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Synopsis:

After investigating whether an au-
tonomous helicopter is a viable search and
rescue opportunity, including a correspon-
dence with a search and rescue helicopter
pilot, the project is delimited to a proof of
concept system with a helicopter dragging
a semi-submerged slung load.

Using a finished helicopter model referred
to as the Bisgaard model, the modelling
part includes a model of a semi-submerged
slung load, as well as an rigid body model
describing the interactions between the
helicopter and the slung load. Though,
with the wire attachment point in the
helicopter centre of mass. Experimen-
tation showed the slung load model to
have slightly different dynamics, and not
enough damping when compared.

The control part of this work includes a
series of LQ controllers for the system
both with and without slung load at-
tached, with an expansion of an outer
loop MPC to control the set-points. The
part also include switching between the
controllers, making the system able to fly
to a reference position and change to hover.

The results from the acceptance test show

how the produced controllers are able to

stabilise the system to a degree where the

requirements are fulfilled, but with plenty

of control opportunities open for future

work.
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Preface
This report is produced by group 1034 on third and fourth semester of the Intelligent
Autonomous Systems master program at Department of Electronic Systems, Section
for Automation & Control at Aalborg University. The purpose of these semesters are,
according to the study program:

”Using the knowledge in modelling and control from the previous semester the focus is
on introducing autonomy into a mechanical or energy conversion system. This includes
the use of estimation methods for determining the (sub)optimal system parameters for
the purpose of increase self-containment of the system.”

To fulfil this purpose of the study program, it is chosen to make an autonomous naval
search and rescue helicopter. Literary references used in the project are denoted by
number [#], like such: [5]. Figures, tables and equations are denoted ”figure #.#”,
”table #.#” and ”(#.#)” respectively, referring to the chapter of the figure, table
or equation, and the number of that figure, table or equation in this chapter. The
bibliography is listed in the back of the appendix.
A digital copy of the report, MATLAB scripts and simulation data are on the enclosed
DVD. The DVD is located at the back of the report, and when referred to, it is shown
with a picture followed by the directory path, as such:

[DIRECTORY]

Acknowledgement

A great thanks goes to Matthieu Verdy, who worked on this project from September
2011 to December the same year, as partial fulfilment of his electrical engineering
education. His work with the project and specifically within the field of hydrodynamics
is highly valuable to the results.

Author Signatures

Stefan Moeskjær Pedersen Steffen Vutborg

iii



Contents

Preface iii

Contents iv

Introduction and Motivation xi

I Problem analysis 1

1 Previous Work 3
1.1 Helicopter and Slung Load Modeling . . . . . . . . . . . . . . . . . . . . 3
1.2 Submerged Load Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Helicopter Basics and Terminology 5
2.1 Introduction to Helicopter Mechanics . . . . . . . . . . . . . . . . . . . . 5

3 Description of the Case System 9
3.1 Helicopter Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Slung Load Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Problem and Requirements 13
4.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Requirement Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Acceptance Test Specification . . . . . . . . . . . . . . . . . . . . . . . . 16

II Model 21

5 Helicopter Model 23
5.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Forces and Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Helisim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Helicopter model conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Semi-Submerged Load Dynamics 29
6.1 Hydrostatic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Added Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Damping Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Lift and Drag Force Corrections and Simulations . . . . . . . . . . . . . 34
6.5 Semi-submerged Load Conclusion . . . . . . . . . . . . . . . . . . . . . . 44

iv



Contents

7 Rigid Body Model 45
7.1 Degrees of Freedom and State Variables . . . . . . . . . . . . . . . . . . 46
7.2 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Equation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Model Simulation and Verification 55
8.1 Slung Load Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Vertical Movement Experiment . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 External Force Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.4 Conclusion of Slung Load Model Simulations . . . . . . . . . . . . . . . 59
8.5 Rigid Body Model Simulations . . . . . . . . . . . . . . . . . . . . . . . 60

9 Model Implementation for Helisim 69
9.1 Semi-submerged Load Dynamics Implementation . . . . . . . . . . . . . 70
9.2 Rigid Body Model Implementation . . . . . . . . . . . . . . . . . . . . . 71

IIIController 73

10 General Control Strategies 75
10.1 LQ Control Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.2 Model Predictive Control Considerations . . . . . . . . . . . . . . . . . . 83

11 Linear Quadratic Control 85
11.1 LQ Control Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11.2 LQ Control of a Standalone Helicopter . . . . . . . . . . . . . . . . . . . 87
11.3 LQ Control of a Helicopter with Slung Load . . . . . . . . . . . . . . . . 97
11.4 LQ Controller Stability Regions . . . . . . . . . . . . . . . . . . . . . . . 108
11.5 LQ Control Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12 Model Predictive Control 113
12.1 Model Predictive Control Methodology . . . . . . . . . . . . . . . . . . . 113
12.2 Model Predictive Control of a Standalone Helicopter . . . . . . . . . . . 121
12.3 Model Predictive Control of a Helicopter with Slung Load . . . . . . . . 129
12.4 Model Predictive Control Conclusion . . . . . . . . . . . . . . . . . . . . 136

IVEvaluation 139

13 Acceptance Test 141
13.1 Standalone helicopter acceptance tests . . . . . . . . . . . . . . . . . . . 142
13.2 Full system acceptance tests . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.3 Acceptance test conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 161

14 Comparison of the Controllers 163
14.1 Standalone Helicopter Controller Comparison . . . . . . . . . . . . . . . 163
14.2 Helicopter with Slung Load Controller Comparison . . . . . . . . . . . . 165

15 Conclusion 169

v



Contents

V Appendices 173

A Projected reference area 175

B Linearisation of Helicopter and Slung Load Model 179
B.1 Standalone Helicopter Model Linearisation . . . . . . . . . . . . . . . . . 179
B.2 Helicopter with Semi-submerged Slung Load Model Linearisation . . . . 180

C Moving and Rotating Noninertial Frames 181
C.1 Moving frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
C.2 Moving and rotating frames . . . . . . . . . . . . . . . . . . . . . . . . . 182
C.3 Example: Rotation and velocity difference . . . . . . . . . . . . . . . . . 184

Bibliography 187

vi





Nomenclature

Abbrevations

COM Centre Of Mass, page 24

DOF Degrees of Freedom, page 6

GPS Global Positioning System, page 9

IMU Inertial Measurement Unit, page 9

LQ Linear Quadratic, page 85

MPC Model Predictive Control, page 113

RHC Receding Horizon Control, page 113

SAR Search and Rescue, page xi

UAS Unmanned Aerial System, page xiii

UAV Lab Unmanned Aerial Vehicle laboratory, page 3

Symbols

α Angle of attack, page 34
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Introduction and Motivation

Accidents at sea has always been a cause for loss of lives and one of the first well doc-
umented Search and Rescue (SAR) missions was conducted in 1656 in search for the
Dutch East India Company ship Vergulde Draeck. It wrecked on the Australian west
coast, near Ledge Point on April 28th. A search party of two ships were dispatched
in the SAR mission. The rescue mission was unsuccessful, and one of the two rescuing
ships was lost in the mission [17].

In more resent history, helicopters are often used due to the speed, versatility and
overview they provide. The first naval rescue by helicopter was in 1947 where Siko-
rsky’s chief test pilot Dimitry Viner was on an aircraft carrier to demonstrate the
capabilities of Sikorsky’s new S-51 helicopter to the navy. During the demonstration
lieutenant Robert Shields had to crash-land his SB2C bomber in the ocean. Viner
heard of lieutenant Shields’ accident, and flew to his aid. Under ten minutes after his
mayday, lieutenant Shields reported in for duty on the aircraft carrier [4]. Since then,
helicopters have been used in countless SAR missions.

The first helicopter SAR fleet appeared in Denmark in 1957, as a response to frequent
fighter plane crashes. It was composed of seven Sikorsky S-55 helicopters, which great-
est disadvantage was having a relative short operational range. Due to the short range
of the S-55, another helicopter was sent out searching for the distressed persons, and
the S-55 was sent directly to the site.

Today Denmark uses the AgustaWestland EH101 helicopter for SAR missions. A single
of these helicopters have an stock unit price of 21 million US$, and asides from that
also has a high maintenance and running cost. A smaller autonomous solution could
aside from having a faster response, also be cheaper than the current non-autonomous
SAR solutions.

Statistics on casualties in the Danish waters are not available, but according to [14]
a total of 42.133 lives have been lost at sea in the period from 1970 to 2005, within
the US Coast Guard’s domain alone. At least 66% of these deaths occurred after the
coast guard had been notified. Some of these lives might have been saved with a faster
response time.

xi



Introduction and Motivation

Interview with a Search and Rescue Helicopter Pilot

To get a better insight into how SAR missions are conducted, and other background
information, contact is made to a SAR helicopter pilot Thomas Wandahl who answered
a series of questions in a mail correspondence. The answers from Thomas Wandahl is
given using his own opinions, and is not a reflection of the opinions of the navy or any
other organisations. Answers are only estimates, and is answered to be the best of his
knowledge.

In a question about the costs and personnel needed for a SAR mission, Thomas Wan-
dahl answered that it vary a lot depending on the nature of the mission. Regarding
costs of a mission, the price of running the rescue helicopter used in Denmark, which is
the EH101, is about 60 000DDK/hour plus the salary of everyone involved. The amount
of personnel needed vary from around 5 persons when the mission is an evacuation of
an injured sailor, up to more than 20 people from rescue agencies in a SAR mission
where the exact location of the distressed person is unknown.

In another question regarding the response time from distress call to take-off, his re-
ply is that the average response time from 7am to 10pm is around 10 minutes, and
around 20 minutes the rest of the time. An estimate on the time from distress call to
the helicopter arriving at the site is below 30 minutes in most cases, the time is how-
ever increased significantly if the current location of the distressed person is unknown.
Meaning that if the time to arrival can be decreased, and the search for the person in
distress could be automated, the total time from distress call to actual rescue could be
lowered.

To a question about the size and load capacity of the EH101, he replies that it definitely
do not have to be that large for simpler SAR missions, which also is why some other
countries uses smaller helicopters such as Sea King, Sea Hawk and Super Puma. A
significant advantage having a SAR helicopter as large as the EH101 is the on board
treatment facilities, that smaller manned or autonomous helicopter can not accommo-
date. The capacity is also an advantage if the rescue mission involves multiple persons,
Thomas Wandahl does however estimate that this only covers 5% of missions, with the
remaining 95% being missions involving single persons in distress, which is a plus for a
smaller autonomous SAR system, only capable of single person rescue missions.

Mr. Wandahl’s answers goes on to questions regarding a semi-submerged slung load
being dragged through the water, where he comment that if the slung load is a person,
it is not recommended, since humans suffers damages easily at higher velocities, mean-
ing that the velocity must be kept low to keep the person from taking damage. He also
comments that an autonomous helicopter system like the one in this work, needs the
ability to release the load if something goes wrong.

xii



Technological Motivation

Another motivating aspect of the problem is from a research point of view, where an
Unmanned Aerial System (UAS) carrying/dragging a partially submerged slung load,
is still to be seen. This feature is an interesting modification of the already existing
models of helicopter with slung-load systems, expanded to include hydrodynamic ef-
fects on the slung load and how these effects translate to the helicopter.

Since most modelling of hydrodynamic forces assumes the object being modelled to be
totally submerged in a fluid, it is relevant for this work to investigate what happens
when only part of the slung load is submerged, but more importantly what happens
to the forces when the submersion depth changes, and how could this depth change is
included in the computations of the forces.

With the changing depth of the semi-submerged slung load included into the compu-
tations of the hydrodynamic forces, another interesting research subject, from a mod-
elling point of view would be how the newly included effects translates to the helicopter,
through the modelling of two connected rigid bodies.

The application options for an autonomous helicopter system with a semi-submerged
slung load could include search and rescue missions of distressed persons in water as
in this work, but also dragging of smaller boats. Another application option could be
material transport at the construction of floating or seabed mounted structures like
oil rigs or floating wind turbines. In larger scale, or with a series of helicopters could
applications also include relocation of larger structures.

xiii





Part I
Problem analysis



Part introduction

Contents

1 Previous Work

2 Helicopter Basics and Terminology

3 Description of the Case System

4 Problem and Requirements

Purpose

This part titled Problem Analysis start out by covering some of the work already done
within the field of autonomous helicopters and slung loads

The part also covers a chapter introducing the terminology and basics of small scale
helicopters. A chapter about the specific helicopters and slung load used in this work
has been added as well, as an extension to the helicopter introduction, this is done so
any references to the helicopter can be used with is name, and so the specifications can
be used in the modelling and control parts of the report.

The final chapter of the problem analysis section covers the requirement specification
including the delimitation of the problem and the acceptance test specifications.

Goals

• Introduce relevant work done within the field of autonomous helicopters using
slung loads.

• Introduce the basic mechanics and terminology of small scale helicopters.

• Describe the specifications of the helicopter and slung load used in this work.

• Formulate a requirement specification including problem delimitation.

• Define the acceptance test specification.



Chapter 1

Previous Work

This chapter will present research concerning helicopter modelling and control, with
slung load. Several projects and articles has been written about these topics, and
the Unmanned Aerial Vehicle laboratory (UAV Lab) of Aalborg University has been
researching and working with the topic for a number of years.

1.1 Helicopter and Slung Load Modeling

Markus Bernard and Konstantin Kondak [5] published a paper in 2009 concerning au-
tonomous slung load transportation using multiple small scale helicopters. The mod-
elling is done using Kane’s method. Initially the masses and dynamics of the suspension
lines for the slung load was omitted, which led to oscillations in the lines that propa-
gated throughout the system. To solve this Bernard and Kondak introduced a state
observer for the slung load position. After discovering this problem, they created a
robust controller, that was able to control a constellation of helicopters, both in simu-
lation and in real flight.

R.A. Stuckey [19] wrote an article in 2001 concerning the stability and control problems
in helicopters and slung load systems. This work has led to the creation of an algorithm
able to successfully model a helicopter with slung load. The model contains both elastic
and inelastic formulations concerning links between helicopters and slung loads.

In 2007 Morten Bisgaard [6] wrote a PHD thesis concerning modelling and controlling
of an autonomous helicopter with slung loads. This thesis presents a model of a heli-
copter with a slung load system attached to be used for generic cargo helicopter and
land mine detection. The thesis explains the modelling of the helicopter and slung load
systems. It also contain chapters regarding estimation and design of a controller for
such a system. Theoretical results was consistent with practice tests and analysis.

The helicopter modelling in Bisgaard’s work was done by first analysing the physical
dynamics of the interesting parts of the helicopter (body, blades, rotors, etc.), which
have then been described in equations. Then, the model of the slung load is added to
get a complete model of the system.
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1. Previous Work

D. Fusato and G. Guglieri [10] published an article in 2001, conserning flight dynamics
of an articulated rotor helicopter with an external slung load, where the main focus
of the article was on the rigid body modelling, which in this case means the inter-
actions between the helicopter and slung load. They obtained results for slung loads
with up to 28% load-to-helicopter mass ratio, where they found out that the influence
of cable lengths in the range of 3-8 meters was negligible for a real heavy duty helicopter.

1.2 Submerged Load Modelling

Dr. Gianluca Antonelli published a book [2] describing the model and the control of
Unmanned Underwater Vehicle (UUV).

Asgeir J. Srensen of the Norwegian University of Science and Technology published a
set of lecture notes[20] in 2011 concerning advanced modelling control of motion and
propulsion of Ships and ocean structures, with special attention to the effect that wind
and waves have on these structures.
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Chapter 2

Helicopter Basics and Terminology

This chapter will include an introduction into the basics of a helicopter, of the type
used in this work. To make the understanding of the different mechanics used in the
remaining parts of this work easier. Throughout this chapter, different terms and no-
tations are introduced, that will be used in the remaining parts of the report.

2.1 Introduction to Helicopter Mechanics

First an explanation of the helicopter, and the basics of how the steering mechanisms
work is wanted. However, a short introduction into helicopter terminology is needed to
proceed.

z

x

y

Figure 2.1: An illustration of a helicopter with a body fixed frame of reference in-
serted showing the heading of the helicopter.
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2. Helicopter Basics and Terminology

Figure 2.1 on the preceding page show the heading of the helicopter by describing the
angles using the terms Pitch, Roll and Yaw, also called the Euler angles as described
below. When addressing the heading of the helicopter in the remaining parts of this
work these angles are used.

φ Roll: Tilting side to side around the x-axis. rad
θ Pitch: Tilting forwards and backwards around the y-axis. rad
ψ Yaw: Rotating left and right around the z-axis. rad

While the pitch roll and yaw angles describe the heading of the helicopter, the position
is described using the x-, y- and z-position components, and not Heave, Sway and Surge.

x Moving forward and backward along the x-axis. m
y Moving left and right along the y-axis. m
z Moving up and down along the z-axis. m

The heading and position of the helicopter adds up to a total of 6 Degrees of Freedom
(DOF) whose rotation and movement is to be modelled and later controlled.

2.1.1 The Main Rotor

The main rotor is the source of a helicopter’s lift, which is needed to sustain flight.
Asides from providing the needed lift, the main rotor is also the part of a helicopter
that control the pitch and roll rotations, resulting in changes in the surge and sway
velocities.

The structure of the main rotor is shown in figure 2.2. Subsequently it will be ex-
plained how difference in lift is generated by changing the collective blade pitch, along
with how pitch and roll rotations is achieved by generating a cyclic blade pitch though
the swashplate.

One of the essential parts of the main rotor is the swashplate. As illustrated in figure 2.2,
the swashplate is controlled by 3 actuators, controlling the position and tilt of the plate.

The position of the swashplate controls the pitch of the blades. This is known as col-
lective blade pitch and translates to the angle of the blades. The collective blade pitch
control the amount of lift the main rotor generates.

The orientation and angle of the swashplate control the cyclic blade pitch meaning the
blade pitch of each blade changes over a cycle of one rotation. The orientation of the
plate dictate the phace, and the angle dictate the magnitude of the blade pitch changes.

6



2.1. Introduction to Helicopter Mechanics

Swashplate

Mast

Actuator joint

Washout arm

Blade

Blade bolt

Stabilizer bar

Rotor hub

Stabilizer
control arm

Bell-Hiller
mixer

Figure 2.2: An illustration of the main rotor system of a helicopter with a stabilizer
bar, showing how the swashplate control collective and cyclic blade pitch.
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2. Helicopter Basics and Terminology

2.1.2 The Tail Rotor

The tail rotor is the part of a helicopter that control the yaw motion, as well as cancel-
ing out the torque applied on the helicopter body from the main rotor. An illustration
of the tail rotor mechanics is shown in figure 2.3.

Blade

Control arm

 Pitch slider

Hub

Actuator joint

Shaft

Figure 2.3: An illustration of the tail rotor seen from below, showing how the the
collective blade pitch of the tail rotor is changed.

The tail rotor is driven by the same motor that powers the main rotor, so there is no
means of changing the angular velocity of the tail rotor directly, since it is directly
proportional to the angular velocity of the main rotor with a gearing ratio. Instead the
collective blade pitch of the tail rotor is used to control the yaw of the helicopter.
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Chapter 3

Description of the Case System

This chapter is partitioned into two sections: One describing the helicopter used in this
work, and one describing the slung load which the helicopter is going to drag.

3.1 Helicopter Description

The helicopter model presented in part II on page 22 is the model derived in [7]. With
the helicopter explored being the same one as the one used in this project, except from
some alterations to the on board hardware. This helicopter is based on the Bergen
Industrial Twin helicopter with a 52 ccm Zenoah 2-cylinder gasoline engine, providing
8 bhp. It weighs about 13 kg and is approved for a total take-off mass of 19 kg, leaving
approximately 6 kg of payload. The stock helicopter is capable of approximately half an
hour of flight, which is reduced by the increased mass of the helicopter. From this point
on, when a helicopter reference is made, the helicopter in question is the AAU-Bergen
helicopter. Some of the alterations that makes the helicopter differ from the standard
one, is that the following sensors have been fitted:

• Global Positioning System (GPS) for position measurements.

• Magnetometer for measuring the strength and direction of the surrounding
magnetic field.

• Inertial Measurement Unit (IMU) for measuring acceleration and angular
acceleration.

• Camera for visual data recording, such as the location of a slung load.

A control unit in the form of a Acer laptop is fitted in front of the helicopter, as it can be
seen in figure 3.1. Underneath the helicopter brackets are fitted, for the attachment of
wires for the slung load. This particular helicopter is not suited for real SAR missions,
as it can neither carry nor drag a person to shore, but it will suffice for a proof of
concept system.

9



3. Description of the Case System

Figure 3.1: The modified AAU-Bergen Industrial Twin Helicopter.

3.1.1 Computer Specifications

The on-board Acer laptop run a standard Linux installation. Real-time computing is
simulated by MATLAB/Simulink. C/C++ code can be used interfaced by MATLAB
S-Functions. Due to large vibrations, the hard-disk has been replaced by a CF card.
The use of a laptop in this kind of environment is unconventional, but electronic com-
ponents and power supplies can interfere with the radio receiver, and a laptop offer
good shielding of these components [13].

3.2 Slung Load Description

No previous work has been found dealing with the towing of a semi-submerged load
by a helicopter, the choice for a load has been made based on the fact that it has to
simulate a person being pulled. The load is chosen to be a spherical object with a cable
attachment point at the top. For this a polyform A-series buoy is used. A picture of
such a buoy is shown in figure 3.2.

The usual purpose of such a buoy is to provide a high amount of buoyancy, which is
achieved by inflating the buoy with air, giving it a density much lower than that of
the surrounding water. The average human density is 1010kg/m3[3], which is close to
the density of water. This can also be seen as most humans are barely able to float,
even with their lungs full of air. To accommodate for this the buoy will be filled with

10



3.2. Slung Load Description

Figure 3.2: Picture of a polyform A-series mooring buoy.

water, until a suitable density is reached. Though having a comparable density to that
of a real person, adding water will enable the centre of mass within the slung load, to
move around. The aim density is that of an ordinary person, with a life jacket on. This
case assumes a 80 kg person with a life jacket, providing a lift of 150 N, yielding an
equivalent density of 809.06kg/m3. Since the helicopter, described in section 3.1 needs
to be able to lift the buoy, the smallest one is chosen. The physical parameters of the
polyform A-0 mooring buoy are shown in table 3.1. The amount of water that needs to

Provided parameters

Diameter 228.60·10−3 m
Length 292.10·10−3 m

Tare mass 635.02·10−3 kg
Buoyancy 5.90 kg

Derived parameters

Density 101.52 kg/m3

Added water 4.40·10−3 m3

Gross mass 5.06 kg

Table 3.1: Physical parameters of the polyform A-0 buoy. The density and added
water, gross mass are derived from the diameter and weight, assuming a
perfect sphere.

be added in order to compensate the density is calculated based on these parameters.
According the these calculations, a total of 4.40 · 10−3 m3 of water needs to be added,
to attain a density of 809.06kg/m3. Adding this amount of water will bring the total
mass of the slung load up to 5.06 kg, which is just within the lifting capabilities of the
AAU-Bergen helicopter. This corresponds well to a real case, where an autonomous
rescue helicopter would be constructed as small as possible, while still being able to
drag a person.
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Chapter 4

Problem and Requirements

The first topic in this chapter is the problem statement and delimitation of the project,
and afterwards the requirement specification, ending up in the description of a series
of acceptance tests designed to investigate whether the set requirements are fulfilled.

4.1 The Problem

The iterations from the initial problem statement, going through delimitation, and
ending up with a final problem statement are examined in this section.

Initial problem statement

How can a SAR UAS, that is able to locate and tow a distressed person at sea be
modelled and controlled?

4.1.1 Initial Scenario Description

A description of the scenario that a SAR UAS would have to operate within is needed
to find the main focus of this work. The rescue helicopter should be capable of doing
the following steps by itself:

1. Fly to a distressed person: Upon receiving a distress signal, containing the
GPS coordinates of a distressed person, it will take off and fly to the location.

2. Search of distressed person: Once at the specific coordinates, it will search
for the person using thermal imaging or the like.

3. Attachment of distressed person: After the localisation of the person, the he-
licopter will hover above the person, while lowering down a life jacket or mounting
equipment, and wait for the person to become attached to the wire.

4. Towing of distressed person: With the person wearing the life jacket, the
helicopter should head back for the nearest shore, while towing the person.

The 4 steps mentioned above, all have to be fulfilled for a SAR UAS to be successful,
given that the particular helicopter is unable to lift the person completely out of the
water.
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4.1.2 Problem Delimitation

Constructing a SAR UAS capable of performing the scenario described in the above
section would be much to costly and time consuming, given the confines of this work.
Therefore a simplification of the task has to be made.

Since the helicopter available for this project, described in section 3.1, is not nearly
large enough to carry, nor drag a person, the slung load is downsized. The slung load
should however still have approximately the same density as a person wearing a life
west, for more realistic results. The slung load is, for simplicity in the modelling part,
seen as a spherical object. While the product of this work will not be a real SAR
vehicle, there will be no radio-, or satellite transmissions to the rescue service.

To simplify the overall task, the only parts of the scenario that will be dealt with is
the following: Part 1, assuming that the helicopter start in a hover position, and is
given a reference position. Part 3 simplified to hover above the reference position. Part
4, assuming the helicopter with slung load starts in a hover position, and then start
towing the slung load to a new reference position.

Take off and landing is not to be part of the control, as well as the actual attachment
process of the slung load should not be either. The search of the distressed person part
of the scenario is not treated in this work either, since this work will focus on modelling
and control rather than image processing.

4.1.3 Final Scenario Description

Given the above delimitation, the scenario is now that the helicopter, in cases both
with and without slung load, should be positioned in hover while in Remote Controlled
(RC) mode. Before enabling the autonomous controller. And should be switched back
to RC when the helicopter is done dragging the slung load or fly to a reference position,
and is hovering.

Final problem statement

How can a UAS that is capable of autonomously towing a semi-submerged slung load
through water, be modelled and controlled?
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4.2. Requirement Specification

4.2 Requirement Specification

Before the modelling of the system can begin, a set of requirements to the system have
to be specified, so the produced model can be used for the control wanted in this work.
To find out whether the requirements have been fulfilled, a series of tests is presented
in section 4.3 and later conducted in chapter 13 on page 141.

The requirements have been partitioned into two sections. One section regarding the
standalone helicopter, and one regarding the full system i.e. the helicopter with a
semi-submerged slung load attached. These requirements are denoted by ”H” and ”S”
respectively. These two groups are then split into primary and secondary requirements.
Primary requirements have to be fulfilled for this work to be considered a success.
Secondary requirements are not as important as the primary ones, but should still be
included in the model and control parts of this work. Primary requirements are denoted
by a ”P” followed by its number e.g. HP1 denotes the first primary requirement for
the standalone helicopter.

Standalone helicopter requirements

No. Requirement specification

HP1 Hovering of the helicopter, in a steady position above a certain point.
The helicopter should be able to hover steadily above the reference position,
to act as if a person is being attached as a slung load. The helicopter should
be able to hover, within a distance of 0.50 meters horizontally and 0.50 meters
vertically.

HP2 Flying towards a reference position.
The helicopter will need to be able to fly from one location to another in
order to perform its tasks, therefore it should be able to fly from its current
location to one specified by a reference position, with a flight velocity towards
the destination within 1.00m/s of the specified velocity, not counting startup
and slowdown. It should be able to go from hover to flight in less than 10.00
seconds without deviating more than 0.50 meters in altitude.

HS3 Arriving at a reference position.
The helicopter should upon arrival at a reference position be able to go
from flight to hover, at the given position in less than 10.00 seconds, while
maintaining a maximum deviation in altitude of 0.50 meters. When returned
to hover the helicopter should be able to stay, within a distance of 0.50 meters
horizontally and 0.50 meters vertically of the reference position.

Table 4.1: Requirements for the autonomous helicopter with no slung load attached.
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4. Problem and Requirements

Full system requirements

No. Requirement specification

SP1 Hovering of the helicopter, in a steady position above the semi-submerged
load.
The helicopter should be able to hover, above the semi-submerged slung load
within a distance of 0.50 meters horizontally and 0.50 meters vertically.

SP2 Flying towards a reference position.
The helicopter will need to be able to tow the distressed person from one
location to another, therefore it should be able to fly from its current location
to one specified by a reference position, while dragging the semi-submerged
slung load. The helicopter should be able to transcend from hover to flight
condition in less than 10.00 seconds, while not deviating more than 1.00 meter
in altitude. While in flight it should be able to maintain a velocity towards
the reference position with a maximum deviation of 1.00m/s.

SS3 Preventing fully-submerged load, while in flight.
While the helicopter is dragging the the slung load towards a given reference
position, it should at all time generate enough lift to prevent the slung load
from becoming fully-submerged. This is to imitate a person being dragged,
while keeping it from drowning in the rescue process.

SS4 Arriving at a reference position.
The helicopter with slung load should upon arrival at a reference position
be able to go from flight to hover, at the given position. It should do so
in less than 10.00 seconds without deviating more than 0.50 meters in al-
titude. When in hover, the helicopter should be able to hover, above the
semi-submerged slung load within a distance of 0.50 meters horizontally and
0.50 meters vertically.

Table 4.2: Requirements for the autonomous helicopter with the semi-submerged
load attached.

4.3 Acceptance Test Specification

This section will introduce the technical specifications and procedures to validate the
requirements presented in section 4.2. As in the requirements, the acceptance tests are
partitioned into two main sections: one for each requirement group. The first section
will treat the requirements to the helicopter itself. These requirements are presented in
table 4.1 on the previous page. After that the requirements to the full system, which
are presented in table 4.2, will be addressed.

