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Abstract:
Long Term Evolution (LTE) is a up-
coming telecommunication standard
with throughput of up to 300 Mbps.
Due to this it has been chosen as ref-
erence point, for analysing the possi-
bilities of hardware accelerating the
functionalities of the physical layer
in a high performance communication
system.
The analysed functionalities are the;
CRC, Turbo Encoding, OFDM to-
gether with possible channel equalizer
options such as ZF, MMSE and Turbo
equalization.
Regarding implementation it is con-
cluded that the USRP2 should be
used as platform since this offers a
variety of front-ends and an already
existing FPGA image which handles
the initial RF data processing such as
down-sampling and filtering.
By analysing the functionalities per-
formance on a CPU and FPGA, it is
found that, especially, OFDM and the
Turbo decoder will gain from hard-
ware acceleration.
The initial focus of hardware imple-
mentation is OFDM since this can
be done with transparent modules,
which can easily be reused by others.
Furthermore, the basic operation of
OFDM, the FFT, is exhaustively re-
searched and it does not require fur-
ther communication between Host-
PC and USRP than the already exist-
ing. To interface the block processing
of the FFT and the continuous datas-
tream of the FPGA, a pipeline mod-
ule is designed which gathers symbols
into packets.
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Reading Guide

It has been chosen to put some of the important analysis work, such as the im-
plementational process of the hardware in the Appendix. This has been done
to establish a flow in the report, such that it refers to conclusions, deductions
and deducions made in the enclosed appendixes, which are meant to support
the main report.

References to other works are made in the form [pagenumber, reference
number] where the reference number refers to the given reference in the Bib-
liography Appendix. In the report, references are given by a number which
states the chapter and number of which order the figure, table, equation or
listing arrives in. As an example Figure 2.3 means that the figure is the third
figure of chapter 2.

Below follows lists of the abbreviations and mathematical expressions, which
has been used through the report.
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Abbreviations

Abbreviation Description
3GPP 3rd Generation Partnership Project
ADC Analog to Digital Converter
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise
BEC Backward Error Correcting
BPSK Binary Phase Shift Keying
BW Bandwidth
CB Code Block
CLB Configurable Logic Block
CP Cyclic Prefix
CPLD Complex Programmable Logic Device
CQI Channel Quality Index
CRC Cyclic Redundancy Check
DAC Digital to Analog Converter
DFT Discrete Fourier Transform
DSP Digital Signal Processing
ECC Error Correcting Code
eNodeB Basestation notation in LTE
FEC Forward Error Correcting
FFT Fast Fourier Transform
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GMII Gigabit Media Independent Interface
GUI Graphical User Interface
HARQ Hybrid Automatic Repeat Request
IFFT Inverse Fast Fourier Transform
ISI Inter Symbol Interference
IWS Inter Window Shuffle
LLR Log Likelihood Ratio
LSB Least Significant Bit
LTE Long Term Evolution
LUT Lookup Table
MAC Medium Access
MACC Multiply Accumulate
MAP Maximum A posteriori Probability
ML Maximum Likelihood
MMS Multimedia Messaging Service
MMSE Minimum Mean Square Estimator
MSB Most Significant Bit
MSE Mean Square Estimator
NSC Non Systematic Convolutional
OFDM Orthogonal Frequency Division Multiplexing
PAPR Peak to Average Power Ratio
PCCC Parallel Concatenated Convolutional Codes

Continued on next page
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Abbreviations – continued from previous page
Abbreviation Description
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
QPP Quadratic Permutation Polynomial
RAM Random Access Memory
RB Resource Block
ROM Read Only Memory
RSC Recursive Systematic Convolutional
SC-FDM Single Carrier - Frequency Division Multiplexing
SDR Software Defined Radio
SMS Short Message System
SNR Signal to Noise Ratio
SOVA Soft Output Viterbi Algorithm
TB Transport Block
UE User Equipment
UHD USRP Hardware Driver
USRP Universal Software Radio Peripheral
VRT Vita Radio Protocol
ZF Zero Forcing
ZPU Softcore Processing Unit (designed by Xilinx)
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Mathematical Notations

Expression Description

(k) Indexing over the discrete time domain
(n) Indexing over the discrete frequency domain
m(k) Binary message signal to be transmitted
a(k) Encoded message signal to be transmitted
b(k) Sequence of bit mapped symbols, which should be

distributed onto OFDM subcarriers and transmitted
s(k) Baseband signal output of the transmitter
s̃(k) Received baseband signal
s̃′ Interleaved received baseband signal
s̃e Equalized received baseband signal

b̃(k) Sequence of modulated symbols, gathered from
OFDM demodulated subcarriers

ã(k) Received encoded bit sequence
m̃(k) Received, demodulated and decoded message signal
h(k) Discrete channel model
c(k) Estimated channel taps
nAWGN AWGN noise of the channel
τk Path delay
αk Complex fading coefficient for a given τk
pdfrayleigh The pdf of a Rayleigh channel
pdfRician The pdf of a Rician channel
CRCA(D) CRC attached to the TB
CRCA(D) CRC attached to the CB
Nsuffix The total length of the array described by the suffix
δsuffix Denotes the throughput decrease of the function de-

scribed by the suffix
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Chapter 1

Introduction

The demand for faster and better communication systems is higher than ever.
In it’s infancy, mobile devices were meant to be used for phone calls, which were
a basic communication method. Later SMS1 arrived, enabling users to send
fast messages. This then evolved into MMS2, video calls and then finally now
users have access to internet services like mails and browser surfing. Lately the
interest in streaming full length movies on their mobile device has increased,
making higher demand for available data traffic to the common user. From
2009 to 2014 it is estimated that data traffic will grow 39 times [1].

The increased demand leaves a problem since the available bandwidth in
the air remains the same. To better utilize the available spectrum, calculation
heavy en-/de-coding and (de)modulation algorithms are put to use. How-
ever, with the increase in calculation complexity follows an increase in power
consumption and hence the need for faster data processors. This is undesir-
able since the equipment which has the wireless system implemented is often
portable and therefore driven by battery power.

One of the high-end standards of telecommunication of today is LTE3, which
is proposed by the 3GPP4. The LTE system offers advantages like low com-
plexity, high data rates5 and variable bandwidth, which makes it the chosen
communication type of today. The LTE system is a evolving system, where
each new wave of LTE equipment increases the throughput.

The evolution of LTE creates a need for better telecommunication equip-
ment. Here the FPGA6 system is a good candidate for the future, since it is
able to deliver the needed performance to support LTE but also provides the
reconfigurability which future proofs the design [3].

1Short Message System
2Multimedia Messaging Service
3Long Term Evolution
4Third Generation Partner Project
5up to 300 Mbps [2]
6Field Programmable Gate Arrays

1



2 CHAPTER 1. INTRODUCTION

With the release of the first wave of LTE networks by TDC7 in October
2011 the evolution began, although the technology is advancing fast there are
still implementation challenges, e.g. MIMO utilization, before the theoretical
peak data rates can be met. The everlasting challenge is the coherency between
battery power, processing power, equipment size and cost.

In order to achieve better battery efficiency, speed up calculation time of
complex algorithms and yield more processing power, technologies such as
ASICs8 or FPGAs are used. To fully utilize the power of an FPGA, it is
necessary for the designer to understand the algorithms of the given system.
This knowledge enables the designer to analyse and define which parts of the
functionalities that are tractable to implement on the FPGA, or an ASIC9,
when considering the requirement of the system.

1.1 Problem statement

The introduction states that the utilization of ASIC/FPGAs are inevitable due
to the increasingly complex algorithms used in wireless communications. Since
the base station of a wireless system often runs on a stationary power source,
the focus will be on the UE10. The following questions has to be answered to
be able to implement a wireless communication system.

Which functionalities are to be utilized when a wireless com-
munication is to achieve high throughput, high robustness and
offer a tractable solution of implementation.

As mentioned, LTE is the standard of today which offers the highest data
throughput. Due to this fact, the specifications of LTE will be the base of this
report. This leads to the following sub goals:

• What is the motivation for using the different functionalities in LTE?

• How is it possible to create an testbed for a software radio which can
utilize the power of ASIC/FPGA’s?

• Which of the physical layer functions are tractable to implement in hard-
ware?

• How is it possible to implement the desired functionalities in hardware
and what is the gain?

7Former: Tele Danmark
8Application Specific Integrated Circuits
9Application Specific Integrated Circuits

10User Equipment (ie. mobile phone)



Chapter 2

Physical Layer Structure

The physical layer of a communication system handles all the data processing
of the bits which should be transmitted/received, such as (de)coding, detection
and transmission. A basic physical layer communication chain can be seen on
Figure 2.1. An ideal reference for choice of functionalities to be used in the
physical layer which is to be analysed is LTE since it is the high-end standard
of today, when regarding mobile communication throughput. The focus of this
chapter is to understand the functionalities of the physical layer.

Channel
estimation

Channel
equalisationDemodulationDecoder

CRC
check

CRC
Adder

Encoding Modulation

Channel

Input
data 

packet

Output
data 

packet

Figure 2.1: A basic radio communication link of a physical layer.

In this chapter the blocks seen in Figure 2.1 will be described in the same
order as they are applied to the information sequence, i.e: the first thing that
will be discussed is the CRC1 and hereafter the Turbo Encoding.

When discussing the different functions of the transmitter side, the inverse
function will be described right after, e.g: when the Turbo Encoder has been
described, the Turbo Decoder will be described next section, even though it
actually belongs to the receiver part.

The data input to the physical layer will be defined as a TB2 and can be
of any length. This data is the actual packet which the above layers wants to
transmit, whereas a CB3 is a small slice, with predefined maximum length, of
the transport block which is subject to the encoding of the physical layer. The

1Cyclic Redundancy Check
2Transport Block
3Code Block

3
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first step in the physical layer is to add an error detection code which enables
the receiver to see if the given CB or TB has been received correctly, this is
done in the CRC block.

2.1 CRC

By adding a CRC to the CB it is possible to check the received CB for errors.
If errors are present the UE can request a retransmission from eNodeB4 of the
specific CB (BEC5). Finally, a CRC is attached to the complete TB, to ensure
that the packet actually has been correctly received. Since the added checksum
is redundant information it will lower the throughput, however it is desirable
to add since it is a fast way to estimate if the digital packet has been received
correctly.

The shorter the length CB the less amount of bits are needed to be retrans-
mitted on erroneous packet reception. Furthermore, the complexity of some of
the other physical layer functionalities are reduced, e.g. the Turbo Decoder.
However, a longer CB results in an increased effectiveness of the Turbo De-
coder’s error correcting capabilities [4].

The CRC code sequence is a binary sequence, which, when added to the
tail of the bit sequence, results in the fact that that there are no remainder
when dividing the bit sequence with the CRC polynomial [5]. It is encoded by
adding the remainder of the modulus 2 division as the redundant information.
The decoding process divides the received sequence with the polynomial and if
the result is zero the packet is accepted [5].

In LTE, the TB is split up in CBs if the TB exceeds the length 6020 bits,
which has been shown to give an effective trade-off between Turbo Code com-
plexity and error correcting capabilities [6]. The two different CRC polynomials
in the LTE standard are denoted as:

• CRCA : Which attaches a 24 bit CRC on the TB, which can be of infinite
length. The polynomial is seen in Equation 2.1.

• CRCB : Which attaches a 24 bit CRC on the CB, which are a part of the
TB of max length NCB max = 6044 (6020 without added CRC) [6]. The
polynomial is seen in Equation 2.1.

CRCA(D) = [D24 +D23 +D18 +D17 +D14 +D11 +D10 + ...

D7 +D6 +D5 +D4 +D3 +D + 1] (2.1)

CRCB(D) = [D24 +D23 +D6 +D5 +D + 1] (2.2)

The CRC’s are attached to the TB as seen in Figure 2.2.

4Basestation notation in LTE
5Backward Error Correction
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TB
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C
R
C
B

C
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C
A

CB CB CB
18156

6020 6020 602024 24 2424

Figure 2.2: This figure illustrates how a desired TB of 18156 bits
(including a 24bit CRC) for the TB are split into smaller CB’s for
which each has its own 24 bit CRC

Even though the added check value are redundant information it does not
have a huge impact on the throughput. Given the length of the CB of 6048,
with added CRC, it only results in decrease in throughput of:

δCRC =
NCRC

NCB
= 0.39 %

2.2 Turbo code

Turbo codes, or PCCC6, are a FEC7 code. This means that it adds redun-
dant information to the bit stream, which is used to help the receiver detect
and correct incorrectly received bits. Turbo codes excel because of high robust-
ness and the fact that they can come as close to the Shannon limit as 0.7 dB [7].

It is well known that NSC8 code has a very good performance at high Eb/N0

and a systematic code will be better at low Eb/N0 [8]. However, at high code
rates the RSC9 code will outperform a NSC code at any Eb/N0 [7]. The de-
coding complexity of an RSC code increases exponentially with the constraint
length v10. An high complexity decoding process increases the resource usage
of the system. Research has shown that parallel low low constraint length RSC
codes can obtain the same error correcting capabilities as a high constraint
length convolutional code, however the reduced constraint length of the low
weight codes reduces the complexity of the decoding process significantly [7].
The Turbo Encoder consists of parallel RSC encoders, separated by inter-
leavers, which generates the parity bits [7], as illustrated on Figure 2.3. In
this section the input data to the Turbo Encoder will be denoted as U, the
parity bit as Z and interleaving will be illustrated by an apostrophe.

The RSC encoders operate in parallel, instead of operating on each others
outputs as would be the case for serial convolutional codes. Even though the
RSC encoders operates on the same sequence, the inputs to the encoders are
relatively uncorrelated, due to the interleaver. There are two main reasons for

6Parallel Concatenated Convolutional Codes
7Forward Error Correcting
8Non Systematic Convolutional
9Recursive Systematic Convolutional

10Number of delay elements in the code polynomial
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Interleaver

M
u
l
t
i
p
l
e
x
e
r

RSC
U'

Z'

RSC
U

Z
Input

Output

Figure 2.3: An example of a turbo encoder created by two RSCs
connected by an interleaver ending up in three main outputs, thus
making it a rate 1/3 encoder. On the sketch, the systematic output
U’ of encoder 2 have the possibility to be connected, which makes it
an rate 1/4, this can be useful to obtain information about the tailing
process, which will be described later. The multiplexer ensures that
the data is organised in the desired order.

using the interleaver: The first is to increase the probability to create a high
weight codeword and the other is to make the different codewords uncorrelated
with each other, which increases the gain by the information exchange.

To decode the parallel encoding scheme, the Turbo decoder looks as de-
picted in Figure 2.4 of where it is clear that it uses RSC decoders in a serial
connection, where the last encoder receives the information from the first.

RSC decoder Interleaver

Deinterleaver

DemultiplexerInput
RSC decoder

U

Z

Z'

Figure 2.4: The principle behind the decoder for the parallel concate-
nation scheme of the Turbo encoder.

As seen on Figure 2.4, the result from the first decoder are interleaved, which
ensures that the output of the first decoder, mimics the systematic input which
was given to the second encoder [7]. To increase the performance given by the
information exchange, the output of decoder one has to be a weighted soft
decision bit such as the LLR11. The LLR describes the likelihood of the bit as
seen in equation 2.3, a more detailed reason for this notation can be found in
Chapter B. For a summed up description of some of the possible RSC decoder
algorithms, refer to Section 2.2.1.

11Log Likelihood Ratio
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LLR (ã(k)) = Log

(
P (m̃(k) = 1| ã(k))

P (m̃(k) = 0| ã(k))

)
(2.3)

Where:

• m̃(k) is the decoded received message signal

• ã(k) is the received encoded bit sequence

• P (m̃(k) = 1| ã(k)) are the a-posteriori probability of the message bit
m̃(k)

The decoding scheme in Figure 2.4 is not optimal, since the first decoder
only uses a fraction of the redundant information available [7]. As stated earlier
in this section, the interleaver makes the two parity bits uncorrelated, which
means that the decoder can benefit from a closed loop connection, as seen on
Figure 2.5.

RSC decoder Interleaver

Deinterleaver

DemultiplexerInput

RSC decoder

Deinterleaver

U

Z

Z'

sb2(U)

sb1(U)

Output

Figure 2.5: A closed loop Turbo decoder scheme which exchanges
extrinsic information between the RSC decoders.

It has been shown, using a early stopping algorithm, that the average
Turbo Decoder complexity can be substantially lowered without impact on the
performance[9]. Furthermore it is shown that two early stopping algorithms
work in compliment with each other. There are different options for a two level
early stopping algorithm. Using hard decision, soft decision or a CRC. The
latter is chosen for the project seeing that two level hard and soft decisions can
result in erroneous decisions of otherwise correctly decoded bits and also that
the CRC offers a greater reduction in average decoding complexity [10].

RSC decoder Interleaver

Deinterleaver

DemultiplexerInput

RSC decoder

Deinterleaver Output

CRC detector

0 1

Figure 2.6: A closed loop Turbo decoder scheme with an added early
stopping algorithm using the CRC on the CB.
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As Figure 2.6 illustrates, the CRC decoder is implemented after each Turbo
Decoding iteration. It operates on the hard decision bits of the Turbo Decoder,
compares the newly calculated CRC with the received one and if they match,
it will tell the Turbo Decoder that no further iterations are needed. If however,
the CRC does not match, the Decoder will run a preset number of iterations,
before accepting failure and requesting the MAC12 layer to request a retrans-
mission of the CB.

2.2.1 RSC - Decoder Algorithms

Before going into the RSC decoding a quick insight into the encoding process
is required: One way to perceive the coding process RSC code is as a FSM13,
where the transition bits decide the code word for the current bit, and the next
state decides the point of reference for the next bit. This way of perceiving the
encoding process can also be illustrated through a Trellis diagram as shown
on Figure 2.7. The encoder always starts in the state where all the memory
registers, seen on Figure 4.2 are zero, since this increases the performance of
the decoder.

00

11

00

11

00

11

01

10

10

01

00

11

01

10

00

11

00

11

01

10

10

01

00

11

00

11

01

10

10

01

00

11

00

11

01

10

10

01

00

11

01

10

00

11

00

01

10

11

Figure 2.7: A trellis diagram which can be used to find the code word
for the input bit by looking at the the current state and the input bit.
The dashed lines illustrates a transition happening with a zero as input
and the full line happens when it gets a one as an input [11].

The RSC decoders utilizes the trellis structure, shown in Figure 2.7, by
calculating the likelihood of each transition and combining it to the likelihood
of ending up in each state. Different algorithms to decode an RSC code has
been proposed, where-as four have been chosen to be further described. Below
is a list of items, summarising the chosen algorithms along with some pro’s and
con’s. The summary is based on the findings in the book ”Turbo Codes” [4].

• Viterbi Algorithm

Principle Uses ML14 to maximize the probability Pr(r | c), where r is the
received bit and c is the transmitted bit. This is also equal to

12Medium ACcess
13Finite State Machine
14Maximum Likelihood
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minimizing the euclidean distance between the received signal and
the possible transmitted signals.

Pro’s Has a low complexity, due to the lack of a backwards recursive part.

Con’s The Viterbi algorithm only makes hard decisions, which causes it to
lose some accuracy at multi stage decoding.

• SOVA15

Principle Also utilizes ML to evaluate the hard decision as the Viterbi algo-

rithm, but uses the LLR to get the soft bit evaluation log
(
Pr{ct=1|rτ1 }
Pr{ct=0|rτ1 }

)
.

Pro’s Can utilize soft bits for optimized accuracy at multi stage decoding.
Furthermore SOVA has a relatively low complexity compared other
soft bit decoders as seen on Table 4.2.

Con’s Can be up to twice as complex as the Viterbi algorithm.

• BCJR

Principle This algorithm uses MAP16 to compute the LLR of log
(
Pr{ct=1|r}
Pr{ct=0|r}

)
.

This is done by calculating the 3 intermediate probabilities; the
probability of transitioning from one state to another γ, the forward
recursive probability α and the backward recursive probability β.

Pro’s Though the algorithm is computationally heavy, the result of the
algorithm is very robust.

Con’s The complexity of the algorithm is high, which can be ascribed the
use of exponential functions in the calculations as seen in Table 4.2.

• Max-Log-MAP

Principle This algorithm is a variation of the MAP decoder. As with SOVA
the algorithm calculates the LLR of each branch metric. The Max-
Log-MAP calculates the logarithmic α, β, and γ and uses these
values to evaluate the LLR.

Pro’s Compared to the BCJR algorithm the Max-Log-MAP is less com-
plex than the MAP algorithm, because the multiplications of the
MAP algorithm is converted to additions in the Max-Log-MAP.

Con’s The reduced complexity of Max-Log-MAP, comes at the price of
accuracy.

To fully use the potential of Turbo codes they should be connected in a
closed loop as in Figure 2.5, which means that the BCJR or Max-Log-Map
algorithms are the only possible means of implementation, due to the fact that
they are very robust compared to the Viterbi and SOVA algorithm.

2.2.2 Rate Matching

The Turbo encoder in LTE is a rate 1/3 as the one seen in Figure 2.3, with the
RSC encoder which is depicted in Figure 2.8.

15Soft Output Viterbi Algorithm
16Maximum A posteriori Probability
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Reg0 Reg1 Reg2+

+

+

+

Systematic

Parity

Figure 2.8: The RSC used in the LTE turbo encoder. As illustrated,
it consists of three one-bit memory registers, connected with XOR ad-
ditions.

Using an FEC code of rate 1/3 leads to an reduction in bitrate of 66.66 %
since 3 bits has to be transmitted for each information bit in the sequence
m(k), as seen in Equation 2.4.

δTC =
NRedundant bits

NTransmitted bits
=

2

3
= 66.66 [%] (2.4)

At low SNRs17 this reduction is compensated for by the error correcting
capabilities of the code, since this will increase the throughput compared to
if no FEC code was present. LTE offers different coderates by puncturing or
reusing the data, which can be used together with changing the modulation
order, to maximize throughput at a given SNR. To ensure granularity of the
output, a rate matching algorithm is defined in the LTE standard. The rate
matching algorithm interleaves the systematic bit sequence and spreads the
parity bits such that the average amount of code bits when looking at small
parts of the codeword are equal.

Firstly, the output data of the Turbo encoder will be inserted in a matrix
as [12, sec. 5.1.4]:

bjk =

 00:I−1 U0:K−1 UK ZK+1 U ′K Z ′K+1

00:I−1 Z0:K−1 ZK UK+2 Z ′K U ′K+2

00:I−1 Z ′0:K−1 UK+1 ZK+2 U ′K+1 Z ′K+2

 (2.5)

Where

• K is the length of the bit stream m.

• 00:I−1 illustrates that each of the rows are zero padded in the beginning
until the length of the array Narraymod 32 = 0.

• I = 32− ((K + 4)mod 32).

• The bits from K to K + 2 are the tail bits which have been used to
terminate the trellis. As can be seen; both of the systematic output’s
tailbits are included, this is because these are not equal since the end
states of the encodes are different due to the interleaver.

The three rows of b are interleaved independently, were b0 and b1 are inter-
leaved with a block interleaver, described by the algorithm below:

17Signal to Noise Ratio
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1. Write the data row wise into R× 32 matrix, with R being the number of
rows, found as R = Narray/32.

2. Column-permutate the matrix according to the polynomial in Equa-
tion 2.6, which takes the bit reversed column numbers.

3. Read the data out column wise

P =[0 16 8 24 4 20 12 28 2 18 10 26 6 22 14 30 ...

1 17 9 25 5 21 13 29 3 19 11 27 7 23 15 31] (2.6)

b2 are interleaved using the polynomial seen in equation 2.7.

Πb2(k) =

(
P

(⌊
k

R

⌋)
+ 32 (k mod R) + 1

)
mod Narray (2.7)

After the three rows has been interleaved, they are collected to the bit
stream a(k) as in Equation 2.8. It is to be noted that the padding bits are to
be skipped when collecting the data.

a(k) =


b0k for k ∈ (0, 1, 2, ...,K − 1)

b1k for k ∈ (K + 0,K + 2,K + 4, ..., 3K − 2)

b2k for k ∈ (K + 1,K + 3,K + 5, ..., 3K − 1)

(2.8)

The rate matched output sequence are obtained by starting with index

k0 = R

(
2

⌈
K

8R

⌉
rvidx + 2

)
(2.9)

Where rvidx ∈ (0, 1, 2, 3) are the transmission number (when using HARQ18

the first attempted transmission is 0 and a max of 3 retransmissions are al-
lowed).

The bits to be transmitted are in the array a(k) and the amount of data is
read out such that k ∈ (k0, k0 + 1, k0 + 2, ..., k0 + b3K+4·3/Gc, with G being the
desired rate.

2.3 Interleaving

Interleaving is a function which takes the input sequence and shuffles the index
sequence in order to either spread the indexed distance of each adjecent bit in
the data array as far from each other as possible, or to create a new sequence
which is as uncorrelated to the input sequence as possible.

Interleaving can, amongst other things, be used to counteract deep fades
in a channel by increasing the indexed distance in the data array, between
originally adjacent bits.

