
3D Human Pose Estimation from

Monocular Image Sequences

Project Report

Adela Barbulescu

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg





Aalborg University

VGIS 10th Semester

Department of Electronic Systems

Fredrik Bajers Vej 7,

9220 Aalborg, Denmark,

Tel: +45 9940 8600,

E-mail: webinfo@es.aau.dk

Title:
3D Human Pose Estimation from
Monocular Image Sequences

Theme:
Object Detection and Tracking

Project Period:
Master Semester 2012

Project Group:
VGIS10 group 1027

Participant(s):
Adela Barbulescu

Supervisor(s):
Thomas Moeslund
Jordi Gonzalez

Copies: 2

Page Numbers: 55

Date of Completion:
May 31, 2012

Synopsis:

The topic of the project is 3D human
pose estimation from monocular image
sequences. The problem addresses video
frames in uncontrolled conditions, con-
taining persons revealed in a high variety
of poses.

The main goal is implementing a system
that is able to automatically detect
human poses in consecutive frames and
map them to 3D configurations, without
requiring additional background infor-
mation.

To this end, the implemented system
meets the initial requirements, being able
to estimate 3D configurations on bench-
mark databases and outperforming pre-
vious works. However, the system per-
formance is limited by the quality and
size of the dataset of poses on which it
is trained.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

Adela Barbulescu
badela10@student.aau.dk





Abstract

Automatic 3D reconstruction of human poses from monocular images is a challenging
and popular topic in the computer vision community, which provides a wide range of
applications in multiple areas. Solutions for 3D pose estimation involve various learn-
ing approaches, such as Support Vector Machines and Gaussian processes, but many
encounter difficulties in cluttered scenarios and require additional input data, such as
silhouettes, or controlled camera settings.

The project outlined consists of a framework that is capable of estimating the 3D
pose of a person from monocular image sequences without requiring background infor-
mation and which is robust to camera variations. The framework models the inherent
non-linearity found in human motion as it benefits from flexible learning approaches,
including a highly customizable 2D detector and a Gaussian process regressor trained
on specific action motions.

Results on the HumanEva benchmark show that the system outperforms previous
works obtaining a 70% decrease in average estimation error on identical datasets. De-
tailed settings for experiments, test results and performance measures on 3D pose esti-
mation are provided.
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Chapter 1

Introduction

The surrounding environment is perceived uniquely by each individual through its sen-
sory systems and at the same time, it is more and more digitally captured by technologi-
cal means which relate to the human sensory systems. The most widespread technologies
are related to capturing visual signals and enjoy a large audience of users, spreading from
amateur photography and multimedia content, to medical imaging and complex photo-
metric systems.

The large amount of visual data obtained has lead to the need of developing auto-
matic systems that are able to interpret this data. For example, millions of security
cameras have been installed in the past years for security purposes in public transport
systems, border monitoring and private alarm systems. Also, the multimedia content
is exponentially increasing along with the need of an automatic indexing procedure.
Therefore, the focus on research in vision related problems has also increased in order
to develop more cost-effective and time efficient systems.

The most researched topic is understanding and interpretation of visual recordings
containing human activities. Human pose estimation represents the process of estimat-
ing the configuration of human body parts from data input such as static images, image
sequences, multi-view imagery etc. When the sensor input also contains a temporal
dimension the term of human motion analysis is used. In recent years, human pose
estimation has received a significant amount of attention in the computer vision com-
munity and has become one of the main challenges due to its difficulties and widespread
applications in various fields, ranging from advanced human computer interaction and
smart video surveillance to the entertainment industry and arts.

The vision topics that are addressed in this context are human detection and track-
ing, classification and action recognition. In order to carry a fine analysis of motion and
action recognition, a 3D estimation of the articulated pose, shape and motion of the
human body is needed. 3D estimation of poses implies generating a representation of
certain keypoints belonging to the human skeleton in the 3D space.

1



2 Chapter 1. Introduction

Traditional technology applied in fields such as movie industry for motion capture
uses expensive multi-camera and invasive marker systems, which require careful calibra-
tion and highly controlled laboratory conditions as pictured in Figure 1.1. Recently,
Organic Motion has developed a new computer vision commercial system that is able
to recreate a 3D model of a subject complete with 3D motion at milimeter accuracy in
realtime. The system uses multiple 2D video cameras to track the subject by combining
the triangulated locations of identical pixels in the scene. The technology eliminates
requirements such as body suits or markers, thus improving flexibility and significantly
reducing the costs implied by achieving such a system.

Figure 1.1: Examples of motion capture systems used in game and film industry. Pose information is
captured using expensive equipment: multi-cameras, infrared cameras, invasive markers and suits.

Another vision commercial system that received a great amount of attention from the
motion capture community is the XBOX Kinect camera, which uses two synchronized
infrared and RGB cameras to capture depth and RGB scenario information. The low
cost and availability of open source drivers and software has turned the Kinect into an
easy configurable device for motion caption related applications placed at the disposal
of a very large audience. However, the camera can only be used indoors with a range
distance limit of around 10 meters and it presents less accuracy then other commercial
motion capture systems. Figure 1.2 shows how these technologies can be used. As a
large amount of the visual content which needs to be indexed cannot be captured by
such commercial systems, the attention has been directed towards recovering the 3D
human pose using only monocular image sequences.

The next sections introduce the open problem of human pose estimation, presenting
the goal and applications, issues and challenges, and finally giving presenting the re-
quirements of a system being able overview of the work carried in the thesis within the
outlined context.
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(a) (b)

Figure 1.2: Snaphots containing interfaces for 3D recontruction software using Organic Motion (a) and
Kinect (b).

1.1 Goal and Applications

The goal of research carried in the topic of human pose estimation is to develop less
invasive automatic systems that are able to generate 3D estimates of human poses in
uncontrolled conditions, given only video sequences containing persons (such as outputs
from surveillance or web cameras). A critical subject for automatic pose estimation is
the use of monocular image sequences, which would enable a larger range of commercial
applications and individual users to benefit from it: 3D animations, gaming, human
computer interaction, abnormal behavior recognition etc.

The applications in human pose estimation can be organized in 3 main categories:

• activity and gesture recognition: given a motion sequence of a human performing
activities or actions, the activity is recognized. Related topics are: smart video
surveillance (recognizing actions or abnormal behavior with minimal user super-
vision), advanced human computer interfaces (using machine interfaces which are
able to recognize gestures or interpret user behavior), automatic annotation (anno-
tating huge amounts of digital data automatically by detecting activities without
user supervision).

• motion capture: given a video sequence containing human motion, a set of key-
points are tracked in order to obtain a 3D representation of the analyzed body parts
over time. Such applications are used in: sports biomechanics (enhancing sport-
ing performances), arts and entertainment (improving 3D animations and visual
effects in games and film industry, studying the motions of artists and dancers).

• motion synthesis: automatic creation of human pose data with applications in
human computer interaction (interfaces using synthetic data), virtual reality, pose
reanimation (recreating poses which can be observed from different viewpoints).



4 Chapter 1. Introduction

1.2 Issues and Challenges

3D estimation of human poses is still an open problem as the vision based systems
encounter challenges that emerge from the following main issues:

• 3D space to 2D image plane projection ambiguities: 2D image planes can be easily
generated from 3D scenes using perspective projection from the pinhole camera
model, also leading to loss of depth information. The inverse process maps one
point of the 2D image to a line in 3D scene, revealing a one-to-many relation as
any point from the 3D line may correspond to the 2D point. This results into an
ill-conditioned problem which can be solved using learning or modeling approaches
to map 2D to 3D data.

(a) (b)

Figure 1.3: Example of 2D-3D ambiguities in human poses. The silhouette (a) maps to two possible
poses (b).

• variability in shape and appearance of human poses: humans may appear in a
wide variety of poses, shapes and appearance, largely due to the highly articulated
nature of the human body and complex distortions encountered in a single activ-
ity sequence, but also because of changes in clothes, illumination, noise, camera
viewpoint.

• image clutter : human localization, which is a requirement in 3D pose estimation,
is highly influenced by image clutter. Realistic scenarios, where background sub-
traction cannot be applied because of moving cameras, changes in illumination
and variable background, require image descriptors and accurate predictors that
are robust to background noise.

• occlusions and self-occlusions: changes in viewpoint and activities such as walking
and running lead to situations in which different limbs are self occluded, increasing
the complexity of possible poses. Also, other objects may occlude body-parts.
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• high dimensionality and non-linearity in human motion: as the human body is
composed of more than 30 main joints, an articulated body model presents around
60 degrees of freedom creating a high dimensional space of possible human poses
with non-linear dynamics.

1.3 System requirements

The implementation of a system that is able to estimate 3D human poses from monoc-
ular image sequences is subject to a set of requirements:

• input is represented by a monocular video sequence containing one person per-
forming actions while displaying a wide variety of poses

• the system is fully automatic, with the video input not containing any annotations

• the system does not require background information nor camera calibration

• the chosen 3D data representation allows visualization and error measure methods

1.4 Problem formulation

Considering the goals and challenges of research carried in the field of 3D human pose
estimation and requirements of implementing such a system, the following problem for-
mulation is chosen:

How should the 3D human configuration be estimated given only a monoc-

ular video sequence of a person performing various actions?

1.5 Deliminator

The implemented system has met the following limitations:

• the video must contain only one person

• the system is confused by horizontal poses

• the quality of 3D estimations and variability of detectable poses depends on the
available benchmark datasets containing 3D ground truth data

• the absolute position and orientation of the body are not retrieved as 3D config-
urations are represented as relative 3D body part locations in a local coordinate
system



Chapter 2

State of the art

This chapter covers theoretical notions and state of the art approaches related to 3D
human motion analysis from monocular image sequences, based on which the proposed
system is implemented. Therefore, the most important surveys and works in the related
literature are outlined in the first two sections of the chapter and theoretical key aspects
that emerge from these are described in more detail in Section 2.3. Next, a benchmark
dataset framework which has the purpose of maintaining a ranking and a measurable
comparison between all these approaches and which is also used in the project is pre-
sented in Section 2.4. Finally, Section 2.5 describes a general outline of the system.

2.1 Related surveys

A broad overview of the most common approaches used in vision-based human motion
analysis is given in a few surveys: [38], [27], [30], [36], [6], [15]. These also present a
general taxonomy of motion analysis techniques: detection, tracking, human pose esti-
mation and recognition:

• T. B. Moeslund presents two surveys that review human motion capture related
papers published until 2000 [38] and an extension [27] outlining related work from
2000 to 2006. The first survey presents a taxonomy of system functionalities com-
posed of four main processes: initialization, tracking, pose estimation and recogni-
tion. Initialization represents the first stage of data processing as an appropriate
model is established for the subject, ensuring a correct interpretation for the ini-
tial scene. A general description for tracking is analyzing the human motion in
consecutive frames by segmenting the human body from the background and find-
ing correspondences between the segments. Next, the human pose is estimated
by determining the configuration of the body and limbs in a given frame. During
recognition the resulted parameters are processed in order to classify the motion
as belonging to a certain type of action. A general description of methods and

6
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performance comparison are made in order to analyze the state of art. The second
survey presents advances in the field of motion capture with emphasis on automatic
methods for pose estimation and tracking in natural scenes rather than controlled
laboratory conditions and the general advances obtained in each of the above men-
tioned processes.

