this
report. Time varying loads in general will not be considered, but through the change
in flexible tool dynamics the change in payload can be given as a model state.

As was prepared for at the beginning of the project description, measurements
must be used to improve the estimate of the end-effector response. An operating
time requirement is difficult to determine, because this project is not based on an
actual production. However, based on a practical example of loading items into a
press a requirement can be given. Different sensor information will be fused together
to improve the model in general, and the model parameters will be estimated using
system identification techniques. The model in question will be derived using general
manipulator dynamics and partial differential equations describing the flexible tool
behavior. Optimally, the operator of the manipulator should only be obliged to state
the following parameters to the control system

• Pick-up location of load

• Destination of load

• Process time window

with the latter item defining the time from load pick-up to hand-over at the desti-
nation. This process involves both the pace of the manipulator when moving on the
predefined joint trajectory as well as the time it takes to counteract the flexible tool
oscillations.

A general model of a robot manipulator will be derived initially, which will provide
both position and orientation of the end-effector. Based on this model, a system
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identification algorithm will be designed to estimate the model parameters describ-
ing the system behavior. This includes changes in payload and general changes in
manipulator parameters such as friction.

Even though a number of elements has been removed from the project work, it is
assumed to fully meet the task of damping unwanted flexible tool oscillations, which in
turn will increase accuracy and pace performance. The end-effector can be positioned
faster, and the accuracy can be improved by using different measurements to estimate
model states. If more of the previous work is used throughout the report, it will be
referred to when needed. A definition of the technical requirements follows based on
the general requirements as well as the technical approaches needed to complete the
project described in the above delimitation.

2.4 Technical requirements

Only generalized requirements were given from the first sections of this chapter.
Within this section technical requirements are derived, which the final product must
respect in order for the project to be positively accepted and answer the proposed
question. Also, the requirements can be used in the technical development to de-
scribe mathematical solutions and selection of proper methods. The requirements are
subdivided into the topics modeling and control as given below

Manipulator modeling requirements

• The model must include a certain amount of complexity to allow a parameter
estimation algorithm to fit system states, outputs and control signals to the
model structure to provide the control algorithm with the best conditions for
estimating the manipulator behavior and respect given controller requirements

• Generalized kinematics must be derived to allow for arbitrary manipulator loca-
tion within a production cell as well as arbitrary workbench coordinates relative
to a local coordinate system

• Dynamics of the flexible tool must be modeled in order to determine the TCP
trajectory from strain measurements performed on the flexible tool

If the dynamics are undermodeled, the goodness of fit between measurements and
model will decrease. Generally, all models of physical systems are undermodeled
representations of the actual dynamics. Therefore, applying a great deal of research
in this part will form a model including various elements of the physics involved.

Manipulator control requirements

• The improved controller must perform equal or better than a controller based on
a rigid manipulator model regarding oscillation settling time. This corresponds
to a termination of the controller after the manipulator joints have reached their
reference values
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• Tool oscillations must be damped to allow fast TCP positioning. A practical
example (given by Ole Madsen, see personal profile in acknowledgements) has
a 10-12 s task time and a settling time of tset < 5 s is selected on the basis of
this time interval

• Tool tip deflection must be below the level of the path accuracy of ±0,1 mm
from the default manipulator controller [80]

• The controller structure must be based on nonlinear control theory

The latter item is selected to exploit the possibilities of nonlinear control in this
correlation. Numerical requirements are only possible in the cases, where the user has
specified a set of constraints/locations, which will only be used in examples throughout
the report. A graphical representation of what needs to be achieved is shown in figure
2.1 and 2.2.
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Figure 2.1: Arbitrary strain response when moving manipulator (uncontrolled)
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Controlled response

Settling time
with controller

Settling time
without controller

Figure 2.2: Arbitrary strain response when moving manipulator (controlled)

The first figure shows an example of the strain measurements during manipulator
movement (example has been constructed to explicitly show the point). When the
manipulator is activated from steady-state it will move to the specified destination.
The decaying response is the tool oscillating after the manipulator has stopped mov-
ing. Second figure shows an example response after the system has been added to a
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control loop with a damping controller. The system has been added additional damp-
ing, and the oscillations are decaying more rapidly. Further details on the controller
performance is provided in chapter 9. All technical requirements will be referred to
throughout the report, and a summary will be given in the conclusion. Methods
applied to the development process will be discussed next.

2.5 Methods applied to the development process

This project can be divided into two main categories manipulator modeling and ma-
nipulator control, which will each include a number of subelements. The order of the
elements is of great importance for the progress of the project. By organizing the
subjects prior to project initiation it can be ensured that they are handled in the
expected order. The first category is the manipulator modeling, which will include
the following subelements

• Modeling of manipulator kinematics

• Augmentation of kinematic model with dynamics

• Verification of model experimentally

• Application of the model in production cell equivalent

Derivation of a complete system model is thus the objective of the first part of the
project. This model can be used in the sequel part of the project, which is concerning
the manipulator control and will include the following

• Definition of controller structure

• Derivation of controller based on given structure and requirements

• Verification of model experimentally in production cell equivalent

The derived model is forming the base of the controller design, which aims to fulfill
the requirements given in the above sections. By using the listed methods, the project
will at all time include the necessary information to proceed

In order to verify the model and controller, sensor measurements will be logged for
comparison with the theory. A detailed description of the applied methods as well
as a description of the verification methods will be given in the respective chapters.
The entire system is evaluated in the system evaluation part. A number of case
descriptions will be given as part of the conclusion describing how the project may
be used in reality.

Before ending this project description, the practical methods for showing the perfor-
mance of the constructed control system will be described. An industrial manipulator
will be fitted with a flexible tool analog. This analog is a flexible device with a tip
mass. The mass of the tool simulates the actual weight of the tool, whereas the flexi-
ble beam between the manipulator and the tip mass simulates the mounting bracket
on the manipulator. By installing strain gauges in the mounting bracket (onto the
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flexible beam in this case), the dynamics of the entire tool can be estimated from
these measurements. It is then possible to counteract the motion of the tool in order
to damp the oscillations. The tool will be described in details in the following chapter
and system dynamics will be derived in the following part. A short summary of the
project description will be given next.

2.6 Summary

The project described in the previous sections contains the elements depicted in figure
2.3. A reference signal to a control loop determines the trajectory of the TCP. If the
tool is non-rigid, the final position can only be guaranteed in steady state (or at least
after the settling time has passed), which may be undesirable. Using a controller
module with prior knowledge of the system response makes it possible to predict the
behavior of the manipulator and the flexible tool, and thus counteract the undesirable
flexible behavior. Numerous sensors are mounted onto the manipulator structure to
provide measurements of the actual system behavior.

As the system is running, the manipulator model parameters are updated based
on information from the measured responses to given input signals. A system identi-
fication module solves the model equations with identical excitation signals and fits
the model parameters optimally according to some pre-defined rules. This ensures,
that model uncertainties and model insufficiencies are taken into account to obtain
the best possible manipulator control.

REIS RV15
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Figure 2.3: Project configuration with report references
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The short list below summarizes the project by defining the content of the final
product. The specific content of each specific item will be described in details in the
subsequent chapters.

• System identification

• Sensor fusion

• Controller

Together they form an autonomous system, which is capable of automatically estimate
the dynamics of the system including the flexible tool and a load. The controller is
adapted to the model to achieve the necessary performance. This will in turn ensure,
that the requirements are fulfilled even if the hardware configuration changes. Figure
2.4 shows the path from overall project formulation through various methods to solve
the problem and finally the delimited project description and corresponding methods.
The modeling is introduced in the next chapter.

Overall project formulation

Digital to analog
DAQ inputs

How to improve end-effector position/orientation control of industrial robotic
manipulators in terms of accuracy and operating time when handling flexible tools?

Apply sensor fusion techniques to improve the predicton of system behavior and use
the measurements to estimate load dynamics to adapt the controller to new configurations.

General methods

Trajectory optimization with time/energy performance index, manipulator/load dynamics
estimation and adaptive manipulator control to time-varying load configurations.

Previous work

Sensors will be applied to measure the state of the manipulator and the flexible tool, and
a controller will damp tool oscillations using sensor improved model estimates. The load

and the TCP trajectory are assumed constant over the entire operation with the load
approximated as a lumped tip mass.

Project delimitation

Modeling manipulator kinematics/dynamics including the flexible modes of vibration for the
tool. System identification techniques are used to adapt a model used by the controller. The

model is experimentally verified and the controller performance is measured afterwards.

Applied methods

Figure 2.4: Path from overall project formulation to final project delimitation
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Chapter 3

Modeling introduction

Optimizing the motion of a manipulator requires knowledge of the physics involved
and the hardware configuration of the production cell. The sensitivity and capabil-
ity of the system must be investigated prior to applying control, since the different
manipulator joints have different physical specifications and therefore show different
dynamic behavior. Verification of the physics will also be considered later.

Before initiating the modeling process a number of requirements are listed to guide
the process, which will ensure the expected outcome from the model. The following
elements must be included in the model

• Kinematic part to determine orientations and positions

• Dynamic behavior to include inertia and friction terms

• Actuator dynamics and limitations

• Flexible tool dynamics

All properties listed will be verified at the end of the modeling part to ensure that
they are all fulfilled sufficiently enough for the modeling to be successfully completed.
The kinematics and dynamics (first three bullets in the above list) will be summarized
in sections 3.3 and 3.4, while the actual derivation of the kinematics and dynamics
of the manipulator itself is located in appendices H and I, respectively. Modeling
the tool dynamics will though be given explicitly within chapter 4. From the project
description in chapter 2 a set of requirements were given in section 2.4 for the modeling
part specifically. These requirements are re-written below for convenience

• The model must include a certain amount of complexity to allow a parameter
estimation algorithm to fit system states, outputs and control signals to the
model structure to provide the control algorithm with the best conditions for
estimating the manipulator behavior and respect given controller requirements

• Generalized kinematics must be derived to allow for arbitrary manipulator loca-
tion within a production cell as well as arbitrary workbench coordinates relative
to a local coordinate system

• Dynamics of the flexible tool must be modeled in order to determine the TCP
trajectory from strain measurements performed on the flexible tool
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The first requirement implies, that the complexity of the model must be of an order,
which will enable a parameter fitting process to find a suitable solution to the fitting
problem. If the friction for example is not included in the model, a set of measurements
including this friction cannot be fitted properly within the entire range of data. By
maintaining a balance between the complexity of the model and the available data
for fitting, the model will provide a result close to the actual system behavior.

The second requirement states that the manipulator can be located arbitrary within
the production cell, as long as the spatial coordinates and orientation can be deter-
mined from measurements. A general model must be capable of supporting different
configurations. Also, the workbench coordinate system in which operations such as
drilling, milling, pressing etc. can take place, is selected arbitrarily. Deriving a
kinematic model with this amount of freedom allows for arbitrary manipulator con-
figurations and a quick re-configuration in case the production flow must be changed.

Lastly, the flexible tool calls for a non-rigid model in order for the controller to
position the manipulator end-effector/TCP accurately. A rigid connection between
the end-effector and the TCP is assumed, and the two terms will therefore be used
at random. The end-effector terminologi is only used when orientation is also an
issue. As described in appendix G, strain gauges will be applied to the flexible tool
to measure the strain, which is then translated into deflection. This in turn allows
for determination of the end-effector/TCP position.

Before summarizing the important parts of the kinematics and dynamics from ap-
pendices H and I, respectively, a number of mathematical notations and conventions
applied to the remainder of the report are listed and described in the sequel.

3.1 Mathematical notations and conventions

Before initiating the modeling work a set of mathematical notations and conventions
are outlined for the convenience of the reader and to avoid misinterpretations. In
order to describe the model mathematically a number of terms and expressions are
applied when denoting frame orientation and origo, which will respect the following
conventions throughout the report. The position of a frame origo in reference to
other frames is needed and is expressed as given in notation 1. Vectors are in general
described in this way.

Notation 1: Notation of j-th frame origo in reference with i-th frame origo
is iνj, with ν being reserved for this purpose in this report. Vectors in general
can be denoted only with vj if they are defined in frame j by implicit. 3

Orientation of frames attached to a specific point on the manipulator is denoted as
given by notation 2.

Notation 2: Frame orientation i
jT denotes a description of objects in the

j-th frame in reference with the i-th frame (notation from [30]) 3
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Convention 1 defines the structure of a transformation matrix and is based on DH-
parameters, which are introduced in details in the kinematics section of this chapter.

Convention 1: The order of rotation and displacement involves the following
steps. Firstly, the origo of the j-th frame is displaced by `DH

Zj and subsequently
rotated by ϕDH

Zj. Secondly, this new j-th frame is displaced to the origo of the
i-th frame by `DH

Xi and finally rotated by ϕDH

Xi to coincide the new frame with
the i-th frame to complete the motion of the frame (rotation/displacement
order from [30]). Mathematically it is defined as

i
jT = rot(Xi, ϕ

DH

Xi) dis(Xi, `
DH

Xi) rot(Zj , ϕ
DH

Zj
) dis(Zj , `

DH

Zj)

with rot(·) and dis(·) being a rotation operator and a displacement operator,
respectively. The first argument defines the axis of operation, and the second
argument the rate (rotation or displacement). Other conventions using dif-
ferent orders of transformation are possible, which provide similar results as
used in [86]. A sketch of the DH-frames is depicted in figure 3.3. 3

Details about the transformation is given when deriving the kinematics. A number of
general notations are further needed. Vectors are denoted as e.g. v using lower-case
letters while matrices are denoted with upper-case bold type letters like e.g. M except
when expressed by calligraphic letters such asM (special cases will be denoted when
used). Special vectors can be denoted with a bar like the zero 0̄ and the one 1̄ vector.
Other cases will be explained when applied. As the mathematical expressions can be
expanded beyond the width of this book, abbreviations for mathematical functions
are introduced as well, see notation 3

Notation 3: Trigonometric functions can be shortened in the following ways:
c θ ∼ cos θ, s θ ∼ sin θ, t θ ∼ tan θ. Sum of products of trigonometric func-
tions c12 = cos(θ1 + θ2) are also used in short form [30]. Special cases of this
convention including other trigonometric functions or algebraic expressions
will be specified when needed. 3

When dealing with several variables at ones it is useful to use a shorthand description.
The vector θ will be reserved for denoting the generalized coordinate vector, which
includes variables to describe displacements and/or angles depending on the type of
manipulator. It will be used frequently in the remainder of this report and is defined
formally in convention 2

Convention 2: The generalized coordinate vector θ contains joint angles
and/or translations for each joint in the manipulator model. θ ∈ Rn with
n denoting the number of degrees of freedom described by the model. Com-
monly (in this report) it can be referred to as the joint angle space, since the
REIS RV15 has no prismatic joints. 3
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A special convention regarding parts of the model describing relations between consec-
utive links is given by convention 3. It is introduced to simplify the model equations
and ease the reading of them as well.

Convention 3: The indices i and j used for frame indexing are related by
j = i + 1 throughout the modeling part. When the indices are used on their
own they need not necessarily refer to a frame index, but can be used to
indicate a conventional index. 3

Convention 4 provides a description of direction when working with scalar compo-
nents θj and unit direction vectors.

Convention 4: The mathematical notation θ̈je3 implies that θ̈j is the vector
component magnitude described in frame j in the direction of the third axis
given also in frame j. There will not be given any prefixes to the unit vector
like je3 to denote this, as it will be given by implicit 3

A last note before initiating the modeling of the manipulator is a remark on the num-
ber of degrees of freedom necessary to achieve satisfactory results. It is important for
the work described in this report.

Remark 1 (model reduction): It is only possible to measure the strain of the
flexible tool in one direction, and the need for making a regular manipula-
tor model with 6 degrees of freedom is therefore unnecessary. All entries in
the generalized coordinate vector θ that are causing the manipulator to work
outside the XZ-plane will be replaced by a constant in practice and removed
in the mathematical description. The re-definition n , 3 will be used in the
remainder of the report, and the manipulator can therefore be referred to as
a 3DOF-manipulator 2

The important mathematical notations and conventions along with an important
remark on model size have been explained in the above. A short list of common
terms follows in the next section.

3.2 Common terms

Before initiating the modeling of the system a short list of common terms used
throughout this part is provided. This is included to avoid misinterpretations.

Destination

Final location of the item being handled by the manipulator or the TCP, and it
can be stated as a position + an orientation or simply by a position depending
on the tool
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End-effector
Tool at the end of a manipulator.

Pick-up location
Location at which the manipulator picks up a specific item. Similar to the def-
inition of the destination, it can be stated as a position + an orientation or
simply a position depending on the tool.

Operating time
Completion time for a single task e.g. lifting an item from a conveyor belt to a
machine and then return to the initial position.

Task
A schedule of specific jobs to complete by the manipulator within the operating
time window.

In the sequel sections, the kinematics and dynamics will be summarized based on the
theory from appendices H and I, respectively. The complete model will be verified
through experiments conducted on the mechanical hardware, which is treated in the
system evaluation part. Next chapter introduces a model of the flexible tool, and a
controller will be developed in following part on the basis of the modeling work from
this part.

Before initiating the modeling in section 3.3, figure 3.1 and 3.2 show the manipu-
lator and the flexible tool, respectively, which must be modeled in this chapter. A
detailed description of the hardware used in this project is given in appendix G. The
tool specifications are referred to as the Ξ-system and are given in section G.4.

Joint
angle

encoders

Strain
gauges

REIS RV15
manipulator

Flexible
tool

National Instruments 
cRIO controller unit

Inertial
measuring

unit

Figure 3.1: Overall hardware configuration
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Tool
mount
plate

Strain
gauges

Tip
mass

Flexible
beam

Figure 3.2: Flexible tool configuration (image from laboratory, repeated from figure G.12)

3.3 Manipulator kinematics model

Based on the technical requirements for the modeling part given in section 2.4 a
general manipulator model must be derived. It is constructed from a kinematics model
expressing positions and orientations of joints and links along with a dynamics model
taking limitations of each link due to friction, inertia etc. into account. This section
describes the kinematics involved in the model, that allows for mapping between
different frames defined on the manipulator structure. The content of this section is
given on the basis of the theory derived in appendix H, which goes into details with
some of the subparts including derivation of DH-frames.

Robotics constructed from a number of serially coupled links of various configu-
ration and motion (prismatic/revolute) can be described by the so-called Denavit-
Hartenberg parameters [30], and the robot type is often referred to as a manipulator.
This will also be the most widely used term to describe the mechanical construction.
The parameters denote the geometry of a manipulator mathematically and together
with the joint angle space θ, the position of a point or the orientation of a link can be
determined. A 4-tuple collects the necessary parameters describing each link of the
manipulator in terms of the previous one. It is specified for the j-th link as

Lj = {`DH

Xi
, ϕDH

Xi
, `DH

Zj
, ϕDH

Zj
} (3.1)

where j = i + 1 (from convention 3) and post-superscript DH denoting that the pa-
rameters are used specific for the DH-parameter notation. Indices Xi and Zj denotes
the specific local axis of rotation/translation. The term `DH

Xi
denotes a translation in

the Xi direction, ϕDH

Xi
a rotation around the Xi-axis and so forth. The parameters

are further limited by `DH

Xi
, `DH

Zj
∈ R and ϕDH

Xi
, ϕDH

Zj
∈ [−π/2, π/2]. A sketch of the

DH-parameters is given in figure 3.3.
The DH-parameters are only used for deriving transformation matrices at the begin-
ning of the modeling part. After that the parameters will be given implicitly through
the transformations i

jT . Also, the DH-parameters are not necessarily describing ac-
tual locations on the manipulator, since frames may be coinciding. In that case,
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Xi

Yi

Zi XjYj

Zj

XjYj

Zj

Xj Yj

Zj

ϕDH

Xi

`DH

Xi

ϕDH

Zj

`DH

Zj

Pre-rotation around x-axis
Pre-displacement along x-axis

Post-rotation around z-axis
Post-displacement along z-axis

Figure 3.3: Graphical interpretation of DH-parameters (inspired by fig. 3.15 in [30])

special conversions must be used. It is assumed, that the rotation of a link is always
around the Zj-axis, and that all Xi-axes are pointing in the same direction. This
simplifies the model as it excludes a number of redundant parameters.

The derivation of kinematics in appendix H has been based on the DH-parameters
of the REIS RV15 manipulator as given in table 3.1. The parameters are from [25],
and minor adjustments have been performed to fit this model. Notice that only three
lengths are needed to describe the position of the origin of the last frame as the origins
for frame 4 through 6 are assumed coinciding.

`DH

Xi
ϕDH

Xi
`DH

Zj
ϕDH

Zj

Axis 1 L1 = {`DH

X0
, ϕDH

X0
, `DH

Z1
, ϕDH

Z1
} 0 0 0,75 θ1

Axis 2 L2 = {`DH

X1
, ϕDH

X1
, `DH

Z2
, ϕDH

Z2
} 0 −π/2 0 θ2

Axis 3 L3 = {`DH

X2
, ϕDH

X2
, `DH

Z3
, ϕDH

Z3
} 0,60 0 0 θ3

Axis 4 L4 = {`DH

X3
, ϕDH

X3
, `DH

Z4
, ϕDH

Z4
} 0 −π/2 0,55 θ4

Axis 5 L5 = {`DH

X4
, ϕDH

X4
, `DH

Z5
, ϕDH

Z5
} 0 −π/2 0 θ5

Axis 6 L6 = {`DH

X5
, ϕDH

X5
, `DH

Z6
, ϕDH

Z6
} 0 +π/2 0 θ6

Table 3.1: Denavit-Hartenberg parameters for the REIS RV15 from [25] (units in m and rad)

A frequently used DH-parameter is ϕDH

Zj
, which is therefore defined as ϕDH

Zj
≡ θj . The

angle θj describes the angular displacement of link j (will be used after the deriva-
tion of the general transformation) according to some initial configuration. Positive
direction of rotation is defined according to the usual cross product rule Z = X × Y .
A positive angle is given when the first elementary axis e1 is rotating towards the
second elementary axis e2.

Due to remark 1 on page 18, not all DH-parameters from table 3.1 are needed. The
altered parameters are given in table 3.2 and includes only three links (for details on
the derivation, see appendix H).
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`DH

Xi
ϕDH

Xi
`DH

Zj
ϕDH

Zj

Axis 1 L1 = {`DH

X0
, ϕDH

X0
, `DH

Z1
, ϕDH

Z1
} 0 −π/2 0 θ1

Axis 2 L2 = {`DH

X1
, ϕDH

X1
, `DH

Z2
, ϕDH

Z2
} `1 0 0 θ2

Axis 3 L3 = {`DH

X2
, ϕDH

X2
, `DH

Z3
, ϕDH

Z3
} `2 0 0 θ3

Table 3.2: Denavit-Hartenberg parameters (angles in rad) for re-configured setup [30]

Numerical values have been substituted with variables to simplify the expressions.
The variables are given as `1 = 0,6 and `2 = 0,684. Figure 3.4 shows the location of
the new frames graphically.

F0

F1 F2 F3

Fe
Fτ

Z0

X0

X1

Y1

X2

Y2

X3

Y3

Xτ

Yτ

Ye

Xe

+θ1 +θ2 +θ3

Figure 3.4: Frame orientations on 3DOF manipulator configuration

Frames Fτ and Fe denote the tool frame and the end-effector frame, respectively.
Whenever the position of a point on the manipulator can be expressed in terms of
the joint angles, the linear velocity and linear acceleration can be determined for
the point as well. This enables the expression of a transfer function from applied
actuator torque to resulting motion of the end-effector in an arbitrary direction when
deriving the dynamics. A number of matrices are resulting from the kinematics work
to perform a homogeneous transformation . They are derived on the basis of the
DH-parameters of table 3.2 and the general transformation (H.4). The joint angle
dependent matrices and a constant offset matrix are expressed as

b
0T =


1 0 0 0
0 1 0 0
0 0 1 `off

0 0 0 1

 , 0
1T (θ1) =


c θ1 − s θ1 0 0
0 0 1 0
− s θ1 − c θ1 0 0

0 0 0 1


1
2T (θ2) =


c θ2 − s θ2 0 `1
s θ2 c θ2 0 0
0 0 1 0
0 0 0 1

 , 2
3T (θ3) =


c θ3 − s θ3 0 `2
s θ3 c θ3 0 0
0 0 1 0
0 0 0 1


with the first matrix expressing the offset `off = 0,7 from base frame Fb to zero-frame
of the manipulator F0. The zero-frame is the basis of the manipulator model. By
multiplying the matrices as well as pre/post-multiplying constant or time dependent
matrices a full kinematic transform can be expressed as [86]
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o
eT (t, θ,$) = p

oT
−1(t) pbT (t) b0T

 n∏
j=1

i
jT (θj)

 n
τT τ

eT ($, t) (3.2)

o Workbench frame Fo p Production cell frame Fp
b Base frame Fb [0, n] Manipulator frames Fi
τ Tool frame Fτ e End-effector frame Fe

For any manipulator configuration the end-effector position can be determined with
respect to the production cell coordinate system. The variable $ is the angle between
the tool frame Fτ and the frame attached to the end-effector frame Fe. It is a conse-
quence of small-signal approximation when modeling the flexible behavior of the tool
(see section 5.1). It is derived and described in details in section 5.1.

This type of calculation is referred to as forward kinematics because the generalized
coordinate vector is known in advance [30]. The inverse process is known as inverse
kinematics and determines the set of possible manipulator configurations for a given
end-effector coordinate. This will however not be used in this project. Figure H.1
further shows, how the different parts of the production cell are located, and the figure
is repeated in figure 3.5.

Manipulator F0 − Fn

Production
cell Fp

Tool Fτ

End-effector Fe

Workbench Fo
Base Fb

Figure 3.5: Sketch of frames in production cell (repeated from figure H.1)

Since the objective of this project does not involve task scheduling of the manipulator
and surrounding production, the transformations p

bT (t)−1 (base to workbench) and
p
0T (t) (cell to base) are equivalent to I4. They can be changed at any time to transform
the spatial coordinates representing the motion of the manipulator. For simplicity in
the remainder of the report, the applied transformation matrix in given as 0

eT (t, θ,$),
representing motion of the end-effector in base/floor frame coordinates. Based on
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manipulator specifications from appendix G the constant map nτT = 3
τT between last

manipulator frame Fn and tool mount frame Fτ is given as

3
τT =


1 0 0 `3
0 1 0 0
0 0 1 0
0 0 0 1

 (3.3)

with `3 = |τνn| denoting the distance between frame Fn and Fτ origo. After this
frame the flexible tool will be mounted. The transforms are all representing a rotation
around the local z-axis Zi and a translation equivalent to the length of the link in
question. Before confusing the different terms end-effector, tool frame and tool center
point a short description is given explicitly. Also, the relation to other manipulator
configurations is denoted. Because this project is used to demonstrate a concept, the
hardware configuration may not be similar to other configurations.

Tool mount: Plate at the end of manipulator, link n

Tool mount frame Fτ : Frame at the end of manipulator without tool

End-effector: Tool mounted on the tool mount frame Fτ
End-effector frame Fe: Frame at the end of end-effector with origo defining TCP

Tool center point (TCP): Origo of end-effector frame Fe

The kinematic transformation from base to end-effector is now derived though with
the transform τ

eT ($, t) being left unknown for now (derived in chapter 4). Deriving
of manipulator dynamics is following in the sequel section.
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3.4 Manipulator dynamics model

The important transition from a kinematic to a dynamic model is the inclusion of
hardware dependent parameters such as inertia, friction etc, that in some manner
affects the free motion of the manipulator links. In the previous section the kinematics
were derived, making it possible to determine the spatial position of any point on the
manipulator for any general coordinate θ. A system of differential equations can
subsequently be determined in a regular fashion based on the generalized expression

fM (θ, t)θ̈ = f(θ, θ̇, t) (3.4)

with fM (·) denoting a nonlinear mass matrix vector field, which in the rotational case
introduces inertia of the mechanics into the dynamic equations. f(·) expresses the
system equations depending on time as well as the generalized coordinate vector θ and
the time derivative θ̇. This includes gravity, frictions, excitation torques τe(t), Coriolis
forces and centrifugal forces. Including the terms as separate parts of the equation
the manipulator dynamics can be stated as a joint space model [86]

M(θ, t)θ̈ = τ(t)−C(θ, θ̇)− F(θ̇)−G(θ) (3.5)

where all friction terms are collapsed into one dissipation term F(θ̇). All terms are de-
scribed in details in appendix I. The time dependency of the mass matrix is preserved,
since a change in payload will change the mass matrix accordingly. C is a collection
of Coriolis and centrifugal terms, while G contains terms including the gravitational
constant g = 9,82 m/s2. A linear version can be constructed from equation (3.5)

M(θ, t)θ̈ = τ(t)−C(θ, θ̇)θ̇ − Fθ̇ −Gθ (3.6)

The mass matrix will in both cases be kept linear in the accelerations of joint angles
θ̈. Using one of the above models makes it possible to predict the behavior of an
n-DOF manipulator under actuation and dynamic loads. The theory of the model is
defined in appendix I, and an explicit model write-out is given in appendix N for the
3-DOF manipulator configuration.

As a result of remark 1 on page 18 the dynamic model is strongly reduced and
therefore θ ∈ Rn with n = 3. The actuators were modeled by (I.6) and (I.7) in
appendix I, and they are repeated below [41]

İa,i = −αiIa,i − βiθ̇a,i + κiUa,i (3.7)

θ̈a,i = γiIa,i − δiθ̇a,i + τf,i(t, θa,i)/Ji (3.8)

with the constants being defined as αi = Ri/Li, βi = Kei/Li, γi = Kmi/Ji, δi = Bi/Ji
and κi = 1/Li being motor specific constants, where Ri is the electrical armature
resistance [Ω], Li the armature inductance [H], Ji the armature inertia [kgm2], Bi the
friction [Nms] and Kei = Kmi the electrical and mechanical motor constant [Vs rad],
respectively. τf,i(t, θa,i) is denoting the nonlinear friction terms and external torque
contributions. Notice how θ has been replaced by θa to denote the joint space of the
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actuators. Two models are now representing basically the same thing, namely the
angular accelerations θ̈ and θ̈a. In order to accommodate the fact that two models
express the same state (one is a scaled version of the other), the mechanical part of
the actuator model is omitted and represented by the joint space model alone. The
equations needed to finalize the model are therefore

θi =
1

Ni
θa,i Drive train gearing

İa,i = −αiIa,i − βiθ̇a,i + κiUa,i Actuator dynamics

τ = M(θ)θ̈ + C(θ, θ̇) + NF(θ̇) + G(θ) Joint space dynamics

τi = NiγiIi Torque from actuator

By implicit the generalized coordinate vector θ is the joint angles, whereas θa is the
actuator angles. The gear ratio N > 1 and thus reducing velocity from actuator to
link when θ = θa/N . Equation (3.8) from the actuator model has been omitted on
behalf of the manipulator model. This already expresses the angular acceleration of
a link, while frictions are modeled through the manipulator model. The nonlinear
friction part τf,i will have to be added manually to the respective entries in F. The
only thing to take into consideration is the gear ratio Ni, which is multiplied to torques
and frictions (thus decreasing velocity by a factor Ni). The torque produced by the
actuator is used as the driving force for the manipulator dynamics. By combining the
equations a nonlinear state model can be expressed as

İaθ̇
θ̈

 =

Linear part︷ ︸︸ ︷ −α 0 −β
0 0 I

M−1Nγ 0 0

Iaθ
θ̇

+

κU0
0

+ · · ·

· · ·+

Nonlinear part︷ ︸︸ ︷ 0
0

M−1
(
−C(θ, θ̇)−NF(θ̇)−G(θ)

)


[
θ

θ̇

]
=

[
0 I 0
0 0 I

]Iaθ
θ̇



(3.9)

The system is a combination of an actuator model without linear friction (linear part)
and a manipulator model (nonlinear part including actuator friction). Because of the
model reduction described in remark 1 on page 18, the size of the model is given by
α,β,γ, δ,κ,N ∈ Rn×n diagonal matrices given by α = diag{αi}ni=1, β = diag{βi}ni=1

and so forth, respectively. Also given are M,C ∈ Rn×n, the vector fields F,G ∈ Rn×1

and 0, I ∈ Rn×n. Ua is a vector of exogenous input signals for each actuator. All
model dependent matrices are given explicitly in appendix N.

A gear ratio of a factor of 100 is featured by the REIS RV15 [79, 25]. Therefore
N = 100I3 and the dynamics of the manipulator is shadowed by the friction terms
of the model and thus τ = NF(θ̇). A bold τ -symbol has been used to distinguish
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between tool frame index τ and link torque τ . Also, the actuator drivers are featuring
voltage inputs to represent a current to the actuators which in turn generates a torque.
The explicit actuator model can thus be replaced by a direct torque input, and the
model from (3.9) can be simplified to the following form[

θ̇

θ̈

]
=

[
0 I
0 0

][
θ

θ̇

]
+

[
0

(NF)−1

]
U[

θ

θ̇

]
=

[
I 0
0 I

] [
θ

θ̇

] (3.10)

This is emerging from the relation τ = NF(θ̇), which can be differentiated to u , τ̇ =
NF(θ̈), which is producing a relation with the joint space acceleration. In order to see
the different relations from the above equations, figure 3.6 illustrates the principle.

τa,i, θa,i

1:Ni

mi

τi, θi

(a) Free-body diagram

τa,i

θa,i

Fi τ ′i

mi

τi

θi

1 : Ni
(b) Free-body electrical analog diagram

Figure 3.6: Mechanical diagrams of the model in (3.10) for a single link

The actuator side of the diagram satisfies the relation τa,i − τ ′i = F θ̇a,i. Due to the
gear ratio between actuator angle and joint angle of Ni > 0, then θa,i = Niθi which

implies τi = Niτ
′
i . Using the acceleration/torque relation τi = miθ̈i a combined

relation can be expressed as

NiFiθ̇i = F θ̇a,i = τa,i − τ ′i = τa,i −
τi
Ni

= τa,i −
miθ̈i
Ni

(3.11)

which can be rearranged to

τa,i =

(
Fiθ̇i +

miθ̈i
N2
i

)
Ni ≈ NiFiθ̇i (3.12)

Because the second term is scaled with a factor of N2
i , it can be canceled out and what

remains is the relation τa,i = NiFiθ̇i and thus u , τ̇a,i = NiFiθ̈i. This expresses the
angular acceleration of the i-th joint in terms of the input signal u, which is defined
as the actuator torque derivative. The manipulator dynamics is therefore described
by a friction model alone. This significantly reduces the computational load when
compared to a full dynamics model for a 6-DOF manipulator.
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Assumption 1 below is used to separate this model from the one derived in the se-
quel chapter. The flexible beam is assumed to have no impact on the motion of the
remaining manipulator hardware. This implies, that the two models are decoupled.

Assumption 1: Based on practical assessments of the accessible manipulator
hardware and the construction of the tool, it is assumed, that the tool is not
affecting the motion of the manipulator structure itself. 2

The last part of this chapter involves determining the vertical acceleration of the tool
frame Fτ , which is exciting the flexible tool. This will be used in the flexible model
as a direct acceleration term as a function of the joint space and its derivatives.

3.5 From angular to Cartesian acceleration

In order to determine the acceleration of the tool frame Fτ , an expression of 0ντ (vector
from base to origo of tool frame) is differentiated in respect with time. The kinematics
is used alone to determine this, as opposed to aτ (derived in appendix I), which is
including gravity. This is omitted for simplicity as the friction terms are dominating
the dynamics. Accelerometer measurements in the direction of gravity must therefore
be corrected by subtracting −g from the measurement. First step in the acceleration
derivation process involves expressing T′ , 0ντ using the transformations from page
3.3

T′ = 0
1T

1
2T

2
3T

3
τT e4 =

 `2 c12 +`1 c1 +`3 c3 c12−`3 s3 s12

0
`0 − `2 s12−`1 s1−`3 c3 s12 +`3 s3 c12


Then the velocity can be determined from

0ν̇τ = T′θ(θ)θ̇, given T′θ(θ) =
∂T′(θ)

∂θ

=

 −`1 s1−`2 s12−`3 s123 −`2 s12−`3 s123 −`3 s123

0 0 0
−`1 c θ1 + `2 c12−`3 c123 −`2 c12−`3 c123 −`3 c123

θ̇1

θ̇2

θ̇3


Lastly, the acceleration can be derived from

0ν̈τ k =
〈〈

kT
′
θθT(θ), θ̇

〉
, θ̇
〉

+
〈〈

kT
′
θ(θ), θ̇

〉
, θ̈
〉
, given T′θθT(θ) =

∂T′θ(θ)

∂θ

with the inside dot products determined from

0ν̇τ,k =
〈
kT
′
θ(θ), θ̇

〉
Pre-index is used as row notation, thus picking out only the k-th row of the adjacent
matrix. This yields the acceleration
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0ν̈τ =



−`1θ̈1 s1−`1θ̇2
1 c1−`2θ̇2

1 c12−`2θ̇2
2 c12−`2θ̈1 s12−`2θ̈2 s12− · · ·

· · · − `3θ̇2
1 c123−`3θ̇2

2 c123−`3θ̇2
3 c123−`3θ̈1 s123−`3θ̈2 s123−`3θ̈3 s123− · · ·

· · · − 2`2θ̇1θ̇2 c12−2`3θ̇1θ̇2 c123−2`3θ̇1θ̇3 c123−2`3θ̇2θ̇3 c123

0

−`1θ̈1 c1 +`1θ̇
2
1 s1 +`2θ̇

2
1 s12 +`2θ̇

2
2 s12−`2θ̈1 c12−`2θ̈2 c12 + · · ·

· · ·+ `3θ̇
2
1 s123 +`3θ̇

2
2 s123 +`3θ̇

2
3 s123−`3θ̈1 c123−`3θ̈2 c123−`3θ̈3 c123 + · · ·

· · ·+ 2`2θ̇1θ̇2 s12 +2`3θ̇1θ̇2 s123 +2`3θ̇1θ̇3 s123 +2`3θ̇2θ̇3 s123


The acceleration of Fτ given in Cartesian coordinates 0ν̈τ (θ, θ̇, θ̈) is a function of the
joint space and its derivatives. Using assumption 2 below, the small-signal approxi-
mation limits the joint space motion and thus θ = const. This leads to a reduction
of the expression, and only two states for each active joint are needed to describe the
motion of the manipulator.

Assumption 2: The control problem of damping the oscillations in the flexible
tool requires only a small local section of the joint space being used. This en-
ables small-signal approximation, making θ = const, which alters 0ν̈τ (θ, θ̇, θ̈)
to 0ν̈τ (θ̇, θ̈) when evaluated at the point of operation. 2

Only the last component of 0ν̈τ (θ, θ̇, θ̈) is needed, and when evaluated at the zero
condition (offset is possible later) it becomes

υ(θ̇, θ̈, t) =


−`1θ̇2

1 − `2(θ̇2
1 + θ̇2

2)− `3(θ̇2
1 + θ̇2

2 + θ̇2
3)− · · ·

· · · − 2θ̇1θ̇2(`2 + `3)− 2`3(θ̇1θ̇3 + θ̇2θ̇3)
0

−`1θ̈1 − `2(θ̈1 + θ̈2)− `3(θ̈1 + θ̈2 + θ̈3)

 (3.13)

with υ(θ̇, θ̈) , 0ν̈τ (θ̇, θ̈). The time parameter is provided by the time dependent
joint space coordinates. This ends the modeling introduction, which summarized the
important elements from appendices H and I. A complete model of the system has
been derived and the linear acceleration of the tool frame has been expressed. The
acceleration is used to excite the mode shapes of the flexible beam, which is introduced
in the sequel chapter.
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Chapter 4

Flexible tool model

The scope of this project is concerning how to improve manipulator control when
using flexible tools. As introduced in appendix G when introducing the hardware,
a flexible tool analog has been constructed for testing with an associated payload.
Before the control task can be initiated, a mathematical model of the non-rigid tool
dynamics must be known, which is the topic of this chapter. The mass of the payload
mass may also be unknown, and it must be estimated through system identification
methods, which is the topic of chapter 8.

This chapter begins with a short introduction to the term flexibility and how it can
be measured. First section looks at the static case with a constant force applied to
a flexible beam. Afterwards, the behavior of the tool is derived when affected by the
motion of a non-stationary tool frame Fτ , which will excite the modes of the flexible
tool. The first mode is important, because it features both the highest amplitude of
vibration and is the best to counteract by slow electromechanical actuators.

The configuration involves a moving platform - the tool frame Fτ , and a tool that
is rigidly attached. Whenever the manipulator is moving, the free end of the flexible
tool is not able to follow the motion exactly due to the internal elasticity properties.
Another phenomenon occurs whenever the manipulator is exciting an exact eigen-
frequency of the tool, which will cause it to resonate. This can damage the tool
if the oscillations become to large. In order to both protect the tool and making
the end-effector follow a given trajectory, a controller must avoid exciting resonance
frequencies as well as damp oscillations.

Different flexibilities are depicted in figure 4.1 for a flexible beam. Subfigure 4.1a
shows twisting around a vertical z-axis, subfigure 4.1b shows bending motion around
a y-axis, subfigure 4.1c shows twisting around a z-axis + bending around a y-axis and
4.1d shows bending around both an x- and a y-axis. In this figure the z-axis is going
through the beams, and the beams are located on the (x, y)-plane.

In order to develop a model suitable for the purpose of this project, it must be
proper defined how it must be used afterwards. Since the manipulator workspace is
defined in E2 (reduced from E3 due to remark 1 on page 18), the motion of the flexible
tool must also be evaluated in this two-dimensional Euclidean space only. With this
planar case the oscillations of the tool can only occur around one axis. Therefore,
only bending as shown by figure 4.1b is possible and will be the only effect to model
for the purpose of this project.



i
i

i
i

i
i

i
i

32 CHAPTER 4. FLEXIBLE TOOL MODEL

a) b) c) d)

Figure 4.1: Different types of beam flexibilities in three dimensions (twisting and bending)

It is assumed, that the flexibility is constrained to only the first four modes of vibra-
tion (will be explained in details later in this chapter). This reduces the accuracy of
the model but can be fully justified for the most practical cases. The frequency of
operation will most likely, at least for this project, be limited to a low range band-
width and therefore not able to excite higher modes of vibration. All assumptions
from above are summarized in assumption 3.

Assumption 3: Due to the assumed planar manipulator structure (see remark
1 on page 18), bending of the tool is only possible around one axis. The
oscillatory bending motion is modeled by the first four modes of vibration in
order to limit the complexity of the model and only include modes that can
be measured by sensors. 2

The aim of this project is to design a controller that is capable of damping flexible
tool oscillations in order to make the end-effector track a given reference with low
error. In cases where only the point-to-point tracking is important the controller
must damp the oscillations before the end-effector reaches the desired position. Based
on the sensor measurements from strain gauges the future behavior of the load can
be predicted and thus also counteracted. The following section will introduce the
concepts of modeling flexible system dynamics, which will form a basis for deriving a
complex time dependent model of the flexible tool later on.

4.1 Basic flexibility model

Before introducing any math to model the flexible tool the notation is described. In
respect with the tool frame, the Xτ axis is tangential to the tool center line, and
the difference between these two axes defines the deflection denoted by w(x) for the
one-dimensional case [74]. Figure 4.2 shows an illustration of a flexible beam together
with frame denotations.
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X3-axis

Tool mount

Y3

X3
w(x, t)

Yτ

Xτ

Figure 4.2: Flexible beam problem with frame denotations

The bending problem can be described on the basis of the Timoshenko beam theory,
which introduces the following partial differential equation in time t and longitudinal
position x on the beam [18]

EI
∂4w(x, t)

∂x4(t)
+ aρ

∂2w(x, t)

∂t2
−
(
Iρ + aρEI

ks

) ∂4w(x, t)

∂x2(t)∂t2
+
aρIρ
ks

∂4w(x, t)

∂t4
= 0 (4.1)

with w(x, t) describing the deflection of the beam in the two arguments. This equation
is only describing the beam deflection in one direction, and another approach will have
to be used when the manipulator is operating in E3. For the scope of this project,
only the first 2 terms will be applied and thus also described (unused terms are not
described or included in the nomenclature) [74]. The last terms are included to show,
that the Timoshenko theory can include more aspects in the bending of a beam,
making the model more accurate. A similar beam theory could have been applied
in form of the Euler-Bernoulli beam theory , which would have been similar to the
Timoshenko model in the simplified case [18]. The main difference between the two
methods is their basic assumptions on how to model bending/twisting behavior of a
beam.

Appendix M features the derivations of models for time independent beam bending
phenomenas concerning simple beams. The main results will be repeated at the end
of this section. This will form a basis of the theory provided in the remainder of this
chapter. The last sections will introduce time and tool frame motion to the model.
All models derived in this report respect the following assumption regarding direction
of gravity.

Definition 1: Scalar forces acting in a single point and distributed forces act-
ing on a line are defined in the positive z-direction (opposing gravity direction
in the initial manipulator configuration), and deflections will thus be positive
when the beam is subjected to a positive force (in the assumed upwards direc-
tion) 2

A summary of the models from appendix M are given in table 4.1 for a beam with
boundary conditions from a cantilever beam configuration, repeated from appendix
M [108]

w(0) =
dw(0)

dx
= 0

No deflection or non-tangential derivative at
the point of beam attachment x = 0

d2w(`)

dx2
=

d3w(`)

dx3
= 0

No bending moment or shear force at the end-
point of the beam x = `
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Beam subjected to self-weight

wb(x) = mbg
24EI`x

4 − mbg
6EI x

3 + mbg`
4EI x

2

Beam subjected to tip load

wl(x) = −mlg
6EI x

3 + mlg`
2EI x

2

Beam subjected to both load types

wc(x) = mbg
24EI`x

4 −
(

g
6EI (ml +mb)

)
x3 +

(
mbg`
4EI + mlg`

2EI

)
x2

Table 4.1: Beam deflection when subjected to different load types (repeated from appendix M)

Notations are given in appendix M as well as in the nomenclature. These solutions
are solved by integrating the differential equation four times and then expressing all
unknown constants. The sequel section introduces motion of the tool frame Fτ and a
tip mass to the simple beam. It will be clear, that the polynomial realizations from
table 4.1 is replaced by a sum of trigonometric functions which are more suitable for
solving the partial differential equation in (4.1).

4.2 Flexible tool model with non-stationary tool frame

The above theory included a stationary inertial frame causing only the gravity to give
rise to a force in the deflection model. This section will include two more elements to
the model: time dynamics and a moving tool frame. Whenever the tool frame is in
motion, it will affect the beam and causing it to bend. Equation (4.1) will be applied
in the simplified case described in the chapter introduction, yielding

EI
∂4w(x, t)

∂x4
+ aρ

∂2w(x, t)

∂t2
= f(x) (4.2)

which includes the time parameter in the deflection function w(x, t) and no torsional
components. E is the Young’s modulus [N/m2] and I the second moment of inertia
[m4] and the values are given in appendix G. The product between the variables E
and I expresses the flexural rigidity of the flexible tool [20]. Furthermore, the force
is now determined from the motion of the tool frame alone (constant gravity term
neglected) and corresponds directly to Newtons’s second law of motion stating that
F = mẍ, which in this particular case yields [74]

EI
∂4w(x, t)

∂x4
+ (mlδ(x− `) + aρ)

{
d2y(t)

dt2
+
∂2w(x, t)

∂t2

}
= 0 (4.3)

with the force described per unit length instead. Two new terms have been included
in the model and all four right terms are described below
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aρd2y(t)
dt2 Force on beam due to acceleration of tool frame

mlδ(x− `)d2y(t)
dt2 Force on load due to acceleration of tool frame

aρd2w(x,t)
dt2 Force on beam due to acceleration of beam

mlδ(x− `)d2w(x,t)
dt2 Force on load due to acceleration of beam

A sketch of the problem is depicted in figure 4.3. Tool frame motion is possible in
all directions in the (Xτ -Yτ )-plane, but only components in the Z0-direction will be
considered as formulated in assumption 4. As seen from the Fτ frame itself no motion
is happening of the Fτ origo. Therefore, as the gravity force is acting perpendicular
to the inertial frame F0, the motion y must be given according to this.