18Hybrid Automatic Repeat Request
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transmitted ”sequence” Tseq interleaving works!
a) Tseq received int ving works!

b) Tseq interleaved Tseq(I) ilnrevwsnegk!rio at
Tseq’ received igl n ensrraiwt
Tseq’ received deinterleaved int rlea ing w r s

Table 2.1: An example of the idea of how interleaving helps spread
the effects of deep fades in order to protect the information in the trans-
mitted sequence. a) shows the sequence transmitted without the use
of interleaving and b) shows the same transmission with the sequence
interleaved, ”transmitted” and then deinterleaved.

As seen in Table 2.1, interleaving increases the robustness of the data to
fades by spreading the corrupted parts of the signal across the whole signal
length such that deep fades will not distort a big subsequent part of the signal,
but rather distort small parts of the signal, increasing the possibility of error
corrections by the receiver. Furthermore, when implementing interleaving in
the Turbo Codes it also increases the robustness of the data to noise due to
the fact that the errors from one of the decoders also will be spread out when
reaching the other [4].

There are many ways to design an interleaver algorithm. One of the more
simple methods is called Block interleaving. This method uses a matrix of size
M ×N where the size of M and N is adjusted so that M ·N equals the length
of the input sequence L, this is illustrated below.

s̃ = {s0 s1 s2 s3 s4 s5 s6 s7 s8}s0 s1 s2

s3 s4 s5

s6 s7 s8


s̃′ = {s0 s3 s6 s1 s4 s7 s2 s5 s8}

The input sequence is read into the the matrix row-wise and the interleaver
output is then read out column-wise, thus shuffling the indexes compared to
the input. To further scramble the order of the bits, the rows can be permu-
tated.

The LTE standard suggests the use of a contention-free QPP19 interleaver[13]
which is a interleaver type that uses a polynomial to calculate the interleaving
process. This polynomial is illustrated below.

ΠTurbo Codes(k) =
(
f1 · k + f2 · k2

)
mod K

19Quadratic Permutation Polynomial
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The variables f1 and f2 are integer values that correspond to the data length
K. There are 188 defined data lengths in LTE, for which f1 and f2 are listed
in a Look-up table in the standard [12].

Choosing a QPP type interleaver over other interleavers, is due to it’s sim-
plicity, with only to integers describing the permutation, while additionally
providing contention free memory access. It requires little storage space while
offering a high degree of parallelism with no loss in performance compared to
contention free IWS20 interleaver, which has higher requirements.[14][15]

2.4 Air Interface

In order to enable a bit stream to be transmitted through an antenna, it must
first be modulated onto a specific carrier or array of carriers, that can convey
the bit stream through the antenna. This section will focus on discussing the
different modulation techniques used in LTE And the motivation of this.

It has been chosen to investigate the OFDM21 modulation since this is
used in LTE. OFDM has the advantage of increased symbol time, which is
helpful in a multipath environment where fading occurs, while retaining the
same throughput. Furthermore, it utilizes the spectrum more efficiently than
single carrier modulation.

OFDM TX 
Procedure

Subcarrier
Mapping

Input data

Figure 2.9: The order of precedence of the air interface defined in
LTE.

OFDM makes use of several orthogonal sub-carriers, which carries bits
which is mapped onto a desired constellation22. As seen in Figure 2.9 the
binary message in mapped to the complex carrier using PSK23 or QAM24.
First the desired modulation schemes is explained, whereafter the basics be-
hind OFDM is explained. Note that in this chapter, ”symbol” defines the
output of the constellation mapper and input to the constellation demapper,
whereas ”OFDM-symbol” is the term for the actual output of the transmitter
and input to the receiver.

20Inter Window Shuffle
21Orthogonal Frequency Division Multiplexing
22Hereafter refereed to as bit-modulation, so it is not to confuse with the OFDM modu-

lation
23Phase Shift Keying
24Quadrature Amplitude Modulation
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2.4.1 Subcarrier Mapping

PSK and QAM are two different ways of mapping the transmitted bits onto
a symbol, defined as a complex number. An example of the two schemes are
seen in Figure 2.10.
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(a) PSK constellation.
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(b) QAM constellation.

Figure 2.10: An example og 16-PSK and 16-QAM constellation dia-
gram.

PSK has the advantage of all symbols having the same envelope, however
the euclidean distance between the symbols are smaller than in QAM, making
it more susceptible to noise. The QAM constellation has the disadvantage that,
the receiver having to know the maximum amplitude of the received symbol,
since the decoding is dependant on the amplitude, whereas PSK only depends
on the phase.

The euclidean distance between each symbol for a 16-PSK modulation
d16PSK can be found as in Equation 2.10 and for 16-QAM modulation as in
Equation 2.11.

d16PSK = 2
√
Es sin

( π
16

)
(2.10)

d16QAM = 2

√
Es
10

(2.11)

The ratio between the two modulation types, assumed that the Es
N0

is equal,
is 1.62 which in dB is 20 log (1.62) = 4.19 dB, as is seen in Equation 2.12.

ratio

(
16QAM

16PSK

)
=

2
√

Es
10

2
√
Es sin

(
π
16

) = 1.62 (2.12)

This means that 16-QAM will require 4.19 dB less signal power to achieve
the same signal error rate as 16-PSK. Therefore QAM has been chosen for
further analysis.

The different constellation diagrams of the available modulation schemes in
LTE are; BPSK25, QAM, 16QAM and 64QAM, which can be found illustrated

25Binary PSK
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in Figure B.1, B.3, B.4 and B.5 accordingly, in Appendix B. The used constella-
tions are grey encoded, which means that the hamming distance between each
subsequent adjacent symbol is no more than 1. The low Hamming distance
greatly decreases the complexity of the de-mapping algorithm as will be seen
in this section.

The modulation of the signals are very simple, since it can be done by
lookup-tables or as illustrated in the equations 2.13 to 2.15.

sBPSK(k) = (−1)|m(k)−1| (2.13)

sQAM(k) =
(

(−1)|m(2k)−1| + j(−1)|m(2k+1)−1|
)
· 1/√2 (2.14)

s16−QAM(k) = (−1)|m(k+3)−1| ·
(

3m(k + 1)√
10

+
|m(k + 1)− 1|√

10

)
+ ...

j(−1)|m(k+2)−1| ·
(

3m(k)√
10

+
|m(k)− 1|√

10

)
(2.15)

The 64-QAM expression is obtained by expanding the principle of 16-QAM
in equation 2.15.

When decoding a bit, it is assumed that it is affected by an AWGN26 chan-
nel, described in Appendix B. When using an AWGN channel with variance
σ2
n, the received value probability of the bit can be described by the use of

the normal distribution, as seen in equation 2.16, where µ is the value of the
transmitted symbol.

P
(
ã(k) = µ | b̃(k)

)
=

1√
2 · π · σ2

n

· exp

(
− (b̃(k)− µ)2

2 · σ2
n

)
(2.16)

Where, b̃(k) is a sequence of received symbols gathered from OFDM sub-
carriers.

In section 2.2 it is described that the Turbo Decoding algorithms uses a
soft valued bit, describing the probability of the bit being correct, as input.
As seen in Appendix B the soft valued bit are calculated based on the MAP
decision rule, showed in Equation 2.17.

P(ã(k) = µ1 | b̃(k))

P(ã(k) = µ0 | b̃(k))
=

P(a(k) = µ1)

P(a(k) = µ0)
(2.17)

Since the probability of the bit is described using the exp function, it can
be simplified by using the logarithm, which leads to the LLR, which leads to

26Additive White Gaussian Noise



16 CHAPTER 2. PHYSICAL LAYER STRUCTURE

the calculation of the soft bit as seen in Equation 2.18.

log

(
P (ã(k) = µ1 | b̃(k))

P (ã(k) = µ0 | b̃(k))

)
= log

 1√
2·π·σ2

n

· exp
(
− (b̃(k)−µ1)2

2·σ2
n

)
1√

2·π·σ2
n

· exp
(
− (b̃(k)µ0)2

2·σ2
n

)


= log

(
exp

(
− (b̃(k)− µ1)2

2 · σ2
n

))
− ...

log

(
exp

(
− (b̃(k)− µ0)2

2 · σ2
n

))

= − (b̃(k)− µ1)2

2 · σ2
n

+
(b̃(k)− µ0)2

2 · σ2
n

(2.18)

With the LLR of a single bit defined, it is possible to deduct a soft deci-
sion algorithm for the constellations defined in LTE. Research has shown that
soft decoding can increase performance compared to hard decoding by up to
8.5 dB [16]. The next subsections will make a breif summary of the analysis in
Appendix B which is based on [16].

2.4.1.1 BPSK soft-output algorithm

The demodulation of the bit-mapping are done by the algorithms given in
Appendix B. The algorithms deducted in those sections are, however, fairly
computational heavy since they are based on the LLR calculation seen in Equa-
tion 2.19

LLR(ã(k)) = − (b̃(k)− µ0)2

2 · σ2
n

+
(b̃(k)− µ1)2

2 · σ2
n

(2.19)

As seen in Equation 2.19 the algorithm uses two subtractions, 6 multiplica-
tions and one addition to calculate the result. Research has shown that Equa-
tion 2.19 can be simplified by only calculating the euclidean distance between
the symbols [16].

LLR(ã(k)) = −b̃(k) (2.20)

The simplification seen in Equation 2.20 does not lead to a performance
loss compared to the theoretical calulations but they does lead to an increase
in speed [16].

2.4.1.2 QAM soft-output algorithm

In the case of QAM, the problem can be split up so that the in phase and
quadrature component describes a bit each. This means that the two soft bit
outputs in Equations B.9 and B.10 can be described by the simplification in
equation 2.21 and 2.22.

LLR(ã(2k)) = −b̃real(k) (2.21)

LLR(ã(2k + 1)) = −b̃imag(k) (2.22)
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2.4.1.3 16-QAM soft-output algorithm

As with QAM, it is possible to calculate each soft bit value using the LLR
Equation 2.18. The four bits held by the 16-QAM constellation are denoted as
illustrated by the expression in Equation 2.23.

ã4k:4k+3 = [DI,1, DQ,1, DI,2, DQ,2] (2.23)

Using the simplification on Equation B.11 to B.12 yields the result seen in
Equation 2.24 and 2.25. Note that the calculation of DI,k = DQ,k uses the in
phase and quadrature component of b(k) respectively.

DI,1 = −ã(k) (2.24)

DI,2 = |ã(k)| − 3√
10

(2.25)

2.4.1.4 64-QAM soft-output algorithm

The deduction and denotion of the 64-QAM is similar to the 16-QAM. The
bit denotion are seen in equation 2.26 and the algorithm are seen in equa-
tion 2.27, 2.28 and 2.29.

ã6k:6k+5 = [DI,1, DQ,1, DI,2, DQ,2, DI,3, DQ,3] (2.26)

DI,1 = −ã(k) (2.27)

DI,2 = |ã| − 5√
42

(2.28)

DI,3 =

∣∣∣∣−|ã|+ 5√
42

∣∣∣∣− 3√
42

(2.29)

2.4.2 OFDM

OFDM is a broadband multicarrier modulation which performance excels in
spectrum utilization compared to other modulation methods. Furthermore it
is effective at mitigating ISI27 due to long symbol times.

Single carrier transmission with a high symbol rate is very susceptible to
the deep fades and ISI, which can occur in a multipath channel environment
as described in Section 2.5. Channel estimation can be used to counteract the
influence of these distortions, however this becomes increasingly difficult as the

27Inter Symbol Interference
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desired data rate increases, due to the decreased symbol time.

To mitigate the effects of ISI, OFDM transmits multiple narrowband sub-
carriers, modulated by PSK/QAM, on the same broadband medium as it is
the case with Frequency-Division multiplexing. OFDM utilizes the broadband
spectrum to its fullest, by ensuring that each carrier is orthogonal to each other,
e.g. that the current subcarrier lies in the nulls of the adjacent subcarriers fre-
quency response. Orthogonality is obtained by setting the frequency spacing
fs to be equal to the reciprocal of the symbol time:

fs =
1

tsymbol
[Hz] (2.30)
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Figure 2.11: OFDM and single carrier transmission’s utilization of
the Frequency spectrum at a symbol rate of 5, where it is very clear
that the OFDM utilizes the spectrum more efficiently while retaining
the same datarate.

The multiple subcarriers of OFDM enables the system to have long symbol
times, while retaining high data rates. Furthermore, OFDM utilizes the spec-
trum more efficiently than e.g. single carrier transmission at the same datarate
due to its multiple orthogonal carriers, as shown on Figure 2.11.

The OFDM modulation can be handled by using a DFT28 since this al-
gorithm will transform the carriers between frequency an time domain, while
retaining the frequency spacing. A DFT has a high calculation complexity
which is not tractable to implement in a system with many subcarriers. The

28Discrete Fourier Transform
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FFT29 is a more efficient way of calculating the DFT which reduces the com-
plexity from O

(
N2
)

for the DFT to O (N log (N)) for the FFT.

Despite OFDM’s many advantages it is susceptible to carrier frequency
offset from Doppler shift or from synchronization problems between transmitter
and receiver. This frequency offset has a direct impact on the subcarriers SNR,
but this can be counteracted by transmitting pilot signals in order for the
receiver to synchronize with the transmitter[17].

To increase the robustness against ISI and other elements of the multipath
fading channel the OFDM symbol is extended with redundant information in
form of a CP30 which, if defined in such a way that the length exceeds the
expected delay spread, ensures that the data on each subcarrier will only be
affected by a single channel coefficient as can be seen in Equation 2.31 [18].

s̃k = Hsk + nk (2.31)

The OFDM modulation chain is shown on Figure 2.12, and as is seen uses
an (I)FFT31 to ensure orthogonality.

Data In Serial
to Parallel

Cyclic PrefixParallel
to Serial

IFFT
PSK / QAM

Mapper

Figure 2.12: The OFDM modulation chain used in an LTE system.

An implementational disadvantage of the OFDM modulation is that it
has a high PAPR32, which increases the requirements to the linearity of the
power amplifier of the transmitter. SC-FDM33, also known as Frequency spread
OFDM, uses multiple carriers to carry one symbol and hereby lowering the the
PAPR compared to normal OFDM[19, 46]. This property is due to the fact
that a single symbol is transmitted over several subcarriers, which results in
fewer fluctuations. Tests has been made [20] which show that SC-FDM can
obtain up to 10 dB lower PAPR compared to an OFDM transmission, when
using QPSK.

Even though SC-FDM is more efficient, it chosen to only use this in the
uplink since the basestation would not gain as much using excessively complex
algorithms to save some power, when it is a resource that is easily available to
the basestation. In this report, the focus is only on OFDM since the modulation
chain of SC-FDM is an expanded version of OFDM as seen in Figure 2.13.

29Fast Fourier Transform
30Cyclic Prefix
31Inverse FFT
32Peak to Average Power Ratio
33Single Carrier - Frequency Division Multiplexing
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Data In
1:N

M-Point 
DFT

Subcarrier 
Mapping

N-Point 
IFFT

CP & Pulse 
Shaping

PSK / QAM
Mapper

Figure 2.13: Illustration of the encoding chain of the SC-FDM.

The LTE standard states that the OFDM symbol time is 66.66 ms, which
leads to a spacing of 15 kHz. To simplify the available resources for a transmis-
sion, the subcarriers are divided into RBs34, which consists by 12 subcarriers
over a slot duration of 0.5 ms[13, 39], where two adjacent slots is one sub-frame.
This structure is illustrated on Figure 2.14.
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Figure 2.14: Illustration of a resource block in the LTE standard.

A radio frame, has a duration of 10 ms, consisting of 10 sub-frames.

LTE supports bandwidths of up to 20 MHz [13, 32] with 6 different choices
of bandwidth which are stated in Table 2.2 together with how many subcarriers
the standard dictates it is configured with.

LTE defines two CP lengths; the standard CP of 4,8 µs and the extended of
16,6 µs. The CP is created by copying first part of the sequence to the end of
the symbol as illustrated on Figure 2.15 and the different lengths are coherent
with either 7 or 6 OFDM symbols are placable within a timeslot.

34Resource Block
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Transmission BW35 (MHz) 1.4 3 5 10 15 20
Sub-frame duration 1.0 ms
Sub-carrier spacing 15 kHz
Sampling frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72
FFT size 128 256 512 1024 1536 2048
Number of occupied sub-
carriers

72 180 300 600 900 1200

CP length (µs)
Normal 4.69× 6, 5.21× 1

Extended 16.6

Table 2.2: The table shows the utilization of the air medium depend-
ing on the required settings for the available bandwidth [21].

xN-3 xN-2 xN-1 x0 x1 xN-1xN-2xN-3xN-4...
T  = 66.7 μss

T  + CP = 71.4 μs / 83.3 μs s

Figure 2.15: Illustration of how the CP is added to the OFDM sym-
bol [11].

2.5 The Wireless Medium

This section will describe the used channel model with the purpose of analysing
the medium and its impact.

A transmitted signal will before being received by the receiver propagate
through a channel, where the signal is reflected through an infinite number
of paths, closely spaced in time. However when modelling and handling the
reflections they will be modelled by a filter with a finite number of taps, as in
equation 2.32.

H (τ) =

K−1∑
k=0

αkδ (τ − τk) (2.32)

With:

• H (τ) being the discrete channel model

• τ is the delay

• K being the number of taps

• τk is the path delay

• αk is the complex fading coefficient for the given path delay τk

The environmental impact on the channel fading in the channel transfer
function can be defined in two main types:
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• Slow fading; which defines the signal fading typically caused by shadow-
ing, e.g. obstruction of the direct path by the surroundings such as a hill.
This type is of not interest, since the fading varies very slowly (across
multiple symbols).

• Fast fading; which occurs when the signal reflects from objects, like trees
or buildings, relatively close to the receiver and will vary within a symbol
time.

Different models have been created of the fast fading filter tap power dis-
tribution, of which the mostly used are:

• Rayleigh fading, which assumes that there is no direct path between the
transmitter and receiver and can especially be used to model densely
build cities. The distribution is described by Equation 2.33 [22].

pdfrayleigh =
s

σ2
· exp

(
−s2

2 · σ2

)
(2.33)

Where:

• pdfrayleigh is the rayleigh pdf

• s is the transmitted signal

• σ2 is the transmitted signal variance

And

• Rician fading; which are used when there are one path, typically a path
in line of sight of the receiver, which are significantly stronger than the
others. This distribution is described in equation 2.34 [22].

pdfrician = I0 ·
(
s2 · λ2

σ2

)
· s
σ2
· exp

(
−
(
s2 + λ2

2 · σ2

))
(2.34)

Where:

• pdfrician is the rician pdf

• I0 is the 0 order modified bessel function of the first kind.

• s is the transmitted signal

• λ is a noncentrality parameter (≥ 0 for x > 0)

• σ2 is the transmitted signal variance

The different distributions can be used together with power delay profile
models to successfully create a realistic model of the given environment. A
power delay profile defines the intensity of a signal received as a function of
the time dispersion.

With the channel problem properly described the channel estimation can
be described.
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2.5.1 Channel Estimation

The channel estimate is briefly described in order to give a glimpse of how the
estimate is generated, before using it in the equalization. The channel estimate
is found by transmitting some known reference signals on specific subcarriers
in the frequency domain. These reference signals are spread out so that there
is a offset of 6 subcarriers between each reference signal subcarrier as can be
seen in Figure 2.16.

Figure 2.16: How the reference symbols are placed in the LTE with
an two antenna transmitter system [21], as seen they are placed with
a 6 subcarrier spacing and the symbol spacing is 2 with an offset of
4 subcarriers. Furthermore the opposite antenna of the one which
is currently transmitting a reference symbol is silent for that specific
subcarrier.[6]

The channel estimate across the whole BW is then found by interpolation of
the transmitted reference signals. The channel estimate in the reference signal
positions can be seen in equation 2.35 [23].

ĤP,LS =
YP (n)

XP (n)
+ zAWGN (2.35)

where

• zAWGN is the AWGN noise of the channel

• ĤP,LS is the least square estimation of the channel at the reference signal
locations

• YP (n) = HP (n)XP (n)

• HP (n) is the channel gain at the reference symbol location

• XP (n) is the transmitted reference symbol

This will yield the channel estimate for the reference signal subcarriers. The
complete channel estimate may then be obtained by using linear interpolation
on the calculated estimate in equation 2.35 [24].
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2.5.2 Channel Equalization

To help mitigate for the channel influence on the transmitted signal a equalizer
can be utilized. This block utilizes a channel estimate to try and counteract
some of the corruption of the channel. To accomplish this there are different
types of equalizers that try to mitigate the channel corruption in different ways.

2.5.2.1 Zero Forcing Equalizer

The ZF36 equalizer is a simple example of a type of equalizer. It assumes that
the transmitted signal s(k, n) is corrupted purely by ISI and seeks to equalize
this as can be seen in equation 2.36.

s̃e(k, n) = CH(n)s̃(k, n) = CH(n)H(n)s(k, n)

C(n) =
(
HH(n)H(n)

)−1
HH(n) (2.36)

• s̃e(k, n) is the ZF estimator at the ”n”-th subcarrier

• H(n) is the channel gain at the ”n”-th subcarrier

• C(n) is the channel filter tap at the ”n”-th subcarrier, which is calculated
by using the pseudo inverse of H(n)

But since a normal channel environment also contains some AWGN the
equation will look a bit different as seen in equation 2.37

s̃e(k, n) = CH(n) (H(n)s(k, n) + zAWGN)

= CH(n)H(n)s(k, n) + CH(n)zAWGN (2.37)

Since the filter taps C(n) are not scaled to counteract the AWGN they risk
amplifying it which is not desirable.

2.5.2.2 Minimum Mean Squared Error Equalizer

In order to expand the equalizer to incorporate the AWGN in the filter tap
design the linear MMSE37 equalizer is used.

This equalizer seeks to minimize the MSE38 E
{
|s(k, n)− s̃(k, n)|2

}
thus

designing the filter taps in the best way to counteract the channel.
The filter taps are as can be seen in equation 2.38 [25].

s̃e(k, n) = CH(n) (H(n)s(k, n) + zAWGN)

C(n) =
(
H(n)σ2

s(k,n)H
H(n) + σ2

zAWGN

)2

H(n)σ2
s(k,n) (2.38)

36Zero Forcing
37Minimum MSE
38Mean Squared Error
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The linear MMSE equalizer has a good performance while it has a relatively
low complexity as opposed to the MAP equalizer which is very complex. Fur-
thermore the complexity of the linear MMSE equalizer can be greatly reduced
without too much loss of performance [26].

2.5.2.3 Turbo Equalizer

The equalizer can be incorporated into the turbo decoder in such a way that
the equalizer estimate receives feedback a priori information from the decoder
which in turn helps the equalizer to make a better estimate.

The principle behind the turbo equalizer is that the channel itself is viewed
as part of the signal encoding, therefore expanding the turbo decoder to also
utilize the equalizer. The information from the equalizer is decoded and then
reencoded and fed back to the equalizer as extrinsic information thus allow-
ing the equalizer to improve the estimate s̃(n) of the received data. A block
diagram of the turbo equalizer is shown in Figure 2.17.
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~bL
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ext
( )(n)

(n)

(n)

Figure 2.17: A block diagram of the turbo equalizer.

The decoder in the turbo equalizer is the same as in the turbo decoder, but
in place of passing the extrinsic information to another decoder block it is fed
back to the equalizer, which uses it to optimize the signal estimate s̃(n)[27].

When used in the turbo equalizer the linear MMSE equalizer gets feedback
information from the decoder, which is used to improve the estimate s̃e(n).
This changes equation 2.38 to take account for the feedback information as
seen in equation 2.39.

s̃e,k = E {|sk|}+ CHk (s̃k −HkE {|sk|})

Ck =
(
Hkσ

2
sk
INH

H
k + σ2

nk
IN
)2
Hkσ

2
sk
IN (2.39)

Here E {|sk|} and σ2
sk
IN are both affected by the extrinsic information,

which in turn optimizes the equalizer estimate s̃e,k.

While the performance is a bit lower than that of the MAP equalizer the
reduction in complexity more than makes up for it for the hybrid approximate
MMSE LE equalizer[26]. This shows that a MMSE equalizer with lowered
complexity can still perform sufficiently.
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2.6 Physical Layer Structure - Summary

The functionalities in LTE’s communication link has been analysed with respect
why and how they are defined in the communication link. The high perfor-
mance of LTE comes amongst other things from the highly robust Turbo codes,
which has high error correcting capabilities and OFDM modulation which uti-
lizes the avaliable spectrum very efficiently and can mitigate the effects of ISI
using a CP.

The high performance of especially the OFDM and Turbo codes comes at
the price of a high calculation complexity. High calculation complexity leads
to either a high latency of the communication link, or the need of a high speed
processor which uses a lot of power.

To further increase performance of the receiver, a Turbo equalizer can be
utilized. The Turbo equalizer uses the soft output bits of the Turbo decoder
through a feedback loop, which further increases the strain on the physical
layers complexity.

It is clear that the Physical layer of a modern communication system holds
a high complexity, but it does also have high constraints on the speed, latency
and power consumption. On the basis of this, it is reasonable to analyse the
Physical layer functionalities with respect to if they can gain from hardware
acceleration.



Chapter 3

FPGA resources

This chapter addresses the choice of which hardware platform should be used
for implementation. In order to make a viable decision of platform it is im-
portant to analyse the possibilities regarding available resources and interfaces.