• Poppe [30] presents a pose estimation taxonomy of two main classes: model-based
and model-less approaches. Model-based methods imply a human body model con-
sisting of a kinematic chain and body dimensions, while pose estimation consists
of modeling and estimation. The modeling phase provides a likelihood function ac-
cording to known parameters such as camera viewpoint, image descriptors, human
body model. Pose estimation finds the most likely pose considering the likelihood
function. On the other hand, model-free approaches do not assume a known hu-
man body model and implicitly model pose variations during a training phase.
These approaches are divided into learning-based methods, when a function maps
image descriptors to poses, and example-based, when mapping is done by similar-
ity searching in a database of exemplars and corresponding poses.

• Sminchisescu [36] focuses on the 3D pose reconstruction problem and presents two
main approaches: generative (top-down) and discriminative (bottom-up). Genera-
tive approaches use high-level descriptions of the complete human pose to explain
low-level image descriptors. In this scope, synthetic 3d models are modeled and
2D poses are generated explicitly by rendering 3D pose hypotheses to the 2D im-
age plane. An observation likelihood function is built and reaches a maxima when
the 3d human model is mapped to the correct pose hypothesis. Discriminative
approaches attempt to learn the inverse of perspective projection by directly map-
ping image descriptors to 3D poses. These methods use statistical learning models
extensively and require training sets of corresponding images and poses.

• Forsyth [6] focuses on tracking and motion synthesis problems. Two main prob-
lems are depicted: lifting human poses from 2D to 3D space and determining which
pixels are associated to the human body in the image space. Lifting ambiguities
are shown to be easily solved when the temporal context is involved in the proba-
bilistic framework.

• Hen [15] gives a review of techniques used for single camera 3D pose estimation
and emphasizes on new research directions: bottom up approaches with the inter-
mediary stage of local parts detection and mapping to 3D poses, the tendency of
learning in low-dimensional pose space rather than high-dimensional appearance
space and learning motion models from video sequences for smoother 3D poses.
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2.2 Related work

As outlined in the previous chapter, the literature that covers the problem of 3D pose
estimation is extremely vast and can be organized using different taxonomies depend-
ing on the focus of research. Considering the huge set of approaches used to tackle this
problem, two main classes emerge: the first tries to map low-level image features directly
to 3D human poses and the second uses an intermediary phase of finding 2D estimates
of body parts and then mapping them to 3D poses.

One example of work included in the first class belongs to Agarwal and Triggs [1] who
extract a dense grid of shape context histograms and map them directly to 3D poses,
using various non-linear regression methods: ridge regression, relevance vector machine
(RVM) regression, and support vector machine (SVM) regression. The method is also
embedded in a regressive tracking framework. The second class can be divided into two
sub-classes: learning and modeling approaches.

The first type of approaches involve 2D human detectors and learning the 2D-3D
mapping from training examples. Recent work focuses on realistic environments with
complex backgrounds and a more diverse set of poses. An approach would be joint
human localization and 3D reconstruction as used in [23] or the use of more detailed
2D part-models [9], [41]. As some human detectors show a relatively high rate of false
detections or difficulties with certain poses and viewpoints, the 2D pose estimates can
be improved by incorporating the temporal dimension, using a tracking framework and
learning dynamic human motion models.

A common method for tracking is the use of particle filters, which attempt to deter-
mine the distribution of a latent variable at a specific time, given all the observations
until that particular time. Particles are propagated through the dynamic model and are
continuously re-weighted by evaluating the likelihood. However, estimation of 3D poses
implies high data dimensionality, particle filters being effective in more constrained sce-
narios such as: possibility of manual initialization, strong likelihood models or assump-
tion of strong dynamic models. Otherwise more efficient search methods are employed.
For example, Sidenbladh [14] uses a large training set on which efficient search is applied
based on learned motion models. The method is called importance sampling and it is
used to guide particle filtering search on the motion database. Motion priors enforce
strong constraints and help in 3D pose tracking. However, the approach depends on the
amount and variability of training data to learn accurate models of all possible motions.
Another example is given by Andriluka et al [22] who first find 2D poses in single frames
and then improve the estimates by extracting tracklets over short sequences of frames.
The results are mapped to 3D poses using a latent Gaussian process model.

The second type of approaches try to model the 2D-3D mapping explicitly by using
the inverse of the 3D to 2D mapping. The most used methods imply geometric recon-
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structions of the 3D poses:

Figure 2.1: Geometric reconstruction approach: limb lengths in images can reconstruct the displace-
ment in direction z.(Figure from [13]).

Taylor [37] uses a scaled orthographic projection model to reconstruct the displace-
ments in depth of foreshortened limbs. Each limb endpoint presents two possibilities of
projection depending on the chosen sense on the z direction. In the original work, user
labels are required to point out which endpoint of a limb is closer to the camera. Other
solutions involve matching shape context descriptors from a motion capture database.
Also, the method is applicable only for poses that are far away from the camera. An-
other approach belongs to Brauer [16] who uses the perspective camera model which,
for known settings of the camera, limb lengths and 2D parts coordinates, returns cor-
rect depth information irrespective of the distance between camera and detected person.
Also, the tree of possible poses is checked for violations of anatomical joint positions
which lead to pruning abnormal poses. The final 3D pose is selected by matching the
set of remaining poses within a learning framework trained on a motion capture dataset.

The advantages and disadvantages of modeling and learning approaches are outlined
by Gong et al [13] in an comparison of experiments employed on identical data inputs
using a geometrical approach and a Gaussian process regressor from 2D estimates to
3D poses. The experiments imply scenarios which include various human actions and
camera viewpoints, ground truth and noisy 2D data inputs. Results show that learn-
ing approaches perform better when the training data is more similar to testing data,
precisely, when there are minor changes in viewpoint and action type, irrespective of
the level of input data noise. They are outperformed by modeling approaches when the
changes are major, as no similar poses are learned. On the other hand, the latter are
outperformed in all scenarios when estimated or synthetic noisy 2D poses are used.

Another comparison between learning and modeling approaches in monocular 3D
pose estimation is performed by Gong [39] on the effect of temporal information, by
varying the number of consecutive frames used in the estimation process. Results show
a general advantage of using consecutive frames against single frames as input data.
Using ground truth temporal 2D data shows a slow increase in the precision, leading to
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the preliminary conclusion that the window size of consecutive frames should be propor-
tional to the quality of 2D estimates to obtain a better performance.

2.3 Theoretical aspects

The first two sections covered the most important approaches used in previous works
on 3D pose estimation and motion analysis. From these, theoretical key aspects emerge
that need to be considered when implementing a system in this scope. The next sections
cover such theoretical notions.

2.3.1 3D Human body representation

Human pose estimation requires a general human body representation that is able to
keep human specific features, considering issues such as pose and shape variability or
changes in clothes and appearance. As a trade-off between low computational complexity
and feature generality, the most common representation is the stick figure model or kine-
matic tree, (2.2 (a))composed of pivoting joints connected by rigid limbs or body parts.
Depending on the degree of detail required, a variable number of joints and limbs may
be used and a joint presents up to 3 degrees of freedom (DOF). For example, Sidenbladh
[14], Sigal [20] and Gong [39] use models composed of 50, 47 and 30 DOF, respectively.
Independent of the level of detail, a human body model should have at least 20 DOF:
one for each knee and elbow, two for each hip, three for each shoulder and six for the
root. Limbs are connected in a hierarchical manner, allowing different body parts to be
represented and expressed relative to each other.

The body model can be represented in more detail using volumetric models which
use 3D primitives such as elliptical cylinders (2.2 (c)), truncated cones, spheres, super
quadrics (2.2 (b)). The super quadrics volumetric model is more accurate in comparison
to less elliptic models as it supports a larger pose variability at the cost of more param-
eters required in the estimation process.

Although volumetric models present a more detailed structure which can lead to an
improved matching between image and 3D space, the process of initializing the base
primitive parameters implies higher computational complexity. Therefore, they are pre-
ferred in motion synthesis applications, while for tracking problems the kinematic models
show overall better performance.

2.3.2 Low-level image descriptors

The first step in 3D human pose estimation is extracting the low-level image features
which can later be mapped to high-level understanding tasks, such as 2D or 3D pose
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Figure 2.2: (a) Stick figure model. (Figure from [1]) (b) Volumetric model consisting of super quadrics.
(Figure from [18]) (c) Volumetric model consisting of elliptical cylinders. (Figure from [17]).

estimates. The most common used image features in the problem of pose estimation are:
silhouettes, shapes, edges, motions, colors, gradients and combinations of them. State
of the art techniques for human detection use a combination of image features, shape
contexts and learning approaches to robustly detect human poses.

Silhouettes and Contours

Silhouettes represent relevant image features to human detection as they are highly cor-
related with body contours, and therefore can be mapped to human pose. Silhouettes
can accurately be extracted in the case of static backgrounds with stable illumination
conditions using background subtraction. Most methods used for extracting silhouettes
involve image differencing, single or mixture of Gaussian distribution on color statistics.
To improve the segmentation process, Agarwal [1] uses shape context distributions: his-
tograms of local regularly spaced edge pixels in log-polar bins which encode silhouette
shape over scale ranges. Matching silhouettes reduces to matching shape context distri-
butions as pictured in Figure 2.3.

Figure 2.3: (a) Extracted silhouette (b) Edge points (c) Shape contexts. (Figure from [15]).

However, silhouette extraction becomes unreliable in the case of natural scenes with
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cluttered background, illumination changes, camera motion and occlusions and may
require additional background information for improved robustness.

Edges

Edges are important image features as they can be easily extracted, they can be used for
body part delimitation and are insensitive to color, texture and illumination changes.
Deutscher [17] uses a human detector in which the first stage is computing a pixel
map-based weighting function. The map is produced by using an edge detection mask
applied on the image and then thresholded to remove noisy edges. The second stage is
improving the result with silhouette-based features, as edge information is not robust
against clothes variability and cluttered background. Ramanan et al [7] integrate con-
stant appearance information with extracted edges to find body segments by building
person-specific templates. Reducing body-part contour edges to rectangles, the model
built captures the full appearance of parts and tracks similar parts across consecutive
frames as pictured in Figure 2.4.

Figure 2.4: Model customized for finding lateral-walking poses. The template structure and part
location bounds are initialized by hand. To prune false detections in textured backgrounds the score is
reevaluated by adding person pixel constraints. (Figure from [7]).

Motions

Extracting motion information from image sequences is a common approach in human
pose tracking and segmentation. Motion can be measured using optical flow approaches,
by creating a 2D velocity map of pixel displacements between frames. Urtasun [31] uses
silhouettes and optical flow to create mappings of 2D points between consecutive frames.
An objective function which describes the mapping is minimized to obtain smoothness in
3D pose estimates. Andriluka et al [23] extends the pedestrian detector [22] and builds a
multi-person tracking-by-detection framework by generating robust estimates of 2D body
parts over short frame sequences called tracklets. Tracklets are extracted by matching
pose hypotheses in different frames according to position, scale and appearance.