Normal axis

Tool mount

ml
Y3

X3
w(x, t)

Yτ

Xτ

Figure 4.3: Flexible beam problem with moving base and tip mass

Some of the initial conditions are similar to the ones used in the models from the
previous section [108] with time dependencies added as well. Because of the added
tip mass ml and the tool frame dynamics, the boundary conditions need no longer be
zero as suggested by [74]. However, by maintaining the boundaries as they are for the
regular cantilever beam, the frequency analysis of the beam will be able to indicate
the natural beam frequencies as well as the change in frequency due to the load. The
two new boundary conditions treat the vertical motion of the beam, which is assumed
in steady state at time t = 0, y(0) = 0. Assumption 4 forms the basis of the model
in equation 4.3. No other disturbances than y(t) are affecting the beam, making the
independent variable x independent of time as well.

Assumption 4: Only tool frame Fτ motion as represented in the Z0-direction
(negative direction of gravity) is considered an excitation to the flexible tool
model, because motion in the X0-direction is assumed to have no impact
on the deflection of the beam. This is supported by the flexible model only
containing deflection components and not stretch components along the length
of the beam. 2

As was the case in the modeling of the beam deflection due to the load in equation
(M.5), the Dirac delta function is only activating the forces on the load, whenever
x = `. Therefore, it is convenient to introduce a Laplace transformation once again
to handle this function. The independent function to solve for is the deflection of the
beam w(x, t) when affected by tool frame motion y(t).

Similar to a Fourier transformation of a signal, the motion of the beam elements
can be described as an infinite sum of contributions for each mode shape and the
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corresponding dynamics. In order to enable valid calculations, a specific number
of modal frequencies is considered to make up for the response within the entire
frequency span. The deflection can thus be evaluated in the following way [74]

w(x, t) =

M∑
i=1

φi(x)qi(t) (4.4)

with φi(x)qi(t) expressing the shape of the i-th solution to equation (4.3). qi(t) is the
so-called modal coordinate for the i-th mode of vibration and describes the motion of
the specific mode over time [102]. φi(x) describes on the other hand the mode shape
of the i-th resonance. M denotes the number of active modes in the approximation
of a solution. The function qi(x) from equation (4.4) is assumed to be describing
a second-order damped system. Before proceeding with the model derivation, an
important note is stated.

The notation q(t) will be referred to as both the modal coordinate function and the
strain. This is because the strain is determined as a linearly scaled version of the
modal coordinate. The double meaning of the notation will, however, not interfere
with the understanding of the material, because the variable remains undefined (no
practical values inserted) until the end of this chapter.

The modal coordinate is determined from [21]

qi(t) :
dq2
i (t)

dt2
+ 2ζiωi

dqi(t)

dt
+ ω2

i qi(t) = 0

⇒ qi(t) = eλrt(d1 cosλ1t+ d2 sinλ2t)

(4.5)

where λr = <{Λk} (either k can be used due to complex conjugated solution pair),
λk = ={Λk} given the roots to the characterstic equation Λk ∈ C and d1, d2 ∈ R
are arbitrary, but given from initial conditions. The general solution is given from
[21] and requires the discriminant of the characteristic equation ∆ < 0, which is
obtained when ζ2 < 1 given that ∆ = 4ω2(ζ2 − 1). The roots are determined from
the characteristic equation factorized to (s−Λ1)(s−Λ2) = 0 in the Laplace domain.

Since ζ ∈ [0, 1) [32] it is assumed that the beam cannot behave in pure exponentially
decaying manner, but will oscillate around the zero-reference. By [102] it is described,
how the damping theory of a flexible beam is not understood in complete details, and
thus damping must be added to ODE solutions only to obtain responses close to actual
behavior. The modal damping factorζ has been estimated by experiment as described
in appendix A. The test shows that all damping factors for M < 2 are respecting the
constraint ζi ≤ 0, 3122, which will decrease the eigenfrequency ωi by a maximum of
5 %. The origin of the constraint is provided in appendix A. A differential equation
on the form

qi(t) :
dq2
i (t)

dt2
+ ω2

i qi(t) = 0 (4.6)

will therefore be assumed a solution to the PDE [74]. Damping will be added later
on. With this defined the assumed deflection is inserted into the model from equation
4.3, yielding
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EI

∞∑
i=1

qi(t)
∂4φi(x)

∂x4
+ (mlδ(x− `) + aρ)

{
d2y(t)

dt2
+

∞∑
i=1

φi(x)
∂2qi(t)

∂t2

}
= 0 (4.7)

It can be shown, that the modal shape functions (eigenfunctions) are orthogonal. An
important assumption for the Hilbert space approach to apply for this type of problem
is orthogonality of the eigenfunctions φi(x). This enables the infinite sum of mode
shape functions and modal coordinate functions to be a solution, since the individual
solutions can be summed up independent of each other due to the orthogonality
property [6]. To prove the orthogonality between two eigenfunctions, the Hilbert
space definition must be applied

{φi|H(φi) = λiφi}, H(φ) ,
∂4φ(x)

∂x4
(4.8)

which is expressing the relation between eigenfunctions and eigenvalues of the eigen-
value problem stated as

∂4φi(x)

∂x4
= λiφi (4.9)

The procedure of showing orthogonality is given in [11] with boundary conditions from
a cantilever beam setup. It requires considering two different eigenvalue problems

∂4φi(x)

∂x4
φi = λiφi and

∂4φj(x)

∂x4
φj = λjφj , i 6= j

and by a mathematical proof, the equations are true when∫ `

0

φi(x)φj(x) dx = 0 (4.10)

which is the definition of orthogonality between two real valued functions determined
from the definition of an inner product between functions in a closed interval [x1, x2]
[83]

〈φa(x), φb(x)〉 =

∫ x2

x1

φa(x)φ∗b(x) dx, φa(x), φb(x) : [x1, x2] 7→ C

∴ 〈φa(x), φb(x)〉 =

∫ x2

x1

φa(x)φb(x) dx, φa(x), φb(x) : [x1, x2] 7→ R (4.11)

The last property is possible because real valued functions are just a special case of
complex valued functions and thus φb(x) = φ∗b(x) when φb(x) 7→ R. The eigenfunc-
tions are therefore linearly independent, and the sum in (4.4) is applicable [11]. Based
on the orthogonality principle the following property is therefore applicable

〈φa, φb〉 = 0, a 6= b



i
i

i
i

i
i

i
i

38 CHAPTER 4. FLEXIBLE TOOL MODEL

This property can be added as a constraint to the PDE by the following inner product,
which is possible when the PDE is on homogeneous form〈
φk,

EI

aρ

∞∑
i=1

qi(t)λ
4
iφi(x) +

(
ml

aρ
δ(x− `) + 1

){
d2y(t)

dt2
+

∞∑
i=1

φi(x)
∂2qi(t)

∂t2

}〉
= 0

for a given eigenvalue k. A factor of (aρ)−1 has been multiplied to normalize the
dynamics. This property will be exploited later. The differential operator is linear
and can be defined as a linear operator H(φ) as a function of the modal shape function
φ(x). This operator will be defined on the specific Hilbert spacedescribed by the inner
products, and the operator has the following spectrum

{φi|H(φi) = λ4
iφi}, H(φ) ,

∂4φ(x)

∂x4
(4.12)

when denoted for every modal shape function i satisfying the PDE. λ4
i denotes the

eigenvalue for the i-th eigenfunction, and the fourth order is used to simplify the
derivation of the dynamic solutions. Each of the terms in the inner product can be
explicitly expressed within the closed interval [0, `]〈

φk,
EI

aρ

∞∑
i=1

qi(t)λ
4
iφi(x)

〉
= ω2

i qk(t)〈
φk,

ml

aρ
δ(x− `)d2y(t)

dt2

〉
=
ml

aρ
φk(`)

d2y(t)

dt2〈
φk,

d2y(t)

dt2

〉
=

d2y(t)

dt2

∫ `

0

φk(x) dx (4.13)〈
φk,

∞∑
i=1

φi(x)
∂2qi(t)

∂t2

〉
=
∂2qk(t)

∂t2〈
φk,

ml

aρ
δ(x− `)

∞∑
i=1

φi(x)
∂2qi(t)

∂t2

〉
=
ml

aρ

∞∑
i=1

∂2qi(t)

∂t2

∫ `

0

φk(x)φi(x)δ(x− `) dx

=
ml

aρ

∞∑
i=1

∂2qi(t)

∂t2
φk(`)φi(`)

all determined using the definition of an inner product between functions in a closed
interval [x1, x2] from (4.11). Further, all mode shapes are normalized and thus [78]∫ `

0

φk(x)φi(x) dx = 1, i = k (4.14)

The inner products however, can be simplified, if the mass of the load is moved to
the boundary conditions such that [74]

d3w(x)

dx3

∣∣∣∣∣
x=`

=
ml`

EI

{
d2y(t)

dt2
+
∂2w(x, t)

∂t2

∣∣∣∣∣
x=`

}
(4.15)
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Removing the inner products including ml and inserting all terms back into (4.12)
yields the differential equation in q(t)

∂2qk(t)

∂t2
+ ω2

i qk(t) = −d2y(t)

dt2

∫ `

0

φk(x) dx (4.16)

This new structure is a regular second order ordinary differential equation, because
the eigenfunctions are constant for each k (in this case k = 1). By knowing the
eigenfunctions, the modal coordinate functions qk(t) [m], which are solutions to the
ODE, can be expressed. This will be treated next for the cases with and without tip
mass. Both cases are solved for comparison.

4.2.1 Eigenfunctions without tip mass

In order to express the eigenfunctions, the eigenvalue problem will have to be solved,
which in this case is given from the PDE with no tip mass provided in (4.2) (without
external force term) and the modal decomposition from (4.4) for one mode i only
(without loss of generality) [58]

1

φi(x)

∂4φi(x)

∂x4
= − aρ

EI

1

qi(t)

∂2qi(t)

∂t2
= λ4

i (4.17)

with the constant term λ4
i being a definition, since the two ODE’s are equal. The

equations can be written explicitly as eigenvalue problems given by

∂4φi(x)

∂x4
= λ4

iφi and
∂2qi(t)

∂t2
+ ω2

i qi = 0 (4.18)

with the last equation being a consequence of no damping in the beam [94] (added
explicitly later). This relates the constants λ4

i and ω2
i by

λi =
4

√
aρω2

i

EI (4.19)

The fourth order on the eigenvalue λ4
i is introduced to achieve simple roots to the

polynomial s4 − λ4
i , and the first eigenvalue problem of (4.18) is solved in appendix

J. A frequency equation on the form

cosλi` coshλi` = −1 (4.20)

was found as the solution to the eigenvalue problem. It is then possible to determine
the eigenvalues λi from equation (4.20). The equation is transparent, and thus it
cannot be solved analytically. A table of the first M = 4 eigenvalues is therefore
shown in table 4.2.

λi` λi [m−1] ωi [rad/s] fi [Hz]

Mode 1 1,8751 4,7232 160,8404 25,5986
Mode 2 4,6941 11,8239 1007,9781 160,4247
Mode 3 7,8548 19,7854 2822,3877 449,1970
Mode 4 10,9955 27,6965 5530,6525 880,2307

Table 4.2: First four eigenvalues to (4.20) on Ξ-system without tip mass
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Using the numerically derived eigenvalues, the unknown boundary conditions φ
(2)
i (0)

and φ
(3)
i (0) can then be determined using the procedure of [78], which involves equa-

tion (J.16) to express a relation between the unknowns W2 and W4

W4 = −W2
coshλi`+ cosλi`

sinhλi`+ sinλi`
(4.21)

which can be substituted into the remainder of the general solution given in (J.15)
yielding

φi(x) = W2

{
(coshλix− cosλix)− coshλi`+ cosλi`

sinhλi`+ sinλi`
(sinhλix− sinλix)

}
(4.22)

with W2 given as

W2 =
φ

(2)
i (0)

2λi
, 1 (4.23)

being a scale factor of the mode shape function, which is defined as unity [18]. Scaling
of the eigenfunctions qi(t) will provide the necessary scaling of the PDE solution. The
modes can be illustrated using (4.22) with an arbitrary beam length, see figure 4.4
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Figure 4.4: Illustration of first 8 mode shapes (inspired by fig. 11.6 in [78])

The dots indicating intersections between the normal axis and the mode shape func-
tion are also dead spots of zero dynamics. No strain gauges are therefore to be placed
at these locations.

4.2.2 Eigenfunctions with tip mass

The mode solution derived above is not including the mass of the load. In order
to include this, the frequency equation will have to be a function of the mass ratio
between the beam and the load. This requires the new boundary condition from
(4.15) without the external force term ÿ(t). The condition can be reformulated in the
following steps starting with the basic proposed condition without the ÿ term [18]
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d3w(x)

dx3

∣∣∣∣∣
x=`

=
ml`

EI

∂2w(x, t)

∂t2

∣∣∣∣∣
x=`

⇓

q(t)
d3φ(x)

dx3

∣∣∣∣∣
x=`

=
ml`φ(`)

EI

∂2q(t)

∂t2
= −ml`ω

2
i

EI
φ(`)q(t)

using the eigenvalue problem from (4.18). Removing the time dependency in q(t)
results in a new boundary condition on the form as proposed by [18]

∂3φi(x)

∂x3

∣∣∣
x=`

+ λ4
i

ml`

aρ
φi(`) = 0 (4.24)

which will substitute the previous condition given by

d3w(`)

dx3
= 0 (4.25)

Substituting the known terms (J.17) and (J.15) from the eigenvalue derivation in
appendix J into (4.24) yields together with (J.16) two equations

W2(coshλi`+ cosλi`) +W4(sinhλi`+ sinλi`) = 0

λ3
iW4(coshλi`+ cosλi`) + λ3

iW2(sinhλi`− sinλi`) + · · ·

· · ·+ λ4
i

ml`

aρ
{W2(coshλi`− cosλi`) +W4(sinhλi`− sinλi`)} = 0

A solution can be derived using a similar approach as for the case without tip mass.
However, the two equations are linear in the constants W2 and W4 and can be solved
using a determinant on the form∣∣∣∣∣∣∣∣

coshλi`+ cosλi` sinhλi`+ sinλi`

sinhλi`− sinλi`+ · · · coshλi`+ cosλi`+ · · ·
· · ·+ λi

ml`
aρ coshλi`− λi ml`

aρ cosλi` · · ·+ λi
ml`
aρ sinhλi`− λi ml`

aρ sinλi`

∣∣∣∣∣∣∣∣ = 0

This yields a new frequency equation [18]

1 + cosλi` coshλi`︸ ︷︷ ︸
Without tip mass

+
mlλi
aρ

(sinhλi` cosλi`− coshλi` sinλi`)︸ ︷︷ ︸
New term due to tip mass

= 0 (4.26)

The equation is composed by a term for the unloaded case and a term relating the mass
of tip load and beam. As suggested by both [18] and [74] the relation is commonly
concatenated into the mass ratio

r ,
ml

aρ`
=
ml

mb
(4.27)
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which transforms the frequency equation into the final form

1 + cosλi` coshλi`+ rλi`(sinhλi` cosλi`− coshλi` sinλi`) = 0 (4.28)

Tables 4.3 and 4.4 shows the first 4 eigenvalues and eigenfrequencies (M = 4) for the
Ξ-system with a tip mass of ml = 0, 351 kg and ml = 0, 522 kg, respectively.

λi` λi [m−1] ωi [rad/s] fi [Hz]

Mode 1 0,7994 2,0982 31,7399 5,0516
Mode 2 3,9432 10,3496 772,2805 122,9123
Mode 3 7,0784 18,5785 2488,5575 396,0662
Mode 4 10,2170 26,8163 5184,7075 825,1718

Table 4.3: First four eigenvalues to (4.28) on Ξ-system with tip mass ml1 = 0,351 kg (r = 7,1)

λi` λi [m−1] ωi [rad/s] fi [Hz]

Mode 1 0,7259 1,9052 26,1716 4,1653
Mode 2 3,9478 10,3354 770,1668 122,5758
Mode 3 7,0752 18,5701 2486,3079 395,7082
Mode 4 10,2148 26,8105 5182,4749s 824,8165

Table 4.4: First four eigenvalues to (4.28) on Ξ-system with tip mass ml2 = 0,522 kg (r = 10,6)

The values from table 4.3 will be used when solving the PDE, see remark 2 on page
42. Notice how the first eigenfrequencies are decreasing due to the load mass. The
first mode is reduced from 25,5986 Hz to 4,1653 Hz. Next step is to determine the
modal coordinate function qi(t) describing the time dynamics.

Remark 2 (tip mass): From practical considerations only the small tip mass
of ml = 0,351 kg will be used in the remainder of the report. The flexible
beam cannot withstand the load from the larger tip mass. Furthermore, only
a single mode of vibration will be used for the final model, because the second
mode of vibration was found insignificant through the experiment described in
appendix A. Assumption 3 is therefore omitted and M = 1 is used instead.2

Modal coordinate functions qi(t)

The partial differential equation describing the flexible behavior of a simple beam
without tip load was given from (4.2) as

EI
∂4w(x, t)

∂x4
+ aρ

∂2w(x, t)

∂t2
= f(x)
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which resulted in the frequency equation from (4.20)

cosλi` coshλi = −1

Using this information to determine the set {λi}∞i=1, a solution can be given on the
form from (4.4)

w(x, t) =

∞∑
i=1

φi(x)qi(t)

Using the method of inner products from (4.13), a time dynamic equation can be
determined in a similar way, yielding the form〈

φk,
EI

aρ

∞∑
i=1

qi(t)λ
4
iφi(x) +

∞∑
i=1

φi(x)
∂2qi(t)

∂t2
− f(t)

〉
= 0 ⇓

∂2qk(t)

∂t2
= −ω2

kqk(t) + f(t)

∫ `

0

φk(x) dx

by assuming that f(t) is only dependent on time and with the knowledge from ap-
pendix A, a damping ratio can be added

∂2qk(t)

∂t2
= −ω2

kqk(t)− 2ζkωk
∂qk(t)

∂t
(4.29)

which completes the time dynamics derivation. Given a determinable set of functions
{φk}∞i=1 and {qk}∞i=1 the deflection w(x, t) can be determined for any spatial location
at any time instance. A state space representation can be given for M of the ODE’s
by [9] [

˙̄q
¨̄q

]
=

[
0M IM
−ω2 −2ζω

] [
q̄
˙̄q

]
+

[
0̄∫ `

0
φ̄(x) dx

]
f(t)

w(`, t) =
[
φ̄(x)|Tx=` 0̄T

] [q̄
˙̄q

]
given

q̄ =
[
q1 · · · qM

]T
, φ̄ =

[
φ1 · · · φM

]T
, ω = diag{ωi}Mi=1, ζ = diag{ζi}Mi=1

This structure is possible because the eigenmodes are orthogonal to each other, re-
sulting in M decoupled ODE’s describing the dynamics. The forcing function is time
dependent and constant in spatial location. Other forcing functions can be used,
which will, however, increase the complexity of the state space description.

The partial differential equation from (4.3) includes the tip mass ml. Since only
the first eigenmode is needed by the control system (see remark 2 on page 42), a
solution will be approximated using the general solution from (4.29) (time dynamics)
and (4.26) (eigenfrequencies). A state space representation will therefore be on the
form
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[
q̇1

q̈1

]
=

[
0 1
−ω2

1 −2ζ1ω1

] [
q1

q̇1

]
+

[
0∫ `

0
φ1(x) dx

]
f(t)

w(`, t) =
[
φ1(`) 0

] [q1

q̇1

] (4.30)

This model is both controllable and observable, because the rank of the controllability
matrixȧnd the observability matrixėquals the rank of the system matrix. If the partial
differential equation was to be solved for M modes, the dynamics for each mode will
depend on M−1 other modes. A total of M coupled differential differential equations
will then describe the dynamics of the system. The problem is not only difficult to
solve explicitly for M modes, but does also requires the exact relationship between
modal shapes φk(x) as well as the shape of the excitation signal. A finite element
solution would be preferable in this case as introduced in appendix K.

Another approach can be to use the frequency equation from (4.28) to estimate the
eigenfrequencies of the loaded beam, and then approximate the dynamics using M
decoupled ODE’s on the form from (4.29). Each mode is then described by a second
order system with a tip mass dependent eigenfrequency. A model structure including
an arbitrary number of flexible modes is a generalization of the model in (4.30) can
be expressed as

d

dt

[
q
q̇

]
=

[
0

[M×M]

I
[M×M]

−ω2
l −2ζωl

]
+

[
0
Q

]
u

with q, q̇ ∈ RM as well as ωl = diag(ωl,1, . . . , ωl,M ) ∈ RM×M and ζ = diag(ζ1, . . . , ζM ) ∈
RM×M containing eigenfrequency and modal damping for each mode of the tool with
a tip load. Q is a constant matrix used to scale the excitation signal appropriately.
The matrix includes the scaling from input signal to joint acceleration given from
(3.10) as (NF )−1.

This is, however, not a concern in this case, where only one mode is used. By
Laplace transforming the model from (4.30) the following transfer function is describ-
ing the mode dynamics of the first eigenmode

q1(s) =
φ1(`)

∫ `
0
φ1(x) dx

s2 + 2ζ1ω1s+ ω2
1

(4.31)

Using the estimated model parameters ω1 = 26,39 rad/s and ζ1 = 0, 0023 from
appendix A and a unit input gain, the following transfer function can be expressed

q1(s) =
1

s2 + 0,1214s+ 696,3993
(4.32)

Figure 4.5 shows the bode plot of the transfer function with the resonance peak clearly
showing at 26,39 rad/s
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Figure 4.5: Bode plot of transfer function in (4.32)

Expressions of both the mode shape φ1(x) and the time dynamics q1(t) for the first
mode of vibration have been derived. Using a simple version of the general Timo-
shenko beam equation, an eigenvalue problem was solved to express the eigenfrequen-
cies of the beam with and without payload. Since the eigenfrequency of the first mode
of vibration is the only eigenfrequency that can be excited by the manipulator, see
appendix E, there is only need for one mode in the final model. Before ending this
chapter, figure 4.6 summarizes the two concepts of strain and deflection.

−ε

+ε

(a) Strain

w(x)

(b) Deflection

Figure 4.6: Graphical representation of strain and deflection

Both concepts will be used in the sequel, and table 4.5 lists how they are determined
(single and M -mode case) and their relations [73].

Strain/deflection Single case M -mode case

Strain ε1(x, t) = −h2
d2φ1(x)

dx2 q1(t) ε(x, t) = −h2
∑M
i=1

d2φi(x)
dx2 qi(t)

Deflection w1(x, t) = φ1(x)q1(t) w(x, t) =
∑M
i=1 φi(x)qi(t)

Table 4.5: Expressions for strain and deflection



i
i

i
i

i
i

i
i

46 CHAPTER 4. FLEXIBLE TOOL MODEL

The negative sign of the strain equations is used because the strain is determined
for the upper strain gauge pair. Removing the sign will provide the strain of the
lower strain gauge pair instead. As shown by the equations the only difference be-
tween strain and deflection is a mode shape dependent scale factor. Therefore, the
above modeling of the flexible tool in the variable q makes it possible to determine
either strain or deflection by scaling the state trajectory differently. The manipula-
tor kinematics/dynamics and the flexible dynamics will be linked together as well as
summarized in the sequel chapter. This will result in a model suitable for the control
of the manipulator while damping the unwanted oscillations in the tool.
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Chapter 5

Model summary

Two separate models have been derived in the previous two chapters: one describing
the dynamics of the manipulator itself and one describing the behavior of the flexible
tool to random tool frame excitations. Before initiating the controller design in the
following part, the two models must be concatenated into one single model. The
controller must be able to damp the oscillations of the tool as well as position/orientate
the end-effector. The control algorithm must be supplied with the following elements

Flexible tool strain

A frame Fe is dedicated to the end-effector to describe orientation and position.
In order to control the position/orientation of this frame in reference with the
inertial frame, the strain ε1(`str) is needed as a model output. The deflection
w1(`, t) and corresponding space derivative w′1(`) at the end of the beam can be
derived from the strain and used to determine the position/orientation of Fe.
A general model using M modes will need a strain on the form ε(`str) in stead
of just ε1(`str).

Manipulator joint angle

While damping the end-effector oscillations, the manipulator joints must follow
a reference trajectory based on given requirements. It is therefore necessary to
output the joint angle θ3 and the joint velocity θ̇3 of the active joint. A general
model will require the joint space θ and the joint velocity space θ̇ to be given.
Higher derivatives must be estimated from θ̇ if needed to further constrain the
manipulator motion.

Based on the listed requirements to the model structure for controller design, the
general structure can be formed. The tool dynamics described by a single eigenmode
was expressed in (4.30) and is repeated below
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[
q̇1

q̈1

]
=

[
0 1
−ω2

1 −2ζ1ω1

] [
q1

q̇1

]
+

[
0

(NF )−1
∫ `

0
φ1(x) dx

]
u(t)

w(`, t) =
[
φ1(`) 0

] [q1

q̇1

] (5.1)

with the scaling factor (NF )−1 from (3.10) used to convert between applied input
signal u(t) and joint acceleration θ̈3. A reduced manipulator model was derived in
(3.10) and was given by [

θ̇

θ̈

]
=

[
0 I
0 0

][
θ

θ̇

]
+

[
0

(NF)−1

]
U[

θ

θ̇

]
=

[
I 0
0 I

] [
θ

θ̇

] (5.2)

Combining model (5.1) and (5.2) yields the following form when using only θ3 and θ̇3

yields the following structure

d

dt


q1

q̇1

θ3

θ̇3

 =


q̇1

−2ζ1ω1q̇1 − ω2
1q1 + `3(NF )−1

(∫ `
0
φ1(x) dx

)
u(t)

θ̇3

(NF )−1u(t)

 (5.3)

and substituting U with u(t) in the single case. A simplification is by defining the
parameters

K1 = `3(NF )−1

(∫ `

0

φ1(x) dx

)
and K2 = (NF )−1 (5.4)

The model consists of two decoupled models controlled by the same input signal. A
single controller must therefore be designed, which is capable of damping the tool
oscillations, while keeping the third manipulator link in a fixed position. This issue is
addressed in the controller design procedure in chapter 9. The assumption that only
the third axis is used to damp tool oscillations is summarized in assumption 5 below.

Assumption 5: The tool oscillations are first to be counteracted, when the
end-effector is close to its destination. It is therefore assumed, that the third
and last axis of the manipulator is sufficient to provide that control. Further,
it is the axis with the largest acceleration and closest to the end-effector, which
is desirable in this type of control situation. Including more links for the task
complicates matters unnecessarily in this case. 2

Furthermore, the nonlinear friction term has been omitted, which is described in as-
sumption 6.
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Assumption 6: The nonlinear friction term derived in appendix I.4 will not
be used in the complete model. Even though the friction model has a level
of complexity suitable for fitting, it can also be a limiting factor. The sys-
tem identification process that must be applied to fit the model must be very
accurate, and the parameter estimates cannot make large fluctuations. This
will completely change the friction dynamics, and thus also the control. It
is assumed, that the only friction is linear due to the high gearing and fast
acceleration of the manipulator. 2

Since only the actuator input in controllable, the explicit form of υ (only third com-
ponent due to assumption 4, defined as the scalar version υ) must be substituted from
(3.13) given as

υ = −`1θ̈1 − `2(θ̈1 + θ̈2)− `3(θ̈1 + θ̈2 + θ̈3) (5.5)

with only the θ̈3 term used due to assumption 5. An `3 has therefore been added to
the input gain of the mode dynamics part, and it will be part of the constant K1.
In order to apply the model in (5.3) for control purposes it must have a number of
selected outputs as described in the beginning of the chapter. The outputs must be
strain ε1(`str) and manipulator joint angle θ3. Because the joint angle θ3 is a direct
state of the model in (5.3) it does not need to be converted. The strain on the other
hand is a scale of the state q1 describing the modal coordinate of the first eigenmode.
A state space representation of the final model can be expressed as [73]

d

dt


q1

q̇1

θ3

θ̇3

 =


0 1 0 0

−ω2
1q1 −2ζ1ω1 0 0
0 0 0 1
0 0 0 0



q1

q̇1

θ3

θ̇3

+


0
K1

0
K2

u(t)

ε1(`str)
θ3

θ̇3

 =

d2φ1(x)
dx2

∣∣∣
x=`str

0 0 0

0 0 1 0
0 0 0 1



q1

q̇1

θ3

θ̇3


(5.6)

with φ′′1(`str) being a conversion factor between strain measurements in [V] and actual
strain [-]. This model will be used throughout the controller design, and provides
the necessary measures for damping tool oscillations using only the third axis of the
manipulator. An important note is stated before continuing.

Because the model has been reduced to include only one manipulator link and a
single mode of vibration, the notation of strain q1 may be stated as q alone and the
joint angle θ3 stated as θ. Both notations may be used in the remainder of the report.

Before ending the modeling part the final transformation from strain to the posi-
tion/orientation of the end-effector frame Fe and the spatial position of the TCP is
derived in the next section.
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5.1 Transformation from tool mount to end-effector

Besides the rigid transformation matrices i
jT to describe the relationship between

orientation and position of adjacent manipulator links, a transformation must be able
to include the deflection of the beam. The transformation in question is τ

eT , from
tool mount to end-effector, and consists similarly of two elements: a rotation and a
translation. The deflection w(x, t) can be used to describe the change in orientation
by spatial differentiation, which is derived from the strain ε(`str) in the following way

w(x, t) =
ε(`str) + 2,403

121,1
(5.7)

with vstr
o ∼ ε(`str). The relation has been derived from appendix F, which measured

the relation between strain and tip deflection. Because the original relation from
appendix F is measured in mm, the relation from above has been scaled by a factor
of 0,001. First, two unit normal vectors must be defined in R4 as

τ N̂e = τ
eT

τ N̂τ ,
τ N̂τ =


1
0
0
1

 (5.8)

They are normals to the (Yτ , Zτ )-plane and (Ye, Ze)-plane, respectively, see figure 5.1.
To make a connection between the beam equations, then x ∼ Xτ and w ∼ Yτ .

Normal axis

Tool mount

ml

Y3

X3
w(x, t)

Yτ

Xτ

τNτ

Xe
Ye τNe

Figure 5.1: Normal vectors used for flexible transformation τ
eT

Using a direction cosine matrix, the rotation between the vectors can be obtained.
Since the vectors can be described in two dimensions alone, the rotation matrix is
given by the elementary rotation matrix from (H.1) expressing a rotation around the
Zτ -axis

τ
eR ($, t) =

cos$(t) − sin$(t) 0
sin$(t) cos$(t) 0

0 0 1

 , $(t) = atan
∂w(x, t)

∂x

∣∣∣
x=`

(5.9)

with $ denoting the angle of rotation around the Zτ -axis at the x` location. The
spatial derivative w′(x, t) is determined from the PDE solution in (4.4). Due to the
small-signal approximation described in assumption 5, the point of evaluation x = `
is approximated as the distance to the end point of the beam in the Xτ -direction. To
complete the transformation the translation between the frames must be added. This
yields the following homogeneous transformation matrix.
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τ
eT ($, t) =


cos$(t) − sin$(t) 0 `
sin$(t) cos$(t) 0 w(`, t)

0 0 1 0
0 0 0 1

 (5.10)

Time dependency of the mapping has been added to include modal coordinate function
q1(t) influence. Based on the transformation from the production cell frame Fp to the
tool mount frame Fτ given from equation (3.2), a transformation from base frame F0

to the end-effector frame Fe can be described as

0
eT (θ,$, t) = 0

nT (θ)nτT τ
eT ($, t) (5.11)

This transform is contributing with most of the dynamics model, because it features
both manipulator kinematics/dynamics as well as the dynamics of the flexible tool.
This transformation can also be applied to determine the instantaneous TCP with
respect to the base frame F0 by

0ptcp(t) = 0
eT (θ,$, t)


0
0
0
1

 (5.12)

because the TCP is defined as origo of the frame Fe. It is therefore possible to
determine the position of the end-effector frame with respect to the base frame F0 as
a function of the beam strain. The TCP is then determined using this transformation.
This ends the modeling part, and the sequel part is dedicated to the design of a
controller capable of damping tool oscillations.
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Chapter 6

Controller introduction

The main goal of this project is to damp oscillations in a flexible tool mounted on
a manipulator. Oscillations are undesirable in tasks involving precise positioning of
the tool center point, but they are naturally emerging when using less rigid tools or
when the payload increases. Consequently, a controller must be adaptable to alterna-
ting payloads and tool interchanges. A flexible tool analog has been constructed for
empirical experiments using an industrial manipulator. The tool is fitted with strain
gauges, that are capable of measuring the strain in a certain point on the flexible
beam. If the strain measurements differ from zero, the tool is bending in a certain
direction, which is interpreted by the controller as an error signal.

By adding the strain measurements to the closed-loop, the oscillations can be
damped. If the controller is additionally supported with a model of the flexible
tool, the oscillations can be more efficiently counteracted. The previous part was
dedicated to modeling the flexible behavior in the theoretical case, with the entire
tool configuration known in advance. However, the tool dynamics may be unknown
in practical manipulator setups and must be automatically estimated by means of
system identification. This will be treated in chapter 8.

Because the general manipulator model is highly nonlinear it is difficult to find a
single equilibrium point for linearization. Considering a gain scheduling approach is
also unwanted for manipulators of several degrees of freedom. The state space will
have to be divided into several subspaces for precise control.

An approach which is both nonlinear and capable of performing robustly when
subjected to uncertainties in model parameters is the sliding mode control (SMC)
[38]. The SMC will be designed with a view to the frequency content of the control
signals to avoid supplying additional oscillations while trying to damp them. The
controller will be designed on the basis of the model from the last part given in
(5.6). From a Lyapunov based design approach the controller gain can be selected to
maintain stability ∀t > 0 and for all uncertainties.

Model uncertainties are caused by system noise, which may be added to the system
loop at various locations. Both measurements and model states can be corrupted
with noise, which implies less accurate control of the system. If the boundaries of
the different noise components are known (or estimates of), a robustness can be
achieved. However, a robust controller decreases performance in turns of pace, because
the remaining bandwidth is used to reject disturbances. Therefore, positive and
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negative consequences must be weighted up against each other and compared with
given requirements for the control system. Different filtering techniques will moreover
be applied to reduce measurement noise and thus improve the quality of model state
estimates.

The controller is adaptive in the sense, that the internal model is adjusted with new
estimates of the resonance frequency of the flexible tool. This is a consequent of a
parameter estimation loop, that estimates the system model based on measurements.
Before initiating the design of an SMC, the requirements of the controller must be
mentioned and are therefore repeated from section 2.4

• The improved controller must perform equal or better than a controller based on
a rigid manipulator model regarding oscillation settling time. This corresponds
to a termination of the controller after the manipulator joints have reached their
reference values

• Tool oscillations must be damped to allow fast TCP positioning. A practical
example (given by Ole Madsen, see personal profile in acknowledgements) has
a 10-12 s task time and a settling time of tset < 5 s is selected on the basis of
this time interval

• Tool tip deflection must be below the level of the path accuracy of ±0,1 mm
from the default manipulator controller [80]

• The controller structure must be based on nonlinear control theory

The listed requirements must be measurable. An experiment will be conducted with
a controller without oscillation damping. This will provide a set of nominal data.
Differences between the nominal response and the improved response are evaluated
on the basis of the acceptance test in chapter 10. Before designing the controller, the
technique of sensor fusion is described in chapter 7. By applying a Kalman filter to the
measurements the model estimates can be improved over the model estimates alone.
This can be achieved by supporting the system model with sensor measurements.
Next, system identification methods are described in chapter 8. This makes it possible
to control the system even though some parameters are not known in advance.

Chapter 9 derives the sliding mode controller based on the model from the previous
part supported by Kalman filtered estimates and estimated parameters. An important
part of the controller design is to ensure, that the implemented controller performs
as intended. This is also treated in the controller chapter. The specifications of
the system in question, consisting of a 3-DOF industrial manipulator and a flexible
tool, are summarized in table 6.1 with data from section G.1 and G.4. Certain
selections have been made to filter out unnecessary data like the large tip mass, that
was concluded to heavy for the current hardware configuration, see remark 2 on page
42.
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Manipulator Drive train gear ratio [25, 79] 1:100
Link length, axis 1 [79] 0,600 m
Link length, axis 2 [79] 0,684 m
Link length, axis 3 (measured) 0,100 m

Interface Analog output (NI 9263) limitations [67] ±10 V
Digital input (NI 9411) differential limitations [70] ±24 V
Analog input (NI 9201) single-ended limitations [69] ±10 V
Analog input (NI 9201) resolution [69] 12 bit

Flexible tool Tool length 0,381 m
Tip mass 0,351 kg

Sensors Accelerometer range [4] ±3,6 g
Gyroscope range [90] ±1200 deg/s
Encoder line count [79] 4000/rev
Effective line count (due to gear ratio) [25] 400000/rev
Strain gauge range [27] ±(2− 4) %

Table 6.1: Known system specifications (inspiration and terms from table 1.1 in [96])

Minor adjustments can be necessary to show different aspects of the control system,
but they will be described if needed. The list contains all known information, but
in order to design a suitable controller, a number of additional parameters will be
needed. This is e.g. the link inertias, drive train frictions and motor parameters.
The sequel will shortly describe the controller design process involving estimation of
these unknown parameters. The design process of the controller is affected by the
fact, that the actual model parameters are unknown in advance. In order to design a
useful controller with verifiable performance, the following workflow is used

• Use of test signals to estimate system parameters and model uncertainties offline

• Design automatic parameter estimation algorithm, that is able to work online
and estimate the same parameters as the offline process

• Use the model parameters to design a controller with specific performance

• Test the controller on hardware with and without online parameter estimation

By following the proposed workflow, it is ensured, that the parameter estimation pro-
cess is capable of fitting correct parameters to the model structure. The controller
must be designed on the basis of the nominal system, but robustness to model un-
certainties makes the controller able to perform even if the system differs from the
nominal system. Next chapter describes the sensor fusion technique.
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Chapter 7

Sensor information fusion

Information from the various sensors is used to improve the accuracy of the feedback
loop. Sensor noise, model uncertainties and model shortage can be of less significance
when estimating the trend of the signals (filtering the signals) before they are used
for control. A Kalman filter is useful for doing just that and requires prior knowledge
of the sensor noise distributions. The noise variances for each sensor has been given
in appendix G.2. Before describing the details around the filter the objective of the
filtering process must be outlined. An illustrative representation of the sensor fusion
process is shown in figure 7.1.
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Figure 7.1: Overview of sensor fusion process

Acceleration, change in orientation and joint angles, are measured by accelerome-
ters, gyroscopes and rotary encoders, respectively. The joint sensors are providing
measurements of the interconnected angle between consecutive links, whereas the ac-
celerometers and gyroscopes measures from the Fτ frame. The current system states
are filtered by a Kalman filter, that includes the sensors measurements to estimate the
updated states. This will over time improve the accuracy of the estimate1, because
the states are not only simulated, but also adapted to actual measurements. Notice
also, that the Kalman filter gains knowledge from the manipulator model as well as
the flexible tool model.

1An improved accuracy by using multiple sensors over a single one depends of course on the
uncertainty of the sensor itself and must be statistically estimated in each case
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This chapter will first include a description of the linear Kalman filter, which is the
basic tool for fusing model estimates and sensor measurements together. After that a
number of sections are dedicated to show how the filter is running. This includes e.g.
the common problem of using acceleration measurements when there is no acceleration
state for comparison.

7.1 Linear Kalman filter

From appendix G the different sensors were introduced, and their outputs were ex-
pressed by stochastic models. This gives the following sensor noise covariance matrix
R ∈ R13×13 for the Kalman filter algorithm

R =


σaccI3 0 0 0

0 σgyroI3 0 0
0 0 σjaI6 0
0 0 0 σstr


2

(7.1)

with the zero matrices of appropriate sizes. The reason for the diagonal structure is
due to the assumption of sensor independence. A total of 13 sensor signals can be
acquired, but due to the model reduction (see remark 1 on page 18 and assumption 5
on page 48) a total of only 4 sensor signals are necessary to be processed by the filter.
The encoder is sampled by an NI-9411 input module and the remaining are sampled
by an NI-9201 A/D sampler. Both card types are described in appendix G. After the
reduction the sensor noise covariance matrix can be written in compact form as

R = diag{σacc, σgyro, σja, σstr}2 (7.2)

First step in the Kalman filtering is the a priori estimation of the model states one
step ahead using a discretized version of the continuous model structure [43]

x̂−k+1 = Akx̂+
k + Bkuk

ẑk+1 = Ckx̂−k+1

(7.3)

Notice how the system matrices are indexed as well because they are updated with new
parameters estimates based on system identification, see chapter 8. The continuous
model is given in equation (5.6) at the end of chapter 3. The error covariance matrix
is also estimated, which is the covariance of the state estimate errors

P−k+1 , E[x̃−k+1(x̃−k+1)T] = AkP+
k A

T

k +Qk (7.4)

with Qk expressing the covariance matrix of the process noise at the k-th sample. In
this case, an assumption is in order to address the propagation of the sensor noise
covariance matrix. Q is estimated through simulations.

Assumption 7: By means of the process being unaffected by wear and mec-
hanical vibrations, the propagation of the process noise covariance matrix Q
can be simplified by the relational definition Qk+1 , Qk 2
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The state estimate error is defined as the difference between the estimated state and
the actual state, x̃−k , x−k −xk, where xk by means of equation noise cannot be given.
Next step in the Kalman filtering process is to use the a priori estimates to achieve
an a posteriori estimate of the actual state [43]

Kk+1 = P−k+1C
T

k+1(Ck+1P
−
k+1C

T

k+1 +Rk+1)−1 (7.5)

x̂+
k+1 = x̂−k+1 +Kk+1(zk+1 − ẑk+1) (7.6)

P+
k+1 = (I −Kk+1Ck+1)P−k+1 (7.7)

where R is the covariance matrix of the sensor noise. A similar assumption to as-
sumption 7 can be given for the sensor noise Rk.

Assumption 8: By means of the sensor noise being assumed unaffected by
wear and mechanical vibrations, the propagation of the sensor noise covari-
ance matrix R can be simplified by the relational definition Rk+1 , Rk. 2

A set of initial conditions must be given to start the iterative filtering process, and
they can be given as the following

P0 = R, x0 = 0̄ (7.8)

Using the x0 = 0̄ condition is only applicable when the manipulator is reset at every
startup. Whenever x0 6= 0̄ the state vector is measured by the joint angle sensors2.

The different variables supported by a Kalman filter and how measurements are
related to them are described in the sequel section. All variables are used to improve
the accuracy of the strain estimate. This enables a more precise state estimation,
which will improve the overall accuracy of the controller.

7.2 Relating measurements and model outputs

A number of sensors provide measurements for the control system. Some of the sensor
read-outs are directly comparable to model states, whereas others must be converted
in order to represent the same as some model state. The reason follows from (7.6),
where the difference between an estimated model output and a measurement of that
particular output is used to update the estimate model state vector. Four different
measurements performed by sensors introduced in appendix G.2 will be used, and their
implementation in the sensor fusion process will be explicitly given in the following.
A posteriori state vector update from (7.6) can then be stated as

x̂+
k+1 = x̂−k+1 +Kk+1z̃k+1 (7.9)

with z̃k+1 = zk+1 − ẑk+1 expressing the difference between measurement zk+1 and
estimated model output ẑk+1. In cases where the measurement must be converted to

2Absolute rotary encoders are useful in this context, as they will provide an exact joint angle even
after power has been removed. This is not an option on the REIS RV15, and the manipulator will
have to reset/synchronize on every startup
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fit this form, a difference will be given as z̃k+1 = f(zk+1) − ẑk+1 with f(·) express-
ing a mapping function. This notation will be used throughout the section without
individually denoting each mapping function with a distinctive index.

7.2.1 Joint angles

Joint angles are defined as the angle between two consecutive links. The joint angles
are included directly as model states within the dynamics model of the system and
are measured directly by rotary encoders at each joint. Denoting the measurements
by zja, the difference z̃ja

k+1 used in (7.9) is given as

z̃ja
k+1 = zja

k+1 − θ̂k+1 (7.10)

Next sensor to describe is the gyroscope.

7.2.2 Change in orientation

A gyroscope is applied to measure the change in orientation of the frame Fτ . The
orientation of that particular frame is depending on three model states θ̇1 through θ̇3.
Therefore

θ̇τ = θ̇1 + θ̇2 + θ̇3 (7.11)

However, since the two lower axes are not applied, the gyroscope is measuring θ̇3

directly. The difference z̃gyro
k+1 is therefore on the form

z̃gyro
k+1 = zgyro

k+1 − θ̇3,k+1 (7.12)

Two states have now been improved using measurements. Next sensor is measuring
the strain of the flexible tool.

7.2.3 Tool strain

Similar with the joint angle the strain is represented by a model state. The measure-
ment can therefore be applied directly without transforming it. The measurement is
z̃str
k+1 and the different equation is given as

z̃str
k+1 = zstr

k+1 − q̂k+1 (7.13)

The next one cannot be made directly comparable to a model state without a trans-
formation.

7.2.4 Acceleration

This last variable for the Kalman filter is not a direct state in the dynamic manipulator
model and will thus have to be added as a ”sensor state”. Two ways are considered
to include the sensor state within the Kalman filter. Firstly, a CA-model (constant
acceleration) is using the jerk (third derivative of position) in the following way [56]
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θ̈k+1 = θ̈k + Ts
...
θ k,

...
θ ∼ N (0,

...
θ

2
max) (7.14)

The acceleration is thus assumed constant with some fluctuation modeled as a normal
random process. However, determining the variance

...
θ

2
max is not straightforward, since

no actual model is available. An optimal guess is therefore the only method and only
through simulations can the results be revealed. This method, however, is conflicting
with the fact, that there exists (even though unknown) a continuous model of the jerk,
which in this case is set equal to a random white process. To overcome this non-trivial
method, a second approach can be taken. Before this method can be exploited, the
model must be discretized, expressing the model on the form [66]

xk+1 = (I + ATs)xk + BTsuk

yk = Cxk + Duk
⇔

xk+1 = Akxk + Bkuk
yk = Ckxk +Dkuk

with Ts being the sample time of the discrete time model. The last expression is
similar to the one in (7.3) though with a different state vector notation specially for
the Kalman filter theory. With this model a fictitiousṡtate ai(k) = θ̇i(k − 1) can be
added, yielding the following structure (state vector written explicitly) θ3,k+1

θ̇3,k+1

ak+1

 =

[
Ak 0

0 1 0

] θ3,k

θ̇3,k

ak

+

[
Bk
0

]
uk

zacc
k+1 =

1

Ts

[
0 1 −1

]  θ3,k+1

θ̇3,k+1

ak+1

 (7.15)

where zacc represents the acceleration estimate. A simpler notation can be used to
show what happens

ˆ̈
θ3,k+1 =

θ̇3,k+1 − ak+1

Ts
=
θ̇3,k+1 − θ̇3,k

Ts
(7.16)

It is now possible to express a difference for the Kalman filter as

z̃acc
k+1 = zacc

k+1 − f(θ̇3,k+1, ak+1) = zacc
k+1 −

ˆ̈
θ3,k+1 (7.17)

with zacc
k+1 denoting the measurements from the accelerometer. The accelerometers

are working in Cartesian coordinates, and the measurements will therefore have to be
converted to polar coordinates. However, assumption 9 expresses how the small-signal
approximation from assumption 5 simplifies the case.

Assumption 9: Because the oscillation damping procedure is only to operate
around a certain operation point defining the point of destination, the hor-
izontal accelerometer is not needed. Furthermore, the vertical acceleration
can be approximated as linear, and a conversion to polar coordinates is not
necessary. 2
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Using the above four difference equations a complete model can be included in the
Kalman filter. Four different sensors are used to gather information from the system,
and will be used to improve the accuracy of the estimated model outputs. Table 7.1
summarizes the difference equations derived in the previous section, when using only
the third axis of the manipulator.