The LTE technology is minded towards portable devices, such as cellphones,
laptops or tablets. Due to the fact that the modern user wants a lot of com-
putational power and battery power in his/hers portable devices, the imple-
mentation of the physical layer functionalities described in Chapter 2 is to be
made with focus on both computation efficiency and power consumption.

To reduce battery usage while retaining a high calculation capability, the
implementation could be created as a co-design between hardware and soft-
ware. A way to do this is to utilize an FPGA or an ASIC which gives the
programmer access to low level logic gate programming and further extended
pipeline options than the one supplied by a processor using a Harvard archi-
tecture.

The choice of whether to choose an FPGA or an ASIC is a compromise
between flexibility and power consumption: FPGA’s are versatile due to the
fact that it is possible to reconfigure the fabric1, however they are often seen
as power hungry devices compared2 to the ASIC due to the structural design.
ASICs can be very optimized with power consumption in mind, however they
do not have the capability of being reconfigured as much as the FPGA.

A suitable platform for this project would be an USRP3, which is a hard-
ware platform created specifically for software radio projects by Ettus Research
LCC. The USRP consists of an FPGA, with various interfaces, of which spe-
cial interest are the 2 DACs and ADCs, which can be used to connect different
available daughterboards. The converters are high speed (100 Msps) and has
a 14-bit resolution, which is the minimum requirement if a high SNR should
be achieved in modern communication systems [28].

1The part of the FPGA which is available for programming
2Often the increased power consumption of the FPGA are due to unused connections,

which will still leak. This also means that a good fabric utilization results in power con-
sumption close to an ASIC.

3Universal Software Radio Peripheral

27
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The daugtherboards are RF front ends which allows the designer to utilize
the USRP’s resources with communication systems in mind. There are many
different daughterboards available, currently enabling the designer to configure
the transmission within the bandwidth ranging from 1 MHz to 5.9 GHz [29],
depending on the chosen daughterboard specification.

This chapter first gives a brief introduction to the USRP in regard to the
available resources and FPGA, where-after a description of the hardware struc-
ture will me made. Last the firmware of the chosen platform will be analysed
with respect to where it is tractable to implement new hardware functionali-
ties.

3.1 Available USRP resources

The USRP is chosen due to the available front ends and the already working
SDR4 FPGA image, which makes it an ideal choice for radio development.
However, the choice of this platform also sets some restrictions since it locks
the choice of FPGA to the one used in the USRP. Furthermore, the pre-installed
FPGA image also uses some of the available fabric. How many resources are
available is stated in Table 3.1 for the three available USRPs. The data in this
section has been retrieved from the ETTUS homepage.

USRP USRP1 USRP2 USRPN200

FPGA Altera Cyclone Xilinx Spartan
XC3S2000

Xilinx Spartan
XC3SD1800A

CLB’s5 5,120 (42 %) 4,160 (54 %)
Logic units 40960 (-) 33280 (-)
RAM (bits) 720,000 (97 %) 1,512,000 (50 %)
Dedicated mul-
tipliers

40 (42.5 %) -

DSP48As - - 84 (20 %)
Daughterboard
connectors

4 2 2

Firmware up-
load

USB2 Flash card Ethernet cable

PC connection USB2 Ethernet cable Ethernet cable

Table 3.1: The available USRP’s and their resources[30]. The number
in parenthesis indicates how much the pre installed firmware uses of the
available resources [31]. A dash indicates that the FPGA does not have
the given resource.

The advantage of the USRP1 is that it has four antennas, and is able to
transmit and receive at different frequencies at different antennas, assuming
the prober daugtherboards are installed. However, the USB2 connection is rel-
atively slow (8 Mbps) compared to the USRP2 and N200 which uses a Gigabit
Ethernet connection (1000 Mbps). According to Table 2.2 theory Section 2.4,

4Software Defined Radio
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the sample rate for LTE is between 2 - 30 Msps, rendering the USRP1’s com-
munication link too slow. Furthermore the USRP1 has very limited resources,
meaning that it is not optimal for this project.

The USRP2 and USRPN200 both have the same firmware but according
to table 3.1, the USRPN200 is the most powerful due to the fact that there
are more available RAM6 and that the dedicated multipliers are replaced by
the DSP48A slices, which are multipliers targeted towards signal processing
functions such as MACC7 and multiply add [32].

The USRP2 has been chosen as an initial development platform, since it
offers a good trade-off between available resources, features and availability.
Due to the fact that it uses the same firmware as the USRPN200, it is still
possible to transfer the written code to the USRPN200 if there is need for
more RAM or multipliers.

3.2 USRP2 hardware structure

As described in the previous section, the USRP2’s base is the Spartan-3-2000
FPGA, on which different peripherals has been connected, as shown in Fig-
ure 3.1.

Figure 3.1: Structure of the USRP2 hardware configuration, with the
FPGA as the main unit with different connected peripherals[33, p. 14].

The peripherals connected to the USRP2 are used to connect to the daugh-
terboards and the PC, as seen on figure 3.1. The ADC’s and DAC’s seen on
the right-hand side are used to connect to the daughterboards. The GMII8 pe-
ripheral is used to connect to the host PC, whereas the actual communication
is controlled by an Ethernet controller implementation using the FPGA fabric.

When turning on the USRP2, the CPLD9 loads the binary firmware from
the SD card onto the FPGA [33]. The CPLD is programmed to handle the

6Random Access Memory
7Multiply Accumulate, as per Xilinx terminology
8Gigabit Media Independent Interface
9Complex Programmable Logic Device
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initialization process of a standard SD card and when it is initialized it loads
the bits from address 0 and onto the FPGA configuration interface, which
handles the actual FPGA fabric configuration based on the binary file on the
SD card [33]. Once the FPGA image is loaded and initialized, it waits for
input from the Host-PC. The communication between USRP2 and Host-PC
goes through a Gigabit Ethernet connection.

Since the overall hardware structure of the desired platform has been de-
termined, it is now possible to further analyse the data-flow by taking a closer
look on the FPGA image.

3.3 The USRP2’s FPGA image

This section describes the interaction of the chosen USRP platform and the
Host-PC, with respect to later implementation of Verilog modules which ex-
tend the current functionality. Due to lack of documentation, this information
has been derived by analysing the firmware designed by Ettus research, which
has been supplied such that it is possible for the user to extend the firmware
functionality.

The initial analysis is based on a report created by a 8th semester group at
Aalborg University [33] and will be referenced to, whereas the rest is deduced
from the code itself.

The firmware can be obtained by cloning the UHD10 repository from Et-
tus Research11. When entering the USRP2 firmware path12 there are different
folders, each containing different modules. Table A.1 in appendix A shows the
content of the different folders [33].

3.3.1 USRP - Host-PC communication

To implement any extra functionalities on the USRP’s FPGA, it is important
to understand how it communicates with the Host-PC, such that it is possible
to transfer data to and from the FPGA.

The communication between Host-PC and USRP can be incorporated using
the UHD library, which is a C++ library that holds different calls, abstracting
the user from the lower layers such as the Ethernet protocol and the VRT13,
used to transfer the data [33] between USRP and host.

The UHD library holds different function calls to control the USRP2 trans-
mission, reception and communication. However, since this project has its focus
on utilizing the the USRP2 fabric to accelerate some of the LTE physical layer
functionalities, the interesting part is how the commands from the Host-PC is
interpreted in the USRP2 and how the data from the USRP2 is transferred to

10USRP Hardware Driver
11git://code.ettus.com/ettus/uhd.git
12uhd-repo-path/fpga/usrp2
13Vita Radio Protocol, part of the ANSI standard (ANSI/VITA 49.0-2009)
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the Host-PC.

The following information has been obtained by reading the supplied Ver-
ilog code and tracking the different signals flowing in the code. The code has
been obtained as described in Appendix C.

The data from the Host-PC to the USRP2 is streamed through the Eth-
ernet cable using the before mentioned VRT protocol, wrapped in a standard
Ethernet protocol. The flow of the Tx stream and Rx stream can be seen
in Figure 3.2 and Figure 3.3, respectively. Further information of the rout-
ing of data before the VITA deframer can be found in the above mentioned
report [33]. The ZPU is a soft-core processing unit, which is implemented on
the FPGA and handles setting registers as will be described later in this section.

VITA 
packet

VITA packet
header

VITA packet
payload

Host pc

Ethernet
blackbox

ZPU

External 
USRP ram

Signal 
Processing

VITA 
Control

Motherboard
Tx

VITA 
Deframer

Setting
registers

Ethernet
packet setting

packet

Data to
transmit

Figure 3.2: The flow of the desired transmitted data from the Host-
PC to the Motherboard. Note that Ethernet protocol on top of the
VITA packet has been illustrated as a blackbox.
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Figure 3.3: The flow of the data received from the USRP2 frontend
to the Host-PC. Note that the Ethernet protocol on top of the VITA
packet have been illustrated as a blackbox.
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There are two main functionalities in the UHD; initialization and data trans-
mission. As seen in Figure 3.2, it is the Ethernet blackbox which checks if the
Ethernet packet received from the Host-PC holds setup information or trans-
mission data. Similarly the Ethernet blackbox in Figure 3.3 chooses if the data
transmitted to the Host-PC from the USRP2 is information from the setting
registers or data from the receiver. The initialization calls are used to setup,
or read from, the USRP2’s control registers which determines variables as the
daughterboard sample rate, choice of filter or buffer size.

If the Ethernet blackbox determines that the received packet controls the
USRP2 setup it is routed to the ZPU14, which then handles the control regis-
ters. The control signals are stored in setting registers with different addresses,
using a shared bus named set data. Figure 3.4 illustrates the principle of the
setting registers usage in the USRP2’s FPGA image. The setting register mod-
ule is name setting reg.

ZPU

Setting_reg
# 0

Setting_reg
# 1

Setting_reg
# N-1

set_data

set_addr

set_stb

Ethernet
blackbox

Figure 3.4: A simplified illustration of how the setting registers are
connected in the USRP2, deduced from the code itself while doing the
initial USRP2 FPGA image analysis described in Appendix C.

When the setting register data strobe set stb goes high, the output of the
setting register which has the address defined by the address bus set addr will
take the value currently hold by the set data bus.

If the Host-PC asks for information from the setting registers, the ZPU
reads the given register and gives the data to the Ethernet blackbox which
transmits it to the Host-PC.

The UHD ”transmit” and ”receive” commands are blocking calls, meaning
that it is not possible to setup the USRP2 and transmit at the same time.

14Softcore Processing Unit (designed by Xilinx)
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When a transmission begins, the USRP2s setting register which controls the
transmission is set, and the Ethernet blackbox reroutes the data to the VITA
deframer, which ensures that the data is correctly transmitted. Similarly; if a
reception is to begin, the setting register controlling this are set and the Eth-
ernet blackbox uses the data input from the DSP core.

This section’s focus has been to determine the FPGA resources with eas-
ing the implementation process in mind. This has been done by analysing
the FPGA firmware structure together with how the C++ library is used to
initialize and utilize the USRP.

3.4 FPGA resource analysis summary

The chosen platform has been the USRP2 because of its key features:

• Possibility of using different RF front ends.

• A preprogrammed interface which controls the ADC/DAC interfacing,
including initial filters.

• An FPGA with excess fabric for further development.

• High speed USRP to Host-PC communication using a Gigabit Ethernet
connection.

• A preprogrammed framework which allows the data to easily get from
the FPGA to the Host-PC.

By analysing the dataflow in the USRP it has been concluded, through
appendix C, that the best possible place for implementation of additional signal
processing would be between the dsp core and vrt module as seen in Figure
3.5. This is due to the fact that the dsp core only outputs single samples,
using a strobe as control, and that the vrt module has some very complex
interconnections. By adding the extra signal processing modules in between
these blocks, it will be possible for the designer to create a transparent module
which is easy to implement.

DSP core
Additional

signal processing
VITA

(De)framer

Figure 3.5: Simplified illustration of the best position for implement-
ing the additional signal processing. Note that this figure applies to
both the TX and RX chain.





Chapter 4

Implementation Analysis

This chapter will describe the challenges faced when implementing the differ-
ent physical layer functionalities which have been described through Chapter 2.
The initial part of this chapter will focus on describing some of the possible im-
plementation strategies and their advantages and disadvantages. Each section
contains a description of the C++ and hardware implementation of a given
functionality. The result of this chapter is an analysis of the different function-
alities’ resource usage on a CPU, based on the C++ program, which together
with the implementation analysis will reveal which parts has a possibility of
gaining in terms of battery usage or throughput from hardware acceleration.
The different physical layer functionalities of this chapter will be analysed and
described in the same order they appear in Chapter 2.

4.1 CRC

The CRC attacher is the first part of the transmitter part of the physical layer
simulator and its task is to compute and attach the different CRC codes to the
packet.

If the CRC is be calculated on the Host-PC using the bitwise polynomial
calculation approach, it can take a significant amount of processor power, due
to the fact that each modulus 2 addition has to be calculated, and the memory
registers has to be updated in value [5]. A way to optimize the calculation
would be to implement it by using word-wise divisions and transferring the
carry to the next word [5]. This will reduce the calculation time with more
than the word length, since the memory register update is also less tedious.

4.1.1 Hardware Implementation - CRC

[5] The CRC encoder is possible to implement in hardware in a very simple,
resource effective and fast way by usign the design seen in Figure 4.1.

35
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Figure 4.1: Hardware implementation of the CRCB polynomial of
LTE.

Starting all of the memory registers in state zero, the CRC will be present in
these when the padding bits have been through. Using the hardware structure
depicted in Figure 4.1 it is possible to calculate the CRC at a speed of 1 clock
per bit [5]. If this is to be implemented in the FPGA, it would be possible to
calculate the CRC fluently while transfering the data from the Host-PC to the
PC.

For decoding the memory registers should start in state zero aswell and if
these end up in zero after the complete message sequece has been through, the
packet is approved.

4.2 Turbo Encoder

The Turbo encoder is responsible for adding the redundant information to the
information sequence. As described in Section 2.2, Turbo Codes are encoded
by multiple RSC encoders, separated by interleavers.

The RSC encoder in LTE is a rate 1/2 with the recursive polynomial defined
in Equation 4.1 and the forward polynomial as in Equation 4.2, also illustrated
in Figure 4.2.

gr = [1011] (4.1)

gf = [1101] (4.2)

One of the ways to design the RSC encoding process is to make an algorithm
which implements the modulus two additions (XOR).

It is clear from Equation 4.1 that the Turbo encoder uses roughly four
bitwise XOR additions and four separate memory operations. Assuming that
these are all simple operations for a CPU thus only require only one clockcycle
per operation, this design costs approximately 7 clockcycles per bit.

Another design of the RSC encoder can be realized by taking advantage of
the trellis structure as seen in Section 2.2.1. The FSM on Figure 2.7 is a Mealy
FSM since the output is based on the current encoder state and if the new
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Reg0 Reg1 Reg2+
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Figure 4.2: The RSC encoder used in the LTE turbo encoder. As
illustrated, it consists of three one-bit memory registers, connected with
XOR additions.

1 for ( i = 0 ; i => f ramelength ; i++) {
2 i f ( i < f ramelength − 3) {
3 u [ i ] = input [ i ] ;
4 feedback = input [ i ] ˆ de layvec [ 1 ] ˆ de layvec [ 2 ] ;
5 z [ i ] = feedback ˆ de layvec [ 0 ] ˆ de layvec [ 2 ] ;
6 de layvec [ 2 ] = de layvec [ 1 ] ;
7 de layvec [ 1 ] = de layvec [ 0 ] ;
8 de layvec [ 0 ] = feedback ;
9 } else {

10 feedback = u [ i ] ˆ de layvec [ 1 ] ˆ de layvec [ 2 ] ;
11 u [ i ] = feedback ;
12 z [ i ] = de layvec [ 0 ] ˆ de layvec [ 2 ] ;
13 de layvec [ 2 ] = de layvec [ 1 ] ;
14 de layvec [ 1 ] = de layvec [ 0 ] ;
15 de layvec [ 0 ] = 0 ;
16 }
17 }

Listing 4.1: C++ code which implements the Turbo encoder using
additions. input are the input sequence to the encoder u are the
systematic output z are the parity bit and delayvec are the memory
registers.

1 t r e l l i s . f r omsta te s [ cur rent s t a t e ] [ input b i t ] [ d e s i r ed output ]

Listing 4.2: Definition of the FSM array for the turbo encoder.
current state is the current state of the receiver (the previous next state)
and input bit is the current information bit to be encoded and
desired output holds either: 0:next state and 1:systematic bit and
2:parity bit.

input is 1 or 0. This way of presenting the encoding process can be used in the
implementation process by creating a lookup table which holds the different
transitions given a certain state and input.

memlookup table = Nstates ·Ninput ·Ndesired output

= 2memory registers · 2 · 3 = 96 [kB] (4.3)

Using a three dimensional array as in Listing 4.2 increases the memory
usage by 96 kB, compared to the previous design, as shown in Equation 4.3.
However; the encoding process can be done with roughly three memory opera-
tions as seen in Listing 4.3. Making the same assumption as before, this design
will have a clockcycle per bit use of three, meaning it will be more than twice
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1 for ( i = 0 ; i => f ramelength ; i++) {
2 i f ( i < f ramelength −3) {
3 c u r r e n t s t a t e = t r e l l i s . f r omsta te s [ c u r r e n t s t a t e ] [ input [ i ] ] [ 0 ] ;
4 u [ i ] = input [ i ] ;
5 z [ i ] = t r e l l i s . f r omsta te s [ c u r r e n t s t a t e ] [ input [ i ] ] [ 2 ] ;
6 } else {
7 i f ( NextStates [ CurrentState ] [ 1 ] [ 0 ] > NextStates [ CurrentState ] [ 0 ] [ 0 ] ) {
8 c u r r e n t s t a t e = NextStates [ CurrentState ] [ 1 ] [ 0 ] ;
9 u [ i ] = NextStates [ CurrentState ] [ 1 ] [ 1 ] ;

10 z [ i ] = NextStates [ CurrentState ] [ 1 ] [ 2 ] ;
11 } else {
12 c u r r e n t s t a t e = NextStates [ CurrentState ] [ 0 ] [ 0 ] ;
13 u [ i ] = NextStates [ CurrentState ] [ 0 ] [ 1 ] ;
14 z [ i ] = NextStates [ CurrentState ] [ 0 ] [ 2 ] ;
15 }
16 }
17 }

Listing 4.3: How the lookup table is used to encode the Turbo codes

1 r e a l ( symbol [ k ] ) = u [ k ] ;
2 imag ( symbol [ k ] ) = u in t [ k ] ;

Listing 4.4: Example of a C++ implementation where both the
systematic and systematic interleaved bit are transmitted using only
one sample transmission on the USRP2.

as fast as the previous design.

For implementation on the CPU it has been chosen to use a lookup table
approach due to increased speed and the fact that there are vast amounts
of available memory on the Host-PC. In the C++ program, the creation of
the FSM lookup table is done in a separate class, polytotrellis, since it is also
used in the Turbo Decoder. The polytotrellis class generates the FSM lookup
table by exposing the RSC code polynomial through all possible current states
with all possible inputs, and storing the inputs in the three dimensional array
transitions.

4.2.1 Hardware Implementation - Turbo Encoder

Concerning hardware implementation of the Turbo encoder, the RSC encoder
uses a very small amount of resources [11]. However, the interleaver polynomial
will need some design thoughts regarding resource usage [11], since it uses two
multiplications and one division if the algorithm were to be implemented, or a
lot of memory for a lookup table.

One way to avoid implementing the interleaver on the FPGA, would be to
interleave the data on the Host-PC and then transmit both data and interleaved
data in the same packet. This can easily be done by utilising the fact that the
Host-PC and USRP2 communication is done by a 2 · 16 bit number, which can
be used to transmit the binary sequence, as seen in Equation 4.4.

Furthermore the above trick can also be used to transmit multiple bits
in one sample, decreasing the load on the Ethernet connection by 1

Nbits/sample
.

Note that sample does no longer hold a complex value, since it holds bits to
be converted into a message. The upper limit of number of bits which can
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be transmitted per packet is 16, due to the fact that this is the size of the
sample. However, the Turbo encoder’s speed is limited by the FPGA master
clock, since the encoder cannot operate faster than one master clock cycle [11].
Hence; the maximum number of bits (if below 16) which can be transmitted
are:

Nbits/package =
100000000

sample rate

4.3 Rate Matching

The rate matching works by two different interleavers, as described in Sec-
tion 2.2.2. However, a closer inspection of the described interleaver for b0 and
b1 shows that it is the same as for b2, just offset by -1.

Πb0(k) = Πb1(k) =

(
P

(⌊
k

R

⌋)
+ 32 (k mod R)

)
mod Narray (4.4)

Πb2(k) =

(
P

(⌊
k

R

⌋)
+ 32 (k mod R) + 1

)
mod Narray (4.5)

The C++ implementation of the (de)interleaver has been done by using a
lookup table for the permutation order P , seen in Equation 2.6, and then using
the two defined mathematical expressions to calculate the address from which
the current bit should be read from.

4.3.1 Hardware Implementation - Rate Matching

The Equations used to implement the rate matching are not preferable to imple-
ment on a hardware platform, due to the fact that is uses two multiplications,
one division and two modulus functions. It does have the advantage that the
array P is equal to a bit reversed 5 bit number and that the multiplication of
32 can be done by shifting 5 times to the left. However, it has been researched
if there is a more convenient way of implementation.

The research was initially started due to the fact that the actual output of
the interleaver polynomial resembled a normal bit reversing. Because of this,
the output of the rate matching algorithm of b0 and b1 was held up against the
output of the bit reversing, a clipping of this is seen in table 4.1.

Πb0(k) =

{
Πb0(k − 1) + 32 for (k mod 8) 6= 0

bitrevorder(k) otherwise
(4.6)

Through the analysis it was clear that the rate matching algorithm can also be
described by Equation 4.6, which is implementable by a cost effective structure
depicted on Figure 4.3.



40 CHAPTER 4. IMPLEMENTATION ANALYSIS

index (k) Bit reversing Rate matching Rate matching Π0
b(k)−Π0

b(k − 1)
0 0 0 0
1 128 32 32
2 64 64 32
: : : :
8 16 16 16
9 48 144 32
: : : :

16 8 8 8
17 40 136 32
: : : :

255 255 255 32

Table 4.1: Clipping of the output from a MATLAB analysis of the
function bitrevorder and the rate matching algorithm for b0 and b1.
The Π0

b(k)−Π0
b(k− 1) illustrated that the previous calculated index of

the rate matcher are subtracted from the current.

b    address 
out

13-bit
counter

Bit
reversing

13-bit
memory

13-bit
constant

"32"

13-bit
adder

Devisable
by 8?

Mux

LSB as 
trigger only

0-1

if 1

if 0

Figure 4.3: The hardware implementation of the rate matching index
calculator.

The implementation of the rate match index calculator in hardware can be
rather low cost since:

• The counter only consists of enough memory registers, such that it is able
to count to the maximum address (in case of LTE this is blog 2(6044)c =
13 bit) and an adder.

• Bit reversing can be done purely by routing cost

• The mux which chooses which address to use is a 13 bit input to 13 bit
output mux with only two possible addresses.

• The adder is 13 bit which cannot overflow

• Only 13 registers are used to store the number 32.
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1 de−scramble the ra t e matched input us ing the r ev e r s e func t i on
2
3 i n i t i a l i z e e x t r i n s i c 1 and e x t r i n s i c 2 to 0
4
5 c a l c u l a t e gamma for encoder 1
6 c a l c u l a t e gamma for encoder 2
7 for up to the de s i r ed max i t e r a t i o n s do :
8 c a l c u l a t e the s o f t b i t s output for RSC decoder 1
9 i n t e r l e a v e the s o f t b i t s o f decoder 1 and make them e x t r i n s i c

10
11 c a l c u l a t e the s o f t b i t s output for RSC decoder 2
12 check i f the CRC checks out on the hard output o f RSC decoder , i f i t does

then stop decoding
13
14 i n t e r l e a v e the s o f t b i t s o f decoder 2 and make them e x t r i n s i c
15 }

Listing 4.5: The pseudo code for the chosen Turbo decoder
implementation.

The memory registers which holds the input and the corresponding output mux
can however be costly, but this is hard to avoid since it is required to store the
whole sequence due to the interleaving.

To implement the index calculator for b2 an extra adder which adds 1 bit
should be used.

It has been shown that the rate matching algorithm is possible to implement
rather cost effectively on a FPGA hardware platform through a analysis of the
output values.

4.4 Turbo Decoder

The Turbo decoder is, as described in Section 2.2, created by serial connected
RSC decoders which exchanges soft valued extrinsic information about the de-
coded bits to iteratively increase the decoding performance. The interleaver
and deinterleaver of the decoder are similar to the ones in the encoder, hence
the focus in this section will be implementational issues of the RSC decoder.

To increase the speed of the Turbo decoder, it has been taken advantage of
the fact that the transition possibilities γ only has to be calculated once, since
these are based on the received bits and therefore does not change through the
iterative process. This leads to the pseudo-code of implementation as seen in
listing 4.5.