The acceptance tests presented in this section, have to be completed for each of the
control strategies used in this work. The numbering of the acceptance tests should then
be numbered as: Acceptance test 1.1, 1.2 and so forth, for each control strategy to be
tested.
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4.3. Acceptance Test Specification

4.3.1 Specification of Standalone Helicopter Acceptance Tests

HP1 Hovering of the helicopter, in a steady position above a certain point

As stated in the requirements, the helicopter should be able to hover within a distance
of 0.50 m horizontally and 0.50 m vertically. This is tested by simulation. The position
reference of the helicopter is set to a fixed position and the actual position of the heli-
copter during the test is compared. The simulation is repeated 10 times with different
wind inputs, and each time it is investigated if the position is outside the specified
region. If the boundaries of this region are violated in any of the simulations the test
is failed, otherwise the test is passed.

HP2 Flying towards a reference position

The helicopter should be able to fly from its current location towards one specified by a
reference position. Therefore it should be able to maintain the specified flight velocities
with a maximum allowed deviation of 1.00m/s towards the destination. Furthermore, it
should be able to transcend from hover to flight in less than 10.00 s, without deviating
more than 0.50 m in altitude, defined from when a new reference position is given, until
the helicopter velocity is within 1.00m/s of the reference. This is tested by a simulation
where the controller is given a reference position, further away than it can reach within
the simulation time. The test is repeated 10 times and each time it is investigated if
the velocity, transition time and altitude requirements are within the specified limits.
If the boundaries are violated in any of the simulations the test is failed, otherwise the
test is passed.

HS3 Arriving at a reference position

The helicopter should upon arrival at the reference position be able to change from
flight to hover, in less than 10.00 s, while staying within the the altitude deviation limit
of 0.50 m. The transition time is defined from when the helicopter is within 5 m of the
reference position, until it is within the 0.50 m hover zone. When changed to hover,
the helicopter should be able to hover within a distance of 0.50 m horizontally and
0.50 m vertically. This is tested by simulation where the helicopter is given a position
reference within the reach of the helicopter during the simulation. The simulation is
run 10 times, and must fulfil the requirements at all times to be considered a success.

17



4. Problem and Requirements

4.3.2 Specification of Full System Acceptance Tests

SP1 Hovering of the helicopter, in a steady position above the
semi-submerged load, with a tense cable

The helicopter should be able to hover, above the semi-submerged slung load within a
distance of 0.50 m horizontally and 0.50 m vertically of the specified position. This is
tested via a simulation where the helicopter is given a reference position, and the actual
position of the helicopter is compared. The vertical position reference of the helicopter
is fixed at 3.00 m since that is the length of the slung load cable. This test is run 10
times and each time it is investigated if the position is outside the specified region. If
the boundaries of this region are violated in any of the simulations the test is failed,
otherwise the test is passed.

SP2 Flying towards a reference position

Apart from hovering with a slung load, the helicopter should also be able to fly from its
current location to one specified by a horizontal reference position, while dragging the
slung load behind it. The helicopter should therefore be able to transcend from hover
to flight in less than 10.00 s without deviating more than 1.00 m in altitude. It should
also be able to maintain a velocity towards the reference position with a maximum
allowed deviation of 1.00m/s. This is tested by a simulation where the helicopter is
given a reference position outside its reach during the simulation. This is simulated 10
times and each time it is investigated if the requirements are within the given limits.
If the limits violated in any of the simulations the test is failed, otherwise the test is
passed.

SS3 Preventing fully-submerged load while in flight

The helicopter should at all time during flight generate enough lift for the slung load
to keep it from becoming fully submerged. Since the slung load being dragged by the
helicopter is an imitation of a person being dragged in the water, that should be kept
from drowning. The buoy used in this work, which is simplified to a sphere has a radius
of 114.30 mm, which is the vertical position the load should keep above at all times in
flight. The results of this test is made based on the data from the flight tests in test
SP2. If the requirement is not fulfilled in all simulations the test is failed, otherwise it
is passed.

SS4 Arriving at a reference position

Upon arrival at the reference position, the helicopter should be able to change from
flight to hover, in less than 10.00 s while staying within the limits for vertical position
of 0.50 m while doing so. When changed to hover, the helicopter should be able to
hover, above the semi-submerged slung load within a distance of 0.50 m horizontally
and 0.50 m vertically of the specified position. This is tested by simulation where the
helicopter is given a reference position that it can reach within the time span of the
simulation. This simulation is run 10 times, and must fulfil the requirements at all
times to be considered a success.
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4.3. Acceptance Test Specification

Summary of part I

In the problem analysis, some of the significant work that has been done prior to this
project has been examined. The field of modelling and control of fully submerged bodies
is a well established area. However no work has been found concerning helicopters with
semi-submerged slung loads, thus the area of this report seems unexplored.

Following the basic mechanics of small scale helicopters, with focus on the rotor me-
chanics and functionalities was described.

After this description the case setting of the report was described and narrowed down
to the following final problem statement:

How can a UAS that is capable of autonomously towing a semi-submerged
slung load through water, be modelled and controlled?

Thereafter specific requirements to the system and following an acceptance test specifi-
cation have been posted. The acceptance test specification describes the procedures for
testing if the individual requirements has been fulfilled.
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Part introduction
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Purpose

This part is meant to provide a mathematical model to describe the physical behaviour
of a slung load, and its interaction with a helicopter. The model for the helicopter itself
will not be derived, but rather a complete helicopter model will be adopted.

A block diagram of the model parts that will be derived in this part, and their interactions
with each other and the Bisgaard helicopter model, can be seen in picture 4.1. The
Bisgaard model is illustrated in grey, to better show that the block is used as it is, and
not derived in this work. In the helicopter model introduction, the Bisgaard model block
diagram shown in its full extend, and not as one combined block.
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Bisgaards Helicopter Modelu
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Actuator dynamics, Rotor dynamics,
Force and Torque, Mapping to CoM( )

Slung load Model
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τ
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 (Semi-submerged slung load dynamics)

Figure 4.1: A block diagram showing the interactions between the project slung load
model and the Bisgaard model.

Goals

• Examine the Bisgaard helicopter model describing the forces and torques that is
to be used in the rigid body modelling.

• Derive a model describing the physical behaviour of the slung load.

• Derive a model describing the interactions between the two rigid bodies that is the
helicopter and the slung load.

• Simulate and implement the derived slung load and rigid body models.



Chapter 5

Helicopter Model

The model presented in this chapter is a model concerning the physical behaviour of
the AAU-Bergen helicopter, which is presented in chapter 3.1. Originally the model
was developed for the purpose of real-time simulation, model based estimation and
controller design. This means that it had to be sufficiently complex so that a good
controller could be made from it, and it has to be simple enough to be run considerably
faster than real-time on the on-board computer in order to be used in the model based
estimation.

The fact that the model is designed for the same helicopter, and for the same purpose
as it is the aim of this project, makes it highly qualified as a starting point. Figure 5.1
show which parts of the Bisgaard model that will be adopted directly. Mathematical
models for the load dynamics and and rigid body behaviour will be derived in the
following two chapters. As it can be seen in figure 5.1, the purpose of the submerged
load model is to calculate the forces exerted on the load, based on the states of the
load. The purpose of the rigid body model is to calculate the states of the helicopter
and slung load, based on the forces and torques on the helicopter and load. In essence
what will be reused from the Bisgaard model is the force dynamics of the helicopter.

Actuator
dynamics

Rotor
dynamics

Force and
Torque

Mapping
to CoM

Rigid body
model

Submerged
load dynamics

Bisgaards Model

u θ a
F
T

F  ,TH H

F L

X
xL

Project Model

xH

Figure 5.1: A block diagram showing the interactions between the different blocks in
the helicopter with submerged slung load model.
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5. Helicopter Model

5.1 Coordinate Systems

In [7] the model is expressed in five different reference frames, all right handed Carte-
sian systems. The initial reference frame is fixed with respect to the earth at a position
close the the starting point of the helicopter. It is called the earth fixed frame, and is
denoted by E. It is correspondent to the Universal Transverse Mercator (UTM) coor-
dinate system, where the first axis is pointing north, the second is pointing east and
the third is pointing down. Two other coordinate systems are fixed to the bodies of
the centre of mass (COM) of the helicopter and the slung load respectively. Denoted
by H and L. The two last frames are positioned in the centre of each of the helicopter
rotors, and are aligned to the helicopter fixed frame. The main and tail rotor frames
are denoted MR and TR respectively. The latter two will not be mentioned further in
this work.
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z
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H

H
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E

E

L

L

L

Figure 5.2: An illustration of the three frames used when modelling the helicopter
with slung load.

E The earth fixed frame.
H The helicopter centre of mass fixed frame.
L The load centre of mass fixed frame.

The earth fixed frame, Helicopter COM frame and Slung load COM frame are all
adopted directly, to ease the process of merging the models attained in this work and
the helicopter dynamics. An illustration of the three frames can be seen in figure 5.2.

24



5.2. Forces and Torques

5.2 Forces and Torques

Bisgaard’s helicopter model which is presented in [7], introduces the following forces
acting on the helicopter:

Force Description

F g Gravitational force: This force is calculated as the mass of the helicopter,
multiplied with the gravitational acceleration.

Fmr Main rotor thrust force: This force is a summation of multiple forces,
whereof the most dominant one is the lift force. These forces are found by
integrating the aerodynamic force along a rotor blade, and then integrating
along one rotation, to gain an average force, and finally multiplying with
the number of blades. These calculations assume small angles for flapping
and blade pitch.

F tr Tail rotor thrust force: This force is much analogues to the main rotor thrust
force, with only the thrust force, so rotor flapping is neglected.

F h Helicopter fuselage drag force: Calculated by a standard quadratic drag
equation, where the drag is proportional to the incident wind velocity
squared. The fuselage force is assumed to generate on torque.

F tf Tail fin drag force: The tail fin drag force is calculated in the same manner
as the fuselage force, where the tail fin is modelled as a flat panel, that only
generates drag. A compensation is made to the incident wind velocity, as
the fin is partially inside the tail rotor wake.

F tp Tail plane drag force: The tail plane is modelled in the same manner as the
tail fin, but it is not affected by the wake of the tail rotor.

F fp Front plane drag force: The front plane drag force is calculated in the same
manner as the tail fin drag force, but in stead of being in the tail rotor wake,
it is the in the main rotor wake, and a correction is made to the incident
wind velocity.

Table 5.1: Forces acting on the helicopter. These are introduced in [7], and will be
used later in the rigid body model.

Some of the forces presented in 5.1 give rise to torques. These torques are listed in
table 5.2 on the following page along with an additional torque that is not expressed
in therms of the presented forces.

Gravity does not contribute to the torque, since it is acting in the COM, and the
fuselage force is assumed to not contribute as well.
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Torque Description

τmr Main rotor torque: This torque is mainly a result of aerodynamic forces
and flapping dynamics of the main rotor. This torque is what makes
the helicopter pitch and roll, as a result of the blade pitch. It is cal-
culated by integrating along a blade, as for the main rotor force, then
integrating over one revolution and multiplying with the number of
blades.

Fmr × pmr Torque caused by main rotor thrust: This torque is present since the
main rotor thrust force is not located in the centre of mass of the
helicopter.

F tr × ptr Torque caused by tail rotor thrust: This torque is present since the tail
rotor thrust force is not located in the centre of mass of the helicopter.
This torque is the torque responsible for the yaw movement of the
helicopter.

F tf × ptf Torque caused by the tail fin drag force: This torque is present since
the tail fin drag force is not located in the centre of mass of the heli-
copter.

F tp × ptp Torque caused by the tail plane drag force: This torque is present since
the tail plane drag force is not located in the centre of mass of the
helicopter.

Table 5.2: Torques acting on the helicopter, as introduced by [7]. Note that in this
report, positions are denoted by p whereas they are denoted by R in [7].
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5.3 Helisim

The implementation of the Bisgaard model has already been done through a series of
Simulink S-functions in a simulation environment from Aalborg University, called He-
lisim. The simulation is a MATLAB/Simulink implementation of a helicopter model,
with the possibility to enable slung load, and a graphical representation of states, on
a 3D helicopter, implemented with the Irrlicht graphics engine. A illustration of the
Simulink representation of Helisim is shown in figure 5.3. Helisim includes, apart
from the helicopter and a slung load model, sensor dynamics, sensor fusion on the on-
board computer, and the possibility to use both LQ and PID controllers to control the
helicopter as specified in an optional mission file.
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Figure 5.3: An illustration of the Helisim implementation of the Bisgaard model, also
including sensor dynamics, sensor fusion and LQ and PID controllers.

Helisim will be used in the remaining parts of this work, for simulations where a heli-
copter model is needed, as well as in the control part III where the computed controllers
will be implemented and tested in Helisim. The estimated sensor values from Helisim is
used in the acceptance test in chapter 13, to test the performance of the final controllers.

During this work the source files for Helisim will be modified, to fit the studied case.
As described earlier in this chapter, the force generation of the helicopter it self is used
as it is, but new functions are written for the rigid body model of the combined system,
and force generation of the load.
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5. Helicopter Model

The implementations of the functions can be found in the two files: BuoyRigidBodyModel.cpp
and BuoyLoadFunctions.cpp, which can be found on the enclosed DVD:

/Source/BuoyRigidBodyModel.cpp

/Source/BuoyLoadFunctions.cpp

5.4 Helicopter model conclusion

With the general setup of the helicopter model in the beginning of the chapter, it has
been made clear what parts of the helicopter with load system that can be adopted di-
rectly from the Bisgaard model, and which parts should be produced in this work. The
general structure also show how the modelling part of this work should be interfaced
with the existing helicopter model, where the relevant forces and torques needed for
the rigid body modelling, connecting the helicopter model and the slung load model,
is presented earlier in the chapter.

The inertial earth fixed frame and the noninertial helicopter and slung load frames of
the bisgaard model is also adopted and used in the remaining part of the modelling
part, to make implementation easier.
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Chapter 6

Semi-Submerged Load Dynamics

This chapter will focus on the derivation of the dynamic slung load model which, as
shown in figure 6.1, is the mapping from the states of the system to the forces and
torques applied on the helicopter.

Rigid body
model

Bisgaards Helicopter Modelu

X
xH

xL
F  L

Actuator dynamics, Rotor dynamics,
Force and Torque, Mapping to CoM( )
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 (Semi-submerged slung load dynamics)

Figure 6.1: A block diagram showing the interactions between the submerged slung
load dynamics block and the other parts of the model.

The content of this chapter is inspired by [2]. Which is a book dealing with autonomous
underwater vehicles and modelling of these. While the book does not directly cover
semi-submerged load modelling, it does however include the hydrodynamics needed for
the load modelling.

First the static effects i.e. gravity and buoyancy will be treated, then an expression for
the added mass will be derived, and lastly expressions for the lift and drag forces will be
found. These effects will constitute the semi-submerged part of the slung load model.
The verification of the model is done in the simulation and verification chapter 8 on
page 55.
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6. Semi-Submerged Load Dynamics

6.1 Hydrostatic Effects

This section will introduce the hydrostatic effects that act on the load. The load is, like
all other things on earth, subjected to gravity, which is described by newtons 2nd law of
motion as shown in (6.1). Provided that the load is always subjected to gravity, there
must be an equally opposing force counteracting gravity, if the load is static. This force
is called boyancy is described by Archimedes’ principle [15] which is shown in (6.2).

F g = mlg (6.1)

F g Gravitational force. N
ml Mass of the load. kg
g Gravitational acceleration . m/s2

F b = ρVdg (6.2)

F b Buoyancy force acting on the load. N
ρ Mass density of displaced water. kg/m3

Vd Volume of the displaced water. m3

As the load is considered a sphere, the buoyancy is not a linear function of depth.
Figure 6.2 represent the value of the buoyancy and gravity magnitude over the depth.
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Figure 6.2: Representation of the buoyancy and gravity magnitude over depth. The
mass used for this plot is 5 kg, the load radius is 114.3 ·10−3 m, the water
density is 1025 kg/m3 and the gravitational acceleration is 9.82 m/s2.

It can be seen in figure 6.2, there is an equilibrium point. This equilibrium point located
at a depth of 0.045 m is given by the relationship ρVd = ml. This equalibrium point is
0.045 m below the water surface, for the given parameters.
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6.2. Added Mass

6.2 Added Mass

The motion of a body in a fluid induces acceleration of the fluid surrounding it. Acceler-
ating the fluid requires a force, equivalent to the mass of the accelerated fluid multiplied
with the acceleration induced to the fluid. For bodies in air, this effect can be neglected
as the density of air is, most of the time, very small compared to the density of the
considered body. However for a body moving in water, the density of the body usually
is very similar to density of the fluid it is moving in, therefore this effect must be taken
into account.

The hydrodynamic force can be seen as a function of the velocity and acceleration of
the body, as explained by (6.3).

Fhydro = F damp(u) + Fmass(u̇) (6.3)

F Hydrodynamic forces. N
u Relative velocity of the load with respect to the fluid. m/s

The velocity dependent part of the expression is explained in section 6.3 on page 33,
and the remaining part of this section will focus on deriving the part, which is depen-
dent on the acceleration.

The hydrodynamic force, dependent on the mass of the accelerated fluid is often added
into the dynamic equations, by means of an increase in the mass of the body itself,
and this is convenient, as the force is usually proportional to the acceleration of the
body. Hence the name added mass, or virtual mass. The exact value of this force
would be the acceleration times the mass of each fluid particle affected by the motion
of the body [2]. This is not realistic to compute, hence an approximation is made by
integrating the hydrodynamic pressure over the entire surface of the body, and isolating
the acceleration dependent part. The pressure is described by Bernoulli’s equation for
irrotational unsteady potential flow, which is shown in (6.4).

P = −ρ
(
φ̇+

1

2
|∇φ|2

)
(6.4)

P Hydrodynamic pressure on a submerged point. Pa
ρ Density of the fluid. kg/m3

φ Velocity potential, such that u = ∇φ. m2/s

This equations is used in the field of modelling ocean surface waves, and impact on
structures floating on it [11]. According to [21] the velocity potential around a sphere
can be described as:

φ = |u| cos (θ)
r

2
(6.5)
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6. Semi-Submerged Load Dynamics

θ Half of the apex angle, spanned by the spherical section. I.e. the angle
between u and the line through the centre of the sphere and a point on
the surface.

rad

r Radius of the load. m

Using this and making the substitution u = ∇φ in (6.4) results in the following ex-
pression of the pressure, as shown in (6.6), and illustrated in figure 6.3.

θ

z

zu

r

R

θ
dS

dSz

Still water level

Figure 6.3: Illustration of the integration of the pressure on the sphere.

P (θ) = −ρ
2

(
|u̇| rcos (θ) + |u|2

)
(6.6)

Hence the expression of the hydrodynamic force is obtained, by integrating the pressure
over the submerged surface.

Fhydro =

∫ cos−1(−h/r)

0
P (θ) · 2πr2 · sin(θ) cos(θ) dθ (6.7)

h Vertical displacement of the centre of the sphere relative to the water level,
positive downwards.

m

The upper limit is provided by the submersion depth of the body inside the fluid, and by
substituting expression (6.6) in (6.7) and performing the integration, (6.8) is obtained:

F hydro = −ρπr2

(
1

3
|u̇| r

(
h3

r3
+ 1

)
− 1

2
|u|2

(
h2

r2
− 1

))
(6.8)

Comparing (6.8) to (6.3), the expression of the added mass-force is obtained in (6.9).

Fmass = −ρπ
3

(
h3 + r3

)
|u̇| (6.9)
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6.3. Damping Effects

The coefficient in front of the acceleration (u̇) is called added mass induced by the
displacement of water in contact with the sphere. As a result, this effect can be seen
as a dynamic modification of the mass of the body.

Figure 6.4 shows the value of the added mass over depth. The added mass is not a linear
function of the depth, due to the spherical shape of the buoy. Moreover, a correction
is needed as the results are only valid for a submersion depth of ± the radius of the
sphere, i.e. from not submerged to fully submerged. Outside this region the added
mass is kept constant.
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Figure 6.4: Representation of the added mass over submersion depth, showing the
mathematical result and the boundary corrected result.

6.3 Damping Effects

Damping effects are mainly due to viscosity of the fluid. According to [2], a good sim-
plification is to keep only linear and quadratic dissipation effects. Due to the shape of
the load and to the absence of waves, coupled damping terms are zeros.

It is possible to model the action of the viscous effect with two forces: the drag force
that is parallel to the velocity of the body in the fluid, and the lift force that is per-
pendicular to the drag force. These forces are explained in (6.10) and (6.11)[2].

Fdrag =
ρwU

2SCd(Re)

2
(6.10)

Fdrag Drag force. N
ρw Density of water. 1025 kg/m3

U Velocity of the body. m/s

S Projected surface area. m2

Cd Drag coefficient.
Re The Reynolds Number: Defined in (6.12).
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6. Semi-Submerged Load Dynamics

Flift =
ρwU

2SCl(Re, α)

2
(6.11)

Flift Lift force. N
Cl Lift coefficient.
α Angle of attack. rad

In (6.10) and (6.11) the Reynolds number, which is defined as (6.12), is not directly
used in the calculations of the lift and drag forces, but rather being a description of
how the flow of the fluid around the buoy is expected to be.

Re =
ρw|U |L
µ

(6.12)

µ Dynamic viscosity of the fluid. Pa s
L Characteristic length. m

The lift and drag equations presented in (6.10) and (6.11) are not sufficient for this
work, since they describe the lift and drag forces applied on a fully submerged load. In
this work, where a semi-submerged slung load is used, only the part of the load which
is submerged has to be taken into account. This dependency is examined further in
section 6.4.

The motion of a body in a fluid disrupts its flow, and introduce vortices in the fluid
behind the body. These vortices come from the shape of the body, and is affected by
the rotation of the body. Considering that the shape of the actual body is close to a
sphere no vortexes can arise from rotations of the body. Therefore, these disturbances
will be considered negligible as they are very small with respect to lift and drag forces.

6.4 Lift and Drag Force Corrections and Simulations

The purpose of this section is to get the values for the lift and drag forces at different
velocities and depths through simulation, and include possible depth and angle of attack
dependencies in the lift and drag coefficients in the standard lift and drag force formulas.

To get the lift and drag forces on the buoy with different velocities and depths, a sim-
ulation tool called SolidWorks 2010 can be used. SolidWorks offers a Computational
fluid dynamics (CFD) tool, that simulates the flow of fluids inside or around an object.

6.4.1 SolidWorks Flow Simulations and Results

Figure 6.5 on the next page shows an illustration of the set-up in SolidWorks. The
sphere is the buoy with its size, material and density entered. The large box is the
computational domain in which the fluid is placed. The fluid, being water, has in this
series of simulations been set to flow in the direction of the arrow, with a velocity
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6.4. Lift and Drag Force Corrections and Simulations

set for each of the simulations. The fluid trajectory and surface pressure are parts
of the results from a flow simulation, along with the set goals, here being the x- and
z-component of force, translated to the drag and lift forces. All the simulations were
done without gravity enabled, which means that the buoyancy is also disabled, due
to buoyancy being a direct effect of gravity. The example simulation shown in figure
6.5 were computed with the computational domain covering half the buoy, translated
to a top boundary of the box at 0 cm, and a water velocity of -4m/s with the value
being negative since the wanted forces are those of the buoy moving through the water,
simulated as the water moving around a stationary sphere.

Pressure [Pa]
94756
97627

100498

103369

106240

109111

0 cm

-5 cm

-10 cm

x

y

z

Figure 6.5: An illustration of the Flow simulation tool in SolidWorks 2010 with the
fluid box, surface pressure plot, and fluid trajectory.

A series of simulations is run to find the lift and drag forces, at different depths and
velocities. The ranges and step sizes are chosen to be as listed below. The height of
the buoy is defined at 0 cm being half of the buoy submerged and 0,114 m, which is
the radius of the sphere, is then completely submerged. The additional point inserted
with the buoy completely submerged, is to examine the difference in lift and drag forces
when the buoy stop having contact with the surface.

Water velocity 1m/s steps. Range 0 ; 5m/s.
Water level 5 cm steps. Range -0.1 ; 0.15 m Additional point: 0.114 m

The simulations data and a MATLAB-script for plot generation, can be found on the
DVD:

/Model/Hydro dynamics/lift_drag_3d_plots.m

/Simulation/Solidworks/depth/
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6. Semi-Submerged Load Dynamics

Figures 6.6 and 6.7 shows the drag and lift forces as a function of velocity and buoy
depth. The lift values are positive in figure 6.7 due to the E frame being defined with
a z-axis pointing downwards to be equal to the rest of the defined frames.
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Figure 6.6: 3D plot of the drag force on the sphere at different velocity and with
different amounts of the load submerged.
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Figure 6.7: 3D plot of the lift force on the sphere at different velocity and with
different amounts of the load submerged.

The two 3D plots show how the lift and drag forces have some non-linearities from
the velocity and depth dependencies that have to be accounted for, with the velocity
dependency already included in the standard lift and drag force equations.
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6.4. Lift and Drag Force Corrections and Simulations

6.4.2 Lift and Drag Force Calculation with Depth Dependency

The lift and drag forces have dependency of the buoy depth in water, based on the
illustrations in figures 6.6 and 6.7. This dependency is however not included in the
formulas for lift and drag introduced in (6.10) and (6.11) on page 34.

The depth dependency of the lift and drag forces emerge from the lift and drag coeffi-
cients changing, depending on the amount of the buoy submerged. To find the relation,
the lift and drag coefficients are calculated for all of the simulations, except those with
a velocity of 0m/s, since that would only result in coefficients of 0. As seen from (6.13),
both formulas have been rewritten from (6.10) and (6.11) to isolate CD and CL. Using
the simulated data, the only unknown parameter is the surface area, which is calculated
using the methods shown in appendix A on page 175.

CD =
2Fdrag
ρwU2S

CL =
2Flift
ρwU2S

(6.13)

Table 6.1 and 6.2 show the calculated values of CD and CL for all the simulations with
a velocity above 0m/s. From the tables it is seen that the CD and CL values, differ over
the depth columns.

CD · 10−3 Velocity [m/s]
1 2 3 4 5

D
ep

th
[m

m
]

150.0 190.5 186.7 185.0 183.8 183.1
114.0 203.5 200.0 209.9 208.0 207.8
100.0 240.8 248.3 243.4 242.9 240.7
50.0 320.2 321.6 319.2 318.6 318.5
0.0 355.2 356.8 352.6 351.1 352.1

-50.0 367.7 369.0 362.1 366.7 382.4
-100.0 333.5 324.2 331.9 328.8 337.3

Table 6.1: Drag coefficient table, calculated for each of the simulations.

CL · 10−3 Velocity [m/s]
1 2 3 4 5

D
ep

th
[m

m
]

150.0 67.9 66.8 64.0 66.3 65.9
114.0 155.5 150.7 134.5 133.3 133.0
100.0 157.4 147.0 164.5 144.1 149.1
50.0 244.5 250.6 244.2 244.2 245.3
0.0 423.0 437.4 426.5 426.4 429.7

-50.0 762.6 788.4 775.0 791.8 830.5
-100.0 1456.3 1491.4 1555.9 1557.9 1615.4

Table 6.2: Lift coefficient table, calculated for each of the simulations.

37



6. Semi-Submerged Load Dynamics

A mean of the coefficients for all the velocities at each depth is taken, resulting in the
vectors presented in (6.14). Depths going from -0.10 to 0.15 m.

CD,mean =



331.1
369.6
353.6
319.6
243.2
205.9
185.8


· 10−3 CL,mean =



1535.4
789.7
428.6
245.7
152.4
141.4
066.2


· 10−3 (6.14)

The coefficient means for each depth form a set of points that can be fitted to a func-
tion, using MATLAB and cftool from the Curve Fitting Toolbox. The coefficient mean
points and the fitted functions are shown in figures 6.8 and 6.9. The 15 cm mean points
are not used in the fitting of the drag coefficient, to get a better fit for the points
where the sphere is not yet completely submerged. The function chosen for the drag
coefficient is a second order polynomial, and for the lift coefficient it is an exponential.
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Figure 6.8: A graph showing the second order polynomial fitted to match the drag
coefficient mean points.
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Figure 6.9: A graph showing the exponential fitted to match the lift coefficient mean
points.
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The fitted functions from cftool is shown in (6.15) and (6.16).

fdrag(h) = −7.4304h2 + 0.4693h+ 0.3598 (6.15)

flift(h) = 0.4408 e−12.39h (6.16)

fdrag Polynomial fitted to drag coefficient means.
flift Exponential fitted to lift coefficient means.
h Depth defined from centre of the sphere. m

Having the two functions fitted to the lift and drag coefficients depending on depth,
these can now replace CD and CL in the lift and drag force formulas as shown in (6.17)
and (6.18).

Fdrag,depth =
1

2
ρU2S fdrag(h) (6.17)

Flift,depth =
1

2
ρU2S flift(h) (6.18)

Fdrag,depth The equation of the drag force with a depth dependency. N
Flift,depth The equation of the lift force with a depth dependency. N

With numbers from (6.15) and (6.16) inserted into (6.17) and (6.18), a set of equations
for lift and drag forces with a height dependency fitted to the exact buoy used in this
work has hereby been derived to be used in the further parts of this work.

The calculations of the lift and drag coefficients using the simulated forces, including
the derivation and function of the new lift and drag equations with depth equations,
can be found on the DVD:

/Model/Hydro dynamics/lift_drag_differences.m

/Model/Hydro dynamics/lift_drag.m

6.4.3 Lift and Drag Force Calculation with Angle of Attack
Dependency

While the difference in the drag and lift forces, as a function of depth have been taken
into account in the previous subsection, the changes in lift and drag forces as a function
of the angle of attack between the water surface and the relative velocity of the buoy,
still needs to be examined. This relative velocity is introduced because the buoy can be
moving up and down while being dragged, changing the direction of the actual velocity
seen by the buoy. The relative velocity will then be composed of the velocity the buoy
is being dragged with, and the up- or downwards velocity enforced by buoyancy and
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6. Semi-Submerged Load Dynamics

gravity.