Difference equations from (7.9)

Joint angles z̃ja
k+1 = zja

k+1 − θ̂3,k+1

Change in orientation z̃gyro
k+1 = zgyro

k+1 −
ˆ̇
θ3,k+1

Flexible tool strain z̃str
k+1 = zstr

k+1 − q̂1,k+1

Acceleration z̃acc
k+1 = zacc

k+1 −
ˆ̈
θ3,k+1

Table 7.1: Summary of difference equations from section 7.2

A model used only for testing must be constructed to fit the model from (7.3) as
well as including the estimation of acceleration. The model is constructed from (5.6),
which yields the following matrices

As =


0 1 0 0 0
−ω2 −2ζω 0 0 0

0 0 1 0 0
0 0 0 0 0
0 0 1 0 0

 , Bs =


0
1
0
1
0

 , Cs =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1

Ts
− 1
Ts


(7.18)

which will provide the estimated model output vector

ẑk+1 =
[
q̂1 θ̂3

ˆ̇
θ3

ˆ̈
θ3

]T

k+1
(7.19)

The matrix notations As, Bs and Cs have been used to denote the continuous model
used by the Kalman filter. This model and the measurement vector is used together
with the Kalman equations (7.3) through (7.8). Before the model can be applied, it
must be discretized. The covariance matrices Q and R must be tuned in order to
achieve satisfactory performance of the filter. Even though the model estimates can
be improved using measurements, there is a trade-off between trusting the model or
trusting the measurements. The measurements will give the exact response of the
system but will be subject to sensor noise. The theoretical model on the other hand
will provide noise free estimates but the model may be incorrect. The best possible
estimate is obtained by measuring the resonance frequency experimentally and then
trusting the model more than the measurements. Then the measurements will can be
used to perform the small corrections needed to match the exact resonance frequency
at all times. The filter is tested in appendix D and evaluated in the acceptance test
in chapter 10. A short summary will end this chapter before the system identification
processes used to estimate the resonance frequency are discussed in the sequel chapter.
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7.3 Summary

In the above, a linear Kalman filter was discussed and tested on a simulation of the
actual system. A linear Kalman filter uses measurements from sensors to update
the model state estimates from a theoretical model. The adaption is performed on
the basis of a filter gain matrix K, which is generated from a system model matrix
and a covariance matrix. The covariance matrix is a measure of the model estimate
variances, and tells how deviating the estimates may be from the actual ones.

Each sensor output is compared to a corresponding model state, and the model
estimates are updated accordingly. The method is not the answer to everything, and
it must be tuned properly to benefit from the filter. However, since all the noise
distributions of both process and sensors may not be known in advance, which they
barely are, the tuning must be performed empirically. From there, the performance
of the filter must be manually evaluated in each case. In this case with a signifi-
cant resonance peak in the frequency response, the model must be accurate, if the
measurements are subject to a high level of noise. An incorrect resonance frequency
will make the controller inefficient, and perhaps making the oscillation damping task
impossible. Therefore, the resonance peak must be accurately determined for each
tool, which is the topic of the next chapter involving system identification.
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Chapter 8

System identification

The objective of this project is to damp oscillatory motions of a flexible tool mounted
onto a manipulator structure. This ensures a faster settling time and thus a faster
positioning of the end-effector. Dynamics of the tool will naturally decay in time, but
in order to achieve a faster decay the dynamics must be damped using a controller
with knowledge of the system behavior to different control signal excitations.

Physical models were derived for both the manipulator itself and for the tool in the
modeling part. The manipulator model requires system constants, that are not given
in advance, and they must be estimated before the model is used for control purposes.
In the case of the tool model all parameters are given in advance (see appendix
G.4), but they may vary in the practical setup, and the natural response will change
accordingly. This calls for a parameter estimation1 procedure. All available sensor
measurements will be used together with the corresponding input signals to estimate
the parameters. The measurements needed (available) to estimate parameters for
different parts of the system are listed below

Actuator parameters: Joint angles

Manipulator parameters: Acceleration, change in orientation

Tool parameters: Strain of tool

The reason why no sensors are mounted on the load itself e.g. accelerometer/gyro-
scope is because no additional sensors are to be mounted on tools operated by the
manipulator. Strain measurements on the tool beam simulate strain measurements
from the tool mount itself, which is sufficient information to estimate the behavior
of the tool if a general model is known in advance. All measurements have been
”improved” using sensor fusion techniques as described in the previous chapter.

An important factor of an autonomous system is the ability to gather information
and process that into useful control signals. The signals will be designed to follow
given requirements or simply to keep the system running no matter what disturbances
are affecting the process. System identification techniques estimate a parameter vector

1Parameter estimation is a special case of system identification, whereas system identification in
general can be used to identify model structure and model size. The terms may be interchanged
within the chapter, since they are closely related
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with system parameters currently describing the system in the best way, when fitting
them to a gray-box model. This type of model contains a structure and variable
parameters that can be estimated from measurements. The general model forms
considered in the sequel will be either on linear or nonlinear state-space form with
noise terms. The linear form is given by

S :

{
ẋ(t) = Ax(t) + Bu(t) + ds(t)

y(t) = Cx(t) + Du(t) + dm(t)
(8.1)

with ds and dm representing uncertainties of the system and measurements, respec-
tively. A more generalized nonlinear version of the model, as given in [54], is expressed
in the following way

S :

{
ẋ(t) = f(t, x(t), u(t), ds(t) | ϑ)

y(t) = g(t, x(t), u(t) | ϑ) + dm(t)
(8.2)

where ϑ ∈ Rn is the system parameter vector of system S. Further conditions are
x, ds ∈ Rnx , u ∈ Rnu and y, dm ∈ Rny with nx, nu and ny representing the number of
states, inputs and outputs, respectively. The parameter vector must be updated while
the system is running and will thus have to rely on an algorithm capable of running
in real-time. A parameter estimation algorithm relies on data from the system, and
the more data the more accurate estimation of parameters (if the data is containing
information, only unique data vectors). Different identification types will be applied
for different purposes. Two major categories will be investigated for offline and online
computation. This is outlined by the following list

Online computation: Real-time update of the system model parameter vector is
necessary to achieve the best possible systems control. An extended Kalman
filter (EKF) will be used to update the parameters based on a nonlinear model
structure, which is known in advance. This gray-box model will be defined with
variable parameters modeled as states in the EKF model.

Offline computation: When verifying the results from the EKF algorithm, an
offline parameter estimation process will be applied to empirically gathered data.
The offline algorithm is a prediction error method (PEM), which is an optimal
algorithm in the sense of minimizing a cost function. Due to the computational
time inequality between samples it is not suitable for real-time use on slower
processing platforms.

Both types of computation requires data and a model to perform, which will be
described in details in the sequel sections. Firstly, all denoted methods, EKF and
PEM, will be outlined, and later on the methods for data acquisition will be given.
This involves how to gather data for offline parameter estimation, that contains the
best possible information and how to initiate the online parameter estimation process,
when the most of the model parameters are initially unknown. Further, the subspace
method N4SID is used offline to investigate whether or not the constructed model
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structure is containing all necessary information to predict the response of the system.
Even though estimating a linear model the significant dynamics will be estimated and
will be compared with the results from both nonlinear methods. For reasons that will
become clear later in the chapter a replacement of the EKF is necessary. In this case
the relay tuning method has been selected. More on that in section 8.4. First method
to investigate is the EKF.

8.1 Extended Kalman filter (EKF)

When using a Kalman filter the majority of tasks involves improving the estimate of a
model state using external measurements. Using knowledge on both the uncertainty
of the measurements and the system model, a state prediction can be achieved which
in the nominal case, converges to the actual state after some time. The same principle
however, can be used to estimate model parameters when treating the parameters as
virtual states of the model with associated uncertainty model given by [50]

ϑk+1 = ϑk + ξk (8.3)

with ξk ∼ N (0, σ2). The additional noise component is preventing ϑk to be indepen-
dent of progressing time. Since no ”real” model of the parameters is providable, the
Gaussian noise component will due, which is always used when constructing Kalman
filters. The linear Kalman was introduced in chapter 7, but the more general EKF
method applicable to nonlinear systems, will be described using the basic structure
[50] (the generalized state vector x will be used to maintain recognizability with
Kalman filter theory)

x̂−k+1 = fk(x̂+
k , uk)

ẑk+1 = gk(x̂−k+1)

It is now only necessary to determine the Jacobians of the nonlinear fields f and g
and evaluate them at the current point of operation, thus

Jf,k =
∂fk(x, u)

∂x

∣∣∣∣∣
x=x̂+

k
u=uk

Jh,k =
∂hk(x)

∂x

∣∣∣∣∣
x=x̂+

k

The theory from chapter 7 can be applied to complete the last prediction step [43, 50]

P−k+1 = Jf,kP
+
k JT

f,k +Qk

and the update steps

Kk+1 = P−k+1J
T

h,k+1(Jh,k+1P
−
k+1J

T

h,k+1 +Rk+1)−1

x̂+
k+1 = x̂−k+1 +Kk+1(zk+1 − ẑk+1)

P+
k+1 = (I −Kk+1Jh,k+1)P−k+1
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The variation over the linear version is the evaluation of the nonlinear fields at an
operation point and the direct use of the nonlinear term ẑk+1 in the a posteriori
prediction of x̂+

k+1. Using the model structure from chapter 3 and including virtual
states to represent parameters, the filter structure for parameter estimation becomes
[50] [

x̂k+1

ϑ̂k+1

]
=

[
fk(x̂k, ds,k, uk)

ϑ̂k + ξk

]
ẑk+1 = gk(x̂k+1) + dm,k

based on a discrete version of the general nonlinear system description from (8.2).
The discretization is performed using an Euler method [97]

x̂k = fk(x̂k, ds,k, uk) ≈ x̂k−1 + Tsf(x̂k, ds,k, uk) (8.4)

with f(·) denoting the continuous version of fk(·). The system in question is the first
part of (5.6) expressing the dynamics of the first mode of the flexible tool with the
field (index 1 omitted for simplicity)

f =

[
q̇

−ω2
l q − 2ζlωlq̇ + `3(NF )−1u

]
(8.5)

which can be simplified to

f(x, u) =

[
q̇

a1q + a2q̇ + a3u

]
, with x =

[
q q̇ a1 a2 a3

]T
(8.6)

The algorithm and the model for parameter estimation has been introduced, and the
selection of Q and R matrices is covered in the sequel subsection. The matrices show
to have great influence on the resulting estimates.

8.1.1 Selection of matrices Q and R

Two covariance matrices that appear in the Kalman equations must be selected prior
to applying the filter. The matrices are given as the process covariance matrixQ and
the sensor covariance matrix R. Both matrices cannot be derived analytically, and
the process noise is difficult to even measure. They will thus have to be based on trial
and error estimation. The first entry of matrix R can be measured from sampling the
noise on the strain gauges and scaling the result, but it has been chosen to try different
constellations and use the best one. In order to see what different choices of Q means
for the estimation results, an example is shown in figure 8.1 for a second order system
with ω = 2 and ζ = 0,5. The main choice of Q is Q = diag(10, 10, 100, 100), which is
multiplied by a factor in the set {0, 1 1 10 100} to see the effects of different Q. The
initial guesses are selected as 2ζω = 3 and ω2 = 10 with a simulated response given
a noise term with wnoise ∼ N (0,Wnoise), Wnoise = diag(1E−4, 1E−2). Meanwhile, the
selection of R for the test is R = diag(1, 10).
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Figure 8.1: EKF estimation of ω2 for different Q

Even though the initial guess of ω2 is 2,5 times the original value, the EKF is able to
converge to ω2 = 4, however, with larger fluctuations. Some of the Q selections show
faster convergence but larger fluctuations, although with no fixed pattern. This shows
one of the disadvantages of the EKF, namely that convergence is not guaranteed. The
selection of Q cannot therefore not be formalized. The same is in evidence with the
selection of R. Smoothing out the estimations using an MA-filter of order 1000 is
shown in figure 8.2.
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Figure 8.2: Smoothing of EKF estimation of ω2 for different Q

After smoothing out the estimation results, the parameter is more applicable to the
purpose of oscillation damping. However, the performance of the controller is highly
depending on the accuracy of the resonance peak. The EKF method will be applied to
the real system in appendix B, and a conclusion will be given based on the estimation
results in chapter 10. This will conclude whether or not another method must be
applied for online parameter estimation.

The second parameter to estimate is the damping factor ζ, which is also a derivative
of the natural frequency ω. This makes the estimate fluctuating even further, since ω
is part of the denominator. The estimation is given in figure 8.3 for different selection
of Q.
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Figure 8.3: EKF estimation of ζ for different Q

Because this parameter is a derivative of another estimated parameter, the estimation
is noisy. Using the filtered ω-estimates and smoothing the estimate of ζ yields the
response in figure 8.4.
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Figure 8.4: Smoothing of EKF estimation of ζ for different Q

Even though using filters, the estimate is varying and even beyond the domain of the
definition 0 ≤ ζ ≤ 1. The damping factor has a great influence on the settling time
of the tool oscillation and must be estimated properly. As with the ω-parameter, the
use of online EKF will be evaluated after testing the algorithm on hardware. Possible
reasons for non-accurate estimations are listed below

• High peaks: Due to division by estimates of ω close to zero

• Complex valued: Due to division by
√
ω2 estimate

• Noise: Due to large variances of the process and sensor models

These elements can only be bypassed, if noise is damped as much as possible, but the
disadvantage will be slow convergence. The parameter estimation properties of the
EKF is shown in appendix B and evaluated in chapter 10. Next, the prediction error
method is described in short. This is applied offline to investigate the performance
of the EKF by using data sampled from practical experiments. If the performance of
the methods coincide (within some boundary), the EKF is applicable for this specific
application.
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8.2 Prediction error method (PEM)

Unlike the extended Kalman filter, the prediction error method is optimal in the
sense of minimizing a specific performance function. The EKF cannot be guaranteed
optimal due to the nonlinearities. Using the PEM enables a more precise estimate
of the model parameters, but it also takes longer to perform the computation. The
basics of the PEM will be explained in short, but an explicit algorithm will no be
derived, because it has to run only in offline mode - unlike the EKF. Commercial
software has been created to handle the estimation process, and this will be applied
to do the offline computation. MATLAB System Identification Toolbox [93] with the
pem.m function will be used to process the exact same data as the EKF. The basic
optimization problem is given by a cost function [63, 53]

ϑ̂ = arg min
ϑ

{
N+k∑
t=k+1

y(t)− g(t, x̂k, uk|ϑ)

}
(8.7)

By minimizing the argument on the basis of the selected parameter vector ϑ, an
estimate ϑ̂ can be provided. The procedure of using the MATLAB function pem.m

requires a nominal guess of the system [93], which will be a trial and error procedure in
case of failed estimation (unrealistic parameter estimates). With the EKF procedure
each parameter is modeled by a stochastic model. The PEM method in MATLAB
requires that each parameter is defined as a variable, making the algorithm able to
test different parameter vectors until the cost function is minimized within the limits
of computation time, maximum number of iterations, cost function progress etc. The
PEM is tested in appendix B and evaluated in the acceptance test in chapter 10.

The two significant parameter estimation methods have been explained, and what
remains is the subspace method and the relay tuning. The subspace method is used
to verify the dynamics of the model and check whether or not it contains enough
information to represent the system. Relay tuning is used as a substitute for the
EKF, which is described in details in section 8.4. These last two methods are also
tested in appendix B and evaluated in the acceptance test in chapter 10.

8.3 Subspace identification method (N4SID)

A subspace approach is used to generate a complete linear model on the basis of
input/output relations alone. No prior model structure knowledge is necessary, and
the method will be used to generate a system for comparison with the ones used
for EKF and PEM. The latter methods both require the basic system structure in
advance (gray-box model), but if this is not correct, the parameters will not provide
extra information no matter how accurate they can be fitted.

The N4SID relies on solving a set of LS-problems [53]. The theory is based on
N4SID (subspace state space), which is able to estimate a free parameter system
model by
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ϑ̂ =

[
A B
C D

]
=

(
N−1∑
t=0

[
xt+1x

T
t xt+1u

T
t

ytx
T
t ytu

T
t

])(N−1∑
t=0

[
xtx

T
t xtu

T
t

utx
T
t utu

T
t

])−1

(8.8)

from a set of data series on the form

X(t|t, . . . , t−N + 1) =
[
xt xt−1 · · · xt−N+1

]
U(t|t, . . . , t−N + 1) =

[
ut ut−1 · · · ut−N+1

]
Y(t|t, . . . , t−N + 1) =

[
yt yt−1 · · · yt−N+1

]
with the system parameter vector being expanded to a parameter matrix including
the entire system ϑ ∈ R(nA+ny)×(nA+nu) where nA is the size of A. The size of
N ∈ R is limited from below to achieve an overdetermined system for the least-square
problem to be solvable. No structure of the system can be given as a constraint
when using N4SID over PEM/EKF. This is because the N4SID approach uses a
free parametrization of the system, whereas PEM/EKF is able to estimate specific
parameters due to their recursive construction. Advantages over the PEM includes
the fixed execution time, since the PEM is optimizing the result by means of a squared
error function. The N4SID methods is thus only optimal in a least-squares sense, and
the necessity of numerous data samples is crucial. EKF is a recursive method, that
is working on a nonlinear system model; unlike the N4SID.

Through small experiments in the design phase it was clear, that the method is not
providing stable results, and that it requires data close to the actual model. Otherwise,
the results are either unstable or does not match the physics involved. It has therefore
been decided to omit this method to check for model structure. Instead the remaining
methods will be used together with a gray-box model.

A last method is considered next - the relay tuning method. This is different from
the ones above, because it works as a controller. Therefore, it cannot be operating in
real-time, but it is able to make estimates within a few samples. It can therefore be
executed whenever the manipulator is waiting.

8.4 Relay tuning (RT)

Before describing the method of relay tuning, it is important to mention, that this
section requires reading the describing function method introduction in section 9.2 in
the next chapter, since the theory is used through this section.

As a result of the poor estimate of the flexible tool resonance frequency when using
EKF (see appendix B), another method must be considered to replace it. The method
of relay tuning for parameter estimation is a new candidate [8]. This involves using
a relay controller, and after some time the closed-loop will reach a limit cycle and
oscillate with a constant frequency. This frequency, and the corresponding amplitude,
defines an intersection between the flexible tool dynamics (related to the frequency)
and the describing function of the relay (related to the amplitude). It is then possible
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to calculate backwards to the resonance frequency of the flexible tool. Figure 8.5
shows the closed-loop configuration with relay.

Relay
function

Mapping
function-

Flexible tool
dynamics

Figure 8.5: Relay tuning closed-loop for resonance estimation (inspired by fig. 2 in [8])

According to [8], the mapping function in the middle will have to be included when
considering underdamped systems, which is the case for this project. If the function
is excluded, the resulting limit cycle oscillation will not reflect the dynamics of the
flexible tool. The mapping function is given as a sinusoid, and the initial frequency
is arbitrarily selected, which may be the closed-loop frequency without the mapping
function inserted [59].

The gains of both the transfer function, the relay and the mapping function are not
considered important for the purpose of finding the resonance frequency. The method
can also be applied to determine the exact transfer function for the system, but in
this case, the gains are not important. However, they must be selected in such a way,
that the practical system can be excited by the input signal.

After a number of iterations, the resulting limit cycle oscillation frequency is used
as the new sinusoidal frequency. The phase time from t = 0 to some rising edge of
the relay is also added to the mapping function. Similarly to numerical methods for
solving equations, the procedure is selected to terminate, when the change in estimate
is below a certain value. An example of the procedure is shown in table 8.1 on the
assumed dynamics given by

G(s) =
1

s2 + 2 · 0, 07 · 4s+ 42
(8.9)

with 0,07 and 4 rad/s defining the damping and eigenfrequency, respectively. The
results will be evaluated shortly. In order to test the system the initial guesses 0,0594
and 4,96 rad/s are used. The simulation setup listed in table 8.2.

k = 0 k = 1 k = 2 k = 3

ωlc [rad/s] 5,8670 2,9530 0,1534 -
Alc [-] 0,0659 0,0507 0,0247 -
tshift [s] - 25,2800 52,3500 48,9300

ωres [rad/s] 3,7743 2,1000 0,1317 -

Table 8.1: Results from relay tuning method for estimation of limit cycle oscillation frequency
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Simulation time 100 s
Simulation frequency 100 Hz
Relay hysteresis h 0,01
Relay gain g 1

Table 8.2: Simulation setup for resonance estimation using relay method

The notation of relay hysteresis h clashes with the height of the flexible beam, but
the height is not applied explicitly within the report. Instead it is implicitly given
through the strain/deflection relation from appendix F. An FFT was used to determine
the dominating frequency of the output signal. Figure 8.6 shows how the output is
converging in frequency and gain. The direct FFT amplitude was used to estimate
the gain, which is possible since the system converges within the first 10 seconds, but
runs for an additional 90 seconds. No scaling is needed since the chosen relay has
unity gain. Otherwise, the gain must be determined as the ratio between relay and
plant amplitude. The time shift tshift is determined from the 25th rising edge of the
relay output, after which the outputs has converged.
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Figure 8.6: Output from relay tuning closed-loop

As seen from the plot, the self-oscillation frequency is achieved after the first couple
of relay switches. The resonance frequency, or natural frequency, is calculated on the
basis of the phase angle of both the relay and the plant. Given that the plant is a
second order system on the form from (8.9), the phase angle can be expressed as

∠G(jω) = atan
={G(jω)}
<{G(jω)}

(8.10)

Using the technique of partial fraction expansion on G(s) and evaluating the frequency
content of the result, makes it possible to derive the expression
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G(jω) =
1

(r1 − r2)(jω − r1)
+

1

(r2 − r1)(jω − r2)

=
−r1 − jω√

4ζ2ω2
n − 4ω2

n(ω2 + r2
1)

+
−r2 − jω

−
√

4ζ2ω2
n − 4ω2

n(ω2 + r2
2)

=
1

−
√

4ζ2ω2
n − 4ω2

n(ω2 + r2
1)

(
−r1 − jω

ω2 + r2
1

− −r2 − jω

ω2 + r2
2

) (8.11)

with r1 and r2 being the roots to the characteristic polynomial s2 + 2ζωns+ ω2
n

r1 =
1

2

(
−2ζωn +

√
4ζ2ω2

n − 4ω2
n

)
and r2 =

1

2

(
−2ζωn −

√
4ζ2ω2

n − 4ω2
n

)
The intersection point is given as the solution to G(jω)N(A) + 1 = 0 (Barkhausen
criterion from [76]), where N(A) is the describing function of the relay with hysteresis
given as [91]

N(A) =
4g

Aπ

√
1− h2A−2 − j

4gh

A2π
(8.12)

with g denoting the gain of the relay and h the size of the hysteresis. This method can
only be applied, if the relay includes a hysteresis. Otherwise, the describing function
will be on the real axis only, and no intersection can be estimated between the relay
and the plant dynamics. Based on the output from the closed-loop, a frequency ωlc

and a gain Alc is measured, and the values are replacing ω and A, respectively, in
equations (8.11) and (8.12). The only unknown is the natural frequency ωn, which is
solved numerically by equating the phase angle of (8.11) and the phase angle of the
negative inverse of (8.12)

∠G(jωlc) = ∠
−1

N(Alc)
(8.13)

Even though the method has been proved to improve estimates, this is not the case for
this configuration, and the regular method without mapping function will be applied
instead. The resulting frequency estimate from table 8.1 is converging towards zero.
Using the first results (k = 0) of the above simulation, where the mapping was not
used, a resulting limit cycle oscillation frequency of 5,867 rad/s and a gain of 0,0659
was observed from the FFT. This results in a resonance frequency of ωres = 3,7743
rad/s, when applying the above theory. This yields a difference of -5,64 % when
compared to the expected value of 4 rad/s. A greater variance in the estimates is ex-
pected when using actual measurements. The frequency was determined using figure
8.7, which shows, that the constant phase of the relay (only for constant hysteresis
and constant Alc) intersects the phase angle of the flexible tool dynamics (determined
for ωlc) at -176,2676 degrees corresponding to a resonance of 3,7743 rad/s.
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Figure 8.7: Intersection between phase angles
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Figure 8.8: Modified Nyquist plot (inspired by fig. 4 in [85])

Figure 8.8 shows how the two dynamic functions intersect in the complex plane.
Before ending this section, the convergence time and corresponding accuracy must be
considered. The simulations above are performed using 100 seconds of data sampled
at 100 Hz, but that is too long time if the manipulator is operating with different
sized objects. It takes 33 samples at 100 Hz before the estimate is within the ±10 %
band of the actual frequency and 44 samples to reach the ±5 % band of the correct
frequency. However, it may be different in reality, and the number of samples may
be larger to guarantee a steady estimate. Figure 8.9 shows the resonance frequency
estimates as a function of the number of samples used.
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Figure 8.9: Estimated limit cycle frequency as a function of sample size
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The first couple of estimates are not reliable, since the limit cycle is not fully reached
yet, and the frequency is converging towards the correct one. Therefore, an experi-
ment must determine the optimal sample size for this configuration, see appendix B.
The size can then be increased to include variance and tools with lower dominating
resonances. Because the system is underdamped, there will be a steady state error.
In order to remove this, a mapping function is needed as introduced in the beginning
of this section.

Through simulations though the mapping function converged the frequency esti-
mates to zero. The relay tuning method without the mapping function was therefore
applied in the practical experiment in appendix B. In order to sample useful data
through experiments the test signals must be constructed properly. This is treated
in details in appendix L, and the methods will be used to design control signals for
the tests in appendix B. All methods needed for identifying the system have been
explained in the above, and they will be summarized in the last section below.

8.5 Summary

A number of system identification methods for parameter estimation has been intro-
duced in the above. The EKF is intended for online estimation and the PEM for
offline estimation. A subspace method has been introduced as well, which is used to
verify the model dynamics by estimating a complete model on input/output relations
alone. Because the EKF showed to provide fluctuating parameter estimates, it has
been substituted with the relay tuning method. This method is, however, not able to
run online like the EKF. It must apply control signals to the system, but has a fast
convergence time. Therefore, it can still be applied for realtime applications.

All methods can be applied to the system while the tool is mounted on the mani-
pulator. Separate tests of the tool are therefore unnecessary. This ends the system
identification chapter, and the model estimates will be used when designing a con-
troller in the sequel chapter.
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Chapter 9

Sliding mode controller

A model structure has been derived in the modeling part and a number of system
identification methods has been introduced in the previous chapter. Both the model
and the system identification algorithms will form the foundation for the controller
design, which will be explained in this chapter. For the sake of simplicity it is assumed,
that the parameters are not time-varying, but merely unknown and are therefore to
be estimated. Further considerations must be taken if the model is essentially allowed
to be hybrid. This part can be omitted by assuming that the model is only updated
in between manipulator operations. Figure 9.1 shows how the assumption must be
interpreted.

Controller adaption
to load changes

Task k Task k + 1

Figure 9.1: Adaption of controller to changing load between tasks

A sliding mode controller (SMC) has been selected to counteract the oscillating be-
havior of the flexible tool. The sliding mode controller is a nonlinear controller type,
that is also robust to system model uncertainties [100]. It is therefore applicable in
cases, where the systems are difficult to model (inadequatemodel) or the states suffers
from model uncertainties. The term sliding mode denotes a trajectory that remains
on a defined surface for all future time. This concept will be clarified throughout the
controller chapter.

The SMC is in a category of systems called variable structure systems (VSS),
that changes structure as a function of specific system states [33]. In this case, the
controller gain changes as a function of the trajectory coordinates in the phase plane.
A generalized VSS closed-loop is shown in figure 9.2 with the controller changing as
a function of the system states in order to keep the trajectory pointing in direction
of the switching surface (direction of gradient) at all time. The terms positive and
negative are expressing which of the subspaces s > 0 and s < 0 the trajectory is
currently moving in.
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Negative
controller

f(states)

System
plant

Positive
controller

System
sensors

Figure 9.2: Generalized VSS closed-loop (inspired by fig. 4 in [33])

In practice, the trajectory cannot move along the surface due to effects like quantiza-
tion, disturbancesand round-off errorswhen solving the system equations numerically.
This produces a trajectory, that crosses the manifold between the two subspaces de-
fined by s > 0 and s < 0. The term switching manifold will be used interchangeably
with the term switching surface throughout the chapter. Discontinuous control signals
are used to guide the trajectory towards the switching surface again, when the trajec-
tory is present in one of the two subspaces. By selecting the control signal properly
it will make the trajectory converge to an equilibrium on the surface and therefore
compose an asymptotically stable system. The manifold is defined in the following
way [38, 87]

s(q) , q̃

(
d

dt
+K

)k−1

(9.1)

with K denoting a gain that will ensure convergence to the surface according to given
requirements and k denoting the order of the system to control. This manifold is
applicable to multivariate cases, but only the single variable case will be considered
and interpreted for this project. The variable q has been used in the modeling chapter
to represent a scaled version of the flexible tool strain. It can be expressed by the
single mode model in (4.30) from chapter 5, which is given in a slightly altered version
here as [

q̇
q̈

]
=

[
0 1
−ω2 −2ζω

] [
q
q̇

]
+

[
0
K1

]
u(t) (9.2)

with the variables q1, ω1 and ζ1 interchanged with q, ω and ζ, respectively, for sim-
plicity. The constant K1 is scaling the input signal and is determined through system
identification in appendix B together with the remaining model parameters. From
(9.2) the order k = 2 can be identified, and the surface is therefore given as

s(q) = ˙̃q +Kq̃ = q̇ − q̇ref +K(q − qref) (9.3)

when including a reference trajectory qref . This provides the definition of a tracking
error q̃ between the current state q and a reference qref given as q̃ = q− qref . Stability
can be guaranteed in the general case if s = 0̄ is stable. Here s is given as a vector,
since higher-order control can involve several switching surfaces, which will not be
considered for this project. In this case the s-function is a scalar function, and the
stability condition is therefore given as s = 0.

Two stable trajectories are illustrated in figure 9.3 with the dashed lines defining
the bounds of the chattering that occurs when the trajectory is switching between
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the two subspaces in the presence of control delays. The phenomenon is explained in
details in section 9.2. In the continuous theoretical case, chattering is not a concern,
but when applied in discrete time steps, the problem emerges. Figure 9.3a shows the
theoretical phase plane trajectory. The trajectory initiates from an initial position
in the (q, q̇)-plane, and when the switching surface is reached, the trajectory remains
there for t → ∞. The practical case in figure 9.3b is slightly different, because the
manifold is being crossed infinitely many times as t→∞, because the values of q and
q̇ are quantized. However, the trajectory is stable and remains within given bounds.

s < 0

s > 0

s = 0

(a) Theoretical

s < 0

s > 0

s = 0

(b) Practical

Figure 9.3: Sliding surface interpretations

Before initiating the controller design, the model from (9.2) must be converted into
the vector field form

f(q) = ẋ ,
d

dt

[
q
q̇

]
=

[
q̇

ω2q +K1u

]
(9.4)

which is the common model structure for designing a sliding mode controller. The
first part of the controller design process will be considering a model without friction
part described by the differential equation

q̈ + ω2q = u (9.5)

with unit gain input signal. The friction term 2ζωq̇ will be added later on. In order
to separate the different parts of the discontinuous control, the (q, q̇)-plane is divided
by a plane/surface. Using the definition in (9.3) without the external reference qref ,
because the vibrations must be regulated to zero, defines the surface

s = q̇ +Kq (9.6)

By tuning the gain K, magnitude and direction of the vector field gradients can be
selected to achieve the required trajectory behavior. The sliding mode controller
drives the state trajectory x(t) to the sliding surface s = 0. The notation x(t) is
used to denote the trajectory given by states q and q̇. When it reaches the surface,
it changes behavior and moves along the surface by q̇ = −Kq given from the surface
definition in (9.6). This yields an asymptotically stable solution
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q(t) = q(tr)e
−K(t−tr) (9.7)

causing the q state to converge to zero as t → ∞ [100]. tr is the reaching time
determined as the time between initial state q(0) and the state q(tr), when reaching
the surface. A control signal must be constructed to ensure a trajectory that is driven
towards the surface independent of the initial conditions.

The division between subspaces is a common problem when dealing with hybrid
systems . When a particle is traveling on the surface (an invariant set in which it
remain for t → ∞) between the two subspaces, no field is defined. A field is only
given for the two subspaces, and the Filippov solution is therefore used on the set
given by the condition s = 0. Using a discontinuous control allows for controlling the
gradient in each subspace. All gradients are pointing towards the surface (if designed
correctly), and the solution to the differential inclusion ẋ ∈ f(x, u) is pointing towards
the origo (q, q̇) = (0, 0) [60]. The solution is given as a convex combination of the
fields on either side of the surface s = 0 expressed as f+(x, u) and f−(x, u). The
variable x will be used as placeholder for the model states q and q̇, and is not be be
confused with the longitudinal position on the flexible beam. A convex combination
between the fields is defined as

fcc(αcc) = αccf+(x, u) + (1− αcc)f−(x, u), αcc ∈ (0, 1) (9.8)

with the convex hull co(·) defining the set of convex combinations between the fields
that are candidates to form a solution to the differential inclusion [60]

x ∈ co{f+(x, u), f−(x, u)} = {fcc(α)|αcc ∈ (0, 1)} (9.9)

The instantaneous solution to the problem is tangential to the sliding surface and
pointing towards the origin. To pick out the solution from the set of admissible
solutions to the differential inclusion x ∈ {fcc(α)|αcc ∈ (0, 1)}, the surface s = 0
yields also ṡ = 0 and thus [57]

ṡ = ∇T

s(x)ẋ = ∇T

s(x)fcc(αcc) = 0 ⇓

αcc =
∇T
s(x)f−(x, u)

∇T
s(x)(f−(x, u)− f+(x, u))

(9.10)

with one specific αcc selecting the solution tangential to the s-function. In order to
achieve the dynamics q(t) = q(tr)e

−K(t−tr) on the sliding surface, the ideal vector field
must be on the form q̈ = −Kq̇. Introducing a control signal to the dynamics makes
it possible to express two f -functions using a discontinuous control law u = U0 sgn(s)
[100, 82]. The dynamics f(x, u) = −ω2q+u from (9.5) is therefore converted into the
form

f(x, u) =

{
f+(x, u) = −Kq̇ − U0 for s > 0

f−(x, u) = −Kq̇ + U0 for s < 0
(9.11)

with U0 applying a constant acceleration, which will drive the trajectory towards the
surface. This yields an αcc on the form
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α =

[
K 1

] [ q̇
−Kq̇ + U0

]
[
K 1

] [ 0
−2U0

] =
U0

2U0
=

1

2
(9.12)

by applying (9.10). The convex combination is therefore given as half of each field.
In practice the Filippov solution is not derived, since the discontinuous control will
automatically create a state trajectory similar to the Filippov solution. As suggested
above, a discontinuous control law can be introduced to change the direction of the
vector fields in each subspace. A conditional example of a control law can be stated
as the following

u =

{
u+ = q+ + ω2q for s > 0, q+ > K

u− = q− + ω2q for s < 0, q− < K
(9.13)

which is assuming that instantaneous changes is acceleration is possible. This is of
course not the case in practice, but due to the assumption of local control (see as-
sumption 10), the velocity of the tool frame Fτ must be kept as low as possible to
prevent initiating tool oscillations.

Assumption 10: Only local control (small-signal approximation) is needed
to stabilize the flexible tool dynamics, and by assuming only friction based
manipulator dynamics, a direct coupling to the input excitation signal u(t)
approximates instantaneous angular joint acceleration υ(t). 2

The conditions q+ > K and q− < K are used to guide the trajectory towards the
region of attraction given as the surface s = 0. Not respecting these conditions will
divert the trajectory from the surface, which is causing instability. By applying the
control from (9.13) to the model in (9.5) the accelerations on either side of s = 0
becomes q̈ = q+ (using u+) and q̈ = q− (using u−), respectively. This is exactly
the behavior that is desired, as it reflects the way the acceleration is supplied by the
actuator drive electronics. The control law in (9.13) will be used in the sequel, because
the ω2q term cancels out the negative counterpart from the model in (9.5), and the
only remainder is the direct acceleration term. The control law can be altered to the
form

u = ω2q − U0 sgn(s) (9.14)

without violating the existing inequalities q+ > K and q− < K. In this construction,
s is used as argument to a signum function, which allows for two different gradients
on either side of the surface. The difference between the two cases (9.13) and (9.14)
is the sign function of the controller gain U0, which simplifies future calculations, and
makes it possible to describe the control law in a single equation.

Simulating the system from (9.5) with the control law from (9.14) with arbitrary
model parameter (ω = 5), controller gains (K = 9 and U0 = 25) and initial conditions
((q, q̇) = (2, 0)), see block diagram in figure 9.5, yields the asymptotically stable
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surface function behavior shown in figure 9.4 for two different simulation frequencies.
Notice that since U0 > K, the control law from (9.13) is still fulfilled. If the controller
stabilizes the plant dynamics, any initial solution will make the trajectory converge
to the surface. This is possible because the term ω2q in the control law removes
all known system dynamics. Robustness to model uncertainties is attained using
the discontinuous control law. Non-conservative systems will make the trajectory
converge to the origin of the phase plane with (q, q̇) = (0, 0).

0 1 2 3 4 5
−10

  0

 10

 20

Time [s]

s
-f
u
n
ct
io
n

(a) s-function (fs = 10 Hz)

0 1 2 3 4 5
−10

  0

 10

 20

Time [s]

s
-f
u
n
ct
io
n

(b) s-function (fs = 1000 Hz)

0 1 2 3 4 5
−1

 0

 1

 2

Time [s]

S
ta
te

q

(c) q-state trajectory (fs = 10 Hz)

0 1 2 3 4 5
−1

 0

 1

 2

Time [s]

S
ta
te

q

(d) q-state trajectory (fs = 1000 Hz)

0 1 2 3 4 5
−50

−25

  0

 25

 50

Time [s]

C
o
n
tr
o
l
u

(e) Control signal u (fs = 10 Hz)

0 1 2 3 4 5
−50

−25

  0

 25

 50

Time [s]

C
o
n
tr
o
l
u

(f) Control signal u (fs = 1000 Hz)

Figure 9.4: Simulation of system in figure 9.5 with controller from (9.14)

Using a larger sample frequency limits the fluctuations of the s-function, because
the control action can be updated more often. The high frequency control action,
however, comes with a price, since the actuators wear out faster and the noise levels
are increased. This will be further considered in section 9.2. A smoother s-function
also smooths out the state trajectories. The simulation using fs = 1000 Hz shows
close behavior to the case where Ts → 0 s (fs →∞ Hz), which is referred to as ideal
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Plant

Sliding
surface

Control
law

Controller

Uses esimates of    
to calculate   

w2

∫ ∫
q̇

s

Figure 9.5: Sliding mode controller for q̈ + ω2q = u with control law from (9.14)

sliding mode [99]. All other cases, and especially practical cases, can be denoted as
real sliding modes. The gains in the system from the diagram in figure 9.5 are fitted
manually to achieve a stable behavior that also shows chattering. However, a method
must be applied to determine the gains, that will stabilize the system and yield the
required performance.

Firstly, the natural response (unforced) is considered for the system in (9.5) with
and without the natural damping term 2ζω added. Phase portraits are given in figure
9.6 simulated with arbitrary but positive damping and frequency parameters (ω = 2
rad/s and ζ = 0,5). The axes are not given any numbers, since the plots are only
intended to show the relative shape of the trajectories for different initial conditions.
Both figures show stable behavior and figure 9.6b shows an asymptotically stable
behavior due to the added friction.

q

q̇

(a) Without friction

q

q̇

(b) With friction

Figure 9.6: Phase portraits of simple systems q̈ + ω2q = 0 and q̈ + 2ζωq̇ + ω2q = 0, respectively

When adding control signals to the system using (9.14), two different responses can
be achieved depending on the sign of s [100]. Phase portraits are given in figure 9.7
for both the s > 0 (q̈ = −U0) and the s < 0 (q̈ = +U0) case simulated with U0 = 5
and K = 1. The plots show unstable phase portraits. By applying the definition
from (9.6), a surface s = 0 can be located in the phase plane with the form q̇ = −Kq.
By alternating between the two controls of the discontinuous control law, a globally
stable behavior can be achieved, see figure 9.8.
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q

q̇

(a) q̈ = −U0, s > 0

q

q̇

(b) q̈ = +U0, s < 0

Figure 9.7: Phase portraits of vector fields f+ (left) and f− (right)

q

q̇

s < 0

s > 0

s
=

0

Figure 9.8: Phase portrait of system from (9.5) controlled with law from (9.14)

By switching between the two controller configurations, all trajectories, independent
of initial conditions, will reach the sliding surface s = 0 and remain there as t→∞.
By tuning the controller parameters, the shape of the trajectories and the controller
performance can be adjusted. The specific U0 will be selected to achieve certain
properties of the controller, which is treated in section 9.3 regarding controller per-
formance. 6 phase plots based on a simulation with different constants U0 and K are
shown in figure 9.9.

Different initial conditions has been used of the system shown in figure 9.5 for the
simulation. As U0 increases, the reaching phase is more direct towards the surface,
and an increase in K further reduces the reaching time.
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q

q̇

(a) U0 = 2 and K = 1

q

q̇

(b) U0 = 2 and K = 2

q

q̇

(c) U0 = 5 and K = 1

q

q̇

(d) U0 = 5 and K = 2

q

q̇

(e) U0 = 10 and K = 1

q

q̇

(f) U0 = 10 and K = 2

Figure 9.9: Phase portraits of (9.5) controlled with law from (9.16) with different parameters
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The basic theory for designing a sliding mode controller has been provided, and the
sequel section applies the methods to improve the control law in order to achieve a
given performance. Later, the chattering issue will be addressed, which is introduced
because of the limited bandwidth of the actuators and the controller. Complete
disturbance rejection is possible when using an infinite gain, but in the practical
case, there will be a trade-off between the disturbance bandwidth and the amount of
chattering. The frequency content of the control signal is also affected, which cannot
contain any resonance frequencies of the flexible tool.

9.1 Controller tuning

From the set of all possible control signals1 Su a subset will yield stability, which will
be referred to as the set of admissible control signals Ss. Moreover, a subset of these,
Sp, will yield a performance within the given controller requirements. The problem
of elimination is therefore based on the set Sp ⊂ Ss ⊂ Su. A way to satisfy stability
for the SMC is to apply the sliding mode attractiveness condition, which is related to
the Lyapunov stability theory [81]

V̇ = ṡs = ∇T

s(x)ẋs < 0 (9.15)

This can be related to a quadratic Lyapunov candidate function given on the form
V (x) = 1

2s
2 with a derivative given as V̇ (x) = ṡs [82]. In order to satisfy this

condition, the signs of s and ṡ must be unequal. Expanding the inequality from
(9.15) with the condition and substituting the field from (9.5) yields

∇T

s(x)ẋs =
[
K 1

] [q̇
q̈

]
s

= (q̈ +Kq̇)s = (q̈ +Kq̇)(q̇ +Kq)

= q̈q̇ + q̈Kq +Kq̇2 +K2q̇q substitute (9.4)

= (ω2q + u)(q̇ +Kq) +Kq̇2 +K2q̇q

= K2q̇q +Kq̇2 + ω2Kq2 + uKq + ω2q̇q + uq̇ < 0

A discontinuous control u = −U0 sgn(s) + ω2q is considered from (9.14), which can
be substituted into the inequality from above as well as applying the definition given
by |s| = s sgn(s) [82]

K2q̇q +Kq̇2 + ω2Kq2 + (ω2q − U0 sgn(s))Kq + ω2q̇q + (ω2q − U0 sgn(s))q̇ < 0

(K2 + 2ω2)q̇q +Kq̇2 + 2ω2Kq2 − U0|s| < 0

This kind of Lyapunov derivative indicates, that the chosen Lyapunov candidate may
not be perfect, since it introduces a number of non-quadratic terms in q and q̇. How-
ever, in this case the input signal can be the reason and can be altered to yield a

1A control signal is defined as a signal function derived on the basis of a specific control law
structure with certain variable parameters (time-invariant)
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simpler V̇ . This can be achieved by selecting ṡ = U0 sgn(s), which can be related to
a control signal on the form (suggested by [82])

u(t) = −f̂(x, t)−Kq̇︸ ︷︷ ︸
Removes ṡ from V̇

− U0 sgn(s)︸ ︷︷ ︸
Actual control

(9.16)

because

ṡ = q̈ +Kq̇ = f̂(x, t) + u(t) +Kq̇ (9.17)

with f̂(x, t) denoting the nominal system dynamics without uncertainties. It can
be noticed, that the control signal appears in the first derivative of s, indicating a
relative degree of k − 1 (equal to one in this case). If the relative degree is more
than one, a higher-order SMC must be applied, where the twisting controller is one
type [57, 71]. The twisting controller uses both the s-function and the ṡ-function to
generate a suitable control signal. Since s = 0 is a requirement to obtain stability and
to track the desired reference (in this case regulate all states to zero), the condition
ṡ = 0 is also a requirement. The first two terms of u(t) are denoted as the equivalent
control part û(t) of u(t) and can be related to the control signal to obtain the Filippov
solution [87]. Using again the system in figure 9.5 with K = U0 = 10 (the original
control law from (9.14) must be applied to show the point), the control signal and
the corresponding equivalent control signal is shown in figure 9.10.

0.0 1.0 2.0 3.0 4.0 5.0
−20.0

−10.0

  0.0

 10.0

 20.0

 30.0

 40.0

Time [s]

C
o
nt
ro
l
si
g
n
a
l

 

 
Control signal
Equivalent control signal

Figure 9.10: Equivalent control signal for system in figure 9.5 (inspired by fig. 20 in [99])

The mean of the control action is decreasing, because the control signal remains
fluctuating around the time axis when in sliding mode. Therefore V̇ = −U0 sgn(s) ≤ 0
for U0 ≥ 0 yields a stable control system. K > 0 is also required to achieve a
decaying behavior q(t) = q(tr)e

−K(t−tr) on the sliding surface. All calculations are

also performed on a nominal system f̂(x, t) without uncertainties and with a natural
frequency of ω = 5 rad/s.

Before determining the actual values of U0 and K, the topic of chattering is conside-
red in the following section, which is influencing the disturbance rejecting properties
of the control system. However, reducing chatter also smooths the response. In
the remainder of the control chapter, the nominal dynamics f̂(x, t) will be given as

f̂(x, t) = −2ζωq̇ − ω2q including the damping term 2ζωq̇.
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9.2 Chattering issues

When using the discontinuous control signal proposed in (9.16), the bandwidth of the
control signal is theoretically infinite. This is caused by the instant change in signal
amplitude, which is advantageous to control nonlinear undermodeled systems with
parameter uncertainties. Also, since the control function is amplifying the input s
to the output U0 sgn s, the equivalent gain Keq → ∞. The equivalent control signal
ueq is the continuous output of the control block, and the gain

ueq

s →∞ as well [99].
Invariance to system disturbances is also possible using a controller with infinite gain
[98]. Dynamics in every frequency range can be met in theory, but for this particular
project it is a disadvantage, because it may excite resonances of the flexible tool.

Chattering occurs when the control law is discontinuous or discrete. The discrete
case is necessary for implementing the controller on hardware. Defining a chattering
boundary layer in the (q, q̇)-plane called the quasi-sliding mode band (QSMB) and
given as {x| −∆Q < s < ∆Q}, relaxes the s = 0 condition [42, 87]. A band of ±∆Q

will then be placed around s = 0. By defining a limit of the chatter amplitude, the
controller can be designed to fulfill this condition. Instead of introducing a boundary
layer around the surface s = 0, a continuous control law can be applied. This will
decrease the disturbance rejection properties and limit the bandwidth of the control
signal. However, the smoother control signal rejects the chattering and increases the
lifespan of the actuators.

The objective of the project is to damp flexible modes appearing in the manipulator
tool, and a controller with infinite gain will undoubtedly excite every mode in the dy-
namics as well as introducing non-smooth control signals. To overcome this problem,
the discontinuity must be substituted with a continuous or continuously differentiable
function like e.g. sat(s) or sig(s), saturation and sigmoid function, respectively. The
two signals are described in the following way [71, 87]

u(x) = û(x)− U0 sat(s, εs) =

{
û− U0

s
εs

for |s| < ∆s

εs

û− U0 sgn(s) otherwise
(9.18)

u(x) = û(x)− U0 sig(s, ds) = û− s

|s|+ ds
(9.19)

with û denoting the equivalent control, which is determined from an ideal system
description f̂(x, t). The ∆s-parameter is only applied when using the sat(s) function,
whereas the ds-parameter is used by the sig(s) function to smooth out the control
signal as well. The εs-parameter is a saturation gain, which for the purpose of this
project will be set to unity εs = 1. Figure 9.11 shows the discontinuous control from
(9.16) as well as the newly proposed boundary layer method (saturation function) and
sigmoid function method to remove chattering [71].
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Figure 9.11: Discontinuous and continuous control functions

The new methods are continuous and the sigmoid function is further continuously
differentiable, which allows for a smoother control signal. Remark 3 states an impor-
tant fact about continuous control functions.