Table 4.2 [4] shows the complexity of the possible RSC decoder algorithms
and is used to help decide which algorithm should be used for implementation.

For the CPU implementation, the BCJR algorithm is chosen because of
the fact that this is the one which will be analysed with respect to hardware
implementational analysis.

4.4.1 Hardware Implementation - Turbo Decoder

The hardware implementational aspect of the Turbo decoder has been exhaus-
tively researched, since it is a very calculation heavy algorithm, which can gain
from hardware acceleration. Firstly in this section it is analysed if it is in
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BCJR (MAP) Max-Log-MAP Viterbi SOVA

add 2 · 2k · 2v + 6 4 · 2k · 2v + 8 2 · 2k · 2v + 2 · 2v 2 · 2k · 2v + 9
multi 5 · 2k · 2v + 8 2 · 2k · 2v 2k · 2v 2k · 2v

Max. ops 4 · 2k · 2v 2v 2 · 2v − 1
exp 2 · 2k · 2v

Table 4.2: Comparison of the four RSC decoder algorithms calculation
complexity for a single time sample relative to each other[4, p.153].
Note that all the algorithms apart from the Viterbi algorithm has also
backwards recursive part, hence the SOVA, BCJR and MAX-Log-MAP
algorithms uses double the amount of time steps as the Viterbi. k is
the number of information input bits to the RSC encoder and v is the
constraint length of the encoder.

any way plausible to obtain the desired throughput of the Turbo decoder and
thereafter an analysis of how plausible it is to implement this on the USRP2
firmware.

Recent studies [34], [35] have focused on the hardware implementation of the
Max-Log-MAP algorithm, due to its low complexity compared to the BCJR.
The advantage of the Max-Log-MAP is that it only works on the best possi-
ble transition, and hereby greatly reducing the energy per processed bit Eprb
and enables high throughput. However, the reduced complexity have a cost of
0.5 dB [36] BER, which in the end leads to an increase in needed transmitter
energy Etxb of 10 % [37]. If the nodes are separated by dozens of meters or
more, the overall energy consumption Eprb +Etxb when using the Max-Log-Map
surpasses the energy consumption by using the more complex BCJR [37].

To analyse whether it is plausible to obtain throughput compliant with the
LTE standard, best case scenario optimization possibilities has been found.
This means that these are theoretical optimizations which initially does not
take resource usage into account. The reason for making this analysis is that
this will quickly show whether it is worth to continue with the analysis.

The BCJR algorithm is the logic choice for an initial optimization analysis,
due to it’s high complexity. In the BCJR algorithm, the bit to be currently
calculated is dependant on the result of the value of the previous calculation,
hence it is not possible to calculate multiple adjacent bits in parallel. It is
however possible to calculate each current transition probability, seen in the
trellis diagram Figure 2.7 in parallel.

Utilizing the parallelization of the transition calculations, speed can be
increased by up to

rtransition = 2Nconstraint ·Ntransitions/state (4.7)

= 24 · 2 = 32 [−]

where:

• rtransition is the rate of improvement of the transition calculation speed
when comparing to a single core processor.
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• Nconstraint are the constraint length of thee RSC encoder.

• Ntransitions/state are the number of transitions per state.

The backward polynomial β can be calculated parallel with the forward
polynomial α, which leads to a rate increase of the α and β total calculation
time of rα andβ = 2.

An optimization using lookup table values, as in [37], can theoretically make
both the α, β and γ calculation take only one clock cycle. With parallel β and
α calculations, the LLR calculation can begin when these metrics has been
halfway calculated, e.g. when the index k has reached the value of Nbits/2, since
the LLR calculation is dependant on αk−1, γk and βk. Using the currently de-
scribed optimization methods, the number of clock cycles for a Turbo decoding
algorithm would be as in Equation 4.9.

Nclk/BCJR = Nbits +
Nbits

2
(4.8)

Nclk/Turbo decoding = 2Niterations ·Nclk/BCJR (4.9)

Where:

• Nclk/BCJR is the total number of clocks for 1 full BCJR decoding of the
received bit sequence

• Nbits is the number of bits in the output sequence m̃

• Niterations is the maksimum number of iterations the Turbo decoder can
run

• Nclk/Turbo decoding is the clocks which is used for a full turbo decoding run
of the input sequence

Using Equation 4.9, a packet length of 6044 as defined in LTE, the 100 MHz
clock on the USRP2 and 5 iterations the maximum throughput of the current
optimizations will be equal to:

througput = Nclk/bit · fFPGA [bps] (4.10)

=
Nbits

Nclk/Turbo decoding

· fFPGA

= 5
6044

2 (6044 + 6044/2)
· 100000000

= 6666666.66

The result seen in Equation 4.11 is not sufficient when dealing with LTE’s
high possible throughput of up to 200 Mbps. However, the high LTE through-
put assumes a 4x4 MIMO system and 20 MHz bandwidth. This report does
only focus on SISO and the current bandwidth are only 10 MHz, which leads
to the output being only 200

4·2 = 33 Mbps.
It is possible to further increase the speed of the Turbo decoder e.g. by

insertion of pipelines, and with the fact that the system does only need a rate
increase of 5, as seen in Equation 4.12, it seems little plausible to implement
the Turbo Decoder on the USRP2, regarding throughput.
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rFurther optimizations =
throughputdesired

throughputcurrent
(4.11)

=
33333333

6666666
≈ 5 (4.12)

Publication [37] [38] [39] [40] [34] [35]
Algorithm LUT1- LUT- LUT- LUT- Max- Max-

Log Log Log Log Log Log
Block size (bit) 6144 5114 5114 5114 6144 6144
Technology (nm) 90 180 180 180 65 120
Supply voltage (V) 1.0 1.8 1.8 1.8 - 1.2
Area A (mm2) 0.35 9 14.5 8.2 2.1 3.57
(Scaled for 90 nm) (2.25) (3.63) (2.05) (4.0) (2.0)
Gate count (exclusive
of memory)

7.5k 85k 410k 65k - 553k

Memory required
(kbit)

188 239 450 161 - 129

Clock frequency F
(MHz)

333 111 145 100 300 390.6

Decoding iterations 5 10 8 6.5 6 5.5
Throughput T (Mb/s) 1.03 2 10.8 4.17 150 390.6
Power consumption
(mW)

4.17 292 956 320 300 788.9

(Scaled for 90 nm) (36.5) (119.4) (40) (796.4) (332.8)
Energy consumption
(nJ/bit/iteration)

0.4 14.6 11.1 12.7 0.31 0.37

(Scaled for 90 nm) (1.8) (1.4) (1.59) (0.81) (0.16)
Etx

b + Epr
b (nJ/bit)

when transmitting over
39 m (5 iterations)

10.16 17.16 15.16 16.06 13.42 10.17

Etx
b + Epr

b (nJ/bit)
when transmitting over
58 m (5 iterations)

41.92 48.92 46.92 47.82 49.88 46.63

Table 4.3: Comparison of resource usage and power consumption of
already proposed architectures of the Turbo Decoder [37].

Equation 4.12 shows that it seems difficult to implement the Turbo decoder
on the USRP2. Furthermore Table 4.3 shows that the currently suggested high
throughput performance Turbo decoders uses up to 553000 logic gates, which
well exceeds the available 40960 on the Spartan 3 FPGA available, described in
Table 3.1. The high resource cost of the other proposed architectures,implies
that it is not a tractable solution to implement the Turbo decoding on the
USRP2. However, it could be possible by using the high speed FPGA extension
port of the USRP2, which would also enable a FPGA that uses a higher clock
frequency to be used. A higher clock frequency will also further reduce the
extra needed optimizations to Turbo decode.

4.5 Bit-(de)modulation

The bit-modulation is the functionality of transferring the binary message onto
symbol which are to be mapped onto subcarriers in OFDM. The bit demodu-
lation interprets the symbol on each received subcarrier and decodes them into
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one, or multiple, soft bits.

Due to the fact that there are plenty of memory available on the Host-PC,
it was chosen that the modulation of the bits should be done by the use of
a lookup table. This is realised by making a two dimensional array which is
defined as in Listing 4.6.

1 ∗∗∗Bit mod array = [ modulation form ] [ b inary value ]

Listing 4.6: The definition of the array which holds the lookup tables
for the bit-modulation.

Where

• Modulation form ranges from 0 to 3 and 0=bpsk, 1=QAM, 2=16-QAM,
3=64-QAM.

• Binary value are the sum of the binary bits e.g. bpsk has the value 0 for
the bit value 0 and 1 for the bit value 0, whereas QAM has 0 for the bits
00, 1 for 01, 2 for 10 and 3 for 11.

The decoding of the received symbols into bits are done by a straight for-
ward implementation of the algorithms seen in Equaions 2.21 to 2.29. This
result in a relatively optimized decoding process, using only a very few amount
of operations per bit.

4.5.1 Hardware Implementation - Bit Modulation

On the Host-PC, the bit-mapping is done using a lookup table, which is chosen
due to the increasing complexity of writing an algorithm, compared to the
memory usage of a lookup table. There are many different approaches to design
a hardware implementation of this functionality. The focus in this report will
be the difference of a pure lookup table design versus a algorithm design.

In Figure 4.4, the data collector is a multi access bit-wise memory stor-
age of the input from the Turbo encoder, which works as a serial to parallel
converter. The inputs are written into the 6-bit output register of the data col-
lector as seen in Equation 4.13 to 4.16. During the next coming resource usage
estimation, the data collector is seen as having equal resource usage for both
implementations.

dcPSK(k) = [m(k), 04:0] (4.13)

dcQAM (k) = [m(2k : 2k + 1), 03:0] (4.14)

dc16−QAM (k) = [m(4k : 4k + 3), 01:0] (4.15)

dc64−QAM (k) = [m(6k : 6k + 5)] (4.16)

Where:

• dcsuffix is the resulting contents of the 6-bit wide memory register for
the given modulation order, defined by suffix

• Square brackets indicate a concatenation from MSB 2 to LSB 3; [MSB, ..., LSB]

2Most Significant Bit
3Least Significant Bit
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(b) Block diagram of the algorithm implementation.

Figure 4.4: Two different block diagrams which illustrates the basics
of the bit-mapping hardware implementation.

• 0x:0 indicates that zeroes are filled in the registers from x to 0

The resource usage for the lookup table implementation seen in Figure 4.4a
have been estimated in two steps. Firstly the memory use has been estimated
to correspond to the total number of symbols in all of the modulation schemes:

Nmem regs = 32(64 + 16 + 4 + 2) [bits]

The Mux in Figure 4.4a is a 32 output mux with 32 inputs for each symbol
options, resulting in the mux to be a 4*32 input to 32 output mux. If the
lookup table is implemented using onboard RAM, this are the only mux re-
source usage, however, if the lookup table are implemented on the fabric, an
address mux will also use resources.

The implementation of the algorithm, seen in Figure 4.4b takes advantage
of the fact that the input bits to the symbol mapper, controls different parts
of the symbol generation, as seen in table 4.4.

The implementation shown in Figure 4.4b also uses a lookup table for each
symbol. However, in this case it only contains values of the possible in-phase
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Input bit nr ( 0 is LSB) Controls

BPSK
0 Sign of imag and real value.

QAM
0 Sign of imag value.
1 Sign of real value.

16-QAM
0-1 Real and imag value.
2 Sign of imag value.
3 Sign of real value.

64-QAM
0-3 Real and imag value.
4 Sign of imag value.
5 Sign of real value.

Table 4.4: illustration of how the input bits to the bit-mapper controls
different parts of the encoding process, due to the nature of the mapping
scheme defined in LTE.

or quadrature bit coordinates for the different constellations which are defined
in LTE as:

BPSK and QAM = 1/
√

2 [−] (4.17)

16−QAM = (1/
√

10, 3/
√

10) [−] (4.18)

64−QAM = (1/
√

42, 3/
√

42, 5/
√

42) [−] (4.19)

BPSK and QAM can reuse the same values and the system does add a sign bit
later in the process, hence the memory usage are equal to:

Nmem regs = 15(1 + 2 + 3) [bits]

The address control to the lookup tables are handled by a logic circuit, which
calculates which input should be available using two inputs; the modulation
order, using a 2 bit input and the desired value of the bit, described by up
to four bits. The circuit follows the truth table seen in Table 4.6. Note that
the input to the logic circuit is from the data collector which has output as in
Equation 4.13 to 4.16.

When concerning the two implementation options the lookup table uses up
more of the RAM (or onboard registers) than the algorithm implementation
due to the fact that it has to contain all possible symbol values. The algorithm
uses less memory than the lookup table, however the amount of LUTs are
higher since these are used to implement the logic which controls the address
of the symbol coordinates according to Section 2.13. The speed of the two
circuits are equal and the designer is able to clock out symbols at a rate of 6
times the symbol rate.

Based on the initial implementation analysis, it is deduced that the choice
of implementation will rely on the resources available for implementation on
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Input Output Output

Mod order Address control real addr imag addr
0 0 0 0 0 0 0 0 0 0 0 0

- - -
0 1 0 0 0 0 0 0 0 0 0 0

- - -
1 0 0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 1 0 0 0 1
1 0 1 1 0 0 0 1 0 0 1 0

- - -
1 1 0 0 0 0 1 0 0 1 0 0
1 1 0 0 0 1 1 0 0 0 1 1
1 1 0 0 1 0 0 1 1 1 0 0
1 1 0 0 1 1 0 1 1 0 1 1
1 1 0 1 0 0 1 0 0 1 0 1
1 1 0 1 0 1 1 0 0 1 1 0
1 1 0 1 1 0 0 1 1 1 0 1
1 1 0 1 1 1 0 1 1 1 1 0
1 1 1 0 0 0 1 0 1 1 0 0
1 1 1 0 0 1 1 0 1 0 1 1
1 1 1 0 1 0 1 1 0 1 0 0
1 1 1 0 1 1 1 1 0 0 1 1
1 1 1 1 0 0 1 0 1 1 0 1
1 1 1 1 0 1 1 0 1 1 1 0
1 1 1 1 1 0 1 1 0 1 0 1
1 1 1 1 1 1 1 1 0 0 1 1

Table 4.5: Truth table for the circuit which controls the address input
to the mux in the implementation seen on Figure 4.4b, note that the
transitions not listed are impossible states.

the FPGA. There are no immediate optimal solution when it comes to speed
or fabric usage, since both choices uses around the same amount, however the
resources being different from each other.

4.5.2 Hardware Implementation - Bit Demodulation

The de-mapping happens by using the simplified LLR calculation seen in Equa-
tion 2.20 in the algorithms seen in Section 2.4.1.1 to 2.4.1.4. Due to the sim-
plification the soft output demapper only needs; an ”absolute value” function,
a subtraction, the available values of the symbol and some data routing/mul-
tiplexing.

An option to consider regarding the implementation of the soft-output
demapper is whether the decoder should decode all the bits in parallel or serial.
If the symbols are to be decoded in parallel, the bit rate is equal to the symbol
rate times the number of bits per symbol.
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Figure 4.5: The implementational suggestion for the soft-output sym-
bol demapper.

The data spewer seen in Figure 4.5 is a buffer which ensures that the output
bits can be read at any given rate desired up to the symbol rate times the bits
per symbol.

4.5.3 OFDM

As described in Section 2.4.2 the OFDM symbol is (de)modulated using an
(I)FFT, due to the fact that it is an operation wise optimized version of the
DFT. The DFT can transfer the subcarriers between time and frequency do-
main with very precise subcarrier spacing. There are different algorithms which
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can be used to implement the IFFT whereas one of the most exhaustively re-
searched is the Cooley Tukey algorithm, which will briefly be described here.

4.5.3.1 Cooley Tukey

The Cooley Tukey FFT algorithm is a mathematically rearranged version of
the DFT, that utilizes that the DFT can be split up into two sums, consisting
of the DFT of the even indexes and the DFT of the odd indexes as is seen in
Equation 4.20

DFT (X) = DFT (Xeven) + DFT (Xodd)

N−1∑
n=0

xnexp

(
−2πi

N
nk

)
=

N/2−1∑
m=0

x2mexp

(
−2πi

N
(2m) k

)

+ exp

(
−2πi

N
k

)N/2−1∑
m=0

x2m+1exp

(
−2πi

N
(2m) k

)
(4.20)

This split can then be repeated until the DFT calculation is only a radix-2
butterfly calculation.

The main function in the Cooley Tukey algorithm is the butterfly operation,
which is roughly seen a 2 point DFT, as illustrated in Figure 4.6.

w

-
++

+

x y

X Y

i i

o o

Figure 4.6: Illustration of a single butterfly operation, where x is
equal to input 0, y is equal to input 1 and w is the twiddle factor. As
seen on the Figure it is possible to make the calculations in-place, e.g.
storing the data at the memory it came from.

In Figure 4.6 w indicates the use of the twiddle factor, which is equal to:

w = exp−jπn/N (4.21)

Where:

• n is the number of sub butterflies used (as illustrated in the nextcoming
Figure 4.7

• N is the number of sub butterflies present in the current stage.



4.5. BIT-(DE)MODULATION 51

The butterfly operation in Figure 4.6 are calculations using complex num-
bers as seen in Equation 4.22 and 4.23.

(Xr +Xi) = (xr + xi) + (wr + wi) · (yr + yi) (4.22)

(Yr + Yi) = (xr + xi)− (wr + wi) · (yr + yi) (4.23)

Complex operations are not a base function of the FPGA/C++ language,
therefore it it will ease the implementation if the different calculations would
be deducted. By rearranging Equation 4.22 and 4.23 it is possible to gain four
expressions as seen below in Equation 4.24 to 4.27.

Xr = xr + wr · yr − wi · yi (4.24)

Xi = xi + wr · yi + wi · yr (4.25)

Yr = xr − wr · yr + wi · yi (4.26)

Yi = xi − wr · yi − wi · yr (4.27)

By combining more of these butterfly operations, it is possible to scale the
FFT size in the range of 2n with n being an integer. Figure 4.7 illustrates an
8-point FFT.
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Figure 4.7: An 8-point FFT using the Cooley Turkey algorithm. Note
that the inputs to the FFT should be bit-reversed in order for the
algorithm to work.

Note that the input addresses has been bit reversed, which was done due
to the fact that the algorithm takes advantage of the cyclic properties of the
FFT, as seen in Equation 4.20.

The IFFT are calculated by using the following steps, which includes the
FFT:

1. Interchange the imaginary and real parts

2. Calculate FFT

3. Scale by 1
NFFT

4. Interchange the imaginary and real parts
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1 // code to be p l a c ed o u t s i d e t h e a c t u a l f f t l o op
2 i f ( N f f t = 128)
3 n o f f s e t = 16 ;
4 else i f ( N f f t = 256)
5 n o f f s e t = 8 ;
6 else i f ( N f f t = 512)
7 n o f f s e t = 4 ;
8 else i f ( N f f t = 1024)
9 n o f f s e t = 2 ;

10 else
11 n o f f s e t = 0 ;
12
13 // code which a c c e s s e s t h e BaseBandSymbol array , g i v en t h a t t h e coun te r ”k”

are used as a non b i t r e v e r s e d FFT inpu t addr e s s
14 BaseBandSymbol [ b i t r e vo rd e r [ n + n o f f s e t ] ] ;

Listing 4.7: How to enter the BaseBandSymbol (of length 2048 +
CP length) array using the bit-reversed addresses in the bitrevorder (of
length 2048) array.

4.5.3.2 CPU Implementation

The implementation on the CPU uses the radix-2 butterfly structure to cal-
culate the (I)FFT. The input address bit reversion is handled by a lookup
table, due to the fact that one single table can hold the values for all of the
fft lengths, if given the right offset when read from, due to the nature of bit
reversing. Given the array BaseBandSymbol which holds the OFDM symbol
and the array bitrevorder, which holds the bit reversing lookup table, listing 4.7
shows an example of how to enter the BaseBandSymbol array in the C++ code.

The implementation of the radix 2 algorithm are done by following Equa-
tion 4.24 to 4.27 and then replacing xr, xi, yr, yi by the array BaseBandSymbol
accessed using the correct indexes.

The access control of the FFT is controlled by three loops; one loop to
determine which stage the calculation is in, one which determines which pair the
system operates on and at last, one which determines which radix-2 algorithm
in the specific pair is calculated.

From the 8-point FFT illustration in Figure 4.7 it is deduced that:

Nstages = log 2 (NFFT) (4.28)

Nbutterflies =
NFFT

2
(4.29)

n = 2 · nbutterfly + npack · 2nstage + x0 or y1 (4.30)

Where:

• Nstages is the number of stages

• Nbutterflies is the number of radix-2 operations per stage.

• n is the non-bitreversed index of the variable BaseBandSymbol

• npack holds the current pair number of the current state

• nbutterfly indicates which butterfly in the current pack the FFT uses

• nstage is the current state of the calculation
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• x0 or y1 is a variable determining whether the x(variable is 0) or y(variable is 1)
input to the butterfly calculation is to be used.

Using Equation 4.28 to 4.30 it is possible to design the three loops and the
index control to the FFT calculation.

To add the cyclic prefix to the symbol, the initial values are stored two times
at index n and n−NFFT. The reason for not implementing the cyclic prefix as
a cyclic read of the OFDM symbol is that the USRP transmit command does
not have that functionality, hence the easiest is to transmit full symbol with
cyclic prefix.

4.5.3.3 Hardware Implementation - OFDM

The Cooley Tukey algorithm used for the FFT calculation of the OFDM mod-
ule offers great possibilities when concerning FPGA implementation regarding
e.g. parallel calculations. As seen on the previous Figure 4.7, each radix-2
butterfly calculation can operate as an in place operating, using two memory
registers. This means that in each state, no butterfly’s input are dependant
on another butterfly’s output. Inside the butterfly operation, defined in Equa-
tion 4.24 to 4.27 some steps in the calculations are dependant on each other,
as illustrated in the dataflowgraph in Figure 4.8.

+ +

+ ++ +

xxxx

xr1 xi1 yr1 yi1wr1 wi1

- -
-

--

Figure 4.8: Dataflowgraph of the butterfly calculation seen in Equa-
tion 4.24 to 4.27.

The dataflowgraph seen in Figure 4.8 can be implemented directly in hard-
ware and it is possible to implement these calculations in parallel for each stage,
resulting in the operation usage seen in table 4.6 and Figure 4.9.

Operation Usage Calculation time
Addition 6 ·Nbutterflies t0

NbutterfliesMultiplication 4 ·Nbutterflies

Table 4.6: Operation usage for the FFT when using the butterfly
structure seen in Figure 4.8, with Nbutterflies being the number of but-
terflies and t0 = NFFT

2
log 2 (NFFT) are the calculation time of a full

FFT if only one butterfly was to be implemented.
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Figure 4.9: The operation usage versus calculation time when im-
plementing parallel butterfly operations in the FFT. Operations are
the number of parallel calculations for the given number of parallel
butterflies.

As seen on Figure 4.9, the gain from implementing multiple parallel oper-
ations fall exponentially, while the resource usage raises linearly. The imple-
mentational aspects of the (I)FFT are further analysed in Chapter 5, hence
this will not be further examined here.

The cyclic prefix is simple to implement, since can be done by a cyclic read
of the IFFT.

4.6 C++ program implementation

This section describes the implementation process of all the functions described
through this chapter into a complete C++ simulator with purpose of analysing
the different functionalities processor use on the Host-PC.

Each functionality described through this chapter has been designed as its
own class. A separate transmitter and receiver program has been created such
that it is possible to see the resource usage of the different functions inde-
pendent of each other. The Scheduler in Figure 4.10 is the main program
which initializes the different classes and ensures that the data communication
between them are as desired. The data connections showed as arrows are differ-
ent signals which flows in between the classes, whereas a dotted line indicates
that the program can signal the function to run.

The data analyser is a loop inside the scheduler which splits up the gener-
ated data into smaller CBs. The data control block in the scheduler is created
by conditional statements which ensures that the reference symbol and data is
written to and read from as desired. Inside the Scheduler it is possible to de-
fine which and how many resource blocks the system, should use to transmit on.
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Figure 4.10: Depicts the flow of the coding and modulation part of
the transmitter chain.

As described in Section 3.3.1, the UHD transmit and receive command is
blocking calls and it has been chosen to not include them in the analysis pro-
gram. The UHD transmit and receive commands are not a part of the analysis
due to the fact that the Host-PC to/from FPGA communication link always
has to be present in this implementation and therefore cannot be altered.

4.7 Algorithm processor analysis

This analysis serves the purpose of analysing the bottlenecks of the C++ pro-
gram written using the functions described through this chapter. The analysis
will be done by the GNU profiler tool gprof [41], which is a profiler tool for
C++ code which shows the distribution in time used of the function calls in
the program.

When analysing the system it is important to have in mind that the actual
implementation should not focus on creating a transceiver and not a separate
transmitter and receiver. As is stated in Section 4.6 the program which is to
be profiled is created as two separate parts, to simplify the design and ease the
profiling analysis.

The transmitter and receiver are tested separately by letting the transmitter
encode random sequences and storing them in a text file using the C++ library
fstream. It stores 2 files; data.dat which holds the encoded and modulated data
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and original data.dat which holds the original data so the received data can be
tested with the transmitted.