This angle of attack is denoted α. Figure 6.10 shows the set-up in SolidWorks while
having an angle of attack that is not equal to 0 rad, in the example case the α angle is
π/4 rad.

x
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z

-5 cm

-10 cm

α Pressure [Pa]
94756
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100498

103369
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109111

Figure 6.10: An illustration of the flow simulation in SolidWorks with an angle of
attack α of π/4 rad.

While not being dragged by the helicopter, the buoy is expected not to have any move-
ment in the xy-plane of the earth fixed frame. It can however still have movements
going up and down in along the z-axis, in terms of the angle of attack denoted α, these
movements can be translated to α angles of π/2 rad.

Lift and drag forces are, like with the depth dependency, calculated using SolidWorks
2010, this time however with the velocity set along the z-axis instead the x-axis used
in the depth simulations. The change in lift and drag forces over depth should however
still be taken into account here in the angle dependency subsection, since the results
from the previous subsection might not be consistent with the results from the simula-
tions with α set to 0 rad. Figure 6.11 show an illustration of how α is defined, as well
as the direction of the lift and drag forces.

Since it is shown in tables 6.1 and 6.2 that the lift and drag coefficients vary more over
changes in depth, compared to changes in velocity, the simulations done for α depen-
dency is only done at a fixed velocity, with the depth changing between simulations.
Table 6.3 shows the drag coefficient calculated at an angle of attack set to π/2 rad.
The lift coefficient is defined to be 0 while the angle of attack is π/2 rad.
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Figure 6.11: Illustration of α and directions of lift and drag forces.

α = π
2

Depth [mm]
-100.0 -50.0 0.0 50.0 100.0 114.0 150.0

CD · 10−3 583.5 344.4 203.3 167.2 218.4 237.8 241.3

CL · 10−3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.3: Drag and lift coefficient table, calculated for each of the simulations at
α = π/2 rad.

As with α = 0 rad, a second order polynomial can be fitted to the points using MATLAB,
resulting in the polynomial shown in (6.19).

fdrag,pi/2(h) = 19.0162h2 − 1.8436h+ 0.2058 (6.19)

Figure 6.12 shows the new fitted polynomial and the points it is fitted to, as well as the
original depth dependent drag coefficient. The figure shows that the depth dependent
drag coefficient changes drastically with the angle of attack as well.

The new fitted polynomial can then be inserted into the formula for drag force. Re-
sulting in (6.20).

Fdrag,α =
1

2
ρU2S fdrag,pi/2 (6.20)

To work the α-angles between 0 rad and π/2 rad into the equations, a scaling between
the two fitted polynomials is used, multiplying cos(α) on Fdrag and sin(α) on Fdrag,α.
Regarding the lift force, that goes towards 0, cos(α) is multiplied onto Flift,depth, as in
(6.21) and (6.22).
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Figure 6.12: A graph showing the second order polynomials fitted to match the drag
coefficients at α = 0 rad and π/2 rad.

Fdrag(h, α) = (
1

2
ρU2S fdrag) · cos(α)

+ (
1

2
ρU2S fdrag,pi/2) · sin(α) (6.21)

Flift(h, α) = (
1

2
ρU2S flift) · cos(α) (6.22)

Figure 6.13 shows a graph of the final lift and drag force equations as a function of the
angle of attack. The example plot shown in the figure is done with a depth of 0 cm,
velocity of 3m/s and a projected area changing with the angle as shown in appendix A.

0

10

20

30

40

50

60

70

π1
16

π0
16

π2
16

π3
16

π4
16

π5
16

π6
16

π7
16

π8
16

Angle of Attack [rad]

Fo
rc

e 
[N

]

Drag force
Drag reference
Lift force
Lift reference

Figure 6.13: A graph showing the calculated lift and drag forces over an angle of
attack range from 0 rad to π/2 rad, along with reference simulation
values for every π

16 .

Apart from an example from the final formula for lift and drag forces, figure 6.13 also
includes a series of simulated values for the angle of attack changing in π

16 rad steps,
with the reference simulation values shown in table 6.4.
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Angle [rad]
1π
16

2π
16

3π
16

4π
16

5π
16

6π
16

7π
16

FD 33.571 36.557 40.037 42.581 40.529 39.580 39.422

FL 46.632 56.042 58.984 53.969 46.506 34.963 19.192

Table 6.4: Drag and lift force table, calculated for each of the reference simulations
between α = 0 rad through π/2 rad.

Figure 6.13 shows that the calculated lift force from the example with a particular ve-
locity and depth, follow the reference simulations relatively well, with a lower calculated
value throughout the range. The drag force however, does in this particular example
not follow the reference simulations very well. As can be seen from table 6.4, the drag
force does not vary much throughout the α angle range in the reference simulation val-
ues, but it does in the calculated values. This error can come from the simplification of
going from the fitted polynomial at an angle of attack at 0 rad to the fitted polynomial
at π/2 rad, using a transition from one to the other with cosine and sine multiplied on
their contributions to the calculated lift and drag forces. The derived drag formula will
be used in the model verification and final model, even though the calculated value for
drag force does not fit entirely with the reference simulation values, since the angle of
attack have well fitted values at each end of the range.

Figure 6.14 and 6.15 show the final drag and lift forces, and how they vary over depth
and angle. The plots are made for a velocity of 1m/s, which means that the values will
scale by velocity squared compared to the ones shown in the plots.
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Figure 6.14: 3D plot of the drag force on the sphere at different depths and angles.
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Figure 6.15: 3D plot of the drag force on the sphere at different depths and angles.

The final lift and drag force equations are used in section 8.1. The final function can
be found on the DVD along with the simulations used to calculate the angle of attack
dependency.

/Model/Hydro dynamics/lift_drag.m

/Simulation/Solidworks/angle/

6.5 Semi-submerged Load Conclusion

The hydrostatic effect section covered the gravity and buoyancy that acts on the load
when it is floating in water, while the added mass section included one of the more
important hydrodynamic effects, which is the mass of the fluid being dragged with the
load, when it is moving. The added mass section also include a depth dependency,
since the added mass only should be calculated for the submerged part of the load.

The damping effects introduce the lift and drag forces acting on the load when it is
moving, and it is further examined in the lift and drag force correction and simulations
that both forces should include both a depth dependency, since the effects from the air
is negligible when compared to the effects from the water. Since the slung load have
both horizontal and vertical movement, it is concluded that the lift and drag forces
should include an angle dependency as well, where a scaling between simulation results
for vertical and horizontal movement is presented.
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Chapter 7

Rigid Body Model

Rigid body
model

Bisgaards Helicopter Modelu

X
xH

xL
F  L

Actuator dynamics, Rotor dynamics,
Force and Torque, Mapping to COM( )

Slung load Model
 (Semi-submerged slung load dynamics)

F  
τ
H

H

Figure 7.1: A block diagram showing the interactions between the rigid body model
block and the other parts of the model.

This chapter will introduce a mathematical model of the dynamics of the helicopter and
slung load as well as their mutual influence. This model is intended to translate forces
and torques acting on the helicopter and slung load into linear and angular positions
and velocities. The model will be derived under three main modelling simplifications.
The first of which is that the slung load is considered a point mass. Doing so is rea-
sonable provided that the heading of the load is unnecessary to calculate the forces
on the load which is derived in chapter 6 on page 29, and because of the geometry of
it this is indeed the case. The second simplification is that the load is connected to
the helicopter by a straight, rigid, massless rod. This implies that the load is always
a fixed distance to the helicopter. During flight this is not a problem, since the cable
will be tense because of the relatively high drag on the load. The third simplification
is that the attachment point on the helicopter is positioned in the helicopters centre of
mass. This simplification is done since the distance to the attachment point is small,
compared to the distance to the load. This implies that the load will have no effect on
the heading of the helicopter.

In the following sections the variables used to describe the state of the system is intro-
duced, and the mathematical model based on Newtonian physics will then be derived.
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7.1 Degrees of Freedom and State Variables

The helicopter by itself can be seen as a 6 Degrees Of Freedom (DOF) body, three for
position and three for orientation, as described in chapter 2 on page 5. The slung load
can be perceived in the same manner resulting in 12 DOFs. Considering the load as a
point mass and interconnecting the two bodies by a cable reduces the number of DOFs
to 8, since if the position of the load has a fixed distance to the helicopter and can be
described by two consecutive rotations. These rotations are defined as a rotation about
the X-axis followed by one about the Y-axis in E. These angles are denoted θl and φl
respectively. Table 7.1 lists the grouping, naming and a short description of each of the
8 DOFs.

Eph =

xhyh
zh

 Eph describes the position of the helicopter as seen in the
earth-fixed frame by the Cartesian coordinates

{
xh yh zh

}
.

Eθh =

θhφh
ψh

 Eθh describes the orientation of the helicopter as seen in the
earth-fixed frame by the Euler angles

{
θh φh ψh

}
. Note that θh

is not equivalent to θh.

Eθl =

[
θl
φl

] Hθl describes the position of the load, relative to the helicopter
COM seen in the earth-fixed frame by the angles

{
θl φl

}
. Note

that θl is not equivalent to θl.

Table 7.1: Table explaining the naming and grouping of the 9 DOFs.

Figure 7.2 on the facing page shows a 3D illustration of the helicopter and slung load,
where the helicopter is illustrated by a box and the load by a sphere. The figure shows
in detail how the load angles are defined, in relation to the earth fixed frame, and the
definition of the position vector used, which will later be used for determining the loads
position relative to the helicopter.

7.1.1 State variables

The state variables are composed of the position and angles of the helicopter and angles
of the load in E, as shown in (7.1), and the corresponding linear and angular velocities
in H and L, as shown in (7.2).

q =

Eph
Eθh
Eθl

 (7.1)

q Position vector of the full system.
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Figure 7.2: 3D illustration of the helicopter, load and their mutual interconnection.

q̇b =

Hvh
Hωh
Lωl

 (7.2)

q̇b Velocity vector of the full system.
vh Linear velocity of the helicopter in H. m/s

ωh Angular velocities of the helicopter in H. rad/s

ωl Angular velocity of the load in L. rad/s

The state vector χ is then given by the compound of q and q̇b, as shown in (7.3)

χ =

[
q
q̇b

]
=



Eph
Eθh
Eθl
Hvh
Hωh
Lωl

 (7.3)

χ State vector, composed of the position, and velocity states.

Since the positions and velocities are not given in the same frames, a mapping of the
derivative is needed. I.e. deriving the position of the helicopter will produce the rate of
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7. Rigid Body Model

change of the helicopter position in the earth fixed frame, and the velocity is given in
the helicopter frame, so the derivative has to be rotated. Similar transformations are
needed for the other derivatives. This mapping is done by the following block diagonal
matrix:

Tb =

 H
ER 03×3 03×3

03×3 JH 03×3

03×3 03×3 JL

 (7.4)

H
ER Rotation matrix expressing the rotation from E to H shown in (7.6).
JH Matrix expressing the transformation from the helicopter Euler angles to it’s

corresponding angular velocities. This matrix is shown in (7.7).
JL Matrix expressing the transformation from the load Euler angles to it’s corre-

sponding angular velocities. This matrix is shown in (7.8).

The rotation matrix is obtained by multiplying the three individual rotation matrices,
as shown in (7.6):

H
ER = Rx (θh) Ry (φh) Rz (ψh) (7.5)

=

 c (φh) c (ψh) c (φh) s (ψh) −s (φh)
c (ψh) s (φh) s (θh)− c (θh) s (ψh) c (ψh) c (θh) + s (φh) s (ψh) s (θh) c (φh) s (θh)
s (ψh) s (θh) + c (ψh) c (θh) s (φh) c (θh) s (φh) s (ψh)− c (ψh) s (θh) c (φh) c (θh)]


To save space, in equation (7.6) a short notation for cosine and sine is used; namely
cos (x) = c (x) and sin (x) = s (x).

The transformation from Euler rates to body angular velocities is slightly more com-
plicated, since the rotations are consecutive, some of the rotation axis are given in
intermediate frames, and have to be rotated into the body frame individually. Since
the rotation is in the order z-y-x (rotation around the z-axis first) the first angle rate θ̇h
is already given in the helicopter frame. The second rate φ̇h is given in the intermediate
frame that is before the last rotation, hence it has to be rotated by the last angle. The
first rotation is given in the frame before, and thus must be rotated by the second angle
and then the third angle. This is done in (7.6).

ωh =

θ̇h0
0

+ Rx (θh)

 0

φ̇h
0

+ Rx (θh) Ry (φh)

 0
0

ψ̇h

 (7.6)

Combining the individual rotations into JH, looks as shown in (7.7).

JH =

1 0 −sin (φh)
0 cos (θh) cos (φh) sin (θh)
0 −sin (θh) cos (φh) cos (θh)

 (7.7)

Note that the determinant
∣∣JH
∣∣ = cos (φh), which makes JH singular for φh = ±π/2.
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7.2. Conservation of Momentum

The matrix JL can be constructed following the exact same procedure, which will result
in an identical matrix:

JL =

1 0 −sin (φl)
0 cos (θl) cos (φl) sin (θl)
0 −sin (θl) cos (φl) cos (θl)

 (7.8)

Again note the singularity at φl = ±π/2.

Having defined the elements in Tb, the differential equations describing the position
and angle states can be written as:

q̇ = T−1
b q̇b (7.9)

Differential equations describing q̇b are derived in the following section by considering
Euler’s laws of motion for a rigid body.

7.2 Conservation of Momentum

Newtons second law states that the rate of change in linear momentum, of a particle is
equal to the sum of forces acting on it. Leonhard Euler expanded this to rigid bodies,
by means of integration of particles. Based on this, he formulated Euler’s laws of mo-
tion of a rigid body [12]. These laws are presented in (7.10) and (7.11).

Euler’s first law states that the rate of change in linear momentum of a body is equal
to the total force applied, as described by (7.10).

d (mv)

dt
= F (7.10)

m Mass of the body. kg
v Velocity of the centre of mass. m/s

F Total force applied. N

Euler’s second law states that the rate of change in angular momentum of a body, about
an arbitrary point p is equal to the total torque about that point, as described by (7.11).

d (Iω)

dt
= τ (7.11)

I Moment of inertia about point p. kg m2

ω Angular velocity about point p. rad/s

τ Total torque about point p. N m

Figure 7.3 on the next page shows the free body diagram of the of the bodies, shown
in figure 7.2 on page 47.
The free body diagram introduces the internal string force, denoted by F s which is the
force that binds the bodies together, and allows the bodies to be treated individually.
The First body treated is the helicopter body, on the figure represented by a box.
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Figure 7.3: Free-body diagram of the bodies involved in the rigid body model, show-
ing the forces acting on the load and helicopter separately.

7.2.1 Linear momentum of the helicopter

Applying (7.10) on the helicopter yields the following equation:

mE
hah = EF h + EF s (7.12)

ah Linear acceleration of the helicopter. N
F h Sum of the external forces acting on the helicopter, which are derived in

[7] and listed in table 5.1 on page 25.
N

F s Reaction force originating from the tension on the line. N
mh Mass of the helicopter. kg

F s is unknown, but can be described by applying the same method on the load body,
and isolating the force. This is done in (7.13).

EF s = EF l −ml
Eal (7.13)

al Linear acceleration of the load m/s2

F l Sum of the external forces acting on the load. Expressions for these are
derived in chapter 6 on page 29.

N

ml Mass of the load. kg

Combining (7.12) and (7.13), yields an expression for the acceleration of the helicopter,
which is dependent of the acceleration of the load, as shown in (7.14).

mh
Eah = EF h + EF l −ml

Eal (7.14)

The acceleration of the load can be found by differentiating the following expression
for the position of the load, which is given in (7.15)

EpHL = E
LR LpHL (7.15)

pHL Position vector from H to L. pHL is the position of the load relative to
the helicopter COM.

m
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7.2. Conservation of Momentum

Differentiating yields:
Evl = E

LR
(
Lωl × LpHL

)
+ Evh (7.16)

vl Velocity vector of the load relative to the helicopter COM. m/s

Further differentiation yields:

Eal = E
LR
(
Lω̇l × LpHL + Lωl ×

(
Lωl × LpHL

))
+ Eah (7.17)

Since the position of the load in the load fixed frame is constant, there is no Coriolis
term in the equation. For more information on movement in rotating and translating
coordinate systems, see Appendix C on page 181. Combining (7.14) and (7.17) yields
the following expression of the helicopter acceleration:

(mh +ml)
Eah = EF h + EF l −ml

E
LR
(
Lω̇l × LpHL + Lωl ×

(
Lωl × LpHL

))
(7.18)

The needed equation for the state vector is Hv̇h, which can be found by the following
equation:

Hv̇h = H
ER Eah − Hωh × Hvh (7.19)

The following section will derive an expression for the rate of change of the angular
velocity.

7.2.2 Angular momentum of the slung load

This section will derive an expression for the load angular acceleration, and will use
(7.11), as the fundamental theorem. (7.20) shows (7.11) directly applied to the load
angles.

E
L̇l = Eτ l (7.20)

Ll Angular momentum of the load, which equals Ll = ˙(Ilωl). N m s
Il Moment of inertia of the load with respect to the point H kg m2

τ l Torque applied to the load in the point H N m/s2

EIl is however time dependent. This can be overcome by perceiving the angular
momentum as a vector in the rotating frame L, where the moment of inertia is constant.
The time derivative of the angular momentum can then be described as:

E
L̇l = E

LR
(L
L̇l + Lωl × LLl

)
(7.21)

Now that the moment of inertia matrix is constant, the expression can be written as:

E
L̇l = E

LR
(
LIl

Lω̇l + Lωl × LIl
Lωl

)
(7.22)

where the moment of inertia matrix is given as LIl = mll
2E3, where E3 is the three by

three identity matrix, and l is the length of the wire. That the last diagonal component
is equal to the others is purely to make the calculations possible, since in reality it
should be zero, but such a matrix is not possible to invert. Since the third component
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7. Rigid Body Model

of the angle is not important the magnitude of it is unimportant. Now reinserting
(7.22) into (7.20) and isolating for Lω̇l yields:

Lω̇l = LI−1
l

(
Lτ l − Lωl × LIl

Lωl

)
(7.23)

The Lωl × LIl
Lωl term is always zero, since evaluating the cross product of a vector

and a scaling of it self is always zero.

The torque applied on the load seen in point H is given as:

Lτ l = LpHL × L
ER
(
EF l −ml

Eal

)
(7.24)

Eal is given by (7.14). Combining (7.23), (7.24), (7.14) and (7.17), provides an expres-
sion of the rate of change of the angular velocity:

Lω̇l = LI−1
l

(
LpHL × L

ER
mh

EF l −ml
EF h −mhml

E
LR
(Lω̇l × LpHL + Lωl ×

(Lωl × LpHL
))

mh +ml

)
(7.25)

Lω̇l is however present on both sides of the equality sign. By introducing the following
skew-symmetric matrix, to replace the pHL× operation:

[
LpHL

]
×

=

L 0 −pHL,3 pHL,2
pHL,3 0 −pHL,1
−pHL,2 pHL,1 0

 (7.26)

Substituting this matrix yields the following expression:

Lω̇l = LI−1
l

[
LpHL

]
×

L
ER
(
mh

EF l −ml
EF h

)
+mhml

([LpHL]× Lω̇l + Lωl ×
([LpHL]× Lωl

))
mh +ml

(7.27)
Note that −ml

[LpHL]× [LpHL]× by definition equals the inertia matrix LIl. Therefore
(7.27) can be expressed as:

Lω̇l =
1

ml + 2mh

LI−1
l

[
LpHL

]
×

(
L
ER
(
mh

EF l −ml
EF h

)
+mhml

Lωl ×
[
LpHL

]
×

Lωl

)
(7.28)

This expression for the rate of change of the angular velocity of the load can then be
inserted into the expression for the acceleration of the helicopter. The last equation
needed is the equation for the rate of change of the helicopter angular velocity, which
will be derived in the following section.

7.2.3 Angular momentum of the helicopter

The rate of change of the helicopter angular velocity is given by an equation similar to
(7.23), only here the torque is given as an input to the system. The inertia matrix for
the helicopter HIh is constant and is derived in [7].

Hω̇h = HI−1
h

(
Hτ h − Hωh × HIh

Hωh

)
(7.29)
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7.3. Equation Summary

Ih Moment of inertia of the helicopter with respect to the point H kg m2

τ h Sum of the external torques acting on the helicopter, which is derived
in [7] and listed in table 5.2 on page 26.

N m

The following section will summarise the equations describing the states of the system,
which has been derived in this chapter.

7.3 Equation Summary

So far in this chapter, differential equations for describing the states of the helicopter
and slung load has been derived. This section will summarise these, beginning with the
expressions for the positions derivatives.Eṗh

Eθ̇h
Eθ̇l

 = T−1
b

Hvh
Hωh
Lωl

 (7.30)

ph Position of the helicopter. m
θh Euler angles of the helicopter. rad
θl Angles of the load relative to the helicopter. rad
Tb Transformation matrix mapping position and angle derivatives to body

velocities. Described in detail in (7.4)
vh Velocity of the helicopter. m/s

ωh Angular velocity of the helicopter. rad/s

ωl Angular velocity of the load relative to the helicopter. rad/s

Following the differential equations describing the velocities will be shown.

Hv̇h =
HF h + HF l −ml

H
LR
(Lω̇l × LpHL + Lωl ×

(Lωl × LpHL
))

mh +ml
− Hωh × Hvh (7.31)

Hω̇h = HI−1
h

(
Hτ h − Hωh × HIh

Hωh

)
(7.32)

Lω̇l =
LI−1
l

ml + 2mh

(
LpHL ×

mh
LF l −ml

LF h +mhml
Lωl ×

(Lωl × LpHL
)

mh +ml

)
(7.33)

F h External force acting on the helicopter. N
F l External force acting on the load. N
τ h External torque acting on the helicopter COM. N m
pHL Position of the load relative to the helicopter. m
Ih Moment of inertia matrix of the helicopter, given in the helicopter

COM.
kg m2

I l Moment of inertia matrix of the load, given in the helicopter COM. kg m2

This summary concludes this chapter, in the following chapter a qualitative analysis of
the results found in this and the preceding chapter will be presented.

53





Chapter 8

Model Simulation and Verification

Here the simulation and verification of the slung load and rigid body model is presented.
Section 8.1 presents the developed MATLAB script. Then, a comparison between simu-
lation and experimentation will be used to verify aspects of the model.

8.1 Slung Load Simulation

To be able to verify the slung load model, a program containing all of the equations of
the model had to be produced. Here a simulation is presented that include the equa-
tions provided in chapter 6 starting on page 29.

A general presentation on the structure of the program will be followed by the presen-
tation of the results. The main script and all the functions are available on the DVD:

/Simulation/Buoy/main.m

/Simulation/Buoy/*

8.1.1 Matlab Script

The aim of the MATLAB script is to compute the state of the buoy over time. The
state in this context being the position and velocity of the buoy. At each time step, the
algorithm computes the forces acting on the buoy at the given time. These forces result
in an acceleration, which is then integrated once to get velocity and again to obtain
position.

The first simulation is of a simple case where the buoy is held in a position above its
steady state, and then released to observe the dynamics of the buoy. The expected
result is that the load oscillate up and down in the water, with no movement in the
horizontal plane. The drag force should provide a damping of the oscillations, which
should converge to the gravity-buoyancy force equalibrium. The vertical position of the
buoy is shown in figure 8.1.

55



8. Model Simulation and Verification

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

Time [s]

z-
po

si
tio

n 
[m

]

Figure 8.1: z-position of the buoy over a 5 second simulation.

The lift and drag forces are the source of damping in the system and is therefore im-
portant. Since the lift force in this case is zero, only the drag force is illustrated in
figure 8.2. As expected the drag force is large in the beginning, and changes sign with
the velocity of the buoy.
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Figure 8.2: Graphical representation of the drag force magnitude over time.

8.2 Vertical Movement Experiment

This experiment is designed to give an indication of whether the derived slung load
model forces can be compared to those acting on a real buoy, in a small scale setup
where the buoy is placed in a tub with water.

The load is released at a position, different from the steady state position. In order
to do this, the load is left in the tank until it reaches steady state, then lifted about
1.5− 3.0 cm and released. The resulting motion is then observed.

The experiments are conducted in the AAU motion-tracking laboratory, using the VI-
CON MX UTRANET HD system with Vicon Tracker 1.2 software. Data is saved and
formated in MATLAB using LoadViconDataStreamSDK(). The setup is shown in figure
8.3.
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Figure 8.3: Illustration of the motion tracking setup.

The data provided by the motion-tracking system have been formated to fit the sim-
ulation comparison. Meaning that zero-values before and after the experiment have
been removed, and the altitude position of the load has been corrected so the altitude
value represent the altitude of the buoy Center of Mass, this is done since the only way
to track the buoy in water is to attach tracking balls on the part of the buoy above water.

A simulation of the experimental setup, using the derived slung load model, is then run
for comparison between the two. The results of the experiment and the results of the
corresponding simulation are presented in figure 8.4 on the following page.

The observed differences between the two curves in figure 8.4 include a difference in the
frequency, and a more noticeable difference in the damping. The comparrison script
can be found on the DVD along with the rest of the buoy simulation scripts

/Simulation/Buoy/check_lab.m

With the small scale experiment setup being the load in a tub with water, some un-
desirable effects are introduced to the experiment. These effects include the water
reflecting on the sides of the tub, creating waves. A second effect is the water surface
moving up and down, from the water displaced by the loads movement, due to the
small surface area in the tub. Despite these effects the experiment can still be used
to verify the if the slung load model is behaving in the same way as the experiment.
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Figure 8.4: Altitude position of the load from the simulation and the experiment.

The rising and falling water level increase the relative velocity of the buoy in relation to
the water, increasing the drag force on the buoy, however this effect might be negligible.

In the simulation results, it appears that the damping is too small. The damping effects
are explained by the model through the drag and lift forces as explained in section 6.3
on page 33. The steady state value appear to be the same for both experimentation and
simulation, which means the static states are the same in both cases. The frequency
of the dynamics are within the same range, but with the simulation results having a
slightly higher frequency.

8.3 External Force Simulations

This section will introduce some simulation results that have not been validated by
experimentation. The aim of these simulations is to indicate if the behaviour of the
buoy apear correct.

Pull on x-axis

In the first test, the load is started in steady state. Then, an external force is applied
in the x-direction. The x- and z-positions of the load are represented in figure 8.5. The
simulation start with no external force at time t = 0 s, then a force of 10 N is applied
in the positive x-direction at t = 3 s, and finally the load is released again at t = 7 s.

The y-position is not shown in figure 8.5 because there is no motion on y-direction.
The results correspond to the expected behaviour of the load: when a force is applied
on it, it starts to move in the direction of the force and due to lift force the load goes
a bit deeper in the water.

Pull on xz-plan

This test will apply a force in the x- and z-direction, as a helicopter would do while
dragging it. For the simulation, the x-component of the external force is 10 N and the
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Figure 8.5: Plot of the load position in x- and z-directions over time, given a force
of 10 Newtons in the interval between three and seven seconds.

z-component is 20 N. The external force is applied from t = 3 s to t = 7 s. The results
are presented in figure 8.6.

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

−0.060

0.010

0.080

Time [s]

x-
po

si
tio

n 
[m

]

z-
po

si
tio

n 
[m

]

0.045

−0.025

Figure 8.6: Plot representing the position in x and z direction over time, for a 2
components external force.

The results in figure 8.6 are the one expected. At t = 3 s, the load goes upward because
of the z-component of the external force. Then, the load move in the x- and z-directions.
And at t = 7 s, the external force is removed, so the load goes back towards steady
state.

8.4 Conclusion of Slung Load Model Simulations

The simulations of the slung loads behavior when released or with an external force
applied, shows the expected tendencies in the dynamics. The experiment, however,
shows some differences. The differences observed are partially explained by experimen-
tal setup. The analysis and comparison highlight the fact that frequency and static
state are reasonable, and the damping is too low. Considering the frequency, damping
and steady state, the model is able to obtain close to equal dynamics in frequency and
steady state value. The model is then deemed adequate for further use in this work.
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8.5 Rigid Body Model Simulations

As with the slung load model, a verification of sorts is wanted for the rigid body mod-
elling part of the project, to evaluate whether the results from the rigid body modelling
chapter is usable for further use in the control part of this work. Actual verification
does however require real data for comparison, which is not available for this work.
Instead the simulations performed in this chapter, is set up to see whether different
actions make the model perform as expected.

The simulations has been split up into two categories, one with simulations where the
model is given an input, and the response is observed, these inputs are torque on the
helicopter and force applied on either the helicopter or the slung load. The other
category is where the simulations start with the model set at some initial conditions,
and the response is observed here as well, these tests include the load set at an angle or
with an initial angular velocity. To test the capabilities of the model, some simulations
have been set up, contained in both categories.

8.5.1 Force Applied onto the Load

The first input simulation is force applied on the load in the xy-plane with the com-
ponents shown in figure 8.7 and the z-component of the load force constant in the
simulations set to be equal to the gravity force on the load.
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Figure 8.7: A graph showing the force components of the force applied on the heli-
copter and slung load.

The force applied on the load is set to last for 1 second, followed by an equal and op-
posite force in 1 second, with 8 seconds left of the simulation to observe the response.
Figure 8.8 show the position of the helicopter and slung load, 8.9 the angular position,
velocity and acceleration of the load together with the translatory position, velocity
and acceleration of the helicopter.