Remark 3 (null space): When applying signal shapes different from the
signum function, the sliding mode is no longer ideal [19]. As introduced
earlier, a manifold s = 0 also implies ṡ = 0 in the ideal case. This can
no longer be guaranteed when using other functions, and therefore sṡ ≤ 0 is
only possible under certain conditions. However, the sliding mode will still
be present, but the trajectory must be expected to overshoot the manifold at
first before entering the expected sliding mode. No proof of the phenomenon
will be given (see [19]) and will not be considered in the following. This re-
mark is provided to inform about the trade-off between chatter suppression
and controller performance. 2

In order to select one of the methods, the potential of each of the new methods must
be evaluated. The concept of describing function analysis (DF-analysis) will be ex-
ploited to evaluate critical frequencies in the control signal, that may excite harmonics
in the tool dynamics. All resonances must be avoided within the control signal spec-
trum. Notations in this context are not to be confused with former notations, and the
variables will be restored after the analysis. A separate nomenclature is given on page
XX for this short analysis. A basic illustration of the concept of describing function
analysis is given in figure 9.12.

Nonlinear
dynamics

Linear
dynamics

A sinωt

B sin(ωt+ φ)

Figure 9.12: Concept of describing function analysis

It seems from the figure, that the only output from a nonlinear system is a sinusoid,
but this is not the case. The nonlinear dynamics in this case will include a sat(s) or
a sig(s) function, which is generalized by the two transfer functions N(A,ω) (change
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in amplitude) and ϕ(A,ω) (change in phase). Similar, the linear dynamics is de-
scribed by G(B,ω) and ψ(B,ω). The response B sin(ωt+ φ) of the nonlinear part is
an approximation of the nonlinear dynamics using the first harmonic, because it is
generally the most significant component of the entire frequency response. In order
for a limit cycle to be stable, the following sufficient conditions must be satisfied

G(N(A,ω), ω) = A and ϕ(A,ω) + ψ(B,ω) = 0 (9.20)

meaning that both amplitude and phase must be unchanged between periods. Stabil-
ity in this context is given if the trajectory is moving along a limit cycle in the phase
plane. In that case, the limit cycle acts as an attractor to the trajectory, making
the closed-loop system critically stable in the case of no friction. When the response
from the linear dynamics is fed to the nonlinear block in figure 9.12, the shape of the
output is depending on the amplitude of the response signal. A small signal, which is
below the saturation limit, will remain unchanged, whereas an increase in amplitude
will make the output more distorted [2]. The nonlinear description must be in the
form of a describing function, which for the saturation function is given as [76, 85]

N(A) =


1
εs

for A ≤ ∆s

2
πεs

(
asin ∆s

A + ∆s

A

√
1−

(
∆s

A

)2)
for A > ∆s

(9.21)

where A is the gain of the input sinusoidal given from A sinωt. The parameter ∆s is
the saturation limits and 1/εs is the gain of the saturation function (linear part of the
function), see (9.18). Notice how the frequency dependence has been removed from
the describing function approximation (not a general property). A plot of the function
is given in figure 9.13 as a function of the input gain A. Remaining parameters are
selected to be ∆s = 1 and εs = 1 for that particular plot. The mathematical theory
behind the transformation of the sat()-function is not given, but the general transform
that must be applied is expressed as [16]

N(A) =
ω

Aπ

∫ 2π
ω

0

u(t) sinωt dt+ j
ω

Aπ

∫ 2π
ω

0

u(t) cosωt dt (9.22)

with u(t) denoting the response of the nonlinear control block. A similar process can
be applied to the sig(s) function, which yields the describing function [71]

N(A) =
2

Aπ

(
2− dsπ

A

)
+

4
(
ds
A

)2
Aπ

√(
ds
A

)2 − 1

π
2
− atan

1√(
ds
A

)2 − 1

 (9.23)

For comparison, the describing function of sig(s) is shown together with sat(s) and
sgn(s) in figure 9.13. The values used are ∆s = 1 (absolute limits), ds = 1 (shape of
sig(s)) and εs = 1.
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Figure 9.13: Comparison of describing functions for sat(s), sgn(s) and sig(s)

The plots are generated using the MATLAB command frestimate.m, which is able
to estimate the output amplitude of the nonlinear system part when excited by a
sinusoidal input signal with amplitude A. The reason why regular frequency analysis
techniques does not apply to nonlinear systems is the possibility for the frequency
characteristics to depend on both frequency and amplitude of the input signal. A
linear filter excited by a sinusoidal signal will still output a sinusoidal with the pos-
sibility of amplification and/or change in phase. A nonlinear filter can on the other
hand alter the signal input in different ways, which is why the filter must be approx-
imated to apply frequency analysis techniques. Both sat(s) and sig(s) were proposed
as candidates for removing chattering around s = 0. Compared with the discontinu-
ous sgn(s)-function, the two functions are both continuous as well as defined for all
positive gains A. The Barkhausen criterion given as [76]

G(jω)N(A) + 1 = 0 (9.24)

can be used to evaluate both functions in a closed-loop with the system. The frequency
ω and the gain A can be determined for both the linear and the nonlinear model part.
Figure 9.14 shows a modified Nyquist plot for the describing functions of sat(s) and
sig(s), which turns out to be equal when considering the entire range of A.
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Figure 9.14: Modified Nyquist plot of (9.24) (inspired by fig. 4 in [85])
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The difference is the specific location of the describing function in the Nyquist plot
for a given A. Both the describing function N(A) and the linear dynamics G(jω) from
the Barkhausen criterion are shown in the figure. Notice how the ∆s, ds-parameters
determine the distances from origo to the starting points of the responses.

If the two graphs intersect, the specific points will provide information about fre-
quency and gain of self-sustained oscillations, that defines a limit cycle [85]. In this
case the two functions are not intersecting, indicating that the s-signal does not expe-
rience chattering, because the system trajectory is not attracted to a limit cycle. The
derivations above are based on a purely theoretical case, and due to discretization
when the controller is implemented on hardware the s-signal will eventually fluctuate
around s = 0. This frequency, however, will be a function of the sampling frequency,
which is then chosen in a range above the first resonance frequency. The describing
function of the signum function has the limit

lim
A→0

Nsgn(A)→∞ (9.25)

causing the inverse function −1/Nsgn(A) to reach (0,0) in the complex plane. An
intersection occurs between the two functions in the modified Nyquist plot at the
point (A,ω) = (0,∞), which corresponds to an ideal sliding mode [85]. There is,
however, no analytical way to determine if chattering will occur or not because the
point is undefined.

Based on the fact that the saturation and the sigmoid functions are both capable
of rejecting the chattering effects, though with a trade-off in closed-loop performance,
they are both applicable. However, for the sequel of the controller design process, the
saturation function will be used. Partly because the saturation describing function is
less complex, and because the system to be controlled may be assumed undermodeled,
since only the first mode shape has been included in the dynamics (the saturation
provides a better performance). The final sliding mode controller will therefore consist
of a saturation function with the s-function as the argument.

Instead of solving the equations in (9.20) analytically, the modified Nyquist plot
can be applied, and the solution can be derived graphically. It has been established,
that chattering can be removed in the theoretical case by using a saturation function
in the control law. When implementing the controller, the sampling frequency must
be selected in such a way, that it does not coincide with the eigenfrequencies of the
flexible tool.

Even though the DF-method is an approximation it can be used to estimate the
response of a nonlinear closed-loop in the frequency domain [17]. According to [87],
the describing function method may prove to be failing in cases with linear dynamics
resonances. The results must therefore be compared with measurements to confirm
the correctness of the estimations. If the response must be more accurate, Tsypkin’s
method can be applied [17], because it does not approximate the dynamics before
analysis. The theory behind this method is not within the scope of this project, and
therefore the method will not be further described. The describing function methods
will be applied for this project. Before the controller can be applied in a control loop,
a number of controller parameters must be selected, which is the topic of the sequel
section regarding controller performance.
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9.3 Controller performance

When considering controller performance, this project requires the settling time of the
strain response state q(t) to be reduced when compared to a system without oscillation
damping. The exact requirement as given in section 2.4 is tset < 5 seconds. Other
performance measures can be used, but in this case, requirements are only stated for
initial location and destination. The behavior in between points is not a concern as
long as the tool is not brought to extreme positions that may damage it. According
to assumption 10 only local control is needed when the tool is near the destination.

Imagine the response from a controller built on the assumption of a rigid link
between the tool frame Fτ and the end-effector frame Fe, even though flexible. The
flexible link will oscillate after the end-effector has been located at the assumed correct
spatial position, causing a failed operation. Including the flexible behavior of the link
into the controller allows the strain of the link to be included as a model state, which
can then be controlled. The state will be regulated to zero when taking account for
the gravity offset.

Because the flexible tool may experience deformation, an algorithm must be con-
stantly estimating the deformation of the tool to prevent ineffective control action.
The term deformation is used to describe the behavior of a flexible beam not recover-
ing to its initial shape after being bended due to applied force. A constant deflection
will then be present in the strain measurement signal. This is, however, not within
the scope of this thesis, but is necessary if the controller is to function for longer
periods of time. An illustrative strain response is given in figure 9.15 when moving
the end-effector from one steady-state position to another. The figure is also part of
the technical requirements in section 2.4.
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Figure 9.15: Arbitrary strain response when moving end-effector

The strain response between manipulator on and off mode is not to be controlled,
but only the oscillation after the manipulator has stopped moving. By applying a
controller to the system, the response can e.g. look as illustrated in figure 9.16.
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Figure 9.16: Arbitrary strain response when moving end-effector + damping controller

The oscillations are damped and the settling time is improved. When determining
the performance factor of the controller, the settling time tset is the measure. Even
though the term settling time originally is given as the time from a step function is
applied until the response is less than a certain percentage of the step reference, the
following analog definition is used instead.

Definition 2: The settling time for a system controlled with a sliding mode
controller is given from two different time intervals tr and ts based on two
types of trajectory motions: reaching phase and exponential convergence phase
(sliding mode) [87], respectively. 2

Using definition 2, a settling time equivalent can be determined. This is bounded
from above unlike the exact value determined for linear systems. The reaching phase
time tr is depending on the initial conditions of the trajectory, and is bounded by [87]

tr ≤
|s(x, 0)|
U0

=
|q̇(0) +Kq(0)|

U0
(9.26)

where s(x, t) denotes the time dependent surface function, which can be expressed as

s(x, t) = s(q, q̇, t) = q̇(t) +Kq(t) (9.27)

when remembering that x was used as state vector containing both q and q̇. The
second time interval is determined from the sliding mode phase, which is constructed
to generate the q(t) = q(tr)e

−K(t−tr) response. A decay time ts in sliding mode can
therefore be determined as

ts = − ln(0, 05/q(tr))

K
(9.28)

if assuming steady state when |q(t)| ≤ 0, 05q(tr). The settling time can therefore be
guaranteed to be bounded in the following way

tset ≤ tr + ts =
|q̇(0) +Kq(0)|

U0
− ln(0, 05/q(tr))

K
(9.29)
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which must respect tset < tnom to show a damping effect. tnom is the nominal settling
time without controller. Table 9.2 at the end of this section lists the all-important
parameters, that are to be either selected based on intuition or measured by empirical
experiments. The parameters of the table are used for the final project evaluation,
which will make sure that the specification requirements are met for this project.

Based on the eigenfrequency measurements from appendix A, the eigenfrequency
of the tool with the small tip mass (ml = 351 g) is measured to be 4,20 Hz with
a damping ratio of 0,0023. This corresponds to a settling time of tnom = 64,4055
seconds, which must be reduced to tset < 5 seconds. With U0 = 10 selected on the
basis of hardware limitations (see table 9.2), the only unknown is the gain K, which
can be determined from (9.29) as

U0Ktset + ln(0, 05/q(tr))U0 < |q̇(0) +Kq(0)|K ⇓ (assuming q̇(tr) = 0, q(tr) ≥ 0)

− q(0)K2 + U0tsetK + ln(0, 05/q(tr))U0 < 0 ⇓
− q(0)K2 + 322, 027K − 10 ln(0, 05/q(tr)) < 0 (9.30)

with q(0) and q(tr) given by definition or from direct measurement when the SMC
is activated. By assuming that q̇(tr) = 0, the controller is activated when the strain
derivative changes sign or formally when q̇(tr) 6= 0. This value can though also
be measured on SMC activation. The theoretical value of tset can be calculated if
the point q(tr) is known. Unfortunately, q(tr) is difficult to determine without sim-
ulation, and an upper limit will be used instead. This will be explained in definition 3.

Definition 3: In order to determine the theoretical settling time, the initial
condition for the sliding mode q(tr) must be used to determine the time inter-
val ts. By assumption, the controller will ensure that the state trajectory q(t)
is strictly decreasing and therefore, by definition, q(0) > q(tr) when assuming
that tr > 0. 2

A direct substitution of q(tr) with the initial condition for the reaching phase q(0) is
therefore possible, and the inequality of (9.30) will still hold. Figure 9.17 provides
a graphical interpretation of the quadratic inequality (9.30) given that q(0) = 1 and
U0 = 10. The gray area shows the region of feasible K, whereas the dashed gray line
indicates the upper limit of the settling time of 5 seconds.
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Figure 9.17: Graphical interpretation of (9.30) with q(0) = 1 and U0 = 10
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The settling time is below the requirement when 0,6065 < K < 49,3935. The dot in
the figure is one solution to (9.30), and the solution can be explicitly expressed as

Ksol =
U0tset ∓

√
U2

0 t
2
set + 4q(0) ln(0, 05/q(tr))U0

2q(0)

To satisfy the inequality, the selected K must respect the limits

min(Ksol) < K < max(Ksol) (9.31)

By expressing the global minimum of (9.29) using the assumptions from the derivation
of (9.30), a minimal settling time can be achieved. The derivative of (9.29) is given
as (and equated to zero)

d

dK

(
Kq(0)

U0
− ln(0, 05/q(tr))

K

)
=
q(0)

U0
+

ln(0, 05/q(tr))

K2
= 0

It is therefore necessary to select a K that satisfies

K =

√
−U0 ln(0, 05/q(tr))

q(0)
(9.32)

which will give the following settling time when substituted into (9.29)

tset ≤

√
−U0 ln(0, 05/q(tr))

q(0)

q(0)

U0
− ln

(
0, 05

q(tr)

)[
−U0 ln(0, 05/q(tr))

q(0)

]−1/2

(9.33)

This will be considered the theoretical selection of K, and can be added to table
9.2 listing all necessary parameters for the sliding mode controller. A number of
simulations have been made with different controllers (simulation running at 100 Hz),
and the results are given in table 9.1 on page 9.1.

A saturation limit of U0 has been selected because the maximum control signal
amplitude is 10 V, which is limited by hardware. The differing from the theoretical
value can be explained by the fact, that (9.32) defines an upper limit of tset, and is
only based on the discontinuous control law. All values are plotted on their respective
functions in figures 9.18 (with overall control signal saturation) and 9.19 (without
overall control signal saturation). A close-up of figure 9.19 is given in figure 9.20
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Figure 9.18: tset from simulation with different K with sat(u(t))
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Figure 9.19: tset from simulation with different K without sat(u(t))
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Figure 9.20: tset from simulation with different K without sat(u(t)) (close-up)

Whenever a saturation function is applied to the control law, the controller perfor-
mance is reduced, and the settling time is increased when compared with the discon-
tinuous control law. Figure 9.21 compares the state trajectory for both open-loop
and closed-loop. Both controller types are simulated, and overall saturation has been
added to resemble the practical configuration.
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Figure 9.21: Control system state trajectory from simulation with best K

The trajectories are close to each other, but the s-function is smooth in the case with
saturation, as shown in figure 9.22 and 9.23 (close-up of chatter).
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Figure 9.22: s-function from simulation with best K
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Figure 9.23: s-function from simulation with best K zoomed in on chattering

Since the simulation/controller is running at 100 Hz, the chattering of the discon-
tinuous control will be of half that frequency, namely 50 Hz. Because the chatter
phenomenon can be omitted when using the sat(s)-function in the control law, this is
chosen over the discontinuous control law. The above simulations are executed at the
same frequency as the controller. Because the simulation does not update in between
control samples, some dynamics may be left out of the simulation.
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With overall control signal saturation u = sat [û− U0 sgn(s), U0]
(discontinuous control sgn(s)) K = 92,869

tset = 3,62 s

With overall control signal saturation u = sat [û− U0 sat(s,∆s), U0]
continuous control sat(s)) K = 92,869

tset = 3,62 s

Without overall control signal saturation u = û− U0 sgn(s)
(discontinuous control sgn(s)) K = 6,013

tset = 0,88 s

Without overall control signal saturation u = û− U0 sat(s,∆s)
(continuous control sat(s)) K = 5,381

tset = 0,93 s

Settling time without controller tset = 64,41 s

Theoretical tset with (9.13) controller
K = 5,38
tset ≤ 1,10 s

Table 9.1: Optimal K-values and corresponding settling times based on simulations

To investigate whether or not the different frequencies may influence the chatter
frequency, figure 9.24 shows the chatter from figure 9.23 as well as the chatter from a
10 kHz simulation (maintaining 100 Hz controller frequency).
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Figure 9.24: s-function from simulations using different frequencies

The new chatter frequency is 11,14 Hz, when using the discontinuous control law and
shows sinusoidal behavior because it is sampled at a higher frequency. During the
nonlinear frequency analysis, no frequency was revealed at 11,14 Hz. This shows some
of the downsides of using describing function analysis. Limit cycles may appear in
reality (in this case found from simulation) even though they are not determined from
the analysis [87]. Using the saturation control function sat(s) will in theory remove
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the chattering issues, but when using a discrete version of the controller it reappears.
The controller update frequency is affecting the frequency of the chattering, but when
using saturation, no explicit coupling has been determined.

When applying the saturation control law (which has been selected as the final
method), a distorted sinusoidal signal with a significant frequency component of 16,63
Hz appears. This is close to the 4,20 Hz resonance frequency of the flexible tool, but
is assumed to have no significant effect on the controller performance. The resonance
peak has a gain of -10,1 dB whereas the gain at the 16,63 Hz chatter frequency is
-80,19 dB. The low damping of the system makes the resonance very dominating, and
it can be difficult to excite this particular harmonic with other frequencies.

It is clear from the chatter frequency analysis, that even though the DF-analysis
indicates a chatter-free s-function, the introduction of sampling will make it appear
anyway. Therefore, simulations and practical experiments must reveal the true nature
of the control system before making conclusions. Based on the simulations from above
the final control law is given from (9.18) with the saturation function sat(s) and the
overall saturation. All controller types introduce chatter, but the magnitude is lower
for the saturation controller. This is, however, based on the assumption that the
lower chatter frequency is not too close to the resonance frequency. The controller
can be expressed as

u = sat [û− U0 sat(s,∆s), U0]

= sat
[
2ζωq̇ + ω2q −Kq̇ − U0 sat(s,∆s), U0

] (9.34)

Table 9.2 lists the necessary values for constructing the final controller based on theo-
retical values. The empirical values have been filled in from experiments in appendix
D for comparison.

Equation Theoretical Empirical

Saturation limit ∆s - - 1 (selected)

Decay constant K
√
−U0 ln(0,05/q(0))

q(0) 92,869 10

Input gain U0 - 10 10

Table 9.2: Selected parameters for the sliding mode controller

The input gain is selected on the basis of the maximum servo amplifier amplitude,
when assuming unity gain for the remainder of the system. Selection of the saturation
limit ∆s = 1 is based upon the measure a maximum measurable strain of ∼ ±9 V.
Using the voltage representation was clarified in section G.2 describing the sensors.
From practical experiments, a strain measurement of 1 V has been found useful.
However, according to figure 9.24, the chatter amplitude is bounded by the band
∼ ±0,2 V, which is 5 times narrower than the selected ∆s-band.

A discrete version of the SMC (DSMC [40]) will be the result of the implementation
process. The QSMB, defining the discrete sliding surface band, can be bounded in
the discrete case in the following two ways [42, 99]
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|sk| < TsU0 , ∆ |sk| ≈ TsU0 , ∆ (9.35)

with sk denoting the k-th sample of the discrete sliding surface description. The first
one is derived from applying the method from [42] to the definition of the discrete
reaching law in this project, while the other is a discrete version of the one from [99].
Both cases are amplified by U0. This is a similar bound, when using the discontinuous
control, with the chattering generated from discretization in this case. The width of
the boundary layer is therefore determined from the sample period.

When Ts → 0, the sliding surface sk = 0 will appear, and the bound ∆→ 0. Even
though a control law featuring the saturation function will remove the chattering is-
sue in the ideal case, the discretization will naturally introduce switching across the
surface. By selecting a high sample frequency will limit the bound of the chattering,
and thus the accuracy of the controller performance. When using saturation func-
tions, however, the limit must be as high as possible to avoid unexpected frequency
components, which the DF-analysis is not able to detect.

The process of making a DSMC is not given explicitly, because the LabVIEW en-
vironment is based on a graphical representation of the controller. The diagram is
therefore automatically compiled into executable code, which is running on the cRIO
controller unit. Figure 9.25 shows the structure of the controller, which must be im-
plemented in LabVIEW. Rhe SMC-block contains the control law from (9.34). The
block is not only requiering the s-function input, but uses ω2, 2ζω and Kq̇ as well.
This ends the controller design part, and the following part evaluates the performance
of the entire control system.

∫ ∫
ω2

2ζω

K

SMC
sq q̈

q̇

q0

Figure 9.25: Sliding mode controller diagram
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Chapter 10

Acceptance test

This project is composed from a number of different parts each requiring different
methods and techniques. Each part must be individually evaluated to assess, if they
fulfill the project requirements from the project description in chapter 2. Afterwards,
an overall evaluation will estimate the capabilities of the entire product and measure
its performance. One question must be answered, and that is whether or not the
product is capable of improving the accuracy of robotic manipulator end-effector
control while reducing operating time. The exact definition of the project objective
was formulated in the project description in chapter 2 and is repeated below. An
answer must be given in order to successfully complete this project.

How to improve end-effector position/orientation control of industrial robotic ma-
nipulators in terms of accuracy and operating time when handling flexible tools?

Based on this question, a number of requirements were outlined in the project de-
scription as well, which will be verified at the end of this chapter. As part of the
overall validation of the project, the requirements must be respected by the applied
methods and verified through experiments.

A number of methods and requirements were listed in the project description, and
were selected in order to solve the problem of improving manipulator control. Sys-
tem identification, sensor fusion and prediction are amongst the methods, and model
complexity, controller performance, kinematics and controller structure are elements
of the requirements. An acceptance test is given in the sequel, which is designed to
test all requirements from section 2.4 and verify the use of required methods. The
performance of the different methods will be analyzed afterwards on the basis of the
results from the acceptance test, and the requirements will be verified at the end.
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10.1 Acceptance test description

A final acceptance test will verify the performance of the product as a complete
unit, and a subsequent requirement verification will investigate whether or not the
requirements from section 2.4 are respected. The test is based on the question about
improving manipulator control, and the methods outlined throughout the report will
be applied. Listed below are the three major elements forming the final product as
was described in chapter 2.

• System identification (relay tuning)

• Sensor fusion (linear Kalman filter)

• Control (sliding mode controller)

The different elements form an autonomous system. It is capable of adapting auto-
matically to changes in tool and/or load configuration and update the controller to
damp tool oscillations under these conditions. Figure 10.1 shows how the different
elements are used and when.

Control system
terminated shortly

Resonance frequency
estimation using RT

Controller and sensor
fusion running

Updated controller and
sensor fusion running

Change in tool and/or
load dynamics

Task k Task k + 1

Figure 10.1: Operation of final product with configuration change between tasks

The controller and the sensor fusion process are running until the tool and/or load
is changed. Then the relay tuning method is used to estimate the resonances of the
new configuration, and the control system is started again afterwards with this new
information. A short delay will be present between the tasks, because the RT-method
is required to work in its own closed-loop configuration. The actual delay of the tuning
is not part of the requirements for this project, since the throughput of the production
has not been included in the scheduling.

Because the relay tuning method was performing better than the extended Kalman
filter for the purpose of estimating the first resonance frequency of a flexible tool, the
identification method does not need to be tested in parallel with the controller. The
experiments already carried out in appendix B show the capabilities of the method,
and a reference will be given to those at the end of this chapter.
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Third element on the list is the sensor fusion method used to improve the model
estimates. However, a significant amount of measurement noise was detected on
the IMU sensor channels, and the method is therefore not going to improve the
estimates by using all sensors. Only the strain and the joint angle measurements will
be used. Due to the LabVIEW software being unable to execute regular programming
languages, the Kalman filter is not implemented onto the cRIO. This will make the
actual results differ from a case with the filter implemented. Instead the filter is tested
on its own using measurement data from the acceptance test.

This brings it down to the controller, which can now be tested on its own using a
constant model. The performance of the controller is therefore decoupled from the
remaining methods, making it easier to evaluate different parts of the product. If all
methods are applied in parallel, their performance cannot be measured individually.
The controller will be using the model from (5.6) and the parameters measured in ap-
pendix A. The controller performance is measured by activating the control algorithm
after the tool has been brought into oscillation, and the settling time and accuracy is
measured. Appendix F describes the experiment in details, and contains the sensor
fusion evaluation as well. Next section will summarize the acceptance test results
from experiments in appendix B and F.

10.2 Acceptance test results

The final product is based upon three different elements listed in the beginning: sys-
tem identification, sensor fusion and controller. Each of the elements has been tested
and will be evaluated in the following three subsections. Before proceeding, two im-
portant remarks must be stated.

Remark 4 (strain gauge deformation): The flexible tool was deliberately con-
structed to have low frequency eigenfrequency components to emphasize the
damping effect of the designed controller. This unfortunately showed to be a
disadvantage, when applying some of the methods methods for system identi-
fication. The tool was deflected beyond the capabilities of both beam and strain
gauges, especially when oscillating at the resonance frequency. This caused
the tool and gauges to permanently deform. A few tools were constructed, but
since the tests require the control signals with given amplitude and frequency
content the deformation was unavoidable. A control signal limit below U0

must therefore be given to avoid deforming the tool during the tests. 2

Figure 10.2 shows how the strain gauges becomes permanently deformed due to a
combination of overload and excitation at the resonance frequency.

Figure 10.2: State of strain gauge in nominal, overloaded and deformed configuration
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The point of overload is given from the maximum strain of the strain gauges in a
given configuration regarding height of beam and location of the gauges on the beam.
Even though the figure shows equal deformation of both gauges, the strain gauges on
one side are likely to be stretched while the others are compressed. This causes the
sensor output to saturate, resulting in a constant either positive or negative offset of
the output signal. The sensitivity is further increased on one side and decreased on
the opposite. Another issue is described in remark 5 on page 112.

Remark 5 (important note on equivalent control): It was discovered, that the
control law from (9.34) was not applied in full during the simulations and
the later controller implementation. The term −Kq̇ was not included in the
equivalent control û and therefore not used in the remainder of this controller
chapter. Some properties derived in the beginning of section 9.1 are therefore
not obtained, but the controller is still of the sliding mode controller type
though with a different performance than the one given in the sequel. The
impact of the mistake will be evaluated in the conclusion in chapter 11. 2

Despite the two issues, the acceptance test was conducted. The first element to
evaluate is the system identification.

10.2.1 System identification

First element on the list is system identification. A crucial part of a control system is
knowledge about the system to control. The more accurate the model, the better the
performance of the control system. For this particular project the system is divided
into two parts: manipulator model and flexible tool model. The first model expresses
the dynamics of the manipulator and has been assumed stationary in this case. Second
model part is the tool model describing the strain/deflection of the tool.

Different system identification methods have been applied to solve the problem of
identifying the missing parameters of the hardware configuration. All methods are
based on the gray-box model approach with the model structure known in advance.
Several methods were tested to see, which of the methods are best suited for solving
different problems in the control system. The methods and their assumed advantages
are listed as

Subspace method (N4SID): Estimation of model structure before PEM/EKF
Prediction error method (PEM): Offline estimation of parameters for full model
Extended Kalman filter (EKF): Online estimation of parameters for full model
Relay tuning method (RT): Offline estimation of parameters for tool model

All method are described in full in chapter 8 and tested by experiments in appendix
B. The first method was described in the attempt to apply it for estimation of model
structure before any other method was tried. However, as described in section 8.3 the
method requires very accurate data in order to provide a useful model. It was therefore
omitted, and a general model structure derived manually was applied instead. In order
to estimate the parameters of the entire system before designing the control system,
the prediction error method was investigated.
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The full system model from (5.6) was used by the PEM algorithm together with em-
pirical data from experiments. An immediate problem occurred when estimating the
input gain of the sub-model describing the manipulator dynamics. The estimate was
far from the measurements, but because the two sub-models (tool and manipulator)
are decoupled it can be solved manually. This resulted in goodness of fits of around
80 %. When validating the results, however, the goodness measure was 76,66 % and
38,08 % for the strain and joint angle state, respectively. One reason for the low 38,08
% is caused by the randomized drifting of the manipulator link.

From the data alone the models appear decoupled, but in practice it seems that
the tool is affecting the joint angle. Furthermore, a control signal of zero does not
always correspond with a steady joint angle. Because these effects are not included
by the model, the results are not perfect.

Because the PEM is solving an optimization problem, it is not suitable for real-
time processing. It does not work within strict time intervals, and the results may
not converge if the model is nonlinear. Another method will therefore have to be
investigated for online estimating of system parameters. The extended Kalman filter
was selected and applied the same data as the PEM. Because the method is working
on input/output relations it is applicable for realtime control systems. The data is
processed by the filter and the model is updated. The same model applied by the
controller. This constructs an autonomous system, which is adapting to changes in
the hardware configuration.

Unfortunately, when testing the filter it was clear that the accuracy and conver-
gence time was not suited for systems with rapid changes in e.g. load or tool. The
estimation time was slow and the parameters were fluctuating. Furthermore, the fil-
ter is nonlinear and convergence cannot be guaranteed. If the filter is to be used,
it must be tuned to the specific application and the convergence time requirements
must be relaxed. However, since divergence problems may occur the results must be
supervised to avoid low performance.

As an attempt to compensate for the low performance of the EKF used for online
estimation of parameters, the relay tuning method was investigated. Similar with
the PEM it cannot be running along side with the control system. Also, the method
requires to work in closed-loop on the system to function. Furthermore, it is only
able to estimate the resonance frequency of the flexible tool. In this case the method
is beneficial because the most important parameter is the resonance frequency. All
other parameters must be estimated using e.g. PEM.

Because the method must be used in closed-loop, it must be applied every time
the tool/load configuration changes or when the manipulator is waiting to complete
the next task. From the experiments in appendix B, a convergence time of around 5
seconds was achieved depending on the control signal. An accuracy of around 8-11 %
was achieved when compared to the measurements from appendix A. Based on the
tested method, the PEM and the RT are preferrable for this type of system. The
PEM can be used to estimate an overall model from a gray-box model structure,
and the RT method will accurately estimate the resonance frequency alone to achieve
better controller performance. The sensor fusion will be evaluated next.
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10.2.2 Sensor fusion

The system identification procedures were all evaluated in the sequel subsection. They
are used to adapt the model to the actual system to increase performance of the
control system. Sensor fusion is also applied to improve the model estimates using
direct measurements. Several sensors were applied to the system as described in
section G.2. The sensors are listed below.

Strain gauges: Measure flexible tool strain q

Accelerometers (part of IMU): Measure linear acceleration of tool frame Fτ
Gyroscopes (part of IMU): Measure angular velocity of tool frame Fτ
Rotary encoders: Measure manipulator joint angles θ

By combining the information from the sensors and relating that information to mo-
del states, the states can be improved. A linear Kalman filter is applied to update
the model estimates as a function of the difference between pure estimates and mea-
surements.

Chapter 7 described the theory behind the filter and how it must be applied. Two
matrices are crucial for the performance of the filter. They will have to be selected on
the basis of process and sensor noise. The process noise is often unknown and cannot
be measured. It is therefore necessary to tune the covariance matrix Q to achieve the
expected performance from the filter.

The sensor noise is represented by the covariance matrix R and can be measured.
In this case it is assumed that all sensors are decoupled, and the covariance matrix is
therefore given as a diagonal matrix, because the sensor responses are uncorrelated.
A noise variance was estimated for every sensor in section G.2, but they were not
applied. It is difficult to achieve expected performance if only the process noise can
be tuned. Furthermore, the sensors showed to be affected by noise magnitudes higher
than the theoretical levels.

The origin of the noise was undiscovered, and the final results are therefore subject
to increased noise variances. Appendix C describe the noise measurements on each
sensor channel, and the noise levels increased by a factor of around 20 on most chan-
nels, when the power to the actuator drivers was turned on. Bad cable shielding and
grounding may be the cause, but no further investigation has been conducted.

Only the IMU channels were too noisy to be used, and therefore only tool strain and
manipulator joint angles was applied. The actual Kalman filter is not implemented
onto hardware, but it has been tested using measurements from the controller per-
formance experiment. Appendix D describe the experiment in details. Similar with
the extended Kalman filter, the matrices Q and R have a high impact on the filter
performance. The best matrices were found from trial and error.

The error between joint angle estimates and measurements is below 0,006 rad for
the tested signal. A different behavior is seen for the strain estimates, which are
converging to the measurements in around 3 seconds. By tuning the matrices even
more, a better performance may be achieved. The Kalman filter will also filter sensor
noise, because the measurements are not applied directly by are added together by
the iterative process.
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Even though the filter was not running in realtime it was shown that the filter is able
to suppress the noise overlay of the measurements and improve the accuracy of the
model estimates. Before implementing the filter in an autonomous system it must be
tuned to converge faster, and the noise of the IMU must be limited to apply even
more sensors. The accuracy of the model can be increased by relating different sensor
types to the same model state. The last element to evaluate is the controller, which
is given next.

10.2.3 Controller

The system identification and the sensor fusion methods has both been evaluated
above. They are applied to improve the model estimates by adapting the model to
the actual system through measurements. System identification is used to derive
model parameters based on a set of measurement data whereas sensor fusion finds a
compromise between measurements and estimates. In order to damp the oscillations
of the flexible tool mounted at the end of the manipulator, it is necessary to apply a
controller.

It was decided to design a sliding mode controller to achieve the damping effect.
The controller type is robust to model uncertainties and is also working on nonlinear
models. However, through model delimitations, the complete system model for this
project turned out linear. The controller design is described in chapter 9. Basically,
the control signal is designed to cancel out the natural response of the system and
replace it with a new one. For this to work in practice the model must be very close
to the actual one.

The experiment described in appendix D has been conducted to measure the per-
formance of the controller. 5 different controllers and a single case without controller
were tested. The uncontrolled case was used for comparison with the controlled cases.
Of the 5 first cases, performance could only be measured on the first one. The re-
maining controllers did not damp the oscillations within the time frame or not at
all.

Because only one test was successful, the remaining evaluation will be based on
this alone. Several other experiments must be conducted to completely verify the
performance of that particular controller configuration. The uncontrolled experiment
showed a settling time of 50,85 seconds, whereas the controlled case managed to damp
the oscillation within 3,85 seconds. This is an improvement of 92,43 %. However,
small oscillations remain in the response which set a tip deflection tolerance level of
2,79 mm with a standard deviation of 0,49 mm.

Plotting a phase portrait of the strain trajectory shows an interesting fact. It
was expected, that sliding mode would occur as soon as the trajectory reached the
switching surface s = 0, but that does not seem to be the case. Even though the
controller significantly increases the damping of the system it does not behave as a
sliding mode controller. Two reasons can be explaining this behavior. First of all
the use of a continuous control function (the one apart from the equivalent control
û) limits the performance because the control action is clipped at a certain level
of magnitude. The term −Kq̇ was also forgotten within the controller algorithm.
Simulation have shown, that the missing term makes the trajectory cross the switching
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surface a number of times before going into sliding mode.
Secondly, the overall control action has been limited as well to protect the tool and

the hardware. Practical experiments showed, that a high amplitude control signal
can damage the tool or the manipulator in case of error. Several tools were also
constructed for the experiments due to this problem. Limiting the control action
decreases the overall controller performance and the ”softens” the gradient field. In
this way the trajectory is not forced towards the equilibrium fast enough, and the
trajectory is moving around the equilibrium point for a longer time.

Taking every part into consideration, the control system performs as required in
section 2.4. Despite the tuning issues of the EKF, noise on IMU channels and un-
reached sliding mode due to hardware limitations and a missing controller term, the
control system is capable of damping unwanted tool oscillations at the resonance fre-
quency when tuned properly. A thorough conclusion to the project is given in the
sequel chapter. The following section evaluates the methods and requirements from
the project description in chapter 2.

10.3 Requirement evaluation

The project description was initiated with a list of methods necessary to form an
autonomous system around the project formulation (question on page 4), and the
methods were

• Load dynamics must be estimated from analyzing the response changes of the
manipulator when compared to nominal response without a load

• Measurements from several sensors must be used together to improve the esti-
mation of end-effector response when both affected and unaffected by a load

• Oscillations of flexible parts must be reduced by a controller

All the methods have been described throughout the report, and they have also been
tested in the acceptance test. The methods are collected within the fields of system
identification, sensor fusion and control, respectively. A full evaluation of each of the
methods was given in section 10.2. Before the requirements were listed, a project
delimitation was performed. This reduced the scope of the project.

It was stated that pick-up position, destination and process time window could have
been provided for the controller, and it would automatically find the optimal control
path. However, the trajectory of the manipulator was omitted, and only requirements
to time can be given. This time is however fixed for the final controller.

After the project delimitation in section 2.3, a number of technical requirements
requirements were listed for both manipulator model and manipulator control. The
following requirements were given for the manipulator model

• The model must include a certain amount of complexity to allow a parameter
estimation algorithm to fit system states, outputs and control signals to the
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model structure to provide the control algorithm with the best conditions for
estimating the manipulator behavior and respect given controller requirements

• Generalized kinematics must be derived to allow for arbitrary manipulator loca-
tion within a production cell as well as arbitrary workbench coordinates relative
to a local coordinate system

• Dynamics of the flexible tool must be modeled in order to determine the TCP
trajectory from strain measurements performed on the flexible tool

The complexity of the model has been reduced for both the manipulator and the tool
dynamics. Only friction is remaining within the manipulator model due to the high
gear ratio. The flexible tool is only described by one eigenmode because the frequency
of the second mode of vibration is beyond the bandwidth of the manipulator link. An
experiment, see appendix A, showed that the amplitude of the second eigenmode
is much smaller than the first one, and it will not be a problem. So even after the
model reduction, the model is complex enough to describe the behavior of the system.
However, it does not include the gravity effect, that causes the joint angle to drift.

A generalized kinematic model was derived in chapter 3. Each part of the pro-
duction cell has an attached frame, and the kinematic relations makes it possible
to measure the position and orientation between frames. Additional frames can be
added, if the production cell contains more elements than depicted in figure 3.5. Last
requirement to the model is fulfilled by measuring the strain/deflection relation in
appendix F. It is then possible to apply the dynamic model and the relation to de-
termine the spatial position of the TCP. Besides the modeling requirements, a list of
requirements was also stated for the manipulator control, which are given as

• The improved controller must perform equal or better than a controller based on
a rigid manipulator model regarding oscillation settling time. This corresponds
to a termination of the controller after the manipulator joints have reached their
reference values

• Tool oscillations must be damped to allow fast TCP positioning. A practical
example (given by Ole Madsen, see personal profile in acknowledgements) has
a 10-12 s task time and a settling time of tset < 5 s is selected on the basis of
this time interval

• Tool tip deflection must be below the level of the path accuracy of ±0,1 mm
from the default manipulator controller [80]

• The controller structure must be based on nonlinear control theory

If the hardware configuration is assumed rigid even though the tool is flexible, the TCP
will oscillate after the controller has been terminated. This oscillation settling time has
been measured to be 50,85 seconds for the specific test configuration. After applying
the controller with knowledge about the flexible tool the, oscillation is reduced to 3,85
seconds. A significant improvement is therefore obtained over the initial case.

A requirement for the settling time was stated at tset = 5 which was respected for
that particular case. With a 10-12 s task time given, ∼ 4 s used for damping and
∼ 3 s used for relay tuning, only around 3-5 s is left for the manipulator motion.
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Because no practical production has been considered, the 3-5 s time interval must be
evaluated for each specific production. Different tools and manipulators will provide
different results as well.

An accuracy of ±2,79 mm with ±0,49 mm deviation was measured from the exper-
iment described in appendix D. This is much more than the original path accuracy
of ±0,1 mm. The requirement cannot be fulfilled because the controller cannot damp
the oscillation further without introducing new oscillations. However, the last require-
ment is fulfilled because sliding mode control theory was applied to solve the control
problem. An overall conclusion of the project is provided in the following chapter,
which will also summarize the requirements.
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Chapter 11

Conclusion

The scope of this thesis is to develop and document an autonomous control system
capable of improving accuracy and operating time of an industrial robotic manipulator
working with flexible tools. Several elements have been included and described in
details throughout the report, and a final evaluation of the performance was given in
chapter 10. This conclusion will summarize the work from the entire project period
and state whether of not the project has respected the requirements listed in section
2.4. Because the project deals with a number of different topics, the conclusion will
be divided into a number of sections with the following content

• System modeling

• System identification

• Sensor fusion

• Control system

• Overall conclusion

• Future work

• Project applications

Autonomy is introduced by applying system identification algorithms to estimate the
load in stead of being given the informations manually every time. The first four topics
are describing the benefits, results and problems from the analysis and design phase
of the project. Afterwards, an overall conclusion will compare each of the technical
requirements with the outcome of the project work. Furthermore, the overall question
from the project description will be answered conclusively. Lastly, ideas for future
work on this project will be outlined, and two cases will be formulated, in which the
product from this project will be applied. This will relate the project to practical
applications.

A control system is developed around the REIS RV15 industrial manipulator. Using
a National Instruments cRIO controller system, the original control algorithm has
been bypassed to allow other controller structures to be tested. A number of sensors
including accelerometers, gyroscopes, strain gauges and rotary encoder, are sampled
by the cRIO to close the feedback loop. In order to test the damping performance
of the final controller, a flexible tool was constructed. The tool consists of a flexible
beam (deliberately designed with high flexibility around one axis) and a tip mass.
First topic of the conclusion is the system modeling.
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11.1 System modeling

One of the basic elements in a control system is a model describing the dynamics
of the plant. In this case the model must describe the dynamics of the REIS RV15
industrial manipulator. The modeling part was initiated with a description of ma-
nipulator kinematics, which can be used to determine position and orientation in
Euclidean space. Homogeneous transformation matrices were derived for each link of
the manipulator, and the position of the tool center point (TCP) was determined as
a function of the joint angle space θ.

With the kinematics sorted out, dynamics were added to the model. A recursive
Newtonian approach was applied to determine the torque acting on each joint as a
function of the links below. Using the full 6-DOF manipulator configuration returned
an unacceptable large system model. Instead of trying to simplify or approximate the
model equations, a remark was stated about applying only the swivel axes 1, 2 and 5
(see remark 6 on page 152). This reduced the size significantly, and a model describing
the manipulator dynamics was given in a standard joint space model formulation. The
removal of three degrees of freedom limits the overall usage of the control system. Only
tools with bending around one axis can be modeled. In order to apply oscillation
damping to arbitrary tool configurations with arbitrary flexibility, the model must
include all 6 axes to describe motion in E3.

A second step of simplification was introduced due to the high drive train gearing
of a factor of 100. This resulted in a friction model alone, and the model was reduced
to a direct input model. The input signal is a direct expression of the torque on
the joint. This is not actually possible, but due to the high gearing it is assumed to
be approximately the same. The final manipulator model is a simple approximation
of the actual behavior, and will not resemble the manipulator dynamics perfectly.
However, for the purpose of control, the model provides a basic structure, and the
selected controller structure is able to work with inadequate models.

Last part of the complete model is a sub-model of the flexible tool dynamics, which
is derived on the basis of general beam theory. The resulting mode shape of a bend-
ing beam can be approximated as an infinite sum of products φi(x)qi(t) with φi(x)
denoting the mode shape function (describing the shape of the i-th eigenmode) and
the modal dynamics qi(t) (describing the time dynamics of the i-th eigenmode). The
eigenfrequencies have been determined from a frequency equation, which is a solution
to an eigenvalue problem. They depend on both the specifications of the tool and the
mass of the load. A lumped mass has been assumed, meaning that the inertia of the
flexible beam is the most important part. In a real application, however, the inertia
must be included to increase accuracy to arbitrary tool configurations.

An experiment was carried out in appendix A to measure the specifications of the
flexible tool used in this project. The first two eigenfrequencies were measured to
4,20 Hz and 81,01 Hz. Because the second eigenfrequency is beyond the capabilities
of the manipulator, only the first eigenmode is included in the model.

The dynamics of the flexible tool were described by a second order system with a
damping ζ1 and a natural eigenfrequency ω1. During the modeling part, a number of
constants were needed to scale the resulting dynamics to resemble actual behavior.
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However, the constants are collected in one input gain constant, which will have to be
estimated using system identification procedures. A lot of work can be dedicated to
express each of the constants, but they will have to be tuned to fit the actual system
anyway. The low damping of the system and the low-frequency eigenmode frequency
is accurately resembled by the second order system. The system identification proce-
dures are summarized and evaluated in the sequel section.

11.2 System identification

System identification is applied for two reasons in this case: to estimate the unknown
parameters describing the manipulator dynamics and determine the dynamics of the
flexible tool. Because none of the technical documents describing the REIS RV15
includes all parameters necessary to fully complete the manipulator model, system
identification is applied. Originally the parameters were supposed to be updated on
the run, but the manipulator is operated in such a limited range of time that the
parameters are assumed to remain constant. These parameters are therefore only
estimated once, and the system identification methods need not to run in realtime.

For pure offline estimation of model parameters, the prediction error method was
appled, and works by minimizing a performance index - in this case the error between
the measurements and the model estimates. Based on measurements from the actual
system when excited by a random control signal, the performance of the method was
tested. By comparison with the measurements from appendix A, the eigenfrequency
of the tool was accurately estimated. The damping, however, was off by a factor
5, and the input gains have no reference for comparison. Model simplicity may be
a reason for the only ∼ 80 % goodness of fit. Using a less-reduced model and in-
troducing more than only 6 sinusoids in the input signal may increase performance.
A subspace method was also tested to estimate the significant pole location of the
system dynamics, but the method was providing useful and unstable estimates.

The flexible tool on the other hand is supposed to be arbitrary including the load.
This means that the control system must be able to automatically identify the changes
in tool and/or load dynamics. First attempt involved an extended Kalman filter,
which is able to run in parallel with the existing control system, and simultaneously
update the model. However, the method provided fluctuating estimation results when
tested on a set of data sampled from the system.

Since the resonance must be estimated very accurate, it was decided to find another
approach. The relay tuning method was the next choice, which can be used on the
hardware as well as the EKF. Unfortunately, this method cannot be executed in the
same was as the EKF. Where the EKF can update the parameters on the basis of
input/output-relations, the relay tuning method must be able to excite the system
itself. Then there is no actual online parameter estimation on the system. However,
the method converges much faster than the PEM, but will have to be executed between
tasks.

All in all, the choice of system identification method relies on the specific mani-
pulator operation. If the manipulator is handling several identical loads, each new
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configuration can be undergoing a system identification process to estimate the new
dynamics. Based on the measurements from this report, the PEM and the RT are
possible candidates. If the dynamics are changing for every task, a method like the
EKF will have to be applied, but supported by a comprehensive tool model and more
sensors to increase performance. Security algorithms will have to check for instability
of the filter, because a nonlinear filter cannot be guaranteed to remain stable over
the entire domain of usage. If the convergence time of the EKF can be improved and
ensured to be faster than the completion time for a single task, the method can be
applied.