Colors

Color information can be used under stable illumination conditions for body part detec-
tion as it is invariant to scale and pose variability. Lee [25] improves body part detection



2.3. Theoretical aspects 13

by integrating skin color histograms to find positions of arms, legs and faces. Ramanan
[7] uses color features to track body parts with similar appearance. To ensure robust
detection, normalization and post-processing are required, and also integration of other
appearance features.

Oriented gradients

A very successful approach in object detection is working with gradient orientations
rather than pixel values. Dalal et al [28] introduce histogram of oriented gradients (HOG)
descriptors, which are invariant to changes in illumination, scale and viewpoint. State-
of-the-art approaches for object detection [41], [9] use HOG descriptors, outperforming
previous work on widely acknowledged benchmarks for object and human detection. The
performance obtained is explained by the fact that object appearance can be very well
described by the distribution of intensity gradients or edge directions.

The method used for extracting HOG descriptors is based on the evaluation of nor-
malized histograms of oriented gradients obtained from a dense grid of image blocks.
Practically, the image windows are contrast normalized and divided into small cells,
each being associated with a local 1-dimensional histogram of edge directions over the
cell pixels. Each cell votes for the direction weights and the combined vectors form the
descriptor. The results are improved with a new normalization process over overlapping
spatial blocks and a combined feature vector is formed by overlapping dense HOG de-
scriptors. The final step consists of feeding the feature vectors to an SVM trained on
images of the particular object. Figure 2.5 shows how HOG detectors cue the contrast
of silhouette contours, against the presence of cluttered background, and not internal
edges or foreground.

Figure 2.5: (a) Average gradient image extracted from training sets. (b) Positive SVM weights centered
on blocks of images. (c) Negative SVM weights. (d) Test image. (e) Computed HOG descriptor. (f)
HOG descriptor weighted by positive SVM weights. (g) HOG descriptor weighted by negative SVM
weights.(Figure from [28]).
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2.3.3 Part-based models for 2D pose estimation

Most 3D pose estimation frameworks require an intermediary stage for object detection
and estimation in which the 2D estimates of body parts are obtained. The state-of-the-
art approach towards 2D human pose estimation involves the use of part-based models.

The main idea behind part models dates from Binford’s generalized cylinder models
[2] and the pictorial structures of Fischler [24] and Felzenszwalb [29]: objects can be
modeled as a set of part templates which can be arranged in deformable configurations.
Part templates reflect local object appearance while the configuration captures geomet-
rical, spring-like connections between pairs of parts.

Figure 2.6: On the left, definition of Binford’s generalized cylinders [2] by two functions: the cross-
section (a) and the sweeping rule (b), which modulates the width of the cylinder (c) through the trans-
verse axis to create the final cylinder (d). On the right, Fischler’s pictorial structure [24] which models
object using local part templates and geometric constraints, visualized by strings.

Depending on the connectivity representation, different types of part-based models
have been proposed over the years. One of the first successful models is the Constella-
tion model introduced by Fergus et al [10], which presents full-connectivity, between any
two pairs of parts. The model was introduced for an unsupervised learning framework
for object classification. Objects are represented by estimating a joint appearance and
shape distribution of their parts based on all aspects of the object: shape, appearance,
occlusion and relative scale. As a result, the model is very flexible, but it requires a high
number of parameters and the evaluation is too computationally expensive: for a k-part
model, the complexity is O(Nk).

Another approach is the use of Star models, where each part is connected only to a
root reference part and is independent of all other part locations, leading to a inference
complexity of O(N2). The approach is called Implicit shape model [21] as it implicitly
encodes a large vocabulary of parts, respective to the reference part. Felzenszwalb et al
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[9] use a star-shaped model defined by a root filter and part-filters based on the HOG
descriptor [28] and the associated deformation, modeling visual appearance at difference
scales as shown in 2.7.

Figure 2.7: Single-component model defined by a root filter (a), higher resolution part-filters specifying
weights for HOG features (b) and spatial model representing weights associated with parts for placing
their centers at different locations relative to the root (c).(Figure from [9]).

Tree models are a generalization of star-shaped models which allow for efficient infer-
ence of O(N2), and relations between parts are of parent-child nature. The configuration
cost is computed according to a coordinate system defined by each parent. One limita-
tion of the model is the double-counting phenomena, where two child-parts are partially
overlaid as the geometrical positions are estimated independently.

2.3.4 Machine learning for pose estimation

The ill-posed problem of 3D pose estimation can be solved by stating initial constraints
such as possible camera viewpoints, pruning unnatural poses, and using various statis-
tical learning frameworks to learn certain image features or improve detected poses by
tracking: support vector machines (SVMs), relevance vector machines (RVMs), Gaussian
processes, adaboost, nearest-neighbor, particle filters, hidden Markov models etc. The
following subsections cover theoretical aspects related to SVMs and Gaussian processes,
which have proven high performance as fine learning tools in human motion analysis.

Support vector machines

Over the past two decades the scientific community has shown a very high interest in
kernel machines, most of it being focused on support vector machines (SVM) since they
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were introduced by Boser et al [4] in 1992. SVMs represent a very popular method for
binary classification, but they are also used for multi-class classification and regression
analysis. In the classification context, an SVM can be seen as an extension of a single
layer neural network which tries to find a way of separating data using any hyperplane,
without measuring how data is separated. SVMs introduce a technical measure, called
margin, which represents the distance from the hyperplane to the closest point in the
dataset. The hyperplane that separates data most clearly is the one that is set as far
away from either class, or the one that generates the highest margins as shown in Figure
2.8.

Figure 2.8: Dashed lines represent different possible hyperplanes for separating the two classes. The
red line represents the hyperplane with the largest margin and best generalization.

In the linear definition, given a training set D of n observations:

D = {(xi, yi)|xi ∈ ℜp, yi ∈ {−1, 1}}n
i=1 (2.1)

, where xi is a p-dimensional vector and yi is a binary label, an SVM finds a maximum
margin separating hyperplane. For each training dataset, SVMs learn a parameter con-
sisting of a vector w, which represents the normal to the maximum margin hyperplane.
From the optimization point of view, there are two formulations for SVMs.

• Primal SVM formulation

The hyperplane that is characterized by the normal vector w which maximizes the
margins for the training set D can be found by solving the following quadratic
problem (QP):

minimizew
λ

2
‖w‖2 +

1

n

n
∑

i=1

max(0, 1 − y(w · x)) (2.2)
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, where λ ≥ 0 is the regularization parameter that scales ‖w‖2. Instead, a scaling

parameter for the empirical loss term can be used: C =
1

nλ
.

• Dual SVM formulation

The primal formulation implies a linear classifier in which the hyperplane is defined
in the same space as the data. Nonlinear classifiers can be represented by an SVM
using the kernel trick: mapping the data points xi to a higher dimensional space F
using a function φ : X → F and finding a linear classifier in the high-dimensional
space. The kernel trick allows defining a kernel matrix Kij = φ(xi) · φ(xj) such
that any data point dot products can be replaced by the associated element in the
matrix. According to Mercer’s theorem, any positive semi-definite matrix can be a
kernel matrix. Also, the mapping σ is not required as long as a valid kernel matrix
has been found. Using the Lagrange multipliers αi, the formulation of the dual
optimization problem is:

maximizeα

n
∑

i=1

αi − 1

2

∑

i,j

αiαjyiyj(xi · xj) such that 0 ≤ αi ≤ 1

nλ
(2.3)

When a kernel is introduced the formulation becomes:

maximizeα

n
∑

i=1

αi − 1

2

∑

i,j

αiαjyiyjK(xi, xj) such that 0 ≤ αi ≤ 1

nλ
(2.4)

The support vectors represent the training points which are either misclassified or
fall inside the margin region. According to the dual formulation, support vectors
correspond to the αi multipliers that have non-zero values and the optimal weight
vector represents a linear combination of them. Therefore, training an SVM im-
plies finding the support vectors.

Gaussian Processes

The basic theory for prediction with Gaussian processes (GP) dates back from 1940’s,
in the work of Wiener [40] and Kolgomorov [19]. The earliest applications were made
in the field of geostatistics, meteorology, spacial statistics and computer experiments.
In the last decade, the focus has been directed towards the general regression context
and the connection to other learning methods such as support vector machines has
been outlined. Moreover, GPs are computationally equivalent to many known models,
and represent general cases of Bayesian linear models, spline models, or neural networks.



18 Chapter 2. State of the art

Formally, GPs are defined as collections of random variables, any finite number of
which have a joint Gaussian distribution. They extend multivariate Gaussian distribu-
tions to infinite dimensionality. Using Gaussian processes for prediction problems can be
regarded as defining a probability distribution over functions, such that inference takes
place directly in the function space-view. The training data observations y = {y1, ..., yn}
are considered samples from the n-variate Gaussian distribution that is associated to a
Gaussian process and which is specified by a mean and a covariance function. Usually,
it is assumed that the mean of the associated GP is zero and that observations are
related using the covariance function k(x, x′) . The covariance function describes how
function values f(x1) and f(x2) are correlated, given x1 and x2. As the GP regression
requires continuous interpolation between known input data, a continuous covariance is
also needed. A typical choice for the covariance function is the squared exponential:

k(x, x′) = σ2
f exp

−(x− x′)2

2l2
(2.5)

,where σf represents the amplitude or the maximum allowable covariance, reached
when x ≈ x′ and f(x) is very close to f(x′) , and l represents the length parameter which
influences the separation effect between input values. If a new input data x is distant
from x′ then k(x, x′) ≈ 0 and the observation x′ will have a negligible effect upon the
interpolation.

Given the independent variable x with the set of known observations y, then the
estimate y∗ for the new value x∗ is found knowing that data can be represented as a
sample of the multivariate Gaussian distribution:

[

y
y∗

]

∼ N

(

0,

[

K KT
∗

K∗ K∗∗

])

(2.6)

where K represents the covariance matrix, K∗ represents the row in the matrix that
corresponds to x∗ and K∗∗ = k(x∗, x∗). We are searching for the conditional probability
p(y∗|y) which follows a Gaussian distribution:

y∗|y ∼ N(K∗K
−1
∗ y,K∗∗ −K∗K

−1
∗ KT

∗ ) (2.7)

which leads to the mean and variance values:

y∗ = K∗K
−1
∗ y (2.8)

var(y∗) = K∗∗ −K∗K
−1
∗ KT

∗ . (2.9)

2.4 HumanEva benchmark

Given the extensive amount of work on 3D pose estimation, a benchmark database is
needed in order to create a ranking of the results obtained by different approaches. An
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important contribution in this regard is the HumanEva dataset, introduced by Sigal et
al [35] using a hardware system able to capture synchronized video and 3D ground truth
motion.

The HumanEva datasets contain 4 subjects performing 3 trials of a set of 5 prede-
fined actions: walking, boxing, jogging, gestures and throw-catch. All data is divided
into subsets of training, validation and testing. The body model presents 15 joints and
data is captured using 5 synchronized cameras used from different viewpoints as showed
in Figure 2.9.

Figure 2.9: Images of a subject performing walking action from synchronized video cameras with
overlaid motion capture data.

In addition to the dataset, a baseline Bayesian filtering algorithm is provided for
motion tracking. The performance is analyzed according to a variety of parameters al-
lowing the user to experiment with new settings and motion models. Also, a standard
set of error measures based on Euclidean distances between points is defined for 2D and
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3D pose estimation and tracking algorithms evaluation.