The positions of the helicopter and load show how the force applied onto the load make
it move and drag the helicopter behind it, when the opposite force is applied, the move-
ment is changed to a swinging motion.

The angular position and derivatives of the helicopter is not shown since they are all
equal to zero due to the modelling compromise of attaching the slung load cable in the
helicopters centre of mass.
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Figure 8.8: 3D plot showing the position of the helicopter and the slung load.
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Figure 8.9: Left column show 3 plots with the loads angular position, velocity and
acceleration. Note that the vertical axis in left column has been scaled
with π. The right column show 3 plots containing the helicopters trans-
latory position, velocity and acceleration.

Figure 8.9 show that even through an opposite force is applied, the motion of the load
does not stop, but is simply changed to a swinging that is continuous due to the lack
of damping in the system.
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8. Model Simulation and Verification

8.5.2 Force Applied onto the Helicopter

This test applies a force onto the helicopter in the xy-plane, which is just like the
previous test where the target of the force is the load. The force is generated as shown
in figure 8.10, with a given force in 1 second, followed by an opposite force in 1 second,
with 8 seconds simulation left to observe the response.
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Figure 8.10: A graph showing the force components of the force applied on the he-
licopter and slung load.

Figure 8.11 show the position of the helicopter and slung load, and 8.12 show two
columns of graphs, the left with the loads angular position and derivatives, together
with the right column showing the helicopters translatory position and derivatives.
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Figure 8.11: 3D plot showing the position of the helicopter and the slung load.

Figure 8.11 show that when the force is applied onto the helicopter, it start moving in
a direction, dragging the load after it, when the opposite force is applied, the helicopter
slows down, transforming the loads movement to a swinging motion, just like in the
first test, with the difference being that it in this test is the helicopter that is slowed
down.
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Figure 8.12: Left column show 3 plots with the loads angular position, velocity and
acceleration. Note that the vertical axis in left column has been scaled
with π. The right column show 3 plots containing the helicopters trans-
latory position, velocity and acceleration.

The difference between applying a force on the load or helicopter is shown in figure
8.12 where the angular acceleration of the load now start out as negative, since the
load is being dragged, and then going positive when the helicopter is slowed down by
the force, which is the opposite of what is shown in figure 8.9. The angular movement
of the helicopter is not shown since it is still equal to zero.

8.5.3 Torque Applied on Helicopter

The third input simulation is a torque applied onto the helicopter, around the second
and third axis as shown in the last plot of figure 8.13, with the torques changing over
the first 4 seconds, and is then reversed in the second half of the simulation.
The torque multiplied with the helicopters inertia around the respective axes can be
observed directly through the helicopters angular acceleration in figure 8.13. The an-
gular velocity looks as expected with constant accelerations, and the angular position
is rotated to a specific point during the first 4 seconds, and then afterwards rotated
back to the initial position at the end of the simulation.

The helicopter and slung loads translatory movement, and the loads angular movement
have not been shown, since these are all equal to zero, due to them being uncorrelated
to the helicopters angular movement, while the slung load cable is attached in the he-
licopters centre of mass.
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Figure 8.13: 3 plots showing the helicopters angular position, velocity and accelera-
tion, and a final plot showing the input torque.

8.5.4 Load at an Angle

Here the slung load is set to an initial angle of π/4 rad in the θl and φl angles, and is
then released to be observed in the 10 seconds the simulation is running. Figure 8.14
show the position of the helicopter and slung load after the load has been released. The
starting position of the helicopter and load is also shown. When the load is released,
it starts swinging downwards due to the gravity, as well as dragging the helicopter
towards it. The helicopters lift is set to be equal to the gravity of the slung load, so
when the string force is not pointing directly downwards, the helicopter rises a little.
Without any disturbances on the system, the slung load swings back and forth in the
same path.

Figure 8.15 show the loads angular acceleration at the bottom of the figure, since the
load is released in a positive angle, the acceleration starts out negative, and the velocity
goes negative due to that, bringing the slung load down towards zero angles, but since
the system is without any damping, the load passes zero, and goes to a negative angle
equal to the initial angle.

8.5.5 Load at an Angle, Torque on Helicopter

This simulation is a combination of the third and fourth simulation, to test whether
the angular movement of the helicopter is truly uncorrelated to the movement of the
load, and the helicopters translational movement.

The torque applied on the load is equal to the one shown in figure 8.13 in the third
simulation, and the angle of the slung load is set to be π/4 in the first two angles, as in
the fourth simulation.

The results of the simulation is not shown here, since it is exactly equal to the results
shown in figures 8.13 and 8.15 from simulation 3 and 4, showing that the angular
movement of the helicopter is truly uncorrelated from the translatory movement, and
the slung load entirely.
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Figure 8.14: 3D plot showing the position of the helicopter and the slung load.
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Figure 8.15: 3 plots showing the loads angular position, velocity and acceleration.
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8.5.6 Load at an Angle, Force Applied onto the Helicopter

This is a combination of second and fourth simulation, this time with a force applied
onto the helicopter, while having the load at an initial angle. To get a better graphical
representation of the simulation in a 3D plot, the force applied onto the helicopter is
only set in 1 axis, with the angle of the load set as a rotation around the same axis.
The force applied onto the helicopter is set to 10 N for 1 second in the direction of the
x-axis, and 0 afterwards.
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Figure 8.16: 3D plot showing the position of the helicopter and the slung load.

While subjected to the x-directional force, the helicopter start moving in that direction,
while being pulled from side to side in the y-direction from the slung load swinging
beneath it. In the period where the helicopter is no longer subjected to the force, the
acceleration in the x-direction goes to nearly zero, while the pulls from side to side
remains the same. This is all shown in figures 8.16 and 8.17

8.5.7 Load with an Initial Angular Velocity

Here the load is released with an initial angular velocity of 3rad/s around the z-axis in the
earth fixed frame. The helicopter is held still, meaning the translational acceleration is
set to zero, so only the dynamics of the load is observed. The load is held at an angle
as well, to see the load move around the z-axis in the inertial frame.

Figure 8.18 show the position of the helicopter that is set to zero, and is only illustrated
with the point where it is held, and the position of the load, rotating around the z-axis
of the inertial frame. When the simulation is started, the illustration shows that the
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Figure 8.17: Left column show 3 plots with the loads angular position, velocity and
acceleration. Note that the vertical axis in left column has been scaled
with π. The right column show 3 plots containing the helicopters trans-
latory position, velocity and acceleration.
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Figure 8.18: 3D plot showing the position of the helicopter and the slung load.
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load start moving upwards, as well as around the inertial z-axis, this can be explained
from the centrifugal force point outwards outweighing the gravity point downwards,
resulting in the load moving up and down while also rotating around inertial z-axis.
Had the centrifugal force been equal in size to the gravity, the load would not move up
and down, but rotate in a perfect circle.

8.5.8 Conclusion of Rigid Body Model Simulations

Based on the simulations done in this section, the model is deemed to perform as ex-
pected throughout all 7 simulations. It is apparent that the model have been simplified
when the attachment point of the slung load wire is in the helicopters centre of mass,
since the helicopters heading this way is uncorrelated to the helicopters translatory
movement, and the slung load entirely.

With the rigid body model performing as shown in this section through simulations,
it is considered good enough for further use in the control part of this project, even
though a verification against acuall measurements are not available for this part of the
model. The matlab files required to perform the simulations can be found on the DVD:

/Model/Rigid body model/rbm.m

/Model/Rigid body model/calc_forces
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Chapter 9

Model Implementation for Helisim

As mentioned in section 5.3 on page 27 in the helicopter model chapter about helisim,
the semi-submerged load dynamics model and the rigid body model, have to be inte-
grated into the source code of Helisim’s model, which is written in C++. To achieve this
two C++ functions are written, implementing each model. The function calls to He-
lisim’s rigid body model and load dynamics models are then replaced in the source code.

The following is a brief explanation of how to in-
terpret the sequence diagram in the figure to the
right, and thereby give an overview of the proce-
dure of the model implementation in Helisim. First
a variable is created to hold the velocity of the he-
licopter, to avoid overwriting the actual velocity
of the helicopter. Then the wind is mapped to
the respective frames and added, resulting in a ef-
fective velocity that can be used to calculate lift
and drag forces. Next, this velocity is mapped to
the helicopter fixed frame and the tail frame. The
acceleration is also mapped to helicopter frame,
and the advance ratios of the main and tail rotor
is calculated. The actuator dynamics are calcu-
lated, including motor dynamics. The flapping of
the stabiliser bar and main rotor is calculated and
the forces and torques generated by main and tail
rotor. The drag on the helicopter is calculated and
the helicopter forces are added up. The load forces
and torques are calculated, and the state deriva-
tives are determined. These state derivatives are
then integrated up to gain the updated states.
The functions for calculating the load forces and
state derivatives are replaced by functions imple-
menting the dynamics attained in this work. This
is indicated in the figure to the right, by the red
blocks. These functions are described in details in
the following two sections.

Actuator dynamics

Map to frames

Add wind

Flapping

Helicopter forces

Load forces

State derivatives

Integration

Model
States

States
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9.1 Semi-submerged Load Dynamics Implementation

The source file for the implementation of the load dynamics can be found on the en-
closed DVD, at the following path:

/Source/BuoyLoadFunctions.cpp

The file contains several functions that are used for the calculations. The model inter-
face function prototype is shown below:

void SubSumOfForces ( double ∗F tau , double ∗v , double ∗a , double h) ;

The figure below shows the a sequence diagram of the flow in SubSumOfForces, and the
following will describe the function more in detail.

The function takes four arguments. The first one
double ∗F tau is the return variable. It is a 6 ele-
ment array containing the the resulting force and
torque acting on the load in E, where the torque
is zero. double ∗v is a three element array contain-
ing the velocity of the load in E, which is used
for calculating the lift and drag force. double ∗a is
a three element array containing the acceleration
of the load in E, which is used for calculating the
added mass force. Lastly double h is a scalar value
indicating the altitude of the load in, which is used
in the calculations for the buoyancy, added mass,
lift and drag forces.
The function call it replaces, returns the force and
torque in the L frame, but since it is only used
by the rigid body model, witch in the case of this
work requires the force in the E frame, it is kept
in the E frame.

Buoyancy

Added Mass

Lift & Drag

Gravity

Add Forces

Load Forces
v, a, h

F, τ
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9.2. Rigid Body Model Implementation

9.2 Rigid Body Model Implementation

The source file for the implementation of the rigid body model can be found on the
enclosed DVD, at the following path:

/Source/BuoyRigidBodyModel.cpp

The file contains several functions that are used for the calculations. The model inter-
face function prototype is shown below:

void BuoyLoadRBMInterface ( double ∗Xo , double ∗Xi , double ∗Q, double ∗Acc ) ;

The figure below shows the sequence diagram of the flow in the BuoyLoadRBMInterface

function, and the following will describe the function more in detail.

The function takes four arguments. The first one double ∗Xo is a 44 element return vari-
able, that holds the state time derivatives of entire system. The second one double ∗Xi

is a 44 element input variable, that holds the states of entire system. double ∗Q, is a 12
element input variable that holds the forces and torques acting on the helicopter and
load individually. double ∗Acc is a 6 element return variable that holds the accelerations
of the helicopter and load.

Of the 44 states, only the first 24 are written in
this function. These 24 elements are clustered in
blocks of three, containing Eph, Eθh, Epl,

Eθl,
Hvh,

Hωh, Lvl and Lωl in that order. Note that Helisim
needs the position and velocity of the load, ex-
pressed in Cartesian coordinates and Euler angles
and angular velocities, same as for the helicopter.
These are not in the rigid body model presented
in this work, but are calculated, based on position
and velocity of the helicopter and the angles and
angular velocity of the load. The angles and an-
gular velocities of the load in Helisim are defined
around the centre of mass of the load, but are only
used for illustrative purposes by the graphics, and
for calculation of the load forces. Since the func-
tion calculating the load forces have been replaced
by the one described in the above section, the only
implication of moving the point of which the load
rotates around to the attachment point on the he-
licopter, is that the load rotates around its centre

Derivatives

Load Position

Transformations

Accelerations

Velocity derivative

Rigid Body
States

States

of mass in the graphics. One other implication of calculating the load position inside
this function is that it is updated based on the load angles, in stead of by integration
of the velocity, and therefore is updated one sample later than the rest of the states.
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Summary of part II

The first chapter of the model part introduced the helicopter model that was to be used
with the modelling of this work, and further in the control part of this work.

The slung load modelling included a series of the forces applied on the slung load, in-
cluding the depth dependency of most of the applied forces.

The rigid body model was derived to obtained the expression of both translational and
angular accelerations. This was done by applying Euler’s laws of motion on the slung
load and helicopter, and using the expression of acceleration in the helicopter frame.
Some simplifications to the model was made in the rigid body modelling chapter, in-
cluding assumptions of the load wire being tense at all time, and having the slung load
as a point mass.

In the model simulation chapter all the forces on the slung load was implemented in
a MATLAB simulation, compared to a set of experiment measurements, to verify the
model. The rigid body model simulations showed how the slung load and helicopter af-
fect eachother in different scenarios, and what the modelling simplifications meant for
the results. The chapter of the part explain how the modelling done in this work was
implemented to work with the Helisim project.
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Part introduction

Contents

10 General Control Strategies

11 Linear Quadratic Control

12 Model Predictive Control

Purpose

The purpose of this part is to explain and use a series of control strategies, both on a
standalone helicopter and on the complete helicopter with slung load system.

The first chapter of this part includes general control strategies, specifying the different
control strategies used on the system, including operating points found through trim-
ming, and ranges for the control states and input signals, as well as a linear model
analysis of the uncontrolled system to be used in the LQ chapter.

The second chapter of this part is the methodology and use of Linear Quadratic Control,
first deriving controllers for a standalone helicopter in hover and in forward flight, with
a heading reference, and afterwards designing LQ controllers with the same capabilities,
but for the complete system.

The last chapter deals with Model Predictive Control, which is implemented in cascade
with a LQ controller. The inner loop LQ control is designed to stabilise the system,
which is checked using pole analysis of the closed inner loop, and the outer MPC loop
is set to control the set-points for the LQ controller.

Goals

• Explain the methodology of the different control strategies used on the system.

• Create a series of controllers that is able to control a standalone helicopter, to a
degree where it is able to adhere to the confines of the requirement specification.

• Create a series of controllers that is able to control a helicopter with the submerged
slung load attached, to a degree where it is able to adhere to the confines of the
requirement specification.



Chapter 10

General Control Strategies

This chapter present the different control strategies that is examined in this work, along
with the necessary considerations and decisions each of the control strategies require
for a controller to be produced. These considerations includes ranges for each of the
states and operating points for linearisation.

The first of the control strategies used in this work is Linear Quadratic (LQ) control,
which is a single feedback matrix found from a linearised model. LQ controllers are
found for the helicopter in hover and in forward flight with a yaw angle reference, both
for a standalone helicopter, and a helicopter with slung load system. Before the control
is done, the linearised system poles are analysed, to find out if the system has unstable
dynamics. The LQ controllers should be implemented as shown in figure 10.1, with the
necessary information to do so presented in section 10.1. LQ control is chosen for its
ability to handle MIMO systems well, as well as for its simplicity in the design process.

A

B

-K

xu C yx

Plant

Figure 10.1: Diagram of the state space representation of the linearised system, with
an LQ controller as feedback matrix.

The second control strategy is model predictive control (MPC) implemented as a set-
point controller to a underlying LQ controller. First the dynamics of the closed loop
LQ system is examined, to find out whether the MPC is implemented on a stabilised
system, since that has a large impact on how fast the model predictive controller has to
be. The MPC is to be implemented as shown in figure 10.2. MPC is chosen as a control
strategy for this work, both for its ability to handle MIMO systems with constraints
and disturbances, but also for its ability to predict the behavior of the system over a
time horizon, making it able to handle transitions in set-point changes smoothly.
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Figure 10.2: Diagram of the state space representation of the linearised system, with
an LQ controller as feedback matrix and MPC to control the LQ refer-
ences.

10.1 LQ Control Considerations

Since LQ control require a linearised model to be produced, the first step in this partic-
ular control strategy is to determine the operating points where the produced controller
should work, and the ranges of the deviations from the operating point for each state,
to be used in the initial weight matrices for the controller. This is to be done for both
a helicopter in hover and in flight. A summary of how an LQ controller is produced is
included in section 11.1 on page 85.

The operating point and range considerations for the LQ controller are split up into a
standalone helicopter, and a slung load subsection, to give a better overview of which
states belong to what part of the system.

10.1.1 Helicopter Operating Points and Ranges

First, all the states need operating points where the linearisation should take place.
In the reduced order model presented by [7], the system has 12 states, and 4 inputs.
If main rotor flapping, stabilizer bar flapping, actuator dynamics and motor dynamics
all are modelled as steady-state. The trimming and linearisation of the system are
presented in appendix B on page 179.

The trimmed values for the position and angles of the standalone helicopter, as well as
the values for the control signals are shown in table 10.1 and 10.2. The helicopter is
in both cases trimmed to fly at an altitude of 6 m, and the flight controller is trimmed
for a x-velocity of 6m/s. The trimmed state and control signal values are used together
with the LQ controller as shown in figure 10.3. The remaining velocity states are all
trimmed to be 0.

The operating points presented in this section is used to linearise the reduced order
helicopter model in appendix B.

Apart from the linearised model and operating points, a set of operation ranges are
needed, in which the controller should keep the state values. These values should all
be specified as deviations from the operating points, and is not the operational range
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Trimmed state values

xh yh zh φh θh ψh
Hover 0.0000 0.0000 -6.0000 0.0517 -0.0011 0.0000

Flight 0.0000 0.0000 -6.0000 0.0415 -0.0035 0.0000

Table 10.1: Trimmed state operating points.

Trimmed control signals

θcol θlat θlon ωtr
Hover 0.1946 -0.0032 -0.0013 0.1298

Flight 0.1777 -0.0027 0.0063 0.0901

Table 10.2: Trimmed control signals.

LQ Controller

-K

State
trimmed value

Control signal
trimmed value 

in out

Figure 10.3: Use of the trimmed state and control signals with the LQ controller.

of the states, but rather the allowed deviation from the operating points by the LQ
controller. These operation point deviations is to be used for the initial weightings
on each state, in the LQ controller design. Control signals for both hover and flight
controllers on a standalone helicopter is shown in table 10.3, which goes together with
table 10.4, showing the expected ranges of the helicopter states.

Hover range Flight range Unit

θcol ± π/8 ± π/8 rad

θlat ± π/16 ± π/16 rad

θlon ± π/16 ± π/16 rad

ωtr ± π/4 ± π/2 rad/s

Table 10.3: Control signal operating point deviation ranges for both the hover and
flight controller.

The first 3 control signal ranges are all controls for the helicopters main rotor, specifi-
cally the collective-, lateral- and longitudinal blade pitch, all specified in radians, with
the last control signal being a reference of the helicopter yaw rate, controlled by the
tail rotor, given in rad/s.
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Hover range Flight range Unit

xh ±0.5 - m

yh ±0.5 - m

zh ±0.2 ±0.2 m

φh ± π/4 ± π/4 rad

θh ± π/4 ± π/4 rad

ψh ± π/2 ± π/8 rad

vx,h ±2 ±0.2 m/s

vy,h ±2 ±0.4 m/s

vz,h ±0.5 ±0.5 m/s

ωφ,h ±π ±π rad/s

ωθ,h ±π ±π rad/s

ωψ,h ±π ±π rad/s

Table 10.4: State operating point deviation ranges for both the hover and flight
controller.

The values in table 10.4 is initial thoughts on how large deviations from the operating
points that should be allowed by the LQ controllers. The dash in x- and y-position
of the flight ranges indicate that deviations in those states should not matter to the
controller. Since the ranges, and through those the state weighting, is not hard con-
straints some of the ranges is set to allow less deviation than what is specified in the
requirement specification.

10.1.2 Helicopter with Slung Load Operating Points and Ranges

When a load is attached to the helicopter, it changes the dynamics of the system.
These changes has to be accounted for in the trimmed values, and thus new values are
needed. The hover trim is done for an altitude of 3 m, which is also the length of the
wire, leaving the slung load in the water surface, just above its equilibrium. In this
case where the slung load is being lifted above its steady state position, the modelling
simplifications assuming a rigid wire can be justified. The flight trim is done for a
forward velocity of 2m/s. The trimmed values are shown in tables 10.5 and 10.6.

Trimmed state values

xh yh zh φh θh ψh
Hover 0.0000 0.0000 -3.0000 0.0500 -0.0000 0.0000

Flight 0.0000 0.0000 -3.0000 0.0500 -0.0001 0.0000

Table 10.5: Trimmed state operating points.
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Trimmed control signals

θcol θlat θlon ωtr
Hover 0.2052 -0.0007 -0.0013 0.1001

Flight 0.2051 -0.0009 0.0007 0.1000

Table 10.6: Trimmed control signals.

With the load attached, 4 additional system states are introduced in the system, be-
ing the Euler angles describing the position of the load, and angular velocities. The 4
additional states should have operation point deviations just like the rest of the states,
these are shown in table 10.7.

Hover range Flight range Unit

θl ± π/4 - rad

ψl ± π/4 - rad

ωθ,l ± π/2 ±π rad/s

ωψ,l ± π/2 ±π rad/s

Table 10.7: State operating point deviation ranges for both the hover and flight
controller.

The range of the loads angles while in flight should just like the helicopter position not
matter to the controller, since the load is expected to be dragged behind the helicopter
at flight, while it should be minimised in hover. The operating points, state- and con-
trol signal ranges presented in this and the previous section will be used to produce a
series of LQ controllers in chapter 11 on page 85.

10.1.3 Standalone Helicopter Linear Model Analysis

With the helicopter model linearised in appendix B, it is relevant for further use of the
linearised model to analyse the poles of the system, to understand the dynamics of the
uncontrolled linearised system. The first model presented in appendix B is trimmed
for hover prior to the linearisation, meaning the poles presented here, along with their
corresponding natural frequency and damping ration are for the standalone helicopter
in hover, all the pole information is shown in table 10.8.

The linearised model for the helicopter in hover contain a pole pair with positive real
values, meaning the system is unstable without control, as well as a pole pair very close
to the zero real value axis, in the region where that pole pair should be controlled as
well. The pole pairs seems to come from the pitch and roll angular velocity parts of the
system, which means the helicopter most likely would crash without control on these
states.
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Description Pole ζ ωn
Fourth order pole 0 - 0

Single pole -45.85 1 45.85

Single pole -7.24 1 7.24

Single pole -4.31 1 4.31

Pole pair 0.22±0.62i -0.33 0.66

Pole pair -0.21±0.68i 0.29 0.71

Single pole -0.97 1 0.97

Table 10.8: List of poles and their corresponding natural frequency and damping
ratio.

With the poles of the system found for hover, revealing a series of them having either
positive real values, or very close to, it is also relevant to look at the pole movement,
when hover is changed to forward flight, at different velocities. The pole movement
over a sweep from 0m/s to 10m/s forward velocity shown in figure 10.4.

−50 −40 −30 −20 −10 0 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Real part

Im
ag

in
ar

y 
pa

rt

Figure 10.4: Pole plot of the standalone helicopter, with pole movement at the flight
velocity varying from 0m/s through 10m/s.
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The pole movement show that when the helicopter starts moving forward, the pitch
and roll angular velocity poles does become slightly more stable, but with one pole pair
still with positive real values, and the other being very close, even at 10m/s and still
require control for the system to become stable. The linearised model is used to make
the LQ controllers in chapter 11 on page 85.

10.1.4 Helicopter with Slung Load Linear Model Analysis

The system changes dynamics when a slung load is attached to the helicopter, espe-
cially in a case like the one in this work where the load is subjected to large forces when
being dragged, which ultimately affect the helicopter as well. The procedure used to
find a linear model for the helicopter with semi-submerged slung load, is presented
in the second section of the linearisation appendix B on page 179. The linear model
is used to observe the poles of the system in hover, and the pole movement when the
helicopter changes from hover to flight. Table 10.9 show the poles of full system in hover.

Description Pole ζ ωn
Third order pole 0 - 0

Single pole -47.18 1 47.18

Single pole -6.65 1 6.65

Single pole -3.86 1 3.86

Single pole -4.52 1 4.52

Single pole 3.09 1 3.09

Pole pair -0.08±0.79i 0.10 0.80

Pole pair 0.06±0.76i -0.08 0.77

Pole pair -0.09±0.59i 0.16 0.59

Pole pair 0.12±0.56i -0.21 0.57

Table 10.9: List of poles and their corresponding natural frequency and damping
ratio.

The table show that the system with slung load attached has become more unstable
when compared to the standalone helicopter pole analysis, with 2 unstable pole pairs,
2 pole pair that is barely stable, and a single unstable pole at 3.09, meaning that the
system require control to stabilise.

A pole movement plot have been produced for a sweep of forward flight velocity from
0m/s through 10m/s, to find out if the system stabilises when the system goes from hover
to forward flight. The pole movement is shown in figure 10.5.

The pole movement plot show how the helicopter with slung load system partly desta-
bilises while flying forward, showing that the system require control on multiple states
with the slung load attached. It should be noted that the poles presented here are not
those of the real system, but of the Bisgaard helicopter model [7] expanded with slung
load and rigid body modelling from this work, including the model simplifications made
in the process.
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Figure 10.5: Pole plot of the helicopter with slung load, with pole movement at the
flight velocity varying from 0m/s through 10m/s.
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10.2 Model Predictive Control Considerations

The model predictive controller does, as explained in the beginning of the chapter, not
control the system directly, but rather the set-points for an underlying LQ controller
designed to stabilise the system. The system seen by the MPC is equal to the closed
loop system seen by the LQ controller. This type of cascade control is according to
[16, p.27] a very normal application of model predictive control, allowing it to have the
longer computational time that is often associated with model predictive control. It
is however not a requirement to have underlying controllers, but it is an advantage to
implement model predictive control on a stable system if long prediction and control
horizons are wanted, this is discussed in the MPC chapter 12 on page 113.

When working with cascade control it is important to allow the inner loop controller
time to react to set-point changes from the outer control loop. Because of this a rule of
thumb is that the inner loop should run 4-10 times faster than the outer control loop,
with sufficient bandwidth to follow the reference from the MPC. In this case the sample
length of the inner loop is known to be 50 Hz, which is the sample frequency of the esti-
mated sensor values in Helisim, so a sample frequency for the MPC is chosen to be 5 Hz,
to give the controller time for computations, leaving the sample length MPCTs at 0.2 s.

The prediction horizon Hp and control horizon Hu, is respectively the amount of time
steps for which the system responses based on a linearised model should be generated,
and the amount of time steps control signals should be calculated for. These two hori-
zons is a part of the MPC considerations, as well as part of the controller design itself,
since longer horizons can produce better results for the controller, but increases the
computational time the controller needs at each time step, which is of course based on
the available computational power for the system. Since the specific number of sam-
ples used for the prediction and control horizons is not final before the tuning of each
controller is done, a finite number can not be given here. It can however be speculated
that longer horizons is needed for the flight controller if velocity and yaw references are
changed, than for the hover controller stabilising the system at a specific position.

The considerations made here is to be used in the production of a series of model pre-
dictive controllers in chapter 12, where the general idea and methodology behind the
model predictive control strategy is explained as well.
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Chapter 11

Linear Quadratic Control

This chapter introduces the first of the control strategies used to control the helicopter
with slung load system, namely Linear Quadratic (LQ) control. However, an LQ con-
troller require a state space model, linearised around a set of operating points, for the
controller to be applied. The linearisation is handled in appendix B on page 179 using
the operating points presented in the control strategies chapter 10 on page 75.

The methodology used to compute the LQ controller, along with the considerations
and requirements that must be fulfilled to use LQ control are presented in section 11.1
below. The computed controller is then evaluated in the acceptance test chapter 13
starting on page 141, where it is used on the helicopter with slung load model in Helisim.

11.1 LQ Control Methodology

Before any controller can be found, the system which the controller is to be applied
on, needs to be examined for controllability. Controllability in other words is verifying
whether the A and B is a controllable pair, by checking if all the states in the model
can be controlled through the matrix pair. The standard way to check for controllabil-
ity is by computing the controllability matrix C shown in (11.1), and then check if the
controllability criterion is fulfilled as shown in (11.2).

C =
[
B AB A2B . . . An−1B

]
(11.1)

rank(C) = n (11.2)

C Controllability matrix.
A System state matrix.
B Input matrix.
n Number of states in the model.

If the controllability matrix is shown to have full rank, the controllability criterion is
achieved, and an LQ controller can be designed for the system.
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11.1.1 Design of a Linear Quadratic Controller

LQ control is a subsection of optimal control theory that work to find the controller that
optimise the performance of a system in the operating points. This is done by finding
a controller that minimise a performance function containing a pair of cost matrices
expressing costs associated with changes from the operating point for each of the states
in the system.

The performance function presented in (11.3) is the function for an infinite-horizon
continuous time system. Infinite horizon is needed due to the unknown duration of a
SAR mission.

I =

∞∫
0

x(t)TQ x(t) + u(t)TR u(t) dt (11.3)

I Continuous performance function.
x(t) State values at time t.
u(t) Control signals at time t.
Q,R Weight matrices for the states and inputs.

To find the controller that minimise the performance function, the weight matrices Q
and R first have to be found. These weight matrices are both square matrices with
dimensions Qn×n and Rm×m with n being the number of states and m the number of
input signals to the system with Q being positive semi definite, and R positive defi-
nite. The positive definiteness is required in order to ensure a positive definite solution
to (11.7). If the weight matrices are designed correctly, it is possible to have strict
constraints on some states, while allowing large derivations in others, or having some
control signals changing more than others.