4.7.1 Analysis results

To gain a complete image of the interrelationship of the different functions
the transmitter is tested for different bandwidths (FFT lengths). This helps
defining how the load are distributed between, especially, the FFT and turbo
decoder, which has been estimated to be the most resource demanding tasks.

12 24 48 60
0

10

20

30

40
Bandwidth: 1.4 MHz

%
 o

f t
ot

al
 c

pu
 ti

m
e 

us
e

d

12 48 96 120
0

10

20

30

40
Bandwidth: 3 MHz

Subcarrier usage

12 192 384 480
0

10

20

30

40
Bandwidth: 10 MHz

Subcarrier usage

%
 o

f t
ot

al
 c

pu
 ti

m
e 

us
e

d

CRC
A

CRC
b

Turbo encoder
Bit−mapping
FFT

Figure 4.11: Distribution of the total CPU time used over the func-
tionalities implemented in the transmitter.

The first test to be presented is the test of the transmitter. This test is done
with different bandwidths, to check if how the FFT complexity has infliction
on the usage. Furthermore it is tested with four amounts of subcarrier usage
to see how this inflicts the result.

Figure 4.11 shows the trend of the most resource demanding process being
the FFT, which was expected since the theory defined the other functions to
be of low complexity. It is also seen that the CRC attaching algorithms uses
significantly more time than the Turbo encoder, which is due to higher order
polynomial. Lastly it is seen that the more subcarriers used, the lower the
difference in processor time usage, due to the fact that the fewer symbols has
to be transmitted.

The second tests to be presented is of the receiver. These tests operates
on the transmitted symbols of the transmitter, and therefore it will test over
the same amount of subcarriers and the same bandwidths. Furthermore three
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extra tests has been done with different numbers of iterations, to see how this
inflicts in the distribution.

The test results of the receiver, shown in Figures 4.12 to 4.14 and clearly
shows that the Turbo decoder and FFT are the functions which uses the most
of the time in the CPU. While gathering the test results it was noted that
after 3 iterations, the CRCB did use more resources than the CRCA, unlike in
the transmitter. This is due to the fact that it is used as an early stopping
algorithm, resulting in it being run one time for each iteration.

The test results of the transmitter states the trend that the more resource
block the system are allowed to used for transmission, the less significant the
FFT calculation becomes.

It is also noted that the total amount of CPU time spent in the receiver by
the functionalities are higher than in the transmitter.
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Figure 4.12: Distribution of the total CPU time used over the func-
tionalities implemented in the receiver, using 1 Turbo code iteration.
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Figure 4.13: Distribution of the total CPU time used over the func-
tionalities implemented in the receiver, using 5 Turbo code iterations.
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tionalities implemented in the receiver, using 10 Turbo code iterations.



4.7. ALGORITHM PROCESSOR ANALYSIS 59

4.7.2 Implementation Analysis - Summary

As seen from the test results, the most resource demanding functions in the
current implementation of a physical layer simulator are the FFT and Turbo
decoder, which complies with the analysis of the function complexity done in
the current chapter. With an increasing number of iterations, the FFT’s re-
source usage seems to become insignificant. However, the BER performance
gain of the Turbo decoder stagnates around 8 iterations [4] and it is very little
plausible that the UE is given 50% of the available resources, hence the FFT
is still to be a subject of analysis.

The implementation focus of this project was to analyse which functions
are tractable to implement on the USRP2, hence the interface between Host-
PC and USRP2 must be taken into consideration when determining in which
order the implementational focus should be. The current Ethernet connection
driver does not naturally support further USRP2 to Host-PC communication
other than transmitting and receiving samples, hence these is to be rewritten if
any communication should be possible. This is desired to be avoided, since it
moves the focus of the project to driver development rather than USRP2 fabric
utilization. Due to this, it is decided that The FFT will be the first subject of
implementation on the USRP2.





Chapter 5

Hardware implementation

As deduced in the conclusion of Chapter 4, both OFDM and the Turbo de-
coder can significantly benefit from hardware acceleration, e.g. because they
have many calculations which can be done in prallel.

It was evidenced that the FFT which handles the OFDM symbol generation,
should be the first subject of implementation because of the following:

• It was not tractable to implement the Turbo decoder on the USRP2 due
to its high resource cost and the avaliable time.

• Being the functionality which are the last part of the analysed transmitter
chain and first in the analysed receiver chain, implementing the FFT
prevents further communication between the USRP and Host-PC. Adding
further communication through the Ethernet connection would lead to a
lower achieveable datarate and implementation complexity, which is not
desired.

• The FFT are the processing demanding functionality of the transmitter
and it is one of the high processor functionalities of the receiver.

• The FFT has many possebilities for parallel processing and has been
thouroughly researched and optimized.

The following sections of this chapter will consider the design aspects when
implementing the FFT on the USRP2, starting with defining the design con-
straints and then describing the design considerations of the actual modules.
A more thourough design description can be found in appendix D.

5.1 Defining the USRP2 constraints

This section covers the preparation made before the desired data process-
ing modules for the FPGA is developed. This includes defining the timing
and framework constraints for the design. A description of how the USRP2’s
dataflow has been analysed are found in Appendix C.

61
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To ensure that the designed data processing modules are compatible with
the existing USRP2 FPGA image’s functionality, it has been chosen that the
module designed module should be transparent; e.g. it should adapt the signal
flow from where it is placed, without the need to alter in any other parts of
the FPGA code. Section 3.4 deduces that the module should be implemented
in between the dsp core and the vita control module due to the fact that it is
possible to intercept and further data process the samples here.

Based on the signal analysis in Appendix C, a structural template for the
transparent data processing module is created as seen in Listing 5.1 with the
inputs and outputs described in Table C.1.

1 module data proce s s
2 #(parameter MEM WIDTH = 1280 ,
3 parameter sett ing reg BASE = 160 ,
4 parameter L2 PACKET WIDTH = 7 ,
5 parameter SAMPLE RES = 32)
6 ( input clk ,
7 input r e s e t ,
8 input c l ea r ,
9 input run ,

10 input [ 3 1 : 0 ] sample ,
11 input s t r o b e i ,
12 input [L2 PACKET WIDTH−1:0] samples pr packet ,
13 input [L2 PACKET WIDTH: 0 ] d e s i r e d f f t l e n g t h ,
14 output wire [ 3 1 : 0 ] sample o ,
15 output wire s t r obe o ) ;

Listing 5.1: The template of the module which was created in
Appendix C based on the signal analysis that was made.

This template was designed to hold all signals required to create a module
which could work coherently with the existing FPGA image. The structure
of the data processing module, and its sub modules which are utilizing this
template are thouroughly described in Appendix D.

With the constraints of the system defined, it is possible to design the
required data processing module.

5.2 Data processing modules

This section serves the purpose of documenting the modules designed through
this project. A more thourough description are avaliable in Appendix D.

As in Appendix D, the submodules of the data processing module will be
described in the order they are implemented, illustrated by Figure 5.1.
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Figure 5.1: Illustration of the submodules and their function calls. As
can be seen, the main module data processing, which uses the template
defined in Appendix C, is the top module. The grey boxes are reused
from ETTUS research and will not be described in this chapter.

5.2.1 Pipeline module

Due to the incompatability between the serial dataflow of the USRP2 FPGA
image and the packet based data processing of the LTE technologies, a pipeline
module is created. This module serves the purpose of collecting incoming data
samples in packages which can then be data processed by the fft module.

This section will describe the pipeline 2N module with Npackets = 2, which
yeilds a minimal delay for the data collecting to the data output. It is possible
to reuse the base of this module code and adding a greater delay to the pipeline,
hence the pipeline modules are named accordingly to their pipeline depth, eg.
pipeline 2N module does contain two packets. A length of two will results a
time avaliable for data processing tdata processing to be equal to how long it takes
to fill one memory registers.
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Figure 5.2: Illustration of the pipeline rx modules structure, using
Npackets = 2.

Figure 5.2 are the block diagram describing the pipeline module withNpackets =
2. As seen, the pipeline module mostly consists of ram blocks and differ-
ent multiplexers, where the different signals are more thouroughly described
in Appendix D. As described in Appendix D, the memory block used in the
pipeline 2N module are a reused module from ETTUS research called ram 2port.



5.2. DATA PROCESSING MODULES 65

The reuse was done to ensure that the ram blocks were compatible with the
compiler options of the USRP FPGA image.

Through the design process two different approaches of designing the signal
flow was tested:

1. The first design delayed the data sample output of the actual USRP2
dataflow by utilizing some of the control signals used in the existing
FPGA image. As described in section D this was not possible without
alternating some of already existing modules and possible the UHD on
the host-pc, hence this was discarded.

2. The design of the pipeline 2N ’s dataflow was instead created such that
it does output a sample each time the dsp core module does, however
the first 2Npackets samples are NULL. This will make the use of the
data process module less transparent in a C++ implementation, however
it will increase the transparency in respect to implementation and usage
with the USRP.

5.2.1.1 Test

Different tests of the codes functionality was done using a testbench written in
verilog and debugged using the Xilinx ISim GUI1. Appendix D shows a more
thourough description of the test.

The USRP test was done by implementing the pipeline module directly
in the USRP2’s FPGA image, as seen in Listing D.3, Appendix D. When the
FPGA image was compiled it was tested if any throughtput was possible, using
the test setup seen in Figure 5.3.

USRP2Host - PC USRP2 Host - PC

./dft_ascii_art --freq 2400000000 --dft_bins 128 --gain 30 
-- ref-lvl -50 --dyn_rng 70

./tx_waveforms --freq 2400000000 --wave-form SINE

Figure 5.3: Test setup to see if the implementation of the pipeline 2N
module still supports the original UHD examples. The commands un-
der the host pc’s are the commands used in the Linux terminal on the
given PC.

The results of the test was that the pipeline module did insert a small delay,
visible since the output of the DFT on the host PC was 0 for a short period of
time. However, after the initialization of the memory registers the pipeline 2N
module was transparent as desired, since it did not interfere with the output.

1Graphical User Interface
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The resource usage of the pipeline 2N module was estimated by the Xilinx
ISE Design Suite synthesizer. A table of the results of this can be seen in
Table 5.1.

Logic Utilization Used Available Utilization
Number of Slice Flip Flops 48 40,960 1%
Number of 4 input LUTs 285 40,960 1%
Number of occupied Slices 182 20,480 1%
Total Number of 4 input LUTs 295 40,960 1%
Memory usage 81920 720000 11.4%

Table 5.1: The table shows the pipeline 2N modules utilization of the
Spartan 3 FPGA on the USRP2.

NSlices =
81920− (0.03 · 720000)

2
= 30160

Fabric =
30160 + 182

20480
= 148% (5.1)

The resource usage of the pipeline 2N module is quite low. It only uses
182 slices, which is only 1% of the fabric and since 58% is free this is more
than sufficient. However, due to the low amount of available memory, the slice
resource usage increases to 148 % of the available, since the memory has to be
moved to the fabric. Through the deduction of the code, it was found that it is
possible to free some RAM by optimizing the functions made by Ettus research,
however the result implies that it would be practical to use the USRPN200 for
implementation.

5.2.2 FFT module

The fft module is implemented by using the Cooley Tukey algorithm, which
is briefly summarised in Section 4.5.3.1. This algorithm is based on a certain
amount of in-place calculations called ”butterflies” which can have different
number of inputs, described by the ”radix”. Using a high radix will result in
the possibility of simplifying the calculations. However, a high radix will mean
that the FFT will not support all sizes in the range 2n for n = [1, 2, ...∞], as
is the case with a radix-2 implementation, as seen in Table 5.2.
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Radix-2 Radix-4 Radix-8 Radix-16
16 16 16
32
64 64 64
128
256 256
512
1024 1024 1024 1024
2048
4096 4096

Table 5.2: Which FFT lengths are supported by different radix’s of
the FFT, within the area of the LTE bandwidth (128 - 2048).

To ensure that the fft module can support any length required, it has been
chosen to use the radix-2 butterfly algorithm. In Appendix D it has been
deducted that the desired calculation should proceed in two sequential calcu-
lations.

ytemp0 = −wr · yr + wi · yi (5.2)

ytemp1 = −wr · yi − wi · yr (5.3)

Xr = xr − ytemp0 (5.4)

Xi = xi − ytemp1 (5.5)

Yr = xr + ytemp0 (5.6)

Yi = xi + ytemp1 (5.7)

Equation 5.2 to 5.3 shows the first step of the sequential calculation, which
calculates two temporary values to be used in the second step. According to
Appendix D this intermediate result is to be calculated to reduce the resource
usage by two additions. Equation 5.4 to 5.7 show the second step of the but-
terfly calculation, which uses the intermediate values.

Through the timing analysis in section D it was decided that the initial
design should focus on implementing a FFT of length 1024, utilizing the dual
port ram of the pipeline 2N module to create a full radix-2 butterfly calcula-
tion each clock cycle. Even though this focus of implementation results in the
initial design to only support a bandwidth of 10 MHz, it will lower the required
control logic significantly and the result will show if it is a tractable solution
to implement a FFT supporting the 20 MHz bandwidth.

Since the ram 2port module used in the pipeline 2n uses one clock cycle to
load and one to store the data, the design of the fft module were optimized
such that it uses two parallel radix-2 algorithms to calculate a 4 point FFT,
using the flow seen on Figure 5.4.
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Figure 5.4: The final dataflow of the 4-point (I)FFT used in this
project. This graph has been created based on an analysis of Equa-
tion 4.24 to 4.27.

The basic design strategy of Figure 5.4 is to reduce the amount of memory
load/write operations, compared to when using a single radix-2 operation.Even
though this design results in a structure which seems as a radix-4, it is possible
to cover all bandwidths by using an extra loop using only one stage of radix-2
operations.

The final steps taken before the verilog implementation of the fft module
was to define the in- and outputs of the module, as illustrated in Figure 5.5,
and defining which submodules that were needed and how the interconnection
of these should be.
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Figure 5.5: In- and outputs of the FFT module. As seen the inputs
consists of some control signals together with two data in ports which
are used to read from the dual access ram in the pipeline. The outputs
are pure ram access signals for reading and storing in the pipeline ram.

5.2.3 Sub Module Design and Implementation

This section briefly covers the submodules used in the fft module and how these
are connected. The internal design of the fft module is seen in Figure 5.6. If a
more thorough description of each submodule is desired; refer to Appendix D.

• Ext. RAM are the external RAM block in the pipeline 2N module which
holds the data to be processed.

• The control logic is the control signal dataflow for each 4-point FFT cal-
culation, written as code in the main fft module. The control logic flow
controls, among other things, the assertion of do stb, input strobe and
stb strobe. It also controls the output of the muxes which decides wether
to use internal or external memory in the calculation.

• The data addr calc module controls the address output which are used
to access the external RAM block. The module takes input which de-
scribes how far in the FFT the system is and outputs addresses which
corresponds to the bit reversed input of the desired data index.

• The function of input pair ctrl module can be conceived as a FSM which
increases the value of the outputs in a speficic order. A new output
is requested every time a radix-2 butterfly calculation is begun, thus
updating the control signals for the next radix-2 butterfly calculation
while calculation the current.

• The twiddle addr count and twiddle rom modules calculate the twiddle
factors for the given radix-2 butterfly calculation. This is done by twid-
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Figure 5.6: The interconnections of the different submodules in the
fft module.

dle addr count first calculation the correct twiddle addresses from the
current stage count and butterfly input count. Then twiddle rom takes
these addresses and finds the corresponding twiddle factors in the lookup
table.

• The butfly calc module handles the radix-2 calculation. The calculation
are done in half a clock cycle, and initialized on the do stb using four
multipliers and four additions.

• The bit rev uses routing to make the output address bit reversed as de-
sired.

The program flow is designed as seen in Listing D.8.



5.2. DATA PROCESSING MODULES 71

5.2.3.1 Test of the FFT module

Before the fft module is to be implemented in the data process module, it is
tested with two purposes in mind, one being to check if it can actually calculate
an FFT and the second is to see the resulting resource usage, which can be
used to see if it is plausible to implement it on the USRP.

To test if the fft module works as desired a testbed has been made. This
testbed is seen in the fft tb module and it emulates the input signals to the
FFT, which come from the pipeline n2 module. The input data is loaded from
a txt file and the output is stored in the RAM. The outputs in the RAM are
compared to the output of a Matlab calculated fft with the same inputs as in
the txt file. The comparison revealed that the FFT was calculated correctly.

To find the resource usage, the synthesizer in the Xilinx ISE Design Suite
has been run. The results of this can be seen in Table 5.3.

# ROMs2 : 4
512x15-bit ROM : 4

# Multipliers : 9
10x10-bit multiplier : 1
16x16-bit multiplier : 4
31x16-bit multiplier : 4

# Adders/Subtractors : 22
10-bit adder : 1
11-bit adder : 2
16-bit adder : 4
17-bit adder : 4

17-bit subtractor : 4
31-bit adder : 4

31-bit subtractor : 2
4-bit adder : 1

# Registers : 65
Flip-Flops : 65

# Latches : 2
10-bit latch : 2

# Logic shifters : 3
11-bit shifter logical left : 2

11-bit shifter logical right : 1

Table 5.3: The table shows the resource usage of the fft module.
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Logic Utilization Used Available Utilization
Number of 4 input LUTs 1053 40,960 2.6%
Number of occupied Slices 535 20,480 2.6%
Number of Slices containing only related logic 535 535 100%
Number of Slices containing unrelated logic 0 535 0%
Total Number of 4 input LUTs 1053 40,960 2.6%
Memory usage 30720 720000 4.2%

Table 5.4: The table shows the fft modules utilization of the Spartan
3 FPGA on the USRP2.

NSlices =
30720− (0.03 · 720000)

2
= 4560

Fabric =
4560 + 535

20480
= 24.8% (5.8)

It can be concluded, that only a small portion of the FPGA fabric is used,
as seen in Table 5.4 only about 2.6 % are used and only 9 multipliers are used.
Since there were 58% of the fabric available and only 2.6% is needed. Combined
with the fact that only 9 multipliers are used, which amounts to 22% of the
multipliers were 57% are available, it seems plausible to implement the FFT
on the USRP2. However, it should be noted that the amount of memory used
in the system exceeds the available amount by a little over 1%, so about 1140
CLBs of the fabric has to be used for memory storage as seen in Equation 5.8.
Although this is means the 24.8% of the fabric to use on memory, the FFT
itself is still considered implementable.

5.3 Module Implementation

This section describes the steps taken when implementing the modules de-
scribed though the chapter into the data process module.

From Section 5.2.1 it is seen that the pipeline resource usage implies that
the avaliable fabric and memory on the USRP2 is not sufficient.

This means that if the OFDM calculation should be implemented sucess-
fully, it has to be on the USRPN200. However, when transferring the code to
the other platform, it was seen that some of the modules did not comply with
the compiler. Due to lack of time, this resulted in the fact that no tests of the
data process module was made when it was implemented on the USRPN200 or
USRP2.
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Conclusion

Through the report, the functionalities of LTE’s physical layer has been ad-
dressed concerning the motivation and implementational issues. It was found
that an USRP2 would be an excellent platform to develop hardware accelera-
tion algorithms on, due to the fact that it already is a working SDR platform
which is utilized by many. The USRP2 also has available resources for further
hardware implementations.

The analysis of the implementational issues were conducted by addressing
possible implementation methods on a CPU and FPGA firmware. By first
implementing the functions on a CPU, it was possible to see the distribution
of resource usage by the different functionalities, which, when combined with
the analysis of possible HW implementation gain such as pipelining, gave an
insight in which functionalities that were tractable to implement on the USRP2
platform. The implementation on the CPU was done in C++ using single core
program options.

6.1 Findings

The primary focus of the implementational aspect was found to be the OFDM
modulation using a Cooley Tukey (I)FFT. This was concluded since it was
high on the resource usage table for the initial C++ algorithm and it offered a
high possibility of gaining from hardware acceleration due to possible pipelin-
ing steps. Furthermore, it was also deduced that implementation of modules
elsewhere in the chain would result in an increased Host-PC to USRP2 com-
munication load, which was not possible. An increase in Host-PC to FPGA
communication would also result in the fact that some of the UHD firmware
would need to be rewritten, which would make the implementation of a new
module more exhaustive.

The Turbo decoder has the possibility of gaining a lot from hardware accel-
eration but it was deduced that it would not be a tractable solution due to the
available USRP2’s resources and speed. However, it would be possible if the
expansion port on the USRP2 was used, since a faster and more resourceful
FPGA could be connected.
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The first thing that was designed and implemented successfully was a mod-
ule which collected a predefined number of data samples into packets, which
could be data processed. The module was called pipeline 2N because it was
a pipeline consisting of two memory blocks. These two memory blocks were
inserted such that one datablock could be data processed while the other one
was receiving data.

The pipeline 2N module was tested and found to be working in correspon-
dence with the rest of the FPGA image. However, the two first packets of the
new data processing module are to be discarded from the receiver due to the
nature of the rest of the FPGA image.

Initial analysis of the FFT implementation showed that it would be a chal-
lenge to implement it, due to the fact that the relatively slow 100 Mhz clock
on the USRP2 together with the maximum FFT length in LTE being 2048,
would result in only 0.63 available clock cycles for each butterfly (Appendix D)
in the FFT. The available number of clock cycles would mean that there would
have to be calculated up to 32 parallel butterflies, which would require up to
128 multipliers, without optimization. This was not tractable since only 23
dedicated multipliers are available on the USRP2.

It was decided that the focus would be on actually implementing a working
FFT on the USRP2 within the timeframe. To obtain this, the FFT length
was reduced to 1024 which resulted in 1.34 available clock cycles for each but-
terfly operation. With 1.34 available clock cycles per butterfly, only 4 parallel
butterflies would be needed, resulting in a maximum of 16 multiplications used.

Further analysis, using a dataflowgraph, concluded that a radix-4 algorithm
could be created with the desired speed and use only two butterfly operations,
resulting in a total use of only 9 multiplications.

It was shown that the FFT would use up to 2.6 % of the Spartan 3 fabric,
but when implementing it in correspondence with the existing USRP2 FPGA
image this increased to 24.8 % due to the small remaining amount of avaliable
memory on the USRP2 (3 %). However, it would still be possible to implement
the fft module.

Through the implementation process, it was concluded that the low amount
of remainding memory on the USRP2 was not sufficient to implementation of
the data process module, due to the combined usage of the pipeline n2 and fft
module.

6.2 Future Work

Due to the fact that the amount of memory required for the OFDM system
exceeded the remainding on the USRP2, the implementation was not com-
pleted. This should however be easily done by changing the platform to the
USRPN200, since this has the double amount of memory avaliable. It was
however noted that some of the modules written did not fully comply with the
USRPN200 FPGA image, hence some revising must be done.

Another implementational issue which should be addressed is that the cur-
rent design does have a hard coded bandwidth and hence only supporting
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one bandwidth for each compilation. To circumvent this, the created module
should calculate the desired bandwidth based on the Ethernet packet length
set by the user on the Host-PC. This can easily be done by using the setting
register which holds the Ethernet packet length information and data process
this.

The next step for implementation should be the bit (de)mapping imple-
mentaion, which can be done very cheap by the proposed structure.
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Appendix A

FPGA resource tables

Directory Content

boot cpld CPLD bootloader firmware
control lib Various control structures, RAM primitives

and FIFO1 buffers
coregen FIFO buffers based on Xilinx generators
extram External memory controller
extramfifo External memory FIFO
fifo Various FIFO buffers
gpmc General Purpose Memory Controller utilities

(not used in USRP2 Rev2)
models Various logic primitives
opencores ZPU and various peripheral controllers from

the opencores.org project
sdr lib Signal processing modules. Contains dsp core

modules
serdes Contains flow-control logic for the SERDES

interface
simple gemac Gigabit Ethernet MAC modules
testbench Testbench support code
timing Timer/counter modules
top Top-Level modules
udp UDP transmit and receive engine
vrt VITA Radio Transport protocol code

Table A.1: The different directories of the FPGA firmware hierachy
and which modules they contain[33, 8].
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Appendix B

Soft-output demodulation

This appendix clarifies how the different modulation schemes are defined in
LTE and a soft-output demodulator are designed. In LTE a Gray encoded1,
signal constellation of BPSK, QAM, 16-QAM and 64-QAM are defined[6].

The different constellations are illustrated in the corresponding section
by a MATLAB plot. For the exact values of the symbols refer to Equa-
tions 4.17 to 4.19 or the standard [6].

B.1 BPSK

The BPSK constellation described in LTE can be seen on figure B.1.
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Figure B.1: BPSK constellation as defined in the LTE.

1In Grey encoding the hamming distance between a symbol and it’s neighbouring symbols
is 1
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As seen on Figure B.1 the two bits are described by a skewed placement of
the bits. However, to illustrate the decoding principle a non skewed constella-
tion will be used as the one described in Equation B.1.