2.5 Outline of proposed framework

Considering the various methods and notions outlined in the previous sections, the thesis
presents a learning-based approach towards 3D pose estimation using monocular image
sequences. The system presented is fully automatic, marker-less and does not require
camera calibration nor background information. In comparison to all presented related
works which require silhouette extraction or 2D ground truth configurations, the system
proposed is complete, in the sense that it takes raw image sequences as input and out-
puts the estimated 3D configurations.

Overall, it can be described as a three-stage framework composed of a 2D human
detector, a motion smoother and a 3D regressor as pictured in Figure 2.10.

Figure 2.10: Outline of the 3-stage framework.

The 2D detector is based on Ramanan’s articulated mixture model [41] as it obtains
state of the art results on standard benchmarks and it also benefits of a very fast im-
plementation in comparison to previous works. For each frame in the video sequence,
image features are mapped to 2D poses using a flexible mixture model which captures
co-occurrence relations between body parts. The 2D detector processes singular frames
from the video sequence input and outputs vectors of 2D joint coordinates following
a kinematic model representation. The results of the 2D detector are improved using
temporal smoothing techniques, which works on an optimal window size of consecutive
frames. On the other hand, as the 2D detector works on a single-frame basis, the frame-
work can be used to recover 3D poses from singular monocular images, smoothing being
unnecessary.

In the final stage of the framework, the new vectors of 2D coordinates are normal-
ized and mapped to 3D poses using a Gaussian process regressor. As stated in the
related work section, many 3D pose estimation frameworks use Gaussian process regres-
sion as GPs represent a flexible learning approach, capable of modeling the inherent
non-linearity found in human motion. Comparative to SVMs and RVMs, they pro-
vide a better predicting accuracy at the cost of longer training times. Experiments are
conducted systematically on the HumanEva benchmark, for each stage of the frame-
work, on different types of activities and camera viewpoints. The final 3D estimates are
compared with results obtained using different methods of mapping image features to
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Gaussian process inputs.

The next chapters are organized according to the described framework. Chapter 3
describes the 2D human detector based on the articulated mixture model from [41] and
presents experiments and results on different motion types and viewpoints from the Hu-
manEva dataset. The chapter also includes a description of the motion smoother used
to improve the results of the detector for image sequences.

In chapter 4, the Gaussian process regressor is described and comparisons are made
between other approaches which use the same regressor to generate 3D estimates. The
chosen 3D human body representation is described and results are interpreted in 3D
space.

Lastly, Chapter 5 outlines conclusions based on the methods used and all experimen-
tal results obtained and discusses future work.



Chapter 3

2D Human Detection and

Smoothing

This chapter describes the method used for human pose estimation and motion smooth-
ing in static images. The 2D human detector is based on the solution presented by
Ramanan et al. in [41], which uses a novel representation of part models, while outper-
forming past work and being faster by orders of magnitude. The smoothing technique is
based on Garcia’s work from [12] on robust DCT-based penalized least squares smooth-
ing.

3.1 2D Human Detector

The dominant approach towards human pose estimation implies articulated models in
which parts are described by pixel location and orientation. In the pictorial structure
framework, objects are decomposable into local part templates described by geometric
constraints. The approach used by Ramanan introduces a model based on a mixture
of non-oriented pictorial structures, tuned to represent particular classes of parts. The
variability of poses and appearances can be described using mixtures of templates for
each body part used in a model.

Current approaches involving object recognition are build on mixtures of star struc-
tured [9] or implicitly-defined models [5]. Ramanan’s model adds certain constraints to
the classic spring model [24] favoring particular combinations of part types. Objects
are represented using tree relational graphs which capture geometric or semantic con-
straints. The usage of tree models allows for efficient learning and inference, but also for
the phenomena of double-counting. From the object detection point of view, the model
is most similar to that of pictorial structures based on mixtures of parts [9], [29], [8].

22
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3.1.1 Model

The mixture model implies mixtures of parts or part types, which may include orienta-
tions of parts (horizontally or vertically oriented limbs) or may extend semantic types
(an open or closed hand). Similar to the star-structured part-based model in [9], this
mixture model involves a set of filters that are applied to a feature map extracted from
the analyzed image. A dense feature map is obtained by extracting the HOG features
[28] from equally sized image patches, and by iterating this process at different scales of
the image, a feature pyramid combines all the features maps.

Generally, a filter is a patch template defined by an array of weight vectors and it
represents a certain part type in the model. The score of a filter is obtained by comput-
ing the dot product of that filter and a same-sized subwindow of a feature map (Figure
3.1).

Figure 3.1: Filters associated to a mixture of head part-types. Each filter favors a particular orientation
of the head.

An n-part model is defined in a (b, d, f, C1, ..., Cn) format, where b is the vector of bias
values for each mixture component, d is the vector of deformation values, f is the vector
of filter templates and Ci is the i-th mixture part. A mixture component Ci described
by (bid, did, fid, par), where the first three terms represent the vectors of indices in b, d
and f at which the respective values of the part-types are found, and par represents the
index of the part’s parent.

A configuration of parts for an n-part model specifies which part type is used from
each mixture and its location relative to the pixel grid. Considering an image I and
pi(x, y) a pixel located in part i, we call ti its part-type, where i ∈ 1, ...,K, pi ∈ 1, ..., L
and ti ∈ 1, ..., T , K being the number of parts, L the number of pixels and T the number
of part-types used in the model.

Each possible configuration of parts found in an image receives a certain score and
a person is considered detected when the highest scoring configuration is found (above
a determined threshold). The score of a configuration of parts is computed according
to three model components: co-occurrence (3.1), appearance and deformation (3.2). A
general mixture model can be described as a K-node graph G = (V,E), where nodes
represent parts and edges represent strong relations between parts. The graph is built
by manually defining the edge structure E (Figure 3.2).
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Figure 3.2: Tree visualization describing a full-body 14-part model(Figure from [41]).

The co-occurrence component measures the part-type compatibility by adding local
and pairwise scores[41]:

S(t) =
∑

i∈V

bti

i +
∑

i,j∈E

bti,ti

ij (3.1)

The first term favors certain type assignments for each part, while the second favors
part co-occurrences. For example, parts placed on rigid limbs will maintain similar ori-
entations if the part types correspond to orientations.

The full score equation can be written as[41]:

S(I, p, t) = S(t) +
∑

i∈V

wti

i · Φ(I, pi) +
∑

i,j∈E

wti,ti

ij · Ψ(pi − pj) (3.2)

where the second term expresses the local appearance score by placing a weight tem-
plate of part i, tuned for part-type ti at pi and the third term expresses the deformation
score as relative location between connected parts i and j. The appearance model is
based on dot product between the weight templates and the extracted feature vector at
pi, Φ(I, pi) (in our case, the HOG descriptor). The deformation model is based on the
dot product between the part-type pair assignment parameters wti,ti

ij and the relative
location between pair parts, computed as:

Ψ(pi − pj) = [dx dx2 dy dy2]T (3.3)

,where dx = xi − xj and dy = yi − yj .

Starting from the general mixture model, a few particular cases can be used to de-
scribe other known models. For example, if T = 1, the model describes the standard
pictorial structure [29]. Also, semantic part models [8] are obtained if the part-types
capture semantics instead of visual features by using the same part-type pair parameters:
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w
ti,tj

ij = wij (3.4)

The mixture model of deformable parts described in [9] restricts the co-occurrence
model such that all parts share the same type and the configuration score is a sum of
biases and local appearance and deformation scores. Our model is also a simplified ver-
sion in which the deformation score of a part depends only on the relative location of
parts and analyzed pair-type, but not on parent-type:

wti,ti

ij = wti

ij (3.5)

As the model described is highly customizable, a more efficient model structure can
be found by varying T and K. For a full-body model, a 14 and a 26 part-model are used,
the results showing increased performance in the latter, due to the capture of additional
orientation. The model used in this project represents a full human body and is com-
posed of 26 parts, including midpoints between limbs. Also using a variable number (5
or 6) of part-types results in better performance, as it covers an extended, variable set
of poses.

3.1.2 Inference

Inference using the mixture model described is obtained by retrieving the highest-scoring
configuration, precisely by maximizing S(I, p, t) (3.2) over all parts and part-types.
Building the associated relational graph G as a tree allows for efficient inference with
dynamic programming. For this, the score of part i is computed depending on the part-
type and pixel location:

scorei(ti, pi) = bti

i + wi
ti

· Φ(I, pi) +
∑

k∈kids(i)

mk(ti, pi) (3.6)

where kids(i) is the set of children of part i and mk(ti, pi) is the message a child k
sends to its parent i, which represents the maximum scoring location and type of child
part k for a given location and type of parent part i:

mi(tj , pj) = max
ti

b
ti,tj

ij + max
pi

score(ti, pi) + w
ti,tj

ij · Ψ(pi − pj) (3.7)

As all messages are received by the root part, score1(t1, p1) represents the maximum
score of all possible configurations that can be obtained at that particular location and
root type. The global highest score is found by thresholding and applying non-maximum
suppression over overlapping configurations. Starting from a root, all the locations and
part-types of configuration parts are found by backtracking, if the argmax indices have
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been stored.

The most computationally expensive portion of the dynamic programming algorithm
is occupied by computing the child messages. A maximum score is computed among L∗T
child locations and types for L ∗ T parent parts, reaching the complexity of O(L2 ∗ T 2)
per part. Setting Ψ(pi − pj) (3.3) as a quadratic function allows computing the inner
maximization in (3.7) using a distance transform [29] for each combination of parent-
child part types, reducing the complexity to O(L ∗ T 2) per part. In our case (3.5),
only T springs exist per part, reducing (3.7) to O(L ∗ T ). Also, local appearance scores
wi

ti
· Φ(I, pi) are linear and can be efficiently computed using convolutions.

3.1.3 Learning

The learning process of the articulated mixture model is done in a supervised context.
Sets of positive images with manually annotated limbs and a set of negative images are
provided for this purpose. The implemented model includes two components: detection
and pose estimation, which means that on the one hand it generates high scores on
ground-truth poses and low scores on negative images and on the other hand, it outputs
a set of parameters containing limb locations. The solution used for training such a
model with labeled data is a structural SVM, an extended version of SVMs which allows
for structured output classification.

Considering the labeled positive dataset In, pn, tn and the negative dataset In, where
zn = (pn, tn) is a ground-truth configuration and β = (ω, b) represents the linear model
parameters, then the scoring function (3.2) becomes:

S(I, z) = β · Ψ(I, z) (3.8)

Thus, the SVM objective function can be written as:

min
ω,ξ≥0

1

2
β · β + C

∑

n

ξn (3.9)

s.t. ∀n ∈ pos β · Φ(In, zn) ≥ 1 − ξn

∀n ∈ neg,∀z β · Φ(In, z) ≤ −1 + ξn

where the slack variables ξn penalize the constraints of the objective function and
the model parameters can be obtained from the arguments of the minimization. The
form of the optimized function leads to a problem of quadratic programming, which in
this case is solved using dual coordinate-descent.
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As the positive images contain manually annotated joints and the part locations are
obtained according to this data, the labels actually represent part locations but not part-
types, which need to be generated. Because parts can be found at different locations
relative to their parents in the relational graph G, defining articulation by capturing
orientation implies associating part-types to the relative locations. Orientation of parts
depends on position as, for example, a horizontally-oriented hand is found next to the
elbow, while a vertically-oriented hand is found under the elbow. In our case, part-types
are derived by clustering the values of each part’s relative position to their parent using
K-means with K = T . Each cluster obtained corresponds to a part-type based on ori-
entation (Figure 3.3). Another solution would be introducing a latent SVM which takes
the part-types as latent variables. This approach rests as possible future work.

