

Department of Architecture,

Design & Media Technology

Medialogy, 10th Semester

Title:

Live Animation theater: Using Facial
tracking and Cue Handling to execute
live theater performance with interac-
tive, animated characters.

Semester Theme:

Master’s Project

Project Period:
MED10

Projectgroup no.:

Members:

Martin Bach Nielsen

Supervisor:
Martin Kraus

Circulation: 2

Number of pages: 59

Number of appendices and form:
2 (DVD and attached documents)

Delivered: 31st of May 2012

Abstract:

In this report the design of two systems for

real-time animation theater are documented.

A system which translates facial capture data

from a 2D domain into a 3D domain and maps

it to virtual characters. This system is imple-

mented with noise filtering and a countermea-

sure to lost frames during theatrical perfor-

mance.

Another system which handles the triggering

of events, or cues, during theatrical perfor-

mance. This system allows a stage manager

to create a set of cues for their play, and exe-

cute them in accordance with the tempo of the

play. Both of these systems are implemented

in the Unity game engine, which is part of the

initial conditions for the project. Experiments

designed to test these systems are described,

but no data has been collected at the time of

report hand-in.

c© 2012. This report and/or appended material may not be partly or completely published or

copied without prior written approval from the authors. Neither may the contents be used for

commercial purposes without written approval.

PREFACE

On the DVD the reader will find a digital copy of this report as well as the full source
code in scripts. An AV production is also present, however it shows very old footage.
Due to technical difficulties, more recent footage was lost. A proper AV production
will be shown at the project exam presentation.

iv

CONTENTS

1 Introduction 1

2 Initial Vision 2

3 Problem Analysis 3
3.1 Level of Detail . 3
3.2 Transforming 2D data to 3D data . 4
3.3 Cue Management . 4

4 Problem Statement 7

5 System Design 8
5.1 Data conversion . 8
5.2 Filters applied for noise reduction . 11
5.3 Interpolation . 12
5.4 Cue Handler . 13
5.5 The Cue Class . 17

6 Experiment overview 19

7 Discussion 21

Bibliography 22

A Appendix 23

B Questionnaire 24

C Facial Data Mapping Source Code 26

D Cue Handler Source Code 35

E Cue Server Source Code 50

v

vi CONTENTS

F Cue Class Source Code 52

CHAPTER 1

INTRODUCTION

Cinema Dell’ Arte (henceforth CDA) is a project group of students at The Danish
Filmschool in Copenhagen, Denmark. The author was approached by student mem-
bers of CDA and asked to participate in the development of a new kind of theatrical
performance. The play is aimed at children in the ages 5-10 years. It contains many
fairytale elements like a prince turned into a frog, a princess, trolls and an evil an-
tagonist. This play separates itself from most other plays by being shown on a pro-
jector. Everything in the play is computer generated imagery, and the characters are
brought to life by actors in a motion capture stage out of sight of the audience. To
capture the facial expressions of the actors, a novel camera rig has been produced
such that an actor will always have a close-up camera in front of their face. The ac-
tors will also be able to see the audience through a screen in the motion capture
stage, allowing them to interact with the audience in real-time. The Danish Film
School provides a Motion Capture system similar to that of Aalborg University, of the
brand OptiTrack. The play premieres June 13th 2012.

1

CHAPTER 2

INITIAL VISION

The vision of CDA is to use motion capture as a tool for theater performance. This
should allow the audience of the performance to interact with the animated charac-
ters on screen. The performance is accompanied by an off-screen actor, who serves
as a story teller. He tells the audience a magical tale of princesses, frogs and enchant-
ed forests. As his tale begins, the audience will see the story unfold in his magical
mirror, the projection screen, which is part of a big forest set inside one of the stu-
dios at The Danish Film School. Behind the scenes, actors will use motion capture
suits, and novel headmounted camera rigs, to capture their performance. The data
provided by these should then be visualized by the Unity game engine.
By taking the performance to a digital space, the director reaches a degree of freedom
not possible by regular theater.

2

CHAPTER 3

PROBLEM ANALYSIS

CDA has previously used motion capture technology in theatrical performances. The
sets were built in Autodesk Motionbuilder, but CDA has expressed the desire to re-
place this with Unity, the reason being that Motionbuilder does not offer as much
flexibility and as many special effects as Unity. This project should then aim to map
captured data correctly onto virtual characters in the play. As motion capture data
for the body of the characters is already implemented by CDA, this project will in-
stead investigate the possibility of a system which maps data from a webcam track-
ing the face of the actor onto the face of the virtual character. A system like this
should meet some criteria to be considered successful. Since the focus of this project
will be to facilitate real-time operation, the following critera are stated:

• each tracked point should be correctly mapped to a corresponding point on
the character.

• the mapping procedure should take into account general noise and large er-
rors in measurement by the webcam/tracking software.

• the mapping procedure should be robust in the sense that it should manage
issues with low framerate and frame skips by the webcam / tracking software.

With these criteria in mind, the next sections will address a some key factors in con-
structing this system.

3.1 Level of Detail

The play "Prinsessen og Frøen" is meant for children, and generally has a cartoony,
non-photorealistic look. A screenshot of the "Frog" character in the play can be seen
in figure 3.1. In order to track the actor’s face, a custom software application called
Facecat has been developed by CDA, NOT the author of this project. This applica-
tion tracks colored markings on the face of the actor. To ease the mapping of these
points to the character, the 3D model should be developed in such a way that the

3

4 CHAPTER 3. PROBLEM ANALYSIS

mechanism controlling mesh deformation has corresponding control points. Figure
3.1 shows the control point layout in the case of the mouth. A total of 17 points is
used.

Figure 3.1: A screenshot illustrating the layout of control points for the mouth. The red/white squares indicate a
control point, while the circles indicate that each point affects a group of neighbouring vertices

3.2 Transforming 2D data to 3D data

The Facecat application supplies data in a 2D image plane. To transform this to 3D
data, inspiration is taken from (Wei et al. 2004), in which a group of students develop
a novel system to approach an identical issue. This approach involves converting 2D
vectors describing the motion of a tracked point into a rotation around the corre-
sponding 3D point. The Unity scripting API offers methods to construct quaternions
from Euler angles. Figure 3.2 shows the correlation between the 2D vector and the
3D rotation in the case of a 5 pixel motion in the y-axis.
By using this technique, there is a risk of extreme rotation in the case of noisy data
from the webcam which would result in unnatural mesh deformation. This can be
overcome by imposing an upper limit before applying the rotation. In the above case
of rotating 5 degrees around the X-axis, the formula for constructing the rotation in
the form of quaternion Q can be described as Q = (w, x, y, z) = (cos(5

2), si n(5
2),0,0)

(Bishop and Werth 2008)

This data transformation will be implemented in Unity and tested with different
noise filters - determined by the noise signature from Facecat.

3.3 Cue Management

A second aspect of this project will be the development and evaluation of a system to
handle theatrical cues. Cues are events triggered during the performance, in tempo

3.3. CUE MANAGEMENT 5

Figure 3.2: A figure illustrating the correlation between pixel motion in the 2D image plane, and control point
rotation in 3D space. In this case, we see a 5 pixel motion in the Y-axis being converted to a 5 degree rotation
around the x-axis

with the progress of a given scene. A cue could be a piece of music, lighting changes,
backdrop switchings etc. These are usually handled by a stage manager. The system
(Cue Handler) should allow a stage manager to do the following:

• It should allow a user to build a custom list of cues.

• It should be operated on a remote computer, such that the GUI does not inter-
fere with the computer rendering the theater performance.

• It should allow a user to execute these cues across the network in a planned
manner.

This requires scripting with Unity’s GUI API. The GUI should integrate with a net-
work connection, such that the user is able to execute cues across a local network.
Inspiration for the layout of the Cue Handler is found in the commercial software
Qlab by Figure 53 (Figure53 2011). A screenshot of Qlab can be seen in figure 3.3
Figure 3.3 shows some key aspects in the design of the interface, the largest portion
of screen space is reserved for a list type view of different cues and information about
these cues. The button to execute a cue in the top left corner is big and noticeable,
making it hard to misclick. This Cue Handler system is simpler than Qlab, and so
the interface design only serves as inspiration. A mockup design of the Cue Handler
interface can be seen in figure 3.4. The final design may vary, but will be prototyped
from this mockup.