Given a binary message signal m(k) ∈ {0, 1}, the BPSK modulated signal
to be transmitted s(k) can be described by equation B.1.

s(k) = (−1)|m(k)−1| (B.1)

The baseband signal s(k) are in this case analysed to be transmittet through
an AWGN channel. Since the modulated signal are real only the noise zAWGN(k)
with mean µz and noise power σ2

z are defined to be aswell. The received signal
s̃(k) is defined as seen in Equation B.2.

s̃(k) = s(k) + z(k) (B.2)

Due to the additive noise, the received signal will be randomly distributed
as illustrated in figure B.2. This normal distribution is specified with a mean
and a variance. The mean depends on which modulation scheme is used and
the variance depends on the noise in the channel and the signal strength.
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Figure B.2: Illustration of the probability distribution of the received
symbol s̃(k), assuming an AWGN channel with µn = 0 and σ2

n = 1.

As seen on Figure B.2, the two distributions overlap each other, resulting
in that the receiver has to analyse the received signal before deciding. In order
to evaluate what the received binary message signal should be deciphered as,
the ML decision rule is used, illustrated in equation B.3:

m̃(k)

{
1 for P(m=+1 | s̃(k))

P(m=−1 | s̃(k)) > 1

0 for P(m=+1 | s̃(k))
P(m=−1 | s̃(k)) < 1

(B.3)

Where P (m = −1 | s̃(k)) is the probability of the received signal m̃(k) being
-1, given the received symbol s̃(k). With s(r) being the possible values of the
transmittet signal s(k), the probability is defined as equation B.4.

P (m(k) = s(r) | s̃(k)) =
1√

2 · π · σ2
n

· exp

(
− (s̃(k)− s(r))2

2 · σ2
n

)
(B.4)
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The bit decision in equation B.3 are called ”hard decision”, since the output
will always be consistent with the alphabet of s.

In a communication system there are typically incorporated some kind of
ECC2 to increase the BER of the received stream. Some of these codes, as
Turbo Codes described in Section 2.2, can increase the BER by processing
the bit probability instead of the hard decision. Given that the probabilities
have exponential characteristics, it can be beneficial to use the LLR3 of the bit
instead, as defined in Equation B.7 for BPSK with s(r) ∈ (−1, 1).

ln

(
P (m̃(k) = 1 | s̃(k))

P (m̃(k) = −1 | s̃(k))

)
= ln

 1√
2·π·σ2

n

· exp
(
− (s̃(k)+1)2

2·σ2
n

)
1√

2·π·σ2
n

· exp
(
− (s̃(k)−1)2

2·σ2
n

)
 (B.5)

= ln

(
exp

(
− (s̃(k) + 1)2

2 · σ2
n

))
− ln

(
exp

(
− (s̃(k)− 1)2

2 · σ2
n

))
(B.6)

= − (s̃(k) + 1)2

2 · σ2
n

+
(s̃(k)− 1)2

2 · σ2
n

(B.7)

When the modulation order (the alphabet of s) increases, the complexity
of the decoding process increases aswell. The next section will describe how it
is possible to decode a higher modulation order system.

B.2 QAM

The QAM modulation order used in this report are Grey encoded as seen
on figure B.3 and can be described by equation B.8.

Since there are 2 bits per symbol, it is assumed that m are double the size
of s.

s(k) =
(

(−1)|m(2k)−1| + j(−1)|m(2k+1)−1|
)
· 1/√2 (B.8)

Due to the Grey encoding it is possible to analyse each of the two bits
seperatly, using the real and imaginary value of the symbol, treating it like two
seperate BPSK signals.

m̃(2k) = − (s̃real(k) + 1)2

2 · σ2
n

+
(s̃real(k)− 1)2

2 · σ2
n

(B.9)

m̃(2k + 1) = − (s̃imag(k) + 1)2

2 · σ2
n

+
(s̃imag(k)− 1)2

2 · σ2
n

(B.10)
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Figure B.3: QAM constellation as defined in the LTE.
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Figure B.4: 16-QAM constellation as defined in the LTE.

As seen, the QAM demodulation is straight forward to demodulate, how-
ever; with a higher alphabet size comes a greater challenge.

B.3 M-ary QAM

The 16-QAM and 64 QAM constellation are seen in figure B.4 and B.5

As with the QAM constellation, it is possible to split the decoding process
up in small steps[16], which calculates the value of each bit seperatly, due to

2Error Correcting Codes
3Log-Likelyhood Ratio
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Figure B.5: 64-QAM constellation as defined in the LTE.

the Grey encoding.
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Figure B.6: This illustrates the system which the grey encoding cre-
ates. As can be seen the bits change in a pattern, that allows the ML
decision rule to be used.

Figure B.6 illustrates the different regions and how they are related to the
in-phase and quadrature components of the received symbol. Based on the
deduction in [16] this illustration leads to the 16-QAM soft-output decoder
algorithm displayed in equation B.11 to B.12, using the deducted likelihood
ratio equation B.7.
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DI,1 = −
(s̃real(k)− 2√

10
)2

2 · σ2
n

+
(s̃imag(k) + 2√

10
)2

2 · σ2
n

(B.11)

DI,2 =


−

(s̃real(k)− 1√
10

)2

2·σ2
n

+
(s̃imag(k)+ 3√

10
)2

2·σ2
n

, s̃ < − 1√
10

s̃real(k)− 2√
10

)2

2·σ2
n

, |s̃| ≤ 1√
10

−
(s̃real(k)− 3√

10
)2

2·σ2
n

+
(s̃imag(k)+ 1√

10
)2

2·σ2
n

, s̃ > 1√
10

(B.12)

The imaginary part is calculated using the same equations replacing s̃real

with s̃imag. When the outputs has been calculated, the resulting bit sequence
m̃s are to be interpreted as seen in equation B.13

m̃s = [DI,1, DQ,1, DI,2, DQ,2] (B.13)

In the same way, it is possible to deduct the 64-QAM soft-output decoder
to be as seen in equation B.14 to B.16.

DI,1 = −
(s̃real(k)− 4√

10
)2

2 · σ2
n

+
(s̃imag(k) + 4√

10
)2

2 · σ2
n

(B.14)

DI,2 =


s̃real(k)− 3√

10
)2

2·σ2
n

, |s̃| ≤ 3√
42

−
(s̃real(k)− 3√

10
)2

2·σ2
n

+
(s̃imag(k)+ 1√

10
)2

2·σ2
n

, |s̃| > 3√
42

−
(s̃real(k)− 1√

10
)2

2·σ2
n

+
(s̃imag(k)+ 3√

10
)2

2·σ2
n

, |s̃| < − 3√
42

(B.15)

DI,3 =
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(B.16)

Similar to the 16-QAM algorithm, the bits decided by the imaginary part,
can be calculated by replacing s̃real with s̃imag and then the multiplexing should
be as in equation B.17

m̃s = [DI,1, DQ,1, DI,2, DQ,2, DI,3, DQ,3] (B.17)



Appendix C

The initial arm stretches when
making USRP2 firmware

This appendix serves as a documentation on the initial processes, before the
new FPGA image has been designed, written and tested. This Appendix is
made due to lack of gathered documentation on how to use/compile/repro-
gram the USRP2, and will therefore ensure that anyone are able to repeat the
tests that has been done in this report. The different documentation pages
used are also stored on the CD under the folder ”diff documentation” to en-
sure availability.

C.1 Preparing to work with the USRP2

These are the initial steps which has to be done in order to begin using the
USRP21:

1. Clone and build the UHD as described in the build manual:

http://files.ettus.com/uhd docs/manual/html/build.html2

2. Install Xilinx ISE Design suite3 (note that this is the paid version), fol-
lowing the guide given on:

• http://ubuntuforums.org/showthread.php?t=1547435 4

3. If you dont want to compile the firmware of the USRP2, download it from
Ettus’ homepage

• http://files.ettus.com/uhd releases/master images/

4. Build the USRP2 FPGA image

1Experience has shown that a Linux partition with at least 30 Gb is required, in this
project Ubuntu was installed on top on Windows using the Wubi installer.

2Found as diff documentation/uhd build manual
3At the current time versions newer than 12.2 would not compile with met timing con-

straints as of UHD version
4found as diff documentation/xilinx build manual
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USRP2 FIRMWARE

• cd <uhd path>/fpga/usrp2/top/usrp2; make bin.

5. If the compilation results in error try exporting the following libraries:

• export LD PRELOAD=$LD PRELOAD:
/opt/Xilinx/12.1/ISE DS/ISE/lib/lin64/libAntlr.so:
/opt/Xilinx/12.1/ISE DS/ISE/lib/lin64/libstlport.so.5.1

6. Burn the FPGA image and firmware onto the SD card using the python
gui supplied with the UHD:

sudo python <uhd path>/host/utils/usrp2 card burner.py

fpga image is located at /<uhd path>/fpga/usrp2/top/USRP2/build

fpga firmware is located whereever it was stored in step 3

If the USRP2 two seems to load the binaries from the SD card correctly,
test that the FPGA image works properly by running one of the build examples
supplied with the UHD build5.

C.2 Implementing on the USRP2 in correspondence
with the Vita Protocol

According to the report which has analysed the USRP2 FPGA image
structure[33], a good place to add extra data processing modules are between
the VITA framer and dsp core module, due to the fact that it is easy intercept
the samples here, as illustrated on Figure C.1. The first thing that will be
presented is a block diagram which describes the different inputs and outputs
of the modules in the USRP2, which are close to the chosen point of imple-
mentation. Secondly, the dataflow of the signals will be analysed. Both the
connections and signal dataflow has been deducted through the development
of this report.

DSP core
Additional

signal processing
VITA

(De)framer

Figure C.1: The place of implementation for extra dataprocessing
modules in the USRP2’s firmware.

To deduce how the data interconnections and dataflow of the USRP2 FPGA
image works, different steps has been taken.

C.2.1 Step 1 - A walk through the USRP2 FPGA image
code

Before being able to add new modules to the USRP2 FPGA image, it is
important to understand the signal flow at the point of interest in the code sup-
plied by ETTUS research. In this case the point of interest are the in/outputs
of the dsp core and vita chain, since it is in between these the data processing

5/<uhd path>/host/build/examples
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module should be connected.

The analysis has been conducted with the means of the vita chain rx testbed6

supplied by ETTUS and a thorough analysing of the supplied Verilog code. The
results are presented in Figure C.2 and Table C.1, containting the data variable
names.
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dsp
rx
core

strobe
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Figure C.2: The inputs, outputs and connections of the dsp core
and vita chain module. This has been deduced by analysing the code
located in /<uhd path>/fpga/usrp2/vrt.

Variable
name

Width Functionality

clk 1 The master clock of the USRP2, which has
the clock frequenzy of 100 MHz.

reset 1 Master reset which resets (initilializes) the
USRP2 after the USRP2 firmware image
has been loaded. Checket by the sysctrl
module.

clear 1 Used to reset the data processing mod-
ules when a new transmission/reception
are to commence. Set by the setting regis-
ters since these receive commands from the
host-pc.

set stb 1 Strobe signal for the setting registers. On a
positive transition the setting register cho-
sen by set addr takes the current value of
set data. The strobe are controlled by by
the ZPU.

Continued on next page

6<uhd-repo-path>/fpga/usrp2/vrt/vita chain rx tb
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Table C.1 – continued from previous page
Variable
name

Width Functionality

set addr 8 Used to choose the desired setting regis-
ters. The adress are controlled by by the
ZPU, and determined by the host-PC.

set data 32 Holds the data which should be written to
the given setting register. The data are
given by the host-PC through the ethernet
port.

vita time {32, 32} Holds the current internal time, used to
tag each incoming/outgoing sample or to
handle delayed transmission. The time
is defined in {seconds, ticksrbrace where
”ticks” has the resolution of 1

512 s.
sample {16, 16} The recieved samples from the ADC’s. The

actual ADC data has been rounded to an
precision of 16 bits and are held in the vari-
able sample as {in-phase sample, quadra-
ture sample}.

strobe 1 The sample output/input of/to the
dsp rx chain/dsp tx chain comes at a rate
defined by a decimated version of the clk
signal. strobe are the clock signal which
comply with this decimated data rate.

rx dst rdy i 1 Sets if the packet router is ready to receive
samples.

run 1 Signal set by the
vita rx chain/vita tx chain, which en-
ables the dsp rx core/dsp tx core.

adc i &
adc q

24 the in-phase and quadrature sample from
the ADC’s.

adc ovf i &
adc ovf q

1 Signals if the dsp rx core has been to slow
to gather the samples, resulting in overflow
of the adc’s buffer.

debug 32 All of the debug outputs seen in the system
can be wired to the 32 bit wide debug port
avaliable on the USRP2’s board. This port
can then be used with an digital analyser
to debug the signal flow.

Table C.1: The different variables which has been analysed in the
code and what these are used for.

C.2.2 Step 2 - Defining the test environment

Since this appendix serves as the documentation on how the development
process has proceeded, the chosen testbed environments will be described here.
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To verify the research analysed in this chapter three testbeds has been cre-
ated, which will be described in the next sections.

C.2.2.1 C++ program, which prints the output samples from the
USRP2 to the terminal.

This testbed has the functionality of displaying the outputs from the USRP2
directly to the terminal. It is designed with the purpose of testing static input
data in mind.

Static input data is used in the initial tests and in the test of the different
data processing units, such as the FFT. The static input data will only last for
a certain amount of packets, ergo it is acceptable to analyse the results i the
terminal.

The testbed is written in C++, is named USRP firmware check and has
three program options:

–sps: Sample rate in samples per second.

–spp: Samples per packet, defines the width of the buffer that are to be
used to receive data from the USRP2.

–nop: Number of packets which defines how many packets should be
received.

It is to be called from a Linux terminal, whereafter it initializes the con-
nected USRP2 and then displays a number of packets, defined by –nop, with
length defined by –spp. The output are displayed in the terminal and each
sample are given a number.

C.2.2.2 Verilog HDL simulator (Isim)

The verilog simulator serves the purpose of analysing the timing and signal
interaction of the developed modules.

To analyse the verilog code, the Xilinx provided simulator ISIM is used.
ISIM is integrated in the ISE design suite and works by compiling the Ver-
ilog/HDL code into a runable C++ program. This can be used to analyse the
in/outputs of the modules and single step through the process, simulating the
hardware calculation process.

By creating a testbed in Verilog which mimics the signal flow of the place
where the module is to be implemented, it can be checked if the designed mod-
ule operates as desired. The testbed was created to simulate the interaction
with the different signals connecting between the dsp core rx and vita rx chain
modules as on the USRP2.

The testbed tests the included modules for their compatibility to the at-
tached modules. It is desired that the newly designed modules follows the



102
APPENDIX C. THE INITIAL ARM STRETCHES WHEN MAKING

USRP2 FIRMWARE

current dataflow of the USRP2, since this would make it transparent to the
system. In this case transparency is desired due to the fact that it will ease the
implementation of the module since no other modules has to be re-written.

The signals of interest are illustrated in Figure C.2 and Table C.1 and their
dataflow are illustrated in Figure C.3. From the figure the interaction and the
timing of the signals can be seen.

Clk

strobe_i

strobe_o

reset

run

data_in[ ]

data_in_addr [ ]

sample_o [ ]

data_process_en

dp0_ram[ ]

dp1_ram[ ]

0.0 ns 50.0 ns 200.0 ns 250.0 ns350.0 ns 400.0 ns 550.0 ns 700.0 ns 850.0 ns

1 2 3 4 5 6 7 8 9 19 20 21 22 23 24 25 2627 36 37 38 39 40 41 4243 54 55 56 57 5859 71 72 7374 85 86 87 88 89 90

0 1 2 7 8 9 10 15 16 17 18 24

0 1 2 7 0 1 2 7 0 1 2 0 1 2 1 0

0 1 2 9 10 17 18 24

write data process read/write data process read/write

write data process read/write

Figure C.3: This table shows the interaction and timing of the signals
of the developed testbed.

C.2.2.3 Precompiled example dft ascii art provided by ETTUS
research in the UHD - example folder.

The Precompiled example is used to check the compatibility of the designed
modules and the current USRP2 functions. This precompiled example gathers
samples from the USRP and makes a FFT, of which the result is shown in the
terminal as ASCII-art. If this example is able to work perfectly with the new
designed modules, there is a good chance that the USRP2 still works as initially.

With the three testbeds described, it can be verified if the dataflow, timing
and signal interaction is as desired and that the program is compatible with
the existing USRP2 FPGA image.

C.2.3 Step 3 - finding the right input

The first step is taken to see how it is possible to intercept the samples
and manipulate them before they are sent to the pc. This step also serves to
analyse the format of the input used.

As can be seen on figure C.2 one of the inputs to the vita rx chain module
is sample, which is where the output from the dsp arrives. Through analysis
of the dsp core rx module, it was deducted that the data variable sample was
32 bit wide and held the data as:

• sample[31:16] = 2’s complement real part of the received sample.
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• sample[15:0] = 2’s complement imaginary part of the received sample.

The first part of step 1 is to unwire the sample input of the module and replace
it with a constant value of 1 which is done as seen in the listing below:

579 reg [ 1 5 : 0 ] r e a l v a l u e = 16 ’ b0100000000000000 ;
580 reg [ 1 5 : 0 ] imag value = 16 ’ b1110000000000000 ;
581 wire s t robe our0 = s t r obe rx0 ;
582 wire [ 3 1 : 0 ] sample our0 = { r e a l va l u e , imag value } ;
583 wire [ 3 1 : 0 ] sample our1 = { r e a l va l u e , imag value } ;
584
585 v i t a r x c h a i n #(.BASE(SR RX CTRL0) , .UNIT(0) , . FIFOSIZE(DSP RX FIFOSIZE) )

v i t a r x c h a i n 0
586 ( . c l k ( d sp c lk ) , . r e s e t ( d sp r s t ) , . c l e a r ( c l e a r r x 0 ) ,
587 . s e t s t b ( s e t s t b d s p ) , . s e t addr ( s e t addr dsp ) , . s e t da ta ( s e t da ta d sp ) ,
588 . v i t a t ime ( v i t a t ime ) , . overrun ( overrun0 ) ,
589 . sample ( sample our0 ) , . run ( run rx0 ) , . s t robe ( s t robe our0 ) ,
590 . rx data o ( wr1 dat ) , . r x s r c r d y o ( wr1 ready i ) , . r x d s t r d y i (

wr1 ready o ) ,
591 . debug ( ) ) ;

Listing C.1: This listings shows the constant value which is set to be
the input to vita rx chain. The chosen value of the constant will give
an initial overview of if the 32 bit wide variable ”sample” holds data
as expected

When the simple c++ test program described in section C are run, the
output written in the terminal should comply with the chosen input value:

• sample[31:16] = 0100000000000000 → real value = 0.5.

• sample[15:0] = 1110000000000000 → imag value = -0.25.

The result of the test was that the output behaved as expected and hereby
that it is possible to intercept the sample dataflow between the dsp core and
vita chain when using few added lines of code. The next step is to analyse how
to use other variables, such as clk, reset and stb, to manipulate with the input.

C.2.4 Step 4 - Faking data processing

This test has the purpose of testing if the different signals, which is to be
utilized, behaves like deduced.

The test code is an expansion of the code in the beforehand Listing C.1,
which uses a static input to test if the signal flow is as analysed through the
code.

Listing C.2 show the code for this test of signal flow. The real value of
sample are used to test the reset and the master clock. By letting the data
being controlled by dsp clk line 583 to 591 should be running at the master
frequency of 100 MHz.

The first thing which is tested are the clear rx0 command, which should
ensure that the real value will always start being 0 for each new transmission.

As explained in Table C.1, the strobe rx0 is a decimated version of the
dsp clk, meaning that it will be in the HIGH state over multiple dsp clks. This
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600 signed reg [ 1 5 : 0 ] r e a l v a l u e = 16 ’ b1111111111111111 ;
601 signed reg [ 1 5 : 0 ] imag value = 16 ’ b0000000000000000 ;
602 wire s t robe our0 = s t r obe rx0 ;
603
604 always @ (posedge dsp c lk ) begin
605 i f ( c l e a r r x 0 ) begin
606 r e a l v a l u e = 16 ’ b0000000000000000 ;
607 end else i f ( run rx0 && st robe rx0 ) begin
608 r e a l v a l u e <= r e a l v a l u e +1;
609 end else begin
610
611 end
612 end
613
614 always @ (posedge ( s t r obe rx0 | | d s p r s t ) ) begin
615 i f ( run rx0 )
616 imag value = 16 ’ b1111111111111111 ;
617 else
618 imag value = imag value + 1 ;
619 end
620
621 wire [ 3 1 : 0 ] sample our0 = { r e a l va l u e , imag value } ;
622 wire [ 3 1 : 0 ] sample our1 = { r e a l va l u e , imag value } ;
623
624 v i t a r x c h a i n #(.BASE(SR RX CTRL0) , .UNIT(0) , . FIFOSIZE(DSP RX FIFOSIZE) )

v i t a r x c h a i n 0
625 ( . c l k ( d sp c lk ) , . r e s e t ( d sp r s t ) , . c l e a r ( c l e a r r x 0 ) ,
626 . s e t s t b ( s e t s t b d s p ) , . s e t addr ( s e t addr dsp ) , . s e t da ta ( s e t da ta d sp ) ,
627 . v i t a t ime ( v i t a t ime ) , . overrun ( overrun0 ) ,
628 . sample ( sample our0 ) , . run ( run rx0 ) , . s t robe ( s t robe our0 ) ,
629 . rx data o ( wr1 dat ) , . r x s r c r d y o ( wr1 ready i ) , . r x d s t r d y i (

wr1 ready o ) ,
630 . debug ( ) ) ;

Listing C.2: Verilog implementation of the code which is designed to
test the different signals of the system.

means that the real value should increase by

1

215
·Ndecimation

2
, [−]

for each new received sample. To see the difference between the rates, the
imaginary part are only being counted up once for each strobe rx0 signal. Fur-
thermore, the imaginary part of the sample are not reset other than the first
time.

After the code was compiled, it was tested using the c++ testbed described
in Appendix C, which prints packets of samples to the terminal. The program
has been run with the options –spp 128, –nop 2 and –sps 200000. It was
run two consequently times to test the reset signal and the results are seen in
Table C.2 and C.3. The expected results were created using a MATLAB script,
seen on the cd in ”/MATLAB/fake dp test.m”.
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Run 1 - Package 1
Sample nr value (I, Q)

0 (0.000061035, -0.99997)
1 (0.000122070, -0.99994)
2 (0.000183110, -0.99991)
. .
. .

126 (0.007751500, -0.99612)
127 (0.007812500, -0.99609)

Run 1 - Package 2
Sample nr value (I, Q)

0 (0.007873500, -0.99606)
1 (0.007934600, -0.99603)
2 (0.007995600, -0.99600)
. .
. .

126 (0.015564000, -0.99222)
127 (0.015625000, -0.99219)

Table C.2: The terminal output of the first run of the C++ test pro-
gram. These values are to be compared to the values of the MATLAB
program on the cd ”/MATLAB/fake dp test.m”.

Run 2 - Package 1
Sample nr value (I, Q)

0 (0.000061035, -0.99216)
1 (0.000122070, -0.99213)
2 (0.000183110, -0.99210)
. .
. .

126 (0.007751500, -0.98831)
127 (0.007812500, -0.98828)

Run 2 - Package 2
Sample nr value (I, Q)

0 (0.007873500, -0.98825)
1 (0.007934600, -0.98822)
2 (0.007995600, -0.98819)
. .
. .

126 (0.015564000, -0.98441)
127 (0.015625000, -0.98438)

Table C.3: The terminal output of the second run of the C++ test
program. These values are to be compared to the values of the MAT-
LAB program on the cd ”/MATLAB/fake dp test.m”.
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Comparing the output in the terminal to the MATLAB script, showed that
the signals behaved as analysed. This means that the signal flow has been
analysed correctly so that it is possible to now make a template for the data
processing module.

C.2.5 Step 5 - Creating a module template

After the different tests has been done and the signals function and flow
has been verified, a template for the data processing module can be established.
This template serves the purpose of determining a framework for the design of
the data processing modules.

The module template for the receiver side is named pipeline rx due to the
fact that the top functionality of this is to control the data gathering and
starting/stopping the data processing. The template is seen in Listing C.3.
The reason for the chosen connections are showed in Table C.4.

1 module data proce s s
2 #(parameter MEM WIDTH = 1280 ,
3 parameter sett ing reg BASE = 160 ,
4 parameter L2 PACKET WIDTH = 7 ,
5 parameter SAMPLE RES = 32)
6 ( input clk ,
7 input r e s e t ,
8 input c l ea r ,
9 input run ,

10 input [ 3 1 : 0 ] sample ,
11 input s t r o b e i ,
12 input [L2 PACKET WIDTH−1:0] samples pr packet ,
13 input [L2 PACKET WIDTH: 0 ] d e s i r e d f f t l e n g t h ,
14 output wire [ 3 1 : 0 ] sample o ,
15 output wire s t r obe o ) ;

Listing C.3: The template of the module which has been created
through the analysis in appendix C.

Variable
name

Direction Motivation

clk input The master clock is used as input since this
can be used to control the data processing,
which then can operate faster than the dec-
imated strobe i.

reset input The system should be reset when the
USRP2 has been initialized.

clear input Makes it possible to reset the module on a
new recieve/transmit command.

run input The data processing module should only be
active when the other dps functionalities
are.

sample i input This is the sample input from the
dsp rx core module and it is used to en-
sure that the data processing module gets
the right input.