While it is possible to weight multiple states or control signals together when designing
Q and R, the most common method of designing the weight matrices are to only use
the diagonal entries, resulting in weights on every state and control signal individually.
One way to calculate the diagonal entries in the initial weight matrices is by Bryson’s
rule, which is presented in (11.4).

Q(i, i) =
1

x2
i,max

R(j, j) =
1

u2
j,max

(11.4)

xi,max Largest value a state xi is allowed to become.
uj,max Largest value a control signal uj is allowed to become.

The method shown in (11.4) is presented in [1], and it should be noted that the resulting
weights only are preliminary values, which often need a series of iterations to yield the
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11.2. LQ Control of a Standalone Helicopter

wanted results. As the Q and R matrices has been found using the method from (11.4),
and as the control law is assumed as (11.5), it is now possible to find a feedback matrix
K for the LQ controller, that minimise the performance function from (11.3).

u(t) = −Kx(t) (11.5)

The K matrix is found by solving (11.6), with Q, R, A and B already known, and
S being the solution to the continuous time algebraic Ricatti equation (CARE) in (11.7).

K = R−1BTS (11.6)

0 = Q + ATS + SA− SBR−1BTS (11.7)

K Feedback matrix to control the system.
S Solution to the continuous time algebraic Riccati equation.
A State matrix.
B Input matrix.

Then the A and B matrices are known, along with their corresponding weight matrices
Q and R, the feedback matrix K can be found in MATLAB using the lqr(A,B,Q,R
)-function that minimises the performance function. This is also appended on the DVD:

/Controller/SAH/SAH_hover.mat

/Controller/SAH/SAH_flight.mat

11.2 LQ Control of a Standalone Helicopter

The first controller that is computed is for a standalone helicopter, that should be
controlled so it is able to hover around a specific position. This controller is being
computed to fulfil the standalone helicopter system requirements from section 4.2.

The controllability matrix C is found to have the rank 12, which means the system is
controllable, and the design process of the LQ controller can proceed to the initial Q
and R weight matrices.

11.2.1 Finding the Weight Matrices

With the methodology explained, and ranges for the states and input signals determined
in subsection 10.1.1 on page 76, for a scenario with the helicopter without a slung load,
being in hover.
When only finding diagonal entries of the weight matrices, to keep it clear which weights
should be changed if the computed controller does not behave as expected. Using the
linearised helicopter model from appendix B, with 12 states and 4 inputs, the Q and
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R matrices will be on the form seen in (11.8), with the diagonal entries being found
subsequently.

Q =


q1 0 · · · 0
0 q2 0
...

. . .
...

0 0 · · · q12

 R =


r1 0 · · · 0
0 r2 0
...

. . .
...

0 0 · · · r4

 (11.8)

The Q matrix have a diagonal entry for all of the 12 states presented in subsection
10.1.1 in table 10.4 on page 78, and the initial estimate for the entries are found using
the method from (11.4).

Qdiagonal = [4 4 25 1.62 1.62 0.41 0.25 0.25 4 0.10 0.10 0.10] (11.9)

With all the diagonal entries for Q shown in (11.9), a initial estimate for Q have been
generated from table 10.3 in the general control strategies chapter 10 on page 75. The
R weight matrix have 4 entries, one for each of the inputs.

Rdiagonal = [6.48 25.94 25.94 1.62] (11.10)

With the Q entries found earlier, and R weights shown in (11.10), and the state space
representation of the model presented through the A and B matrices in appendix B,
all the information needed to compute a controller has been found.

11.2.2 Deriving a Controller for a Helicopter in Hover

In this controller of the standalone helicopter, it is expected that all states can be
measured, so that full state feedback is possible without an observer. In this case that
means that the state values are the same as the system outputs, and the normal state
space representation block diagram with feedback control can be cut down to the block
diagram in figure 11.1.

A

B

-K

xu

Plant

Figure 11.1: A block diagram of the model in state space representation with a feed-
back control matrix K implemented.
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11.2. LQ Control of a Standalone Helicopter

Using the A and B matrices from appendix B, together with the Q and R weight
matrices found in (11.9) and (11.10) it is now possible to find a feedback matrix K that
optimises the performance function with the given weightings, named Khover,initial[4×12].

The controller is implemented into a stripped version of the Simulink Helisim model,
as shown in figure 11.2.
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1034 LQ Controller

xu

3D graphics

ON/OFF

Omega

Figure 11.2: An illustration of the stripped version of Helisim, with the feedback
controller implemented.

Since the feedback matrix Khover,initial control on x- and y-position on the helicopter,
but is computed from a model, linearised with a yaw angle of 0, a problem rises when
the yaw angle goes far away from that operating point. With the x- and y- position
of the helicopter defined in the earth fixed frame, and the x- and y- velocities in the
helicopter fixed frame, the problem becomes apparent then the helicopter is turned to
a yaw angle of π rad, now the relations between the position and velocity has opposite
signs in a non-linear model, compared to a yaw angle of 0 rad, but the linearised model
does not take care of that.

A solution to that problem is to rotate the x- and y-positions for the feedback matrix
with the yaw angle of the helicopter, in order to trick the controller to give the correct
responses through the control signals. The x-, y-position rotation is done as shown in
(11.11). [

xrot

yrot

]
=

[
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

] [
x
y

]
(11.11)

With the controller implemented into Helisim, simulations revealed that the controller
is able to stabilise the helicopter in hover to some extend, but with control signals
oscillating to a degree where it if tested on a real helicopter would break down the
mechanics or crash, even while simulating without wind.
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To get better results with the controller, some tuning of the weights is required. The
problem has been found to be caused by heavy restrictions in the Q matrix on some
of the velocities and angular velocities of the hovering helicopter. Better results are
achieved if the lateral and longitudinal blade pitch is weighted heavier than the collective
blade pitch in the R matrix. The new weightings for Q and R are shown in (11.12).

Qdiagonal = [1 1 20 1.62 1.62 20 0.01 0.01 0.01 0.01 0.01 0.01]

Rdiagonal = [50 100 100 50] (11.12)

The new feedback control matrix K obtained much better better results than the initial
control matrix. The new iterations of Khover, achieved the position results shown in
11.3 with the control signals shown in 11.4 and a wind disturbance as shown in figure
11.5. The position results are shown as deviations from the operating points.
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Figure 11.3: Plots of the helicopters position, plotted for a period of 400 seconds.
The hover altitude has been subtracted from the z-position.
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Figure 11.4: Plots of the 4 control signals for a period of 400 seconds.

The performance plots show that the main disturbance of the system with perfect state
feedback is the wind, where the changes in position match the changes in wind closely.
The controller weights presented here has already been iterated for performance on a
system with measurement inaccuracy and noise, and is thus the same controller used
in the LQ part of the acceptance test. The final K is presented in (11.13) and in
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Figure 11.5: Plots of the 3 wind composants for a period of 400 seconds.

SAH hover.mat on the DVD. Note that the K matrix is shown transposed.

KT
hover,final =



26.87 · 10−3 −48.84 87.26 566.17 · 10−3

−397.96 · 10−3 −86.37 −48.28 −20.45
−631.53 4.04 2.47 −33.54

−407.71 · 10−3 −206.21 −125.46 4.34
−2.41 153.25 −316.10 −33.21
−34.16 −55.42 −33.04 624.91

226.33 · 10−3 −39.78 73.62 1.70
−4.72 −59.35 −36.11 637.38 · 10−3

−84.71 5.09 1.94 −26.52
20.15 · 10−3 −5.75 −1.16 8.15 · 10−3

−188.67 · 10−3 8.36 −46.52 74.51 · 10−3

929.63 · 10−3 −19.07 −7.35 83.59



· 10−3 (11.13)

The performance of this final hover controller without perfect state feedback can be
seen in its use in the first acceptance test 13.1 on page 142.

11.2.3 Deriving a Controller for a Helicopter in Flight

While the design process and implementation of a flight controller should be near
identical to the one used to find the controller for a helicopter in hover, some changes
has to be made to the weightings in both the Q and R matrices, since the controller
should be able to fly a standalone helicopter to a given position, with a constant velocity.
The initial weightings shown in (11.14) for the flight controller are found from tables
10.4 and 10.3, just like with the initial weights for the hover controller.

Qinit,diagonal =
[
10−10 10−10 25 1.62 1.62 6.48 25 6.25 4 0.10 0.10 0.10

]
Rinit,diagonal = [6.48 25.94 25.94 0.41] (11.14)

The weightings for a controller of a standalone helicopter with a constant velocity in
a specific direction has to have very low weightings on the x- and y-position, but a
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stricter weighting on the x-velocity and yaw heading. The helicopter is unable to fly
with the initial weightings, which had to be changed, specifically in the weightings of
the control signals that had to be significantly higher. The weightings for the new flight
controller are shown in (11.15).

Qdiagonal =
[
10−10 10−10 10 1 1 3 1 1 0.01 0.01 0.01 0.01

]
Rdiagonal = [40 800 800 5] (11.15)

To be able to fly towards a specific location, the reference position is given and the
difference between that and the current position is converted into a yaw angle offset
that is added to the operating point of the yaw angle. Since the offset to the yaw angle
is wanted in the range [-π, π] an arctangent variation called atan2 is used. atan2 is a
function that takes two arguments, which here is the difference between the current
position and the reference position in x- and y-coordinates including the sign of the
distances. This implementation is shown in the top left corner in figure 11.6.

Use of the atan2 function does however rise a problem if the helicopter is directly in
front of the reference position in the x-direction seen in the earth fixed frame. Since
the function will alternate between ±π. To account for this problem an if-function is
introduced, checking whether the difference between the atan2 function and the current
helicopter yaw angle is above π, if this is the case the helicopter is set to turn the other
way, since that is going to be the shortest. However, this way the yaw angle of the
helicopter can get above 2π, and a modulus 2π is added to the helicopter yaw angle,
since it is wanted in the original range.

Ψ
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else { }

if { }

If

u1

if(u1 > pi)

else
2*pi
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|Ψ   - Ψ    |ref heli
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Ψ   - Ψref heli

Figure 11.6: A Simulink implementation of the the yaw offset based on a reference
position.

The performance of the flight controller for the yaw angle and the x-velocity given per-
fect state feedback is shown in figure 11.7 and 11.8 with the control signals shown in
figure 11.9. The wind used in this simulation is equal to that of the hover simulation
shown in figure 11.5.

The performance plots show as with the hover controller that the main disturbance in
the system with this setup is the wind, here shown through the changes in yaw-angle
and x-velocity, where the changes in those states follow the changes in wind closely.
The weightings used in the controller has already been iterated to work on the sys-
tem while having estimated sensor values instead of the perfect state feedback shown
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Figure 11.7: The yaw angle state for a period of 400 seconds.
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Figure 11.8: The x-velocity state for a period of 400 seconds.
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Figure 11.9: The 4 control signals for a period of 400 seconds.

in the performance plots in this section. The weights result in the controller named
Kflight,final[4×12] shown in (11.16) and included on the DVD in SAH flight.mat.
Note that the K matrix is shown transposed.
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KT
flight,final =



0 0 0 0
0 0 0 0

−604.33 1.85 −3.97 −154.41
−20.15 −535.05 −38.48 −399.29
663.72 50.77 −64.05 168.58
−48.19 −23.64 −17.67 891.15
−134.14 −6.84 8.42 66.34

10.81 −6.09 −4.27 −148.92
−89.75 649.09 · 10−3 −1.88 −56.62
−1.16 −1.24 −202.31 · 10−3 −5.61
17.75 4.94 −16.95 −432.54
−5.41 −718.45 · 10−3 524.46 · 10−3 212.58



· 10−3 (11.16)

The first two columns of the final flight controller has been defined to 0, since the flight
controller should not control on the x- and y-positions at all, this is also the reason
position turning is not necessary for the flight controller. The performance of the final
flight controller with the estimated sensor measurements are used in the second accep-
tance test 13.1 on page 145.

11.2.4 Controller Switching Between Hover and Flight

A way of alternating between the hover and the flight controllers is wanted to make
the system more autonomous. In this work this is by implementing a simple controller
switching that switches between the two controllers using the distance from the heli-
copters position to the reference position as input to a z-shaped membership function.

The main blocks contained in the implementation of the controller shown in figure
11.10, include the helicopter yaw-offset for the flight controller explained in 11.2.3, a
velocity scaling for the flight controller and the switching between the controllers. The
position correction for the hover controller explained in 11.2.2 is also included.

Figure 11.11 show the helicopter velocity correction for the flight controller. This is a
correction to the operating point for the x- and y-velocity of the flight controller, to
have a smooth switching between the controllers. The correction is implemented as
a saturation and rate limiter on the distance to the reference position seen from the
helicopter, shown as the top part of figure 11.11. The lower part of the figure is a
rotation of the x- and y-velocity operating points. This is implemented to make the
helicopter fly towards the reference position, even though it is facing the wrong way.
The rotation use cosine to the yaw error as x-velocity scaling, and sine to the yaw error
for the y-velocity scaling.

The switching between the two controllers is a simple scaling of the controller gains, as
shown in figure 11.12. The distance to the reference position seen from the helicopter
is used as input for the scaling.
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Figure 11.11: A diagram showing the helicopter x- and y-velocity correction, set in
place to ensure the helicopter goes from hover to flight and from flight
to hover in a smoother way than with velocity steps, aswell as flying
in the right correction.

To test the performance of the two controllers with switching, a test where the heli-
copter is tasked with flying in a large square is set up. The corners of the square is
given to the helicopter as reference points at a given time. The simulation starts with
the helicopter hovering for 10 seconds, afterwards a reference position 100 meters away
is given every 30 second, as the time window it has to get to the position and hover
above it.

The x- and y-positions of the helicopter is shown in figure 11.13 where it is shown that
the helicopter indeed reaches the reference points within the time window.

The combined control signals from the switching controller is shown in figure 11.14,
where the control signals for the yaw control is shown separately, since it is much larger
than the other control signals.

It is clear from the control signals when the reference position is changed, but also
when the helicopter reaches its destination. While hovering, the helicopter is controlled
to point in the direction of the x-axis, meaning that the helicopter has to turn around
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Figure 11.13: Plot of the x- and y-positions of the helicopter over the switching
performance simulation.

when reference point 3 is given, and when that destination is reached. The resulting
control signals are also the largest, as shown in the time period between 70 and 100
seconds.

Figure 11.15 show that the rate limiter on the x-velocity reference work as intended
every time the helicopter goes from hover to flight and back, and that the velocity in
between goes up to the reference of 6m/s, the negative velocity spikes that appear at the
times where the helicopter approach the reference position could be a result of the hover
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controller taking over, which is not subject to heavier weightings on the x-velocity, but
rather the position of the helicopter.

11.3 LQ Control of a Helicopter with Slung Load

Here a helicopter with a slung load attached using a single wire is controlled using LQ
control. Since the system dynamics has changed from the previous chapter, where no
slung load is attached, a new linearisation, and a new pair of weight matrices has to be
found. Just like the case without a slung load, two controllers will be derived in this
section, one for hover and one for flight.

The initial weightings are found using perfect state feedback, meaning no sensor dy-
namics or noise are present in the tests in this section. Along with the weights on the
states already presented in the standalone helicopter control section, the system now
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also include states for the two Euler angles describing the position of the load relative
to the helicopter, as well as the angular velocity of the two angles. Summed up, a total
of 4 new states that need to be controlled.

11.3.1 Finding the Weight Matrices

The initial weight matrices for the helicopter and load controller, is a copy of the final
weights, found in (11.12), with weights added on the new states, meaning that the Q
matrix now has 16 weights, while the R matrix still has the same 4 weights.

Qdiag,hover = [1 1 20 1.62 1.62 20 1.62 1.62 0.01 0.01 0.01 0.01 0.01 0.01 1.62 1.62]

Rdiag,hover = [50 100 100 50] (11.17)

The 7th, 8th, 15th and 16th weights in the Qdiag,hover matrix are the new ones. They
are the weightings of the load angles and load angular velocities respectively, and they
are calculated from a max angle of π/4 rad and an angular velocity of π/4 rad/s.

The initial weightings for the flight controller is shown in (11.18), is also found by taking
the weightings from the stand alone helicopter flight controller, and adding weights for
the extra states.

Qdiag,flight =
[
10−10 10−10 10 1 1 3 0.40 0.40 1 0.1 0.1 0.01 0.01 0.01 1.91 1.91

]
Rdiag,flight = [40 800 800 5] (11.18)

The 7th and 8th weights in Qdiag,flight are chosen based on a maximum wanted deviation
from the operating point by π/2 rad, since the angle is expected to be different from
0 when the load is being dragged. The 15th and 16th weights in Qdiag,flight are chosen
based on a wanted maximum angular velocity of the load of π/6 rad/s, since the load
should be kept steady.
With the weight matrices presented in (11.17) and (11.18), the next stage is to design
controllers for flight and hover, based on these weights. The hover controller will be
designed first in the following section.

11.3.2 Deriving a Controller for a Helicopter with Slung Load in
Hover

For the controller design, full state feedback is assumed, same as it is for the previ-
ous controllers, meaning that the system can be expressed as shown on figure 11.1 on
page 88. Before a controller can be created a linear system description is needed. Ap-
pendix B on page 179 presents the procedure used to create a linear state space model
for the helicopter with slung load. Using the A and B matrices found by this procedure,
together with the Qdiag,hover and Rdiag,hover weight matrices found in (11.17), it is now
possible to find a feedback matrix Kinit,hover that minimises the performance function,
given by (11.3).

The attained controller is able to keep the helicopter and load well within the desired
limits, but both states and control signals oscillates at a frequency of about 2 Hz, which
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11.3. LQ Control of a Helicopter with Slung Load

in a real situation would cause a lot of stress, and potentially become unstable. This
can be seen on figures 11.16, 11.17 and 11.18 on the next page, expressing the position
of the helicopter, and the control signals respectively.
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Figure 11.16: The top plots show the x- and y-positions and velocities of the heli-
copter. The bottom plot shows the altitude of the helicopter in the
same scenario.
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Figure 11.17: This plot shows the load angles when hovering with a controller con-
structed on the initial weights.

All states and more from this test, is included on the enclosed DVD, at the following
path:

/Simulation/HAL/Initial_LQ/HAL_hover.mat

This file includes state space matrices, the control matrix Q and R weight matrices, as
well as control signals, state- and initial values, for the simulation.

To slow down the dynamics and to gain more resilience towards this instability, the
weights are tuned, which will lead to a less aggressive controller. The final weights for
this hover controller is shown in (11.19).
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Figure 11.18: The plot shows the control signals to the helicopter. The control sig-
nals are small in amplitude, but with fast oscillations.

Qdiag,hover = [2 2 0.5 1.62 1.62 2 1 1 1 1 0.5 0.1 0.1 0.1 1 1]

Rdiag,hover = [160 330 330 3] (11.19)

The higher weights on the blade pitch control signals forces the controller to use smaller
variations in the control signal, this reduces some of the oscillations, but the main
reduction of oscillations originates from the reduced weight on the vertical position of
the helicopter. To make the heading of the helicopter more steady, both the weight on
the helicopter yaw angle and on the tail rotor angular velocity control signal is lowered
greatly. The control matrix, Kfinal,hover, attained with the previously mentioned state
and input matrices and these new weights is shown in (11.20)

KT
final,hover =



−1.94 −37.56 68.15 19.95
−6.42 −67.69 −37.15 −93.25
−230.85 21.27 7.15 −307.67

4.49 −187.80 −114.97 −80.70
−2.04 133.88 −283.12 −123.77
51.02 −11.92 231.01 · 10−3 726.84

351.63 · 10−3 −32.36 −17.96 −54.21
−7.73 18.35 −30.52 −90.48

138.14 · 10−3 −52.69 96.77 66.05
−6.81 −86.05 −49.84 −88.85
−79.26 9.84 4.24 −65.25

68.08 · 10−3 −8.28 −1.71 −3.44
312.20 · 10−3 6.59 −42.03 −10.11

7.09 −12.79 −3.97 112.41
−10.47 59.96 32.60 81.45

4.43 −32.18 52.79 175.85



· 10−3 (11.20)

Figure 11.19, 11.20 and 11.21 on page 102 shows the position of the helicopter, the load
angles as well as the control signals, during a simulation with this new controller. Note
that this simulation is performed with wind enabled. The wind used can be seen on
figure 11.22 on page 102.
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Figure 11.19: The top plot shows the x- and y-positions of the helicopter. The
bottom plot shows the altitude of the helicopter in the same scenario.
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Figure 11.20: This plot shows the load angles when hovering with a controller con-
structed on the final weights.

The helicopter position plot show how the controller is able to keep the helicopter close
the reference position at all time during the simulation. The altitude of the helicopter
is above the reference at all time, which can be explained by the buoyancy of the slung
load not being part of the trimming process. The load angles are shown to be small
while hovering, with slow oscillations. The full result of a simulation with this con-
troller, can be found on the enclosed DVD at the following path:

/Simulation/HAL/Final_LQ/HAL_hover.mat

The goal of the simulation is to hover at the point {0, 0,−3}m. The simulation show a
significant increase in the ability to hover steadily at a specific point, with much gentler
control signals, even with wind enabled, with respect to the simulation with the initial
hover controller.
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Figure 11.21: The plot shows the control signals to the helicopter when hovering.
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Figure 11.22: This graph shows the wind used for the test of Kfinal,hover.

11.3.3 Deriving a Controller for a Helicopter with Slung Load in
Flight

For the controller design for flight with slung load, full state feedback is again assumed,
same as it is for the previous controllers. The A and B matrices for flight with load can
be found with the methods presented in appendix B on page 179. Using these A and B
matrices, together with the Qdiag,flight and Rdiag,flight weight matrices found in (11.18)
it is possible to find a feedback matrix Kinit,flight that minimises the performance func-
tion, given by (11.3).

The produced controller is able to fly the helicopter at a fairly constant rate, with rela-
tively calm control signals (although much to high at times), but is unable to maintain
altitude, as it can be seen on figures 11.23 on the next page and 11.24 on the facing page.

The results for the simulations show how altitude of the helicopter fluctuate a lot while
in flight, which could be explained by large variations in the collective blade pitch con-
trol signals. Further results from this simulations is available on the enclosed DVD at
the following path:

/Simulation/HAL/Initial_LQ/HAL_flight.mat
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Figure 11.23: The top plots shows the x- and y-positions and velocities of the heli-
copter when flying. The bottom plots show the altitude of the heli-
copter and z-velocity in the same scenario.
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Figure 11.24: The plot shows the control signals to the helicopter when flying with
intitial flight control.

This file includes state space matrices, the control matrix Q and R weight matrices, as
well as control signals, state- and initial values, for the simulation.

To avoid this loss of altitude and high control signals, the weights are tuned, which
leads to a new controller. The final weights for this flight controller is shown in (11.21).

Qdiag,flight =
[
10−16 10−16 20 2.62 2.62 4 0 0 3 3 0.5 0.1 0.1 0.1 1 1

]
Rdiag,hover = [260 450 450 20] (11.21)

The tuned weights on the states are generally higher than the initial weights, except
for the yaw angle and the load states. The yaw angle weight has been lowered, in order
to prevent it from overshadowing other states. The weights on the load angles have
been zeroed, and the weights on the load angular velocity have been lowered, to gain
calmer helicopter movements. The weights on the control signals is now much closer
to the control signal weights on on the hover controller, which yields better results.
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The control matrix, Kfinal,flight, attained with the previously mentioned state and input
matrices and these new weights is shown in (11.22).

KT
final,flight =



314.18 · 10−6 −46.97 · 10−6 −13.48 · 10−6 490.26 · 10−6

314.33 · 10−6 −46.86 · 10−6 −14.11 · 10−6 491.59 · 10−6

−598.47 −37.45 50.89 −113.40
3.36 −205.06 −122.09 −363.26

199.95 157.53 −331.89 −68.29
−3.59 −51.87 −28.85 807.99
16.27 −21.07 −10.35 232.32
−197.34 −42.47 64.32 270.66
−25.82 −48.80 88.66 85.15
−5.62 −83.31 −42.69 −378.95
−119.47 3.96 −134.22 · 10−3 −59.33

−62.90 · 10−3 −7.31 −1.41 −5.24
1.86 8.60 −45.25 −25.67

−536.82 · 10−3 375.88 · 10−3 3.19 175.91
7.39 −21.16 −12.74 278.55
−244.35 −5.08 −11.14 204.07



· 10−3

(11.22)
A test where the helicopter is set to fly at a constant velocity in the x-direction is
conducted and figure 11.25, shows the position and velocity of the helicopter during
this test. It can be seen that the altitude of the helicopter is more constant and, and
closer to the altitude reference of 2.8 meters, which is set to allow the slung load to be
dragged behind the helicopter while in flight. It is again noteworthy that this test is
conducted with wind enabled, whereas the one with the initial weightings is not.
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Figure 11.25: This figure shows the position and velocity of the helicopter during a
flight simulation with a semi submerged load, at a reference velocity
of 2m/s.
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Figure 11.27 shows more variations in the control signals than before, but seems more
contained to smaller deviations. Figure 11.26 show how the load states are close to
constant after the startup, and keeping in mind that wind is enabled, the fast variations
are explainable. The wind used in this test can be seen in figure 11.28 on the following
page
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Figure 11.26: This plot shows the load angles when flying with a controller con-
structed on the final weights, given in (11.21).
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Figure 11.27: This figure shows the control signals to the helicopter during flight
with a semi submerged load at 2m/s.

More results and data from this simulation is available at the enclosed DVD at the
following path:

/Simulation/HAL/Final_LQ/HAL_flight.mat
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Figure 11.28: This figure shows the wind used for a simulation of flight with a semi
submerged load, at a rate of 2m/s.

11.3.4 Controller Switching Between Hover and Flight

When flying with a load, the helicopter still needs to be able to switch between flight
and hover, thus the same switching is made as for the load controllers as for the stand
alone helicopter controllers. With this switching in place a simulation is conducted,
where the helicopter is set to fly in a square, same as for the stand alone helicopter.
However, since the helicopter is set to fly slower when flying with load, the time between
reference changes is now 70 seconds, instead of 30. Figure 11.29 on the next page shows
the xy-components of the helicopter position, and it can be seen that the helicopter
flies between the specified points with a small error from the straight line connecting
the points. This error occurs because the error in heading is relatively small when the
helicopter is far from the target point.

By closer examination of the measured data, it can be seen that the helicopter reaches
within 1 cm of each target point, before heading for the next one. The data supporting
this can be found on the enclosed DVD at the following path:

/Simulation/HAL/Final_LQ/Square.mat

This file contains the state and input matrices, the flight and hover controllers, the
flight and hover controller weights, the state values, initial values, control signals, and
the wind, for the entire simulation.

Figure 11.30 on the facing page shows the forward and sideways velocity of the helicopter
during this simulation. It shows that the controller is not entirely capable of keeping a
forward velocity of 2m/s, an it has a significant contribution in sideways velocity. Keep
in mind that the simulation is conducted with wind enabled, as shown by figure 11.32
on page 108.
That it is not quite capable of maintaining the forward velocity is also visible on the
control signals where a collective pitch reference of more than 0.5 rad can be observed.
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Figure 11.29: This plot shows the horizontal position of the helicopter when switch-
ing between flight and hover controllers while flying in a square pat-
tern. A small deviation from the straight line between points can be
observed in the trajectory.
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Figure 11.30: This plot shows the forward and sideways velocity of the helicopter
during a simulation with switching between hover and flight.

This section shows the helicopters ability to fly with a semi submerged slung load, while
switching between the designed LQ controllers for hover and flight.
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Figure 11.31: This plot shows the controller signals while flying with as semi sub-
merged load and switching between flight and hover controllers.
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Figure 11.32: This plot shows the wind during this controller switching simulation.

11.4 LQ Controller Stability Regions

Figure 10.4 on page 80 and 10.5 on page 82 shows the open loop poles of the standalone
helicopter and helicopter with load respectively. These open loop poles are moved into
the stable region by closing the loop with the produced controllers. However, as seen on
the same figures, these poles move as the velocity of the helicopter changes. The purpose
of this section is to investigate under which velocities stability can be guaranteed, with
the produced controllers.

Stability Regions for the Stand Alone Helicopter

The model is linearised over a range of velocities from -30 to 30m/s in steps of 1
/

10 m/s,
with a side-slip angle of 0 to π rad in steps of π/10 rad. A velocity is stable if all of
the closed loop poles at that velocity has a strictly negative real part. Figure 11.33
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shows the highest and lowest velocities that are stable for both the flight and hover
controllers.
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Figure 11.33: Stable velocity regions for the stand alone helicopter with flight and
hover controllers, swept over velocity.

The figure shows that both controllers are better at handling high velocities in the
forward direction than backwards. Both controllers ability to handle sideways velocities
are in between their ability to handle forwards and backwards velocities. The regions
are skewed, but to opposite sides, which is presumed to be caused by the variations
in trimmed values, since the controllers are build for very specific operation points. It
appears that the potential weak point of these two controllers is the flight controller,
which when flying 6m/s in the 210◦angle, comes close to the boundary.

Stability Regions for the Helicopter and Load

The model is again linearised over a range of velocities, this time from -6 to 6m/s in
steps of 1

/
10 m/s, with a side-slip angle of 0 to π rad in steps of π/10 rad. A velocity is

stable if all of the closed loop poles at that velocity has a strictly negative real part.
Figure 11.34 on the following page shows the most extreme velocities that are stable
for both the flight and hover controllers.
The two regions show heavily restricted stability regions, compared to the regions for
the stand alone helicopter controllers. This is expected, since the open loop poles of the
helicopter and load move far more, compared to the open loop poles of the stand alone
helicopter. A noteworthy point is that the flight controller is not able to completely
stabilise the system, when the helicopter is stationary, or moving outside the ±60◦
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Figure 11.34: Stable velocity regions for the helicopter and load with flight and hover
controllers, swept over velocity.

angle. The hover controller, even though not able to stabilise high velocities, shows a
more uniform ability to stabilise velocities in any direction.