Figure 3.3: Clusters used to generate mixture labels during training for T=4. Part-types represent
different orientations of parts relative to their parents (Figure from [41]).

3.1.4 Experiments

The proposed model is tested using the Image Parse [32] and Buffy datasets [11]. The
Image Parse set contains 305 annotated images of highly-articulated full-body poses,
and the Buffy set contains 748 annotated video frames of upper-body poses. For these
experiments different models are built to compare performance. Examples of models are
pictured in Figure 3.4. As opposed to previous approaches, the error on these datasets
is reduced by up to 50%, requiring a processing time at the order of units of seconds on
these datasets.

The most efficient models are the 18-part model and the 26-part model for upper and
full-body detection, respectively. For our project, the 26-part full-body model is chosen
and further experiments are carried on the Parse and HumanEva dataset to outline its
performance (Figures 3.5 and 3.9). The following figures present successful detections,
but also failing situations are encountered. Generally, horizontal poses and multiple per-
sons are not detected so these will be considered limitations of the detector. To overcome
problems such as double-counting phenomena and limb misdetection, and also to obtain
a more continuous appearance of 2D joint positions over consecutive frames, motion
smoothing is required. The solution used in our framework and results are covered in
the next section.
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Figure 3.4: A visualization based on part templates for an 18-part upper-body model, 14-part and
26-part full-body model. Parts are represented by 5x5 HOG templates, placed at their highest scoring
locations for a given root position and type.

Figure 3.5: Examples of successful detections on the Parse dataset.

3.2 2D Motion Smoothing

One solution to obtain a motion model is incorporating the temporal information in the
articulated mixture model, obtaining a spatio-temporal part-based model in which the
deformation score receives also a temporal term. The spatio-temporal deformation adds
a new constraint favoring co-occurrences between identical parts in consecutive frames.
Specifically, the left upper leg part must lie next to the hip in the current frame and also
next to the left upper leg part in the previous frame. However, the temporal looping
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Figure 3.6: HumanEva examples: The top row presents successful detection on different actions and
cameras. The bottom row presents failing situations: double-counting, body or limb misdetection, self-
occlusion.

added in the model makes inference difficult and drifting problems may occur.

A more robust approach is similar to Andriluka’s tracking-by-detection [23] solution:
obtaining the 2D detections over all frames and then running a smoothing algorithm.
By definition, smoothing tries to estimate the current pose using information from all
the frames in the sequence. Therefore, it provides increased accuracy in comparison
to filtering approaches which only use information propagated until the current frame.
The smoothing technique used in the framework is based on the automatic algorithm
described in [12].

3.2.1 Algorithm description

In statistics, smoothing a data set represents finding an estimating function that captures
data patterns and is able to reduce experimental noise or fine-scale structures. Given a
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one-dimensional noisy signal y:

y = ŷ + ǫ (3.10)

where ǫ is a zero mean Gaussian noise with unknown variance, then ŷ represents the
smoothed signal, which has a continuous derivates up to an order greater than 2 over
the domain of the signal. The goal of smoothing is finding the best estimate for ŷ.

The algorithm is based on the classical approach of penalized least squares regression,
which approximates ŷ by trying to minimize:

F (ŷ) = RSS + sP (ŷ) = ‖ŷ − y‖2 + s‖Dŷ‖2 (3.11)

,where RSS is the residual sum of squares, s is the a parameter which controls the
smoothing degree and D is a tridiagonal matrix given by the steps between ŷi and ŷi+1.

The minimization retrieves:

ŷ = (In + sDTD)−1y = H(s)y (3.12)

,where H(s) is called hat matrix. Smoothing becomes fully automated when the
parameter s can be estimated using the generalized cross-validation method (GCV),
minimizing:

GCV (s) ≡ RSS/n

(1 − Tr(H)/n)2
= n

n
∑

i=1

(ŷi − yi)
2/(n−

n
∑

i=1

(1 + sλi)
−1)2 (3.13)

,where λi represent the eigenvectors of DTD, used to compute Tr(H).

When data is evenly spaced D changes such that its eigenvectors become λi = −2 +
2 cos((i−1)π/n) leading to a DCT-based formulation of the GV C(s) term, which is very
fast to compute:

GCV (s) =

n
∑n

i=1(
1

1 + sλ2
i

− 1)2DCT 2
i (y)

(n−∑n
i=1

1
1+sλ2

i

)2
(3.14)

Due to the presence of measurement errors, it is convenient for the algorithm to
support weighed or missing data. This is obtained by associating specific inputs with
low weights wi ∈ [0, 1], organized in a diagonal matrix W = diag(wi) such that RSS
becomes:

wRSS = ‖W 1/2(ŷ − y)‖2 (3.15)
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When yi is missing, then wi = 0 and yi is assigned with a value estimated by inter-
polation and using the entire dataset. Computation time increases as ŷ is computed at
each minimization of the GCV . For n inputs with nmiss missing data, the GCV score
becomes:

GCV (s) =
wRSS/(n− nmiss)

(1 − Tr(H)/n)2
=

‖W 1/2(ŷ − y)‖2/(n− nmiss)

(1 − Tr(H)/n)2
(3.16)

The algorithm also benefits of a robust version, being able of canceling the effects of
outliers and high leverage points to which penalized least squares are usually sensitive.
This can be done by iteratively reassigning low weights to such points. Current residuals
are updated at each iteration until they remain unchanged.

3.2.2 Experiments

Smoothing is introduced to improve the results obtained by the 2D human detector,
by creating a more continuous set of coordinates and eliminating outliers. The dataset
contains inherent discontinuities as frame detections are independent. Moreover outliers
exist in the data for various reasons: the full body is misdetected over a small number
of frames, double-counting in the case of legs, background clutter or self-occlusion leads
to limb misdetection.

As the input image sequences are composed of consecutive frames, the data may be
considered uniformly spaced in the temporal dimension. After running detection over
all the frames, robust smoothing is performed separately for the vectors of x an y joint
coordinates. As the frames are consecutive, motions performed on a specific number
of frames can be extracted by image differencing. If we assume that that the camera
is static and the person is the only moving object in the scene, a correct detected pose
should be localized in the area covered by pixel displacements. Otherwise, more complex
optical flow methods should be considered. Therefore, to improve the accuracy of the de-
tector, image differencing is performed on a small window size of frames to compare the
relative position of the detected pose to the area covered by motions. The window size
used should be changed automatically according to the framerate of the video sequence,
for example the size is 5 for the framerate of 120 Hz used on the HumanEva dataset. The
bounding boxes which cover the current frame pose and the motions are computed and
joint data is considered missing if the respective joints fall outside the motions coverage
or if there is a substantial difference between the detections and motions bounding boxes
(Figure 3.7). We will call the approach weighted robust smoothing as the missing data
will be associated with zero weights.



32 Chapter 3. 2D Human Detection and Smoothing

(a) (b) (c) (d)

Figure 3.7: Detections without smoothing (a) Detections with robust smoothing (b) Detections with
weighted robust smoothing (c) Motions (red) and detected pose (green) bounding boxes (d).

3.3 Results

Experiments are carried on the HumanEva dataset for subject 1, camera 1, all motion
types. All detection data (unsmoothed detections, robust smoothing and weighted ro-
bust smoothing) is reprojected from the 26-part body model to the 15 markers-based
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model used in the dataset. Using the 2D pixel error measure provided by the Hu-
manEva framework, errors are computed for the full body and for specific joints (head,
torso, pelvis, shoulders, wrists)(Table 3.1).

Table 3.1: Mean pose errors and on specific joints are computed for S1, cam1, on all action types.
Results are expressed in pixels and they are compared for the smoothing option: no smoothing used,
robust or weighted smoothing.

Motion Sm. Head Torso Pelvis Shoulders Wrists Knees Mean

- 22 24 24 38 62 35 39
W R 17 19 16 33 55 28 33

WR 9 12 9 26 44 20 25

- 9 13 8 12 72 9 21
B R 8 12 5 10 67 8 18

WR 9 12 5 10 59 8 17

- 6 12 13 17 52 12 21
G R 5 12 13 17 45 12 19

WR 5 12 13 16 42 13 18

- 17 20 18 46 77 34 43
J R 15 17 13 41 69 30 38

WR 9 11 7 38 54 24 31

- 21 25 27 29 58 31 36
TC R 18 20 18 19 40 23 25

WR 6 10 11 13 31 15 18

Results show that the robust smoothing with missing data approach outperforms the
other methods for all actions and joints. Also, joints such as head, torso or pelvis present
a better error rate and are more stable than shoulders and knees. The least accurate
detections are represented by the wrists as limbs are more prone to be misdetected due
to background clutter, foreshortening and self-occlusion. A more detailed visualization
of data is presented in Figure 3.8, where specific joint estimation error are plotted for
all actions over all the frames.

In actions such as Walking and Jog a series of patterns occur in the shape of rising
errors at regular intervals, which is due to the circular nature of motions performed
by the subject. For example, higher regular error in estimating the position of the left
wrist occurs because of left arm occlusion caused by the camera viewpoint. In motions
such as Box, Gestures and ThrowCatch, the subject maintains a static position relative
to the camera and only arms are moving. Therefore, joints such as head, hips, knees
and ankles maintain a small and constant error rate, while shoulders, elbows and wrists
present higher errors.
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When joints are misdetected in too many consecutive frames, the error propagates
and better detections can be considered outliers and removed in the process of robust
smoothing. However, in the case of weighted robust smoothing, the smoother recovers
by ignoring detected joints that are too far away from the area covered by motions, as
can be seen in Figure 3.9 Gestures, Left Shoulder.

Figure 3.9 presents the mean error obtained for each action in every frame plus the
mean error obtained per action for the weighted robust smoothing approach over all
frames. As the figures and Table 3.1 show, smoothing improves the results obtained by
the detector with an average of 35%. The biggest improvements per action are obtained
in the case of Walking and ThrowCatch as the smoother recovers from many full-body
misdetections. In the case of joints, head, torso and pelvis estimates present the smallest
errors for the same reason.

3.4 Conclusions

The chapter presents a system proposed for 2D human pose estimation which receives a
sequence of consecutive images containing one person performing different actions and
outputs a vector of smooth pose estimates for 26 joints per frame.

The 2D human detector is based on the flexible mixture model proposed in [7]. The
26-part model version, which is used in the project, outperforms previous works on the
Parse dataset by 50% while being faster by orders of magnitude. As the detector works
on a per-frame basis, pose estimates are improved using the temporal information by
performing weighted robust smoothing on the joint coordinates vectors. This leads to a
more continuous estimated motion and to a smaller error rate by removing outliers and
poses that are estimated outside the area of the detected motions.