6 CHAPTER 3. PROBLEM ANALYSIS

Figure 3.3: The main interface of the commercial software Qlab. Most of the GUI space is used to display a list of
cues, and various information about these cues. Image source is http://figure53.com/qlab/

Figure 3.4: A mockup design for the Cue Handler inteface. The screen is divided into 3 parts: A button Control
pane, a list type view of cues, and an information pane

CHAPTER 4

PROBLEM STATEMENT

Based on the problem analysis the following problem statement has been phrased:

With the conditions and considerations described in chapter 3, will the described
systems succeed in facilitating facial capture data mapping and cue management
to a satisfying degree, specified by common evaluation techniques in these fields?

The design and evaluation methods of these systems will be described in the follow-
ing parts of this report.

7

CHAPTER 5

SYSTEM DESIGN

In this chapter the following topics will be covered:

• Converting 2D data to 3D data inside Unity

• Filters applied for noise reduction

• Interpolation between frames

• Layout of the Cue Handler system

Implementation details such as code snippets are intentionally left out, however the
complete source code for both the facial data processing and the Cue Handler system
can be found in the appendix.

5.1 Data conversion

To get an overview of the data flow for facial data, see Figure 5.1.
The Facecat application has a plugin component in the form of a .dll file. This .dll file
is compiled with certain attributes which lets the author access it’s exposed methods
from Unity code. This plugin has methods designed to return data for each relevant
tracking point.

Figure 5.2 shows a screenshot of the Facecat application while running. Relevant
data points on the face of the actor is being tracked by the color of face paint. The
data points are represented as yellow dots with lines inbetween them. These points
are saved in the .dll plugin file.

Inside Unity, for each data point, it is possible to extract a 2D vector describing the X
and Y position of the point relative to an initial calibration point. A calibration con-
sists of the actor keeping a neutral expression. As an example, the point representing
the right eyebrow closest to the center of the actors head is called "RBrowsA", and

8

5.1. DATA CONVERSION 9

Figure 5.1: The data flow for Facial data. We see the webcam capture device sends a videostream to the Facecat
application. Facecat then exposes every relevant tracking point via a custom .dll file. This .dll file is handled by
Unity as an external plugin, and exposed methods in this plugin can be called inside Unity.

Figure 5.2: A screenshot of Facecat during runtime. The tracked data points are visible by yellow dots connected
by lines. Thse dots are saved in the .dll plugin file

10 CHAPTER 5. SYSTEM DESIGN

represents the deviation in pixels from the initial calibration point for "RBrowsA".
The X and Y values can then be stored in a 2D vector, that updates this data each
frame. Each 2D vector can then be stored in an array for easy access and easy itera-
tion over each vector in the array.
The main driver of the 2D-3D conversion consists of using the [X,Y] values to con-
struct a quaternion that represents a rotation. The goal is to ensure a deformation
of the face mesh which corresponds to the deformation of the actor’s face, when ex-
pressing themselves. This is ensured by having the 3D model constructed in such
a way, that there is a bone in the model for each tracking point on the actor’s face.
By having the 3D artist rig the model’s face in such a manner, many complex issues
are avoided already. There is no need for a proprietary mesh deformation system,
as most 3D packages already have this system in place with how bones affect mesh.
This is a ruleset made by the 3D artist during production of the model. Figure 5.3
shows a character known as "The Frog" in wireframe mode. The red wireframe rep-
resents the mesh of The Frog, while the white structure depicts the bones of the char-
acter. A similar structure is in every character’s face. However, because of the way
they are rigged, it is not easy to show in a screenshot. In a consultation between CDA
and the author, it was decided to rig every character model’s with such a structure.
Since each bone controls the deformation of the mesh in areas which correspond to

Figure 5.3: A screenshot depicting the bone structure of the Frog character. The white structure shows how bones
are rigged for this character. Every 3D model in this project is provided by CDA, not the author

the tracked areas of the actor’s face, the displacement of a given tracker point in both
X and Y (Horizontal and Vertical) can now be interpreted as a rotation of the bone
controlling that area of the mesh. Using this approach, there is an inherent danger
of excessive rotation of the bone in the case of mismeasurement by Facecat. This

5.2. FILTERS APPLIED FOR NOISE REDUCTION 11

is solved by limiting both the X and Y values to some range. This range should be
variable for each tracking point, as different parts of the face have different ranges
of deformation (example - the mouth can move further in the vertical axis than the
nose). With this setup it is now possible to construct an algorithm wich can be writ-
ten in pseudo code seen in listing 5.1.

Listing 5.1: Pseudo code describing the raw mapping algorithm

1 variable : XMax;
2 Variable: XMin;
3 Variable YMax;
4 Variable YMin;
5 for each tracked point p{
6 Store each [X,Y] coordinate in Vector2 array.
7 Limit X and Y to the range given by min and max values.
8 Quaternion Q = desired rotation constructed by inputting X and Y as

Euler Angles.
9 Set rotation of point p to Q

10 }

This represents the data mapping in it’s raw form.

5.2 Filters applied for noise reduction

The filters described in this section are meant to reduce noise from the signal to
a level deemed acceptable by the CDA Director. The filters alone do not result in
completely optimal visual quality, but interpolation between data points described
later in section 5.3 will bring the visual standard to an acceptable level. The raw
mapping does not take into account the noise in the signal from Facecat. Thus, it is
required to filter out noise from the webcam. The noise signature when the actor’s
face is as much at rest as possible (neutral expression) can bee seen in figure 5.4.

Figure 5.4: A plot of the noise signature when the actor’s face holds a neutral expression. As this is considered a
baseline, noise filtering is desired

From observing the noise signature it is apparent that a substantial amount of noise
can be eliminated by comparing the current pixel data with the pixel data of the
previous frame. If this data is beyond a certain threshold, the data is interpreted
as a valid facial move and therefore accepted into a new array of filtered data. This
threshold should be variable such that a balance between lost data, and a desired
visual quality can be found. This filter is described in pseudo code in listing 5.2

12 CHAPTER 5. SYSTEM DESIGN

Listing 5.2: Pseudo code describing the thresholding algorithm

1 Variable: threshold
2 for each tracked point P{
3 store the result of filteredDataP-rawDataP in a tempVector
4 if(ABS(tempVector.x)> threshold)
5 {
6 filteredDataP = rawDataP
7 }
8 Repeat for tempVector.y
9 }

For eye movement, this filtering method shows an undesirable visual quality. By
filtering out the low-value deviations, many of the rapid eye movements are lost. Eye
movements show different characteristics, they are smaller and quicker than other
facial movement. If the thresholding filter is applied here, the eyes will only display
movement in the extreme cases, relatively large deviations, and quickly "snap" back
to the calibration point, which results in unnatural looking eyes. However, unfiltered
eye data results in constantly flickering eye movement. Therefore, a mean filter is
applied instead of thresholding. This filter slows down the eye movement slightly,
but eliminates the noise which results in flicker eye movement. The mean filter is
a simple list, which holds the previous 4 vectors and the current vector. For each
frame, the mean value is extracted from this list, and used to set the rotation of the
eyes. A pseudo-code description can be seen in listing 5.3.

Listing 5.3: Pseudo code describing the thresholding algorithm

1 Variable: VectorArray;
2 Variable: EyeFilteredVector;
3 for each frame{
4 Update VectorArray with newest tracked vector. Delete oldest vector.
5 EyeFilteredVector = (Sum of VectorArray)/5
6 }

After all relevant data has been treated by the described filters, it can be applied to
the face of the virtual character. As described in Section 5.1, the filtered data is used
to construct rotations for the bones in the character rig. All rotations are applied in
local space to maintain the proper relationships with the parent bones in the char-
acter hierarchy.

5.3 Interpolation

In order to secure robust mapping which should be able to sustain frame loss from
Facecat, the rotations are not set directly each frame, which could lead to stuttering
in the case of a lost frame. Instead, the script interpolates between the known da-
ta points over time. Unity offers SLERP interpolation between quaternions, so this
method is used. The Quaternion.Slerp() function takes 3 parameters: "From",
"To", and "By". "From" is a rotation from which we start interpolating, "To" is the ro-
tation to interpolate towards, and "By" is the amount of interpolation. To make this

5.4. CUE HANDLER 13

interpolation framerate independent,"By" should be Time.deltaTime (The time
in seconds it took to complete the last frame) multiplied by a speed variable which
determines the interpolation rate. As this is variable, the delay introduced by in-
terpolating is also variable. This is entirely up to the CDA director, but in order to
establish the upper bound of this delay (maximum interpolation delay before audi-
ences notice) an experiment will be conducted, which will be described in chapter
6

5.4 Cue Handler

As discussed in section 3.3, the Cue Handler should meet certain criteria. These are:

• It should allow a user to custom build a list of cues.

• It should be operated on a remote computer, such that the GUI does not inter-
fere with the computer rendering the theater performance.

• It should allow a user to execute these cues across the network.