Continued on next page
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Table C.4 – continued from previous page
Variable
name

Direction Motivation

strobe i input Connected to the strobe signal of the
dsp rx core since this signals to the
data processing module knows that data is
avaliable.

set data,
set addr &
set stb

input Used to enable the data processing module
to grab the settings of the system; eg. the
actual package length.

sample o output The output data which are data processed.
strobe o output The data processing module should be able

to strobe the data out.

Table C.4: Motivation for the choice of in and outputs used in the
data processing module.

In order implement the module in the ETTUS image compilation, a make-
file has been created for the specific module so the compiler where to look for
it. For the first module another makefile was used as a template and stripped
down and altered so it included the module. This makefile can be seen i list-
ings C.4.

1 GR950 SRCS = $ ( abspath $ ( addpre f ix $ (BASE DIR) / . . / . . / . . / . . / Documents/svn/
u s r p 2 u t i l s / v e r i l o g / , \

2 f i r s t m o d u l e . v \
3 p i p e l i n e r x . v \

Listing C.4: Makefile created from template of another makefile to
use for the created module.

This appendix has described how the firmware and drivers for the USRP2
has been found and installed, with purpose of others being able to recreate the
process. Furthermore the signals around the chosen spot of implementation has
been analysed, resulting in a module template which determines the different
signal that should be used in further implementation.





Appendix D

Creating Modules

This appendix documents the design process of the data processing module
which has been designed through the project period with purpose of imple-
menting new data processing capabilities to the USRP2 FPGA image. To deal
with the complexity of this module, it has been split into sub modules.
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Figure D.1: How the modules are implemeted in the data processing
module and the interconnections between the modules. Each box rep-
resents a module where the name in parenthesis is the actual module
name and the other is the name of the instanciated object. Note the
grey box is a reused module designed by ETTUS research.

The sub modules of the data processing module are described as they appear

109
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in the hierarchy of the designed data processing unit, which is illustrated in
Figure D.1. The actual implementational issues of the data processing module
is addressed in Section 5.3.

D.1 pipeline rx

The data processing module pipeline rx acts as a pipeline in the system,
which in turn makes time for the data processing to take place. The pipeline
structure allows the data processing to process the samples before they are
transmitted to the vita rx chain module.

The basic idea of the memory structure is that while data is being loaded
into one RAM block, the other RAM blocks data can be processed. In order to
maintain the system dataflow, a special memory structure is needed. This can
be achieved by using two memory registers and arrange them as is illustrated
on Figure D.2. The different variables of the pipeline 2n module can be seen
in Table D.1 and D.2, to ease the understanding of the code and the upcoming
timing diagram.

Type Name Description

Parameter
MEM WIDTH Notes the width of the memory

block.
L2 PACKET WIDTH Notes the log2 of the packet width.
SAMPLE RES Notes the sample resolution.

Input

clk Inputs the clk from the dsp.
reset The reset signal if the system should

reset.
clear The clear signal if the data should

be cleared.
run Inputs the run enable.
sample Register holding the input samples.
strobe i Input strobe.
samples pr packet Contains the number of samples per

packet.
desired fft length The desired FFT length.
dp strobe Data processing strobe.
dp addr Data processing address.
dp data i Data processing data input.

Output

dp data o Wire for the data processing output.
data process en Wire for the data processing enable.
strobe o Wire for the output strobe.
sample o Register holding the output sam-

ples.

Table D.1: Describes the input and outputs of the module pipeline.
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Figure D.2: System Generator block diagram over the pipeline mod-
ule, showing the signal flow of the system.

Type Name Description

reg

pipe setting reg Register holding the settings/states of the
system.

Continued on next page
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Table D.2 – continued from previous page
Type Name Description

pkg num Register holding the package number.
Helps define when data processing should
start.

current count state Control signal that helps check for overflow
prev count state Control signal that helps check for overflow
mem count A counter that counts up through the ad-

dresses

wire

dp0 ram s0 Holds the strobe to the single access ram,
for the two single access ram blocks.

dp0 ram addr0 Holds the address to the single access ram,
for the two single access ram blocks.

dp0 ram data0 i Holds the input data for the single access
ram for when new data is to be written into
the ram.

dp0 ram data0 o Holds the output of the single access ram.
strobe i or reset Initializes/resets the pipeline control sig-

nals, so it is ready for the next actions.

Table D.2: Describes the variables used in the module pipeline

To illustrate the functionality of the system, timing diagrams have been
created to show the interconnection of the different functionalities. The initial
timing idea is to delay strobe o such that data will not clock out before the
data is processed, eg. only after tdelay has passed. This timing is illustrated in
Figure D.3.
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Figure D.3: Timing diagram of the first proposed timing diagram for
the pipeline functionality, where the data is not clocked out until after
tdelay has passed and the first data packet has been processed,
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D.1.1 Test

Initial tests, showed that the timing described in Figure D.3 was not com-
patible with the existing Host-PC USRP communication, due to timing prob-
lems. It was quickly deduced that this could only be fixed by rewriting some of
the code supplied by ETTUS, however this was not desired since it would mean
complicating the implementation of the module. To ease the implementation
another timing principle was proposed, as seen on Figure D.4.
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Figure D.4: The second timing proposal where strobe o only has
an added propagation delay. The disadvantage is that the first pack-
ets, corresponding to Npackets, does not contain any valid information,
hence an extra control signal has to be set to tell when data is valid.

A disadvantage of this choice of timing is that it means that the data
streaming will not be totally transparent to the user, since the first packets to
be received are invalid due to the fact that they will contain NULLs. However,
this problem is to be fixed within other parts of the framework.

D.1.1.1 Code

Here, some of the key features of the code are described, such that the
reader will is to gain an overview of the basic ideas.

The dual access RAM blocks seen on Figure D.2 are a module created by
ETTUS research called ram 2port which has been reused in this module to en-
sure compatibility with the compiler settings. When the enable input for one
of the data access input, either ena or enb, are set, the corresponding output
will take value of the memory on the current address on the input clock; clka
or clkb. Furthermore, if write enable, either wea or web, are set, the ram block
on the address will take value of the input; dia or dib on a clock strobe. For
each stage n of the pipeline, a ram block is added.

Besides the ram block(s), there are two key functionalities of this system.
First of is the code which ensures that the first datablock will be collected
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112 always @ (posedge c l k ) begin
113 i f ( pkg num == 1 && run == 1 && ( prev mem state != current mem state ) )
114 pkg num = 2 ;
115 else i f ( pkg num != 1 && run == 1)
116 pkg num = 0 ;
117 else
118 pkg num = 1 ;
119 end

Listing D.1: The part of the code which checks if the first packet
of the data reception has been collected, which would imply that data
processing can commence.

144 wire s t r o b e i o r r e s e t = s t r o b e i | | r e s e t | | c l e a r ;
145 always @ (posedge s t r o b e i o r r e s e t ) begin
146 i f (˜ run ) begin
147 mem count <= 0;
148 prev mem state <=0;
149 da ta p roc e s s en <= 0;
150 sample o <= 0;
151
152 end else begin
153 mem count <= mem count + 1 ;
154 #1 current mem state <= ( mem count == samples pr packet ) ˆ

prev mem state ;
155 #1 sample o <= current mem state ? dp1 ram data0 o : dp0 ram data0 o ;
156 #1 prev mem state <= current mem state ;
157 #1 data p roc e s s en <= ( current mem state != prev mem state ) && pkg num

!= 1 ;
158 end
159 end

Listing D.2: The pipeline n2 code which controls the data storing
process.

before processing starts. This code is seen in Listing D.1.

As seen in Listing D.1, if run is not high, the packet number is set to 1,
which illustrates that this is the first incoming packet of a new reception.

The variable current mem state increases with one each time one ram block
has been filled, which makes it useful to control the multiplexers to the memory
registers. Furthermore, as seen in Listing D.1 it is used to see if the first stage
of the pipeline has been filled, which tells if the data processing can commence.

The other important function of the pipeline n2 module is the data storage
control. This ensures that the data are stored in the correct order in the
RAM block and sets the data process en at the correct time, as can be seen on
listings D.2.

As in the previous part, the system resets itself whenever it gains a reset
or clear signal and run is not set. When run is high and the module gets a
strobe i it goes directly into the desired ram module which ensures that the
data is stored at the correct address. When the data is stored, the memory
address increases by one, whereafter the system checks if the memory registers
has been filled up. If the given memory register is filled, it will select the next
memory register, using the muxes, and ensure that the data processing unit
can get access to the data to be processed.
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D.1.2 Test

Different tests has been made on this system. One of the tests was done
by writing a verilog testbench and use it to debug the code using the Xilinx
ISim GUI as the one described in Appendix C. Another test was done by using
the precompiled C++ example dft ascii art to check if the samples were still
gathered.

The purpose of the Verilog testbench was to check if the code stored the
data in the correct RAM blocks in the correct order. The testbench can be
found on the attached CD as pipeline n2 tb in the verilog folder. It was shown
that the data was stored correctly, since the fictive sample inputs were stored
in the RAMs as expected.

The test using the dft ascii art had the purpose of testing if the pipeline
module worked coherently with the supplied USRP2 FPGA code. The test was
done by implementing the pipeline n2 module directly into the u2 core module
of the ETTUS FPGA image. The module was placed in between the dsp core
and vita rx chain modules, as seen in Listing D.3.

As seen in Listing D.3 the interconnections for the data processing are not
connected, which is because of the fact that they are not used in the current
test.

If the dft ascii art example, also described as a testbed in Appendix C,
works as before the module implementation, an initial conclusion can be made
that the pipeline module is transparent for the communication between the
UHD driver and FPGA image. The test setup is made as on Figure D.5.

USRP2Host - PC USRP2 Host - PC

./dft_ascii_art --freq 2400000000 --dft_bins 128 --gain 30 
-- ref-lvl -50 --dyn_rng 70

./tx_waveforms --freq 2400000000 --wave-form SINE

Figure D.5: The test setup to test if the implementation of the
pipeline 2n module still supports the original UHD examples. The
commands under the host pc’s are the commands used in the Linux
terminal on the given PC.

The results of the tests was that the the dft ascii art ran as expected since
the frequency of the sine transmitted from the tx host was displayed in the
ascii art in the terminal.

D.2 FFT module

As explained in Section 2.4.2, the base of the OFDM modulation is the
(I)FFT which transfers the subcarriers between the frequency and time do-
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567 d sp co r e rx #(.BASE(SR RX DSP0) ) d sp co r e rx0
568 ( . c l k ( d sp c lk ) , . r s t ( d s p r s t ) ,
569 . s e t s t b ( s e t s t b d s p ) , . s e t addr ( s e t addr dsp ) , . s e t da ta ( s e t da ta d sp ) ,
570 . ad c i ( adc i ) , . a d c o v f i ( adc ov f a ) , . adc q ( adc q ) , . adc ov f q ( adc ov f b )

,
571 . sample ( sample rx0 ) , . run ( run rx0 d1 ) , . s t robe ( s t r obe rx0 ) ,
572 . debug ( ) ) ;
573
574 s e t t i n g r e g #(.my addr (SR RX CTRL0+3) ) s r c l e a r r x 0
575 ( . c l k ( d sp c lk ) , . r s t ( d s p r s t ) ,
576 . s t robe ( s e t s t b d s p ) , . addr ( s e t addr dsp ) , . in ( s e t da ta d sp ) ,
577 . out ( ) , . changed ( c l e a r r x 0 ) ) ;
578
579 wire [ 3 1 : 0 ] p i p e l i n e s amp l e o ;
580 wire p i p e l i n e s t b o ;
581
582 p i p e l i n e n 2 #(.MEM WIDTH(128) , . sett ing reg BASE (160) , .L2 PACKET WIDTH(7) ,

.SAMPLE RES(32) ) p i p e l i n e n 2 0
583 ( . c l k ( d sp c lk ) ,
584 . r e s e t ( d s p r e s e t ) ,
585 . c l e a r ( c l e a r r x 0 ) ,
586 . run ( run rx0 ) ,
587 . sample ( sample rx0 ) ,
588 . s t r o b e i ( s t r obe rx0 ) ,
589 . samples pr packet (7 ’ b1111111 ) ,
590 . dp st robe ( ) , . dp addr ( ) , . dp data i ( ) , . dp data o ( ) , . da ta p roc e s s en ( ) ,
591 . sample o ( p i p e l i n e s amp l e o ) ,
592 . s t r obe o ( p i p e l i n e s t b o ) ) ;
593
594 v i t a r x c h a i n #(.BASE(SR RX CTRL0) , .UNIT(0) , . FIFOSIZE(DSP RX FIFOSIZE) )

v i t a r x c h a i n 0
595 ( . c l k ( d sp c lk ) , . r e s e t ( d sp r s t ) , . c l e a r ( c l e a r r x 0 ) ,
596 . s e t s t b ( s e t s t b d s p ) , . s e t addr ( s e t addr dsp ) , . s e t da ta ( s e t da ta d sp ) ,
597 . v i t a t ime ( v i t a t ime ) , . overrun ( overrun0 ) ,
598 . sample ( p i p e l i n e s amp l e o ) , . run ( run rx0 ) , . s t robe ( p i p e l i n e s t b o ) ,
599 . rx data o ( wr1 dat ) , . r x s r c r d y o ( wr1 ready i ) , . r x d s t r d y i (

wr1 ready o ) ,
600 . debug ( ) ) ;

Listing D.3: Implementation of the pipeline n2 code in the prewritten
ETTUS FPGA image. Note that the input to the vita rx chain, which
was originally sample rx0 and strobe rx0 are instead inputs to the
pipeline 2n. The inputs to the vita rx chain module are replaced by
the pipeline n2 outputs pipeline sample o and pipeline stb o.

main. Firstly the (I)FFT is be analysed with respect to the coherency between
dataflow, resource usage and timing constraints, whereafter the key parts of
the design are explained.

This design uses the Cooley Tukey algorithm for the FFT. This report will
not go into detail on how the Cooley Turkey algorithm works, but a quick walk-
through on the important subjects of this algorithm are seen in Section 4.5.3.1.

D.2.1 Module timing analysis

The timing constraints for the FFT is set by the symbol time defined in
the LTE standard, which is 71.42 µs including the cuclic prefix. However, it
is possible to increase the available time for data processing, at the cost of
resources and latency, by insertion of a pipeline.

Table D.3 states some of the timing and system constraints when imple-
menting different pipeline sizes for an given FFT length, which means that it
is worst case scenario for the system concerning timing. The memory usage in
bits is calculated by Equation D.1.

memuse = (NFFT +NCP) ·Npipeline · sampleresolution [b] (D.1)
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The number of butterflies used to calculate a given FFT using this algorithm
can be seen on Figure 4.7 in Section 4.5.3.1 to be:

Nbutterflies =
NFFT

2
· log 2 (NFFT) (D.2)

Npipeline 2 3 4
NFFT 1024 2048 1024 2048 1024 2048

Memory usage [kb] 139.5 209.3 279
FFT ressource usage FFTres 2 · FFTres 3 · FFTres

Latency [µs] 142.8 214.26 357
clk/sym 7142 14284 21426
clk/samp 3.48 6.97 10.46
clk/but 1.39 0.63 2.78 1.268 4.18 1.9

Table D.3: The different constraints and corresponding resource usage
for implementation of different number of pipeline stages. FFTres are
the resources used for a single FFT, which are now known at the current
state. The numbers are rounded down and is based on the 100 MHz
clock on the USRP2 which feeds the FPGA.

Table D.4 contains an estimation of the resources and clock cycles per but-
terfly clk/but for a certain amount of instant butterfly operations. This table has
been utilizes to gain an overview of what kind of system should be designed to
fulfil the timing requirements. The most important information are the clk/but
variable which indicates whether it is realistic to implement the given function-
ality. If the clk/but in Table D.4 is lower than the one in Table D.3 it means
that implementation of the given flow is possible.
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clkload+store parallel clk/but
Nmem S D butterflies S D Nmultipliers

1 2 2 0 ∞ ∞ 0
2 4 2 1 4 2 4
3 6 4 1 6 4 4
4 8 4 4 2 1 16
5 10 6 4 2.5 1.5 16
6 12 6 5 2.4 1.2 20
7 14 8 5 2.8 1.6 20
8 16 8 12 1.34 0.66 48
9 18 10 12 1.5 0.84 48
10 20 10 13 1.54 0.76 52
11 22 12 13 1.7 0.92 52
12 24 12 16 1.5 0.76 64
13 26 14 16 1.62 0.88 64
14 28 14 17 1.64 0.84 68
15 30 16 17 1.76 0.94 68
16 32 16 32 1 0.5 128

Table D.4: An estimate of the resources required to obtain a given
clk/but rate. Nmem are the number of loaded memory registers and
clkload are the number of clock cycles needed to load them with sin-
gle (S) or dual (D) access ram. Parallel butterflies are the number of
butterflies able to run simultaneously, based on the amount of mem-
ory registers loaded. The Nmultipliers are an estimate of the multipliers
needed if all the butterflies were run in parallel, without any optimiza-
tion.

By comparing the intermediate results in Table D.3 and D.4 it is seen
that there should be up to 8 parallel butterfly operations before the timing
constraints are close to be met. By this it is clear that the timing constraints
of a 2048 point FFT sets high requirements compared to the available resources
and time in the system.

It has been chosen to implement a 1024 point FFT using dual port ram and
four parallel butterflies, due to the fact that this is a very plausible solution
since the constraint are at 1.39 clk/but but the calculation can have a minimum
of only 1 clk/but according to Table D.3 and D.4. This means that this design
will only support a bandwidth of up to 10 MHz. Based on the test results of
this design, it will be clear if it is a plausible solution to implement the support
of 20 MHz on the FFT.

Since the basic approach has been determined it is now possible to design
the desired dataflow of the FPGA implementation. This will then be the guide-
line for the actual design of the implementation on the FPGA fabric.

D.2.2 4-point fft data flow

To illustrate the dataflow a dataflow graph is constructed, based on the
butterfly structure in Figure 4.7 earlier in this section. Since this dataflow
graph serves the purpose of aiding the design process, it is designed in such
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a way that each algebraich- or memory operation which has the same vertical
alignment are taken care of by the same part of hardware.
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Figure D.6: The final dataflow of the 4-point (I)FFT used in this
project. This graph has been created based on an analysis of Equa-
tion 4.24 to 4.27.

The dataflow graph is shown on Figure D.6. There are two key optimiza-
tion steps which has been taken while developing this graph which and they
are described briefly below.

The most apparent difference between Figure D.6 and the initial analysis in
Table D.4 is that it only uses 8 multipliers instead of the 16. This optimization
is possible since the intermediate results from the butterfly could be calculated
while loading the data, which effectively reduces the amount of parallel but-
terflies by 2.
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A second, less apparent, optimization is made in the actual butterfly opera-
tion, reducing it by 2 multiplications compared to the initial Equations 4.24 to 4.27.
As seen in Equation D.3 to D.8 this has been done by calculating two interme-
diate results (ytemp0 and ytemp1) and reusing them in the calculations of the
output.

ytemp0 = −wr · yr + wi · yi (D.3)

ytemp1 = −wr · yi − wi · yr (D.4)

Xr = xr − ytemp0 (D.5)

Xi = xi − ytemp1 (D.6)

Yr = xr + ytemp0 (D.7)

Yi = xi + ytemp1 (D.8)

With this dataflowgraph it is now possible to design the general structure
of the system.

D.2.3 4-point fft general architecture

This section covers the overall FFT design structure, meaning that it de-
scribes how the overall structure of the program is. By designing the overall
structure before writing the code, it is possible to define, design and test dif-
ferent submodules independent of each other.

FFT

data_process_en

clk

reset

clear

inv_fft

dp_data0_i

dp_data1_i

fft_length

w
e0

dp_data0_o

dp_addr0

dp_strobe0_o

w
e1

dp_data1_o

dp_addr1

dp_strobe1_o

Figure D.7: In- and outputs of the FFT module. As seen the inputs
consists of some control signals together with two data in ports which
are used to read from the dual access ram in the pipeline. The outputs
are pure ram access signals for reading and storing in the pipeline ram.
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The first thing to define is the I/O’s of the system, which is seen in Fig-
ure D.7. Together with the I/Os, the structure of the code is defined in List-
ing D.4.

25 // //////////////////////////////////////////////////////////////////
26 // c o n t r o l s i g n a l s //
27 // //////////////////////////////////////////////////////////////////
28 I n t e r n a l r e g i s t e r s which are used to con t r o l the ba s i c f low o f the program

such as ; l oops
29
30 // //////////////////////////////////////////////////////////////////
31 // i n t e rmed i a t e v a l u e r e g i s t e r s //
32 // //////////////////////////////////////////////////////////////////
33 As seen on the dataf low , in te rmed ia te r e s u l t s has to be s to red due to the

f a c t that the d i f f e r e n t b u t t e r f l y modules are reused
34
35 // //////////////////////////////////////////////////////////////////
36 // da t a o w i r e r i n g //
37 // //////////////////////////////////////////////////////////////////
38 The w i r e r i ng that ensures that the ouput o f the system ( dp data0 o and

dp data1 o ) are c o r r e c t . Here should be an implementation o f the
complex − real swap for the IFFT

39
40 // //////////////////////////////////////////////////////////////////
41 // b u t t e r f l y a c c e s s c o n t r o l r e g i s t e r s //
42 // //////////////////////////////////////////////////////////////////
43 Control r e g i s t e r s which holds the in format ion o f the systems current stage ,

used to c a l c u l a t e which data should be acce s sed and i f the ( I )FFT are
done

44
45 // //////////////////////////////////////////////////////////////////
46 // data a c c e s s con t r o l , based on d e s i r e d b u t t e r f l y //
47 // //////////////////////////////////////////////////////////////////
48 Ca l cu la t i on o f the de s i r ed address a c c e s s in the p i p e l i n e memory , based on

the b u t t e r f l y c on t r o l r e g i s t e r s
49 This data ac c e s s c on t r o l are c reated on the ba s i s o f the f a c t that the data

are s to red in the b i t r eve r s ed order in the p i p e l i n e module
50 − Module name : da ta addr ca l c
51 − max propagat ion time : max h a l f o f a c l o ck cyc l e
52
53 // //////////////////////////////////////////////////////////////////
54 // tw i d d l e add re s s based on s t a g e and b u t t e f l y nr //
55 // //////////////////////////////////////////////////////////////////
56 Module which c a l c u l a t e s the twiddle f a c t o r a c c e s s based on the cur rent

s t a t e o f the system held by the b u t t e r f l y a c c e s s c on t r o l r e g i s t e r s
57 − Module name : t w i t t e r a d d r c a l c
58 − max propagat ion time : max h a l f o f a c l o ck cyc l e
59 // //////////////////////////////////////////////////////////////////
60 // memory h o l d i n g t w i d d l e f a c t o r s //
61 // //////////////////////////////////////////////////////////////////
62 Rom module which holds the twiddle f a c t o r s o f which the output are

c o n t r o l l e d by the output o f the twiddle address c a l c u l a t o r
63 − Module name : twiddle rom
64 − max propagat ion time : max h a l f o f a c l o ck cyc l e
65 // //////////////////////////////////////////////////////////////////
66 // b u t t e r f l y ou tpu t based on the x and y inpu t //
67 // w i r e r ing , s t r o b e and i f i n pu t s are i n t e r n a l or e x t e r n a l //
68 // //////////////////////////////////////////////////////////////////
69 The w i r e r i ng for the two b u t t e r f l y modules which handles the ac tua l

c a l c u l a t i o n .
70
71 // //////////////////////////////////////////////////////////////////
72 // b u t t e r f l y ou tpu t based on the x inpu t and the i n t e rmed i a t e y∗w //
73 // on s t r o b e //
74 // //////////////////////////////////////////////////////////////////
75 Module which handles the b u t t e r f l y c a l c u l a t i o n .
76 − Module name : b u t f l y c a l c
77 − max propagat ion time : max h a l f o f a c l o ck cyc l e
78
79 // //////////////////////////////////////////////////////////////////
80 // s t a r t c a l c u l a t i o n @ da t a p r o c e s s e n pu l s e //
81 // and s t op @ f f t d o n e pu l s e //
82 // //////////////////////////////////////////////////////////////////
83 Logic which s t a r t s / s tops the FFT
84
85 // //////////////////////////////////////////////////////////////////
86 // r e s e t e v e r y t h i n g @ r e s e t or end o f c a l c u l a t i o n ( f f t d o n e ) //
87 // //////////////////////////////////////////////////////////////////
88 Logic which ensures that the FFT module i s ready for i t s next c a l c u l a t i o n
89
90 // //////////////////////////////////////////////////////////////////
91 // 4 po in t f f t u s ing 2∗ b u t f l y c a l c //
92 // //////////////////////////////////////////////////////////////////
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93 Using the ” c lk ” as a t r i g g e r t h i s part w i l l hold the s i g n a l f low o f the
system , which in the end c o n t r o l s the f f t .

Listing D.4: The defined structure of the fft module.

The I/O’s together with the code structure has been defined, it is possible
to define the variables used in the main module of this design; fft. These
definitions are seen in Table D.5 and will help when the design process is split
into multiple processes.