Results obtained on the HumanEva dataset show that detection performance in-
creases with 35% on average after smoothing is applied. The biggest part of the im-
provement is due to recovery from full-body misdetections. The most accurate estimates
are obtained for joints such as head, pelvis, torso, while elbows and wrists are more un-
stable due to foreshortening effects and self-occlusion. Also, the smallest mean error is
obtained on actions such as box or gestures, in which the subject maintains a constant
position relative to the camera as opposed to walking and jogging where all body joints
change their position drastically over frames, leading to more self-occlusions and limb
misdetections.
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Figure 3.8: Part error plots per joints over all frames and actions.
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Figure 3.9: Error plots per actions over all frames and mean error for weighted robust smoothing.



Chapter 4

3D Pose Regression

The chapter presents the stage of the 3D human pose estimation framework that uses
learning approaches to map 2D to 3D pose estimates. The solution presented uses
Gaussian processes and is based on Rasmussen’s reference implementation [33]. Given
an extensive training set consisting of 2D pose data and the associated 3D poses, the GP
regressor tries to find the mapping between inputs and outputs. The following sections
discuss representations and settings chosen for the Gaussian process regression.

4.1 Gaussian processes

Using Gaussian processes in a regression context can be interpreted as direct inference in
the function space. As a GP is completely specified by its mean m(x), which is usually
reduced to zero, and covariance functions Cov[f(x), f(x′)] = k(x, x′), a process f(x) can
be written:

m(x) = E[f(x)]
k(x, x′) = E[(f(x) −m(x))(f(x′) −m(x′))]
f(x) ∼ GP (m(x), k(x, x′))

(4.1)

The linear regression model f(x) = φ(x)Tw with the prior w ∼ N(0,
∑

p) provides a
basic example of a GP:

E[f(x)] = φ(x)TE[w] = 0
E[f(x)f(x′)] = φ(x)TE[wwT ]φ(x′) = φ(x)T ∑

p φ(x′)
(4.2)

A crucial ingredient in GP regression is encoding the initial assumptions regarding
the function distribution with an appropriate covariance function. It is basic to assume
that inputs that are similar or close will have close outputs, so for training points (x, y)
that are close to test inputs x′, y will be informative about the prediction at x′. As the
covariance function measures similarity between input points, choosing an accurate form
will be able to determine a better prediction.

37
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A commonly used function in this sense is the squared exponential (SE) which spec-
ifies the covariance between random variables:

cov(f(x), f(x′)) = k(x, x′) = exp(−1

2
| x− x′ |2) (4.3)

Samples can be drawn from the distribution of functions described by a GP, as seen
in Figure 4.1. As the SE covariance function is infinitely differentiable, the correspond-
ing GP is infinitely mean-square differentiable and the sampled functions have a smooth
appearance. The shaded area represents the coverage of double standard deviation cen-
tered at each input point mean.

Figure 4.1: Random functions drawn from a GP prior with dots indicating output values generated
from a finite set of input points (a). Random functions drawn from the GP posterior, conditioned on 5
noise-free observations (b)(Figure from [33]).

4.2 Training a Gaussian process

The prediction performance on each dataset depends on the chosen parameters for the
mean and covariance functions. The process of choosing more accurate functions repre-
sents training a GP on the known observations.

For this, a more general formulation is given for the SE covariance function, involving
free parameters: the characteristic length-scale l, the signal variance σ2

f and the noise

variance σ2
n. These are also called hyperparameters.

k(x, x′) = σ2
fexp(−

1

2l2
(x− x′)2) + σ2

nδ
′ (4.4)
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,where δ′ is the Kronecker delta which outputs 1 in the case of identical inputs and 0
otherwise. The length-scale l can roughly be interpreted as the amount of displacement
needed in input space for a significant change in the function value space. Figure 4.2
shows the effects of varying the hyperparameters of a GP:

Figure 4.2: Sample function drawn from a GP with hyperparameters (1,1,0.1)(a), (0.3,1.08,0.00005)
(b) and (3,1.16,0.89)(c). ’+’ Symbols represent noise-free observations and the shaded area corresponds
to a 95% confidence region. (Figure from [33]).

The figures are obtained by optimizing the signal and noise variances for the same
training points but different length-scales. Figure 4.2 (a) shows how the error bars are
shorter for input points that are closer to training points. Reducing l in (b) means that
the signal is more flexible and noise variance can be reduced also. A shorter length-scale
also means that error bars grow more rapidly away from training points. When l is
longer (c), the function is varying slowly and the noise level is greater.

In order to make inferences about the hyperparameters, we compute the likelihood
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which represents the probability density of the observations given the parameters of the
model

log p(y|X) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI|2 − n

2
log 2π (4.5)

The hyperparameters are obtained by optimizing the log marginal likelihood de-
scribed in 4.5 based on the partial derivatives. The log marginal is composed of three
terms: a negative quadratic term, which measures the data-fit, a log determinant term,
which measures and penalizes the model complexity and a log normalization term. Train-
ing is simplified as the trade-off between complexity and data-fit is done automatically.

4.3 Posterior Gaussian process

The previous sections showed how GPs can be used as prior in Bayesian inference and
how hyperparameters are computed for the covariance function. Next, the posterior is
computed using training data in order to make predictions for testing data. Initially, we
consider the case of noise-free observations, where f is the set of known function values
for the input x and f∗ are the values corresponding to testing data X∗. The joint prior
distributions is:

[

f
f∗

]

∼ N

(

0,

[

K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

(4.6)

,where K is the covariance matrix for all pairs of training and test points. The pos-
terior distribution over functions is obtained conditioning the prior on the observations:

f∗|X∗, X, f ∼ N(K(X∗, X)K(X,X)−1f,K(X∗, X∗) −K(X∗, X)K(X,X)−1K(X,X∗))
(4.7)

The function values f∗ are obtained from the posterior described in 4.6 by evaluating
the mean and variance and generating the samples. For the general case of noisy obser-
vations, we consider additional Gaussian noise with variance σ2

n in the outputs, which is
independent of the input points such that:

cov(f(x), f(x′)) = k(x, x′) + σ2
nδ

′ or cov(f) = K(X,X ′) + σ2
nI

[

f
f∗

]

∼ N

(

0,

[

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

]) (4.8)

The conditional distribution leads to the key equations used in GP prediction:

f∗|X∗, X, f ∼ N(f∗, cov(f∗))
f∗ = K(X∗, X)[K(X,X) + σ2

nI]−1f
cov(f∗) = K(X∗, X∗) −K(X∗, X)[K(X,X) + σ2

nI]−1K(X,X∗)
(4.9)
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Using a more compact notation k∗ = K(X,X∗), for a single test point x∗ the predic-
tive equations 4.9 become:

f∗ = kT
∗ (K + σ2

nI)−1f =
∑n

i=1 αik(xi, x∗)
cov(f∗) = k(x∗, x∗) − kT

∗ (K + σ2
nI)−1k∗

(4.10)

,where the mean is regarded as a linear combination of n covariance functions with
α = (K + σ2

nI)−1f . Therefore, prediction for one testing point and n training points
involves only the (n + 1)-dimensional distribution defined by these points. Also, the
predicted variance only depends on the inputs provided and not on the observed values,
which is a property of Gaussian distributions.

The implementation of the prediction algorithm is described in Figure 4.3. The
algorithm receives the training dataset described by input X and observations y, the
covariance function k, noise variance σ2

n and the test input x∗, and outputs the mean
f∗, variance V [f∗] and log marginal likelihood log p(y|X).

Figure 4.3: Steps of the prediction algorithm implementation, where L is the lower triangular matrix
obtained in the Cholesky decomposition of a matrix A = LLT . The equation Ax = b is solved efficiently
using two triangular systems: x = L\(L\y), where the notation A\b represents the solution for Ax = b.
(Figure from [33]).

The predictive equations 4.10 are implemented using the Cholesky decomposition
instead of direct matrix inversion, as it represents a faster and more stable method. The
complexity for the decomposition in line 2 is O(n3/6) and for solving the triangular sys-
tems in line 3 and 5 is O(n2/2). In the case of multiple inputs, steps 4 to 6 are repeated
and as the observations used in the project are noisy, the noise variance σ2

n is added to
the predictive variance obtained V [f∗].

4.4 Data representation

The input of the regressor is represented by normalized body part positions. The flexible
model uses 26 body parts as it produces better performance for introducing additional
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orientation with a better body coverage. Regression using GPs implies considering a
trade-off between the redundant information and computation efficiency and training
time. Experiments show that best performance is obtained when inputs are represented
by 16 body parts: head, neck, upper and lower torso, shoulders, elbows, wrists, hips,
knees and ankles, as they provide relevant information for a lower complexity of the hu-
man body representation. These are obtained by remapping the 26 body part positions
obtained in the previous step considering geometrical human body constraints.

The 2D poses require normalization such that the input poses are independent of
body size and distance to the camera. As most poses represent upright standing per-
sons, all coordinates are normalized using the y range of each frame according to the
following equations:

BP = {x1, y1, ..., x16, y16}
BPnorm = {BP +Moff } ∗Mscale

Mscale =
{

1
yrange

, ..., 1
yrange

}

Moff = {xoff , yoff , ..., xoff , yoff }
xoff = − min(X) + (yrange − xrange)/2
yoff = − min(Y )

(4.11)

where BP and BPnorm represent the original and the normalized body part positions
input respectively, and X and Y represent original vectors of x and y coordinates.

With regard to the output data representation, the most straightforward approach
for representing the 3D human body is directly storing and manipulating the raw 3D
coordinates. However, Cartesian coordinates are generally not a good option for pose
modeling, since 3D positions suffer of much variability due to subject appearance, type
of action, camera viewpoint. Also, topology relations between part coordinates cannot
be established and their usage requires a lot of post-processing. Other approaches that
are faster and widely used in motion analysis are Euler angles and quaternions. However,
the latter suffer from discontinuities and singularities problems and the former require
too many parameters which do not benefit of a direct geometrical interpretation. A
robust and more efficient approach is representing the orientation of each limb using
direction cosines.

4.4.1 Direction cosines

The direction cosines of a vector represent the cosines of the angles formed by the
direction of the vector with all the coordinate axes of a chosen reference system. As
shown in Figure 4.4 (b), direction cosines are computed:
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cos θx
l = lx√

l2x+l2y+l2z

cos θy
l =

ly√
l2y+l2y+l2z

cos θz
l = lz√

l2z+l2y+l2z

(4.12)

which leads to:

cos2 θx
l + cos2 θy

l + cos2 θz
l = 1 (4.13)

Therefore, direction cosines have an intuitive geometric interpretation and can be
easily obtained. As 4.2 shows, they are dependent of each other and require 3 param-
eters to define 2 DOF. One important advantage of direction cosines is the fact that
they are continuous and smooth, as they are defined in the unit sphere. Therefore, they
are a very suitable representation for 3D motion related methods, being exempt from
discontinuities and easily treatable.