In a practical application, however, the diversity between tools and loads may be
limited. Each combination between tool and load can then be estimated once, and
a specific controller configuration can be ascribed each of the combinations. This
method is only applicable in situations where the tool/load configuration is identical
for each task. Every deviation from the pre-measurements will degrade the perfor-
mance of the controller.

Because the model was simplified two times, the complexity requirement has not
been met for the manipulator part of the model. Only friction elements are included
in the final model, which is only one of several parameters describing the dynamics
of the manipulator links. However, it was argued in the modeling part, that due to
the gear ratio of 100, no dynamics will be observed on the joint angle response. The
response will be a direct double integration of the applied input signal, and the actual
dynamics need not to be included.

Several system identification methods have been evaluated and tested. It is difficult
to select a final method, because the overall requirements to the production influence
the choice. For the purpose of this project, the PEM and the RT method were
superior over the EKF and N4SID, and provided useful estimates for the controller.
The controller will be evaluated after the sensor fusion technique described next.

11.3 Sensor fusion

Before the controller can be fully evaluated the sensor fusion technique is considered.
The controller applies the dynamic model structure with parameters estimated by
system identification methods described in the modeling part and chapter 8. Sensor
fusion has been added to make the autonomous system robust, and to further improve
the accuracy of the model estimates. The technique is based upon a linear Kalman
filter, which is fusing model estimates and measurements to achieve better estimates.
It behaves different from the system identification methods, because it does not alter
the mode but only the estimates.

The technique was not tested in parallel with the controller, but was tested on its
own using measurement data from the controller performance experiment in appendix
D. By tuning the matrices Q and R correctly, a filter response can be achieved, which
removes noise from the measurements. The joint angle response is within 0,006 rad
of the model estimate throughout the experiment from appendix D.

Strain measurement and strain estimates are, however, not immediately coinciding.
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The filter response converges to the strain measurements in around 3 seconds, which
must be taken into consideration for realtime applications. By tuning the matrices
Q and R, a better response can be achieved. Because the filter was not implemented
onto hardware during the controller performance test, it is not possible to see how
much the overall control system performance is affected by the filtered estimates. The
filter is able to remove noise from measurements, but it cannot be concluded whether
or not the overall performance is affected by the slow convergence time. Up next is
the evaluation of the controller.

11.4 Control system

In order to improve the accuracy and operating time for a manipulator with a flexible
tool, a controller must be applied. The sliding mode controller is of the nonlinear
controller type, and was selected over a range of other possible candidates. It was
considered the best choice in this case due to several things. It is robust to model
uncertainties and will perform even though the system model is inadequate.

The controller is based on a model of the flexible tool dynamics. An experiment
(see appendix A) showed that the second mode of vibration is 81,01 Hz and thus only
one mode of vibration is used to model the behavior. A frequency of 81,01 Hz is too
fast to compensate with the manipulator, which was concluded in appendix E. This
results in a pure linear model, and linear controllers are therefore also candidates
for this control system. However, the analysis has been based on the sliding mode
controller type to control a general nonlinear flexible system described by M modes
of vibration.

A measure of the controller performance is the ability to damp an oscillation as fast
as possible and is defined by the settling time. An expression of the upper bounded
settling time as a function of the controller gain was determined in chapter 9. This is
based on the ideal case with infinite control bandwidth using a discontinuous control
law. Practical configurations were also considered through simulations, and when
using a continuous control law, the performance was degraded by a factor of ∼ 4.
However, the theoretical settling times were still below the requirement of 5 seconds,
but shows the behavior of a non-ideal controller configuration.

Chattering was considered in section 9.2 and is considered to be the main issue
regarding controller performance. If the frequency of the chatter signal is coinciding
with the resonance frequency of the tool, additional and unnecessary control effort
will have to be applied. A continuous control law using a saturation function was
proved to remove chattering in the theoretical case. However, when applying the
controller in a closed-loop of a given sample frequency, a new frequency component
appeared. No explicit relation has been expressed to describe the correlation between
sample frequency and chatter frequency, but a frequency of ∼ 16 Hz was discovered
through simulation. This is considered to be harmless, because the frequency is far
from the 4,20 Hz resonance measured in appendix A.

During experiments it was discovered, that the tool drifted from a horizontal posi-
tion to a vertical position even though the joint actuator was excited with a zero-mean
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control signal. This problem was evaluated in section 11.1 to originate from the lack
of gravity effect in the model and possibly an error in the drivers. Model simplifica-
tions have neglected the gravitational pull on the lumped tip mass, which seems to
be important anyway. Even with the high gear ratio of the manipulator joints, the
gears can still be turned by the torque contribution from the tool.

Using a sliding mode controller to track two references requires the use of higher
order manifolds. This was shortly introduced in 9.1, but was not considered for this
project based on assumption 1, saying that the manipulator was not affected by the
flexible tool. By introducing more constraints to the control problem, the perfor-
mance is degraded. A trade-off will appear between damping the tool oscillations and
tracking the tool mount frame Fτ to a given reference, because both subsystems are
controlled by the same control signal.

A test of the controller performance was conducted, and the results are given in
chapter D. Different controller configurations were tested, and the settling time was
measured and compared with the uncontrolled case. Only one configuration was able
to damp the tool oscillation below the 5 % amplitude level required by the definition
of settling time given in section 9.3. This uses the sliding surface s = q̇ + Kq and
limits the control signal to ±1 V. The limits are used as precautionary measures to
avoid damaging tool and/or manipulator during test.

Because only one of the proposed controllers has measurable performance, this will
be used for the final evaluation. A 92,43 % improvement was discovered over the
uncontrolled case with a settling time of 3,85 seconds, which is below the 5 seconds
requirement given in section 2.4. However, the tool oscillations are only damped to
a certain level. An oscillation measured by a strain of ±0,3376 V is present for the
remaining ∼ 6 seconds of the experiment. This corresponds to a tip deflection of ±2,79
mm with a deviation of ±0, 49 mm by applying the strain/deflection relationship
measured in appendix F.

Depending on the application, it must be evaluated whether or not this is accept-
able. In this case, however, an initial oscillation corresponding to a tip deflection of
61,77 mm (measured strain 7,48 V) is reduced to 2,79 mm in 3,85 seconds. Therefore,
even for tools with high flexibility, the controller can damp the oscillation by a factor
of ∼ 22 in under 4 seconds.

When investigating the phase portrait of the measurements, a sliding mode is not
present. The trajectory is converging towards the equilibrium faster than the un-
controlled case, but an actual sliding mode behavior is not measurable. Due to a
hardware limited control signal and the application of a continuous control law the
control law is not able to activate the sliding mode behavior. A missing term −Kq̇ in
the controller implementation can also be part of the cause. It is necessary to excite
the actuator with even higher control actions to achieve the expected behavior, but
due to security measures, this is not possible. However, even though sliding mode is
not present, the tool oscillations are damped significantly. Several tests must be con-
ducted though to definitely conclude that the controller performs as measured from
the single case experiment. The main four parts of the final product have all been
evaluated, and an overall conclusion of the project is given next.
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11.5 Overall conclusion

The final product was built around three parts: system identification from chapter 8,
sensor fusion from chapter 7 and sliding mode controller from chapter 9. All parts use
the dynamic model derived in the modeling part, which proved to describe the system
behavior satisfactory as described in appendix B. The overall model is composed from
a single mode of vibration and a single manipulator link. It was decided not to use
the full hardware setup in order to focus more on the actual control problem using
only a single actuator to damp the oscillations of the flexible tool.

Several system identification methods were evaluated to estimate the dynamics of
the system. It was considered to use the subspace method N4SID from section 8.3 to
verify the overall model structure and the location of the system poles before deriving
the model. However, the method proved to be very unstable and did require very
accurate measurements to perform satisfactory.

The prediction error method from section 8.2 proved instead to be useful for iden-
tifying the entire system model in an offline configuration. This is used to derive
a model before designing the control system to achieve some knowledge of the per-
formance. An extended Kalman filter described in section 8.1, was investigated to
update system parameters on the run. It proved, however, to provide fluctuating es-
timations, and convergence cannot be guaranteed because it uses a nonlinear model.
They are both unwanted for this system, because especially the resonance frequency
must be precisely estimated to achieve a damping effect and not the opposite.

An alternative to the extended Kalman filter was given in the shape of the relay
tuning method from section 8.4. This was tested in appendix B together with the
other methods. Different from the other methods it is only able to estimate the first
eigenfrequency of the tool, which it did with 8-11 % accuracy when compared with the
measurements from appendix A. From the system identification experiments it was
clear, that the prediction error method and the relay tuning are the best candidates.
Disadvantages of the methods is the offline use of the methods and the closed-loop
requirement for the relay tuning. However, the PEM is not constraint by any timing
requirements because it is used in the design phase, and the relay tuning converges
fast enough to be used when the system is in operation.

Second part of the product is the sensor fusion, which is used to combine model
estimates and sensor measurements. It was described in chapter 7 and tested on
measurement data in appendix D. The filter was able to filter measurement noise and
converge to the measurements after around 3 seconds. Performance can be increased
by further tuning of the matrices Q and R expressing the process and sensor noise
covariance matrices, respectively. Even though the filter was not running on hard-
ware during the controller performance experiment in chapter D, it was verified to
function. It is, however, not possible to evaluate the performance of the filter when
it is combined with the controller.

Third and last part of the product is the sliding mode controller described in chapter
9. The controller removes the original dynamics of the manipulator and replaces it
by a new one. A more accurate model will make the controller perform better. The
original sliding mode controller uses a discontinuous control law, but for the purpose
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of this project it has been replaced by a continuous control law instead. This has
been done to remove chattering, at least for the theoretical case, but the trade-off is a
degradation of performance. When the controller, however, is executed with a given
sample time, the chatter reappears in a different shape. Unfortunately the chatter
frequency is closer to the resonance frequency but not coinciding.

The controller was implemented onto hardware and tested in appendix D. Only
one controller configuration provided measurable controller performance. This uses
the switching surface of the form s = q̇+ 10q and a control signal limitation of ±1 V.
The tool was first excited by a sinusoidal signal with resonance frequency. Then the
controller was activated, and the oscillations were damped by 95 % after 3,85 seconds.
For the uncontrolled case the oscillations reached the 5 % level efter 50,85 seconds.
An improvement has therefore been achieved, but since only one case provided useful
data it cannot be concluded whether or not a better performance can be achieved.

Furthermore, by investigating the phase portrait of the measurements it is clear,
that the trajectory does not enter sliding mode. When the trajectory reaches the
sliding surface it is not affected to move faster towards the equilibrium point. A
missing −Kq̇ term in the controller implementation diagram may be causing this
error. Simulations have shown, that the lack of this term makes the trajectory circle
cross the switching surface a couple of times before reaching sliding mode.

The controller, however not in the optimal configuration, adds more damping to
the closed-loop control system. Due to the saturated control action and the limited
bandwidth of the manipulator, measured in appendix E, the sliding mode cannot be
reached. Despite this, the controller is able to reduce the settling time of the tool
oscillations by a factor of around 22.

From the acceptance test is was measured how the task time is consumed. Using
an initial ∼3 seconds to estimate the dynamics using relay tuning, a couple of seconds
to grasp an item and move the manipulator to/from the final destination as well as
3,85 seconds to damp the tool oscillations makes the completion time close to the
10-12 seconds estimated task time. However, the 3,85 seconds is based on a single
configuration of the tool and amplitude of the oscillation, whereas the remaining times
are estimates. No actual production was considered, and it is therefore not possible
to conclude on the overall production performance, but only on the single case tested
by experiment.

A conclusion can be given on the delimitated case from this project. System iden-
tification methods were able to estimate the model parameters, a linear Kalman filter
was capable of removing measurement noise and provide more accurate model esti-
mates when converged and the applied controller damped the oscillation of the flexible
tool below the 5 seconds requirement. Combining all parts makes an autonomous sys-
tem capable of improving control of flexible end-effectors in terms of accuracy and
settling time if the different parts are manually adapted to given requirements. After
tuning the covariance matrices and the sliding surface description the system will
automatically adapt to changes in the tool/load configuration.

The methods and requirements from chapter 2 were all evaluated in section 10.3.
Based on the methods applied throughout the report and the results from the accep-
tance test, all but one requirement were fulfilled. Only the accuracy requirement of
±0,1 mm was not fulfilled, because the practical experiment yielded an accuracy of
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±2,79 mm. This is caused by the fact, that the controller introduces new oscillations
when trying to reduce oscillations with a small amplitude. The question from the
problem formulation describing the problem to solve was given in chapter 2 as

How to improve end-effector position/orientation control of industrial robotic ma-
nipulators in terms of accuracy and operating time when handling flexible tools?

This is accomplished by making an accurate model of the flexible tool behavior. The
settling time can be improved by damping the eigenmode oscillations using a controller
that applies a model of the tool and thus reducing operating time. Accuracy can
be improved if the manipulator bandwidth is much higher than the first resonance
frequency of the flexible tool. This ends the overall evaluation of the project, and
future work is described in the sequel section.

11.6 Future work

A remark on future work is given, which will improve the features of the product
described in the report. Other controller types features different advantages, that
may be exploited for future development on this kind of system. Repetitive control
is capable of both controlling the manipulator to a given position while damping the
eigenmodes of the tool using a second controller. When using SMC for that purpose,
a higher order SMC must be applied, which is more complex. Another strength
of repetitive control is the natural improvement of the controller over time when
subjected to repetitive control tasks.

Mass production of identical parts is an example of repetitive tasks, which can
benefit from this control technique. It is not the intention to mention all advan-
tages/disadvantages of other controller types over the SMC, but merely inform that
other possibilities exist. Each individual case must be evaluated before selecting a
specific controller type. If the SMC is kept, it must be able to change the K-value on
its own. The current system must be manually provided a K-value, which is derived
through simulations. This remains unchanged even though the tool/load configura-
tion changes. This is theoretically possible because the system dynamics is replaced
with new dynamics. However, in practical setups the change in tool/load also changes
the requirements to the controller dynamics, and the K-value must be changed ac-
cordingly.

Based on the experiment from appendix B.1, the joint angle showed a drifting
behavior even when excited with a zero-mean control signal. This may be caused
by gravity and the kinetic energy of the flexible tool, causing the tool to slowly drift
towards a 90 degree angle. It was considered in the beginning of the chapter, that the
sliding mode controller could introduce a drift in the joint angle, but the phenomenon
was spotted even without the controlled in action. In order to compensate for the
drifting a second controller must be added to the control loop.
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Figure 11.1 shows the control system with the sliding mode controller and a state
feedback controller. The sliding mode controller regulates the flexible tool strain q
to qref (in this case zero) and the joint angle θ to the reference θref . A separation in
control must be introduced because the two controllers must excite the same actuator
to accomplish two different control goals. Advantageously, the sliding mode controller
is working around 16 Hz in sliding mode according to the simulation in figure 9.24.
The joint angle controller does not need to work at a frequency higher than 1 Hz
due to the slow drift of around 0,05 rad/s (∼ 1 rad in 20 seconds, see figure B.3a).
The last part of the conclusion describes the practical applications for the product
developed in this thesis.

∫ ∫
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q

qoff

Figure 11.1: Control system with sliding mode controller and state feedback controller

11.7 Project applications

This project covers a range of different techniques for improving the control of a flexible
tool mounted onto a manipulator. Different productions have different requirements
to accuracy, speed and reliability, but including them all will expand the scope of this
project too far. Therefore, the project has been working on a single case with one
flexible tool configuration lifting a constant load. In order to show the versatility of
the final product, two project applications are described in the following, in which the
product can be applied. The first case is an extension of the example used throughout
the report, whereas the second case involves robotics for surgery.

11.7.1 Intelligent production cells

Whenever a new production cell is installed or the tasks are changed, each manipulator
must be re-programmed/adapted to these new tasks. It may involve changing the
trajectory of the TCP or the velocity profile due to a change in the payload. Consider
a case where the TCP trajectory must be identical when handling two objects of
varying mass. If the payload is within the limits of the manipulator capabilities
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and the construction is assumed rigid, the trajectories will be identical. When using
flexible robotics or flexible tools, however, the problem changes.

As an extension of the case considered throughout the report, it is assumed that
the production cell is equipped with vision systems. Besides ensuring quality and
safety, the vision system can also estimate the dynamics of the items to lift. Figure
11.2 shows a manipulator assisted by a vision system to make decisions on how to
move.

Figure 11.2: Manipulator assisted by vision system for decision making

Information about weight and structure can be fused together with information from
system identification procedures. The vision system will provide an immediate guess
of the load dynamics before the manipulator is activated. System identification,
however, will occupy the operation before the load has been identified. This case
shows the flexibility of this product, because the different parts can be supported by
additional blocks to further improve the performance for the specific production.

11.7.2 Accurate surgery robots

The medical sector is beginning to benefit from robotics to perform different tasks
like the industrial sector [84]. Robotics can be either guided by a trained surgeon
or automated for less complicated tasks. The end-effector will be a tool specifically
designed to perform required surgery tasks and must be kept steady during the entire
operation. Requirements can also be added to constrain the tool in Euclidean space
during operation. Maximizing the reachability and minimizing the size of the tool
will naturally introduce flexibility.

With flexible tools, a larger control action must be added in order to maintain track
of the TCP and via points. By introducing multiple sensors and multiple controllable
degrees of freedom, the path complexity can be increased and thus maximizing the
possibility for the TCP to reach destination in an optimal way. Optimality in this
respect may ascribe trajectory length and maneuverability more value than pace.
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It may also be necessary to estimate the current environment along the way, which
may contribute different external disturbances. The dynamic response of the system
will consequently change, and the controller must be informed to adapt the actuation
to the given situation. An online system identification must be applied to quickly
adapt the controller to a new environment.
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Appendix A

Journal 1: Flexible beam specifications

The flexible tool in this project serves to emulate a tool, which is able to bend the
mounting bracket between tool and manipulator. A flexible beam is simulating the
bracket, which has been modeled through chapter 4. This journal will verify two
important parameters of the mathematical construction and the sufficient number of
modes M to describe the system dynamics. First parameter is the modal damping of
the beam ζi for the i-th mode, which is not included directly in the model derivation.
It will have to be added afterwards if it respects given assumptions, making sure
that the new damped response is still a solution to the partial differential equation
expressing the flexible tool behavior. A second parameter is the modal frequency ωi,
which is the eigenfrequency for the i-th mode dynamics. Both tests will be conducted
on the flexible tool with or without tip mass ml.

Both tests can be performed by exciting the beam with a certain signal. The
decaying motion of the measured response can be related to the modal damping
constant ζi, and the spectrum of the response verifies the locations of the modal
frequencies ωi.

From a spectrum of the strain measurements, the different eigenfrequencies can be
estimated from significant peaks. Whenever the relative factor between first and k-th
peak drops below 5 %, then M = k−1 modes will sufficiently describe the full system
dynamics. Before presenting the results from the experiments, the theory behind the
test procedure will be explained.

A.1 Theoretical foundation

When modeling the flexible dynamics, damping is not part of the derivation. It is
however assumed from the analysis, that a damping term can be added afterwards
without affecting the credibility of the solution. This is because the damping factor
is considered to be small < 0,1 based on empirical hardware impressions. An ex-
periment will, however, tell the exact value of ζi. The expected shape of the strain
measurements is given as a sum of exponentially decaying sinusoid on the form
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ε(t) = εoff +

M∑
i=1

ε0,ie
−ζit sinωit (A.1)

with ε0,i denoting a scale of the i-th eigenmode component and εoff an offset. A curve
fitting procedure will respond with a set of M damping factors, that can be added to
the dynamics. From a practical perspective, a maximum 5 % drop in eigenfrequency
due to damping has been found sufficient, which corresponds to

ζ ≤
√

1− 0,952 = 0,3122 (A.2)

which is derived from the relation between damped and undamped eigenfrequency
ωdamped = ωundamped

√
1− ζ2 [78]. As long as ζ ≤ 0,3122, the eigenfrequency is

assumed to be unchanged. The relation is illustrated in figure A.1
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Figure A.1: Relation between damped and undamped eigenfrequency as a function of damping ζ

Since the scaling of the eigenfunction is not affecting the eigenfrequencies, the strain
measurements can be used to measure the eigenfrequencies directly and compared
with the theoretical values.

A.2 Experimental procedure

Two different parameters are to be estimate through the experiments described in
this journal: the beam damping parameter ζ for each measurable mode and their
corresponding eigenfrequencies. Each experiment will be conducted for three different
hardware configurations as listed below

• Tool without tip mass

• Tool with small tip mass (ml = 351 g)

• Tool with large tip mass (ml = 522 g)
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The damping parameter, which is important for the end-effector settling time, is only
investigated for the first mode in each hardware configuration, since the damping
is assumed large for i > 1. Their significance will thus be limited, but this will
be considered when the data is available. The eigenfrequencies for each mode must
also be estimated. If the eigenfrequencies for i > 1 are must smaller than the first
eigenfrequency, they will have little impact on the end-effector position. Further,
the high frequencies cannot be excited by the manipulator due to limited actuator
bandwidth. Procedures for estimating the damping ratio and the eigenfrequencies are
described in table A.1, and an illustration is shown in figure A.2.

Experimental procedure

Damping ratio ζ The tool is mounted to a solid table (table mass �
tip mass) to enable oscillatory motion. When the data
logging software is running, the tool is deflected to a
maximum position (without deforming the tool perma-
nently). The tool is released and the logging stops, when
the strain measurements read below 50 µm/m. All three
hardware configurations are tested in this way, and the
exponential decay can be estimated from the acquired
data sets.

Eigenmode frequencies ω Similar to the above description, the tool is mounted
to a table, but in this experiment, only the two hard-
ware configurations involving a tip mass are considered.
A nylon hammer is used to make an impact on the tip
mass (procedure used in [6]). This simulates an impulse,
which will excite all nonlinear tool dynamics including
all mode frequencies. Calculating the spectrum for the
acquired data sets makes it possible to determine each
mode frequency. The first mode frequency, however, is
determined from the data gathered in the first experi-
ment, because it only involves that specific frequency.
This provides are more accurate estimate.

Table A.1: Experimental procedure for journal 1 experiment

No exact scaling of the signals is considered in this experiment, only the intermediate
distance between frequencies in the spectrum as well as the decaying properties of the
time series. The tip mass is considered a lumped mass located immediately where the
load is mounted. Therefore, the beam length is slightly longer when no tip mass is
added, which will be calibrated before performing any calculations. The equipment
used for the experiments are listed in table A.2
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Figure A.2: Experiment setup for first (left) and second (right) sub-experiment

CatmanEasy data acquisition software

Spider8 data acquisition unit (AAU 30836)

Flexible tool with two interchangeable tip masses (351 g and 522 g)

Nylon hammer

Table A.2: Equipment for journal 1 experiment

Results will be presented for both experiments in the sequel section. Firstly, the mode
eigenfrequencies are derived using FFT on the sampled strain measurements. Sec-
ondly, the damping ratio will be estimated from the exponential decay in the strain
response. Different sampling frequencies have been used for each experiment, due to
the difference in settling time and the limited sample memory. The sample frequen-
cies are given in table A.3 below.

ml = 0 g ml = 351 g ml = 522 g

Determine mode frequencies - 9600 Hz 9600 Hz
Determine damping 1200 Hz 400 Hz 400 Hz

Table A.3: Sample frequencies for experiments in journal 1

A.3 Results

Using the above procedures, a number of experiments have been conducted. The
second experimental procedure from the above section has been used to collect data
for estimation of mode frequencies. The data is presented in figures A.3 and A.4.
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Figure A.3: Strain measurements from impact experiment with small tip load ml = 351 g
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Figure A.4: Strain measurements from impact experiment with large tip load ml = 522 g

Based on a spectrum of each data set, shown in figures A.5 (data from first experi-
ment) and A.6 (data from second experiment), the individual eigenfrequencies can be
determined. The varying amplitude is a consequence of the different damping ratios,
and will not be physically interpreted.
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Figure A.5: Spectrum of strain measurements from figure A.7 through A.9
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Figure A.6: Spectrum of strain measurements from figure A.3 and A.4

See the estimation of first and second mode resonances in tables A.4 and A.5. A
comparison with the theoretical values from tables 4.2, 4.3 and 4.4 in chapter 4 is also
given in the tables.

Theoretical Empirical Error

Without tip load 25,60 Hz (160,85 rad/s) 24,24 Hz (152,30 rad/s) -5,31 %
With 351 g tip load 5,05 Hz (31,73 rad/s) 4,20 Hz (26,39 rad/s) -16,83 %
With 522 g tip load 4,17 Hz (26,20 rad/s) 3,42 Hz (21,49 rad/s) -17,99 %

Table A.4: Comparison between theoretical and experimental values of ω1

Theoretical Empirical Error

With 351 g tip load 122,91 Hz (772,27 rad/s) 81,01 Hz (509,00 rad/s) -34,09 %
With 522 g tip load 122,58 Hz (770,19 rad/s) 69,58 Hz (437,18 rad/s) -43,24 %

Table A.5: Comparison between theoretical and experimental values of ω2

The first set of data is used to determine the damping ratio ζ for the first mode in
each configuration, and the data is presented in figure A.7 (without load), figure A.8
(with 351 g load) and figure A.9 (with 522 g load).
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Figure A.7: Strain measurements without tip load
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Figure A.8: Strain measurements with small tip load ml = 351 g
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Figure A.9: Strain measurements with large tip load ml = 522 g

A point is used to indicate the location, where 0,368 of the initial amplitude is re-
maining, which is used to determine the rate of decay σ1 = ζ1ω1 [41]. 60 seconds of
data is shown from the experiments involving tip masses and only 15 second for the
one without. This is due to the large difference between the damping ratios between
the configurations, which will decrease with increasing load. The damping ratios for
each experiment are given as the inverse time constant, and they are shown in table
A.6.
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σ1 = ζ1ω1 ζ1 τ1 = 1/ζ1 ω1

Without tip load 0,5498 s−1 0,0036 1,8188 s 152,30 rad/s
With 351 g tip load 0,0594 s−1 0,0023 16,8350 s 26,39 rad/s
With 522 g tip load 0,0419 s−1 0,0019 23,8663 s 21,49 rad/s

Table A.6: Estimations of ζ1 from experiment in journal 1

A difference arises in damping ratios, when the tip mass is added and increasing. This
is also a consequence of the decreasing eigenfrequency. The damping ratio has only
been estimated for the first eigenmode, since this is the most significant. Further-
more, it is difficult to estimate higher mode damping ratios using this method. Each
eigenmode must be excited individually to achieve accuracy.

A.4 Conclusion

Based on the data from the experiments, the mode damping was determined for all
three configurations. It can be further concluded, that the damping is below the
boundary of 0,3122, which was specified in the theoretical section of this journal.
Therefore, the theoretical eigenvalues for each mode are still assumed to be part of
the model solution, since the damping was not part of the derivation of the solution. It
was also shown, that the addition of additional tip mass decreased the damping of the
tool as well as decreased the eigenfrequencies. Due to lowpass actuator characteris-
tics, a lower eigenfrequency increases the controllability of that particular eigenmode.
However, the decrease in natural damping of the mode makes the control loop more
sensitive to external disturbances, that may affect the damping effect of the control
system.

When comparing the measured and the estimated eigenmode frequencies, there is
a significant difference. This can be partly explained due to the lack of damping in
the solution, which will naturally decrease the frequencies. However, the damping
is low in the cases involving a tip mass. It is therefore not possible to ascribe the
frequency deviation to the damping ratio alone. Undermodeling and approximations
must be considered as possible sources to the difference in frequency. The tip mass is
further considered a lumped mass, but has in practice an inertia different from zero.
In a practical point of view, the deviation is not crucial, since eigenfrequencies will
be adapted to the real system using system identification methods. Also, the upper
modes will not be excited, because the system bandwidth is low.

Based on the spectrum of the data, it was given, that only the first mode has
significant impact on the end-effector position. The amplitude of the second mode
is a factor of more than 35 smaller than the first, and the approximation M = 1 is
therefore sufficient for this project.
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Appendix B

Journal 2: System identification

As described in chapter 6 about controller design workflow, the unknown model pa-
rameters must be estimated offline to guide the controller design. The controller
itself must be able to find the parameters online, but in order to verify the estima-
tion process, the parameters must be known in advance. It is therefore necessary to
make an accurate offline estimation of the system, which is then used for comparison
with estimates from the online process. However, the parameters describing the flex-
ible tool have been accurately measured in appendix A, and they will be applied for
comparison instead.

Appendix L described how to generate test signals, that are guaranteed to excite the
system within specific frequency ranges as well as allowing the manipulator to move.
Movements in the low-frequency range are ideal to estimate the friction parameters
of the model, whereas signals with frequency content around the expected frequency
of the first eigenfrequency will excite the resonance of the flexible tool. A number
of tests will be conducted to gather data sets that contain as much information as
possible.

The parameters will be estimated using the different methods, PEM and EKF,
described in chapter 8 based on the collected data. Part of the data will be used for
validation purposes. The relay tuning method will also be tested, but this requires
no test data to function, since it works as a controller. System identification based on
PEM and EKF will be treated in sections B.1 and B.2, respectively, whereas the relay
tuning will be treated in section B.3. A 100 Ω (gain ∼ 1003) gain resistor has been
used for the strain gauge amplifier during PEM/EKF experiments and 50 Ω (gain
∼ 499) during the RT experiment.

B.1 Method 1: PEM

The setup used for this experiment is the manipulator and tool with associated cRIO
control hardware. A random test signal is generated for each actuator on the basis of
(L.2) from appendix B, which is repeated here



i
i

i
i

i
i

i
i

142 APPENDIX B. JOURNAL 2: SYSTEM IDENTIFICATION

ui =

nk∑
k=1

α′i,kω
′
i,k cos(ω′i,kt)

All constants of the signal must be selected properly to gain the most information
from the estimation process. No method of selection will be given here, since several
constants will be tested until suitable motion is captured from the manipulator. The
selection of the constants is also following the ranges given in (L.3). A total of 8 tests
will be conducted with the constants being interchanged between each experiment.
Each excitation is granted 20 seconds of run time and a total of 20001 data points
will be gathered from each sub-experiment per channel, which is listing strain, ac-
celeration, angular velocity and joint angle. The division of data is 50 % (from each
sub-experiment) for estimation and validation. A PEM algorithm will be configured
with an absolute tolerance and a relative tolerance of 0,0001. This is assumed to
provide significant estimates.

The constants for generating the test signals were automatically generated within
the given bounds from (L.3) and listed in table B.9 on page 158 (unused coefficients
are shown in gray). A LabVIEW diagram has been constructed to generate the needed
test signals. Figure B.1 shows one out of 8 cases of the diagram used for one axis.

Figure B.1: LabVIEW signal generation diagram for system identification

All measured channels are used to estimate different parts of the model. The joint
angles are used to estimate the joint frictions, and the strain is used to estimate tool
damping and resonance frequency of the first mode of vibration.

All collected data will first be applied for system identification using the PEM,
which will provide a basis for the EKF in section B.2. The model parameters are

1The number of data points is actually 2001 because the channels are also sampled for t = 0
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then estimated, and the performance of the methods is compared to one another in
the conclusion at the end of the chapter.

B.1.1 Results using PEM

When applying the prediction error method, the measurements are fitted to a nonli-
near gray-box model (known structure, unknown parameters). The structure of the
gray-box model is the model from (5.6) given as

d

dt


q1

q̇1

θ3

θ̇3

 =


0 1 0 0

−ω2
1q1 −2ζ1ω1 0 0
0 0 0 1
0 0 0 0



q1

q̇1

θ3

θ̇3

+


0
K1

0
K2

u(t)

[
q1

θ3

]
=

[
1 0 0 0
0 0 1 0

]
q1

q̇1

θ3

θ̇3


(B.1)

with an slightly changed output matrix. Only the joint angle θ3 and the strain
equivalent q1 is needed. This model can be applied directly for parameter estimation of
ω, ζ, K1 and K2 (notice that the index has been omitted). The latter two parameters
are denoting the gain from the input signal to the first and second part of the model,
respectively. Table B.1 lists the PEM-algorithm settings in MATLAB.

Absolute tolerance 0,0001
Relative tolerance 0,0001
Initial states q(0) = 0, q̇ = 0
Initial parameters ω = 26,39, ζ = 0,0023, K1 = 100

Table B.1: Configuration of PEM algorithm in journal 2

A problem, however, occurred when fitting the model to the joint angle measurements.
This part of the model is a second-order integrator, but the PEM-algorithm kept fitting
a straight line. Because the model in (B.1) consists of two decoupled models, the
manipulator part is fitted by integrating the joint angle measurements twice and then
scale them by a given K2 until the error is minimized.

The resulting parameters are listed in table B.2, but for reasons presented in remark
4 on page 111 only two sub-experiments were performed on the third axis alone.
Therefore, the model is only containing θ3 instead of θ1 to θ3.

The offsets q1,off and θ3,off are used to reset the states before initiating a new
experiment with the tool being manually located in a horizontal position. NRMSE1

and NRMSE2 are normalized root mean square errors provided by MATLAB as a
measure of the goodness of fit for the first three parameters and the K2-parameter,
respectively. The shorting inc. is denoting increments of the joint encoder.

Figure B.2 shows the goodness of fit measure NRMSE as a function of the gain K2.
The maximum points of the curves provide the K2-parameters resulting in the best
fit to the measurement data.
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PEM results Data set 1 Data set 2

ω1 26,7165 rad/s (4,2521 Hz) 26,7119 rad/s (4,2513 Hz)
ζ1 0,0119 0,0117
K1 74,4233 72,2914
K2 0,6934 0,8874
q1,off -1,4897 V -1,9214 V
θ3,off -0,9482 rad (-60363 inc.) -1,4207 rad (-90447 inc.)
NRMSE1 79,38 % 79,41 %
NRMSE2 87,10 % 80,89 %

Table B.2: Estimated parameters and settings using PEM in journal 2
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Figure B.2: NRMSE as a function of the gain K2

Because only two data sets have been sampled, it has been chosen to use the entire
first data set as validation data. A model is fitted using the second data set, and the
parameters from that process are selected as the final estimation. Table B.3 shows
the goodness of the fitting for the validation process.

PEM validation Strain Joint angle

Data set 1 (validation) 76,66 % 38,08 %

Table B.3: Goodness of PEM estimation in journal 2

Figures B.3a, B.3c and B.3e show the joint angle measurements, strain measurements
and corresponding control signal from first sub-experiment, respectively. Second sub-
experiment is shown in figures B.3b, B.3d and B.3f. All data sequences are sampled
at 100 Hz and the experiments are running for 20 seconds.
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(e) Control signal, case 1
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(f) Control signal, case 2

Figure B.3: Joint angles and strain measurements from experiments in journal 2

Results from the fitting process are shown in figure B.4. The goodness of fit is
high when looking at the eigenmode oscillations in figure B.4b and B.4d using both
estimation and validation data. However, the amplitudes are are not following the
exact envelope of the measurements. This may be caused by an inadequate model
because the model is basically an approximation that solves the model equations
mathematically.

The joint angle estimation is more problematic. Due to an unexpected and signifi-
cant gravitational effect on the third manipulator link, the joint angle measurements
are drifting towards the downward position. No dynamics have been included in the
manipulator model, because the robot is not operated at high velocities.
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(c) Joint angle validation
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Figure B.4: Comparison between estimation data and validation data
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Figure B.5: Control signal and strain measurements frequency responses
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A couple of frequency responses have been generated on the basis of both the control
signals and the strain measurements. The responses are given in figure B.5. From
appendix A the flexible tool eigenfrequency of the first mode was measured to 26,39
rad/s (4,20 Hz). Both frequency responses in figure B.5b and B.5d show a significant
resonance peak at 26,69 rad/s (4,25 Hz), which is very close to the 4,20 Hz measure-
ment. The resonance has even been excited by data set 1 with the closest frequency
of 27,8760 rad/s (4,43 Hz). A final evaluation of the prediction error method is given
in the conclusion at the end of this chapter.

Next up is the EKF, which will be working on the same data as the PEM. This
will show the potential of the EKF as a method for online system identification. A
final comparison is given between the methods at the end of the chapter.

B.2 Method 2: EKF

To verify the accuracy of an extended Kalman filter when compared with the pre-
diction error method and relay tuning results, the method is tested using the mea-
surements from the first experiment. Because the EKF is iterative, the parameter
estimates are also changing for each iteration. In order to compare the results with
the results from using PEM, the last estimate after 20 seconds of estimation will be
used. An augmented version of the system from (B.1) must be used, and is expressed
as

d

dt

[
x
xp

]
=

[
A 04

04 I4

] [
x
xp

]
+

[
B
0̄4

]
u(t)[

q1

θ3

]
=
[
C 0

] [ x
xp

]
with A, B and C denoting the original system matrices from (C.1). x is expressing
the original state vector for xp the parameter vector augmentation. The Jacobians
are then given as

Jf =



0 1 0 0 0 0 0 0
−ω2

1 −2ζ1ω1 0 0 −2ζ1q̇1 − 2ω1q1 −2ω1q̇1 u 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 u
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

Jg =

[
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

]
The Euler discretization method proved instable to make a discrete time model, and
a zero-order hold was automatically derived by MATLAB instead. A more thorough
description of the theory behind the filter is given in section 8.1 and will not be
presented here. Instead the results will be given in the sequel.
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B.2.1 Results using EKF

Based on the two data set introduced in section B.1 and shown in figure B.3, the EKF
has been applied to estimate the model parameters. In a practical case, the updated
model will be used by the controller, and the estimates will be closer to the actual
states. Table B.4 shows the estimation results using the EKF. Figures B.6 and B.7
show the estimation trends for all entries of the augmented state vector.

EKF results Data set 1 Data set 2

ω1 26,3963 rad/s (4,2011 Hz) 26,3938 rad/s (4,2007 Hz)
ζ1 0,0170 0,0141
K1 100,1383 100,0003
K2 2,0589 2,2031
q1,off -1,4897 V -1,9214 V
θ3,off -0,9482 rad (-60363 inc.) -1,4207 rad (-90447 inc.)

Table B.4: Estimated parameters and settings using EKF

Measurement offsets are similar to the ones from table B.4. The results are not unique,
since the selection of Q, R and x0 affects the outcome. For this particular estimation
process, the filter was configured as listed in table B.5. A final evaluation of the filter
and a comparison with the PEM/RT methods will be given in the conclusion at the
end of the journal.

Process covariance matrix Q diag{1 10 10 100 10 10000 1000 1000}
Sensor covariance matrix R diag{1 10}
Initial states x0 q1(0) = 0, q̇1 = 0, θ3 = 0, θ̇3 = 0
Initial parameters ω1 = 26,39, ζ1 = 0,0023, K1 = 100, K2 = 1

Augmented state vector
[
xT xT

p

]T
=
[
q1 q̇1 θ3 θ̇3 ω1 ζ1 K1 K2

]
Table B.5: Configuration of EKF in journal 2
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(d) Joint angular velocity θ̇3
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Figure B.6: EKF estimates for data set 1
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(d) Joint angular velocity θ̇3
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Figure B.7: EKF estimates for data set 2
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B.3 Method 3: RT

As a substitution for the extended Kalman filter, the relay tuning can be applied.
The method is not able to identify a system in general, but will estimate a single
point on the Nyquist plot corresponding to a limit cycle oscillation frequency. The
resulting frequency can then be used to estimate the resonance frequency, because
the model structure is already assumed. A thorough introduction to the relay tuning
process is given in chapter 8.4. Figure B.8 shows the closed-loop used for the relay
tuning process. A gain block is used to amplify the relay signal to a given amplitude,
which in this experiment will be 1 V or 5 V (found empirically).

Gray-box modelRelay

Hysteresis Input

Output

Figure B.8: Relay tuning block diagram

The system will act as a gray-boxmodel, with the structure known and the parameters
unknown. By relating the input and output signals to each other, the parameters can
be estimated. A piece of code, see figure B.9, makes up for the relay with hysteresis,
and the gain is chosen in such a way, that the resonance amplitude will not damage
the tool. In this case 1 V and 5 V will be selected from a maximum of 10 V.

if y == b
if x < −h
y = −b

else
y = b

end
elseif y == −b

if x > h
y = b

else
y = −b

end
end

Figure B.9: Relay code Figure B.10: LabVIEW implementation of relay with hysteresis

The code uses x as the input to the relay, y as the previous relay output, h as
the hysteresis width and b as the gain. None of the parameters must be confused
with formerly used variables in the report, and the parameters are not noted in the
nomenclature. In order to use the code in LabVIEW, a graphical interpretation of
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the code must be generated as shown in figure B.10. Both the TRUE case and the
FALSE case are shown in the same figure.
The relay with hysteresis from figure B.10 has been used to control the system, and
the results are given in the sequel section.

B.3.1 Results using RT

A relay with hysteresis has been programmed in LabVIEW and is included in a
closed-loop together with the manipulator. Before proceeding with the results from
the experiments, a remark on the configuration of the servo amplifier controlling the
third axis actuator is presented in remark 6 below.

Remark 6 (servo amplifier configuration): The relay tuning experiments are
carried out using the built-in velocity control configuration of the servo ampli-
fiers. To avoid damaging the tool during experiment, the direct acceleration
configuration is omitted. An initial test revealed, that the manipulator axis
is accelerated to an unacceptable high angular velocity before the strain mea-
surement changes sign. Using either of the configurations, the relay tuning
automatically tunes the control signal to a frequency similar to the eigenfre-
quency of the tool. 2

Two different gains and three different hysteresis settings were tested during the
experiments. Tables B.7 and B.8 as well as figures B.12 and B.13 on the following
pages summarizes the eigenfrequency estimation results. The term last from the
tables refers to the last estimation in the trends. As the number of samples increases
so does the precision of the estimate. The last sample in this case is therefore based
on 20 seconds of data material.

As shown in figure 8.6 from section 8.4, the control signal and the strain measure-
ment will eventually synchronize and oscillate with a frequency similar to the reso-
nance frequency of the flexible tool subject to conversion to achieve exact frequency.
The plots in figure B.12 show the estimation trend when more data is available. Com-
mon to the trends is the fast converging to the assumed correct resonance frequency
of 4,20 Hz no matter the gain and hysteresis. After some additional samples, the
estimates become more uncertain.

A frequency response is calculated on the basis of the output signal, and the most
significant frequency component is used as the resonance estimate (before conversion).
This frequency and associated amplitude correspond to a point on the system locus,
and the natural frequency of the system can be estimated from this coordinate using
the method described in section 8.4. An example of the resolution and trend of the
frequency response of a strain signal is shown in figure B.14.

All trends in figure B.12 converge to a constant estimate after at least 708 samples
(7,08 seconds) for the trend in figure B.12a. However, by using a gain of 5 will ensure
a faster convergence with no significant steady state error when compared to using a
unit gain. The error is within 8-11 % of the 4,20 Hz measurement in appendix A.
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Figure B.13 shows the trend of the frequency of the relay output. Because of the
dominating resonance peak in the linear dynamics of the flexible tool, the relay output
will be very close to the actual resonance frequency of the tool. The first 4 seconds
of the relay outputs and strain measurements for each experiment is shown in figure
B.11.
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Figure B.11: Relay tuning control signal progress (axes are given in time [s] and amplitude [V])

Each strain measurement has been biased to obtain zero strain for t = 0. The offsets
are given in table B.6. A positive strain is measured by the strain gauges due to
gravity acting on the tip load. It is assumed, that the margin of the strain gauges
remains unchanged even though the gauges are offset to one direction.

Offset Gain = 1 Gain = 5

h = 0,1 -4,39062 V -2,88477 V
h = 0,5 -4,03076 V -3,00293 V
h = 1,0 -4,11328 V -3,65576 V

Table B.6: Strain measurement offsets
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Figure B.12: Eigenfrequency estimations progress (axes given in samples and frequency [Hz])

Eigenfrequency Min Max Last Error

Gain = 1
h = 0,1 4,1632 Hz 9,3287 Hz 4,1632 Hz -0,8752 %
h = 0,5 6,2244 Hz 7,7923 Hz 7,6032 Hz 81,0284 %
h = 1,0 3,1264 Hz 6,2512 Hz 6,1472 Hz 46,3610 %

Gain = 5
h = 0,1 4,2468 Hz 12,3574 Hz 4,5399 Hz 8,0918 %
h = 0,5 4,6423 Hz 6,2228 Hz 4,6612 Hz 10,9807 %
h = 1,0 4,6249 Hz 6,2149 Hz 4,6344 Hz 10,3429 %

Table B.7: Estimated eigenfrequencies using relay tuning method
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Figure B.13: Eigenfrequency estimations progress (axes given in oscillations and frequency [Hz])

Eigenfrequency Min Max Last Error

Gain = 1
h = 0,1 4,3478 Hz 11,1111 Hz 4,3478 Hz 3,5197 %
h = 0,5 7,1429 Hz 8,3333 Hz 7,6923 Hz 83,1502 %
h = 1,0 5,8824 Hz 7,6923 Hz 6,2500 Hz 48,8095 %

Gain = 5
h = 0,1 4,5455 Hz 7,6923 Hz 5,0000 Hz 19,0476 %
h = 0,5 4,5455 Hz 6,6667 Hz 4,7649 Hz 13,3787 %
h = 1,0 4,1667 Hz 6,2500 Hz 4,3478 Hz 3,5197 %

Table B.8: Estimated eigenfrequencies using relay tuning method (direct estimation)
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Figure B.14: Frequency response for gain = 1 and h = 0,2 (determined using all data)

Because the resonance peak is more dominating than the remaining frequency com-
ponents, the peak can be detected by searching the highest amplitude over the entire
frequency range. This ends the relay tuning method for system identification, and the
method will be evaluated and compared with the EKF/PEM methods in the sequel
section.

B.4 Conclusion

In order to verify the applicability and accuracy of the different parameter estimation
methods presented in the latter three sections, the methods will be compared based on
the three criteria accuracy, stability and convergence time. The first criterion is based
on the flexible tool parameters measured in appendix A and how close the estimates
are to those values. Second criterion is concerning how the estimation fluctuates over
time, and last criterion considers the convergence time of the estimation processes to
whether or not the methods are useful in a practical setup. In the following three
subsections the methods PEM, EKF and RT are evaluated.

B.4.1 Prediction error method (PEM)

The method is accurate in terms of estimating ω1 because the resonance is very dom-
inating. Even though the dynamics are not excited with the resonance frequency, the
primary frequency component of the frequency response is still the most dominat-
ing. This evaluation is only based on highly underdamped systems like in this case,
because systems with higher damping may behave differently (the resonance peak is
not that dominating). The damping ratio ζ1 is, however, a factor of 10 higher that
the measurement from appendix A and the amplitudes are not following the envelope
of the measurements. The input gains can be fitted to follow the overall trend, but
not the fast responses. Based on the application in this case, the accuracy of the
resonance is the most important, and an overall ∼ 80 % goodness of fit is satisfactory.

Because the method works on a large data sample, a cost function can be minimized
to provide the best possible estimates. In case the estimates become too small/large



i
i

i
i

i
i

i
i

B.4. CONCLUSION 157

compared to the physics involved, the PEM configuration can be adjusted. Conver-
gence time is not a concern in this case, because the method is intended for offline
usage and therefore not built for running in real-time.

B.4.2 Extended Kalman filter (EKF)

Compared with the PEM, the EKF is intended for online applications. The filter has
been applied to the same data as the PEM, but the results are not considered reliable.
One initial guess can result in parameters very different from another guess. Also,
the covariance matrices Q and R are very important for the outcome of the filter.
Stability of a nonlinear Kalman filter cannot be guaranteed, which is important for
online filters. If the filter suddenly becomes instable, the flexible tool may be excited
with a resonance frequency. This decreases accuracy and settling time of the TCP,
and the tool may get damaged if the oscillations become too large.

Because the filter must be executed in parallel with the realtime system, it must
be fast to estimate parameters. Unfortunately, since the filter may not converge at
all, the parameter estimates may change all the time. Based on this experiment,
the EKF is not preferable for this control system. The resonance frequency cannot
diverge from the actual value in order to achieve satisfactory results and respect the
requirements.