This section will focus on describing how the Cue Handler has been designed to meet
these criterion.
To enable remote cue execution, the Cue Handler has a server/client system. The
machine which holds the built cues acts as a server, and the machine to recieve these
cues acts as a connecting client. Unity allows for easy connection with the special
component type "NetvorkView". Anything holding this component on both the serv-
er and client side, will be able to communicate via Remote Procedure Calls(RPC’s).
Any method that is prefaced with the [RPC] attribute is open to being invoked re-
motely (UnityTechnologies 2011). By having an RPC method on the client side, which
expects to recieve a cue when called, it is possible to send cue data once a connec-
tion has been established. The server part of the Cue Handler will instantly initiate
a running server. The client side is designed to connect to this server whenever the
recieving machine is ready to accept cues(when the performance is ready to start).

The Cue Handler main interface can be seen in figure 5.5. The different areas of
the interface are:

• 1: Management buttons. These are used to make new cues, edit existing cues,
save and load functionality for different cue templates etc.

• 2: Buttons to execute a cue, delete a cue, or quick-switch to a given scene. This
quick-switch functionality is intended for rehearsal runs.

• 3: The main cue list. This shows all the created cues, by the name that was
given to them during creation.

• 4: Textbox displaying the text description of the selected cue. This description
is entered by the user during creation of the cue.

14 CHAPTER 5. SYSTEM DESIGN

• 5: A "Log out" button which will terminate the server functionality of the Cue
Handler. This also displays the number of connections. During performance,
this number should always be 1.

5.4. CUE HANDLER 15

Fi
gu

re
5.

5:
A

sc
re

en
sh

o
ts

h
ow

in
g

th
e

C
u

e
H

an
d

le
r

m
ai

n
in

te
rf

ac
e.

T
h

is
is

w
h

at
th

e
st

ag
e

m
an

ag
er

w
il

lu
se

d
u

ri
n

g
p

er
fo

rm
an

ce

16 CHAPTER 5. SYSTEM DESIGN

The first thing the user needs to do, is populate the cue list with the cues for the per-
formance. By clicking the "New Cue" button, a dialog box with creation parameters
is rendered. This dialog box can be seen in figure 5.6

Figure 5.6: A screenshot of the dialog box shown when the stage manager wishes to add a cue. Multiple param-
eters can be set, and finally saved to the cue list

In this dialog box, the user enters parameters specific for this cue. Most functionality
can be executed by simply using the "Run a function" fields. This will call any given
function upon cue execution, provided that this function exists, and contains code
for the desired functionality. This is the most dynamic parameter of the cue. Oth-
er functionality which has been deemed "common use" by CDA is presented in the
top half of the dialog box for easy access. Examples are: fading lights up and down,
playing a soundfile, or loading a scene. The user may have a need to create a cue
which triggers multiple custom events at once using the "Run a function" field. It
is possible to let the user run multiple functions within the same cue, however this
approach does not scale very well. In theory, the user could find the need to execute
n functions at once. So, instead of allowing the user to do so, the "Auto Play" feature
has been implemented. With this toggle checked, the cue will automatically contin-
ue to the next cue upon execution. So, to run x custom functions, the user will need
to create x cues that all have "Auto Play" checked. This will execute these cues in
rapid succesion, and the Cue Handler will stop executing cues when it encounters a
cue without "Auto Run" checked.

5.5. THE CUE CLASS 17

5.5 The Cue Class

When a cue is saved, a custom class named Cue is instantiated. This class serves as
a data holder for a cue event, and has public properties to store information about
what events this cue will trigger. After instantiation, it’s properties are set according
to the parameters the user have entered, and this instance is saved in an array at the
selected index of the cue list. A class diagram of the Cue class can be seen in figure
5.7

Figure 5.7: A class diagram of the Cue class. Generated in Microsoft Visual Studio 2010

As seen here, the Cue class has two methods other than its constructor, Serialize()
and Deserialize(). These methods serve the purpose of serializing and deserial-
izing the Cue data into a string format and returns this string. This is used when
sending and recieving the cue data across the network. When the user clicks the
"Start Cue" button, an RPC method on the recieving machine is called. This method
deserializes the string, which represents the Cue, and appropriate action is taken
based on the Cue parameters (playing a sound, instantiating a particle system, etc.).
The "Edit Cue" button will bring up the same dialog box, but in this case, it will ob-
serve the properties of the selected cue, and load these into the text fields of the
dialog. The "Expand" button will insert a new empty cue at the selected index, and

18 CHAPTER 5. SYSTEM DESIGN

push every following cue one slot. The "Contract" button removes the selected cue,
and contracts the list to cover the empty slot. As seen in figure 5.5, the Cue Handler
also supports Copy/Paste functionality.
When done with a cue list, the user needs to click "save cues", in order for the list to
appear next time the program is loaded. The save button will write the cue list to an
XML file saved locally. This file can be copied remotely to share cue templates be-
tween multiple computers if desired. The save feature should execute as a standard
feature, when closing the program by clicking the "X" in the window titlebar, howev-
er Unity displays strange behaviour here, and will not complete writing to the XML
file in time, resulting in XML corruption. This concludes the design chapter, and the
following chapter will discuss the methods for evaluating these two systems.

CHAPTER 6

EXPERIMENT OVERVIEW

This chapter describes the experiments intended to evaluate the two parts of this
project in regards to the problem statement in chapter 4. The author of this project
has not been able to carry out the experiments at the time of writing. The software
written to handle facial data mapping and cue execution is complete, however other
parts of the CDA project are not yet at a stage where the authors software can be test-
ed. The Cue Handler system has not yet been used by CDA to an extent where test
feedback is to be considered valuable. The experiments described in this chapter
will be carried out, and results will be presented and discussed at the project exam.

To evaluate the biggest issue with the facial data mapping described in Chapter 5,
is the inherent lag introduced by interpolating between data points over time. As
previously mentioned, this was introduced to secure robustness in the cases where
Facecat skips a frame. This could lead to the image trailing behind the audio, which
is supplied by a microphone on the actor. Research in this field by Conrey & Pisoni
suggests that a maximum likelihood of an observer giving an "in sync" response
is found when the video is leading the audio by approximately 40ms (Conrey and
Pisoni 2003). This suggests the neccesity to delay audio signals in order to keep audio
and video synched during performance. CDA is prepared to implement this, since
other systems such as motion capture data processing, and the general rendering of
the visually complex scenes are already causing a significant amount of lag during
performance. However, to test this system as a separate entity, it will be tested with-
out external lag sources like render-heavy scenes. Two versions of the face mapping
process will be constructed. One version with interpolation, and one version with-
out interpolation. These two versions will be used in an ABX test, to determine if the
viewer can distinguish the lag introduced by interpolating. The ABX test works by
displaying a known sample A and a known sample B, followed by an unknown sam-
ple X, to a test subject and asking the subject to identify sample X as either A or B. In
order to ensure that the subject’s statement has some degree of confidence, several
trials must be run. A confidence level of 95% is considered statistically significant by
the author(this leaves a 5% chance that they are guessing correctly), and is obtained

19

20 CHAPTER 6. EXPERIMENT OVERVIEW

if the subject answers correctly in 9 out of 10 trials. If the subjects cannot correctly
identify the X sample in 9 of 10 cases, the null-hypothesis is rejected, and it cannot
be proven that there is a discernable difference between the two versions
The test will be based on showing video on a dual screen setup. The two screens are
back to back, and the test facilitator will control which video is shown as sample X.

To evaluate the Cue Handler interface, it is decided to perform a usability test which
relies on self-reported data by the user. The best way to capture self-reported data
is to ask the user to rate certain tasks on a scale (Tullis and Albert 2008). To avoid
social desirability bias (Nancarrow and I. 2000) in the self-reported data, the survey
is done remotely via a questionnaire. To further avoid any bias, the author has asked
not to know the identity of the user from CDA beforehand (Tullis and Albert 2008).
This questionnaire will ask the user to rate a set of tasks on a Likert scale. It is com-
mon to analyze the Likert results by assigning a numeric value to each point on the
scale and averaging these values (Tullis and Albert 2008). In the case of "Strongly
disagree" to "Strongly agree", they will range from 1-5. By asking the user to rate the
tasks in terms of ease, problem areas that need improvement should become clear.
The questionnaire can be found in the appendix of this report.