11.5 LQ Control Conclusion

A series of LQ controllers for a standalone helicopter and a helicopter with semi-
submerged slung is produced in this chapter, including both hover and flight controllers
for both system setups. The Bisgaard helicopter model is used for the standalone he-
licopter, whereas the helicopter with slung load include the slung load and rigid body
modelling done in this work.

The results for the standalone helicopter controller, show that it is able to hover above
a set-point position, and fly towards a new reference position. While in hover, the x-
and y-position of the helicopter is used for control, where the flight controller use the x-
and y-velocity of the helicopter, along with the yaw-angle, which is controlled to make
the helicopter fly in the right direction, and have the correct heading while doing so.

When attaching a slung load to the helicopter, the priorities of the controller changes.
While the states used for control is the same as for the standalone system, it is now
much more relevant to keep the slung load steady in the water, and drag it smoothly,
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than to reach the x- and y-velocity set-points while in flight.

Switching between hover and flight controllers is implemented so the helicopter is able
to go from hover to flight and back to hover, which is what is needed in the rescue
mission scenario description. Results for the switching show that the controllers with
switching in both cases with and without slung load, is able to follow a preset pattern
to an acceptable degree, the results also showed that some of the switching transactions
is better than others, with the worst case results being when the helicopter had to turn
around when going back to hover.
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Chapter 12

Model Predictive Control

The control strategy examined in this chapter is Model Predictive Control (MPC) also
called Receding Horizon Control (RHC), which is a more advanced control strategy
when compared to LQ and PID control, but also more computational heavy in most
cases. The most common reason to use MPC is its ability to handle large sets of con-
straints in multi-variable systems, but also because of the prediction ability of MPC,
where a set of future control signals and the resulting state values are estimated based
on a system model.

This chapter is like the previous split up into a methodology section starting below,
and a controller design section for the standalone helicopter, 12.2 on page 121, and
helicopter with load, 12.3 on page 129. The theory introduced in the first section of
this chapter is largely based on [16] and [18].

12.1 Model Predictive Control Methodology

MPC is as mentioned in the introduction often a very powerful control strategy when
dealing with multi-state systems both with and without constraints, which is also why
it widely used in the process control industry[8]. The general idea of MPC is shown
in figure 12.1 on the next page, where a single state and control signal of an example
system is plotted.

Discrete time is assumed with k denoting the current discrete time step, y(k) the cur-
rent state measurement and u(k) the calculated control signal. The predictive controller
also have a set-point trajectory which is a predefined trajectory for the state, and a
reference trajectory that starts at the current state measurement, which is calculated
as the path for the controller to follow back to the set-point trajectory.

The shape of the reference trajectory is predetermined, most often it is chosen to be
an exponential function as the one shown in figure 12.1 as r(t|k). Other shapes for the
reference trajectory can also be chosen such as an straight line, in this work however it
is defined as an exponential function as shown in (12.1).
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Figure 12.1: The general idea of model predictive control, including control horizon,
prediction horizon, set-point and reference trajectory.

ε(k) = s(k)− y(k)

ε(k + i) = e−iTs/Tref ε(k)

r(k + i|k) = s(k + i)− ε(k + i) (12.1)

s(k) The predefined set-point trajectory.
ε(k) The error between the set point trajectory and the measurement.
r(k + i|k) Reference trajectory, recalculated at each new time step.
Tref ”Time constant”, defining the speed of the reference trajectory re-

sponse.

The predictive controller also has an internal model of the system, so it is able to pre-
dict the behaviour of the system and the control signals needed to return the system to
the set-point trajectory at the current and future time step, specified by the prediction
horizon. The internal model is often a linear model of the system, since MPC is not
always possible on non-linear systems due to the optimisation problem, which is the
core of model predictive control, where the optimal control signals used to return the
plant to the set-point trajectory is calculated by minimising a cost function. Also the
computational time is assured to be longer with a nonlinear model, which is not desired.
In this work, a linear model is used for the predictive control.

With the future system responses and input trajectory calculated, the first step of the
trajectory is applied to the system as control signal, and the cycle with state measure-
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ment, system prediction and input trajectory is started again. At the new step the
prediction horizon is along with all the other steps shifted one time step, which is the
reason Model Predictive control also is known as Receding Horizon Control in some
literature.

Due to the complexity of MPC, and the computational time that follows, MPC is often
implemented on top of a lower level control loop containing a PID or LQ controller,
which can work much faster, and then have the slower MPC correcting the set-points
for the lower level controllers. This approach is mostly used on unstable systems where
the lower level controller is introduced to stabilise the system.

12.1.1 Predictive Control Problem Formulation and Preliminaries

The linear system model is the discrete version of the system model used in LQ control
chapter 11, on the form shown in (12.2), with the only change from a normal discrete
state space representation is the possibility of only using predictive control on some of
the plant outputs through the constrained performance signals z(k).

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cyx(k) z(k) = Czx(k) (12.2)

Here assuming there is no feed-forward dynamics Dz,y, meaning that y(k) and z(k)
does not depend directly on the current input u(k). In cases where all of the outputs
in y(k) needs to be controlled z(k) ≡ y(k). It should be noted that in the remaining
part of the chapter, predicted values such as û(k+ i|k) is written as û(k+ i) unless the
prediction is made based on another time step than k.

The system model shown in (12.2) is however often constrained by upper and lower
limits of some or all state values, control signals, or the change rate of control signals.
All these constraints contained in matrices E, F and G, in the form showed in (12.3),
defined as in (12.5). The constraints can be defined for all control signals and changes
in û(k + i) and ∆û(k + i) up until the control horizon Hu, and for the predicted state
values in ẑ(k+ i+ 1) up until the prediction horizon Hp. Note that ∆U , U and Z are
column vectors consisting of column vectors ∆û(k + i),û(k + i) and ẑ(k + i+ 1).

E

[
∆U(k)

1

]
≤
[
0
0

]
F

[
U(k)

1

]
≤
[
0
0

]
G

[
Z(k)

1

]
≤
[
0
0

]
(12.3)

∆U(k) =

 ∆û(k)
...

∆û(k +Hu − 1)

 U(k) =

 û(k)
...

û(k +Hu − 1)

 Z(k) =

 ẑ(k + 1)
...

ẑ(k +Hp)

(12.4)
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E Upper and lower constraints for changes in control signals.
F Upper and lower constraints for control signals.
G Upper and lower constraints for system outputs to be controlled.
û(k + i) Predicted control signal at time (k + i).
∆û(k + i) Predicted change in control signal from time (k + i− 1) to (k + i).
ẑ(k + i+ 1) Predicted performance signals/State values given û(k + i).
Hp Prediction horizon.
Hu Control horizon.

With E, F and G being matrices including all the upper and lower constraints of
respectively ∆u, u and z. The constraint matrices grows proportional to the length
of the control and prediction horizons and grow large at long horizons, the assembly
of the matrices are however often automated by software implementation, as with the
MPC toolbox in MATLAB. An example of how the constraint matrices are assembled,
is shown in (12.5), where the prediction horizon Hp = 1 and only a single control signal
with constraints is present.

umin ≤ u umax ≥ u
1 ≤ 1

umin
u for umin > 0

0 ≤ u for umin = 0
1 ≥ 1

umin
u for umin < 0


1 ≥ 1

umax
u for umax > 0

0 ≥ u for umax = 0
1 ≤ 1

umax
u for umax < 0

0 ≥ − 1
umin

u+ 1

0 ≥ −u
0 ≥ 1

umin
u− 1


0 ≥ 1

umax
u− 1

0 ≥ u
0 ≥ − 1

umax
u+ 1

(12.5)

Put into tensor form this amounts to:
{
− 1
umin

for umin 6= 0

−1 for umin = 0
sgn (umin){ 1

umax
for umax 6= 0

1 for umax = 0
−sgn (umax)


︸ ︷︷ ︸

F

[
û(k)

1

]
≤
[
0
0

]
(12.6)

Note that u(k) has been switched by û(k), this is because at the time when this equality
is needed, u(k) is not yet available.

The ∆û(k + i) solution that minimises the cost function V(k), which is presented in
(12.7), is said to be optimal, and is the solution where the first step is applied on the
system. If the solution is bounded by the constraints, the solution is no longer optimal,
but the best possible within the boundaries.

V(k) =

Hp∑
i=1

‖ ẑ(k + i)− r(k + i) ‖2Q(i) +

Hu−1∑
i=0

‖ ∆û(k + i) ‖2R(i) (12.7)

r(k + i) Reference trajectory at time k + i.
Q(i) State weight matrix, may vary over Hp.
R(i) Control signal weight matrix, may vary over Hp.
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The notation ‖ x ‖2Q is a compact representation of a quadratic function, which when

written out would look like xTQx.

12.1.2 Prediction of Future States and Outputs

With the cost function and state space model introduced, it is time to compute the
prediction steps, where the simplest case is full state measurements, without any knowl-
edge about the measurement disturbances. In that case all there is to do is use the
given system model to predict response through iteration.

The state values is predicted as far into the future as the prediction horizon Hp dictates.
However, the computed control signals also change up until a point dictated by the con-
trol horizon Hu, where Hu ≤ Hp, so the input changes in the interval k, k+1, ..., k+Hu

and is therefore constant in the remaining range from Hu to Hp − 1. Based on the
model and the control signals, the prediction of the future states can be found as in
(12.8).

x̂(k + 1) = Ax̂(k) + Bû(k)

x̂(k + 2) = Ax̂(k + 1) + Bû(k + 1)

= A2x̂(k) + ABû(k) + Bû(k + 1)

...

x̂(k +Hp) = AHpx̂(k) + AHp−1Bû(k) + · · ·+ Bû(k +Hp − 1) (12.8)

This formulation where the predicted state is expressed from û(k + i) can become dif-
ficult to optimise in the presence of constraints, where a formulation expressed from
terms of ∆û(k+ i) rather than û(k+ i) would result in a Quadratic Programming prob-
lem, which is a well known convex optimisation problem, with several solution methods
and tools available. Having the definition of ∆u(k) = u(k) − u(k − 1) inserted into
(12.8), while having in mind that the control signals only change up until Hu, the new
expression of x̂(k+ i) is shown in (12.9). And afterwards set on vector form in (12.10).

x̂(k + 1) = Ax̂(k) + B(∆û(k) + û(k − 1))

x̂(k + 2) = A2x̂(k) + (AB + B)û(k − 1) + AB∆û(k) + B∆û(k + 1)

...

x̂(k +Hp) = AHpx̂(k) +

Hp−1∑
i=1

AiBu(k − 1)

+

Hp−1∑
i=0

AiB∆u(k) + · · ·+
Hp−Hu∑
i=0

AiB∆û(k +Hu − 1) (12.9)

⇓
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

x̂(k + 1)
...

x̂(k +Hu)
x̂(k +Hu + 1)

...
x̂(k +Hp)


︸ ︷︷ ︸

X

=



A
...

AHu

AHu+1

...

AHp


︸ ︷︷ ︸

A

x(k) +



B
...∑Hu−1

i=0 AiB∑Hu
i=0 AiB

...∑Hp−1
i=0 AiB


︸ ︷︷ ︸

Bu

u(k − 1)

+



B · · · 0
AB + B · · · 0

...
. . .

...∑Hu−1
i=0 AiB · · · B∑Hu
i=0 AiB · · · AB + B

...
. . .

...∑Hp−1
i=0 AiB · · ·

∑Hp−Hu

i=0 AiB


︸ ︷︷ ︸

B∆u

 ∆û(k)
...

∆û(k +Hu − 1)


︸ ︷︷ ︸

∆U

(12.10)

Having the predicted state values expressed in form of (12.10), the predictions of the
output ẑ(k + i) can now be expressed as in (12.11) and in matrix form in (12.12).

ẑ(k + 1) = Czx̂(k + 1)

ẑ(k + 2) = Czx̂(k + 2)

...

ẑ(k +Hp) = Czx̂(k +Hp) (12.11)

⇓

 ẑ(k + 1)
...

ẑ(k +Hp)


︸ ︷︷ ︸

Z

=


Cz 0 · · · 0
0 Cz · · · 0
...

...
. . .

...
0 0 · · · Cz


︸ ︷︷ ︸

C

 x̂(k + 1)
...

x̂(k +Hp)


︸ ︷︷ ︸

X

(12.12)

12.1.3 Solving the Predictive Control Problem

To find a solution, some new definitions have to be made. While having already defined
U(k) and Z(k) in (12.4), and T (k) defined as in (12.13). The cost function presented
in (12.7) can be rewritten to (12.14)

T (k) =

 r̂(k + 1)
...

r̂(k +Hp)

 (12.13)

V(k) =‖ Z(k)− T (k) ‖2Q + ‖ ∆U(k) ‖2R (12.14)
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With Q and R including the weights from all the states and control signals in the
range respectively (k) to (k + Hp) and (k) to (k + Hu − 1) as shown in (12.15). One
of the reasons that the weight matrices Q and R changes over the prediction horizon
is that the predicted values is less trusted along the prediction horizon, and thus not
weighted equal to the present values.

Q =


Q(1) 0 · · · 0

0 Q(2) · · · 0
...

...
. . .

...
0 0 · · · Q(Hp)

 R =


R(0) 0 · · · 0

0 R(1) · · · 0
...

...
. . .

...
0 0 · · · R(Hu − 1)


(12.15)

If the weight matrices Q(k + i) and R(k + i) are diagonal matrices, the resulting Q
and R matrices will also be diagonal matrices.

T is already a function of the predicted control signals ∆U which is the solution that
minimise the cost function, so Z is needed as a function of ∆U . In (12.11) with x̂(k+i)
inserted from (12.9), Z has the form shown in (12.16).

Z(k) = Ψx̂(k) + Υu(k − 1) + Θ∆U(k) (12.16)

Ψ Equal to CA, defined in (12.10) and (12.12).
Υ Equal to CBu, defined in (12.10) and (12.12).
Θ Equal to CB∆u, defined in (12.10) and (12.12).

And finally defining a tracking error E(k) defined as the difference between the target
trajectory and the response the system would have if no changes are made to the control
signals as shown in (12.17).

E(k) = T (k)−Ψx̂(k)−Υu(k − 1) (12.17)

While having the newly rewritten cost function V , with the tracking error defined E,
the cost function can now be rewritten to terms that are dependent on ∆U , and those
that are not, as shown in (12.18).

V(k) = ‖ Z(k)− T (k) ‖2Q + ‖ ∆U(k) ‖2R
V(k) = E(k)TQE(k)− 2∆U(k)ΘTQE(k) + ∆U(k)T [ΘQΘ + R] ∆U(k)

V(k) = constant−∆U(k)G + ∆U(k)TH∆U (12.18)

With G and H defined as in (12.19).

G = 2ΘTQE(k) H = ΘTQΘ + R (12.19)
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Where neither G nor H depends on ∆U(k), so to find the optimal ∆U , the gradient
of V can be found and set to zero, as shown in (12.20). The result from this is the
optimal control signals in all the time steps of the control horizon, which means the
control signals for time k have to be picked out, since only those are applied to the
system, shown in (12.21).

∇∆U(k) = −G + 2H∆U(k) = 0 =⇒ ∆U(k)opt = 1
2H
−1G (12.20)

∆u(k)opt = [Il 0l · · · 0l] ∆U(k)opt (12.21)

Keep in mind that the equations and solutions shown up until now is only for an uncon-
strained case, with all states measured where nothing is know about the measurement
disturbances. To give an overview of the sizes of the matrices and vectors introduced
in this section, table 12.1 is introduced, with the plant having l control signals, n states
and m control outputs.

Name Dimensions Description

U (l Hu)× 1 Predicted control signals over Hu.
∆U (l Hu)× 1 Predicted control signal changes over Hu.
X (nHp)× 1 Predicted state values over Hp.
Z (mHp)× 1 Predicted outputs over Hp.
A (nHp)× n Defined in (12.10).
Bu (nHp)× l Defined in (12.10).
B∆u (nHp)× (l Hu) Defined in (12.10).
Q (mHp)× (mHp) Weightings for control outputs over Hp.
R (l Hu)× (l Hu) Weightings for control signals over Hu.
Ψ (mHp)× n Equal to CA, defined in (12.10) and (12.12).
Υ (mHp)× l Equal to CBu, defined in (12.10) and (12.12).
Θ (mHp)× (l Hu) Equal to CB∆u, defined in (12.10) and (12.12).
T (mHp)× 1 The reference trajectory over Hp.
E (mHp)× 1 Difference between the T and a free responce.
G (l Hu)× 1 Part of the optimal solution, defined in (12.19).
H (l Hu)× (l Hu) Part of the optimal solution, defined in (12.19).

Table 12.1: Table containing sizes of matrices and vectors used in the MPC chapter.
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12.2 Model Predictive Control of a Standalone
Helicopter

Since MPC is slower than most other control strategies due to the prediction steps, and
with the fast dynamics of the ”Helicopter with slung load” system, the first implemen-
tation of MPC will be on top of another, faster, LQ controller that stabilise the system
in an initial hover mode, a diagram is shown in figure 12.2, where the illustration indi-
cates what the MPC loop see as the plant.

A

B-K xu C y

x^

LQ

MPC plant

MPC

Model
Constraints

Sensor
Dynamics
& Fusion

x^
Plant

Figure 12.2: A block diagram of the model in state space representation, first with
an LQ controller to stabilise the system, with another control loop con-
taining the MPC on top.

In the figure it is assumed that C = Cy = Cz. The constraints input to the MPC
controller is coloured gray since it is not used in this implementation. It should further
be noted that with this kind of implementation with one controller above the other,
the controller design should be treated with caution, and make sure that the outer
controller operates slower than the inner loop. The LQ controller should be ≥10 faster,
and have a suffecient bandwidth to follow the reference signals generated by the MPC[9].

Since many of the designed matrices such as the weight matrices grow large with longer
horizons, they are not presented in the report, but the design process is documented.
The implementation in Simulink is done using the Model Predictive Control Toolbox
for MATLAB.

12.2.1 Deriving MPC Dependencies

The outputs from the model predictive controller is not the actuator values like with
the LQ controller, but rather a set of set points for the input to the LQ controller,
meaning a MPC output for each input to the LQ controller. The system seen from the
MPC should be as defined in (12.22) using the expanded feedback diagram shown in
figure 12.3, with the simplifications in (12.22) assuming that the C matrix is an identity
matrix with the same dimensions as A.
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MPCu

MPC
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Figure 12.3: An expanded block diagram of the model seen by the model predictive
controller, in state space representation.

AMPC = A−B KLQ

BMPC = −B KLQ

CMPC = I12×12 (12.22)

12.2.2 MPC and LQ Control of a Standalone Helicopter in Hover

The initial set points for the MPC should be the same as for the LQ controller, which
is a set of desired operating points where some of those operating points are defined
from the trim process, as shown in vector form in (12.23).

s(k)set−point,hover = [0 0 −6 0.0516 −0.0011 0 0 0 0 0 0 0] (12.23)

The design of the MPC in MATLAB is handled by mpctool, which provides a graphical
user interface (GUI) for the different controller values, given a linearised model of the
system. The setup of mpctool is shown in figure 12.4.

Additional input set in mpctool in (12.24) is the prediction and control horizon and
the sample time of the predictive controller.

Ts = 0.2 Hp = 10 Hu = 2 (12.24)

The weights of the LQ controller used to stabilise the inner loop of the system is pre-
sented in (12.25). The only state that has a high weight is the one on the z-position of
the helicopter.
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Figure 12.4: A screenshot showing the mpctool GUI.

QLQ,diagonal = [0.1 0.1 4 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01]

RLQ,diagonal = [50 100 100 50] (12.25)

To find out if the inner loop LQ controller, stabilise the system plant for the outer MPC
loop, a pole analysis for is performed. The poles is found through the eigenvalues of
the AMPC matrix in (12.22), and presented in table 12.2.

The closed loop poles in the table show that the LQ controller has stabilised the system
significantly compared to the open loop system, and is further used to implement the
model predictive hover controller.

mpctool implement the reference trajectory r(k) through change rate weights, mean-
ing how fast each controller output should be allowed to change, defined in S together
with the diagonal entries in Q and R in (12.26).

Qdiagonal = [5 10 3 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1]

Rdiagonal = [5 5 10 50 50 50 1000 1000 1000 1000 1000 1000]

Srate,weight = [2 2 3 5 5 5 1000 1000 1000 1000 1000 1000] (12.26)
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LQ controlled hover

Description Pole ζ ωn
Single pole -49.39 1 49.39

Single pole -7.27 1 7.27

Pole pair -4.96 ± 4.62i 0.73 6.78

Single pole -4.42 1 4.42

Pole pair -1.34 ± 1.90i 0.58 2.32

Pole pair -1.10 ± 1.83i 0.51 2.13

Pole pair -2.06 ± 0.07i 0.10 2.07

Single pole -0.04 1 0.04

Table 12.2: List of poles and their corresponding natural frequency and damping
ratio.

Figure 12.5 show the x- and y-reference signals from the MPC given to the inner loop
LQ controller, the remaining reference signals are all so small that they negligible. Fig-
ure 12.6 show the output signals from the inner loop LQ controller.
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Figure 12.5: Control signals for x- and y- reference outputs from the MPC, for a
period of 400 seconds.
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12.2. Model Predictive Control of a Standalone Helicopter

The x-, y- and z-position of the helicopter is shown in figure 12.7 where it is shown that
the helicopter is kept close to the reference position at the y- and z-position, but with
an offset in the x-position. This offset could be explained from the estimated sensor
values, which is investigated further in the first acceptance test in 13.1 on page 142.
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Figure 12.7: x-, y- and z-position of the helicopter for a period of 400 seconds.

12.2.3 MPC and LQ control of a Standalone Helicopter in Flight

The design process for the MPC with the helicopter in flight is similar to the hover
controller, where a set of set-points is given to the MPC as an input to which it should
generate set-points for the inner loop LQ controller. The set points for forward flight
at 6m/s, without any yaw-offset, is as shown in (12.27). The sample time, prediction-
and control horizon is as shown in (12.28), both horizons has been increased from the
hover controller, to achieve better results.

s(k)set−point,flight = [0 0 -6 0.0415 -0.0035 0 6 0 0 0 0 0 0] (12.27)

Ts = 0.2 Hp = 20 Hu = 5 (12.28)

The inner loop LQ controller should in this case have 0 weights on the position, and
control on the x- and y-velocity of the controller, as well as the yaw-angle of the heli-
copter. The weights are shown in (12.29).

QLQ,diagonal = [0 0 10 0.1 0.1 10 1 0.5 0.1 0.01 0.01 0.01]

RLQ,diagonal = [40 800 800 1] (12.29)

The closed loop dynamics of the LQ controller generated with the poles shown in (12.29)
is examined through the closed loop poles like done with the hover controller. The poles
of the closed loop system for forward flight is shown in table 12.3.

The table show the flight system to be stable, with the exception of the second order
pole in 0 which is from the xy-position which is not used in the flight controller. With
the LQ controller generated from the weights shown in (12.29), it is now possible to
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LQ controlled flight

Description Pole ζ ωn
Second order pole 0 - 0

Single pole -48.19 1 48.19

Pole pair -8.05 ± 5.15i 0.84 9.55

Pole pair -2.39 ± 3.06i 0.62 3.88

Pole pair -2.74 ± 2.20i 0.78 3.51

Pole pair -4.64 ± 0.32i 0.99 4.66

Single pole -2.25 1 2.25

Table 12.3: List of poles and their corresponding natural frequency and damping
ratio.

design an outer loop MPC to generate set-points and reference trajectories for the LQ
controller. The weights and rate weights are shown in (12.30).

Qdiagonal = [1000 1000 30 300 300 15 2 3 100 1000 1000 1000]

Rdiagonal = [0 0 12 0 0 120 30 20 0 0 0 0]

Srate,weight = [1000 1000 30 100 100 50 20 25 100 1000 1000 1000] (12.30)

Testing the performance of the controller is done by observing the x-velocity of the
helicopter, which is given a set-point of 6.0m/s, with the results shown in figure 12.8. It
is shown that the controller is able to reach and hold the set-point velocity.
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Figure 12.8: x-velocity, mpc reference and set-point for a period of 400 seconds.

While figure 12.8 only show how the controller is able to keep the x-velocity close to the
reference, figure 12.9 show the startup, where one of the advantages of MPC is shown.
When given a set-point of 6.0m/s to the x-velocity, a reference trajectory is calculated,
here as an exponential function, and furthermore, the optimal control signals to reach
that reference trajectory over the control horizon is calculated.
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Figure 12.9: x-velocity, mpc reference and set-point for a period of 8 seconds.

It is clear from the startup figure that the inner loop LQ controller is not able to start
the helicopter instantaneous, but does catch up to the reference trajectory and is able
to follow it closely. The reference trajectory from the MPC is shown negative in the
figure, since it is an offset in operating points to the LQ controller. Figure 12.10 show
the control signals given to the helicopter by the inner loop LQ controller. The tail-
rotor yaw control signal is shown to fluctuate a lot.
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Figure 12.10: Control signals from the inner loop LQ controller for a period of 400
seconds.

The other part of the flight controller is its ability to control the yaw angle of the heli-
copter, so it is able to fly towards a reference position. When given a yaw reference, a
steady state error is observed, so to make up for this offset, an integral state is intro-
duced on the yaw state, to remove this error. The integral state is only included in the
outer loop with the MPC, and is thus not part of the inner loop. To prevent windup
in the integral state while the helicopter is in hover, the state it reset when a change
in reference position is detected.
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Figure 12.11 and 12.12 show two tests of yaw angle references set to respectivly 1.0 rad
and -2.0 rad. The initial rise of the yaw angle reference from the MPC is caused by the
normal angle weight, and the slower integral state eventually pull the MPC output up
to the set-point. It is choosen to have the integral state work as slow as it does to have
as little overshoot as possible, while still being within an acceptable time range.
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Figure 12.11: Yaw angle, mpc reference and set-point for a period of 40 seconds.
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Figure 12.12: Yaw angle, mpc reference and set-point for a period of 40 seconds.

The figures also show that the inner loop is able to follow the reference yaw from the
MPC closely, which means that it is the model predictive controller that needs to be
faster to reach the set point, if that is wanted.

With the model predictive controllers operating within the ranges of what is needed in
this work, the controllers found in this chapter is to be used in the final acceptance test
for the standalone helicopter in both flight and hover, with the controllers specified in
this section, being an inner loop LQ controller, and an outer loop MPC controlling the
references of the inner loop. The state space representation of the inner loop, the MPC
and the design of those, as well as the LQ control matrices can be found on the DVD:

/Controller/MPC/SAH/SAH_MPC.mat

/Controller/MPC/SAH/mpc_sah.m

/Controller/MPC/SAH/MPC_design_hover.mat

/Controller/MPC/SAH/MPC_design_flight.mat
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12.3. Model Predictive Control of a Helicopter with Slung Load

12.3 Model Predictive Control of a Helicopter with
Slung Load

With the same requirements to the cascade setup as with the standalone helicopter
being in effect for the helicopter with slung load, most of the information needed to
make a MPC have already been presented.

The differences between the standalone helicopter test and with a load attached, is
the additional states and their dynamics, together with their changes to the already
existing dynamics. The linearised system analysis in General Control Considerations
show how much the system dynamics changes when a slung load is attached, so the
controllers found for the standalone helicopter can not be adopted directly.

The controllers derived in this section includes a MPC for hover, implemented as a
set-point controller for an inner loop LQ controller, and a MPC for flight implemented
the same way.

12.3.1 MPC and LQ control of a Helicopter with Slung Load in
Hover

While the linearised reduced state model for the standalone helicopter had 12 states,
the linearised model for the helicopter with load will have 16, with the 4 new ones being
the Euler angles describing the position of the slung load, and their angular velocities,
updating the state space representation to have the sizes shown in (12.31).

AMPC,16×16 = A16×16 −B16×4 KLQ,4×16

BMPC,16×16 = −B16×4 KLQ,4×16

CMPC,16×16 = I16×16 (12.31)

In hover, the Euler angles of the load is wanted close to 0, the set-points are equal to
the trimmed state values shown in (12.32). And the additional inputs needed before
an actual controller design are as shown in (12.33), with the sample frequency and
horizons being the same as for the standalone helicopter.

s(k)set−point,hover = [0 0 −3 0.05 0.001 0 0 0 0 0 0 0 0 0 0 0] (12.32)

Ts = 0.2 Hp = 10 Hu = 2 (12.33)

The LQ controller in the inner loop should not be as agressive as for the standalone
helicopter, since quick movements is converted directly to the slung load which is not
wanted. With that in mind while designing the LQ controller for hover, produced the
weightings shown in (12.34), which lower weightings in the QLQ matrix, and higher
weightings in the QLQ matrix.
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QLQ,diagonal = [1 1 0.5 0.4 0.4 1 1 1 0.1 0.1 0.5 0.1 0.1 0.1 2 2]

RLQ,diagonal = [160 600 600 5] (12.34)

Since the inner loop is used to stabilise the system, this is examined through the closed
loop poles of the LQ control loop. The closed loop poles are shown in table 12.4.

LQ controlled hover

Description Pole ζ ωn
Single pole -53.20 1 53.20

Single pole -8.77 1 8.77

Single pole -6.67 1 6.67

Single pole -4.80 1 4.80

Pole pair -2.65±1.89i 0.81 3.25

Pole pair -1.99±2.18i 0.67 2.95

Pole pair -1.46±0.45i 0.96 1.53

Single pole -1.03 1 1.03

Single pole -1.02 1 1.02

Pole pair -0.01±0.67i 0.01 0.67

Pole pair -0.01±0.69i 0.01 0.69

Table 12.4: List of poles and their corresponding natural frequency and damping
ratio.