B.4.3 Relay tuning (RT)

As an alternative to the online EKF, the relay method has been considered. The
method is fast enough to work as a semi-online estimator but also reliable to function
offline. When working in semi-online mode, the method is required to apply control
action to the manipulator actuator. However, because the method is fast, this is not
a problem. The method is accurate because it excites the resonance, which is very
dominant in this case. A relay with hysteresis has been used to control the actuator,
and based on the describing function method, the relay output switching frequency
is converted into the natural frequency of the linear dynamics. Even though the
DF-method has some undesirable properties for underdamped systems, it provides
accurate estimates in this experiment. The estimates are within 8-11 % of the 4,20
Hz measurement from appendix A when using the best configuration (gain = 5).

Based on the three different experiments documented in this journal, the relay tun-
ing methods is preferable for several reasons. Compared with the PEM, the method
can be running almost in realtime and provide estimates of the resonance frequency.
The PEM is more general, and is capable of estimating all model parameters. How-
ever, the offline property is not preferable in cases with arbitrary loads. In comparison
with the online EKF, the relay tuning will be slower, because is cannot work in pa-
rallel with the remaining control system. The stability and accuracy issues of the
EKF are degrading performance, and the RT method is therefore the best candidate
to estimate the resonance frequency. If other parameters of the model needs to be
estimated, then the PEM must be applied.
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Test no. #01 #02 #03 #04 #05 #06 #07 #08

Manipulator link i = 1
α′1,1 0,0050 0,0039 0,0049 0,0023 0,0037 0,0050 0,0037 0,0043

α′1,2 0,0017 0,0042 0,0043 0,0041 0,0033 0,0017 0,0046 0,0020

α′1,3 0,0014 0,0019 0,0029 0,0045 0,0012 0,0021 0,0018 0,0019

α′1,4 0,0022 0,0024 0,0033 0,0035 0,0024 0,0045 0,0040 0,0035

α′1,5 0,0031 0,0035 0,0030 0,0045 0,0035 0,0016 0,0036 0,0023

α′1,6 0,0038 0,0033 0,0029 0,0051 0,0038 0,0040 0,0014 0,0022

ω′1,1 2,7955 4,1474 3,7093 6,0025 2,9535 3,6541 1,6110 3,1856

ω′1,2 5,7689 2,9597 5,2009 3,7654 4,6171 3,1195 2,2372 4,7669

ω′1,3 27,7091 22,5417 29,7926 29,0530 24,2378 26,8923 31,0146 26,8139

ω′1,4 23,3722 26,3847 21,4085 22,4928 23,3904 29,0426 21,1891 22,3395

ω′1,5 23,5934 22,6929 30,1954 21,4166 28,2899 22,0476 24,9866 31,4931

ω′1,6 24,3260 31,0967 30,7956 27,5405 22,1979 27,8457 23,7464 29,7323

Manipulator link i = 2
α′2,1 0,0027 0,0052 0,0023 0,0031 0,0027 0,0014 0,0044 0,0049

α′2,2 0,0037 0,0045 0,0014 0,0015 0,0032 0,0051 0,0042 0,0034

α′2,3 0,0033 0,0029 0,0038 0,0042 0,0046 0,0013 0,0013 0,0042

α′2,4 0,0020 0,0016 0,0037 0,0030 0,0044 0,0014 0,0015 0,0021

α′2,5 0,0017 0,0044 0,0048 0,0039 0,0043 0,0017 0,0045 0,0049

α′2,6 0,0034 0,0050 0,0038 0,0018 0,0039 0,0014 0,0041 0,0043

ω′2,1 5,6298 4,6767 5,7241 4,5544 1,9656 2,8814 4,3119 1,0280

ω′2,2 5,6869 2,6765 2,5222 5,6005 1,6493 1,3797 5,3250 0,8573

ω′2,3 27,1029 30,6335 24,7874 30,5579 25,9965 25,2825 21,1149 31,1799

ω′2,4 21,1522 29,3829 31,1961 23,1082 21,1222 26,6253 22,2349 27,9328

ω′2,5 23,6962 28,4648 31,0243 21,2074 26,5472 23,7594 23,6407 23,7330

ω′2,6 29,8266 30,4682 23,8211 30,8114 31,6343 28,6002 25,1973 29,8733

Manipulator link i = 3
α′3,1 0,0044 0,0016 0,0014 0,0021 0,0011 0,0051 0,0022 0,0048

α′3,2 0,0040 0,0043 0,0041 0,0042 0,0021 0,0036 0,0045 0,0044

α′3,3 0,0048 0,0011 0,0018 0,0025 0,0013 0,0023 0,0036 0,0031

α′3,4 0,0046 0,0029 0,0011 0,0014 0,0051 0,0025 0,0015 0,0014

α′3,5 0,0020 0,0028 0,0015 0,0022 0,0041 0,0013 0,0045 0,0030

α′3,6 0,0023 0,0048 0,0023 0,0023 0,0050 0,0036 0,0049 0,0043

ω′3,1 2,0704 2,2158 0,9214 1,7978 1,7313 4,4197 3,4484 1,9927

ω′3,2 2,8819 5,0470 1,9215 3,7829 3,5820 3,1120 5,2560 3,0289

ω′3,3 30,5537 24,1688 22,8582 29,9978 30,8780 25,3156 27,8713 23,3167

ω′3,4 30,4067 28,2584 28,2925 22,7333 30,6814 26,2884 22,2388 22,2559

ω′3,5 27,8769 22,4733 28,2915 27,4075 26,6223 25,8358 24,7653 27,5120

ω′3,6 30,4395 26,5478 30,4599 28,8549 24,9007 31,5894 25,5559 26,2737

Table B.9: Parameters used for experimental test signals in journal 2
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Appendix C

Journal 3: IMU response

The IMU is used to measure the acceleration and change in orientation of the tool
frame Fτ . Before using the measurements, the response is compared to the model.
Two things must be achieved from this journal. Firstly, the noise distributions of the
IMU outputs are measured, which are used in the covariance matrix for the extended
Kalman filter. Secondly, when the model was derived in chapter 3, the acceleration
and change in orientation was explicitly determined. IMU measurements and the
approximated model response to identical excitation signals will be compared. If
they are significant, the model can be used to represent the reality. The remainder of
this journal will be divided into two parts - one for each of the two topics to examine.
Similarly, two result sections will be present.

C.1 Noise distributions

A Kalman filter requires knowledge of the sensor variance in order to determine the
probability of fit correctness. When integrating e.g. position state using noisy sensors,
the variance increases with time, because the distribution flattens out. It is therefore
preferable to have accurate estimates of the sensor variances prior to applying the
filter. The IMU consists of three accelerometers (x, y and z-direction) and three
gyroscopes (yaw, pitch and roll). Both sensor types provide zero-rate outputs when
the sensor is in steady-state. The sensor is therefore located on a steady table, and
the zero-rate signals are sampled for 1 ms. Afterwards, the distribution of the noise
floor can then be estimated using a histogram. A list of the necessary equipment for
the test is given in table C.1.

GW Instek GDS-1062A 60 MHz digital oscilloscope

SparkFun inertial measurement unit (IMU) board

Caltek PSM3/2A power supply

Table C.1: Equipment used for noise estimation in journal 3
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Notice that the gyroscope is capable of providing amplified outputs with a factor of 1
or 4. Both settings are measured in the experiment. The digital storage oscilloscope
is used to sample the noise signals, and the oscilloscope setup provides the best results
when setup as given in table C.2.

Sample count 2 millions
Vertical scale 100 mV/div
Horizontal scale 100 µs/div
Time 1 ms

Table C.2: Oscilloscope setup for experiment in journal 3

A set of data has been sampled for each of the 9 IMU output channels in steady-state,
and the data is processed in the sequel section. When the next experiment has been
performed, a combined conclusion of the experiments will be given.

C.1.1 Results

The oscilloscope has sampled the zero-rate signalṡfrom all 9 outputs (three accelerom-
eters and three gyroscopes with two amplification modes). Table C.3 shows the re-
sulting sample means and sample standard deviations.

IMU channel Sample mean Sample std.

XOUT-1X 1,2110 V 0,0029 V
YOUT-1X 1,2037 V 0,0031 V
ZOUT-1X 1,2052 V 0,0029 V
AXOUT 1,4705 V 0,0038 V
AYOUT 1,4353 V 0,0027 V
AZOUT 1,7669 V 0,0025 V
XOUT-4X 1,2529 V 0,0027 V
YOUT-4X 1,2252 V 0,0027 V
ZOUT-4X 1,2386 V 0,0029 V

Table C.3: Results from IMU zero-rate measurements in journal 3

As the results show in table C.3, the sample standard deviations are around 2,9
mV, which is close to one LSB (∼2,4 mV) of the ADC card NI-9201 used to sample
the sensors for the controller [69]. The noise is of little concern in this case when
considering the sensors alone. A sample distribution is shown graphically in figure
C.1 on the adjacent page for each of the IMU channels. The sample variances(squared
sample std.) will be included in the covariance matrix R for application in the Kalman
filter, see chapter 7. Next up is part 2 regarding model approximation verification.
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Figure C.1: IMU zero-rate output noise histograms (first axis is output voltage [V])

C.2 Verification of model approximations

In order to verify the model approximations from the modeling chapter, a set of data
must be collected from the IMU. By exciting the three axes of the manipulator, the
IMU will provide read-outs of the corresponding acceleration and change in orientation
of the tool frame Fτ . From the manipulator modeling, the angular velocity (change
in orientation) was expressed as

ωj = jωi + θ̇je3 = j
iRωi +

[
0 0 θ̇j

]T

(C.1)

from equation H.9, which corresponds to

ω0 =

 0
0

θ̇1 + θ̇2 + θ̇3

 (C.2)
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when expressed in reference to the inertial frame F0. Similarly, the acceleration was
expressed in (3.13) as

υ(θ̇, θ̈, t) =


−`1θ̇2

1 − `2(θ̇2
1 + θ̇2

2)− `3(θ̇2
1 + θ̇2

2 + θ̇2
3)− · · ·

· · · − 2θ̇1θ̇2(`2 + `3)− 2`3(θ̇1θ̇3 + θ̇2θ̇3)
0

−`1θ̈1 − `2(θ̈1 + θ̈2)− `3(θ̈1 + θ̈2 + θ̈3)

 (C.3)

when keeping the joint angle in a small neighborhood of the operation point θ = 0̄.
The last entry and the last axis 3 is the only parts used for control, and therefore,
the IMU response can be compared in the following way

rgyro ∼ θ̇3 and racc ∼ −`3θ̈3 (C.4)

with rgyro and racc representing the y-axis1 gyroscope and accelerometer, respectively.
Due to the small signal approximation, only the vertical accelerometer is needed. The
measurements are performed on the system, when data for the extended Kalman filter
is collected. The experimental procedure can therefore be read from appendix B on
page 141. Before proceeding with the interpretation of measurement data, a note on
sensor noise must be stated. For unexplainable reasons the cRIO analog-to-digital
converter card is picking up unacceptable noise levels when the servo amplifiers are
powered on. The origin of the problem cannot be determined, and therefore, a number
of supporting analysis are given to support the interpretation of the measurements.
Table C.4 shows the sample mean µ̂ and sample standard deviation σ̂ of all 5 sensor
channels in both hardware modes (drivers ON and OFF).

Driver OFF Driver ON Std. ratio

Strain gauges µ̂ = −1,9325 V µ̂ = −1,9343 V
14,5273

σ̂ = 5,4499E−3 V σ̂ = 7,9172E−2 V

IMU (AZ-output) µ̂ = −1,0604E−1 g µ̂ = −9,0463E−2 g
16,5840

σ̂ = 1,2727E−2 g σ̂ = 2,1106E−1 g

IMU (AY-output) µ̂ = −1,2021 g µ̂ = −1,1987 g
16,7169

σ̂ = 1,2649E−2 g σ̂ = 2,1146E−1 g

IMU (GY4-output) µ̂ = −3,3119 deg/s µ̂ = −3,8874 deg/s
20,0465

σ̂ = 1,1157 deg/s σ̂ = 2,2367E1 deg/s

Encoder µ̂ = 1,4208 rad µ̂ = 1,4208 rad
-

σ̂ ∼ 0 rad σ̂ = 4,4733E−5 rad

Table C.4: Noise levels from 5 sensor channels

1The y-axis on the IMU sensors are not necessarily coinciding with the axis denotations of the
manipulator configuration
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IMU channels are denoted as AZ (X0-axis acceleration), AY (Z0-axis acceleration)
and GY4 (Y0-axis angular velocity, 4x amplification). The only sensor almost unaf-
fected by the switch between ON and OFF mode is the joint angle sensor, which is
introducing a negligible sample variance of σ̂2 = 2,0011E−9. This is also the only
digital sensor in the system. Column three lists the sample standard deviation ratio
between the two modes, and the values show, that noise levels are increased by as
much as 20 times.

The noise levels will have the biggest impact on the IMU channels, where the levels
are 5,86 % (AZ channel), 5,87 % (AY channel) and 1,86 % (GY4 channel) of the
sensor range. However, since the entire range is not used for the experiments, the
signal to noise ratio decreases and corrupts the measurements. Since the problem
cannot be localized, the measurements will be analyzed anyway, but with the noise
levels in mind. Figure C.3 shows the change in steady-state output response from 4
of the sensors (encoders omitted) during mode switch (OFF to ON).
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Figure C.2: Steady-state sensor output in hardware OFF and ON mode

Another important factor to analyze is the noise distribution. Figure C.2 shows the
autocorrelation functionACFfor both strain measurement and all IMU measurements
in a single plot. All ACF’s, besides the one from figure C.3a, are respecting 95 %
confidence levels, and the samples are therefore assumed to be uncorrelated (white
noise) with a 95 % probability.
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Figure C.3: Sensor noise autocorrelation for strain and IMU measurements

The analysis is using the signal snippets shown in figure C.2 with the first 400 samples
defining the OFF mode and the last 400 samples the ON mode. After introducing
the noise levels of the measurement channels the IMU measurements are presented
next.

C.2.1 Results

The importance of this test is to verify the model approximations for angular accel-
eration and angular velocity using accelerometers and gyroscopes, respectively. One
measurement is needed, which has been saved from the experiment described in ap-
pendix B. This is the joint angle θ of the third manipulator joint as shown in figure
C.4 from case 2. A derivative θ̇ is given in figure C.5.
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Figure C.4: Joint angle measurements
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Figure C.5: Angular velocity estimate (joint angle derivative)

The data need not to be filtered before differentiation, because the joint angle sensors
are not subject to noise (or at least negligible, see table C.4). As a results of the
first equation in (C.4), then rgyro ∼ θ̇3 and the joint angle derivative from figure C.5
must be similar with the gyroscope measurements. Figure C.6 shows the gyroscope
measurements from the same experiment that provided the joint angle data.
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Figure C.6: Gyroscope measurements

Due to the GY4 channel noise, the measurements have been filtered by a 50 order
MA-filter corresponding to an averaging time of 0,5 s. A combined plot between the
joint angle derivative and the filtered gyroscope measurement is given in figure C.7.
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Figure C.7: Joint angle derivative and filtered gyroscope measurements
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As indicated from the plot, the data are not similar in either trend nor amplitude.
The amplitude can be a consequence of the MA-filter, but the trend is due to other
elements. Noise levels are assumed to be the significant source of error in this case.
Since even the joint angle derivative is smooth, the manipulator joint is not excited
with a noisy control signal. Otherwise, the low pass characteristic actuators will filter
out high frequency components. A final conclusion to the measurements is given in
the conclusion at the end of this appendix.

Besides the gyroscope, the IMU also contains three accelerometers. Similar with
the gyroscope measurements, they can be compared with a model approximation from
(C.4). In this case, it is racc ∼ −`3θ̈3. Figure C.8 shows the acceleration measurements
from both the AY and the AZ-channel.

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Time [s]

A
cc
el
er
a
ti
o
n
[g
]

 

 
AZ channel (positive X0−direction)
AY channel (positive Z0−direction)

Figure C.8: Accelerometer measurements

As was the case with the gyroscope, the data must be filtered to show the trend.
The AY-channel is corresponding to the positive Z0-direction in the inertial frame
F0 and measures the gravitational constant of around 1 g in the initial position, see
figure C.8. The AZ-channel on the other hand is located perpendicular to the other
accelerometer and measures therefore around 0 g in the initial position. Due to the
noise levels, the exact acceleration levels cannot be verified.

By combining the second derivative of the joint angle measurements and the accel-
eration data, the trends should be similar for the approximation to be valid. Figure
C.9 shows the angular acceleration of the joint angle measurements from figure C.4.
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Figure C.9: Angular acceleration estimation (joint angle second derivative)
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Because of the noise levels of the acceleration measurements they cannot be compared
with the angular acceleration. The results will be useless with that much noise.
Instead, the two accelerometer channels are compared relative to each other. They
show a similar trend, which they must when the IMU is rotated. Due to the noise
levels on the channels it is not able to compare the model approximation with the
data to verify the similarities. A final conclusion is given next.

C.3 Conclusion

Two elements was tested in this journal: the IMU output distribution in steady-
state and the verification of model approximation using IMU measurements. The
distribution of the outputs was measured, and the variances were estimated. This
can be used for Kalman filter tuning in chapter 7. A low signal-to-noise ratio was
measured on the IMU channels, and the comparison between model approximations
and the measurements was not possible. The approximations were thus not verified.
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Appendix D

Journal 4: Controller performance

The main part of the control system is the sliding mode controller explained in chapter
9. An experiment must be designed to measure the performance of the controller, and
the results must be analyzed. This will be explained in details in this journal. The
controller is using strain measurements to determine the size of the applied control
signal through the relation from (9.34) given as

u = sat
[
2ζωq̇ + ω2q −Kq̇ − U0 sat(s,∆s), U0

]
(D.1)

with s = q̇ + Kq describing the dynamics of the state trajectory in the phase plane.
Performance is measured by the settling time of the strain state. Accuracy will also
be considered. However, as described in remark 5 on page 112, the term −Kq̇ was
not implemented in the controller diagram i LabVIEW, and the experimental data
are therefore based on the control law

u = sat
[
2ζωq̇ + ω2q − U0 sat(s,∆s), U0

]
(D.2)

This is still a sliding mode controller, but the performance will be slightly reduced
because the trajectory is not reaching the sliding mode as fast as it would have
using (D.1). The effects will be evaluated in the acceptance test in chapter 10. The
experimental procedure will be described next.

D.1 Experimental procedure

This experiment must be designed to show the performance of the sliding mode con-
troller. The tool must be oscillating before activating the controller in order to see the
damping effect. An excitation signal will first make the tool oscillate at the resonance
frequency, and subsequently the controller is applied to damp the oscillation. The
exact procedure is listed below

• Reset the system to initial configuration (θi = 0, i ∈ [1, 6])

• Measure the strain offset (different from q = 0) and reset q-state
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• Introduce a sinusoidal signal u(t) = 1,5 sin(26,39t) to make an oscillation

• Terminate the sinusoidal signal after 5 seconds and activate the controller

• Run the controller to 10 seconds while sampling the strain response

Notice how all 6 degrees of freedom are used for this experiment. This is a necessary
procedure to ensure, that the third axis is moving within the (X0, Z0)-plane as de-
scribed by theory in chapter 3. Five different configurations are tested with different
sliding surfaces and limitation on the control signal.

• Case 1: Sliding surface s = q̇ + 10q and control action saturation of ±1 V

• Case 2: Sliding surface s = q̇ + 10q and control action saturation of ±2 V

• Case 3: Sliding surface s = q̇ + 92,869q and control action saturation of ±1 V

• Case 4: Sliding surface s = q̇ + 92,869q and control action saturation of ±2 V

• Case 5: Sliding surface s = q̇ + 300q and control action saturation of ±2 V

• Case 6: Control case with controller u = 0

The slope of K = 92,869 was determined to provide the fastest settling time in section
9.3. However, due to hardware limitations identified from practical experiments the
control action is selected to a maximum of 2 V. This will not provide the same results
as the simulations, but the test will show performance at different control signal
saturations and K-values. The results from the experiment will be given in the sequel
section, and the performance will be compared with the uncontrolled case. Beside the
controller itself the sensor fusion technique is also verified with the measurement data.
This consists of a linear Kalman filter, which will use a combination of measurements
and a model to improve the quality of the model estimates used by the controller.
Despite the fact that no Kalman filter was applied in parallel with the experiment, the
filter is tested anyway to measure its performance to practical measurements instead
of simulations.

D.2 Controller results

The experimental data from the 6 experiments is shown in figures D.7 through D.11
from page 177. L denotes the control signal limitation for each specific test case.
For this experiment only L = 1 and L = 2 is applied. Subplot a depicts the strain
measurements, and the excitation phase shows how the strain is reaching a steady
oscillation before the controller is activated. Even though the timing requirements
were given from the experimental procedure in section D.1 if was not possible to
achieve an exact timing of the control system in practice. However, the manipulator
was given time enough to both introduce an oscillation to the tool as well as running
the controller for several seconds. Some of the experiments were terminated before
15 seconds had passed, because the joint was moving outside the secure range.

Subplot b shows the strain derivative, which is estimated by discrete differentiation.
Combining the data from subplots a and b provides the s-function in subplot c. The
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shape resembles the one of q̇ from subplot b because |q| � |q̇|. Subplot d is a plot of
the joint angle, which is drifting in all cases. The drifting is a two-part problem caused
by gravity and offset error in the controller hardware. A gravitational pull on the tip
mass is generated, when the tool is oscillating, which is generating a torque on the
manipulator link. Furthermore, it has been noticed that without the tool mounted
on the manipulator, the links can drift. The last four subplots e to h show different
parts of the control signal. They are structure in the following way

u = sat


Subplot h︷ ︸︸ ︷

ω2q + 2ζωq̇−

Subplot f︷ ︸︸ ︷
U0 sat(s,∆s)︸ ︷︷ ︸

Subplot g

, U0


︸ ︷︷ ︸

Subplot e

(D.3)

This approach has been used to show the consequences of using the saturation function
in the control law. Disturbance rejecting properties are degraded, and the settling
time is increased on this behalf. In order to analyze the performance of each controller,
the envelope of the strain measurements must be estimated to find the settling time.
The accuracy will be given by the amplitude of the oscillation of the last second of
data. Figure D.1 shows the strain response with the controller activated and the
envelope superimposed onto the data.

The envelope is constructed using the MATLAB command hilbert.m and an MA-
filter of order 20 constructed using smooth.m (theory behind the functions will not be
given). A maximum amplitude level is sampled for q(t1) and q(t2) with t1 denoting the
time of controller activated and t2 the time when only 5% of the amplitude remains,
respespectively. Consequently, only the case 1 response can be used to esitmate an
actual settling time. The remaining responses does not reach 5 % of their initial
conditions, and they can be excluded as admissible controller candidates. This is
based purely on the given curcumstances, where the joint angle is drifting.

Based solely on the first case two points can be sampled: q(t1) = 7,4800 V and
q(t2) = 0,3706 for t1 = 5, 00 s and @t2 = 8,85 s, respectively. This gives a settling
time tset = 3,85 s. A consequence of the added MA-filter is the a peak at the last
sample. This does not resemble the actual behavior of the strain response, and the last
20 samples are therefore removed. Exactly 20 samples have been removed, because
the last peak of the strain response is located 20 samples before the signal ends. This
ensures, that the accuracy measure is not accidentally improved.
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Figure D.1: Strain measurements with envelope for controller performance analysis

Figure D.2 shows the last 6,15 seconds after the 5 % level. The dashed lines indicate
the mean of the envelope of µ̂q = 0,3376 V. This corresponds to a deflection at the
tip of 2,79 mm (using the relation measured in appendix F). A sample standard
deviation of σ̂ = 0,0598 V corresponds too a deflection deviation of 0,49 mm. In
order to compare the measured settling time of tset = 3,85 s with the uncontrolled
case, the strain response from case 6 is shown in figure D.3.

This provides a settling time of tset = 50,85 s going from q(t1) = 8,413 V to
q(t2) = 0,4204 in 5085 samples. An improvement of 92,43 % is thus obtained when
applying the controller from case 1. Another way to investigate performance is to
construct a phase portrait of the strain response. Figure D.12 on page 172 shows a
phase plot for all 6 cases from the first 5 seconds after the controller has been activated.
The sliding surface is shown as a line in the plots. Only the portrait in figure D.12a
converges to zero within the 5 second window of the plots. The remaining either stays
in an approximative limit cycle (subplot b, c and e) while others are converging very



i
i

i
i

i
i

i
i

D.2. CONTROLLER RESULTS 173

 8.85 10.39 11.93 13.46 15.00
−1.0

−0.5

 0.0

 0.5

 1.0

Time [s]

q
-s
ta
te

[V
]

Figure D.2: Accuracy measurement of case 1 controller
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Figure D.3: Strain measurements from case 6 (control experiment)

slowly (subplot d). The uncontrolled case is shown in figure D.12f for comparison.
All trajectories have been filtered using a 10th order MA-filter. Otherwise, the noise
levels makes it difficult to interpret the portraits.

Another piece of information visible from the phase plots is the lack of sliding mode.
It is expected from theory, that the trajectory must remain on the sliding surface after
it first reaches it. Even though the controller seems to have an effect (especially case
1) the behavior is not sliding mode behavior. In order to compare the results between
case 1 and case 6 figure D.4 shows the first 10 seconds of strain measurements from
both cases after the controller has been activated (not for the uncontrolled case 6).
A frequency response estimation can be estimated from the measurements as well as
from the control signal, see figure D.5. Some samples in the sampled control signal
are ∞ and will be set to zero for the FFT algorithm to function properly. The strain
responses in figure D.5b show a slight difference in resonance frequency. From case
1 (controlled case) the peak is located at ω = 4,10 Hz and at ω = 4,25 Hz for the
uncontrolled case (close to the 4,20 Hz measurement from appendix A).

Even though there is only a slight difference between the frequencies, the controlled
case have several other frequency components that influences the oscillation. The
control signal in figure D.5 shows frequency components around the tool, which must
be avoided. However, it may be advantageous if the signals are π rad out of phase
with the tool oscillation. This was not considered to be an option in chapter 9.
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Figure D.4: Strain response comparison between case 1 (controlled) and case 6 (uncontrolled)

Figure D.6 shows how the oscillation is around π/2 rad out of phase with the control
signal in the first periods. After some time it is difficult to use the phase terminology,
because the control signal is not a harmonic signal like the strain. A conclusion of
the measurements and the results is provided in section D.4.
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Figure D.5: Frequency response of control signal and strain responses from cases 1 and 6
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Figure D.6: Measurements showing that the strain is not in phase with the control signal

D.3 Sensor fusion results

In order to test the linear Kalman filter from chapter 7, the strain and joint angle
measurements from above are filtered by the Kalman filter. A manual tuning of the
matrices Q and R has been made, and they are given as

Q = diag
[
1 10 10 100

]
, R = diag

[
1 100

]
(D.4)

and initial values given from the measurement directly. Figure D.13 on page 183
shows the measurements, estimates from the Kalman filter and the corresponding
error between them both. It is clear from figure D.13e that the strain estimate takes
some time to line up with the measurements, whereas the joint angle is off by no more
than 0,006 rad. The Kalman filter therefore seems to perform as it should, and will
be able to filter out erroneous sensor measurements. Both the controller performance
and the Kalman filter is evaluated in the sequel section.

D.4 Conclusion

A total of 6 cases were tested in this journal. They included different sliding surfaces
and controller limits. A new hardware limitation was introduced because the original
control signal limit of U0 = 10 V showed to unmanageable in case of error. Through
simulations in chapter 9 the sliding surface s = q̇ + 92, 869q was determined as the
best possible. This was derived on the basis of the original hardware limitations. The
surface was tested anyway, but the low saturation limits resulted in unmeasurable
performance. Another source of error is the fact that the simulation was based on
initial conditions different from the practical ones.

From the phase plots on figure D.12 it was shown, that the strain trajectory did not
behave as expected. No sliding mode was shown from the plots, since the trajectory
does not change direction when reaching the switching surface. The first cause can
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be the limited control action. If the control signal is not high enough, the vector field
gradient are not pointing sharply towards the switching surface. Analog to the theory
of a second order system with friction, the control field will increase the damping ratio.
Also, the missing −Kq̇ term decreases the performance, and may cause the trajectory
to circle around the equilibrium point instead of reaching sliding mode. This will in
turn make the trajectory converge faster towards the point of equilibrium.

The data are not supported statistically, since only one test could be used, but
due to hardware difficulties it was not possible to gain any more data. No definite
conclusion can therefore be given on the controller performance rather than from the
single useful experiment. Based solely on the case 1 experiment, even though sliding
mode was not reached, the controller showed a damping effect on the oscillation
and decreased the settling time by 92,43 %. Consequencly, the continuously applied
control action introcudes a lower limit of the strain response corresponding to a tip
deflection of 2,79 mm with a standard deviation of 0,49 mm.

The linear Kalman filter for sensor information fusion was also tested on the mea-
surement data from the first experiments. It was able to converge to the strain
measurements within around 3 seconds and almost immediately for the joint angle
measurements. In order to work in parallel with the controller it will have to converge
faster in order to improve the quality of the model estimates.
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(d) Joint angle measurements
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Figure D.7: Case 1 measurements and controller functions (gain = 1 and K = 10)
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(d) Joint angle measurements
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Figure D.8: Case 2 measurements and controller functions (gain = 2 and K = 10)
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(d) Joint angle measurements

 0  5 10 15
−20

−10

  0

 10

 20

Time [s]

2
ζ
ω
q̇
+

ω
2
q

(e) 2ζωq̇ + ω2q

 0  5 10 15
−10

 −5

  0

  5

 10

Time [s]

U
0
s
a
t(
s
,∆

s
)

(f) U0 sat(s,∆s)

 0  5 10 15
−20

−10

  0

 10

 20

Time [s]

s
a
t(
·
,L

)
a
rg
u
m
en
t

(g) Unsaturated control action

 0  5 10 15
−2

−1

 0

 1

 2

Time [s]

s
a
t(
·
,L

)

(h) Control action

Figure D.9: Case 3 measurements and controller functions (gain = 1 and K = 92,869)
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(d) Joint angle measurements
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Figure D.10: Case 4 measurements and controller functions (gain = 2 and K = 92,869)
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(d) Joint angle measurements
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Figure D.11: Case 5 measurements and controller functions (gain = 2 and K = 300)
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Figure D.12: Phase portraits using 5 seconds of strain response
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(d) Joint angle estimates
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(f) Joint angle difference

Figure D.13: Measurements vs Kalman estimates
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Appendix E

Journal 5: Manipulator bandwidth

The dynamics of the manipulator must be investigated before applying control. This
will show if the manipulator is capable of excite the tool with the necessary frequencies.
An experiment must be designed to measure the magnitude response of the third axis
of the REIS RV15 manipulator for a certain range of frequencies. The experimental
procedure will be described in the sequel, and the results will follow immediately
after.

E.1 Experimental procedure

When performing a frequency analysis of a system a sinusoidal input signal must be
supplied. The output is then sampled, and the amplitude is measured. A magnitude
plot can then be constructed as the ratio between input amplitude and output am-
plitude for a certain range of frequencies. For this particular case a frequency range
of 0,2 Hz to 10,0 Hz has been selected with an increment of 0,2 Hz. This covers also
the 4,20 Hz resonance of the flexible tool. Three different signals will be applied.

• Sinusoidal torque control signal of 1 V amplitude

• Sinusoidal velocity control signal of 1 V amplitude

• Sinusoidal velocity control signal of 2 V amplitude

The torque control applies a torque corresponding to the amplitude of the input signal
amplitude, whereas the velocity control results in a joint velocity corresponding to
the input signal amplitude. The results are shown in the sequel.

E.2 Results

Three different joint angle responses have been sampled during the experiments and
the signals are depicted in figure E.1. Due to drifting of the joint (explained in details
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in appendix 10) the torque control experiment begins at a frequency of 2,6 Hz. For
the velocity control experiments the drifting is almost linear, and has been removed
using a moving-average filter of order 2000. The data can then be used by an FFT
algorithm. However, the manipulator was not able to accept frequencies above 6,0
Hz (gain = 1) and 4,2 Hz (gain = 2), and the servo drivers automatically turned off.

The magnitude response estimates are shown in figure E.2. Each of the trends have
approximately a slope of -20 dB/decade. Because the frequency is very low at 0,2
Hz the system is likely to behave as an integrator in stead of a low-pass filter. This
can be caused by the high gear ratio of 1:100. The servo drivers may also provide
dynamics.
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(a) Torque control, gain = 1
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(b) Torque control, gain = 1 (zero-mean)
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(c) Velocity control, gain = 1
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(d) Velocity control, gain = 1 (zero-mean)
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(e) Velocity control, gain = 2
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(f) Velocity control, gain = 2 (zero-mean)

Figure E.1: Time responses for magnitude response estimations
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Figure E.2: Magnitude response estimates from measurements in figure E.1

E.3 Conclusion

The results are not uniquely stating that the system is behaving as an integrator
system. Due to the drifting of the manipulator joint, the mean has been be subtracted
in order to apply FFT, which may be a source of error. The entire frequency range
was neither analyzed because either the servo drivers of the manipulator dynamics did
not accept the control signals. However, the experiments showed, that it is possible to
make excitations up to 10 Hz using torque control (which will be applied for control)
even at unity gain. Amplification of the control signal may be needed for control
purposes.
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Appendix F

Journal 6: Strain/deflection relationship

A relation between beam deflection and measured strain [V] has been derived in
subsection G.2.4. For a given time instance the output from the strain gauge amplifier
vstr
o2 is a linear function depending on an unknown scale factor. This will have to be

estimated in order to relate strain measurements to actual strain/deflection. The
linearity of the relation must also be verified. An experiment has been designed,
which is described in the sequel.

F.1 Experimental procedure

In order to determine the ratio between measured strain and beam deflection, the
beam is affected by a force at the tip. For each mm of deflection the strain is logged.
This procedure is performed in both directions within the range ±20 mm. The range
has been practically determined as the maximum allowable strain. To avoid any
saturation of the measurements, a resistor Rg = 200Ω has been selected for the gauge
amplifier circuit. This corresponds to a gain of ∼ 248. The experimental setup is
shown in figure F.1.

Gauge
amplifier

w

vstr
o2

Figure F.1: Experimental setup in journal 6

F.2 Results

A total of 41 samples have been stored for the experiment, and table F.1 lists them
all. Figure F.2 plots the relation between deflection [mm] and strain measurement
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[V]. A linear regression has been used to establish a relation between the variables,
and the estimate is given as

vstr
o2(t) = 0,1211w(`, t)− 2,403 [V] (F.1)

with the offset being a consequence of the initial condition of the beam and the initial
gauge configuration. This relation will change if the beam is being deformed.

w [mm] vstr
o2 [V] w [mm] vstr

o2 [V] w [mm] vstr
o2 [V] w [mm] vstr

o2 [V]

-20 -4,844 -10 -3,605 0 -2,441 10 -1,193
-19 -4,681 -9 -3,494 1 -2,298 11 -1,075
-18 -4,495 -8 -3,365 2 -2,186 12 -0,945
-17 -4,472 -7 -3,237 3 -2,061 13 -0,828
-16 -4,347 -6 -3,130 4 -1,918 14 -0,696
-15 -4,213 -5 -3,019 5 -1,807 15 -0,596
-14 -4,081 -4 -2,925 6 -1,668 16 -0,458
-13 -3,957 -3 -2,805 7 -1,561 17 -0,328
-12 -3,858 -2 -2,665 8 -1,429 18 -0,203
-11 -3,744 -1 -2,547 9 -1,293 19 -0,063

20 0,019

Table F.1: Strain samples for various deflections
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Figure F.2: Strain as a function of tool tip deflection

F.3 Conclusion

The relation between measured strain and beam deflection at the tip has been de-
termined. A linear regression yields R2 = 0,9998, which is enough to verify linearity
within the tested range of deflections.
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Appendix G

Hardware

Both the mechanical and the electrical systems will be described within this appendix
in order to provide an overview of the technical equipment used for testing in this
project. The mechanical system involves a 6-DOF industrial manipulator REIS RV15
[80] with revolute joints. It features a hydraulic damper on the first link, which is
able to counteract the force of a fully extended manipulator in the horizontal plane.
This eases the joint actuator by supporting some of the torque necessary to hold the
manipulator in this position. In that way the link can be kept in an extended posi-
tion for a longer period of time without unnecessarily stressing the actuator. All joint
actuators are electric permanent magnet direct current motors, which are all driven
by servo amplifiers [49]. The amplifiers are able to output a given torque proportional
to a voltage input signal. Figure G.1 below shows the hardware accessible for this
project, which will be described in details in the following.

Joint
angle

encoders

Strain
gauges

REIS RV15
manipulator

Flexible
tool

National Instruments 
cRIO controller unit

Inertial
measuring

unit

Figure G.1: Overall hardware configuration
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The manipulator is controlled by a National cRIO-9074 controller system [68], which
enables the current drivers to be controlled through a computer with LabVIEW as
well as reading outputs from sensors mounted on the robot. Three NI 9411 digital-to-
analog data acquisition cards [70] sample the voltage signals from the rotary encoders.
Two NI 9263 analog output cards [67] provide signals to the current drivers by a given
voltage signal. An NI 9201 data acquisition card [69] is used to sample signals from
external sensors, which will be mounted on the manipulator for additional measure-
ments. No separate section will be given for the National Instrument components,
since the datasheets provide the information necessary to use them. All external sen-
sors will be described later in this appendix. The mechanical and electronic system
structure is shown in figure G.2.

Controller unit
NI cRIO-9074

Computer with
LabVIEW software

Digital-to-analog
inputs (NI 9201)

NI cRIO-9074 contoller

Development interface

Joint angle
rotary encoders

Mechanics and sensors

Accelerometer, strain
gauges and gyroscopes

Digital to analog
DAQ inputs

Joint angle
rotary encoders

Digital inputs
(NI 9411)

Servo amplifiers
for joint actuators

Analog outputs
(NI 9263)

Joint actuators
(electric PM DC motors)

Virtual instrument
with control algorithms

Figure G.2: Block overview of hardware configuration

From the REIS RV15 technical manuals [79, 80] a number of parameters are given
on both geometry and dynamic limitations. The dynamic parameters are though
not considered reliable, since the robot is not new (exposed to wear and smaller
damages throughout the years). As a result, the parameters will only be used as
initial conditions within the parameter estimation algorithms and otherwise used as
guidelines for the actual values.

This appendix will first describe the manipulator hardware in details including the
static and dynamic limitations including length of links, location of center of gravity
and maximum allowable velocity of each joint actuator. All the sensors on the system
will afterwards be described, including the original sensors (joint encoders) as well as
the externally mounted sensors (accelerometers, gyroscopes and strain gauges). An
equation is derived for each sensor, expressing the output as a stochastic process when
including sensor noise. The distributions of the outputs will be used later when de-
signing a Kalman filter to improve the dynamic model estimates using measurements.
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The appendix is completed with a description of the flexible tool analog, which will be
used to emulate a complex manipulator tool with flexible behavior. Before construct-
ing a model of the flexible behavior, it is important to know relevant specifications of
the tool including material, flexibility and dimensions.

G.1 Industrial robotic manipulator

The manipulator used for testing is a serial robot of the type REIS RV15 with 6 inter-
connected links (6 degrees of freedom) each with a joint being actuated by an electric
motor. A general description of this type of robot is a 6DOF-manipulator. This type
of manipulator is capable of positioning objects in Euclidean space with an arbitrary
orientation (within the limitations) and is therefore also capable of counteracting os-
cillations of a tool in all directions. The manipulator structure itself is assumed rigid,
which is supported by the large ratio between self-weight of 310 kg and maximum
payload of 15 kg [80]. This is often an indication that the manipulator is constructed
in such a way, that it can be assumed rigid. Figure G.3 shows the manipulator.

Figure G.3: REIS RV15 industrial manipulator
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Table G.1 lists the important data of the manipulator, which will be used when
deriving a model and designing a controller.

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

θi,max 330 ◦ 150 ◦ 270 ◦ 360 ◦ 240 ◦ 360 ◦

θ̇i,max 180 ◦/s 180 ◦/s 180 ◦/s 215 ◦/s 215 ◦/s 215 ◦/s
θi,0 −180 ◦ −90 ◦ 90 ◦ −90 ◦ 0 ◦ 0 ◦

mi - 30 kg 35,5 kg 3 kg 3 kg 3 kg
θi,SWmax,+ +147 ◦ −16 ◦ +136 ◦ +356 ◦ +114 ◦ +356 ◦

θi,SWmax,÷ −165 ◦ −137 ◦ −181 ◦ −358 ◦ −115 ◦ −358 ◦

`i - 600 mm 684 mm - 100∗ mm -
`cog
i - 343 mm 37 mm - 50∗ mm -

Table G.1: REIS RV15 data [79, 80] (∗measured)

The different variables are θi,max (swivel range), θ̇i,max (maximum joint velocities), θi,0
(zero reference), mi (link mass), θi,SWmax,+ (software swivel upper limit), θi,SWmax,÷
(software swivel lower limit), ` (length of link) and `cog (length from joint to center
of gravity). The software limits were implemented by the original controller for the
manipulator [79] and will be used as boundaries on the control signals to prevent
hardware damage.

Two types of motors are driving the manipulator links with accessible data given in
table G.2. No other data is available for the actuators, which will have to be estimated
using system identification techniques. This issue will be treated in chapter 8.

Axis 1-3 Axis 4-6

Actuator type Mavilor MO800 Mavilor MO200
Velocity 3000 rpm 3000 rpm
Nominal current 9,2 A 6,5 A

Table G.2: REIS RV15 actuator data [79]

When controlling the TCP path it is important to know the admissible set of joint
angles in joint space. Certain joint vectors (joint angles listed in θ vector) are not
possible to reach, because the limits of the joint angles are depending on the current
configuration of the manipulator. The configuration space is defined as the set of all
admissible combinations of joint space entries [24]. In other words, it is the power setof
the joint space, which includes all manipulator postures measured at the end-effector.
The obstacle space is on the other hand a set of manipulator configurations that are
to be avoided. This space can be static or dynamics depending on the surrounding
environment.

By combining both spaces, the workspace (or free space) remains in which the
manipulator is free to operate [24, 86]. Figure G.4 shows the REIS RV15 workspace,
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which has been generated on the basis of the software boundary limits from the zero
reference joint angles. The zero reference is also referred to as the initial manipulator
configuration, which is also shown in figure G.4. No tool is shown in the figure.

Figure G.4: REIS RV15 simulated workspace

The workspace can be converted into TCP-workspace in order to ensure that the
scheduled TCP trajectory is within the admissible set of manipulator configurations.
Because the scope of this project is concerned about damping oscillations in a local
neighborhood around the destination of the tool, the workspace is not needed di-
rectly. No cartesian coordinates are given as references to reach with the TCP and
all configurations are therefore reachable.

The REIS RV15 manipulator is included in the class of holonomic systems [26].
Specific for holonomic systems is the model constraints depending on the generalized
coordinates alone. The number of actuators is also equal to the number of joint
angles because the joints are free to operate independently. Given the joint angles
of the manipulator, the position and orientation of the last link in the chain can be
determined. Nonholonomic systems are on the other hand modeled using constraints,
which are depending not only on the generalized coordinate vector, but also on its
derivatives. This type of system will not be considered in this report.

Two related terms are further used to characterize the different classes of mecha-
nical system constraints. Since the REIS RV15 manipulator itself is a constant rigid
configuration, meaning that it does not change shape in time, the constraints are
said to be scleronomic [15]. When considering the production cell as a system, the
manipulator itself is still constrained by scleronomic constraints, but the manipulator
base may be moving inside the cell, and therefore time dependent. These constraints
are denoted as rheonomic constraints. The different system type notations will not
be used explicitly throughout the report, but is only mentioned here to inform about
the difference.

This ends the section about the manipulator hardware, and the data will be used
in the sequel part. The following section describes the different sensor types mounted
on the manipulator.
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G.2 Sensor types

A number of sensors must be mounted on the manipulator to provide data for parame-
ter estimation. Rotary encoders provide a pulse for every step of angular displacement
of the axis through it. By counting the number of pulses, the absolute joint angles
can be measured. Accelerometers and gyroscopes gathers data from specific locations
on the manipulator, which must fit the dynamics model. Gyroscopes measure the
change in angular orientation whereas accelerometers measure the changes in linear
velocity. Both gyroscopes and accelerometers are collected on a single IMU board
(inertial measuring unit) from SparkFun Electronics [88]. The IMU board is capable
of measuring 6 different parameters at once by the 3-axis accelerometer and the two
gyroscopes. Strain gauges will provide measurements of the tool strain caused by mo-
tion of the load and the end-effector. All sensors will be thoroughly described in the
sequel subsections categorized according to the variable being measured. A picture
of each individual sensor type, besides the integrated rotary encoders, is given at the
end of the section in figure G.9. Current measurements are available from the servo
drivers, but are not coupled to the controller, which is why they are not used.

G.2.1 Joint angles (rotary encoder)

Each joint on the manipulator is fitted with an encoder, which provides a read-out of
the current joint angle. Due to the gearing between the encoder and the joint actuator
the resolution of the measurement resolution is increased by a factor of 100 [25, 79].
The encoders are of the type LTN G70 from LTN Servotechnik GmbH [62, 46] with a
resolution of 4000, but due to the manipulator gearing the effective count is 400000.
By counting the number of pulses from the sensor and wrapping around for every
400000 counts, the angle can be determined as

θ̌i =
2πci
4E5

+ θi,off [rad], ci (mod 4E5) (G.1)

with ci being the count from the i-th encoder and θi,off an offset if the encoder is
not reset at startup. According to the encoder datasheet1 [62], the accuracy can be
determined using a certain formula. Unfortunately, this formula is only applicable
up and till 2500 counts per revolution. However, since there is no other data on the
component, the formula will be used anyway, which is then given as

εja = ± 2π

20 · 4000
≈ ±7,85E−5, [rad] (G.2)

and when assuming that εja ∼ N (0, (7,85E−5)2), the joint angle is expressed as

θ̌i =
2πci
4E5

+ θi,off + εja [rad] ci (mod 4E5) (G.3)

1The present datasheet is for the encoder of type G71, but according to the manufacturer, the
output of the G70 is identical to the output of the G71 model
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This sensor is the only one of the sensors used in this project that is not modeled as
a voltage. A digital input card is used to count the number of pulses, which is then
converted into an angle. All other sensors have analog outputs, and the voltage must
be related to the sensor variable using a conversion equation. The next sensor is the
gyroscope.

G.2.2 Change in orientation (gyroscope)

A 3-axis type gyroscope will be mounted close to the end-effector. This will provide
the best chance of picking up the most information as possible (dynamics of links
below will be included). The gyroscope is part of the IMU board [88] and consists
of a 2-axis LPR530AL (pitch-roll) [90] and a 1-axis LY530ALH gyroscope (yaw) [89]
both from STMicroelectronics. The gyroscopes LY530ALH and LPR530AL have the
specifications given in table G.3 (the data are similar for both gyroscope types).

Supply voltage 2,7-3,6 V
Range (nominal) ±300 deg/s (1x) or ±1200 deg/s (4x)
Output sensitivity (nominal) 830 µVs/deg (1x) or 3300 µVs/deg (4x)
Zero-rate bias (nominal) 1230 mV
3dB bandwidth 140 Hz

Table G.3: LY530ALH (1-axis) and LPR530AL (2-axis) gyroscope specifications [89, 90]

The gyroscopes have two amplification setting, 1x and 4x, making it possible to
measure more precisely but in 1/4 of the nominal range. No information about the
distribution of the measurements is explicitly given from the datasheet, and a variable
standard deviation σgyro [V] must be used for now in form of a random variable
εgyro ∼ N (0, [σgyro]2). The actual distribution will be estimated from experiments
(see appendix C) to be 2, 7−3, 1 mV according to the axis of motion and the factor of
amplification. A relation between angular rate and output voltage can be expressed
with rgyro [deg/s] describing the measured rate of change

vgyro
o = 830E−6rgyro + 1,23 + εgyro [V] (G.4)

for the 1x case. This equation will be applied in chapter 7 when improving the
system states using a Kalman filter and practical measurements. One equation will
be used for each of the three axes on the IMU. The reason for the unit of εgyro being
[V] is because the standard deviation is measured directly from the sensor output in
appendix C. A conversion must be performed when the deviation is used for Kalman
filter design in chapter 7. From table C.3 in appendix C, the measurements from
table G.4 are obtained.
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IMU channel Sample mean Sample std.