CHAPTER 7

DISCUSSION

In this chapter the work conducted in relation to this report will be discussed. Two
different systems were designed and implemented as described in Chapter 5.
Methods of evaluating these systems has been presented, however due to timing,
these evaluations have not been performed at the time of writing. Preliminary ob-
servation of the systems running show that the facial data mapping method yields a
good result in terms of delivering a correct mapping of data points. It is still unknown
if the lag introduced by interpolation is noticeable. The author of the report has suc-
cessfully created and executed a complete template of cues with the Cue Handler.
This means that the core functionality of the system is working correctly, however
the usability of the interface is still to be determined. At the project exam, the results
will be presented and discussed in relation to the problem statement.

21

BIBLIOGRAPHY

Bishop, L. and J. V. Werth (2008). Essential mathematics for games and interactive
applications. Morgan Kaufmann.

Conrey, B. L. and D. B. Pisoni (2003, September). Audiovisual asynchrony detection
for speech and nonspeech signals. AVSP 2003 - Internation Conference on Audio-
Visual Speech Processing, 5–5.

Figure53 (2011). Figure53.com. http://figure53.com/qlab/. Accessed May 30,
2012.

Nancarrow, C. and B. I. (2000). Saying the "right thing": Coping with social desir-
ability bias in marketing research. Bristol Business School Teaching and Research
Review Issue 3, Summer 2000, ISSN 1468-4578. Accessed May 30, 2012.

Tullis, T. and W. Albert (2008). Measuring the User Experience: Collecting, Analyzing,
and Presenting Usability Metrics. Morgan Kaufmann.

UnityTechnologies (2011). Unity3d.com. http://unity3d.com/support/
documentation/Components/net-RPCDetails/. Accessed May 30, 2012.

Wei, X., Z. Zhu, L. Yin, and Q. Ji (2004). A real time face tracking and animation
system. Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 3–4.

22

http://figure53.com/qlab/
http://unity3d.com/support/documentation/Components/net-RPCDetails/
http://unity3d.com/support/documentation/Components/net-RPCDetails/

APPENDIX A

APPENDIX

23

APPENDIX B

QUESTIONNAIRE

24

25

Fi
gu

re
B

.1

APPENDIX C

FACIAL DATA MAPPING SOURCE CODE

Listing C.1: The Facecat script, which should be on every characters face GameObject for data mapping to occur

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 using System;
5 using System.Runtime.InteropServices;
6

7

8 public class FaceCat : MonoBehaviour {
9

10 public int port = 6832;
11 public int status = -1234;
12 public string capturename = "frog";
13 public string seperator = ":";
14 public int debuge = 0;
15 public int debugx = 0;
16 public int debugy = 0;
17 public static Vector2[] rawData;
18 public static Vector2[] filteredData;
19 public bool debugMode;
20

21 public Transform RBrowsA;
22 public Transform RBrowsB;
23 public Transform LBrowsA;
24 public Transform LBrowsB;
25 public Transform RCheeks;
26 public Transform LCheeks;
27 public Transform LNasal;
28 public Transform RNasal;
29 public Transform LMouthU;
30 public Transform RMouthU;
31 public Transform LMouthC;

26

27

32 public Transform RMouthC;
33 public Transform LMouthB;
34 public Transform RMouthB;
35 public Transform Jaw;
36 public Transform LEyeBall;
37 public Transform REyeBall;
38 public Transform LLidT;
39 public Transform RLidT;
40 public Transform LLidB;
41 public Transform RLidB;
42 public float mouthSmoothness = 18.0f;
43 public float cheekSmoothness = 5.0f;
44 public float browSmoothness = 18.0f;
45 public float nasalSmoothness = 5.0f;
46 public float eyeSmoothness = 18.0f;
47 bool setRotations = false;
48 int filterThreshold;
49 Vector2 tempVector;
50 public float eyeXBias;
51 public float eyeYBias;
52 Vector2[] rawEye;
53

54 //Variables for adjusting min-max values for different face parts
to solve clipping. Extremely silly way of doing this. Find
clever solution

55

56 public float LMouthUMin;
57 public float LMouthUMax;
58 public float RMouthUMin;
59 public float RMouthUMax;
60 public float LMouthCMin;
61 public float LMouthCMax;
62 public float RMouthCMin;
63 public float RMouthCMax;
64

65 //DLL import calls for ServerClient.dll external methods
66 [DllImport ("ServerClient")]
67 private static extern int ServerNetwork(int port);
68 [DllImport ("ServerClient")]
69 private static extern int CloseNetwork();
70 [DllImport ("ServerClient")]
71 public static extern int getX(string name, string tag);
72 [DllImport ("ServerClient")]
73 public static extern int getY(string name, string tag);
74 [DllImport ("ServerClient")]
75 private static extern int test(string test);
76

77

28 APPENDIX C. FACIAL DATA MAPPING SOURCE CODE

78

79

80 // Use this for initialization
81 void Start () {
82 filterThreshold = 3;
83

84 rawData = new Vector2[17];
85 filteredData = new Vector2[17];
86 rawEye = new Vector2[10];
87 status = ServerNetwork(port);
88

89 //Assign our transform variables
90 RBrowsA = transform.Find(capturename+seperator+"RBrowsA");
91 RBrowsB = transform.Find(capturename+seperator+"RBrowsB");
92 LBrowsA = transform.Find(capturename+seperator+"LBrowsA");
93 LBrowsB = transform.Find(capturename+seperator+"LBrowsB");
94 RCheeks = transform.Find(capturename+seperator+"RCheeks");
95 LCheeks = transform.Find(capturename+seperator+"LCheeks");
96 LNasal = transform.Find(capturename+seperator+"LNasal");
97 RNasal = transform.Find(capturename+seperator+"RNasal");
98 LMouthU = transform.Find(capturename+seperator+"LMouthU");
99 RMouthU = transform.Find(capturename+seperator+"RMouthU");

100 LMouthC = transform.Find(capturename+seperator+"LMouthC");
101 RMouthC = transform.Find(capturename+seperator+"RMouthC");
102 LMouthB = transform.Find(capturename+seperator+"LMouthB");
103 RMouthB = transform.Find(capturename+seperator+"RMouthB");
104 Jaw = transform.Find(capturename+seperator+"Jaw");
105 LEyeBall =

GameObject.Find(capturename+seperator+"Leye").transform;
106 REyeBall =

GameObject.Find(capturename+seperator+"Reye").transform;
107 LLidT = transform.Find(capturename+seperator+"LLidT");
108 RLidT = transform.Find(capturename+seperator+"RLidT");
109 LLidB = transform.Find(capturename+seperator+"LLidB");
110 RLidB = transform.Find(capturename+seperator+"RLidB");
111

112 }
113

114 // Update is called once per frame
115 void Update () {
116

117 //populate an array with raw data from FaceCat. If
different regions of the face should have different
noise thresholds, this array should be split up into
regional arrays instead.

118

119 rawData[0] = (new
Vector2(getX(capturename,"RBrowsA"),getY(capturename,"RBrowsA")));

29

120 rawData[1] = (new
Vector2(getX(capturename,"RBrowsB"),getY(capturename,"RBrowsB")));

121 rawData[2] = (new
Vector2(getX(capturename,"LBrowsA"),getY(capturename,"LBrowsA")));

122 rawData[3] = (new
Vector2(getX(capturename,"LBrowsB"),getY(capturename,"LBrowsB")));

123 rawData[4] = (new
Vector2(getX(capturename,"RCheeks"),getY(capturename,"RCheeks")));

124 rawData[5] = (new
Vector2(getX(capturename,"LCheeks"),getY(capturename,"LCheeks")));

125 rawData[6] = (new
Vector2(getX(capturename,"LNasal"),getY(capturename,"LNasal")));

126 rawData[7] = (new
Vector2(getX(capturename,"RNasal"),getY(capturename,"RNasal")));

127 rawData[8] = (new
Vector2(getX(capturename,"LMouthU"),getY(capturename,"LMouthU")));

128 rawData[9] = (new
Vector2(getX(capturename,"RMouthU"),getY(capturename,"RMouthU")));

129 rawData[10] = (new
Vector2(getX(capturename,"RMouthC"),getY(capturename,"RMouthC")));

130 rawData[11] = (new
Vector2(getX(capturename,"LMouthC"),getY(capturename,"LMouthC")));

131 rawData[12] = (new
Vector2(getX(capturename,"LMouthB"),getY(capturename,"LMouthB")));

132 rawData[13] = (new
Vector2(getX(capturename,"RMouthB"),getY(capturename,"RMouthB")));

133 rawData[14] = (new
Vector2(getX(capturename,"Jaw"),getY(capturename,"Jaw")));

134 rawData[15] = (new Vector2(getX(capturename, "REye"),
getY(capturename, "REye")));

135 rawData[16] = (new Vector2(getX(capturename, "LEye"),
getY(capturename, "LEye")));