4.4.2 3D body pose

The chosen representation for the 3D pose is identical to the one used in [34], which
consists of 12 rigid body parts: mid-hip, torso, mid-shoulder, neck, two upper legs, two
lower legs, two upper arms and two lower arms. The parts are connected by a total of
10 joints as shown in Figure 4.4(a). A local coordinate system is defined in the hip with
the y axis pointing towards torso, z axis towards the left hip and the x axis given by the
cross product between the two. The 3D pose is represented as a vector of 36 direction
cosines corresponding to each body part:

ψ =
{

cos2 θx
l , cos2 θy

l , cos2 θz
l , ..., cos2 θx

l2, cos2 θy
l2, cos2 θz

l2

}

(4.14)

,where θx
i , θ

y
i , θ

z
i are the angles formed by the limb with the axes of the local coordi-

nate system as shown in Figure 4.4(b).

4.5 Experiments

The performance of the Gaussian process regressor is tested on the HumanEva dataset
on all the actions, taking as input the vectors of 2D poses obtained with the 2D detector
described in the previous chapter. The experiments imply dividing each action dataset
into two equal sets for training and testing. Experiments are carried on identical training
and testing data as used in [3] and [13], according to Table 4.1, such that results can be
compared to the ones obtained in the referred papers.

Both papers use similar methods for detecting 2D poses from images, by extract-
ing histograms of shape contexts from silhouettes. Mapping to 3D poses is done using
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Figure 4.4: 3D human body model (a) Direction cosines for an orientated limb (b).(Figure from [34]).

Table 4.1: Size of training and testing data used from HumanEva, subject S1, camera C1.

Motion Number of frames

Walking 1197

Jog 597

Gestures 795

Box 498

ThrowCatch 217

different learning methods: [36] uses Structured Output-Associative Regression(SOAR),
which learns functional dependencies where outputs are both input-dependent and self-
dependent, while [13] uses a Gaussian process regressor similar to the one described in
this chapter.

The ground truth poses from HumanEva dataset are represented using 15 virtual
markers placed at limb ends and midjoints. Therefore, all the predicted body poses are
reprojected to match the HumanEva body configuration. To compute the estimated 3D
marker location, the predicted limb angles and absolute limb lengths are used, the latter
being obtained assuming an average U.S.-sized body model [26] and using pre-computed
limb lengths ratios. 3D estimation performance is measured using the average angular
error and average absolute marker position error:

Errang =

∑J
i=1 |Θi − Θ̂i|mod180◦

J

Errpos =

∑M
i=1 |Pi − P̂i|

M

(4.15)
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,where Θi =
[

θx
l , θ

y
l , θ

z
l , ..., θ

x
l4, θ

y
l4, θ

z
l4

]

and Θ̂i represent the J-dimensional vectors of
ground truth and predicted limb angles respectively, and J = 3·14, for 3 Euler angles per
14 limb joints (the hip is ignored as it represents the origin of the local coordinate sys-
tem). Similarly, Pi = [x1, y1, z1, ..., x15, y15, z15] and P̂i represent the the M -dimensional
vectors of ground truth and predicted limb marker positions respectively, and M = 3·15,
for 3 coordinates per 15 limb joints.

4.6 Results

Visual results of the tree kinematic structures obtained on the HumanEva dataset are
shown in Figure 4.5. Since the body marker locations are estimated using a local coordi-
nate system that is placed in the hip, all examples of estimated body pose are presented
from a singular view relative to the body for a better visualization of the pose. Using
camera calibration settings, the 3D pose can be reprojected in the image plane for a
visualization of the tree structure overlaid on the person in the image.

Figure 4.5: The first row presents test images from all actions datasets. The second row presents the
corresponding kinematic tree structures with estimated limbs, presented from a 45◦ view relative to the
body.

Comparative results on the HumanEva dataset are presented in Table 4.2. Over-
all, the system presented outperforms or performs similarly to previous works that use
shape contexts. This can be explained by the quality of the inputs i.e. the general good
estimates obtained with the 2D detector. Also the GP training is much faster than in
[13] since our inputs are 16-dimensional, compared to the 400-dimensional inputs based
on histograms of shape contexts. For example, training on the Gestures dataset which
consists of 398 frames is done in 124 min and 48 s using shape contexts, while our method
only takes 12 min and 50 s.
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Table 4.2: Average limb position and angle errors are computed for S1, Cam1, on all action types.
Results are compared for the presented framework, and the ones used in [3] and [13].

Method Motion Errpos [mm] Errang [◦]

Walking 59.8 -
Jog 62.7 -

SOAR [3] Gestures 49.6 -
Box 77.3 -

ThrowCatch 110.3 -

Walking 21.75 0.96
Jog 26.96 1.42

GP [13] Gestures 68.37 2.87
Box 16.97 1.04

ThrowCatch 19.19 1.08

Walking 3.50 0.17
Jog 6.85 0.38

our system Gestures 1.57 0.11
Box 18.72 1.30

ThrowCatch 8.33 0.71

It is important to note that the errors obtained on identical training sets for 2D pose
estimation are expressed in pixels while the ones obtained for 3D estimation are expressed
in milimeters, as the errors are computed using world-space 3D coordinates. Therefore,
there is a fine correlation between the quality of 2D and 3D estimates. Assuming that
better 2D full-body detections lead to a better 3D pose estimation is straightforward,
but other factors affect the results, such as the size of the training datasets, camera
viewpoint, quality of detections per part etc.

One point of view for interpreting the results is the size of the datasets. The best
mean error rates are obtained on the Walking and Gestures datasets which can be related
to the fact that the training sets for these actions are larger, providing more possible
poses for a better data-fit and obtaining a more accurate covariance function. The
highest error rate is obtained on the Box and ThrowCatch datasets which have smaller
training sets.

As shown in Table 3.1 from Section 3.3, the Box dataset obtained the lowest mean
error. However, the final 3D results show increased error rate for the same dataset.
This is partially due to higher errors in 2D upper limb detection which was not clearly
shown in the 2D detection process because of the imprecision of the pixel error mea-
sure. This accounts for all the datasets, but the main factor that brings increased error
rate is missing Mocap data in the shape of sets of almost 20 consecutive frames. The
lack of 3D information deteriorates the training process and leads to high partial and
mean errors as can be seen for frame 200 in Figures 4.7 and 4.8. The ground truth and
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estimated tree kinematic structures are shown in Figure 4.6, with pose error information:

Figure 4.6: The ground truth (left) and estimated (right) tree kinematic structures for the Box dataset
from frame 199 to 201. The error peak of 87 mm is reached in frame 200 and the ground-truth missing
data is deducted from the discontinuous motion of the limbs.

The same behavior is shown as a peak in error rate in the Jog dataset around frame
100, corresponding to a missing information for a block of 30 frames. The lack of 3D in-
formation violates the assumption of input received as a sequence of consecutive frames
so the experiment should be repeated for a continuous block of image sequence of the
Box dataset.

The following figures present mean pose and joint errors per actions over all testing
data. As in the case of 2D detections, the head and torso present the lowest errors and
are the most stable joints. Also the shoulders estimates have a low error rate and they
represent more stable joints than in the 2D detections. This is due to the fact that the
overall 3D configuration is rebuilt using pre-computed limb lengths from a generic 3D
model. The joints that are most prone to errors are elbows, wrists and ankles, as the
corresponding high errors from 2D detections are propagated.

4.7 Conclusions

The chapter presents our solution for 2D to 3D pose mapping using Gaussian process
regression. The 2D input space is represented by normalized 2D estimates of the human
body joint and the outputs are represented by direct cosine angles from which the 3D
configuration is rebuilt using pre-defined geometrical constraints. Training is done an
action databases in order to compute the hyperparameters that describe the covariance
function which represents the GP.

The results show that GPs can be used as a very flexible and fine tool for non-
linear regression, outperforming on average previous works by over 70%. The results
are explained generally by the quality of the inputs, which also present the advantage of
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Figure 4.7: Error plots per actions over all testing frames and mean error.

low-dimensionality. Joints have a similar behavior as in the case of 2D detection, as the
head and torso are more stable, retrieving a lower error rate than wrists, elbows or ankles.

However, the proposed system is able to generate good predictions on the learned
action databases i.e. on video sequences that present similar poses to the ones annotated
in HumanEva: Box, Gestures, Walking, Jog and ThrowCatch. For improved results on
general videos, all actions, including various camera viewpoints, should be included in a
large dataset for training a single Gaussian process.
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Figure 4.8: Part error plots per joints over all testing frames and actions.



Chapter 5

Conclusion

The work presented in this thesis is related to automated human motion analysis. Pre-
cisely, it is aimed at implementing an automated system for 3D human pose estimation
in video sequences. Towards this end, the system is built as a 3-stage framework: first
the 2D body parts are estimated from consecutive frames using a human detector which
uses a flexible mixture model based on structural SVM, providing state of the art results
at the order of seconds. Next, the overall estimated body part locations are improved
using a weighted robust smoothing technique, leading to a lower error rate in 2D part
estimation and a more continuous appearance of the human motion. Finally, the 3D
configurations are estimated using a Gaussian process regressor trained on specific ac-
tion datasets. The representation chosen for the 3D poses consists of direction cosines
to express limb orientations, thus avoiding singularities and discontinuities. The final
outputs of the system are represented by vectors of relative 3D locations in a local co-
ordinate system.

The performance of the overall framework is measured by experimenting on the ac-
tion datasets provided by the HumanEva benchmark. Results show that the system
generally outperforms previous work that based on histograms of shape contexts and
that it is robust against self-occlusions, foreshortening effects and highly articulated
non-horizontal poses, meeting the initial requirements. As it is trained on specific ac-
tion datasets, the regressor will generate good predictions for poses that are related to
similar actions. In order to address general unconstrained motions, the overall approach
should be trained on a wider dataset consisting of a wider range of actions captured
from different camera viewpoints.

Another limitation is represented by the fact that retrieval of absolute position and
orientation of the body is not addressed in the project. The 3D configurations are de-
scribed as body part locations in a local coordinate system that is placed in the hip.
However, if camera calibration settings are available, these parameters can be computed
and the 3D configuration can be reprojected in the 2D image space.
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Generally, the system can be regarded as a black box as it involves minimal user
interaction and the only input required is represented by the raw image sequence, which
can be obtained with a video converter such as ffmpeg. The 2D detection part takes
about 7 seconds for a 644x488 resolution frame and the 3D prediction using a trained
GP regressor takes roughly 2 seconds for a testing dataset of 200 frames.

Improvements can be brought to the system by training the GP regressor on a wider
dataset that includes more actions, transitions between actions and camera viewpoints
and also by integrating the temporal information while training the regressor. For the
purpose of visualization and as an example of application in 3D animations, the ob-
tained vectors of 3D coordinates could be mapped to a 3D body model in software such
as Blender or Autodesk SoftImage.
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Abstract 
 

Automatic 3D reconstruction of human poses from 

monocular images is a challenging and popular topic 

in the computer vision community, which provides a 

wide range of applications in multiple areas. Solutions 

for 3D pose estimation involve various learning 

approaches, such as support vector machines and 

Gaussian processes, but many encounter difficulties in 

cluttered scenarios and require additional input data, 

such as silhouettes, or controlled camera settings.     

We present a framework that is capable of 

estimating the 3D pose of a person from single images 

or monocular image sequences without requiring 

background information and which is robust to 

camera variations. The framework models the non-

linearity present in human pose estimation as it 

benefits from flexible learning approaches, including a 

highly customizable 2D detector. Results on the 

HumanEva benchmark show how they perform and 

influence the quality of the 3D pose estimates.       