XOUT-1X 1,2110 V 0,0029 V
YOUT-1X 1,2037 V 0,0031 V
ZOUT-1X 1,2052 V 0,0029 V
XOUT-4X 1,2529 V 0,0027 V
YOUT-4X 1,2252 V 0,0027 V
ZOUT-4X 1,2386 V 0,0029 V

Table G.4: Results from IMU zero-rate measurements (gyroscopes only)

The data shows that the following standard deviation estimates are used to express
the noise distributions of uncertainty for all three axes

σgyro
x = 0,0029, σgyro

y = 0,0031, σgyro
z = 0,0029 [V]

with all values provided in the unit [V]. In order to convert the standard deviations
into the unit [rad/s], equation G.4 must be reformulated

rgyro =
vgyro

o − 1,23

830E−6
− εgyro

830E−6

meaning that the converted standard deviation σgyro
c of the gyroscope measurements

are given from

σgyro
c = std

(
− εgyro

830E−6

)
= 1,2048E3σgyro

because of the new relationship

εgyro
c ∼ N

(
0, std2

(
− εgyro

830E−6

))
This provides the following standard deviations in the unit [rad/s]

σgyro
c,x = 0,0610, σgyro

c,y = 0,0652, σgyro
c,z = 0,0610 [rad/s] (G.5)

For the 4x case, the standard deviations are

σgyro
4c,x = 0,0143, σgyro

c,y = 0,0143, σgyro
c,z = 0,0153 [rad/s] (G.6)

using the same procedure. The deviations can now be used for Kalman filter design
in chapter 7. Next sensor to be described is the accelerometer used to measure linear
acceleration.
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G.2.3 Acceleration (accelerometer)

The accelerometer is a 3-axis type ADXL335 from Analog Devices, Inc. [4] and is also
part of the IMU board. It has the specifications given in table G.7

Supply voltage 1,8-3,6 V
Range (nominal) ±3,6 g
Output sensitivity (nominal) 300 mV/g (@3 V)
Zero-g bias (nominal) 1500 mV
3dB bandwidth 50 Hz (0,1 µF caps.)

Table G.5: ADXL335 3-axis accelerometer specifications [4]

Similar to the gyroscope a linear relation between the rate of velocity racc [g] and the
output voltage can be expressed

vacc
o = 0,3racc + 1,5 + εacc [V] (G.7)

with εacc(t) ∼ N (0, [σacc]2). The standard deviation σacc is estimated based on mea-
surements as described in appendix C to be 2, 5−3, 8 mV according to the direction of
motion. From table C.3 in appendix C the measurements from table G.6 are obtained
for the accelerometer outputs.

IMU channel Sample mean Sample std.

AXOUT 1,4705 V 0,0038 V
AYOUT 1,4353 V 0,0027 V
AZOUT 1,7669 V 0,0025 V

Table G.6: Results from IMU zero-rate measurements (acclerometer)

The data show that the following standard deviation estimates are used to express
the noise distributions of uncertainty for all three axes

σacc
x = 0,0038, σacc

y = 0,0027, σacc
z = 0,0025 [V]

with all values provided in the unit [V]. Similar with the gyroscope the deviations
must be converted to be used for Kalman filter design. In order to convert them into
the unit [g] equation G.7 must be reformulated

racc =
vacc

o − 1,5

0,3
− εacc

0,3

meaning that the converted standard deviation σacc
c of the accelerometer measure-

ments are given from

σacc
c = std

(
−ε

acc

0,3

)
= 3,3333σacc
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because of the new relationship

εacc
c ∼ N

(
0, std2

(
−ε

acc

0,3

))
This provides the following standard deviations in the unit [g]

σacc
c,x = 0,0127, σacc

c,y = 0,0090, σacc
c,z = 0,0083 [g] (G.8)

Similar with the converted standard deviations from the gyroscope subsection the
deviations can now be used for Kalman filter design in chapter 7. The last sensor to
be described is the strain gauge used to measure strain of the flexible tool.

G.2.4 Tool deflection (strain gauge)

The last sensor applied in the control system is the strain gauge of type N11-MA-
5-120-11 from RS Components [27] with specifications given in table G.7. Since the
strain gauge is a resistor element and not an integrated circuit with direct signal
output, it must be used together with an electronic circuit. In this case a Wheatstone
bridge is applied. Using four identical gauges the sensitivity can be determined from
[31]

S = 0, 25nsκε

Gauge length 5 mm
Resistance (nominal) 120 Ω
Range ±(2 - 4 %)

∆` : ±(0,1 - 0,2 mm)
∆R : ±(25,2 - 50,4 Ω)

Gauge factor 2,1

Table G.7: N11-MA-5-120-11 strain gauge specifications [27]

where κ is the gauge factor, ε the strain of the sensor and ns the bridge factor (number
of strain gauges in the bridge, maximum 4). Each strain gauge will experience a
change in resistance of ∆R = κεR0, with R0 denoting the nominal resistance of 120
Ω [6]. The bridge voltage output is thus given as

vstr
o = Svstr

s + εstr = 0, 25nsκεv
str
s + εstr [V] (G.9)

with vstr
s [V] denoting the supply voltage of 1,5 V. The stochastic behavior of the

measurement is denoted by εstr. The strain gauge datasheet provides no information
about tolerances, thus the only explicit source of error in the circuit is the 5 % gain
resistor Rg, which affects the gain of the amplifier part. Equation (G.9) is therefore
substituted with the amplifier gain [5]

vstr
o2 = GaSv

str
s =

(
49400

Rg + εstr − 1

)
0,25nsκεv

str
s [V] (G.10)
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with Ga denoting the gain of the instrumental amplifier when taking stochastic be-
havior into consideration. No other sources of error are expressed, when assuming
the gain resistor to make the largest contribution to uncertainty. This equation holds
whenever Zo ∼ ∞Ω when the amplifier is not loading the bridge circuitry; calling for
incorrect measurements. Depending on the size of Rg, the distribution of εstr can be
determined as

εstr ∼ N (0, q2
cR

2
g) (G.11)

by assuming a component tolerance of qc = 5 %. The sensor configuration and
amplifier circuit is given in figure G.5.

vstr
s

vstr
o

R1R2

R3 R4

Zo

Rg
vstr

o2

AD620
INAMP

Figure G.5: Strain gauge configuration circuit using a Wheatstone bridge

Resistors Ri are representing the strain gauges 1 through 4. By using four identical
strain gauges, the circuit is more tolerable to temperature variances and four times as
sensitive to strain when compared to a single strain gauge. The AD620 is an instru-
mental amplifier (INAMP) from Analog Devices [5]. It is configured as a differential
amplifier with dual supply, since the positive and negative strain is causing the output
to change sign as well. An additional 33 nF has been used on the output terminal to
decouple noise. The strain of a single gauge is determined as [48, 13, 31, 103]

ε(x) ,
∆`

`
= −hκw(x)

2
sgn dw

dx = −h
2

∣∣∣d2w
dx2

∣∣∣ sgn dw
dx (G.12)

where κw is the curvature of the beam and w the deflection. The notations are
introduced in chapter 4. This formulation also shows that if h = 0 the strain of the
beam is zero. h/2 is the distance from the center line (neutral axis) of the beam to
the top of the beam. See figure G.6 for the configuration of a Wheatstone bridge for
measuring bending in one direction.

Neutral axis

Gauges

h

b

Figure G.6: Strain configuration on beam
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The strain is therefore determined from a local curvature of the beam by approxi-
mating an osculating circle with radius rw = 1/κw for that specific point x, where
[36]

κw(x) =
∣∣∣d2w

dx2

∣∣∣ (1 +
(

dw
dx

)2)−3/2

≈
∣∣∣d2w

dx2

∣∣∣ (G.13)

with the approximation based on the assumption 1�
(

dw
dx

)2
. Only the notation w(x)

is used, but the actual arguments are w(x, t). Knowing this relation, (G.10) can be
expressed as [6]

vstr
o2(t) = −

(
49400

Rg + εstr − 1

)
0, 25nsκ

h

2

∣∣∣d2w
dx2

∣∣∣
x=`str

sgn dw
dx x=`strv

str
s

= ac

∣∣∣∣∣
M∑
i=1

qi(t)
d2φi
dx2

∣∣∣∣
x=`str

∣∣∣∣∣ sgn

(
M∑
i=1

qi(t)
dφi
dx

∣∣∣
x=`str

)
[V]

(G.14)

given the constant

ac = −0,125

(
49400

Rg + εstr − 1

)
nsκhv

str
s

and knowing that `str is the distance between tool frame and strain gauges. The
origin of the different parts of the equation involving the flexible tool dynamics will
be treated thoroughly in chapter 4. However, the expressions are needed now to model
the output of the strain gauge circuitry. It is then possible to determine the sensor
output at any time instance, when given the dynamics of the flexible tool. Even
though the constant is given from model parameters alone, an empirical gain can be
added to adjust the amplitude to a given setup. In order to determine the relation
between strain and deflection for the practical configuration, an experiment has been
conducted. The experiment is described in appendix F and yields the relation

vstr
o2(t) = 0,1211w(`, t)− 2,403 [V] (G.15)

which has been determined using Rg = 200 Ω. The offset is a consequence of the
initial condition of the beam. This relation will be used in chapter 9 when tuning
the controller. All the sensors introduced above, besides the joint internal encoders,
must be installed at specific locations on the manipulator to achieve satisfactory
measurements. This is the topic of the sequel section.
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G.3 Sensor configurations

In order to achieve satisfactory results of the measurements, the sensors must be
configured correctly. Especially the strain gauges will yield useless results if not
located in the right distance from the tool mount. This is due to the modes of the
tool structure, which causes certain points to be stationary. Based on theory derived
in chapter 4 the dead spots can be determined. A dead spot is a spatial location
on the beam, where no strain can be measured - even if the rest of the beam is
bending. Because a point has no defined length, the finite length strain gauge will
span a collection of points. A single point of zero strain is therefore not a problem.
However, since the slope is changing sign around the point, the strain gauge will be
both stretched and compressed, which is resulting in a zero strain read-out in the
symmetrical case.

The gauges must therefore be located away from dead spots to avoid any misreading.

Figure G.7 shows a plot of d2w
dx2 which is used to calculate the strain. The best possible

location of the gauges is therefore at x = 0, which will provide the most sensitive sensor
configuration. From a practical view point, the gauges have been mounted at 7,56 %
up the beam (`str = 30 mm of 397 mm tool without tip mass), which is considered far
enough from the nearest dead spot. The figure is simulated using (4.4) without time
dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

 0.0

 0.5

 1.0

Normalized tool length

N
o
rm

a
li
ze
d
ϕ
′′
(x
)

30 mm of 397 mm

Figure G.7: Dead spots on beam depending on the location (inspired by fig. 3.5 in [6])

This method is, however, not providing a unique solution. All mode shape functions
in the simulation are normalized at x = `, because the exact scaling is not known. A
different scaling will provide a different result. Furthermore, because the resonance
frequencies are unlikely to be multiples of each other, the dead spots will depend on
time. Since the point of zero dynamics of two eigenmodes is not coinciding, there will
not be a single point in which to place the gauges. However, it is assumed that the
variation is not critical since the gauges have a length of 5 mm. No more theory will
be given about this topic. Empirical observations have shown, that the issue is of no
important regarding this project anyway. A principle sketch of the accelerometer and
gyroscope locations on the IMU-board is given in figure G.8 along with locations of
strain gauges to measure deflection in two directions.
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1-axis gyroscope
and 1-axis accelerometer

Strain gauges

Tool mount

Figure G.8: IMU construction (left) and configuration of strain gauges (right)

The cube shape is an illustrative example of the orientation of the sensors on the IMU
sensor board. As will be given in figure G.11 later on the strain gauges are located at
`str, which is selected to avoid locations of zero-dynamics up to a certain eigenmode.
The different mode shapes and points of zero dynamics are described in details in
chapter 4. An image of the IMU-board is shown in figure G.9 together with a single
strain gauge. Figure G.10 shows the IMU installed on the manipulator.

(a) IMU board (b) Strain gauge

Figure G.9: Images of sensors from figure G.8

Figure G.10: IMU installed on REIS RV15

Setup of the IMU board is also crucial in order to achieve useful measurements. Due
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to the hardware configuration it is not possible to locate the sensors at the origo of
the tool frame Fτ . Instead the board will have to be translated by the transformation
τ
IMUT (derivation and interpretation of kinematic transforms is given in chapter 6),
which is given as

τ
IMUT =


0 0 0 xIMU

0 0 0 yIMU

0 0 0 0
0 0 0 1

 (G.16)

with the position (xIMU, yIMU) given as distances from the tool frame origo to the
center of the IMU-board. The board is 35 × 18 mm and assumed of no size when
stating the location of the individual sensors. All sensors have been introduced and
modeled, and the remainder of this appendix is dedicated to the flexible tool analog.
It describes the physical configuration and the material properties needed to estimate
the beam dynamics in chapter 4.

G.4 Flexible tool specifications

A flexible tool has been constructed for testing on the manipulator. The specifications
are denoted as the Ξ-system throughout the report and contains the following terms
and values

Material density2 ρ = 2700 kg/m3 (aluminum) [105]

Dimensions3 wb × hb × ` = 0,01× 0,0048× {0,381; 0,397} m

Cross sectional area ab = wb × hb = 5E−5 m2

Young’s modulus4: E = 73,1E9 N/m2 [105]

Second moment of inertia: I =
wbh

2
b

12 = 1,0417E−10 m4 [6]

Tip masses5: ml1 = 0,351 kg (ratio6 7,1) and ml2 = 0,522 kg (ratio 10,6)

with wb, hb and ` denoting the beam width, height and length, respectively. An
illustration of the tool design is depicted in figure G.11. Strain gauges are mounted
on the beam as shown in figure G.11 with `str = 30 mm. The distance is the location
where the largest strain can be experienced from a practical viewpoint. Furthermore,
the location is not a points of zero dynamics (eigenfunctions equal zero), which will
otherwise cause the output from the gauges to be zero independent of the beam de-
flection. Figure G.12 shows the actual beam used for testing.

2The actual alloy of the flexible tool is unknown, and is therefore based on an arbitrary selected
type - in this case aluminum 6061-T6 [105]

3Lengths are denoted for the case with and without tip mass, respectively
4The actual alloy of the flexible tool is unknown, and is therefore based on an arbitrary selected

type - in this case aluminum 6061-T6 [105]
5Measured on AAU86759 Kern FCB 12K1, mass includes mounting screw
6The ratio is introduced in chapter 4 and is relating beam mass and tip mass
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Strain gauges

Mounting plate to manipulator

`str

Load Flexible beam

Figure G.11: Flexible tool configuration (illustration)

Tool
mount
plate

Strain
gauges

Tip
mass

Flexible
beam

Figure G.12: Flexible tool configuration (image from laboratory)

Due to assumption 3 (introduced in chapter 4), strain gauges will only be mounted in
one direction. Bending around one axis is therefore the only strain to be measured.
This ends the hardware description, describing the manipulator configuration, sensors
and the flexible tool.
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Appendix H

Kinematic manipulator model

A kinematic model is used to describe the spatial position of any point on a manipula-
tor as a function of the joint space. The so-called DH-parameters are used to specify
the configuration of a particular manipulator type, and will be used to express a gen-
eralized transformation matrix. This matrix describes the position and orientation of
one frame with respect to the previous one. Lastly, a complete transformation will be
derived to describe the relation between the generalized coordinate vector θ and the
tool center point within the production cell coordinate system. Figure 3.5 is repeated
in figure H.1 to show the location of the different frames referred to in the sequel.

Manipulator F0 − Fn

Production
cell Fp

Tool Fτ

End-effector Fe

Workbench Fo
Base Fb

Figure H.1: Sketch of frames in production cell
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H.1 Frame orientations

Depending on the order of rotations and translations from one link to the next, the
transformation matrix can be expressed in different ways according to the applied
convention. The general convention concerning the order of rotation and translation
used throughout the report is denoted in convention 1. Furthermore, the terms trans-
lation and displacement will be used interchangeably throughout the report. If other
conventions are applied, it will be explicitly announced.

A generalized transformation matrix can be derived from the convention by in-
serting the matrices corresponding to the rot(·) and dis(·) functions. The rotation
matrices are each defined as [86]

rot(Xk, θk)∗ =

1 0 0
0 c θk − s θk
0 s θk c θk


rot(Yk, θk)∗ =

 c θk 0 s θk
0 1 0
− s θk 0 c θk


rot(Zk, θk)∗ =

c θk − s θk 0
s θk c θk 0
0 0 1


(H.1)

The rotation matrices are elementary rotations, since the rotation is not performed
around an arbitrary axis but instead around one of the three elementary axes. An
asterisk ∗ is used to indicate, that the rotations cannot be inserted into the definition
from the convention directly because rot(Xk, θk)∗ ∈ R3×3 while i

jT ∈ R4×4. The
conversion is shown shortly. A translation is on the other hand a zero vector with one
non-zero element in the displacement direction given as

dis(Xk, dk)∗ =
[
dk 0 0

]T

dis(Yk, dk)∗ =
[
0 dk 0

]T

dis(Zk, dk)∗ =
[
0 0 dk

]T

(H.2)

A general translation in an arbitrary direction can of course also be defined, but this
is not used for the purpose of deriving a general transformation description using DH-
parameters. Similar with the rotation, an asterisk ∗ is added to the definitions. This is
due to the fact, that the translation vectors given cannot be multiplied together with
the rotational matrices to provide the desired result from convention 1, since they must
be added in their current form. A vector jq described in frame j must be firstly rotated
to obtain equal orientation as frame i, and then offset by the displacement between the
two frame origo. The operation is given by iq = rot(vk, θk)jq + dis(iνj , ||iνj ||2) with
vk ∈ R3 denoting the axis of rotation to align the two frames through the rotation
θk, and iνj ∈ R3 the direction of displacement by the rate ||iνj ||2. This last measure
is the distance between the frame origo of frame i and j.
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Both the rotation matrix and the translation vector can be combined into what is
known as a homogeneous transform [30] by padding them with ones and zeros in the
following way

srw(vk, dk, θk) = dis(vk, dk) rot(vk, θk) =

[
rot(vk, θk)∗ dis(vk, dk)∗

0 1

]
(H.3)

with srw(v, dk, θk) ∈ R4×4 defining the screw of a frame around an arbitrary axis
vk ∈ R3 by the amount θ ∈ [−π/2, π/2] along with a displacement dk ∈ R in the
direction of vk. Both the rotation and the translation are then combined into a
single matrix operation by extending the position vectors from R3 to R4, and now
rot(·),dis(·) ∈ R4×4. The expanded operations will not be given explicitly, since the
srw(·) mapping is the only one needed in the sequel. A mapping C : R4 7→ R4 is thus
constructed to map between two frames represented in 4 dimensions. Equation H.3
can be substituted into the equation from convention 1 to give

i
jT = srw(Xi, `

DH

Xi, ϕ
DH

Xi) srw(Zj , `
DH

Zj , ϕ
DH

Zj)

=


cosϕDH

Zj − sinϕDH

Zj 0 `DH

Xi

cosϕDH

Xi sinϕDH

Zj cosϕDH

Xi cosϕDH

Zj − sinϕDH

Xi −`DH

Zj sinϕDH

Xi

sinϕDH

Xi sinϕDH

Zj sinϕDH

Xi cosϕDH

Zj cosϕDH

Xi `DH

Zj cosϕDH

Xi

0 0 0 1

 (H.4)

which is coinciding with the definition of [30] because an equivalent order of rotation
and translation was applied during the derivation. After expressing all transforma-
tions from the previous link to the next, a complete description from the end-effector
frame Fe to the frame attached to the production cell Fp can be obtained. This com-
plete transformation matrix depends on the reachability of the manipulator including
revolution angles and/or prismatic strokes. Using the newly derived linear mapping
{C : ijT} from one frame to a neighboring one, a mapping from the base to the n-th
frame can be expressed for an n-DOF manipulator

0
nT (θ) =

n∏
j=1
i=j−1

i
jT (θj) (H.5)

which is depending on the generalized coordinate vector θ. Using this resulting trans-
formation (or representation of orientation and position of the n-th frame), the end-
effector frame Fe can be expressed relative to the production cell frame Fp [86]

o
eT (t, θ,$) = p

oT
−1(t) pbT (t) b0T

 n∏
j=1

i
jT (θj)

 n
τT τ

eT ($, t) (H.6)

o Workbench frame Fo p Production cell frame Fp
b Base frame Fb [0, n] Manipulator frames Fi
τ Tool frame Fτ e End-effector frame Fe
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which is also given in (3.2). The time varying transformations p
bT (t) ∈ R4×4, b0T ∈

R4×4 and n
eT (t) ∈ R4×4 representing the manipulator base in reference with the

production cell, the base frame in reference with the zero frame and the end-effector
e in reference with the n-th frame, respectively. Time dependency of p0T (t) can be
caused by a moving manipulator within the production cell, and time dependency
of n

eT (t) caused by the flexibility of the end-effector (represented by the (n + 1)-
th link). Other arguments can be added to yield desirable behavior. The inverse
transform p

oT (t)−1 has been applied to express a workbench o within the production
cell. Additional frames can be added if needed. Next section describes how the
DH-parameters are located on the manipulator.

H.2 Manipulator geometry

Based on the hardware configuration used for this project, the DH-parameters of the
REIS RV15 manipulator are given in table 3.1. The general structure of the DH-
parameters was defined based on pictures of the manipulator, and the parameters `DH

Xi

and `DH

Zj
were given from physical measurements on the REIS RV15 as well as from a

previous project using the same robot [25]. The reason for the non-unique approach to
form a description of the manipulator configuration is caused by different uses of the
final model. If the link exact link positions in between the base and the end-effector
frame are not needed, several frames can be coinciding with each other to simplify the
model. For the purpose of this project, a model is expressed by the DH-parameters
from [25] with some sign changes.

Using the generalized transformation matrix from equation H.4, a complete trans-
form from base to the 6-th link can be derived. Firstly, each of the separate transforms
are explicitly expressed

0
1T (θ1) =


c θ1 − s θ1 0 0
s θ1 c θ1 0 0
0 0 1 `DH

Z1

0 0 0 1

 , 1
2T (θ2) =


c θ2 − s θ2 0 0
0 0 1 0
− s θ2 − c θ2 0 0

0 0 0 1


2
3T (θ3) =


c θ3 − s θ3 0 `DH

X2

s θ3 c θ3 0 0
0 0 1 0
0 0 0 1

 , 3
4T (θ4) =


c θ4 − s θ4 0 0
0 0 1 `DH

Z4

− s θ4 − c θ4 0 0
0 0 0 1


4
5T (θ5) =


c θ5 − s θ5 0 0
0 0 1 0
− s θ5 − c θ5 0 0

0 0 0 1

 , 5
6T (θ6) =


c θ6 − s θ6 0 0
0 0 −1 0

s θ6 c θ6 0 0
0 0 0 1


A multiplication of the individual representations of orientation between consecutive
links will provide the resulting orientation of the 6-th frame F6 in reference with the
manipulator base frame Fb

0
6T (θ) = 0

1T (θ1)1
2T (θ2)2

3T (θ3)3
4T (θ4)4

5T (θ5)5
6T (θ6) (H.7)
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and with pre-multiplication of production cell dependent orientations and post-multi-
plication of tool related transforms form the final transform from (H.6). The complete
transformation matrix will not be given explicitly, as it is rather complex. The map-
ping 0

6T is given explicitly in appendix N, and the zero configuration of the manipu-
lator is given by θ = 0. Other mappings are not used for the purpose of this project,
as the manipulator is not moving, and no workbench is present in the laboratory.
Figure H.2 shows the involved frames based on the DH-parameters.

F0

F1

F2

F3

F4

F5

F6

X̂

Ŷ

Ẑ`DH

Z1

`DH

X2

`DH

Z4

ϕDH

X1

ϕDH

X3

ϕDH

X4

ϕDH

X5

Figure H.2: Graphical representation of frames describing the manipulator by DH-parameters

The above theory has been derived for the entire 6-DOF manipulator, but as a con-
sequence of remark 1 on page 18, there is no need to include the rotation axes 1, 4
and 6. Only the swivel axes 2, 3 and 5 are necessary [80]. Accordingly, the kinematics
becomes simpler, and to further simplify things, the inactive axes will be removed
from the link indices as well. Therefore, the links are now enumerated as follows.
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θ2 is renamed to θ1

θ3 is renamed to θ2

θ5 is renamed to θ3

θ1, θ4, θ6 are ignored

A new set of DH-parameters can be derived, which is given in the main report in
table 3.2 with corresponding transformation matrices expressed on page 22 from the
base to the third frame. Before ending the chapter, a short example 1 is presented.
It shows how to determine the tip position of the manipulator (origo of frame F6) as
a function of θ. The example is using the non-reduced 6-DOF manipulator model.

Example 1: The tip-position 0ν6(θ), defined as the origo of frame F6 in
reference with the manipulator zero frame F0, is determined as a function of
the generalized coordinate vector θ using the complete transformation matrix
in (H.7), yielding

0ν6(θ) = 0
6T (θ)ν6 = 0

6T (θ)
[
0 1

]T

with the zero-one vector being a consequence of the use of homogeneous trans-
formations, which include a translation term. Using the DH-parameters from
table 3.1, the origo of the 6-th link can be explicitly expressed as

0ν6(θ) =

`DH

X2
c θ1 c θ2 − `DH

Z4
c θ1 c θ2 s θ3 + `DH

Z4
c θ1 c θ3 s θ2

`DH

X2
c θ2 s θ1 − `DH

Z4
c θ2 s θ1 s θ3 + `DH

Z4
c θ3 s θ1 s θ2

`DH

Z1
− `DH

X2
s θ2 − `DH

Z4
c θ2 c θ3 − `DH

Z4
s θ2 s θ3


with the permuted 1 removed from the vector. Contributions from θ4 through
θ6 will take place only when a vector v 6= 0̄ is added to the last frame. This
will be the case when adding a tool to the manipulator. 2

Next, the transformations will be used to express linear and angular velocities of spe-
cific points and bodies on the manipulator. This will come in handy when describing
the dynamics involved in the next chapter.

H.3 Derivatives of position and joint angle

When modeling the dynamics of the manipulator, derivatives of positions and orien-
tations are needed. Based on the definition given in chapter 3, a rotation is always
performed around the third axis in a Cartesian frame description. The link rotation
vector can therefore be described as [30]

ω̄k ≡ θ̇ke3 =
[
0 0 θ̇k

]T

(H.8)

where ω̄k denotes the angular velocity vector of link k in reference with frame k itself.
The process of determining the rotation of the following link (towards the end-effector,
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from base to n-th link) consists of adding additional rotational contributions to the
previous link, described by

ω̄j = jω̄i + θ̇je3 = j
iR ω̄i +

[
0 0 θ̇j

]T

(H.9)

with j
iR = rot(vk, θk)∗ expressing the pure rotation part of the homogeneous trans-

formation j
iT from equation H.3. Thus to find the resulting angular rotation of link

j (as seen from frame j), add the rotation of link j to the angular rotation of link i
in reference with frame j. Figure H.3 interprets equation (H.9) graphically.

|ω̄i| ω̄i

Link i

Link j

ω̄j

|ω̄j |

Link j

ω̄jj ω̄i

Figure H.3: Graphical representation of (H.9) in chain and in free-body diagram

Therefore, by changing the reference of the angular velocity ω̄i from frame i to j, the
velocities can be added. The effect is verified, when selecting ω̄i = −ω̄j , making the
resulting angular velocity equal to the zero vector, and thus no rotation is experienced
from the j-th link point of view. The first subfigure shows both the axis of rotation ω̄k
and the rate of rotation |ω̄k|. Second subfigure, shows implicitly the angular rotation
by the compact notation ω̄k.

Because of the DH-notation with rotation of a link around the z-axis ω̄k = θ̇ke3,
the linear velocity of the point of rotation of the j-th link can be obtained by

v̄j = j
iR

iv̄j = j
iR
[
v̄i + ω̄i × iνj

]
(H.10)

Note again that the expression v̄j is always implicitly given with respect to its own
frame j. The velocity v̄i is another expression of the first derivative of the correspond-
ing position vector iνj added a velocity contribution from the previous link. This is
similar to adding initial conditions to a process. Similar with the angular velocity,
equation (H.10) can be illustrated graphically, see figure H.4.

Link i, iνj

Link j

v̄iωi

Link i
v̄j

v̄i

iv̄j
ωi×iνj

Figure H.4: Graphical representation of (H.10) in chain and in free-body diagram

Explicit expressions are given in appendix N. The position vectors iνj are given for
the original REIS RV15 manipulator configuration as (here without the padded one
at the end)

0ν1 = `DH

Z1e3,
1ν2 = 0̄, 2ν3 = `DH

X2e1,
3ν4 = `DH

Z4e2,
4ν5 = 0̄, 5ν6 = 0̄

When applying remark 1 from page 18, the position vectors iνj can be written in a
compact form
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iνj = `DH

Xie1 (H.11)

because the manipulator is operating in the plane (X0, Y0) only. Based on this infor-
mation, the center of gravity vectors pi, which will be used in the dynamics part, can
be expressed as

pi = 1
2
iνj = 1

2`
DH

Xie1 (H.12)

when assuming a homogeneous mass distribution of each link. If the original mani-
pulator configuration was maintained, the center of gravity vectors would have been
more complicated because the frame origo are not coinciding with each joint.

Yi

Xi

pi

iνj
Link i

Figure H.5: Center of gravity vector location on manipulator link

The basic kinematics has been explained, and the remainder of this section will apply
the theory in a number of examples, see example 2 and 3. Later, the singular points
of the manipulator are analyzed on the basis of the derived kinematics.

Example 2: A location on the manipulator can be described according to any
other point expressed in a second frame. A vector bq describes a vector q
expressed in terms of the b-th frame. The same vector can be described in
another frame by aq = a

bT
bq. When expressed according to another point av,

the full transformation is given by

aq =
(
a
bT +

[
0

[4×3] av
])

bq = a
b T̃

bq

which shows the benefits of using 4 × 4 transformation matrices, since all
operations can be collected within a single matrix multiplication a

b T̃. This
theory comes in handy when considering velocities for points that are not an
origo location of a DH-frame. 2
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Example 3: The velocity of a point bv in reference with frame b is given by
bv̇ = v̄b+bω̄p×bv, and for expressing this velocity according to frame a (given
that a = b− 1) the definition from equation (H.10) yields

av̇ = v̄a + ω̄a × aνb + a
bR(bω̄p × bv)

with the middle term taking care of coupling the simultaneous translations
and rotation. In the case when the constraint is altered to a < b− 1

av̇ = v̄a +
∑b−1
k=a+1

a
kR (ω̄k × kνk+1) + a

bR(bω̄p × bv)

This expansion of the definition in (H.10) becomes important for determining
the velocity of the link center of gravity, which is related with the physical
frames and not the DH-frames. 2

After deriving the basic kinematics of a manipulator, the singular points are to be
identified from that description. These are necessary to know before applying a con-
troller to the system, since they define extreme locations of the convex hull covering
the configuration space.

H.4 Singularity analysis

By organizing v̄j and ω̄j in a matrix structure, singularity issues can be revealed. The
Jacobian structure is the target here [86][

v̄ ω̄
]T

= J(θ)θ̇ =
[
∂v̄
∂θ

∂ω̄
∂θ

]T
θ̇ (H.13)

with J denoting the Jacobian of linear and angular velocity expressions. The equation
must be generalized to handle non-linearities, since the velocity equations (H.9) and
(H.10) in general are nonlinear. It can therefore be evaluated around an operation
point θ̄ similar to using a multivariate Taylor approximation, and therefore[

v̄ ω̄
]T

= J(θ)
∣∣
θ̄
θ̇ (H.14)

For singularity analysis, it is important that J(θ) ∈ Rn×n such that the determinant
is valid. A singularity is defined as points in the system domain, where one or several
of the states cannot be driven to the output by anything but infinite control signals.
This is a consequence of taking the inverse of the Jacobian, and the case if a limitation
in the mechanical reachability arises. Therefore, applying control close to singularities
must be avoided, because one degree of freedom is removed. The specific points can
be located from det J(θ) = 0 [30], where rank(J) < n. In order to prevent confusions
about what v̄ and ω̄ to use, the expression in equation (H.13) is re-written to
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[
v̄k ω̄k

]T
= kJ(θ)θ̇ =

[
∂v̄k
∂θ

∂ω̄k

∂θ

]T

θ̇ =



∂v̄T
ke1

∂θ1

∂v̄T
ke1

∂θ2
· · · ∂v̄T

ke1

∂θn
...

...
. . .

...
∂v̄T

ke3

∂θ1

∂v̄T
ke3

∂θ2
· · · ∂v̄T

ke3

∂θn
∂ω̄T

ke1

∂θ1

∂ω̄T
ke1

∂θ2
· · · ∂ω̄T

ke1

∂θn
...

...
. . .

...
∂ω̄T

ke3

∂θ1

∂ω̄T
ke3

∂θ2
· · · ∂ω̄T

ke3

∂θn


θ̇ (H.15)

By substituting known expressions of linear and angular velocity into the Jacobian,
the determinant can be expressed explicitly. Due to the complexity of the Jacobian,
the determinant equation will not be solved analytically. Instead, the problem can be
solved using knowledge of the manipulator structure and numerical methods. Also,
the control is confined to a small region around the zero position. Next appendix will
express the dynamics of the manipulator.
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Dynamic manipulator model

A kinematic model is only useful to calculate steady-state positions of the manipula-
tor. A dynamics model is on the other hand capable of expressing the manipulator
dynamics in terms of differential equations. The general dynamics model is given
from (3.5) and is repeated here [86]

M(θ, t)θ̈ = τ(t)−C(θ, θ̇)− F(θ̇)−G(θ) (I.1)

Different terms makes up the manipulator dynamics model, which will each be de-
scribed in the sequel sections. When constructing the model, the terms will not be
derived individually and combined later on. In stead the entire model will be gener-
ated using an iterative procedure as described at the end of the chapter.

I.1 Manipulator link inertia

The first term in the dynamics model described by equation (I.1) is the mass ma-
trix, which is dependent on the geometry and materials of the manipulator hardware.
A general expression of the mass matrix cannot be derived, because it involves the
specific homogeneous transformations describing the manipulator. Instead, the iner-
tia tensors describing the inertia of each link can be given explicitly, based on the
following assumptions

• Homogeneous mass distribution of the manipulator links

• Geometry of links is thin rod with mass mi

Based on these assumptions, the inertia tensor of each of the links can be determined
from the moment of inertia Icm of a rod around the center of gravity cm as [12]

Icm,i,k =

{
1/12mi`

2
i k-axis non-parallel to link

0 k-axis parallel to link
(I.2)

and the inertia tensor can thus be described as
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Ii = diag(Icm,1,i, Icm,2,i, Icm,3,i) (I.3)

with the index notation cm has been excluded as it is given by implicit. The inertia
tensor is diagonal, since no cross inertias are involved when assuming simple rod
geometry and not complex asymmetric link shapes. In this case, the tensor is only a
structure to handle moment of inertias around three different axes of rotation. Figure
I.1 shows graphically how the inertias are expressed.

Figure I.1: Definition of inertia for manipulator links

An explicit description of a general mass matrix cannot be given, but whenever the
inertia tensors have been derived for any link of the manipulator, and the joint space
is expressed in terms of the generalized coordinate vector θ, the terms involving joint
space accelerations θ̈ can be collected within M(θ). Next, the terms relating the
motion between frames are considered.

I.2 Coriolis and centrifugal forces

Two effects caused by the motion of frames is the Coriolis force and the centrifugal
force. The Coriolis force relates the motion of a point in one frame to another frame,
and is generating a torque on the manipulator links if either of two neighboring links
are moving [7]. All terms including a product between two joint velocities can thus
be collected within matrix C(θ, θ̇). A general expression of the Coriolis force [14]
transformed into a torque is given by

τcor,j = −2mj
ipj × (ω̄i × v̄cm,j) (I.4)

with vcm,j = determinable using theory from chapter H. τcor,j is the torque affecting
link j due to the Coriolis force. The second effect is the centrifugal force, which is not
depending on interconnected links, but only on a single link. A general expression of
the centrifugal force is given by [14]

τcen,j = −mj
ipj × ω̄i × (ω̄i × pcm,j) (I.5)

with τcen,j being the torque acting on the j-th link caused by the centrifugal effect on
a moving object. Both there torques will be localizable within the system of dynamic
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equation of the manipulator in the term C(θ, θ̇) (see (3.5)), even though they are
not used directly as shown here. A systematic approach is applied, which makes it
possible to derive dynamic equations based on iterations from link to link. More on
that in section I.6. Therefore, no further description of the forces will be addressed.
Next, the gravitational pull on the links is described.

I.3 Manipulator gravity pull

Each link has a mass mi, which will be pulled in negative z-direction of the inertial
frame F0 from the center of gravity given by ḡ =

[
0 0 −g

]T
, see figure I.2. The

inertial frame is assumed by implicit, but must be expressed explicitly when applied.
A term depending on the generalized coordinate vector θ must be included, which
can be generalized in the following way to express the gravitational pull (as a torque
to fit the form in (I.1)) of the i-th link center of gravity. No explicit term will be
derived, because the model is automatically iterated.

Figure I.2: Gravity pull on manipu-
lator links

Figure I.3: Manipulator link frictions

Last part of the joint space model involves friction, which is emerging from the
manipulator joints as depicted in figure I.3. Each manipulator joint will provide a
torque contribution counteracting the positive motion of the joint. This is caused
by friction in the joint bearings, which must be included by the model to provide
approach real behavior from simulations. Since the bearings are rotating on the same
axis as the joint actuators, the friction contribution from the bearings are included
within the actuator model instead, which will be modeled in the sequel.

I.4 Actuator model

The actuator type installed on the manipulator is an electric DC-motor. Each joint
is actuated by a torque generated by an actuator mounted directly on the axis of
rotation. This implies the class of direct drive manipulators, which the REIS RV15
is part of [30]. Each drive is modeled independently and as a source of power to
each individual link. The dynamics are then propagated through the links to the
base. A model of the actuator dynamics is expressed in the following set of non-linear
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differential equations in the armature current Ia,i and the joint angle θa,i. The i-th
actuator can be modeled as [41]

İa,i = −αiIa,i − βiθ̇a,i + κiUi (I.6)

θ̈a,i = γiIa,i − δiθ̇a,i + τi(t, θa,i)/Ji (I.7)

with Ui being the armature voltage [V] as well as

αi = Ri/Li, βi = Kei/Li, γi = Kmi/Ji, δi = Bi/Ji, κi = 1/Li (I.8)

being motor specific constants, where Ri is the electrical armature resistance [Ω], Li
the armature inductance [H], Ji the armature inertia [kgm2], Bi the friction [Nms]
and Kei = Kmi the electrical and mechanical motor constant [Vs rad], respectively.
No data is available on the actuator dynamics, and they will have to be estimated on
the basis of sensor readouts. The nonlinear contribution is caused by the nonlinear
dissipative function τi(t, θa,i). This is a collection of nonlinear friction terms and
external load torques. Nonlinear friction forces are often described by discontinuous
functions, but a continuously differentiable friction model has been suggested by [64]
and is given as

τi(t, θi) = τ
Li+

(t, θi+)− q1,i[tanh q2,iθ̇i − tanh q3,iθ̇i]− q4,i tanh q5,iθ̇i (I.9)

with the first term τ
Li+

(t, θi+) added to include torque contributions from upper links
and the payload. The index i+ indicates the set of indices {i + 1, . . . , n}, since the
loading torque is a function of the upper links. The different parameters qj,i with
j = 1, . . . , 5 define the shape of the friction model. Three types of friction types are
included in this model, whereas the viscous friction is linear in the angular velocity
state θ̇i and therefore included as a direct term within (I.7). An example of the
friction model shape is shown in figure I.4 with and without the viscous friction
term q6,iθ̇i added (in this case Bi = q6,i), which provides a contribution proportional
with the angular velocity. In order to apply the nonlinear friction model, the model
must be fitted using system identification, because no data is available of the friction
parameters for this system.
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Figure I.4: Friction with arbitrary parameters with and without viscous friction term
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I.5 Derivation of dynamic equations

In order to collect the terms of the dynamic equations into the matrices given in the
previous sections, the equations must firstly be derived. The Lagrangian approach has
been chosen here, which models the energy changes in the manipulator rather than the
forces directly. A general formulation of the dynamics is given by the Euler-Lagrange
equation [86]

d

dt

∂L
∂θ̇
− ∂L
∂θ

= ξ (I.10)

with L = T − U denoting the Lagrangian, which is the difference between the kinetic
T and the potential energy U . The vector ξ = Q − ∂F

∂θ̇
is expressing the generalized

forces or external forces applied to the manipulator including actuator and friction
forces. The friction forces are modeled using the Rayleigh dissipation function F [65].
A definition of the individual terms is explained in the sequel.

External forces Q applied from actuation are given directly from the model of the
actuator. Equations (I.6) and (I.7) can thus be solved for the torque Qi = αiIi of
the i-th link. The energies Tm and Um, considering the manipulator without tool, are
given by [30]

Tm = 1
2

n∑
i=1

miv
T

cm,i vcm,i + ωT

i Ii ωi (I.11)

Um = − 1
2

n∑
i=1

mi ḡ
T

h
0
iT pi + c (I.12)

with ḡh = −ge3, ḡh ∈ R4 being the zero-padded gravity vector adapted to fit the
homogeneous transformations. The reason why the fourth entry of ḡ is not a one
is because the gravity vector is oriented in the same direction independent of of the
transformation applied to it. pi expresses the center of gravity in reference with the
i-th frame, and they are given, as introduced in chapter H, as

p1 = −`1e3, p2 = `2e1 + `3e3, p3 = `4e2, p4 = 0̄, p5 = 0̄, p6 = 0̄

with `1 through `4 shown in figure I.5 (the lengths does not resemble the lengths de-
scribed by the DH-parameters). The illustration is based on a pictorial interpretation
of the manipulator structure, and not based on the actual structure.

The kinetic energy is based on the scalar case Ekin = 1
2mv

2 + 1
2Jω

2, but has been
expanded to the matrix/vector case. Similar, for the scalar case of the potential
energy Epot = mgh + c, with c being a constant offset used for special cases. The
height is instead given by the position vector 0

jT pj from base to the center of mass
of the j-th link. A negative sign has been given the summation, since the potential
energy must be positive for this configuration (zero-level or c assumed at the base).
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`1

`3

`2

`4

F1 F2

F3

Figure I.5: Illustration of parameters `1 through `4 used to define center of gravity vectors pk

A simplification has been made to further limit the complexity of the model, which
is described in assumption 11.

Assumption 11: When calculating the kinetic energy contribution of the tool,
the inertia is assumed located at the point of the end-effector, since the con-
figuration used for testing features a tip mass much heavier than the beam
mass, ml � mb. Thus, the inertia tensor is given as in (I.15) with a lumped
mass. For more complex tools, It will include cross elements. 2

A definition of tool mass must be used in the sequel and thus mt , ml+mb is a com-
bination of the load and the beam mass. Figure I.6 shows a graphical representation
of the expressions under the summation sign in (I.11) and (I.12).

vcm,i

ωi

mi, Ii

Link i
mi

ḡ

Link i

0
jT pi c

Link n+ 1

ḡ

0
n+1T pn+1 = 0

eT pe

mt

Figure I.6: Expressions for kinetic energy, potential energy (link [1, n]) and potential energy of tool

The position vector pn+1 describing the center of gravity of the tool (beam + load)
is given from calculations on beam deflections in section 5.1. Because of assumption
11, the tool center of gravity is also the TCP given as the origo of the end-effector
frame. To include the tool energy in the Lagrangian, two additional energy equations
must be expressed, and due to the assumption of a lumped tool mass, the potential
energy of the tool is determined from a point mass mt

Tt = 1
2mtv

T

cm,t vcm,t + 1
2

∫ `

0

m(x)

(
∂w(x, t)

∂t

)2

dx+ 1
2ω

T

t It ωt (I.13)

Ut = − 1
2mt ḡ

T

h
0
eT
[
0 0 0 1

]T
(I.14)

where the last integral term is given from [94] describing the kinetic energy contribu-
tion from an oscillating beam given a mass distribution m(x) and a deflection function
w(x). If the tool oscillation is small, the kinetic energy may be omitted. The inertia
tensor of the tool It is given as
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It =

mt` 0 0
0 mt` 0
0 0 0

 (I.15)

This will be used in a short-hand notation of the kinetic energy adopted from [72],
which is able to express the combined energy equations given as

T = Tm + Tn+1 = 1
2

n+1∑
i=1

ΩT

iMiΩi + Tn+1(x) (I.16)

U = Um + Ut = − 1
2

n∑
i=1

mi ḡ
T

h
0
jT pi − 1

2mt
0ḡT

h
0
eT
[
0 0 0 1

]T
(I.17)

with Mi representing the generalized inertia matrix and Ωi a generalized velocity
vector, both given as

Mi =

[
miI3 0

0 Ii

]
, Ωi =

[
vcm,i

ωi

]
(I.18)

where the constant c from equation I.12 has been omitted. Position vectors are used
to determine the linear velocity vectors vcm,i, but the form of each individual vector
will have to be derived on the basis of the DH-frames from appendix H. This provides
the following vectors

vcm,1 = 0̄, vcm,2 = 1
2 (ω2 × 2ν3) = 1

2 (θ̇1 + θ̇2)`DH

X2e2

vcm,3 = v3 + 1
2 (ω3 × 3ν4) = v3 − 1

2 (θ̇1 + θ̇2 + θ̇3)`DH

Z4e1

vcm,4 ∼ v4, vcm,5 ∼ v5, vcm,6 ∼ v6

The last three vectors are expressed in terms of frame velocities, because the centers
of gravity are assumed to be coinciding with the frame origo (formulated in assump-
tion 12).

Assumption 12: Velocity of the center of gravity is assumed similar to the
linear velocity of the corresponding DH-frames for links 4,5 and 6 by vcm,i ∼ vi
due to the assumed small moment of inertia and the coinciding between the
frames. This also yields Ii = 0 for the last three axes. 2

In order to express the complete set of dynamic equations, the initial conditions are
stated as v0 = 0̄, ω0 = 0̄. They are introduced in order to initiate the iterative process
of finding the linear and angular velocity vectors using equations (H.10) and (H.9),
respectively. Whenever the velocities have been found, the energies can be expressed
using the previously derived equations (I.11) and (I.12).
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Remark 7 (model derivation): Because the dynamic manipulator model is too
complex for performing the model derivation by hand, a symbolic tool must
be applied to do the calculations. The MATLAB Symbolic Math Toolbox is
available as the computational tool, but unable to differentiate time dependent
functions. This calls for an iterative procedure for determining the dynamic
equations instead. A method, which is not based on energy, must be applied,
and will be described in the sequel section. 2

As described in remark 7, the energy based approach is not being applied to model
the system. A regular Newtonian approach must be applied instead to derive the
dynamic equations. This method is described in the sequel section.

I.6 Manipulator model by Newtonian approach

Two iterative equations have already been introduced in (H.9) and (H.10) to determine
angular and linear velocity, respectively. Several other iterations will be needed to
compute the dynamics of the manipulator. The recursive equations will not be derived
but are given directly from equation 6.45 to equation 6.53 in [30], and they are given
in the following way (accommodated for the notation within this report)

1) ωj = j
iRωi + θ̇je3

2) αj = j
iRαi + j

iRωi × θ̇je3 + θ̈je3

3) aj = j
iRαi × iνj + j

iRωi × ωi × iνj + j
iR ai

4) acm
j = αj × ipj + ωj × ωj × ipj + aj

5) Fj = mja
cm
j

6) Nj = Ijαj + ωj × Ijωj
7) fi = i

jR fj + Fi

8) ni = Ni + i
jRnj + pi × Fi + ipj × i

jR fj

9) τN ,i = nT

ie3

with the different expressions explained in the following list

1) Angular velocity of consecutive links provided rotation around only e3 axes

2) Angular acceleration of link j

3) Linear acceleration of link j

4) Linear acceleration of center of gravity of link j

5) Force on link j center of gravity

6) Torque on link j center of gravity

7) Force propagation through manipulator

8) Torque propagation through manipulator

9) Resulting torque on joint i using the Newtonian approach
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Some of the variables are clashing with variables in the main report, but they will only
be used here. Notice from the recursive equations, that the linear velocity of (H.10)
is not applied directly, but used implicitly in the expression of the linear acceleration.