136

137

138 //Populate an array with raw data for eyes
139 rawEye[0] = (new Vector2(getX(capturename, "REye"),

getY(capturename, "REye")));
140 rawEye[1] = (new Vector2(getX(capturename, "REye"),

getY(capturename, "REye")));
141 rawEye[2] = (new Vector2(getX(capturename, "REye"),

getY(capturename, "REye")));
142 rawEye[3] = (new Vector2(getX(capturename, "REye"),

getY(capturename, "REye")));
143 rawEye[4] = (new Vector2(getX(capturename, "REye"),

getY(capturename, "REye")));
144 rawEye[5] = (new Vector2(getX(capturename, "LEye"),

getY(capturename, "LEye")));

30 APPENDIX C. FACIAL DATA MAPPING SOURCE CODE

145 rawEye[6] = (new Vector2(getX(capturename, "LEye"),
getY(capturename, "LEye")));

146 rawEye[7] = (new Vector2(getX(capturename, "LEye"),
getY(capturename, "LEye")));

147 rawEye[8] = (new Vector2(getX(capturename, "LEye"),
getY(capturename, "LEye")));

148 rawEye[9] = (new Vector2(getX(capturename, "LEye"),
getY(capturename, "LEye")));

149

150 //Create new Vectors that hold mean-filtered data for the eyes.
Thresholding isnt viable here as it makes the eye movement
look very unnatural

151 //Vector2 rightEyeFiltered = (rawEye[0] + rawEye[1] + rawEye[2]
+ rawEye[3] + rawEye[4]) / 5;

152 Vector2 leftEyeFiltered = (rawEye[5] + rawEye[6] + rawEye[7] +
rawEye[8] + rawEye[9]) / 5;

153

154

155

156

157 //We loop through the array of raw data, and if the
difference from past frame is greater than Threshold,
put it in filteredData[]

158 // which we use to assign final rotations to the face.
Basic noisefilter by thresholding

159 for (int i = 0; i < rawData.Length-1; i++) {
160 int tempXInt = 0;
161 int tempYInt = 0;
162

163 Vector2 tempResult = filteredData[i]-rawData[i];
164

165 if (Mathf.Abs(tempResult.x) > filterThreshold) {
166 tempXInt = (int)tempResult.x;
167 }
168 if (Mathf.Abs(tempResult.y) > filterThreshold) {
169 tempYInt = (int)tempResult.y;
170

171 }
172 filteredData[i] = new Vector2(tempXInt,tempYInt);
173

174 }
175

176 // Check if Facecat numbers are being funky before mapping
rotations to the characters face. They sometimes are. Dont
know why

177 if (getY(capturename, "RBrowsA") > -50 && (getY(capturename,
"RBrowsA")) < 50)

178 {

31

179 setRotations = true;
180

181 }
182

183 if (setRotations) {
184

185

186

187 //Set rotation and rotational smoothing for all the bones
found. Smoothing is variable for different parts of the face

188

189 RBrowsA.localRotation =
Quaternion.Slerp(RBrowsA.localRotation,
Quaternion.Euler(-filteredData[0].y,0,filteredData[0].x),

190 Time.deltaTime*browSmoothness);
191

192 RBrowsB.localRotation =
Quaternion.Slerp(RBrowsB.localRotation,
Quaternion.Euler(-filteredData[1].y,0,filteredData[1].x),

193 Time.deltaTime*browSmoothness);
194

195 LBrowsA.localRotation =
Quaternion.Slerp(LBrowsA.localRotation,
Quaternion.Euler(-filteredData[2].y,0,filteredData[2].x),

196 Time.deltaTime*browSmoothness);
197

198 LBrowsB.localRotation =
Quaternion.Slerp(LBrowsB.localRotation,
Quaternion.Euler(-filteredData[3].y,0,filteredData[3].x),

199 Time.deltaTime*browSmoothness);
200

201 RCheeks.localRotation =
Quaternion.Slerp(RCheeks.localRotation,
Quaternion.Euler(-filteredData[4].y,0,filteredData[4].x),

202 Time.deltaTime*cheekSmoothness);
203

204 LCheeks.localRotation =
Quaternion.Slerp(LCheeks.localRotation,
Quaternion.Euler(-filteredData[5].y,0,filteredData[5].x),

205 Time.deltaTime*cheekSmoothness);
206

207 LNasal.localRotation =
Quaternion.Slerp(LNasal.localRotation,
Quaternion.Euler(-filteredData[6].y*0.2f,0,

208 filteredData[6].x*0.2f),Time.deltaTime*nasalSmoothness);
209

210 RNasal.localRotation =
Quaternion.Slerp(RNasal.localRotation,

32 APPENDIX C. FACIAL DATA MAPPING SOURCE CODE

Quaternion.Euler(-filteredData[7].y*0.2f,0
211 ,filteredData[7].x*0.2f),Time.deltaTime*nasalSmoothness);
212

213 LMouthU.localRotation =
Quaternion.Slerp(LMouthU.localRotation,
Quaternion.Euler(-filteredData[8].y*0.5f,0,

214 filteredData[8].x),Time.deltaTime*mouthSmoothness);
215

216 RMouthU.localRotation =
Quaternion.Slerp(RMouthU.localRotation,
Quaternion.Euler(-filteredData[9].y*0.5f,0,

217 filteredData[9].x),Time.deltaTime*mouthSmoothness);
218

219 LMouthC.localRotation =
Quaternion.Slerp(LMouthC.localRotation,
Quaternion.Euler(-filteredData[10].y,0,

220 filteredData[10].x),Time.deltaTime*mouthSmoothness);
221

222 RMouthC.localRotation =
Quaternion.Slerp(RMouthC.localRotation,
Quaternion.Euler(-filteredData[11].y,0,

223 filteredData[11].x),Time.deltaTime*mouthSmoothness);
224

225 LMouthB.localRotation =
Quaternion.Slerp(LMouthB.localRotation,
Quaternion.Euler(-filteredData[12].y,0,

226 filteredData[12].x),Time.deltaTime*mouthSmoothness);
227

228 RMouthB.localRotation =
Quaternion.Slerp(RMouthB.localRotation,
Quaternion.Euler(-filteredData[13].y,0

229 ,filteredData[13].x),Time.deltaTime*mouthSmoothness);
230

231 Jaw.localRotation = Quaternion.Slerp(Jaw.localRotation,
Quaternion.Euler(rawData[14].y*0.7f,0,rawData[14].x)

232 ,Time.deltaTime*mouthSmoothness);
233

234 //Applying eyeball rotations from filtered eyeball data. The
eyeBias variables are here to make up for eyeball
transforms having differing pivot orientations in the model
file.

235

236 REyeBall.localRotation =
Quaternion.Slerp(REyeBall.localRotation,
Quaternion.Euler(leftEyeFiltered.y

237 * 1.4f - eyeXBias, 0, (-leftEyeFiltered.x*1.4f) - eyeYBias),
Time.deltaTime * eyeSmoothness);

238

33

239 LEyeBall.localRotation =
Quaternion.Slerp(LEyeBall.localRotation,
Quaternion.Euler(leftEyeFiltered.y*

240 1.4f - eyeXBias, 0, (-leftEyeFiltered.x*1.4f) - eyeYBias),
Time.deltaTime * eyeSmoothness);

241

242

243 //Clear filtered data. Very important.....apparently
244

245 for (int i = 0; i < filteredData.Length-1; i++) {
246

247 filteredData[i] = Vector2.zero;
248

249 }
250

251

252 }
253 }
254

255 void OnGUI()
256 {
257

258 if (debugMode)
259 {
260

261

262 GUI.Label(new Rect(Screen.width / 2, Screen.height / 10,
200, 80), "Sliders determine responsiveness\nEyes
require a good Facecat calibration, but can be
offset/biased in script");

263 GUI.Label(new Rect(10, 120, 200, 20), "Mouth");
264 GUI.Label(new Rect(65, 120, 200, 20), "Cheek");
265 GUI.Label(new Rect(115, 120, 200, 20), "Brow");
266 GUI.Label(new Rect(160, 120, 200, 20), "Nose");
267 GUI.Label(new Rect(195, 120, 200, 20), "Eyes");
268 mouthSmoothness = GUI.VerticalSlider(new Rect(25, 150, 20,

300), mouthSmoothness, 20.0f, 0.1f);
269 cheekSmoothness = GUI.VerticalSlider(new Rect(75, 150, 20,

300), cheekSmoothness, 20.0f, 0.1f);
270 browSmoothness = GUI.VerticalSlider(new Rect(125, 150, 20,

300), browSmoothness, 20.0f, 0.1f);
271 nasalSmoothness = GUI.VerticalSlider(new Rect(175, 150, 20,