The controller is shown to stabilise the system, but with the last pole pairs being
marginally stable, the LQ controller is however still used for further control, with a
MPC to control set-points for the inner loop now is needed. The weights used for the
hover MPC is shown in (12.35).

Qdiagonal = [10 10 3 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

Rdiagonal = [2 2 25 50 50 50 37 37 1000 1000 1000 10 10 1000 25 25 ]

Srate.weight = [8 8 25 5 5 5 25 25 1000 1000 1000 20 20 1000 1 1] (12.35)

The performance of the produced MPC is first shown through the position of the heli-
copter which can be seen in figure 12.13, where the deviations from set-points is shown,
meaning the z-component has a 3 m offset.

The plot show that the controller is able to keep the helicopter close to the reference
position. The deviations from the set-point can partly be explained by the wind acting
on the helicopter, so it is interesting to examine what the MPC does for the position
offset generated by the wind. The x- and y-position set-points generated by the MPC
is shown in figure 12.14.
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Figure 12.13: Position components of the helicopter, for a period of 400 seconds.
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Figure 12.14: MPC Control signals to the LQ controller for x- and y-position of the
helicopter, for a period of 400 seconds.

The x- and y-position set-points from the MPC to the LQ controller behave as ex-
pected, and generates an offset of the size that is needed to get back to the reference
position, additional state offset could be caused by the controller using estimated state
values for control, and not true state feedback.
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Figure 12.15: Position components of the slung load, for a period of 400 seconds.
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Figure 12.15 show the position components of the slung load, where it is shown that the
slung load follow the position offset from the reference position somewhat closely, but
with larger fluctuations and much slower dynamics, which is expected from the slung
load while floating.

The MPC behave as expected, and within acceptable limits, and is further used in
model predictive controller section of the acceptance test. The other MPC for the
helicopter with slung load system, being the flight controller is found in the following
subsection.

12.3.2 MPC and LQ control of a Helicopter with Slung Load in
Flight

The MPC for flight with the helicopter and slung load system, does not have to fly as
fast as the one for the standalone helicopter, but rather focus on keeping the slung load
steady in the water while dragging it. The initial set-points for the MPC is shown in
(12.36) together with the sample length as well as the prediction and control horizon
are shown in (12.37), where the same considerations as of why to make the horizons
longer than in hover remain the same as in the standalone helicopter section.

The integral state that is introduced in the flight controller for the standalone helicopter
is adopted to this flight controller for the system with slung load to remove the steady
state error from the yaw-angle. This additional state adds a set-point for the MPC
input.

s(k)set−point,flight = [0 0 − 2.85 0.0516 − 0.0011 0 0 0 2 0 0 0 0 0 0 0 0] (12.36)

Ts = 0.2 Hp = 25 Hu = 7 (12.37)

The weightings for the inner loop LQ controller is choosen to focus heavily on the height
of the helicopter, since that is shown to have great effects on the behaviour of the buoy
in the LQ control section 11.3 on page 97, as well as the yaw angle for direction and
x- and y-velocityes of the helicopter for steady flight. And with very heavy restrictions
on the control signals, to reduce quick movement from the helicopter. The weightings
are shown in (12.38).

QLQ,diagonal = [0 0 30 1 1 3 1 1 5 5 2 0.1 0.1 0.1 2 2]

RLQ,diagonal = [300 1200 1200 40] (12.38)

A stability check for the LQ control loop is needed, and is done by checking the poles
of the closed loop system with the inner loop LQ controller. The poles are shown in
table 12.5.

The inner closed loop system with the LQ controller is shown to stabilise the system
at the operation points, and is thus used in the remaining part of this MPC chapter
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LQ controlled flight

Description Pole ζ ωn
Second order pole 0 - 0

Single pole -48.10 1 48.10

Single pole -8.85 1 8.85

Single pole -6.68 1 6.68

Single pole -4.51 1 4.51

Single pole -3.49 1 3.49

Pole pair -1.83±1.88i 0.70 2.62

Pole pair -1.45±1.73i 0.64 2.26

Pole pair -0.07±1.05i 0.07 1.06

Pole pair -1.06±0.11i 0.99 1.07

Single pole -0.36 1 0.36

Table 12.5: List of poles and their corresponding natural frequency and damping
ratio.

for the flight controller of the helicopter with slung load system.

Weightings for the flight MPC are shown in (12.39),

Qdiagonal = [1000 1000 1000 300 300 30 250 250 15 17 100 1000 1000 1000 50 50]

Rdiagonal = [0 0 12 0 0 120 2 2 60 60 5 0 0 0 5 5 50] (12.39)

Srate,weight = [1000 1000 1000 100 100 100 120 500 500 50 57 1000 1000 1000 1000 60 50]

The first performance check for the MPC flight controller is forward flight while drag-
ging the load. Figure 12.16 show the x-velocity of the helicopter together with the
negative reference trajectory and set-point, together with the startup when going from
hover to flight.

The velocity plot show that how the x-velocity reaches the set-point and is controlled
around that point, with the startup plot showing how the x-velocity has overshoot while
starting, and does not follow the reference trajectory very closely. The final velocity is
however within acceptable values based on the plot.

The helicopter does not only have to start moving itself when going from hover to
flight, but now also accelerate the slung load floating in the water. That could explain
the overshoot and oscillations on the x-velocity startup plot, so figure 12.17 show the
x-velocity of the helicopter again, and the slung load x-velocity so they can be compared.

The two figure show how the x-velocity of the slung load fluctuates more than that of
the helicopter, which is also shown in second Euler angle, that oscillates. These results
are however what is to be expected, and is acceptable as long as the load angle changes
are as slow and with small oscillations as shown in figure 12.17.
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Figure 12.16: x-velocity of the helicopter with negative reference trajectory and set-
point, for a period of 400 seconds. And for the 12 second startup.
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Figure 12.17: x-velocity of the helicopter and slung load with the first and second
Euler angles of the slung load for a period of 40 seconds.

While flying forward in the x-direction the controller is able to drag the slung load as
specified, but it is yet to be tested if it is able to change yaw-angle, to point towards a
reference position. Figure 12.18 show the yaw-angle at a test with 1.0 rad and -2.0 rad
yaw offset.
Both figures show how the yaw angle of the helicopter is changes towards the yaw-
reference. The second test did however introduce oscillations to the system, where the
slung load is no longer being dragged at an acceptable depth, but went in and out of
the water. The x-velocity of the helicopter is shown in figure 12.19 to illustrate the
effect on the helicopter.
A velocity set-point rotation is implemented to get better results with tests regarding
flight to a reference position, where the x- and y- velocity set-points are rotated with
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Figure 12.18: Helicopter yaw angle shown with reference trajectory and set-point,
for a period of 40 seconds.
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Figure 12.19: Helicopter x-velocity shown with reference trajectory and set-point,
for a period of 40 seconds.

the yaw-error which is the angle between the helicopter and the reference position,
so the heliocopter would start flying towards the reference position, even though the
helicopter had not turned yet. Figure 12.20 show the yaw-angle with the velocity cor-
rection implemented. and figure 12.21 show the x- and y-velocities of the helicopter for
comparrison with figure 12.19.

The results are not as good as for forward flight, where the helicopter has the right
heading before beginning flight, but it is within acceptable limits, based on the results
shown in figures 12.20 and 12.21. The controller presented here is used for further
testing in the acceptance test, and the presented material can be found on the DVD:

/Controller/MPC/HAL/HAL_MPC.mat

/Controller/MPC/HAL/mpc_hal.m

/Controller/MPC/HAL/MPC_design_load_hover.mat

/Controller/MPC/HAL/MPC_design_load_flight.mat
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Figure 12.20: Helicopter yaw angle shown with reference trajectory and set-point,
for a period of 40 seconds.
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Figure 12.21: Helicopter x- and y-velocity shown with reference trajectories, for a
period of 40 seconds.

12.4 Model Predictive Control Conclusion

The model predictive control implemented in this work is the simple version without
constraints and disturbance model, leaving the model predictive controller to be the
essentials of a linear quadratic controller with a prediction part, calculating the con-
trol matrix over the prediction horizon. This leaves the MPC chapter with plenty of
expansion opportunities for future work, where the most obvious choice would be to
start with the constraints, which is where MPC-LQ setup get the best results.

The controllers that is produced in this chapter included MPC controllers in cascade
with an inner loop LQ controller to stabilise the system, here being hover and flight of
a helicopter both with and without load. The inner loop LQ controllers are checked to
stabilise the system, leaving the MPC to control references for the inner loop, which is
done within acceptable limits to further use the controllers in the acceptance test.

Most of the control states for flight and hover is the same for the MPC as with the LQ
controller, but to make the MPCs better at controlling the yaw angle of the helicopter,
an integral state is implemented on the outer loop, and never seen by the inner loop.
With the integral state implemented on the flight controllers, acceptable results for
turning are achieved.
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Summary of part III

The general control strategies chapter specified the two control strategies used in this
work would be be Linear Quadratic Control and Model Predictive Control. The oper-
ating points and ranges for the control states and input signals was determined, with
an appendix added going through and presenting the trimming and linearisation of the
helicopter model using Helisim.

A linear model analysis investigated whether control was needed on the system plant
which is the helicopter, and found that the uncontrolled system both with and without
slung load, would be unstable.

In the LQ control chapter the use of the control strategy was first examined, and af-
terwards used to find a series of controllers used on both a standalone helicopter and a
helicopter with slung load system, to be used in the acceptance tests in the evaluation
part of this work.

The second control strategy being Model Predictive Control was implemented as cascade
control, with an underlying LQ controller stabalising the system, and then an outer
control loop specifying the set-points for the inner control loop. The model predictive
controllers produced in this chapter did behave as designed, and is further used in the
acceptance test.
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Part introduction

Contents

13 Acceptance Test

14 Comparison of the Controllers

15 Conclusion

Purpose

The first chapter of the part include the acceptance test of this work, evaluating the per-
formance of the computed controllers in a set of specified tests, where the requirement
specifications needs to be fulfilled for the tests to be successful.

A controller comparison chapter is included to test the two control strategies used in this
work up against each other, to find the strengths and weaknesses of both when compared.

The conclusion chapter will conclude whether the subparts and the project in a whole
have been a success, and is continued into further work that specify some of the areas
that needs further work to make the project more successful.

Goals

• Perform the acceptance tests specified in chapter 4.3

• Compare the performance of the MPC-LQ and LQ controller setups.

• Conclude on the status and accomplishments of this work.

• Specify expansion opportunities for both the modelling and control parts of this
work.



Chapter 13

Acceptance Test

This chapter conduct the acceptance test and presents the results. The objectives of
the acceptance tests are specified in the acceptance test specification section 4.3 on
page 16. The tests are conducted using the Helisim simulation tool in MATLAB and
Simulink, with the measured states coming from the onboard state value estimator,
which contains sensor fusion and measurement noise. The setup is shown in figure 13.1.
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Figure 13.1: Simplified illustration of the Helisim setup used in the acceptance
tests.
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13. Acceptance Test

Apart from the noise on the estimated state values, adding an increased need for ro-
bustness in the controllers, wind is also enabled in the acceptance tests. This is done
to simulate the controllers performance in a real scenario. All acceptance tests are con-
ducted 10 times, with 10 pregenerated wind inputs, for better comparablilty between
tests. The plots shown throughout the acceptance test are generated using the first of
the winds, which is shown in figure 13.2.
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Figure 13.2: A plot of the standard wind used in all of the simulations shown in the
acceptance tests, over a period of 400 seconds.

The wind data, along with the estimated and true state values and the control signals
can be found on the DVD, with a folder for each acceptance test:

/Acceptance Test/data/...

The following sections will describe the results of the conducted acceptance tests, start-
ing with those for the standalone helicopter, and followed by the ones for the full system
requirements. Each requirement is provided its own section, by the name of the require-
ment, each with a subsection for LQ control and MPC-LQ control.

13.1 Standalone helicopter acceptance tests

HP1: Hovering of the Helicopter, in a Steady Position Above a
Certain Point

As stated in the acceptance test specification, section 4.3 on page 16, the helicopter is
set to hover at a fixed position for 400 seconds, and should at all time be within 0.50
meters horizontally and 0.50 meters vertically. The horizontal displacement is calcu-
lated by the Euclidean norm of the x- and y-position.

The following two sections will test if this is fulfilled with the designed LQ controller,
and if it is fulfilled with MPC and LQ control.
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13.1. Standalone helicopter acceptance tests

With LQ Control

Figure 13.3 shows the altitude and horizontal error of the helicopter during the 400
seconds of the simulation.7
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Figure 13.3: This plot shows the altitude and horizontal error of the helicopter during
the 400 seconds of simulation.

It can be seen that the helicopter at all times is within the specified requirement of 0.50
meters in horizontal and vertical displacement, and that there appears to be a bias in
the horizontal displacement. Of the 10 simulations that is run fur this test with only
the LQ controller, the maximum error in altitude is 0.14 m and a maximum error in
horizontal displacement is 0.37 m (all numbers for requirements are rounded up).

Figure 13.4 shows the errors in the estimated positions, which is what the controller
sees, and tries to control to zero.
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Figure 13.4: The position estimation error of the helicopter during the 400 seconds
of simulation.

It appears that there is a 0.2 m bias on the estimated x-position, that is not accounted
for. This bias could be a result of the placement of the IMU on the helicopter. Table 13.1
shows the verdicts on this part of the acceptance test.

Requirement Result Verdict

Horizontal error 0.50 m 0.37 m X
Altitude error 0.50 m 0.14 m X

Table 13.1: HP1.1 results and verdict.
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13. Acceptance Test

With MPC and LQ Control

In this setup with an inner loop LQ controller handling the fast dynamics of the system
and the wind disturbance, and a MPC in cascade to control the LQ set-points of the
LQ controller, this setup should be able to produce results as good or better than with
only an LQ controller.

Figure 13.5 show the horizontal and altitude errors from the reference position of (0,0) m
at an altitude of 3 m, while the standalone helicopter is in hover.
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Figure 13.5: This plot shows the altitude and horizontal error of the helicopter during
the 400 seconds of simulation.

The figure show how the cascade controller is able to keep both errors within the spec-
ified limit of 0.5 m. When comparing the results to those of the LQ controller alone
shown in figure 13.3 on the preceding page. The MPC-LQ setup is able to control the
position closer to the reference, but with larger fluctuations than with the LQ controller
alone.

The error results for the simulation is shown in the figure is a maximum altitude error of
0.09 m and maximum horizontal devitation of 0.31 m, which is well within the require-
ment limit. The worst case results for the 10 simulations show a maximum altitude
devitation of 0.20 m and horizontal error of 0.40 m, which is closer to the requirement
limit, but still passed. The results, requirements and verdict are shown in table 13.2.

Requirement Result Verdict

Horizontal error 0.50 m 0.40 m X
Altitude error 0.50 m 0.20 m X

Table 13.2: HP1.2 results and verdict.

The scripts used to generating these plots, as well as the data from the simulations is
available on the enclosed DVD, along with additional plots.

/Acceptance Test/data/HP1/...
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13.1. Standalone helicopter acceptance tests

HP2: Flying Towards a Reference Position

It is specified in the acceptance test specification, section 4.3 on page 16, that the
helicopter is required go from hover and fly towards a specified reference position at
{2500,2500}, with a maximum velocity error of 1.00m/s towards that position. The
transition from hover to flight is required to take less than 10.00 seconds and while in
transition, it is not allowed to deviate more than 0.50 meters in altitude.

The following two sections will test if this is fulfilled with the designed LQ controller,
and if it is fulfilled with MPC and LQ control.

With LQ Control

Figure 13.6 shows that the helicopter position error, which verifies that the helicopter
does fly towards the specified point.
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Figure 13.6: This plot shows the position error of the helicopter during the 400 sec-
onds of simulation.

It can be seen that it flies towards the reference position at uneven rates, this is however
not always the case in all of the 10 simulation, which indicates that it is caused by the
wind.
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Figure 13.7: This plot shows the velocity error of the helicopter towards the target
position during the 400 seconds of simulation.
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13. Acceptance Test

Figure 13.7 on the preceding page shows that the velocity of the helicopter towards the
destination deviates by less than the 1.00m/s limit, which it is 5.78 seconds to reach.
During this 5.50 second transition the maximum error in altitude is 0.37 meters, as
shown in figure 13.8.
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Figure 13.8: This plot shows the altitude of the helicopter during the transition from
hover to flight.

In all of the 10 simulations conducted for this requirement, the highest error from
the velocity reference is 0.85m/s, which is also below the specified limit, the slowest
transition time is 5.78 seconds, and the largest altitude error is 0.37 meters. Table 13.3
shows the verdicts on this part of the acceptance test.

Requirement Result Verdict

Velocity error 1.00m/s 0.85m/s X
Transition time 10.00 s 5.78 s X
Altitude error 0.50 m 0.37 m X

Table 13.3: HP2.1 results and verdict.

With MPC and LQ Control

The helicopter is given a reference position outside its reach within the simulation, to
observe the flight trajectory and the transition from hover to flight. Figure 13.9 on the
next page show the position error from the set-point. With the MPC being able to give
a reference for side-slip to counteract the wind, the x- and y-positions follow each other
closely.

While flying towards the reference position, it it subject to a requirement on the ve-
locity towards the reference position. Figure 13.10 on the facing page show how the
velocity is kept around the set-point after the initial rise.

To avoid a low altitude, a requirement of 1.00 m is set on the altitude drop the system
is allowed to have. Figure 13.11 on the next page show the drop on the transaction
between the two controllers, which is where the largest drop is observed.

146



13.1. Standalone helicopter acceptance tests
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Figure 13.9: This plot shows the position error of the helicopter during the 400 sec-
onds of simulation.
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Figure 13.10: This plot shows the velocity error of the helicopter towards the target
position during the 400 seconds of simulation.
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Figure 13.11: This plot shows the altitude of the helicopter during the transition
from hover to flight.

Of the 10 simulations run for this test, the worst case results for velocity error is 0.38m/s,
a maximum altitude error of 0.28 m and a worst case transitions time of 4.65 s, which
are all better results than with just the LQ controller. The requirement verdict is shown
in table 13.4 on the following page.

Scripts and data from the simulations is available on the enclosed DVD:

/Acceptance Test/data/HP2/...
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13. Acceptance Test

Requirement Result Verdict

Velocity error 1.00m/s 0.38m/s X
Transition time 10.00 s 4.65 s X
Altitude error 0.50 m 0.28 m X

Table 13.4: HP2.2 results and verdict.

HS3: Arriving at a Reference Position

This acceptance test concerns the part of the mission where the helicopter arrives at
the location, where it should be able to go from flight to hover mode. As stated in the
acceptance test specification, section 4.3 on page 16, the helicopter should be able to
make this transition within 10.00 seconds, without deviating more than 0.50 meters in
altitude. Once in hover mode, it must not deviate more than 0.50 meters horizontally
and vertically.
The following two sections will test if this is fulfilled with the designed LQ controller,
and if it is fulfilled with MPC and LQ control.

With LQ Control

Figure 13.12 shows the horizontal position errors of the helicopter, while it flies towards
the specified location, and ones at the location a close-up is shown where it can be seen
that it stays within the 0.50 meter boundary.
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Figure 13.12: This plot shows the horizontal position, and altitude error of the he-
licopter during the 400 seconds of simulation. The top plot shows
the horizontal positions during the entire flight, while the bottom plot
shows a close-up on the hover region, where the altitude also is plotted.

In all of the 10 simulations the largest horizontal position error is 0.43 meters and the
largest altitude error is 0.45 meters.
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13.1. Standalone helicopter acceptance tests

Figure 13.13 shows the Horizontal position error and the altitude of the helicopter
during the transition phase, where it can be seen that neither of them violates the 0.50
meter limit, set forth by the requirements.
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Figure 13.13: This plot shows the horizontal position and altitude error of the heli-
copter during the transition from flight to hover.

The transition from flight to hover, shown on figure 13.13 takes 1.29 seconds, and has a
maximum error in altitude of 0.34 meters. In all of the 10 simulations for this require-
ment, the slowest transition is 2.97 seconds and the largest altitude error is 0.46 meters.

Table 13.5 shows the verdicts on this part of the acceptance test.

Requirement Result Verdict

Hover horizontal position error 0.50 m 0.43 m X
Hover altitude error 0.50 m 0.45 m X

Transition time 10.00 s 2.97 s X
Transition altitude error 0.50 m 0.46 m X

Table 13.5: HS3.1 results and verdict.

With MPC and LQ Control

Here a reference position that is reached during the simulation is given, to observe the
transition from flight to hover when the reference position is reached. Figure 13.14
show the x-, y-position error over the simulation, as well as a closeup of the horizontal
and vertical errors, with results very close to those of the LQ controller alone.

Figure 13.15 on the following page show the errors in the period of the flight to hover
transaction, again with large similarities to that of the LQ controller, which is evident
since the transaction is handled the same way in both cases.

The results of the transition is shown in table 13.6 on the next page with the worst
case result being nearly identical to that of the LQ controllers alone. With a worst case
horizontal error of 0.47 m, and altitude error of 0.41 m being very close to the maximum
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Figure 13.14: This plot shows the horizontal position, and altitude error of the he-
licopter during the 400 seconds of simulation. The top plot shows
the horizontal positions during the entire flight, while the bottom plot
shows a close-up on the hover region, where the altitude also is plotted.
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Figure 13.15: This plot shows the horizontal position and altitude error of the heli-
copter during the transition from flight to hover.

errors allowed by the requirement of 0.50 m, it is clear that the transition from flight to
hover could be improved, but seen as this is a secondary requirement, it is not further
investigated.

Requirement Result Verdict

Hover horizontal position error 0.50 m 0.47 m X
Hover altitude error 0.50 m 0.41 m X

Transition time 10.00 s 4.15 s X
Transition altitude error 0.50 m 0.43 m X

Table 13.6: HS3.2 results and verdict.

150



13.2. Full system acceptance tests

Scripts and data from the simulations is available on the enclosed DVD:

/Acceptance Test/data/HS3/...

13.2 Full system acceptance tests

SP1: Hovering of the Helicopter, in a Steady Position above the
Semi-submerged Load, with a Tense Cable

As stated in the acceptance test specification, section 4.3 on page 16, the helicopter
with semi-submerged slung load is set to hover at a fixed position at 3 meters altitude
for 400 seconds, and should at all time be within 0.50 meters horizontally and 0.50
meters vertically of that position. The horizontal displacement is calculated by the
Euclidean norm of the x- and y-position. The following two sections will test if this is
fulfilled with the designed LQ controller, and if it is fulfilled with MPC and LQ control.

With LQ Control

The horizontal displacement and the altitude error of the helicopter is shown on fig-
ure 13.16, where it can be seen that both are within the 0.50 meter limit, put forth by
the requirements.
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Figure 13.16: This plot shows the altitude and horizontal error of the helicopter
during the 400 seconds of simulation.

The maximum errors for the first test is 0.32 and 0.14 meters for the horizontal and
altitude error respectively. If all of the 10 simulations are considered, the maximum
errors are: 0.37 and 0.29 meters respectively. Table 13.7 shows the verdicts on this part
of the acceptance test.

Requirement Result Verdict

Horizontal position error 0.50 m 0.37 m X
Altitude error 0.50 m 0.29 m X

Table 13.7: SP1.1 results and verdict.
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13. Acceptance Test

With MPC and LQ Control

With the slung load attached, the results with a MPC reference controller is not ex-
pected to improve much when compared with the LQ controller alone. Figure 13.17
show the position errors from the reference, split up into the values that had require-
ments on them.
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Figure 13.17: This plot shows the altitude and horizontal error of the helicopter
during the 400 seconds of simulation.

Both the horizontal and altitude errors have a requirement of 0.50 m maximum allowed
error. The worst case results for the 10 simulations for this test revealed results of
a horizontal error of 0.37 m and an altitude error of 0.25 m, which is both within the
requirements. Table 13.8 show the results and verdict.

Requirement Result Verdict

Horizontal position error 0.50 m 0.37 m X
Altitude error 0.50 m 0.25 m X

Table 13.8: SP1.2 results and verdict.

Scripts and data from the simulations is available on the enclosed DVD:

/Acceptance Test/data/SP1/...

SP2: Flying Towards a Reference Position

This test treats flying towards a specified reference position outside the reach of the
helicopter, with semi submerged load attached. The helicopter is started in hover and
given a reference it should then start flying towards the specified location, spending no
more than 10.00 seconds transcending from hover to flight mode. In the transition it
is not allowed to deviate more than 1.00 meter in altitude. Once in flight mode, the
velocity towards the target must not deviate by more than 1.00m/s.
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13.2. Full system acceptance tests

The following two sections will test if this is fulfilled with the designed LQ controller,
and if it is fulfilled with MPC and LQ control.

With LQ Control

Figure 13.18 shows that the helicopter position error, which verifies that the helicopter
does fly towards the specified point.
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Figure 13.18: This plot shows the position error of the helicopter with load during
the 400 seconds of simulation.

It is shown that the x- and y-velocities also here are different, even more that what
is shown for the standalone helicopter, this can be blamed on the wind having bigger
effects on the helicopter with increased weight, and more unstable dynamics.

Figure 13.20 on the following page shows the helicopters velocity towards the target
position. The transition time of this particular test is 1.86 seconds, well within the
limit of 10.00 seconds.
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Figure 13.19: This plot shows the altitude error during of the helicopter with semi-
submerged slung load towards the target position, during the 400 sec-
onds of simulation.

Figure 13.19 depicts the altitude error during the transition phase, and it is within the
limit of 0.50 meters. It is noteworthy that the altitude reference changes from 3.00
meters to 2.80 meters when going from hover to flight with the load attached, since the
load is dragged behind the helicopter, and thus the helicopter needs to fly a bit lower.
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Figure 13.20: This plot shows the velocity error of the helicopter with semi-
submerged slung load towards the target position, during the 400 sec-
onds of simulation.

The largest velocity error is after the transition to flight is 0.22m/s, well within the
limit of 1.00m/s. In the 10 tests of this requirement the largest velocity error is 0.30m/s

and the longest transition time is 1.88 seconds, with a maximum altitude error of 0.32
meters. Table 13.9 shows the verdicts on this part of the acceptance test.

Requirement Result Verdict

Velocity error 1.00m/s 0.30m/s X
Transition time 10.00 s 1.88 s X
Altitude error 1.00 m 0.32 m X

Table 13.9: SP2.1 results and verdict.

With MPC and LQ Control

In this test, the helicopter is set to drag the slung load to a position outside its reach
within the simulation time, to observe the helicopter in flight, and the transition from
hover to flight.

Figure 13.21 on the next page show the position error over the test. It is shown that the
helicopter has an offset on the x-direction, which as already explained can be caused by
the wind. This could probably be partly removed with larger weights on the y-velocity
in the MPC, but at the cost of the startup performance.

Figure 13.22 on the facing page show the altitude error in the transition from hover to
flight, where the total drop is shown to be larger than with just the LQ controller. The
altitude error her is caused by the helicopter starting to drag the slung load, where the
drop with LQ controller alone is caused in the moment of the controller switching.

The third requirement for the flight test is on the velocity towards the reference position.
Here the results are close to those of the LQ controller, but the underlying x-velocity
in the result is steadier with the MPC-LQ setup, but with larger errors in the y-velocity.
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−1100

−1000
−900

−800

−700

−600

−500

−400

−300

P
os

iti
on

 e
rr

or
 [m

]
x−position error
y−position error

0 100 200 300 400
Time [s]

Figure 13.21: This plot shows the position error of the helicopter with load during
the 400 seconds of simulation.
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Figure 13.22: This plot shows the altitude error during of the helicopter with semi-
submerged slung load towards the target position, during the 400 sec-
onds of simulation.

The results of the test show that the MPC-LQ controller setup is able to comply with
the set requirements. The worst case of the 10 simulations is a velocity error of 0.38m/s,
altitude error of 0.46 m with a transition time of 1.47 s. The results and verdict are
shown in table 13.10.

Requirement Result Verdict

Velocity error 1.00m/s 0.38m/s X
Transition time 10.00 s 1.47 s X
Altitude error 1.00 m 0.46 m X

Table 13.10: SP2.2 results and verdict.

Scripts and data from the simulations is available on the enclosed DVD:

/Acceptance Test/data/SP2/...
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Figure 13.23: This plot shows the velocity error of the helicopter with semi-
submerged slung load towards the target position, during the 400 sec-
onds of simulation.

SS3: Preventing Fully Submerged Load, While in Flight

This requirement is all about keeping the load from being completely submerged, thus
the only requirement in this acceptance test is that the load must not be completely
submerged during flight. For the case of the load with the radius this means that the
load must not pass 114.3 · 10−3 m in altitude. The following two sections will test if
this is fulfilled with the designed LQ controller, and if it is fulfilled with MPC and LQ
control.

With LQ Control

For this acceptance test the data from SP2.1 is used. Figure 13.24 shows the altitude
of the load during the flight, and the maximum altitude is 46.54 · 10−3 m.
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Figure 13.24: This plot shows the altitude of the load, during the flight in SP2.1

Of all of the 10 simulations the maximum altitude is 95.63 · 10−3 m.
Table 13.11 shows the verdicts on this part of the acceptance test.

Requirement Result Verdict

Altitude deviation 114.3 · 10−3 m 95.63 · 10−3 m X

Table 13.11: SS3.1 results and verdict.
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With MPC and LQ Control

Figure 13.25 show the altitude of the slung load over the simulation of acceptance test
SP2.2, where the slung load is being dragged through the water towards a reference
position.
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Figure 13.25: This plot shows the altitude of the load, during the flight in SP2.2

The results from the the 10 simulations show that the lower weightings in the previous
tests have resulted in better performance in this test, with a maximum altitude devi-
ation of the slung load of less than 0.07 m, which is well within the requirement. The
figure show how the result comes from the beginning of the flight, where the helicopter
start dragging the slung load. Table 13.12 show the results and verdict of the test.