Convention 5: Two mathematical conventions must be introduced to prevent
misinterpretation of the math involved in this section. The expression ωi ×
ωi× pj involves two cross products, and they are evaluated from right to left,

which can be explicitly denoted by ωi×(ωi×pj). Also, the expression j
iRωi×

iνj involves both a cross product and a change of basis by j
iR . The cross

product is evaluated before the transformation, which can be stated explicitly
as j

iR (ωi× iνj). Both notations are introduced to simplify the expressions.3

A set of initial conditions must be expressed in order to run the iterative process, and
they are given as

ω0 = 0̄⇒ α0 = 0̄ and a0 =
[
0 0 −g

]T

The last condition will introduce gravity to the model [30], which is otherwise not
given by any of the iterative equations. However, using the Lagrangian approach
automatically includes the gravity term in the model, because the potential energy
is explicitly expressed. Origo vectors νi, center of gravity vectors pi, transformations
R, inertia tensors Ii and masses mi are given in the previous chapters and sections.
The resulting model is given in appendix N for the 3-DOF manipulator configuration,
and the model is used in chapter 3.
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Appendix J

Solutions to eigenvalue problem

The deflection w(x, t) is solved in chapter 4, but in order to determine the mode
shape functions φi(x), the first eigenvalue problem from (4.18) must be solved with
the problem expressed as

∂4φi(x)

∂x4
= λ4

iφi (J.1)

This problem must be solved for the eigenvalues λi. Applying a Laplace transform to
the eigenvalue problem yields

(J.1)
L→ s4φi(s)− s3φi(0)− s2φ

(1)
i (0)− sφ(2)

i (0)− φ(3)
i (0) = λ4

iφi(s) (J.2)

Solving for the eigenfunction yields

φi(s) =
s3φi(0) + s2φ

(1)
i (0) + sφ

(2)
i (0) + φ

(3)
i (0)

s4 − λ4
i

(J.3)

The eigenvalue λi ∈ R is assumed real, since it relates to the eigenfrequency ωi ∈ R
through the relation in (4.19). Since the solution to the problem has a periodic
solution, the eigenvalues λi,j ∈ C where λi,1 = λi can be expressed together with the
Laplace operator as

λi,j = |λi,j |e jξi,j s = |s|e jξs (J.4)

making the poles of the fraction expressed through the relation s4 − λi = 0

e j4ξs = e jξi,j ⇒ ξs = 1
4ξi,j + pπ

2 , p ∈ Z (J.5)

Since the eigenvalues λi ∈ R the angle ξi,1 = ξi = 0, the four eigenvalues can be
located on the unit circle (assuming for now |λ| = 1) as shown in figure J.1. The
plane on the left shows the case when λi ∈ C, which makes it possible for ξi 6= 0,
while the plane on the right assumes a real λi yielding ξi ≡ 0.

This indicates, that the eigenvalues (when assuming unit length) are laying on the
perimeter of the unit circle separated by π/2 rad. The eigenvalues in question, when
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<

=

<

=

ξi

ξs

λi

Figure J.1: Location of eigenvalues in eigenvalue problem

considering only a single i, are caused by periodicity of the solution to the eigenvalue
problem. Due to the assumption of real eigenvalues λi, all four solutions can be
expressed as

λi,1 = λi λi,2 = jλi λi,3 = −λi λi,4 = −jλi (J.6)

In order to express the eigenfunction in time domain, the fraction (J.3) must be
expanded using the theory of partial fraction expansion, given as

φi(s) =
∑
j

Pj(s)

s− λi,j
, Pj(s) =

φi(s)(s
4 − λi)∏

k 6=j(s− λi,k)

∣∣∣∣∣
s=λi,j

(J.7)

with j, k ∈ [1, 4] and φi(s)(s
4−λi) expressing only the numerator polynomial of φi(s).

Using this approach on equation (J.3), the eigenfunction becomes

φi(s) =
P1(s)

s− λi,1
+

P2(s)

s− λi,2
+

P3(s)

s− λi,3
+

P4(s)

s− λi,4
(J.8)

By substituting the solutions from (J.6), (J.8) yields

φi(s) =
P1(s)

s− λi
+

P2(s)

s− jλi
+
P3(s)

s+ λi
+

P4(s)

s+ jλi
(J.9)

where the rational fractions Pj(s) becomes

P1(s) =
s2φ

(1)
i (0) + sφ

(2)
i (0) + φ

(3)
i (0)

(s− jλi)(s+ λi)(s+ jλi)

∣∣∣∣
s=λi

=
λ2
iφ

(1)
i (0) + λiφ

(2)
i (0) + φ

(3)
i (0)

(λi − jλi)(λi + λi)(λi + jλi)

P2(s) =
s2φ

(1)
i (0) + sφ

(2)
i (0) + φ

(3)
i (0)

(s− λi)(s+ λi)(s+ jλi)

∣∣∣∣
s=jλi

=
−λ2

iφ
(1)
i (0) + jλiφ

(2)
i (0) + φ

(3)
i (0)

(jλi − λi)(jλi + λi)(jλi + jλi)

P3(s) =
s2φ

(1)
i (0) + sφ

(2)
i (0) + φ

(3)
i (0)

(s− λi)(s− jλi)(s+ jλi)

∣∣∣∣
s=−λi

=
λ2
iφ

(1)
i (0)− λiφ(2)

i (0) + φ
(3)
i (0)

(−λi − λi)(−λi − jλi)(−λi + jλi)

P4(s) =
s2φ

(1)
i (0) + sφ

(2)
i (0) + φ

(3)
i (0)

(s− λi)(s− jλi)(s+ λi)

∣∣∣∣
s=−jλi

=
−λ2φ

(1)
i (0)− jλφ

(2)
i (0) + φ

(3)
i (0)

(−jλ− λi)(−jλ− jλi)(−jλ+ λi)
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when φi(0) = 0 has been substituted. The expressions can be further simplified by
expansion of the denominators (the polynomials are no longer functions of s but λi)

P1(λi) =
λ2
iφ

(1)
i (0) + λiφ

(2)
i (0) + φ

(3)
i (0)

4λ3
i

=
Q1 +Q2 +Q3

4λ3
i

P2(λi) =
−λ2

iφ
(1)
i (0) + jλiφ

(2)
i (0) + φ

(3)
i (0)

−4jλ3
i

=
−jQ1 −Q2 + jQ3

4λ3
i

P3(λi) =
λ2
iφ

(1)
i (0)− λiφ(2)

i (0) + φ
(3)
i (0)

−4λ3
i

=
−Q1 +Q2 −Q3

4λ3
i

P4(λi) =
−λ2φ

(1)
i (0)− jλφ

(2)
i (0) + φ

(3)
i (0)

4jλ3
i

=
jQ1 −Q2 − jQ3

4λ3
i

with the definitions

Q1 , λ2
iφ

(1)
i (0), Q2 , λiφ

(2)
i (0), Q3 , φ

(3)
i (0)

An inverse Laplace transformation brings the eigenfunctions φi(s) (from equation
(J.8)) back into the x-domain

φi(x) = P1(λi)e
λix + P2(λi)e

jλix + P3(λi)e
−λix + P4(λi)e

−jλix (J.10)

which becomes

φi(x) =
Q1 +Q2 +Q3

4λ3
i

eλix +
−jQ1 −Q2 + jQ3

4λ3
i

ejλix + · · ·

· · ·+ −Q1 +Q2 −Q3

4λ3
i

e−λix +
jQ1 −Q2 − jQ3

4λ3
i

e−jλix

(J.11)

=
Q1 +Q3

4λ3
i

(
eλix − e−λix

)
+
Q2

4λ3
i

(
eλix + e−λix

)
+ · · ·

· · ·+ j
−Q1 +Q3

4λ3
i

(
ejλix − e−jλix

)
− Q2

4λ3
i

(
ejλix + e−jλix

) (J.12)

after substitution of the rational fractions from above. Using the complex trigono-
metric relations

ejλix = cosλix+ j sinλix e−jλix = cosλix− j sinλix

2 coshλix = eλix + e−λix 2 sinhλix = eλix − e−λix

with the last two expressing hyperbolic cosine and hyperbolic sine, respectively, the
eigenfunctions can be expressed in the following way

φi(x) =
Q1 +Q3

2λ3
i

sinhλix+
Q2

2λ3
i

coshλix−
−Q1 +Q3

2λ3
i

sinλix−
Q2

2λ3
i

cosλix

= − Q2

2λ3
i

cosλix+
Q2

2λ3
i

coshλix−
−Q1 +Q3

2λ3
i

sinλix+
Q1 +Q3

2λ3
i

sinhλix
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Before deriving the remaining constants, the mode is written as

φi(x) = W1 cosλix+W2 coshλix+W3 sinλix+W4 sinhλix (J.13)

In order to satisfy the boundary conditions φi(0) = 0 and φ
(1)
i (0) = 0 then

− Q2

2λ3
i

cosλix+
Q2

2λ3
i

coshλix−
−Q1 +Q3

2λ3
i

sinλix+
Q1 +Q3

2λ3
i

sinhλix = 0

−−Q1 +Q3

2λ3
i

cosλix+
Q1 +Q3

2λ3
i

coshλix+
Q2

2λ3
i

sinλix+
Q2

2λ3
i

sinhλix = 0

based on

φ
(1)
i (x) =

Q2

2λ3
i

sinλix+
Q2

2λ3
i

sinhλix− · · ·

· · · − −Q1 +Q3

2λ3
i

cosλix+
Q1 +Q3

2λ3
i

coshλix

When evaluated in zero

− Q2

2λ3
i

+
Q2

2λ3
i

= 0 and − −Q1 +Q3

2λ3
i

+
Q1 +Q3

2λ3
i

= 0

which is only satisfied when Q1 = 0. The constants W1 through W4 from the general
definition in (J.13) are assigned the following relations

W1 +W2 = 0⇒W2 ,
Q2

2λ3
i

and W3 +W4 = 0⇒W4 ,
Q3

2λ3
i

(J.14)

The remaining terms are therefore on the form

φi(x) = W2(coshλix− cosλix) +W4(sinhλix− sinλix) (J.15)

In order to satisfy the remaining boundary conditions φ
(2)
i (`) = 0 and φ

(3)
i (`) = 0

then the second and third space derivatives must be used

φ
(2)
i (x) = λ2

iW2(coshλix+ cosλix) + λ2
iW4(sinhλix+ sinλix)

φ
(3)
i (x) = λ3

iW4(coshλix+ cosλix) + λ3
iW2(sinhλix− sinλix)

When evaluated in x = ` and equated zero

W2(coshλi`+ cosλi`) +W4(sinhλi`+ sinλi`) = 0 (J.16)

W4(coshλi`+ cosλi`) +W2(sinhλi`− sinλi`) = 0 (J.17)

Two definitions are needed for the rest of the derivation

W+ = W2 +W4 and W÷ = W2 −W4 (J.18)

The sum and difference of the equations (J.16) and (J.17) must still equal zero, and
thus
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W+ cosλi`+W+ coshλi`−W÷ sinλi`+W+ sinhλi` = 0 (J.19)

W÷ cosλi`+W÷ coshλi`+W+ sinλi`−W÷ sinhλi` = 0 (J.20)

and they can be written as

cosλi`+ eλi` = W÷
W+

sinλi` (J.21)

cosλi`+ e−λi` = −W+

W÷
sinλi` (J.22)

Since both sides of the equations are equal individually, then the product between
the two equations must also hold, thus

cos2 λi`+ 1 + cosλi`e
λi` + cosλi`e

−λi` = − sin2 λi` m
2 + 2 cosλi` coshλi` = 0 m

cosλi` coshλi` = −1 (J.23)

This is the frequency equation of a cantilever beam without tip mass, which is inde-
pendent of the boundary conditions. The equation will be used in subsection 4.2.1.
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Appendix K

Solving flexible tool dynamics using FEM

When the flexible tool was modeled in chapter 4, the mass was initially included within
the partial differential equation itself. However, it was moved from the equation to
a boundary condition, because it appeared as a Dirac function. This chapter will
show the basic tools for numerically solving the model PDE describing the flexible
tool behavior. The model could have been solved in this way while still keeping the
mass distribution and the original boundary conditions.

Solving the problem analytically, however, requires splitting the partial differential
equation into two, which must be solved simultaneously. In order to show, that the
technique of moving the lumped mass approximation to the boundary conditions, the
original problem can be solved numerically, and the two solutions must then coincide.
Another reason for introducing a numerical method alongside the analytical derivation
is to show, that in cases with more complicated flexible dynamics, the problem can
only be solved numerically.

The applied method for solving the problem is the finite element method (FEM),
which divides the tool configuration into a number of spaces with well-defined bound-
aries [52]. Basically, the method applies the technique of modal decomposition (intro-
duced in chapter 4), which separates the dynamics into time and space [102]. Also,
the differential equations describing the flexible tool dynamics are transformed into
easily solvable linear systems. Only the basic theory will be explained to show the
idea. Similar to the approach of solving the PDE in chapter 4, where the solution
was assumed on the form given by (4.4), the FEM approach assumes a solution on
the form [52]

w(x, t) =

M∑
i=1

φ′i(x)q′i(t) + φ′′i (x)q′′i (t) (K.1)

with φ′i(t), φ
′′
i (t) denoting time dynamics and q′i(t), q

′′
i (t) denoting interpolation func-

tion. They approximate the mode shape functions that describe the shape of the
flexible tool dynamics. Marks has been added as to avoid confusion with the original
φi(x) and qi(t). Each element representing a part of the tool must be described by a
total of four functions, but when multiple elements are combined, identical functions
can be used to represent the behavior at the point of connection. The interpolation
functions can be selected arbitrary, but according to [52], the function
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φ′i(x) =

3∑
k=0

α′kx
k and φ′′i (x) =

3∑
k=0

α′′kx
k (K.2)

is most commonly used. Based on the interpolation function and the time dynamics,
a model can be constructed for the k-th element on similar form as for the analytical
case, namely equation 4.25 in [52]

d2q

dt2

∫ `k

0

ρkϕϕ
T dx+ q

∫ `k

0

EkIk
d2ϕ

dx2

d2ϕT

dx2
dx =

∫ `k

0

f(x, t)ϕ dx (K.3)

where ϕ is a vector containing all spatial functions φ′i(x) and φ′′i (x). f(x, t) is the
distributive force, which in this case will be a force at x = 0 only. It can therefore be
written as f(t). However, it cannot be interchanged in (K.3), because it only affects
the first element k = 1. In order to model the Dirac delta function term from the
model in (4.3), a large number of elements must be selected. By selecting p elements
and assigning them the following properties

EkIk = EI ∀k < p and EpIp →∞
`k = ` ∀k < p and `p → 0

the system can be solved close to the analytical version. The first p − 1 elements
represent the flexible beam, whereas the last element given by EpIp and `p represents
the lumped tip mass. By making the flexural rigidity large to prevent any dynamics
of the tip mass itself as well as decreasing the length of it to represent a lumped point
mass, the model becomes closer to the analytical one. Similarly, the finite element
model must be solved under identical boundary conditions as the analytical model.

The original boundary conditions can then be applied to the problem, since the
tip mass has been included in the expression itself. It will therefore seem as if the
boundary conditions of the last element includes the mass. Figure K.1 shows how the
selection of more elements will improve the representation of mass along the beam
compared with the continuous model. The mass distribution is normalized to one at
the end of the beam.
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(a) FEM using 7 elements
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(b) FEM using 19 elements
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(c) Continuous model

Figure K.1: Mass distribution using 7 and 19 elements compared with continuous distribution
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This numerical method will not be analyzed in details, but for complex systems, the
methods can be applied to avoid the time consuming math involved in solving partial
differential equations with several conditions. Only the original boundary conditions
of a cantilever beam are used, and the different forces can be added to the respective
finite elements. If the flexible beam itself is not limited in motion by obstacles, the
shape of the beam is not relevant as long as the end-effector position is known relative
to the manipulator tool frame. This simplifies the equations as well as the complexity
of the control problem in comparison with the analytical approach for solving the
equations.
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Appendix L

Generation of test signals

Proper test signals must be applied for system identification properties. This ensures
the best possible responses from the hardware, and thus also the best parameter esti-
mations close to the correct ones. The composition of useful test signals is considered
in [107, 104], stating that the signals must include a slow and a random component.
A slow component ensures actual motion of the manipulator, whereas the random
signal includes the entire frequency range of the system. A so-called PRBS (pseudo
random binary sequence) is used as the random signal.

Additionally, an offset can be applied in case of a relatively large Coulomb friction
force generated by the actuators. The model to test is on the form (from (3.10))
U0u , τ̇ = NFθ̈. U0 is a scale factor from the input voltage to the servo controllers
to the applied torque derivative, which is also unknown. Using the expression τ̇
instead of τ is because a state space representation is needed, see section 3.4. The
control signal u is being composed by a multisine signal with random phases [104]
and a PRBS with sufficient amplitude [107]

ui =
d

dt

{
nk∑
k=1

α′i,k sin(ω′i,kt+ φ′i,k) + β′iξPRBS

}
(L.1)

where α′, ω′k, φ
′
k, β

′ ∈ R denotes sine amplitude, frequency, phase and random signal
amplitude, respectively. The actual sizes of the factors must be empirically deter-
mined, as different test signals also results in different models. ξPRBS is the PRBS
signal of unit amplitude. The PRBS is beneficial over the use of a white noise process,
because the normed amplitude is constant. It is therefore possible to excite nonli-
near effects in a specific frequency range with a controlled amplitude. This avoids
unwanted peaks in the test signals.

To include only manipulator dynamics, the identification process is carried out
in open-loop, which excludes the controller from the parameter estimation. This is
possible, because the system is naturally stable, and thus do not require any stabilizing
controller in the loop to yield useful measurement data.

The shape of the test signals have been established, and the actual function cannot
be given without conducting a number of experiments on the hardware. Different sets
of parameters are used to estimate the parameters as described in appendix B. Figure
L.1 shows an example of a test signal with arbitrary parameters and figure L.2 shows
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the integrated version. The different frequency components are clearly visible, and
the effect of the added PRBS produces an oscillating overlay.

53.0 53.5 54.0 54.5 55.0
−150.0

 −75.0

   0.0

  75.0

 150.0

Time [s]

u
i

Figure L.1: Arbitrary test signal based on (L.1)
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Time [s]

∫
u
i

Figure L.2: Arbitrary test signal based on integrated (L.1)

Due to the relation u , τ̇ , the signal must be differentiated before applied to the
servo amplifiers. Two different test signals will be constructed: one to estimate the
manipulator parameters and one to estimate the flexible tool parameters. Table L.1
describes how the different signals are designed for each purpose.
The signals contain a number of primary frequencies in the low-frequency range and
random components in the entire frequency span. By increasing the magnitude β′i of
the PRBS, the nonlinear effects of the unknown system can be excited more. Using
several sets of test signals provides the best possible parameter estimation result when
all signals are combined. Different approaches can be used to generate the PRBS,
which is shown in figure L.3 as three Markov chains with different characteristics.
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Test signals using PRBS

Manipulator parameters A signal containing 5 primary frequencies superimposed with a
PRBS without band limitations will be used to estimate the ma-
nipulator parameters. The primary frequencies will be selected
by random, and will be in the range of 0,1 ≤ f ≤ 1,0 Hz to move
the links at a slow speed in order to estimate the friction terms.

Flexible tool parameters Unlike the test signal for estimation of the manipulator param-
eters, the flexible tool parameters can be determined using only
the signal u3 (controlling only link 3). A single primary frequency
in the range of 0,1 ≤ f ≤ 1,0 Hz will be applied to ensure some
motion of the third link. This counteracts stiction effects. The
PRBS must be band limited around the first resonance (calcu-
lated version) in a band defined by 0,9ω1 ≤ ω ≤ 1,1ω1.

Table L.1: Two different types of test signals for parameter estimation (using PRBS)

+10,5 0,5

0,5

0,5
(a) Uncorrelated samples

+10,8 0,8

0,2

0,2
(b) Lowpass

+10,2 0,2

0,8

0,8
(c) Highpass

Figure L.3: Markov chains used for PRBS generation

Even though the Markov sources are capable of generating random sequences with
either low or high frequency content, the control of the individual frequencies can
be difficult. For the purpose of estimating parameters for the manipulator itself, the
Markov chain from figure L.3a is used. All nonlinear effects must be investigated,
and thus the test signal must contain all frequencies (limited by sampling frequency).
However, when investigating the dynamics of the flexible tool, only the primary mode
function parameters must be estimated. Since calculations have predicted the location
of the eigenfrequency as well as experiments have estimated the modal damping, a
bandpass filtered test signal can be used instead. This concentrates the estimation
effort within assumed parameter bounds.

The method for constructing the bandlimited signal begings with the generation of
a random white noise sequence yN . Afterwards, a bandpass filter with a passband in
the range 0, 9ω1 ≤ ω ≤ 1, 1ω1 is applied to produce y′N , and the resulting PRBS is
given as ξPRBS = sgn y′N [61]. The test signal from L.1 will be applied to the system
as illustrated in figure L.4.
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Manipulator
actuators

Servo
amplifiers

Manipulator
hardware

Prediction
error method

Extended
Kalman filter

Subspace method
N4SID

Bus includes states
and outputs (test signal

is also included)

Test signal
generator

ui İi τ̇i

Figure L.4: Application of test signals for parameter estimation and model verification

A detailed look inside the test signal generator block is shown in figure L.5.

Multisine signal
generator

Random amplitude

Random phase
Random frequency

PRBS
generator

Random amplitude

d
dt

ui

Figure L.5: Test signal generator block diagram

The differentiation is carried out to generate the torque derivative, which is the model
input. A relation between the different parameters is given as τi ∝ Ii. Similarly, the
relation can be differentiated, yielding τ̇i ∝ İi ∝, ui with ui being the applied voltage
signal to the servo amplifiers in this case.

Remark 8 (PRBS derivative): From the above derivation of test signals it
is given by implicit, that it is possible to differentiate a pseudo-random bi-
nary sequence, which it is not. Only due to the discrete implementation of
the sequence, the derivative can be approximated. However, a continuously
differentiable analog must considered in order to avoid this approximation.
As described in [61, 104], the PRBS method is frequently used for identifying
manipulator systems. 2

Because of remark 8, table L.1 can be changed to table L.2

Description (using continuous signals)

Manipulator parameters
Flexible tool parameters

A signal constructed from 2 low-frequency harmonics and 4 har-
monics with frequencies close to the expected resonance frequency
of the flexible tool. In this case then nk = 10. The first 2 frequen-
cies are selected by random from within the range of 0,1 ≤ f ≤ 1,0
Hz to move the links at a slow speed in order to estimate the
friction terms. The remaining frequencies are gathered from the
range 0,8f ≤ f ≤ 1,2f Hz to excite the tool dynamics for the first
eigenfrequency f .

Table L.2: Two different types of test signals for parameter estimation (continuous signals)

Similar to the method using PRBS, an explicit expression of the signal can be given,
which is on the form
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ui =
d

dt

{
nk∑
k=1

α′i,k sin(ω′i,kt)

}
=

nk∑
k=1

α′i,kω
′
i,k cos(ω′i,kt) (L.2)

Unlike (L.1), there is no phase involved here, because the differentiation removes
the phase component of the harmonic function. Furthermore, the signal has been
constructed from a finite number of harmonics, which have been selected on the basis
of the model and knowledge about the system. From (L.2) a signal (one for each of
the three axes) can be generated as shown in figure L.6 with a total of 6 harmonics.
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Figure L.6: Arbitrary test signal based on (L.2)

The arbitrary constants α′i,k have been selected to follow the guidelines in table L.2
as well as generating resulting amplitudes no higher than 1 V. This is done to prevent
huge excitation signals around the resonance, which can cause damage to the tool.
The ranges of the signals are given as

1

5nkωj+
≤ α′i,k ≤

1

nkωj+
and ωj− ≤ ω′i,k ≤ ωj+ (L.3)

in order to limit both frequency range and amplitude. These ranges also respects
the guidelines from table L.2. The index j is used to divide the two parts of the
signal - one part (j = 1) for low-frequency excitation and another part (j = 2) for
near-resonance excitation. ω− and ω+ denotes minimum and maximum harmonic
frequency, respectively. The 1 V limit can be seen by the relation∣∣∣∣∣

nk∑
i=1

α′i,kω
′
i,k cos(ω′i,kt)

∣∣∣∣∣ ≤
∣∣∣∣∣
nk∑
i=1

ω′i,k
nkωj+

∣∣∣∣∣ =

nk∑
i=1

1

nk
= 1 (L.4)

Because the flexible tool dynamics follows a second order system by assumption, only
two points are needed to determine the shape of the frequency response. This will
in turn provide both the damping ratio and the resonance frequency. Figure L.7
shows how four points on either the real bode plot or the approximated bode plot can
uniquely determine the dynamics. Four points are used instead of two to secure the
correct response is estimated [91].
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Figure L.7: Bode plot of flexible tool dynamics and corresponding approximation

States, system outputs and input signals are stored during the experiments and used
in the different blocks in figure L.4. The first block is the extended Kalman filter,
which must be verified to perform as good as the second block. Third block is used
to verify the model structure. Only the EKF is an actual part of the system, whereas
the two remaining blocks are used only in the design phase.

In chapter 10 the parameter estimation results will be presented with a comparison
between the online EKF and the offline PEM. Data sample sets have been derived
using the method described in this section, and more information regarding this is
given in appendix B. Only with agreeing results, the EKF method can be applied for
the online parameter estimation process on the controller hardware.
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Appendix M

Static beam models

The necessary theory for modeling time dependent flexible behavior of the tool is
based on beam bending theory for simple beams. A simple beam is characterized by
the fact, that it is not composed from several parts. It is only a single beam made
from a homogeneous material. The simple beam model can afterwards be affected by
a generalized force, which will make it bend in different ways. Steady-state solutions
are presented in this chapter for three different cases of beam configurations. Time
dynamics will be included in chapter 4. The cases are listed below

• Beam bending under self-weight

• Beam bending under tip load

• Beam bending under generalized force

The first case involves a beam configuration that is only affected by gravity, whereas
the second configuration adds the mass of a payload on the free end of the beam.
Lastly, a generalized force is applied to the entire length of the beam. Figure M.1
shows graphically the three different configurations. All configurations are based on
a cantilever beam setup with a fixed and a free end.

Figure M.1: Flexible beam configurations (self-weight, tip load and generalized force)

A generalized force can consist of several individual masses affecting the beam or a
homogeneous distribution e.g. if the beam is affected by wind (this would be the case
if aerodynamics are included in the model). The first case to consider is the bending
of a beam under self-weight.
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M.1 Beam bending under self-weight

The general Timoshenko beam equation from equation (4.1) is reduced to equation
(4.2), which is repeated here [18, 74]

EI
∂4w(x, t)

∂x4
+ aρ

∂2w(x, t)

∂t2
= f(x)

and because a steady state solution is wanted, the acceleration term ∂2w(x, t)/∂t2

(time dependent) can be neglected. This yields the equation

EI
d4w(x)

dx4
= f(x) (M.1)

where time has been removed for this simple case. A set of initial boundary conditions
must be included to define the specific cantilever setup, thus [108]

w(0) =
dw(0)

dx
= 0

No deflection or non-tangential derivative at
the point of beam attachment x = 0

d2w(`)

dx2
=

d3w(`)

dx3
= 0

No bending moment or shear force at the end-
point of the beam x = `

(M.2)

A generalized candidate solution to the homogeneous version of (M.1) must be ex-
pressed in order to solve it. Also, it must be in terms of x and one order lower than
the ODE [108]. This causes the fourth derivative to be zero, and the term f/EI can
be added to the solution. A candidate can be a third order polynomial on the general
form wh(x) = P3 with coefficients ψi ∈ R. A particular solution wp(x) is derived from
integrating the applied force function f(x) (the non-homogeneous part of (M.1)) four
times, and the complete solution can thus be expressed as

w(x) = wh(x) + wp(x) = P3 +
f

EI

∫
· · ·
∫

4

dx

= ψ4x
4 + ψ3x

3 + ψ2x
2 + ψ1x+ ψ0

(M.3)

given ψ4 = fb/4!EI if the beam is affected by gravity pull alone expressed by the
generalized force fb. This explicit solution is only valid if fb is not a function of x,
which is the case when defining gravity as a location independent force fb = −mbg/`
with mb [kg] denoting the mass of the beam and g [m/s2] the gravitational constant.
Using the initial conditions, the first two ψi coefficients can be found to be ψ0 = ψ1 =
0, and the others can be determined from

d2w(`)

dx2
= 12ψ4x

2 + 6ψ3x+ 2ψ2 = 0

d3w(`)

dx3
= 24ψ4x+ 6ψ3 = 0

⇒ ψ2 = fb`
2

4EI , ψ3 = − fb`
6EI
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which is characteristic for a cantilever beam. Selecting the generalized force f(x) =
fb(x) = mbg/` allows for determination of tip deflection wb(`) under beam self-weight.
The force term fb(x) has the unit [N/m] and describes the force per unit length of
beam. Forces expressed within this chapter are respecting definition 1 regarding
direction of forces. Using the solution from (M.3), it can be expressed as

wb(`) =
fb

24EI
x4 − fb`

6EI
x3 +

fb`
2

4EI
x2
∣∣∣
x=`

= −mbg`
3

8EI
[m] (M.4)

This equation can only be used to determine the deflection of the beam under self-
weight. The sequel section determines the beam deflection under tip load alone.

M.2 Beam bending under tip load

By subjecting a cantilever beam to an tip load, the equation to solve is [20]

d4w(x)

dx4
=

fl
EI

δ(x− `) (M.5)

with fl = −mlg being the static scalar force applied only to the tip of the beam and
δ the Dirac delta function (continuous impulse) [1/m]. Solving this kind of problem
introduces a Laplace transformation of the equation, that allows the impulse function
to be treated as a continuous function. Four Laplace transform pairs are needed to
convert between time and Laplace domain now and in the following model derivations
[47, 51, 35] (shown here in the time variable t)

ηH(t− T )
L→ ηe−sT

s
, ηδ(t− T )

L→ ηe−sT

1

sk
L−1

→ tk−1

(k − 1)!
,

1

sk
e−sT

L−1

→ (t− T )k−1

(k − 1)!
H(t− T )

dkw

dtk
L→ skW (s)− sk−1w(0)− · · · − sw(k−2)(0)− w(k−1)(0)

with H(t) denoting the Heaviside function. The Laplace transformation of (M.5)
yields the following expression in the Laplace variable s

W (s) =
fl

EIs4
e−s` +

3∑
k=0

w(k)(0)

sk+1

with the summation representing the Laplace transformation of a homogeneous ver-
sion of (M.1) and the last term representing L{δ(x− `)}. A short notation w(k)(0) is
applied to express the boundary condition of the k-th derivative. Transforming back
into time-domain yields (after inserting the known boundary conditions w(0) = 0 and
w(1)(0))

wl(x) =
w(2)(0)

2
x2 +

w(3)(0)

6
x3 +

fl
6EI

(x− `)3H(x− `) (M.6)



i
i

i
i

i
i

i
i

246 APPENDIX M. STATIC BEAM MODELS

The unknown boundary conditions w(2)(0) and w(3)(0) can be found from the known
boundary conditions w(2)(`) = 0 and w(3)(`) = 0 by differentiating (M.6) two and
three times followed by setting them equal to zero (given by initial boundaries) [20].
This yields the following tip deflection for a tip mass ml

wl(`) =
fl`

2EI
x2 − fl

6EI
x3 +

fl
6EI

(x− `)3H(x− `)
∣∣∣
x=`

= −mlg`
3

3EI
[m] (M.7)

The last thing to do is to combine the distributed force and the point force. This
enables calculation of the deflection of any point of the beam, which is covered in the
sequel section.

M.3 Beam deflection under generalized force

Multiple forces can affect the deflection of the beam in different ways. To combine
both tool mass and gravity contributions for this specific configuration, f(x) must be
concatenated in the following way

f(x) = fc(x) = mbg
` +mtgδ(x− `) (M.8)

and the differential equation from (M.1) can once again be applied. Using similar
algebra as shown above, the deflection at the tip can be expressed

W (s) =
mlg

EIs4
e−s` +

mbg

EI`s5
+

3∑
k=0

w(k)(0)

sk+1
↓ L−1

wc(x) =
w(2)(0)

2
x2 +

w(3)(0)

6
x3 +

mlg

6EI
(x− `)3H(x− `) +

mbg

24EI`
x4

with the new boundary conditions given as

w(2)(0) =
mbg`

2EI
+
mlg`

EI
, w(3)(0) = − g

EI
(ml +mb)

The deflection at the tip can thus be expressed as

wc(x) =

(
mbg`

4EI
+
mlg`

2EI

)
x2 −

( g

6EI
(ml +mb)

)
x3 + · · ·

· · ·+ mlg

6EI
(x− `)3H(x− `) +

mbg

24EI`
x4
∣∣∣
x=`

=
g`3(8ml + 3mb)

24EI

[m] (M.9)

where the unit step function H(x−`) = 0, ∀x ∈ [0, `[. The final equation (M.9) shows
to be a summation of the two previous models from (M.3) and (M.6). However, this
is not a general statement when using multiple point forces. Different situations will
require the force distribution to be given explicitly and (M.1) must be solved for each
case.
Three different static models have been expressed in the above. Basic methods for
solving partial differential equations describing the bending of beams have been in-
troduced, which may be used to solve more complex problems in chapter 4. However,
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the third order polynomial P3 is an approximation of the deflection along the beam
length. Different shapes can be applied, which will still provide identical solutions at
the boundaries but differ elsewhere along the beam length. The purpose of the model
determines what approximation to use. Table M.1 summarizes the results from this
chapter.

Beam subjected to self-weight

wb(x) = mbg
24EI`x

4 − mbg
6EI x

3 + mbg`
4EI x

2

Beam subjected to tip load

wl(x) = −mlg
6EI x

3 + mlg`
2EI x

2

Beam subjected to both load types

wc(x) = mbg
24EI`x

4 −
(

g
6EI (ml +mb)

)
x3 +

(
mbg`
4EI + mlg`

2EI

)
x2

Table M.1: Beam deflection when subjected to different load types
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Appendix N

Explicit model expressions

This appendix includes the explicit expressions of the following items

• Complete transformation 0
6T (full model)

• Complete transformation b
τT (reduced model)

• Manipulator dynamics model (reduced model)

N.1 Complete transformation after simplification

Due to remark 1 on page 18, the swivel axes are made inactive, and the resulting
transformation from base to tool frame is therefore on the form

b
τT =


t(1,1) t(1,2) 0 t(1,4)

0 0 0 0
t(3,1) t(3,2) 0 t(3,4)

0 0 0 0


with the individual elements given as

t(1,1) = + c1 c2 c3− c1 s2 s3− c2 s1 s3− c3 s1 s2

t(1,2) = + s1 s2 s3− c1 c3 s2− c2 c3 s1− c1 c2 s3

t(1,4) = + `1 c1 +`2 c1 c2−`2 s1 s2 +`3 c1 c2 c3

− `3 c1 s2 s3−`3 c2 s1 s3−`3 c3 s1 s2

t(3,1) = + s1 s2 s3− c1 c3 s2− c2 c3 s1− c1 c2 s3

t(3,2) = + c1 s2 s3− c1 c2 c3 + c2 s1 s3 + c3 s1 s2

t(3,4) = + `0 − `1 s1−`2 c1 s2−`2 c2 s1

+ `3 s1 s2 s3−`3 c1 c2 s3−`3 c1 c3 s2−`3 c2 c3 s1
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N.2 Complete kinematic transformation

Defining the structure of the complete transformation matrix 0
6T as

0
6T =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

 (N.1)

the elements are given by the following expressions

t11 = − s6 c4 s1− s4 c1 s2 s3− c1 c2 c3− c6 c5 s1 s4 + c4 c1 s2 s3− c1 c2 c3− s5 c1 c2 s3 + c1 c3 s2

t12 = s6 c5 s1 s4 + c4 c1 s2 s3− c1 c2 c3− s5 c1 c2 s3 + c1 c3 s2− c6 c4 s1− s4 c1 s2 s3− c1 c2 c3

t13 = − s5 s1 s4 + c4 c1 s2 s3− c1 c2 c3− c5 c1 c2 s3 + c1 c3 s2

t14 = `DH
Z3 s1−`DH

Z4 c1 c2 s3 + c1 c3 s2 +`DH
X2 c1 c2

t21 = s6 c1 c4 + s4 s1 s2 s3− c2 c3 s1 + c6 c5 c1 s4− c4 s1 s2 s3− c2 c3 s1 + s5 c2 s1 s3 + c3 s1 s2

t22 = c6 c1 c4 + s4 s1 s2 s3− c2 c3 s1− s6 c5 c1 s4− c4 s1 s2 s3− c2 c3 s1 + s5 c2 s1 s3 + c3 s1 s2

t23 = s5 c1 s4− c4 s1 s2 s3− c2 c3 s1− c5 c2 s1 s3 + c3 s1 s2

t24 = `DH
X2 c2 s1−`DH

Z3 c1−`DH
Z4 c2 s1 s3 + c3 s1 s2

t31 = − c6 s5 c2 c3− s2 s3− c4 c5 c2 s3 + c3 s2− s4 s6 c2 s3 + c3 s2

t32 = s6 s5 c2 c3− s2 s3− c4 c5 c2 s3 + c3 s2− c6 s4 c2 s3 + c3 s2

t33 = c5 c2 c3− s2 s3 + c4 s5 c2 s3 + c3 s2

t34 = `DH
Z1 + `DH

Z4 c2 c3− s2 s3 +`DH
X2 s2

N.3 Manipulator dynamics model

The dynamics model is given on the general form

M(θ)θ̈ = τ −C′(θ)θ̇quad −C′′(θ)θ̇prod − F (θ̇)−G(θ) mm(1,1) m(1,2) m(1,3)

m(2,1) m(2,2) m(2,3)

m(3,1) m(3,2) m(3,3)

 θ̈ = τ −

c
′
(1,1) c′(1,2) c′(1,3)

c′(2,1) c′(2,2) c′(2,3)

c′(3,1) c′(3,2) c′(3,3)

 θ̇quad − · · ·

· · · −

c
′′
(1,1) c′′(1,2) c′′(1,3)

c′′(2,1) c′′(2,2) c′′(2,3)

c′′(3,1) c′′(3,2) c′′(3,3)

 θ̇prod −

f(1)

f(2)

f(3)

−
g(1)

g(2)

g(3)


(N.2)
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with the vectors θ̇quad and θ̇prod being defined as (structure given from [30])

θquad ,

θ̇2
1

θ̇2
2

θ̇2
3

 and θprod ,

θ̇1θ̇2

θ̇1θ̇3

θ̇2θ̇3

 (N.3)

The vector θ̇quad and θ̇prod, corresponding to quadratic velocities and product between
velocities [86] together with the corresponding matrices C′ and C′′, respectively, are
not part of a linearization but used to show how the different vectors/matrices are
composed. The vectors and matrices are given explicitly in the sequel subsections.
The torque vector τ will be given explicitly, but rather as an input within the explicit
description of the entire model on the form ẋ = Alx+Blu+An, which contains both
linear and nonlinear components. The state vector is defined as

x =
[
I1 I2 I3 θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

]T

ẋ =
[
İ1 İ2 İ3 θ̇1 θ̇2 θ̇3 θ̈1 θ̈2 θ̈3

]T

with the linear system matrix given as

Al =



−α1 0 0 0 0 0 −β1 0 0
0 −α2 0 0 0 0 0 −β2 0
0 0 −α3 0 0 0 0 0 −β3

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

m′(1,1)N1γ1 0 0 0 0 0 0 0 0

0 m′(2,2)N2γ2 0 0 0 0 0 0 0

0 0 m′(3,3)N3γ3 0 0 0 0 0 0


where the m′(i,i)-terms are derived from

M−1 =

m
′
(1,1) m′(1,2) m′(1,3)

m′(2,1) m′(2,2) m′(2,3)

m′(3,1) m′(3,2) m′(3,3)


The linear input matrix is given as

Bl =



κ1 0 0
0 κ2 0
0 0 κ3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
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The nonlinear part is not written explicitly, but given in compact form as

An =

 0
0

−M−1
(
C′(θ)θ̇quad + C′′(θ)θ̇prod + NF (θ̇) +G(θ)

)


Lastly, all vectors and matrices of the general dynamics model are given explicitly.

Quadratic velocities

c′(1,1) =−m3`
2
1 c3

2 s3 +m3`
2
1 c2

2 c3 s2−m3`
2
1 c2 s2

2 s3 +m3`
2
1 c3 s3

2

− `2m3`1 c2
2 s3 +2`2m3`1 c2 c3 s2 +`3m3`1 c2 s2−`3m3`1 c2 s3 /2

− `2m3`1 c2
3 s2−`3m3`1 c3 s2 /2 + `2m3`1 s2

2 s3−`2m3`1 s2 s2
3

c′(1,2) = + `1`2m2 s2 /2 + `1`3 c2m3 s2−`1`2 c2
2m3 s3 +`1`2m3 s2

2 s3 +2`1`2 c2 c3m3 s2

c′(1,3) = + `2`3m3 s3 /2 + `1`3 c2m3 s2

c′(2,1) =− `1`2m3 s2 c2
3−`1`3m3 s2 c3 /2− `1`2m3 s2 s2

3−`1`3 c2m3 s3 /2− `1`2m2 s2 /2

c′(2,3) = + `2`3m3 s3 /2

c′(3,1) =− `2`3m3 s3 /2− `1`3 c2m3 s3 /2− `1`3 c3m3 s2 /2

c′(3,2) =− `2`3m3 s3 /2

Friction forces

f(1) = −F1θ̇1

f(2) = −F2θ̇2

f(3) = −F3θ̇3
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Mass matrix

m(1,1) = +m3`
2
1 c3

2 c3 +m3`
2
1 c2

2 s2 s3 +m2`
2
1 c2

2 +m3`
2
1 c2 c3 s2

2

+m3`
2
1 s3

2 s3 +m2`
2
1 s2

2 +m1`
2
1/4 +m3`1`2 c2

2 c3

+m3`1`2 c2 c2
3 +2m3`1`2 c2 s2 s3 +m3`1`2 c2 s2

3 +m2`1`2 c2

−m3`1`2 c3 s2
2 +m3`1`3 c2

2 /2 +m3`1`3 c2 c3 /2−m3`1`3 s2
2 /2

−m3`1`3 s2 s3 /2 +m3`
2
2 c2

3 +m3`
2
2 s2

3 +m2`
2
2/4

+m3`2`3 c3 +m3`
2
3/4

m(1,2) = +m3`
2
2 c2

3 +m3`
2
2 s2

3 +m2`
2
2/4 +m3`2`3 c3

+ `1m3`2 c2
2 c3 +2`1m3`2 c2 s2 s3 +`1m2`2 c2 /2− `1m3`2 c3 s2

2

+m3`
2
3/4 + `1m3`3 c2

2 /2− `1m3`3 s2
2 /2

m(1,3) = + `23m3/4 + `1`3 c2
2m3/2− `1`3m3 s2

2 /2 + `2`3 c3m3/2

m(2,1) = +m3`
2
2 c2

3 +m3`
2
2 s2

3 +m2`
2
2/4 +m3`2`3 c3

+ `1 c2m3`2 c2
3 +`1 c2m3`2 s2

3 +`1 c2m2`2/2 +m3`
2
3/4

+ `1 c2m3`3 c3 /2− `1m3 s2 `3 s3 /2

m(2,2) = +m3`
2
2 c2

3 +m3`
2
2 s2

3 +m2`
2
2/4 +m3`2`3 c3 +m3`

2
3/4

m(2,3) = +m3`
2
3/4 + `2 c3m3`3/2

m(3,1) = + `23m3/4 + `2`3 c3m3/2 + `1`3 c2 c3m3/2− `1`3m3 s2 s3 /2

m(3,2) = +m3`
2
3/4 + `2 c3m3`3/2

m(3,3) = + `23m3/4
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Product of different velocities

c′′(1,1) = +`1`2m2 s2 +2`1`3 c2m3 s2−2`1`2 c2
2m3 s3 +2`1`2m3 s2

2 s3 +4`1`2 c2 c3m3 s2

c′′(1,2) = +`2`3m3 s3 +2`1`3 c2m3 s2

c′′(1,3) = +`2`3m3 s3 +2`1`3 c2m3 s2

c′′(2,2) = +`2`3m3 s3

c′′(2,3) = +`2`3m3 s3

c′′(3,1) = −`2`3m3 s3

Terms with gravity

g(1) =− `1 c1 gm3 c3
2 c3 +`1gm3 s1 c3

2 s3−`1gm3 s1 c2
2 c3 s2−`1 c1 gm3 c2

2 s2 s3

− `1 c1 gm2 c2
2−`2 c1 gm3 c2 c2

3−`1 c1 gm3 c2 c3 s2
2−`3 c1 gm3 c2 c3 /2

+ `1gm3 s1 c2 s2
2 s3−`2 c1 gm3 c2 s2

3 +`3gm3 s1 c2 s3 /2− `2 c1 gm2 c2 /2

+ `2gm3 s1 c2
3 s2−`1gm3 s1 c3 s3

2 +`3gm3 s1 c3 s2 /2− `1 c1 gm3 s3
2 s3

− `1 c1 gm2 s2
2 +`2gm3 s1 s2 s2

3 +`3 c1 gm3 s2 s3 /2 + `2gm2 s1 s2 /2− `1 c1 gm1/2

g(2) = + `2gm2 s1 s2 /2− `2 c1 c2 gm2/2− `2 c1 c2 c2
3 gm3 − `2 c1 c2 gm3 s2

3

+ `2 c2
3 gm3 s1 s2 +`2gm3 s1 s2 s2

3−`3 c1 c2 c3 gm3/2 + `3 c1 gm3 s2 s3 /2

+ `3 c2 gm3 s1 s3 /2 + `3 c3 gm3 s1 s2 /2

g(3) = + `3 c1 gm3 s2 s3 /2− `3 c1 c2 c3 gm3/2 + `3 c2 gm3 s1 s3 /2 + `3 c3 gm3 s1 s2 /2
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Hardware gallery

Figure O.1: Images of hardware configuration in laboratory
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Axis 1

Axis 2

Axis 3

Axis 4-6

Tool

Figure O.2: Image of REIS RV15 manipulator
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Model uncertainties, 81
Modeling introduction (ch.3), 15
Modified Nyquist plot, 95
Multisine signal, 237
Multivariate Taylor approximation, 215

N
N4SID, 68
Natural response, 87
Neutral axis, 201
Newtonian dynamics, 224
Nominal system dynamics, 91
Non-stationary tool frame (sec.4.2), 34
Nonholonomic system, see Constraints
Nonlinear friction, 26
Nonlinear vector field, 25
Notations

Frame orientation, 16
Frame origo, 16
Trigonometric functions, 17

O
Observability matrix, 44
Obstacle space, 5, 194
Offline estimation, 5
Online estimation, 5
Operating time, 19
Orthogonality, 37
Osculating circle, 202
Output sensitivity, 197

P
Parameter estimation, see System identification
Parameter estimation (app.B), 141
Partial fraction expansion, 228
Path accuracy, 8, 56, 117
Payload, 243
PEM, see Prediction error method
Performance function, 73
Phase plane, 87
Phase portrait, 87
Pick-up location, 19
Pitch, 159, 197
Point of operation, 29
Potential energy, 221
Power set, 194
PRBS, see Pseudo random binary sequence
Prediction error method, 68, 73
Prediction error method (sec.8.2), 73
Previous work (sec.2.2), 5
Prismatic joint, 17
Process covariance matrix, 70

Process noise, see Covariance matrix
Production cell, 1, 3
Project applications (sec.11.7), 128
Project delimitation (sec.2.3), 6
Project description (ch.2), 3
Pseudo random binary sequence, 237

Q
QSMB, see Quasi-sliding mode band
Quantization, 82
Quasi-sliding mode band, 92
Question of thesis, 4

R
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