300), nasalSmoothness, 20.0f, 0.1f);
272 eyeSmoothness = GUI.VerticalSlider(new Rect(200, 150, 20,

300), eyeSmoothness, 20.0f, 0.1f);
273 GUI.Label(new Rect(10, 480, 50, 55),

Convert.ToString(Mathf.Round(mouthSmoothness * 100) /
100));

34 APPENDIX C. FACIAL DATA MAPPING SOURCE CODE

274 GUI.Label(new Rect(65, 480, 50, 55),
Convert.ToString(Mathf.Round(cheekSmoothness * 100) /
100));

275 GUI.Label(new Rect(115, 480, 50, 55),
Convert.ToString(Mathf.Round(browSmoothness * 100) /
100));

276 GUI.Label(new Rect(175, 480, 50, 55),
Convert.ToString(Mathf.Round(nasalSmoothness * 100) /
100));

277

278 if (GUI.Button(new Rect(80, 70, 80, 20), "+ Threshold"))
279 {
280 filterThreshold++;
281

282 }
283 if (GUI.Button(new Rect(80, 90, 80, 20), "- Threshold"))
284 {
285 filterThreshold--;
286

287 }
288

289

290

291 if (GUI.Button(new Rect(10, 70, 50, 30),
Convert.ToString(filterThreshold)))

292 {
293 Debug.Log("Call exit");
294 CloseNetwork();
295 Application.Quit();
296

297 }
298 }
299 }
300 }

APPENDIX D

CUE HANDLER SOURCE CODE

Listing D.1: The Cue Handler GUI code

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 using System;
5 using System.IO;
6 using System.Xml.Serialization;
7 using System.Xml;
8

9 public class CueGUI : MonoBehaviour {
10 Vector2 scrollPosition;
11 public string cueName;
12 //List<Cue> cueList = new List<Cue>();
13

14 int selGridInt = 0;
15 public static List<string> stringList = new List<string>();
16 string[] selStrings = new string[400];
17 int counter = 0;
18 bool showNewCueWindow = false;
19 bool showEditCueWindow = false;
20 bool fadeLightUp;
21 bool fadeLightDown;
22 string fadeTime = "";
23 bool playSound;
24 bool loadScene;
25 string sceneName = "Name of the scene";
26 bool runFunction;
27 string GO = "Which GameObject has the function?";
28 string functionName = "Name of the function";
29 string soundName = "name of soundclip";
30 string description = "";
31 public Rect newCueRect = new Rect(1000,800,400,400);

35

36 APPENDIX D. CUE HANDLER SOURCE CODE

32 public Rect editCueRect = new Rect(1000,800,400,400);
33 Cue[] cueArray = new Cue[400];
34 Cue cueCopy;
35 bool firstCueDone = false; //never used?
36 bool auto;
37 GUIText gt;
38 float result;
39 public String fileName = ".\\savedCues.xml";
40 FileStream ofs;
41 string activeCueDesc = "";
42 int checkInt = 0;
43 Cue[] tempArray = new Cue[400];
44 bool cueArrayAvailable = true;
45 Cue cueToEdit = new Cue();
46 bool playMode;
47 bool advance;
48

49 Cue defaultCue;
50

51 void Start()
52 {
53

54 //if (Application.isEditor) {
55 Debugger.activateLogCallback();
56 //}
57

58 defaultCue = new Cue();
59 defaultCue.name = "Empty";
60 defaultCue.SceneName = "";
61 defaultCue.soundName = "";
62

63 for (int i = 0; i < cueArray.Length - 1; i++)
64 {
65 cueArray[i] = defaultCue;
66 }
67 //gt = GameObject.Find("debugText").guiText;
68

69 if (firstCueDone) print (firstCueDone); //De.B.S. warnings
70

71 }
72

73

74 void Update()
75 {
76 if (Input.GetKeyDown(KeyCode.Backspace)) {
77 selGridInt--;
78 if (selGridInt<0) selGridInt = 0;
79 }

37

80

81 if (Input.GetKeyDown(KeyCode.Space)) {
82 playMode=true;
83 if (!Input.GetKey(KeyCode.LeftControl))
84 advance=true;
85 }
86

87

88 if (playMode)
89 {
90 if (Network.isServer) {
91 networkView.RPC("sendCue", RPCMode.Others,

cueArray[selGridInt].Serialize());
92 } else {
93 Debug.Log ("Trying to send, but no connection

was started!");
94

95 }
96

97 if (advance || cueArray[selGridInt].autoPlay) {
98

99 selGridInt++;
100 advance = false;
101 }
102 else
103 {
104 playMode = false;
105 }
106

107 }
108 //Code that handles updating the description area if the user

is clicking around in the cue list
109 if (selGridInt != checkInt)
110 {
111 selGridInt =

Mathf.Clamp(selGridInt,0,cueArray.Length-1);
112

113 //print("clicked: " + selGridInt);
114 if (cueArray[selGridInt] != null)
115 {
116 activeCueDesc = cueArray[selGridInt].description;
117 }
118

119 for (int i = 0; i < cueArray.Length-1; i++)
120 {
121 try
122 {
123 selStrings[i] = cueArray[i].name;

38 APPENDIX D. CUE HANDLER SOURCE CODE

124 }
125 catch (Exception e)
126 {
127 Debug.Log(e.Message);
128

129 }
130

131

132 }
133 //selGridInt++; //select text cue
134 checkInt = selGridInt;
135

136 }
137

138 }
139

140

141

142 void loadCues()
143 {
144 //First, we make new default cues and to load into the array
145 Cue defaultCue = new Cue();
146 defaultCue.name = "Empty";
147 cueArrayAvailable = false;
148 for (int i = 0; i < cueArray.Length-1; i++)
149 {
150 cueArray[i] = defaultCue;
151 }
152

153 // Make a new serialiser, that deserializes the xml file into
the cueArray, and sets counters and bools as if the user
entered the cues manually

154 ofs = new FileStream(fileName, FileMode.OpenOrCreate,
FileAccess.ReadWrite);

155 XmlSerializer xs = new XmlSerializer(typeof(Cue[]));
156 tempArray = (Cue[])xs.Deserialize(ofs);
157 ofs.Close();
158 //Check if the current index is occupied by a default Cue. If

it isnt, then load that into the CueArray and update the
counter to reflect where the next cue should be inserted

159 for (int i = 0; i < tempArray.Length-1; i++)
160 {
161 if (tempArray[i].name != "Empty")
162 {
163 cueArray[i] = tempArray[i];
164 counter++;
165

166 }

39

167 }
168 firstCueDone = true;
169 cueArrayAvailable = true;
170

171 for (int i = 0; i < cueArray.Length-1; i++)
172 {
173 try
174 {
175 selStrings[i] = cueArray[i].name;
176

177 }
178 catch (Exception e)
179 {
180

181 Debug.Log(e.Message);
182 }
183

184 }
185

186 }
187

188 void updateselStrings () {
189

190 for (int i = 0; i < cueArray.Length-1; i++)
191 {
192

193 selStrings[i] = cueArray[i].name;
194

195 }
196

197 }
198

199

200 void newCueWindow(int windowID)
201 {
202 //Start new Vectical group
203 GUILayout.BeginVertical();
204 //Ask for Cue name
205 GUILayout.Label("Enter Cue Name");
206 //Hold Cue Name
207 cueName = GUILayout.TextField(cueName);
208 auto = GUILayout.Toggle(auto,"Auto Play?");
209 //Bools for holding information on what this cue is supposed to

do
210 GUILayout.BeginHorizontal();
211 fadeLightUp = GUILayout.Toggle(fadeLightUp, "Fade Light Up");
212 GUILayout.Label(" Duration:");
213 fadeTime = GUILayout.TextArea(fadeTime);

40 APPENDIX D. CUE HANDLER SOURCE CODE

214 GUILayout.EndHorizontal();
215

216 fadeLightDown = GUILayout.Toggle(fadeLightDown,"Fade Light
Down");

217 GUILayout.BeginHorizontal();
218 playSound = GUILayout.Toggle(playSound, "Play Sound");
219 soundName = GUILayout.TextField(soundName);
220 GUILayout.EndHorizontal();
221 loadScene = GUILayout.Toggle(loadScene,"Load a Scene");
222 sceneName = GUILayout.TextField(sceneName);
223 runFunction = GUILayout.Toggle(runFunction, "Run a function");
224 functionName = GUILayout.TextField(functionName);
225 GO = GUILayout.TextField(GO);
226 GUILayout.Label("Give a short description of this Cue");
227 description = GUILayout.TextArea(description);
228