 

 

1. Introduction 
 

     3D human pose estimation from monocular images 

represents an important and top researched subject in 

the computer vision community due to its challenging 

nature and widespread applications, ranging from 

advanced human computer interaction, smart video 

surveillance to arts and entertainment industry. The 

difficulty of the topic resides in loss of depth 

information that occurs when projecting from 3D 

space to the 2D image plane. Thus, a wide set of 

approaches have been proposed to tackle the problem 

of 3D pose recovery from monocular images. 

Due to the 2D-3D ambiguity, many approaches rely 

on well-defined laboratory conditions and are based on 

additional information such as silhouettes or edge-

maps obtained for example from background 

subtraction methods [1, 2, 3]. However, realistic 

scenarios present highly articulated human poses 

affected by self-occlusion, background clutter and 

camera motion, requiring more complex learning 

approaches.    

A particular class of learning approaches use direct 

mapping methods from image features such as grids of 

local gradient orientation histograms, interest points, 

image segmentations to 3D poses [4, 5, 6, 7]. Another 

class of approaches maps the image features to 2D 

parts and then uses modeling or learning approaches to 

map these to 3D poses [8, 9]. Among these learning 

approaches, the most used ones are support vector 

machines, relevance vector machines and Gaussian 

processes. In [9] a comparison is presented between 

modeling and learning approaches in estimating 3D 

poses from available 2D data, using geometrical 

reconstruction and Gaussian processes. 

This paper describes a two-stage framework which 

recovers 3D poses without requiring background 

information or static cameras. Image features are 

mapped to 2D poses using a flexible mixture model 

which captures co-occurrence relations between body 

parts, while 3D poses are estimated using a Gaussian 

process regressor. Experiments are conducted 

systematically on the HumanEva benchmark, 

comparing the 3D estimates based on different 

methods of mapping the image features to Gaussian 

process inputs. 

 

2. Detector of 2D Poses 
 

     The dominant approach towards 2D human pose 

estimation implies articulated models in which parts 



are parameterized by pixel location and orientation. 

The approach used by Ramanan [10] introduces a 

model based on a mixture of non-oriented pictorial 

structures. The main advantages of using the 

articulated mixture model consist in the fact that it is 

highly customizable, using a variable number of body 

parts, and that it reflects a large variability of poses 

and appearances without requiring background or 

temporal information. Also, it outperforms state-of-

the-art 2D detectors while requiring less processing 

time. The next sections describe the model proposed in 

[10]: 

 
2.1. Part-based Model for Human Detection  

 
The mixture model implies mixtures of parts or 

part types for each body part, in our case spanning 

different orientations and modeling the implied 

correlations. The body model can be associated with a 

graph 罫 = (撃, 継) in which nodes are represented by 

body parts and edges connect parts with strong 

relations.  

Similar to the star-structured part-based model in 

[3], this mixture model involves a set of filters that are 

applied to a HOG feature map [11] extracted from the 

analyzed image. A configuration of parts for an 券-part 

model specifies which part type is used from each 

mixture and its relative location. The score of a 

configuration of parts is computed according to three 

model components: co-occurrence, appearance and 

deformation [10]: 

 鯨岫荊, 喧, 建岻 =  デ 決件 建件件樺撃 + デ 拳件 建件 ぉ 溝(荊, 喧件)件樺撃 +デ 拳件倹 建件 ぉ 皇(喧件 伐 喧倹 )件 ,倹 樺継                                               (1) 

 

where the first term favors certain part type 

associations, the second term expresses the local 

appearance score by assigning weight templates 

associated to part 件 and part-type 建件  to certain locations 喧件 , described by the extracted HOG descriptor, and the 

third term  expresses the deformation score by 

assessing the part-type pair assignment parameters and 

the relative location between connected parts 件 and 倹.  
As the model described is highly customizable, 

experiments have been deployed as to find a more 

efficient model structure by varying the number of 

part-types and mixtures. A full-body 26-part model 

(Figure 1) is chosen, as it shows increased 

performance due to the capture of additional 

orientation.  
 

2.2. Inference and Learning 
 

Inference using the mixture model described is 

obtained by retrieving the highest-scoring 

configuration, precisely by maximizing S(I, p, t) (1) 

over all parts and part-types. Building the associated 

relational graph G as a tree allows for efficient 

inference with dynamic programming.  

The solution used for training a model which 

generates high scores and outputs a set of parameters 

containing limb locations is a structural SVM, leading 

to a problem of quadratic programming (QP), which in 

this case is solved using dual coordinate-descent. 

 

 

 
 

Figure 1. Person detected using a 26-part 

model, highlighting body parts with bounding 

boxes. The first row presents successful 

detections and the second presents limb 

misdetections. 

 

 

Although the detector covers a wide variability of 

articulated poses, there are situations of limb 

misdetection, generated by self-occlusion, double-

counting phenomena or background clutter.  

 

 



3. Estimation of 3D Poses 
 

As proven to be an effective approach for tackling 

the 2D to 3D mapping problem [4], Gaussian 

processes regression is currently the most widespread 

learning method used in pose estimation. Given a 

prediction problem, Gaussian processes can be 

considered as a fine tool that extends a multivariate 

Gaussian distribution of the training data and which, 

using a correlation between observations and test data, 

maps the test data to new estimates. In our case, the 

input data is represented by the 2D body-part 

coordinates given by the previously described detector 

and the output is represented by 3D pose estimates as 

direction cosines of limb orientations.  

 

3.1. 3D pose representation 

 
Considering the fact that the regressor outputs 3D 

poses, a robust representation is needed for the human 

pose. As training time is also an important factor, a 

smaller dimension representation is desirable. The 

human body is represented by a stick figure model 

composed of 13 body parts. As described in [5], a 

robust and efficient manner of representing 3D body 

limbs is the use of direction cosines. The angles of the 

limbs are considered with respect to a local coordinate 

system, fixed in the hip, with the y axis given by the 

torso, the z axis given by the hip line pointing from the 

left to right hip and the x axis given by the direction of 

their cross product. 

The output is represented as a 36-dimensional 

vector: 

 砿 = [潔剣嫌肯1
捲 , 潔剣嫌肯1

検
, 潔剣嫌肯1

権 , ┼ , 潔剣嫌肯12
捲 , 潔剣嫌肯12,

検 潔剣嫌肯12
権 ] 

(2) 

  

where 肯健捲 , 肯健検 , 肯健権  are the angles formed by the 

limb l with the axes. The use of direction cosines is 

robust and easily treatable as it prevents singular 

positions and discontinuities of angle values.    

 

3.2. Gaussian process regression 

 
Using Gaussian processes for prediction problems 

can be regarded as defining a probability distribution 

over functions, such that inference takes place directly 

in the function space-view. The training data 

observations y = {検1 , ┼  , 検券} are considered samples 

from the n-variate Gaussian distribution that is 

associated to a Gaussian process and which is 

specified by a mean and a covariance function. 

Usually, it is assumed that the mean of the associated 

Gaussian process is zero and that observations are 

related using the covariance function 倦(捲, 捲旺) . The 

covariance function describes how function values 血(捲1) and 血(捲2)  are correlated, given 捲1  and 捲2 . As 

the Gaussian process regression requires continuous 

interpolation between known input data, a continuous 

covariance is also needed. A typical choice for the 

covariance function is the squared exponential: 

 倦岫捲, 捲 旺岻 =  購血2 exp
伐岫捲 伐 捲 旺岻2

2健2
               (3) 

 

where  購血  represents the amplitude or the maximum 

allowable covariance, reached when 捲 蛤 捲旺 and 血岫捲岻is 

very close to 血(捲旺) , and 健 represents the length 

parameter which influences the separation effect 

between  input values. If a new input data 捲 is distant 

from 捲旺  then 倦岫捲, 捲 旺岻 蛤 0 and the observation 捲旺  will 

have a negligible effect upon the interpolation.   

Therefore, Gaussian processes represent a flexible 

learning approach, capable of modeling the inherent 

non-linearity found in human pose estimation.  

 

3.3. Testing and results 

 
All experiments are carried on the HumanEva 

dataset as it provides ground-truth 2D and 3D 

information on subjects performing different actions.  

For every action, the image frames are equally divided 

in training and testing data, the input received being 

vectors of 2D coordinates. 3D estimation performance 

is measured using the average angular error and 

average absolute marker position error: 

 継堅堅欠券訣 =  
デ 弁肯件伐肯撫件弁兼剣穴  180°

蛍件=1 蛍                   (4)  継堅堅喧剣嫌 =  
デ 】鶏件伐鶏侮件】警件=1 警                         (5) 

 

where 蛍 = 3 ぉ 14, for 3 Euler angles and 14 limbs, 肯件 , 肯侮件  represent ground truth and predicted limb angles, 警 = 3 ぉ 15 , for 3 coordinates per marker and 15 

markers and 鶏件 , 鶏侮件  represent ground truth and predicted 

marker positions. 

Results are compared in the case of 26-dimensional 

input vectors containing 2D coordinates obtained 

directly from the 2D detector, 16-dimensional vectors 

with re-projected coordinates matching the HumanEva 

markers and a silhouette-based method that maps 

image features directly to 3D estimates using 

histograms of shape contexts [6]. As the silhouette-

based experiments are carried in controlled conditions, 

requiring fixed cameras and background information, 

we will consider the method as ground truth 

experiment.  



 
Table 1. Results obtained on the HumanEva dataset 

 

 

The results show that using a simpler body 

representation for regression input performs better 

while training and prediction are less time consuming. 

The shape context-based solution [6] outperforms the 

two-stage framework because of the increased 

reliability of the features extracted from silhouettes. 

The biggest error rate is obtained for the “Walking” 
and “Jog” databases, where some frames present self-

occlusions and generate double-counting and limb 

misdetections. Figure 2 presents visualizations of 

results on similar poses for the three cases:    

 

 

 
 

Figure 2. Estimates (left skeleton) and associated 

ground truth coordinates (right skeleton) for 26-

dimensional inputs (first row), 16-dimensional 

inputs (second row) and shape context (third row). 

 

4. Conclusion and future work 
 

The paper presents learning approaches for the 

problem of 3D pose estimation from monocular 

images. The framework is composed of an articulated 

2D detector with a varying number of body parts 

based on a structural SVM and a 2D to 3D Gaussian 

process regressor. Experiments carried on the 

HumanEva benchmark show that a simpler 2D body 

part model performs better, while the 3D estimates 

depend on the reliability of the 2D inputs. 

For future work, the 2D detector will be improved 

within the temporal context, using a “tracklets” 
approach [8] for different frame window sizes [9], 

followed by motion smoothing.  
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Input Motion 

(CAM1, S1) 
継堅堅欠券訣 [°] 継堅堅喧剣嫌 [mm] 

 

26-dim 

Walking 2.8750 68.3740 

Box 3.7580 66.1650 

ThrowCatch 4.0690 66.9660 

 

16-dim 

Walking 2.6260 53.1960 

Jog 3.2800 63.6090 

Box 3.4270 56.9350 

 

GT 

Walking 0.9630 21.7530 

Jog 1.4270 26.9640 

Box 1.0400 16.9770 

ThrowCatch 1.0860 19.1960 
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