Requirement Result Verdict

Altitude deviation 114.3 · 10−3 m 67.52 · 10−3 m X

Table 13.12: SS3.2 results and verdict.

Scripts and data from the simulations is available on the enclosed DVD:

/Acceptance Test/data/SS3/...

SS4: Arriving at a Reference Position

The helicopter should be able fly to a specified location and switch to hover, as stated
in the acceptance test specification. The transition is required to take no more than
10.00 seconds, without deviating more than 0.50 meters in altitude. Once in hover
mode, it must not deviate more than 0.50 meters horizontally and vertically.

The following two sections will test if this is fulfilled with the designed LQ controller,
and if it is fulfilled with MPC and LQ control.
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With LQ Control

Figure 13.26 shows the horizontal position errors of the helicopter, while it flies towards
the specified location, and ones at the location a close-up is shown where it can be seen
that it stays within the 0.50 meter boundary.
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Figure 13.26: This plot shows the horizontal position, and altitude error of the he-
licopter during the 400 seconds of simulation. The top plot shows the
horizontal positions, while the bottom plot shows a close-up on the
hover region, where the altitude also is plotted.

In all of the 10 simulations the largest horizontal position error is 0.47 meters and the
largest altitude error is 0.30 meters.

Figure 13.27 shows the horizontal position error and the altitude of the helicopter dur-
ing the transition phase, where it can be seen that neither of them violates the 0.50
meter limit, set forth by the requirements.
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Figure 13.27: This plot shows the horizontal position and altitude error of the heli-
copter during the transition from flight to hover.

The transition from flight to hover, shown in figure 13.27, takes 3.21 seconds and has a
maximum error in altitude of 0.16 meters. In all of the 10 simulations for this require-
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13.2. Full system acceptance tests

ment, the slowest transition is 3.28 seconds and the largest altitude deviation is 0.23
meters.

Table 13.13 shows the verdicts on this part of the acceptance test.

Requirement Result Verdict

Hover horizontal position error 0.50 m 0.47 m X
Hover altitude error 0.50 m 0.30 m X

Transition time 10.00 s 3.28 s X
Transition altitude error 0.50 m 0.23 m X

Table 13.13: SS4.1 results and verdict.

With MPC and LQ Control

In this test where the helicopter is given a reference position within the range of what
can be reached during the simulation time, the transition between flight and hover is
observed. Figure 13.28 show the position error over the time of the simulation, with a
closeup of the position error after the reference position is reached.
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Figure 13.28: This plot shows the horizontal position, and altitude error of the he-
licopter during the 400 seconds of simulation. The top plot shows
the horizontal positions during the entire flight, while the bottom plot
shows a close-up on the hover region, where the altitude also is plotted.

Figure 13.29 on the next page show the period of the transition from flight to hover.
With the helicopter pulling to the left, it comes in at a slightly larger angle than with
the test with just the LQ controller, resulting in a less smooth transition.

The results from the transition test are very close to those of the test with just an LQ
controller, which just as with the standalone helicopter test can be explained by the
transition being handled the same way. The worst case horizontal error while in hover
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Figure 13.29: This plot shows the horizontal position and altitude error of the heli-
copter during the transition from flight to hover.

is 0.47 m which is very close to the requirement limit, and an altitude error of 0.21 m
being well within the requirement limit.

Table 13.14 show the results and verdict of the test.

Requirement Result Verdict

Hover horizontal position error 0.50 m 0.47 m X
Hover altitude error 0.50 m 0.21 m X

Transition time 10.00 s 4.45 s X
Transition altitude error 0.50 m 0.36 m X

Table 13.14: SS4.2 results and verdict.

Scripts and data from the simulations is available on the enclosed DVD:

/Acceptance Test/data/SS4/...
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13.3. Acceptance test conclusion

13.3 Acceptance test conclusion

Here some of the results from the different acceptance tests is summed up and con-
cluded upon. This first part focus on the results for the standalone helicopter while the
last part is about the helicopter with the semi-submerged slung load attached.

The results from the standalone helicopter acceptance tests are all shown in table 13.15.
The hover tests revealed nearly identical results for the two control strategies. How-
ever, with the LQ being more stable, but with the MPC-LQ hovering closer to the
reference position most of the time. The flight test results revealed the MPC-LQ setup
to be better at controlling the velocity of the helicopter, around the set altitude. In the
transition from flight to hover, both controller types had nearly identical performances,
with the position errors being close to the set requirements, allowing more work on the
switching between flight and hover controllers.

The MPC-LQ setup did in general have better performance than the LQ controller
alone in the standalone helicopter acceptance tests, but the LQ controllers also kept
the helicopter within the required limits, leaving the performance of both controller
setups satisfactory.

Requirement LQ MPC-LQ

HP1 Results

Horizontal error 0.50 m 0.37 m X 0.40 m X
Altitude error 0.50 m 0.14 m X 0.40 m X
HP2 Results

Velocity error 1.00m/s 0.85m/s X 0.38m/s X
Transition time 10.00 s 5.78 s X 4.65 s X
Altitude error 0.50 m 0.37 m X 0.28 m X
HS3 Results

Hover horizontal error 0.50 m 0.43 m X 0.47 m X
Hover altitude error 0.50 m 0.45 m X 0.41 m X
Transition time 10.00 s 2.97 s X 4.15 s X
Transition altitude error 0.50 m 0.46 m X 0.43 m X

Table 13.15: Result table for the standalone helicopter acceptance tests.

The second part of the acceptance tests, regarding the helicopter with a semi-submerged
slung load attached, revealed little difference between the control strategies with the
helicopter in hover. While in hover, both controller setups satisfied the requirements
to horizontal and altitude position errors. While in flight, both controller types had
similar results, but with the transition from hover to flight being more smooth with the
MPC-LQ setup. The MPC-LQ setup did however also experience the biggest drop in
the transition between the controllers.

With the slung load being dragged, one of the acceptance tests requirements is on the
altitude of the slung load, which is not allowed to become fully submerged while in
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13. Acceptance Test

flight. Both controller types are able to comply with the requirement, but with the
MPC-LQ setup having the best results, which is a result of the altitude drop in the
beginning of the flight, where without the drop, the result would have been even better.

The final acceptance test for the full system is flight to, and hover at a given refer-
ence system, where the controller transitions are observed. Here both controller types,
again had nearly identical performance, however with the MPC-LQ setup having a
slower transition time, which is a design choice in the MPC, where the x- and y-
velocity references of the helicopter is given as an exponential function. Both controller
setups are very close to the requirements, which all are complied with, some only barely.

In conclusion, both controller setups fulfilled all the requirements set to the system,
and with no clear advantage of any of them, when only observing the states with re-
quirements. Chapter 14 on the facing page compare the results of the two controller
types, where the control signals, and how steady the controllers are able to hold the
slung load in hover and flight, are all taken into considerations.

Requirement LQ MPC-LQ

SP1 Results

Horizontal position error 0.50 m 0.37 m X 0.37 m X
Altitude error 0.50 m 0.29 m X 0.25 m X
SP2 Results

Velocity error 1.00m/s 0.30m/s X 0.38m/s X
Transition time 10.00 s 1.88 s X 1.47 s X
Altitude error 1.00 m 0.32 m X 0.46 m X
SS3 Results

Altitude error 114.3 · 10−3 m 95.63 · 10−3 m X 67.52 · 10−3 m X
SS4 Results

Hover horizontal error 0.50 m 0.47 m X 0.47 m X
Hover altitude error 0.50 m 0.30 m X 0.21 m X
Transition time 10.00 s 3.28 s X 4.45 s X
Transition altitude error 0.50 m 0.23 m X 0.36 m X

Table 13.16: Result table for the helicopter with slung load acceptance tests.
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Chapter 14

Comparison of the Controllers

This chapter compares the performance of the two control strategies in this project. The
comparison will focus on the simulations from the acceptance test, and judge the per-
formance in terms of both the state values, and the aggressiveness of the control signals.

14.1 Standalone Helicopter Controller Comparison

The first comparison between the controller performance is of the standalone helicopter
hover test, with the results shown in figure 14.1 on the next page. Where the perfor-
mance of the two controllers are shown to be nearly identical, with the difference being
the references from the MPC, lowering the z-position of the helicopter. The histograms
reveal how the combination of an MPC with LQ controller, make the position fluctuate
more, flattening the histograms.

With the standalone helicopter in flight, figure 14.2 on the following page show the
velocity components for the helicopter. While the x-velocities are close to each other,
the y-velocity is shown to be steadier with the MPC-LQ setup, taking the initial curve
away, where the helicopter is turning, with generated y-velocity set-points from the
MPC, this may be a result of a high x-, y-velocity weighting in the MPC, allowing it
to generate fast changing set-points, counteracting the wind.

Concluding on the differences between the two controllers used on the standalone he-
licopter, both controllers are able to perform the tasks required of them, with the LQ
controller alone having the best results in hover, and the MPC-LQ controller having
better performance with the helicopter in flight.
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Figure 14.1: The x-, y- and z-component of the helicopter position while in hover,
with histograms of all the samples.
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Figure 14.2: The x-, y- and z-components of the helicopter velocities while in flight,
with histograms of all the samples.
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14.2. Helicopter with Slung Load Controller Comparison

14.2 Helicopter with Slung Load Controller Comparison

When comparing the controllers used on the helicopter with a semi-submerged slung
load attached, the first comparison is in the hover position. Figure 14.3 show the po-
sition components with histograms. There is very little difference in the performance
of the two controllers, with the only noticeable difference being the offset in the y- and
z-position, which can be explained by the MPC references causing offsets for the better.
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Figure 14.3: The x-, y- and z-components of the helicopter position while in hover,
with histograms of all the samples.

Figure 14.4 on the following page show the control signals from the LQ controllers with
the helicopter in hover, and while the differences between the controller performance in
hover is small, the control signals are much more steady, this can partly be explained
by the higher control signal weights used on inner loop LQ controller in the MPC-LQ
control setup, and partly by the MPC generating a reference to the z-position, lowering
the helicopter and load, which then require a lower collective blade pitch to maintain
the altitude.

With the helicopter changed to flight, figure 14.5 on page 167 show the velocity com-
ponents of the helicopter. The performances here are very close to eachother after the
startup, with the histograms showing nearly identical distributions. This could indi-
cate that the MPC is not utilized to its full capabilities, and higher weightings on the
velocity components in the MPC could result in better performance.

The last comparison between the two controller types take both flight, transition and
hover of the helicopter with slung load into considerations. Figure 14.6 on page 167
show the Euler angles of the slung load, while the helicopter is flying to a reference
position and while hovering above it. The performance of the two controllers in flight
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Figure 14.4: The LQ controller output signals from both controller setups, with his-
tograms of all the samples.

are close to identical. The MPC-LQ controller is able to make a steadier transition than
with just the LQ controller, but has worse performance while in hover, which is curious
since only the MPC-LQ controller setup control on the slung load velocities, with the
LQ controller alone depend on the slung load to be slowed down by the damping of the
water.

In conclusion, both controller setups are shown to have very similar performance with
the slung load attached to the helicopter. With the main difference being the MPC-
LQR having steadier control signals in hover, these results could however easily be
from the LQ weightings, and not necessarily because of the MPC cascade setup. The
MPC-LQ setup experienced worse results for the slung load Euler angles, which could
be vital when dragging an actual person through water.
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Figure 14.5: The x-, y- and z-components of the helicopter velocities while in flight,
with histograms of all the samples.
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Chapter 15

Conclusion

The first part of the report covers the introduction and motivation of the project, along
with a series of answers from a SAR helicopter pilot. He specifies that the helicopters
they use are very large for missions with a single distressed person, which is 95% of
cases, further promoting the idea of autonomous helicopters for single person SAR mis-
sions. However, an advantage with the large helicopter is the ability to perform medical
aid, after the person is taken into the helicopter, along with ability to get to shore fast
after a rescue has been performed. Both being outside of the smaller autonomous he-
licopters reach, limiting the application options for a product like the one specified in
this work, to SAR missions somewhat close to shore.

In the problem analysis the initial problem regarding an autonomous helicopter flying
to, finding and dragging a person in distress, is delimited to a proof of concept system
with a helicopter dragging a semi-submerged buoy through the water. Controller re-
quirements are specified for the helicopter both with and without a slung load, to keep
the: flying to, hovering at and dragging to shore, parts of the scenario.

The modelling of the semi-submerged slung load proves to be difficult, mainly due
to the submerged part of the buoy not being constant, affecting the buoyancy, lift-,
drag- and added mass forces. The shape of the buoy, with the submerged part seen as
a spherical cap, allows for some simplifications to be made, mainly that added mass
from rotations can be neglected. In the rigid body modelling chapter the modelling
is even further simplified by considering the slung load as a point mass, attached to
the helicopter with a nonelastic rigid wire. The rigid body model is finished with the
attachment point for the slung load wire being located in the helicopters centre of mass,
and thereby removing cross correlations between the helicopters rotational movement,
and the movement of the slung load.

The verification and simulation part of the modelling chapter includes a simple exper-
imental setup to check the static forces acting on the slung load, revealing a lack of
sufficient damping on the system model, and a difference between the slung loads fre-
quency while floating, and that of the slung load model. The model is concluded to be
good enough to use in remaining parts of this work. The second simulation part treats
the rigid body modelling, that through simulations is shown to behave as expected with
the modelling simplifications that are done.
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15. Conclusion

In the controller part, two control strategies are investigated. The first being LQ control
for the standalone helicopter in hover and flight, and the same with the semi-submerged
slung load attached. Switching is also implemented, so the helicopter would be able to
switch from hover to flight and fly to a reference position, and switch back to hover.
The second control strategy is model predictive control implemented in cascade as a
reference controller for a inner loop LQ controller in charge of stabilising the system.
Switching is also implemented for the MPC-LQ controller setup, with the chapter also
including a pole analysis of the inner loop LQ controllers, where the results for the
MPC-LQ setup show that the MPC has difficulties reaching large yaw angle references.

The acceptance test is split into two parts, one for the standalone helicopter and one
for the helicopter with slung load. In the first part, both controller setups satisfies the
requirements, where the best flight results are achieved by the MPC-LQ setup. With
the slung load attached in the second part, all requirements are still complied with,
but with the secondary requirements to transition between flight and hover controller
being close to the maximum allowed deviations. In general both controller setups has
performance close to eachother with the slung load attached. This result is also shown
in the controller comparison chapter, but a difference in control strategies are shown.
The LQ controller with a MPC reference controller in cascade has less fluctuations and
oscillations in the control signals, than without MPC.
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Further Work

The slung load modelling of this work includes the most basic of the hydrodynamic
forces, with simplifications done to the added mass. Since only part of the buoy is
submerged in this work, other hydrodynamic forces can be included, like current forces
from waves, surface tension, and surface effect in general.

The angle dependency of the lift and drag forces are implemented by scaling between
expressions found for an angle of attack at 0 rad and at π/2 rad. This method does
however not reveal good results for the drag force, that with scaling is calculated too
high in the range between the the expressions, compared to the reference simulations
from SolidWorks. Because of this, the angle of attack dependency should be expanded
to include a better fit. Since SolidWorks is used in a way that it is not intended, this
leaves a possible source of error, making a verification of the simulated lift and drag
forces a possible expansion option.

The rigid body modelling chapter make some modelling simplifications to delimit the
work, these simplifications, being an slung load attachment point in the helicopters
centre of mass, observing the slung load as a point mass with no heading, and a rigid
wire connecting the slung load to the helicopter. All these modelling simplifications
can be expanded to get better results from the rigid body modelling.

The control part produce a series of MPC and LQ controllers, with switching between
them. The switching is however shown to only just fulfil the requirements set to it,
and could thus be improved upon. The MPC type used in this work is the simplest
available, with no constraints and no disturbance model, essentially leaving the MPC
as an LQ controller with prediction and control horizon. Including these constraints
and disturbance models in the MPC design can be the first option, if the performance
of the model predictive controllers is to be improved. The original idea of using MPC,
is to implement it with a flight trajectory planner, which will generate way-points, with
the MPC in place to optimise the process, making a flight trajectory planner a clear
expansion option of the controller setup.

The above modelling and control expansion options are all parts that can be done to
improve the project, but the most evident part of further work is field testing of the
helicopter with slung load attached, since the results of this work all originate from sim-
ulations, which seldom is identical to reality. This also means that the implementation
of the model in the Helisim source, will have to be expanded to include the controllers
as well.
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15. Conclusion

Summary of part IV

The first chapter of the part included the acceptance test of this work. The results from
the acceptance test included the performance of a series of MPC and LQ controllers
implemented on either a standalone helicopter or a helicopter with slung load being ei-
ther in hover hover or flight.

In the controller comparison chapter the performance of the two control strategies used
in this work was compared to eachother in a series of tests where both strategies was
given the same task. While the LQ controllers was best at dragging the slung load
smoothly, the MPC was able to hold the set-point velocities better than the LQ con-
troller.

The conclusion went through the results and current state of this work. The motivation
part included answers from a SAR pilot was included for background knowledge. The
modelling included modelling of a semi-submerged slung load, and rigid body modelling
to tie Bisgaard’s helicopter model and the slung load model together. And it was con-
cluded that the MPC and LQ controllers produced for this work worked within acceptable
ranged, but with room for improvement.

In future work some of the expansion opportunities of the model, such as a better fit for
the angle dependency of the lift and drag forces was suggested, since it was shown that
the slung load model lacked damping, which could come from the lift and drag forces.
The rigid body modelling could also be expanded, to include an attachment point away
from the helicopters centre of mass.
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Appendix A

Projected reference area

The purpose of this appendix is to obtain an expression of the reference area, which is
used in the lift and drag expressions. This is a task that requires some consideration
since the submerged object changes apparent shape, with the submersion depth of the
buoy. For an angle of attack parallel to the water surface, the reference area can be
described by the formula of a circular segment as expressed in (A.1).

Asg =
r2 (θ − sin (θ))

2
(A.1)

Asg Area of a circular segment m2

Asg

h r
θ

h Distance from still water level to the centre of the
sphere

m

r Radius of the circle (in this case the sphere) m
θ Angle of the segment rad

Since θ can be described as: θ = 2 cos−1 (h/r), it can be substituted into (A.1) to obtain
a simple equation for the reference area, which is only dependent on the submersion
depth.

In still water, the direction of the velocity of the buoy becomes the angle of attack as
used in the Lift and drag force simulations section 6.4 on page 34. Finding an equation
for the reference area becomes more complicated when the angle of attack is different
than 0◦, which his happens when the buoy is moving up and down in the plane of the
water surface, because of the relative velocity of the incident water. An illustration
of the reference area of the buoy is shown in figure A.1 on the following page, where
the angle of attack is set to π/4. It is shown that the reference area is no longer a
circular segment. This reference area is found by projection of the spherical segment
orthogonally onto a plane with a normal vector in the direction of the relative velocity.

A MATLAB function capable of calculating this projection and plotting it is appended
on the DVD:

/Simulation/Buoy/projection.m
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Figure A.1: A sphere segment orthogonally projected onto a plane with a normal
vector in the direction of the relative velocity.

Preforming this spherical segment projection for the submersion depths ranging between
−0.1143 m and 0.1143 m which is the radius of the sphere, i.e. from not submerged to
completely submerged, and for the angle of attack ranging between 0 and π/2, yields
the plot shown in figure A.2 on the next page. The angle range between 0 and π/2 is
enough because of the symmetry of the buoy.

These calculations are to heavy to run even remotely real-time, and thus an approxima-
tion is made. To gain a sufficiently close approximation to the real area, a polynomial
of order 2 × 5 is chosen. A least squares minimisation of the polynomial provides the
coefficients shown in P in (A.2).

P =

20.0 241.1 51.2 −4429.0 −321.7 7610.1
24.4 −59.3 −1889.8 2923.2 427.7 0.0
−6.7 −58.5 523.8 5679.7 0.0 0.0

 · 10−3 (A.2)

P Matrix containing the coefficients of the fitted polynomial
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Figure A.2: Reference area as a function of angle of attack and submersion depth.

The area is the obtained by pre- and post-multiplying P by the x and y vectors re-
spectively as shown in (A.3).

Aref = xTPy (A.3)

x Vector containing powers of the angle of attack
[
1 θ θ2

]T
y Vector containing powers of the submersion depth

[
1 h h2 h3 h4 h5

]T
Aref Reference area

Figure A.3 shows a residual plot of the fit, which reveals that the error of the fit in
most of the cases is bounded below 0.5 · 10−3 m2, and in worst case bounded below
1.5 · 10−3 m2.
Considering that the largest deviations are in the most extreme angle, the fit is deemed
sufficient.

A MATLAB-script capable of calculating a fit of the degrees and plotting illustrations,
is appended on the DVD:

/Simulation/Buoy/projection_fit.m
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A. Projected reference area
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Figure A.3: Residual plot of the polynomial fit, showing maximum residuals below
1.5 · 10−3 m2.
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Appendix B

Linearisation of Helicopter and
Slung Load Model

This work uses a helicopter model developed by Morten Bisgaard in [7] at AAU. Be-
fore being able to use the model for LQ control, it needs to be linearised. Bisgaard
implemented a linearisation option for the helicopter model into the source code of the
project, that only require the operating point for the model to be linearised at.

B.1 Standalone Helicopter Model Linearisation

This first section only cover the linearisation of the Bisgaard helicopter model, using the
linearisation option implemented in the source code of the Helisim project. However,
for the LinearizeHelicopter-function to work, it needs a series of trimmed inputs
to compute the A and B matrices at steady state. Trimming in this case mean that the
control signals to the actuators are given an offset to get the system to steady state at
the desired values. The helicopter trim is done using the TrimHelicopter-function
as presented in (B.1).

siminit = TrimHelicopter(FlightCondition, altitude, mute, save) (B.1)

FlightCondition For hover [0 0 0 0]
Altitude 6.0 m
mute suppress information ’false’
save save trimmed values 1

[A,B]= LinearizeHelicopter(siminit,steadystate) (B.2)

siminit Trimmed linearisation values.
steadystate [1 1 1 1]
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B. Linearisation of Helicopter and Slung Load Model

The TrimHelicopter and LinearizeHelicopter functions are not only used for
hover but also for forward flight where the flightconditions are changed to [v 0 0 0], with
v being the wanted forward flight velocity in m/s. For the flight controller in the LQ of
a standalone helicopter section of the LQ chapter, a forward velocity of 6m/s is chosen.
The results from the TrimHelicopter- and LinearizeHelicopter-functions for
both hover and flight can be found on the DVD:

/Controller/lin_model_bergen_hover.mat

/Controller/Helicopter/lin_model_bergen_flight.mat

B.2 Helicopter with Semi-submerged Slung Load Model
Linearisation

Linearised models for the complete system with a slung load attached is also needed
for the controller part of this work, both for the helicopter in hover with the slung load
floating, and for forward flight, with the helicopter dragging the slung load in the water
surface.

Bisgaard implemented functions for trim and linearisation with a slung load attached
in TrimHelicopterAndLoad and LinearizeHelicopterAndLoad. These func-
tions did however have to be modified to use the slung load model from this work. The
functions are used as shown in (B.3) and (B.4). Note that the altitude of the helicopter
is not specified with this function, since it is expected to be equal to the wire length of
the attached slung load, which in this work is set to 3 m.

siminit = TrimHelicopterAndLoad(FlightCondition, mute, save) (B.3)

[A,B]= LinearizeHelicopterAndLoad(siminit,steadystate) (B.4)

When using the TrimHelicopterAndLoad with the slung load model from this work,
a problem occurred where a trim solution could not be found. This could partly be
explained by the lack of proper damping on the slung load, meaning the angles of the
slung load never reached a steady state, meaning that the slung load had to be set to
a constant position to finish the trim process.

Two different linearised model for the helicopter with slung load system is needed, just
like with the standalone case, one model for the helicopter in flight, and one for hover
control. The controllers can be found on the DVD together with the trimmed values
of the system.

/Controller/lin_model_bergen_load_hover.mat

/Controller/lin_model_bergen_load_flight.mat
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Appendix C

Moving and Rotating Noninertial
Frames

To get a better understanding of the math behind noninertial rotating and moving
frames, as well at to be used as reference for some of the equations in the Rigid Body
Model chapter 7 on page 45, an appendix dealing with the formulas of rotations and
their derivatives is needed.

C.1 Moving frames

The most basic formulas are used to find the position vector for a point which position
is know in another coordinate system facing the same way, while also knowing the
position difference between the initial coordinate system E and the moving coordinate
system H. The velocity and acceleration of the point can be found in the same way as
the position as shown in (C.1) through (C.3).

Ep = Hp+ EpEH (C.1)
Ev = Hv + EvEH (C.2)
Ea = Ea+ EaEH (C.3)

Ep , Hp The position of a point given in the respective frame. m
EpEH A vector describing the difference in position between the frames. m
Ev , Hv The velocity of a point described in the respective frames. m/s
EvEH A vector describing the difference in velocity between the frames. m/s
Ea , Ha The acceleration of a point described in the respective frames. m/s2

EaEH A vector describing the difference in acceleration between the
frames.

m/s2

The frames and vectors have been named after the earth fixed frame E and the heli-
copter fixed frame H used in the rigid body modelling chapter, this is done to stay in
the helicopter terminology throughout this appendix. The position vector Ep is defined
from the axis unit vectors I, J and K in the initial frame and the vector Hp defined
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C. Moving and Rotating Noninertial Frames

from the axis unit vectors i, j and k in the moving frame as shown in figure C.1,
however in this initial case with both frames having the same heading, mean that the
unit vectors will be equal.

The formulas presented in (C.1) through (C.3) is only true if the moving frame have
the same orientation as the inertial frame, which is seldom the case with the helicopter
frame. Due to this complication, rotation of the moving frame have to be considered
as well.

C.2 Moving and rotating frames

To get a better understanding of what it means that the noninertial frame H is mov-
ing and rotating while seen from the inertial frame E, an illustration showing some of
the terms that will be used in the remaining part of this appendix is shown in figure C.1.

X

Z

Y

y

x

z

I
J

K

j

i

k

E

H

p

p

pEH
E

E

H

Figure C.1: An illustration showing the initial earth fixed coordinate systems noted
E in blue, and the moving and rotating helicopter COM fixed frame
noted H in red.

With the noninertial frame rotated, it is still possible to find the position of a point in
the inertial frame as shown earlier in (C.1) if the position vector Hp is rotated to fit the
orientation of the E frame using a rotation matrix E

HR as shown in (C.4). The formulas
for velocity and acceleration is however no longer true, due to the rotation illustrated
in figure C.2 on the next page.
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C.2. Moving and rotating frames

Ep = E
HRHp+ EpEH (C.4)

y
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j

i

k

H

e

ω

pH

Figure C.2: An illustration rotating frame H with the axis of rotation ω included.

The newly introduced rotation have to be included in the new formula for velocity, this
can be done by including a term for rotational velocity Eω × E

HRHp into the already
existing formula for the velocity as done in (C.5). The rotation matrix E

HR is used to
transform the vectors defined in the H frame into the E frame.

Ev = E
HRHv + Eω × E

HRHp+ EvEH (C.5)
Eω = ωEe (C.6)

Eω The angular velocity of the moving system. rad/s
Eω × E

HRHp Term known as the Rotational velocity
He A unit vector specifying the axis of rotation.
ω Angular speed about the axis specified by He

While knowing how to include the rotation in the time derivative of the position to
find the velocity, this can be applied again to find the acceleration, yielding the result
shown in (C.7). Also here is the rotation matrix E

HR needed to transform all terms into
the E frame.

Ea = E
HRHa+ 2Eω × E

HRHv + Eα× E
HRHp+ Eω × (Eω × E

HRHp) + EaEH (C.7)
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C. Moving and Rotating Noninertial Frames

Eα The angular acceleration of a moving system. rad/s2

2Eω × E
HRHv Term known as the Coriolis acceleration.

Hα× E
HRHp Term known as the Transverse acceleration.

Eω × (Eω × E
HRHp) Term known as the Centripetal acceleration.

C.3 Example: Rotation and velocity difference

A basic example showing some of the principles from this appendix, is a point located
in a frame rotating with a constant velocity, and then observing that point in both
the rotating and the initial coordinate system, corresponding to the illustrations in
figure C.1 on page 182 and C.2 on the previous page with a constant ω.

The rotation of the H frame is around the x-axis in this example, giving a rotation
matrix E

HR as shown in (C.8), and a velocity difference between the two frames have
been set in the x-axis for illustrative purposes. The position of a point in the rotating
frame displayed by a vector Hp = [0 1 0]T m, with the rotating frame having a con-
stant velocity of ω = [0.5 0 0]T rad/s and a velocity difference between the two frames
EpEH = [0.1 0 0]Tm/s. The results are the position of the vector seen from the initial
frame E, illustrated in figure C.3.

E
HR =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (C.8)
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Figure C.3: A 3D plot of the vectors position seen from the initial frame E.

So when observing the vector in the rotating frame it is constant, but when observing
it from the initial frame it is rotating in the yz-plane, and moving slowly away due to
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C.3. Example: Rotation and velocity difference

the difference in velocity of the two frames. Figure C.4 show the y-composant of the
Hp vector, and the resulting y- and z-composants in the Ep vector.
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Figure C.4: A plot of the vectors y-composant in the rotating frame H and the re-
sulting y- and z-composant observed in the E frame.

The MATLAB-script have been included on the DVD:

/Model/Rigid body model/rotating_example_1.m
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