229 GUILayout.BeginHorizontal();
230 //When clicking save cue, we add it to the cuelist, and save

the information somewhere so we can access it later
231 if (GUILayout.Button("Save Cue"))
232 {
233 if (cueName != "")
234 {
235 // int myInt = Convert.ToInt32(cueName);
236 Cue cue = new Cue();
237 cue.name = cueName;
238 //cue.ID = myInt;
239 cue.autoPlay = auto;
240 cue.lightUP = fadeLightUp;
241 cue.lightDown = fadeLightDown;
242 cue.playSound = playSound;
243 cue.loadScene = loadScene;
244 cue.description = description;
245 cue.soundName = soundName;
246 cue.runFuntion = runFunction; //runFuntion
247 cue.functionToRun = functionName;
248 cue.gameObjectWithFunction = GO;
249 cue.SceneName = sceneName;
250 //Convert the string fadetime to a float value
251 if (float.TryParse(fadeTime,out result))
252 {
253 cue.fadeTime = result;
254 }
255

256 cueArray[selGridInt] = cue;
257

258 //fill "strings to display"-array with the name of each
Cue in cueArray

41

259 for (int i = 0; i < cueArray.Length-1; i++)
260 {
261

262 selStrings[i] = cueArray[i].name;
263

264 }
265 firstCueDone = true;
266

267 cueName = "";
268 description = "";
269 counter++;
270 }
271 showNewCueWindow = false;
272 }
273

274 if (GUILayout.Button("Cancel"))
275 {
276 showNewCueWindow = false;
277 }
278 GUILayout.EndHorizontal();
279

280

281 GUILayout.EndVertical();
282 GUI.DragWindow(new Rect(0, 0, 10000, 10000));
283

284 }
285

286 void editCueWindow(int windowID)
287 {
288 //GUI.color = new Color(1, 0, 1, 1);
289 //GUI.backgroundColor = new Color(1, 0, 1, 1);
290 //Start new Vectical group
291 GUILayout.BeginVertical();
292 //Ask for Cue name
293 GUILayout.Label("Enter Cue Name");
294 //Hold Cue Name
295 //GUI.SetNextControlName ("cueName");
296 cueName = GUILayout.TextField(cueName);
297 auto = GUILayout.Toggle(auto,"Auto Play?");
298 //Bools for holding information on what this cue is supposed to

do
299 GUILayout.BeginHorizontal();
300 fadeLightUp = cueToEdit.lightUP;
301 fadeLightUp = GUILayout.Toggle(fadeLightUp, "Fade Light Up");
302 GUILayout.Label(" Duration:");
303 fadeTime = GUILayout.TextArea(fadeTime);
304 GUILayout.EndHorizontal();
305

42 APPENDIX D. CUE HANDLER SOURCE CODE

306 fadeLightDown = GUILayout.Toggle(fadeLightDown, "Fade Light
Down");

307 GUILayout.BeginHorizontal();
308 playSound = GUILayout.Toggle(playSound, "Play Sound");
309 soundName = GUILayout.TextField(soundName);

//this problem with edit??
310 GUILayout.EndHorizontal();
311 loadScene = GUILayout.Toggle(loadScene, "Load a Scene");
312 sceneName = GUILayout.TextField(sceneName); //this problem

with edit??
313 runFunction = GUILayout.Toggle(runFunction, "Run a function");
314 functionName = GUILayout.TextField(functionName);
315 GO = GUILayout.TextField(GO);
316 GUILayout.Label("Give a short description of this Cue");
317 description = GUILayout.TextArea(description);
318

319 //GUI.FocusControl ("cueName");
320

321 GUILayout.BeginHorizontal();
322 //When clicking save cue, we add it to the cuelist, and save

the information somewhere so we can access it later
323 if (GUILayout.Button("Save Cue"))
324 {
325 if (cueName != "")
326 {
327 // int myInt = Convert.ToInt32(cueName);
328 Cue cue = new Cue();
329 cue.name = cueName;
330 //cue.ID = myInt;
331 cue.lightUP = fadeLightUp;
332 cue.lightDown = fadeLightDown;
333 cue.playSound = playSound;
334 cue.soundName = soundName;
335 cue.loadScene = loadScene;
336 cue.description = description;
337 cue.soundName = soundName;
338 cue.runFuntion = runFunction; //runFuntion
339 cue.functionToRun = functionName;
340 cue.gameObjectWithFunction = GO;
341 cue.SceneName = sceneName;
342 cue.autoPlay = auto;
343 //Convert the string fadetime to a float value
344 if (float.TryParse(fadeTime, out result))
345 {
346 cue.fadeTime = result;
347 }
348

349 cueArray[selGridInt] = cue;

43

350

351 //fill "strings to display"-array with the name of each
Cue in cueArray

352 for (int i = 0; i < cueArray.Length - 1; i++)
353 {
354

355 selStrings[i] = cueArray[i].name;
356

357 }
358 firstCueDone = true;
359

360 cueName = "";
361 description = "";
362 counter++;
363 }
364 showEditCueWindow = false;
365 }
366

367 if (GUILayout.Button("Cancel"))
368 {
369 showEditCueWindow = false;
370 }
371 GUILayout.EndHorizontal();
372

373

374 GUILayout.EndVertical();
375 GUI.DragWindow(new Rect(0, 0, 10000, 10000));
376

377

378 }
379

380 void CueCopy() {
381

382 cueArray[selGridInt] = cueCopy;
383 updateselStrings();
384

385 }
386

387 void CuePaste() {
388

389 cueCopy = cueArray[selGridInt];
390 updateselStrings();
391

392 }
393

394

395

396 void OnGUI()

44 APPENDIX D. CUE HANDLER SOURCE CODE

397 {
398 //If the user pressed NEW Cue, we show the new Cue dialog window
399 if (showNewCueWindow)
400 {
401 newCueRect = GUI.Window(0, newCueRect, newCueWindow, "Add

Cue");
402

403 }
404 if (showEditCueWindow)
405 {
406 try
407 {
408 editCueRect = GUI.Window(1, editCueRect, editCueWindow,

"Edit Cue");
409 }
410 catch (Exception e)
411 {
412

413 Debug.Log(e.Message);
414 }
415

416

417

418 }
419

420 //Gui groups
421 GUILayout.BeginHorizontal();
422 GUILayout.BeginHorizontal();
423 GUILayout.BeginVertical("box");
424 GUILayout.BeginVertical();
425

426 //Button to create a cue
427 if (GUILayout.Button("New Cue"))
428 {
429 cueName = "New Cue ("+selGridInt+")";
430 fadeLightUp = false;
431 fadeLightDown = false;
432 playSound = false;
433 soundName = "sound";
434 loadScene = false;
435 sceneName = "Name of the scene";
436 runFunction = false;
437 functionName = "Name of the function";
438 GO = "Which GameObject has the function?";
439 soundName = "name of soundclip";
440 description = "";
441 auto = false;
442

45

443 showNewCueWindow = true;
444 }
445

446 //Button to edit a cue
447 if (GUILayout.Button("Edit Cue"))
448 {
449 //print (cueToEdit.name);
450 cueToEdit = cueArray[selGridInt];
451 //Cache values to display
452 cueName = cueToEdit.name;
453 fadeLightUp = cueToEdit.lightUP;
454 fadeLightDown = cueToEdit.lightDown;
455 playSound = cueToEdit.playSound;
456 soundName = cueToEdit.soundName != null ?

cueToEdit.soundName : ""; //?
457 loadScene = cueToEdit.loadScene;
458 sceneName = cueToEdit.SceneName != null ?

cueToEdit.SceneName : ""; //?
459 runFunction = cueToEdit.runFuntion; //runFuntion
460 functionName = cueToEdit.functionToRun;
461 GO = cueToEdit.gameObjectWithFunction;
462 description = cueToEdit.description;
463 auto = cueToEdit.autoPlay;
464

465 //int ("attempt to edit :"+ selGridInt);
466 showEditCueWindow = true;
467

468

469

470 }
471

472 if (GUILayout.Button("Copy Cue"))
473 {
474 CuePaste();
475 }
476

477 if (GUILayout.Button("Paste Cue"))
478 {
479 CueCopy();
480 }
481

482 if (GUILayout.Button("Expand"))
483 {
484 //print(selGridInt);
485 for (int i=0;i<cueArray.Length-1;i++) {
486 tempArray[i] = cueArray[i];
487 cueArray[i] = tempArray[i];

46 APPENDIX D. CUE HANDLER SOURCE CODE

488 if (i > selGridInt) cueArray[i] =
tempArray[i-1];