Type Name Description

Reg

do fft Variable that if set to high, tells the sys-
tem to do the fft calculations and if set
to low tells the system that the fft is
done.

x s2 b0 Intermediate values of the radix-4 but-
terfly calculation, where x denotes if it
is the real or the imaginary value, ”s”
denotes which stage the butterfly calcu-
lation is at, b denotes which of the two
radix-2 butterfly’s being calculated.

mem1 direct0 Control signal denoting if the given out-
put pair of the fft should be from a reg-
ister or directly from the calculation.

input strobe Control signal which requests a change
of address.

stg strobe Control signal which requests a change
in the stage for the twiddle factor cal-
culation.

get new but0 Control signal that requests for a new
radix-2 butterfly calculation to start.
Here ”but” denotes which of the two
radix-2 butterfly’s should be used.

ctrl int1 ext0 Control signal that determines if the in-
puts for the radix-2 butterfly calcula-
tions should be internal intermediate or
from a external register.

Wire

fft done Control signal that is set when the fft
is complete.

stage count Control signal denoting at what stage
the fft calculation is.

twiddle stage Control signal that is part of the twid-
dle factor address calculation.

butterfly input count Control signal denoting which input the
radix-2 butterfly calculation should use
at the given stage for the given pair.

butterfly pair count Control signal denoting what radix-2
butterfly pair is to be calculated at the
given stage.

data addr0 Variables holding the data address, for
the two addresses (address 0 and 1).

Continued on next page
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Table D.5 – continued from previous page
Type Name Description

data addr0 bit rev Variables holding the bit reversed data
address, for the two address (address 0
and 1).

twiddle addr0 Control signals denoting the addresses
of the twiddle factor values.

twiddle wire real0 Variables holding the real and imagi-
nary value of the twiddle factor for both
radix-2 butterflies.

x0 temp calc in r Wires holding the real and imaginary
inputs to the radix-2 butterflies x and
y input.

xr0 out Wires holding the real and imaginary
outputs of the radix-2 butterflies x and
y output.

X0 Wires which combine the real and imag-
inary outputs of the radix-2 butterflies
x and y output.

Table D.5: The variables for the fft module.

When the desired submodules has been designed they should be imple-
mented in the fft module and the signal flow should be establish and tested.

D.2.4 Submodules

This section will describe the different submodules which has been designed
to the fft module. The modules will be described in the order they are written
in the code, seen in Listing D.4 in the previous section.

D.2.4.1 Data access calculator module

This modules main function is to calculate the address which needs to be
accessed in the pipeline module, based on the state of the (I)FFT. The module
is named data addr calc and its I/Os are seen in Figure D.8.
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data_addr_calc

butterfly_input_count

butterfly_pair_count

stage_count

data_addr1_o

data_addr0_o

Figure D.8: In- and outputs of the data addr calc module, which
handles the memory access addresses of the fft module.

The data address calculator is created based on the dual access ram scheme
of the pipeline module, meaning that it will always output two addresses based
on the input. The two addresses are determined to be to the x and y input
of the butterfly calculation since this is what has been deducted through the
creation of the dataflowgraph in Figure D.6 to be the desired way of imple-
mentation.

The address described by data addr0 o defines the desired address for the
X value seen in Equation D.3 to D.8 and data addr1 o describes the address of
the Y value. The addresses is calculated by the means of a logic circuit which
uses all of the inputs. The address calculation is designed in such a way that
it follows the pattern shown in Table D.6 which illustrates an 8-point FFT as
in Figure 4.7.

stage 0
butterfly input count 0 0 0 0
butterfly pair count 0 1 2 3

data addr0 o 0 2 4 6
data addr1 o 1 3 5 7

stage 1
butterfly input count 0 1 0 1
butterfly pair count 0 0 1 1

data addr0 o 0 1 4 5
data addr1 o 2 3 6 7

stage 2
butterfly input count 0 1 2 3
butterfly pair count 0 0 0 0

data addr0 o 0 1 2 3
data addr1 o 4 5 6 7

Table D.6: Illustration of the pattern which the data addr calc should
mimic at the output.
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The address control was tested by the use of a testbed, created to emu-
late the input signals to data addr calc from fft. The output signals butter-
fly input count, butterfly pair count and stage count was then cross-referenced
with Table D.6 and it was concluded that the module worked as intended.

D.2.4.2 Input and Pair Control Module

This module can be seen as a FSM which cycles through the control signals
for the address calculation, the twiddle address calculation and the signal which
terminates the fft, in the correct order. The module is named input pair ctrl
and it’s I/Os are depicted in Figure D.9.

input_pair_ctrl
butterfly_input_count

butterfly_pair_count

stage_count

twiddle_stage

fft_done

stg_strobe

input_strobe

enable

fft_length

reset

Figure D.9: In- and outputs of the input pair ctrl module, which
creates most of the control signals for the fft calculation.

Each time one of the radix-2 butterflies are calculated, input strobe is set
to high in order for the control to ready the addresses of the next radix-2
butterfly calculation. The control signals butterfly input count and butter-
fly pair count are constructed using a counter (some counter), the calculated
maximum length of butterfly pair count and butterfly input count for the given
stage count, butterfly pair max and butterfly input max respectively. This is
seen in Table D.7.

Number radix-4 butterfly calc 0 1
Number radix-2 butterfly calc 0 1 2 3 4 5 6 7

butterfly pair count 0 1 0 1 2 3 2 3
butterfly input count 0 0 0 0 0 0 0 0

stage count 0 0 0 0 0 0 0 0

Number radix-4 butterfly calc 2 3
Number radix-2 butterfly calc 8 9 10 11 12 13 14 15

butterfly pair count 0 1 0 1 0 1 0 1
butterfly input count 0 0 0 0 1 1 1 1

stage count 2 2 2 2 2 2 2 2

Table D.7: Illustration of the pattern of input pair ctrl when the fft
is calculation a 16 point FFT.
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The twiddle addr calcs address control signal twiddle stage is also created
in input pair ctrl. The value of twiddle stage is updated every time stg strobe
is set to 1 as can be seen in Table D.8.

stg strobe 0 1 0 1
stg ctrl 0 0 1 1

twiddle stage 0 +1 0 -1

Table D.8: Illustration of the pattern of twiddle stage.

Additionally when butterfly pair count is equal to butterfly pair max the
twiddle stage is incremented with 2.

The signal fft done is the control signal that terminates fft and it is gen-
erated when the signal finish equal to 1 which it is when the FFT is finished
with it’s final stage.

The input pair ctrl was tested much like the data addr calc module was.
By creating a testbed which emulates the input signals to the input pair ctrl
module from the fft module. The output signals butterfly input count, but-
terfly pair count, twiddle stage and fft done are then cross-referenced with the
Tables D.7 and D.8. The test found that the signals worked as intended.

D.2.4.3 Twiddle value access control

The twiddle factor function is split up in two separate modules, one for
calculation the address of the twiddle factor and one that takes this address
and loads the corresponding twiddle factor values to the output. However,
since they are co-dependant it has been chosen that they should be described
together.

w(n) = exp (−j2πn/NFFT) (D.9)

Where:

• w(n) is a complex valued twiddle factor output at index n ∈ (0, 1, 2, ...,NFFT/2

• NFFT are the total FFT length

The twiddle factor is defined in Equation D.9 but since the FPGA does
not support exponential or complex functions easily, steps has to be taken to
obtain the desired result output. Two main solutions has been considered:

• Since Equation D.9 describes points on the unit circle it is possible to
calculate them by using a Taylor series expansion of the sine function.

• Another way of obtaining the twiddle factors is to store them in a lookup
table.
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The Taylor polynomial for a sine is:

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
... (D.10)

For which different degrees are illustrated in Figure D.10.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

 

 
sine
1st degree
3rd degree
5th degree
7th degree
11th degree

Figure D.10: Illustration of the Taylor series of a sine function de-
scribed in Equation D.10. As seen on the figure the Taylor series
are most effective within the first curve, whereafter many degrees are
needed before any noticeable effect. Furthermore it is clear that a series
of 5th order is needed to obtain a full curve.

As seen on Figure D.10 a polynomial of 5th degree is needed to obtain a full
period of the sine function, which is needed to be able to calculate the twiddle
factor. This means that it will be somewhat resource demanding, with respect
to multipliers, if the twiddle factor were to be implemented as a calculation.

If a lookup table is used, the amount of required memory can be greatly
reduced by taking advantage of the fact that the real and imaginary outputs
on the unit circle are mirror versions of each other. Furthermore, the positive
and negative value are also mirror versions of each others. This means that the
lookup table only needs to consist of values in the range:

w = sin

(
−πk
NFFT/2

)
k ∈ 0, 1, ...,

NFFT
4

(D.11)

Which for an 2048 point FFT is equal to 512 values of 15 bit, since the sign
value can be added based on the address.

The way to use the values in the registers will be to first check if the desired
twiddle factor has a positive or negative real part. Secondly it must be check
whether the the real and imaginary numbers are increasing or decreasing in
value.

It has been chosen that the twiddle factor should be stored in memory
registers, since it is important to reduce the number of multipliers used. The
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7 reg [ 1 4 : 0 ] rom [ 0 : 5 1 1 ] ;
8
9 i n i t i a l begin

10 $readmemb( ”C:/ P9/ P9 pro jekt / u s r p 2 u t i l s / v e r i l o g / f f t i n c l u d e / t w i d d l e f a c t .
txt ” , rom) ;

11 end

Listing D.5: Code of the twiddle rom which initializes the memory
registers and loads the data into the memory.

13 always @ ( twidd le addr ) begin
14 case ( twidd le addr [ 9 ] )
15 0 : begin
16 w r = {1 ’b0 , rom [ twidd le addr [ 8 : 0 ] ] } ;
17 w i = {1 ’b1 , (˜rom [˜ twidd le addr [ 8 : 0 ] ] + 1) } ;
18 end
19 1 : begin
20 w r = {1 ’b1 , (˜rom [˜ twidd le addr [ 8 : 0 ] ] + 1) } ;
21 w i = {1 ’b1 , (˜rom [ twidd le addr [ 8 : 0 ] ] + 1) } ;
22 end
23 endcase
24 end

Listing D.6: Code of the twiddle rom which uses the data in the
memory to output the real and complex value of the twiddle factor.

module which holds the values are called twiddle rom, and has two key func-
tions; loading the data in the FPGA memory, and outputting the complex
values of the twiddle factor correctly. The memory loading is done by the code
seen in Listing D.5.

Note that when the data is loaded into the register, it is only 15 bit wide,
this is due to the fact that the sign bit is created in the later step.

The output of the module is created by a case which first checks whether
the input is on the positive or negative side of the real axis and afterwards
outputs the two values mirrored, as seen in Listing D.6.

As seen in Listing D.6 the check is done by testing on the MSB, since this
will be 1 if the real value is on the negative side and 0 if the real value is
positive. The data access is done by the remaining bits, which is used to access
the FPGA ROM. As seen this system uses dual access memory to spare FPGA
fabric. It is easy to make this system use single access ram, however it will
double the memory cost due to the fact that two lookup tables are needed.

To access the twiddle factor correctly, a module has been created which
calculates the twiddle factor needed at a given address. The module is named
twitter addr calc and its I/Os are seen in Figure D.11.
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tw
itter_addr_calc

twiddle_input_count

stage_count

twiddle_addr1

twiddle_addr0

Figure D.11: In- and outputs of the twitter addr calc module, which
handles the twiddle register access addresses of the fft module.

The module itself uses a single multiplier to calculate the twiddle address,
based on the values of the inputs; stage count and twiddle input count.

Test To test this system, a testbed has been made which loads the two
modules and has a generator which mimics the actual system. The testbed
is named twiddle tb.v and the output of the twiddle rom is compared to the
output of the MATLAB script twiddle tb.m.

To mimic the signals for the test, the signals for a 8 point FFT has been
taken as basis, which means that the inputs will follow the flow seen in Ta-
ble D.9

step stage count twiddle input count MATLAB output

0 0 0 0
1 0 0 0
: : : :
7 0 0 0
8 1 0 0
9 1 1 -j
10 1 0 0
11 1 1 -j
: : : :

15 1 1 -j
16 2 0 0

17 2 1
√

2− j
√

2
18 2 2 -j

19 2 3 −
√

2− j
√

2
20 2 0 0
: : : :

23 2 3 −
√

2− j
√

2

Table D.9: Illustration of the test environment for the test of the two
modules which controls which twiddle factor is to be used.



130 APPENDIX D. CREATING MODULES

30 // ////////////////////////////////////////////////////////////////////
31 // B u t t e r f l y s t a g e //
32 // ////////////////////////////////////////////////////////////////////
33 always @ (posedge do stb ) begin
34 y temp 0 <= −y r i n ∗ wr + y i i n ∗ wi ;
35 y temp 1 <= −y r i n ∗ wi − y i i n ∗ wr ;
36 end
37
38 assign xr = { x r i n [ 1 5 ] , x r i n } − {y temp 0 [ 3 0 ] , y temp 0 [ 3 0 : 1 5 ] } ;
39 assign x i = { x i i n [ 1 5 ] , x i i n } − {y temp 1 [ 3 0 ] , y temp 1 [ 3 0 : 1 5 ] } ;
40 assign yr = { x r i n [ 1 5 ] , x r i n } + {y temp 0 [ 3 0 ] , y temp 0 [ 3 0 : 1 5 ] } ;
41 assign y i = { x i i n [ 1 5 ] , x i i n } + {y temp 1 [ 3 0 ] , y temp 1 [ 3 0 : 1 5 ] } ;
42
43 endmodule

Listing D.7: The module butfly calc which conducts a full radix-2
butterfly calculation. As seen in the code the intermediate result is
ensured to be calculated first by the use of the fork-join statement.

During the test it was seen that the twiddle factors were output as desired,
which leads to the conclusion that the modules works as intended.

D.2.4.4 Single radix-2 butterfly calculation

The butterfly calculation module is responsible for calculating the butterfly
operation described in Equation D.3 to D.8 in Section D.

Since the calculation requires an intermediate result, it will happen in two
sequential steps, which is also illustrated in Figure D.12 which describes the
I/O relations.

butfly_calc

xi_in

xr_in

yr_in

wi_in

wr_in

yr_in

do_stb

yr_out

xi_out

xr_out

yr_out

interm
ediate_calc1

y_temp_1

y_temp_0

interm
ediate_calc2

Figure D.12: In- and outputs of the butfly calc module. Note that
the two blocks called ”intermediate calc” are not modules, just an in-
dication of the fact that the two operations happens sequentially.

As seen in Listing D.8 the code of this module follows Equation D.3 to D.8
from Section D closely.

There have been two key points of focus in this module, whereas the first
is to ensure that the intermediate result gets calculated before the output, the
design takes advantage of the fork-join statement. Everything written between
the fork and join keyword, will be executed in parallel, whereas the two fork-
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join statements are executed sequential.

The second point to notice when designing this calculation module is how
the data types end up after calculation. The input data type is defined by the
dsp core module of the USRP2 image to be one 32 bit register, containing two
16 bit 2’s complement numbers describing the real and imaginary part of the
sample. As seen in Listing D.8 the input to the FFT is being split up before
entering the butfly calc module.

The first part to analyse is the temp value calculation, which consist of two
multiplications and one addition. Since the data type is 2’s complement and
the dsp core’s out- and input utilises the full range of the 16 bit, it is important
to check if there is a risk of overflowing when doing the calculations. Firstly,
the y temp 0 and y temp 1 will be checked for worst case scenario outputs:

The input value of the variables yr in and yi in can range from ±1± j and
the twiddle factor can be in the range of ±

√
2 ± j

√
2, due to the fact that

it lies on the unit circle. To check the maximum output values, the different
extremities are checked and listed in Table D.10.

yr in yi in wr in wi in y temp 0 y temp 1
1 0 1 0 -1 0

1 0
√

2 −
√

2 -1.41 1.41
1 0 0 -1 0 1

1 0 −
√

2 −
√

2 -1.41 1.41
1 1 1 0 -1 -1

1 1
√

2 −
√

2 -2.82 0
1 1 0 -1 -1 1

1 1 −
√

2 −
√

2 -2.82 0
0 1 1 0 0 -1

0 1
√

2 −
√

2 -1.41 -1.41
0 1 0 -1 -1 0

0 1 −
√

2 −
√

2 -1.41 -1.41
-1 1 1 0 1 -1

-1 1
√

2 −
√

2 0 2.82
-1 1 0 -1 -1 -1

-1 1 −
√

2 −
√

2 0 -2.82
-1 0 1 0 1 0

-1 0
√

2 −
√

2 1.41 -1.41
-1 0 0 -1 0 -1

-1 0 −
√

2 −
√

2 1.41 -1.41
-1 -1 1 0 1 1

-1 -1
√

2 −
√

2 2.82 0
-1 -1 0 -1 1 -1

-1 -1 −
√

2 −
√

2 2.82 0
0 -1 1 0 0 1

0 -1
√

2 −
√

2 1.41 1.41
0 -1 0 -1 1 0

0 -1 −
√

2 −
√

2 1.41 -1.41
1 -1 1 0 -1 1

Continued on next page
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Table D.10 – continued from previous page
yr in yi in wr in wi in y temp 0 y temp 1

1 -1
√

2 −
√

2 0 2.82
1 -1 0 -1 1 1

1 -1 −
√

2 −
√

2 0 2.82

Table D.10: Analysis of the outer extremeties of the output value of
y temp in the butfly calc module of the fft module implementation.

As seen in Table D.10, the maximum absolute value which the y temp 0
and y temp 1 can be are 2.82, resulting in that the result will have a risk of
overflowing with 2 bits given the current data representation.

The output of the butfly calc will, due to the fact that xr in and xi in can
take the value from ±1± j and is added to the y temp 0 and y temp 1, be able
to take the maximum absolute value of 3.82. A value of 3.82 will still only lead
to a 2 bit overflow, hence this is to take account of when scaling the outputs.

The scaling of the inputs has been chosen to be done by dividing by two,
instead of four. This will result in the risk of an overflow, but it will be minimal
since the inputs to the IFFT on the transmitter side will always be 1. Further-
more, using the scale factor of 2 for each butterfly output is consistent with
the formular for making an IFFT using the FFT and imaginary-real switch.

The onboard multipliers in the FPGA does support multiplication of two
values with precision up to 18 bit 2’s compliment, which means that this is
more than enough for the desired multiplication of two values of length 16 bits.
When the synthesizer notices that two signed registers of length less than the
18 bits, it automatically handles sign extension and the output will have one
sign bit and the length:

Nmult out = Nmult1 in +Nmult2 in − 1 (D.12)

As seen in the code in Listing D.8 the division by two is handle by a sign
extension of both the x in and y temp variable. Furthermore it is clear that
the result of y temp variable is full length, whereafter the MSB are chosen as
output. The number of bits outputted by the multiplier is only 31, due to
the fact that the Verilog compiler always takes the MSB’s and put it into the
result, no matter how long it is.

D.2.5 Control Logic

Having all of the modules designed and tested to fulfil their requirements, it
is possible to use them in the FFT program. This is done by connecting them
using the wires and registers seen in Table D.5 and as seen on Figure 5.6.

This section contains the code which controls the signal data flow using the
clock master clock to set the different control signals. The explanation of the
flow can be seen in the code.
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262 always @ (posedge c l k ) begin // 1 p
263 i f ( d o f f t ) begin // i f t h e FFT i s not f i n i s h e d
264 inpu t s t r obe <= 0; // ensure t h a t i npu t s t r o b e i s 0
265 dp s t robe0 o <= 1; // c a l l f o r new data 0 ( x i n )
266 dp s t robe1 o <= 1; // c a l l f o r new data 1 ( y i n )
267 s t g s t r o b e <= 0; // r e s e t s t g s t r o b e
268 @ (negedge c l k ) // 1 n
269 get new but0 <= 1; // c a l c u l a t e t h e f i r s t B u t t e r f l y
270 dp s t robe0 o <= 0; // r e s e t d p s t r o b e
271 dp s t robe1 o <= 0; // r e s e t d p s t r o b e
272 inpu t s t r obe <= 1; // choose nex t a dd r e s s e s by go ing to t h e nex t

s t a t e in t h e i n p u t o u t p u t c t r l module
273 @ (posedge c l k ) // 2 p
274 dp s t robe0 o <= 1; // c a l l f o r new data 0 ( x i n ) a t t h e new

add r e s s e s
275 dp s t robe1 o <= 1; // c a l l f o r new data 1 ( y i n ) a t t h e new

add r e s s e s
276 x s1 b0 <= X0 ; // s t o r e i n t e rmed i a t e v a l u e s o f t h e f i r s t

b u t t e r f l y (32 b i t number [ r ea l , imag ] )
277 y s1 b0 <= Y0 ; // s t o r e i n t e rmed i a t e v a l u e s o f t h e b e f o r e

c a l c u l a t e d b u t t e r f l y
278 get new but0 <= 0; // r e s e t g e t n ew bu t s i g n a l
279 inpu t s t r obe <= 0; // r e s e t i n p u t s t r o b e
280 @ (negedge c l k ) // 2 n
281 get new but1 <= 1; // c a l c u l a t e nex t B u t t e r f l y
282 dp s t robe0 o <= 0; // r e s e t d p s t r o b e
283 dp s t robe1 o <= 0; // r e s e t d p s t r o b e
284 s t g s t r o b e <= 1; // ask f o r new tw i d d l e v a l u e s o f t h e

i n p u t o u t p u t c t r l module
285 inpu t s t r obe <= 1; // ask f o r new add r e s s e s (now ready to s t o r e

f i r s t ou tpu t )
286 @ (posedge c l k ) // 3 p
287 x s1 b1 <= X1 ; // s t o r e i n t e rmed i a t e v a l u e s o f t h e second

b u t t e r f l y (32 b i t number [ r ea l , imag ] )
288 y s1 b1 <= Y1 ; // s t o r e i n t e rmed i a t e v a l u e s o f t h e second

b u t t e r f l y (32 b i t number [ r ea l , imag ] )
289 get new but1 <= 0; // prepare f o r new c a l c u l a t i o n
290 c t r l i n t 1 e x t 0 <= 1; // f f t w i l l now use t h e i n t e r n a l r e g i s t e r s X0 ,

X1 , Y0 , Y1
291 s t g s t r o b e <= 0; // r e s e t s t g s t r o b e
292 inpu t s t r obe <= 0; // r e s e t i npu t s t r o b e
293 @ (negedge c l k ) // 3 n
294 get new but0 <= 1; // c a l c u l a t e u s ing t h e f i r s t rad ix−2 a l g o r i t hm

( p a r a l l e l w i t h t h e above )
295 get new but1 <= 1; // c a l c u l a t e u s ing t h e second rad ix−2 a l g o r i t hm

( p a r a l l e l w i t h t h e above )
296 we0 <= 1; // s e t t h e w r i t e enab l e f o r t h e ram
297 we1 <= 1; // s e t t h e w r i t e enab l e f o r t h e ram
298 @ (posedge c l k ) // 4 p
299 dp s t robe0 o <= 1; // s t o r e data a t t h e f i r s t a dd r e s s e s ( d i r e c t

ou tpu t o f b u t f l y c a l c module )
300 dp s t robe1 o <= 1; // s t o r e data in t h e f i r s t a d d r e s s e s ( d i r e c t

ou tpu t o f b u t f l y c a l c module )
301 x s2 b0 <= X0 ; // f o r debugg ing
302 y s2 b0 <= X1 ; // f o r debugg ing
303 x s2 b1 <= Y0 ; // s t o r e ou tpu t o f second ou tpu t
304 y s2 b1 <= Y1 ; // s t o r e ou tpu t o f second ou tpu t
305 get new but0 <= 0; // r e s e t g e t n ew bu t 0
306 get new but1 <= 0; // r e s e t g e t n ew bu t 1
307 c t r l i n t 1 e x t 0 <= 0; // chose e x t e r n a l ou tpu t
308 /∗ f f t done , on l y s t o r i n g now . ∗/
309 @ (negedge c l k ) // 4 n
310 dp s t robe0 o <= 0; // r e s e t d p s t r o b e
311 dp s t robe1 o <= 0; // r e s e t d p s t r o b e
312 inpu t s t r obe <= 1; // new add r e s s e s − s t o r e t h e second data pa i r .
313 mem1 direct0 <= 1; // choose t h a t t h e ou tpu t to Ex t e rna l ran

shou l d now be x s 2 b 1 and y s 2 b 1
314 s t g s t r o b e <= 1; // ready t w i d d l e f a c t o r s f o r nex t 4−po in t f f t
315 @ (posedge c l k ) // 5 p
316 inpu t s t r obe <= 0; // r e s e t i n p u t s t r o b e
317 dp s t robe0 o <= 1; // s t o r e data a t new add r e s s e s
318 dp s t robe1 o <= 1; // s t o r e data a t new add r e s s e s
319 @ (negedge c l k ) // 5 n
320 inpu t s t r obe <= 1; // g e t new add r e s s e s
321 we0 <= 0; // no more w r i t e
322 we1 <= 0; // no more w r i t e
323 dp s t robe0 o <= 0; // r e s e t d p s t r o b e
324 dp s t robe1 o <= 0; // r e s e t d p s t r o b e
325 mem1 direct0 <= 0; // chose to de t d i r e c t i n pu t s
326 end else
327 end

Listing D.8: Control signal flow of the final fft module, as is written
in verilog.
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