489 else if (i == selGridInt) {
490 Cue cleanCue = new Cue();
491 cleanCue.name = "Empty ("+i+")";
492 cueArray[selGridInt] = cleanCue;
493 cueArray[i] = cleanCue;
494 //cueArray[i].name =

"("+i+")";
495 }
496

497 }
498

499 selGridInt++;
500 updateselStrings();
501

502 }
503

504 if (GUILayout.Button("Contract"))
505 {
506

507 for (int i=0;i<cueArray.Length-1;i++) {
508 tempArray[i] = cueArray[i];
509 cueArray[i] = tempArray[i];
510 if (i > selGridInt) cueArray[i-1]

= tempArray[i];
511

512 }
513

514 //selGridInt++;
515 updateselStrings();
516

517 }
518

519

520 if (GUI.Button(new
Rect(Screen.width*0.015f,Screen.height*0.96f,100,20),"Delete
Cue"))

521 {
522 Cue cleanCue = new Cue();
523 cleanCue.name = "Empty";
524 cueArray[selGridInt] = cleanCue;
525 }
526

527 //Button to load a cue
528 if (GUILayout.Button("Load Cues"))
529 {
530 loadCues();

47

531

532 }
533

534 //Button to save the cues to an xml file on the drive
535 if (GUILayout.Button("Save Cues(important)"))
536 {
537 saveCues();
538

539 }
540

541 GUILayout.EndVertical();
542 //Button to execute the cue across the network. If nothing

happens, ensure that Main Camera has a NetworkView
Component, and that the correct IP-adress is entered

543 if (GUILayout.Button("START
CUE",GUILayout.MinHeight(Screen.height/10)))

544 {
545 playMode = true;
546

547 }
548 if (GUILayout.Button("Scene 1",

GUILayout.MinHeight(Screen.height / 14)))
549 {
550

551 networkView.RPC("LoadScene", RPCMode.Others, 1);
552

553 }
554 if (GUILayout.Button("Scene 2",

GUILayout.MinHeight(Screen.height / 14)))
555 {
556

557 networkView.RPC("LoadScene", RPCMode.Others, 2);
558

559 }
560 if (GUILayout.Button("Scene 3",

GUILayout.MinHeight(Screen.height / 14)))
561 {
562

563 networkView.RPC("LoadScene", RPCMode.Others, 3);
564

565 }
566 if (GUILayout.Button("Scene 4",

GUILayout.MinHeight(Screen.height / 14)))
567 {
568

569 networkView.RPC("LoadScene", RPCMode.Others, 4);
570

571 }

48 APPENDIX D. CUE HANDLER SOURCE CODE

572 if (GUILayout.Button("Scene 5",
GUILayout.MinHeight(Screen.height / 14)))

573 {
574

575 networkView.RPC("LoadScene", RPCMode.Others, 5);
576

577 }
578 if (GUILayout.Button("Scene 6",

GUILayout.MinHeight(Screen.height / 14)))
579 {
580

581 networkView.RPC("LoadScene", RPCMode.Others, 6);
582

583 }
584 if (GUILayout.Button("Scene 7",

GUILayout.MinHeight(Screen.height / 14)))
585 {
586

587 networkView.RPC("LoadScene", RPCMode.Others, 7);
588

589 }
590 if (GUILayout.Button("Scene 8",

GUILayout.MinHeight(Screen.height / 14)))
591 {
592

593 networkView.RPC("LoadScene", RPCMode.Others, 8);
594

595 }
596

597 GUILayout.EndVertical();
598 GUILayout.BeginHorizontal();
599 //Gui Code to display the Cue List
600 scrollPosition =

GUILayout.BeginScrollView(scrollPosition,GUILayout.MinWidth(700));
601 selGridInt = GUILayout.SelectionGrid(selGridInt, selStrings, 1);
602

603 GUILayout.EndScrollView();
604 GUILayout.EndHorizontal();
605 GUILayout.EndHorizontal();
606 GUILayout.BeginVertical("box");
607 GUILayout.Label("Cue Description");
608 //To the left of the scrolling CueList
609

610 if (cueArrayAvailable)
611 {
612 GUILayout.Label(activeCueDesc,GUILayout.MinHeight(Screen.height*0.5f),GUILayout.MinWidth(Screen.width*0.3f));
613 }
614

49

615

616

617

618 GUILayout.EndVertical();
619 GUILayout.EndHorizontal();
620

621

622 }
623

624 void OnApplicationQuit()
625 {
626 Network.Disconnect(250);
627 //saveCues();
628

629 }
630

631 void saveCues()
632 {
633 XmlSerializer serializer =
634 new XmlSerializer(typeof(Cue[]));
635

636 Stream fs = new FileStream(fileName,
FileMode.OpenOrCreate,FileAccess.ReadWrite);

637 // XmlWriterSettings settings = new XmlWriterSettings();
//never used!?

638 XmlWriter writer = new XmlTextWriter(fs,
System.Text.Encoding.Unicode);

639

640 // Serialize the object, and close the Stream
641 serializer.Serialize(writer, cueArray);
642

643 writer.Close();
644

645

646 }
647

648

649

650 }

APPENDIX E

CUE SERVER SOURCE CODE

Listing E.1: The Cue Server code

1 using UnityEngine;
2 using System.Collections;
3

4 public class CueServer : MonoBehaviour
5 {
6 public int port = 25001;
7

8

9 void Start()
10 {
11 Network.InitializeServer(10, port, true);
12

13 }
14

15 void OnGUI()
16 {
17

18 if (Network.peerType == NetworkPeerType.Server)
19 {
20 GUI.Label(new Rect(Screen.width * 0.85f, 185, 80, 20),

"Server");
21 GUI.Label(new Rect(Screen.width * 0.85f, 170, 200, 20),

"Connections :" + Network.connections.Length);
22 if (GUI.Button(new Rect(Screen.width * 0.85f, 145, 80, 25),

"Log Out"))
23 {
24 Network.Disconnect(250);
25

26 }
27

28 }

50

51

29 else if (Network.peerType == NetworkPeerType.Disconnected)
30 {
31 GUI.Label(new Rect(Screen.width * 0.85f, 185, 120, 20),

"Server Offline");
32

33 if (GUI.Button(new Rect(Screen.width * 0.85f, 145, 120, 25),
"Start Server"))

34 {
35 Network.InitializeServer(10, port, true);
36

37 }
38

39

40 }
41 }
42

43 void OnApplicationQuit()
44 {
45 Network.Disconnect(250);
46

47 }
48 }

APPENDIX F

CUE CLASS SOURCE CODE

Listing F.1: The Cue Class which holds instructions about the cue

1 using UnityEngine;
2 using System.Collections;
3 using System.IO;
4 using System.Xml.Serialization;
5 using System.Runtime.Serialization;
6 using System.Text;
7

8

9 [System.Serializable]
10 public class Cue : ISerializable{
11 // SerializationInfo info; //never used!?
12 // StreamingContext context; //never used!?
13

14 public int ID {get; set;}
15 public string name { get; set;}
16 public bool lightUP { get; set; }
17 public bool lightDown { get; set; }
18 public bool playSound { get; set; }
19 public string soundName { get; set; }
20 public bool loadScene { get; set; }
21 public string SceneName { get; set; }
22 public string description { get; set; }
23 public float fadeTime { get; set; }
24 public bool runFuntion { get; set; }
25 public string gameObjectWithFunction { get; set; }
26 public string functionToRun { get; set; }
27 public bool autoPlay { get; set; }
28

29

30

31

52

53

32

33

34 public Cue()
35 {
36 functionToRun = "";
37 description = "";
38 gameObjectWithFunction = "";
39

40 }
41

42 static XmlSerializer serializer = new XmlSerializer(typeof(Cue));
43

44 public string Serialize()
45 {
46

47 StringBuilder builder = new StringBuilder();
48

49

50

51 serializer.Serialize(
52

53 System.Xml.XmlWriter.Create(builder),
54

55 this);
56

57 return builder.ToString();
58

59 }
60

61

62

63 public static Cue Deserialize(string serializedData)
64 {
65

66 return serializer.Deserialize(new StringReader(serializedData))
as Cue;

67

68 }
69

70

71

72

73 }

	Introduction
	Initial Vision
	Problem Analysis
	Level of Detail
	Transforming 2D data to 3D data
	Cue Management

	Problem Statement
	System Design
	Data conversion
	Filters applied for noise reduction
	Interpolation
	Cue Handler
	The Cue Class

	Experiment overview
	Discussion
	Bibliography
	Appendix
	Questionnaire
	Facial Data Mapping Source Code
	Cue Handler Source Code
	Cue Server Source Code
	Cue Class Source Code

