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Abstract:
As the control systems and mechanical structures of
wind turbines have become increasingly complex, it
has simultaneously become more difficult to guaran-
tee that a wind turbine structure is not damaged
in any given situation. To avoid damage to the
wind turbine a safety supervisor system, which can
initialise an emergency shutdown, should be imple-
mented. The purpose of a safety supervisor is to keep
the components of the wind turbine from being dam-
aged.
This project considers the design of a safety super-
visor system which is able to guarantee the safety of
complex wind turbine systems. In particular, mul-
tivariate safety supervisor systems are considered.
This is done using the concept of safety envelopes,
in which the system can be shut down without struc-
tural damage.
To construct safety envelopes, a model-based frame-
work of barrier certificates, Positivstellensatz and
sum of squares polynomial decomposition are con-
sidered. The framework enables an inclusion of a
bounded stochastic wind disturbance and the emer-
gency shutdown procedure in the safety envelope con-
struction. To utilise this framework, a polynomial
wind turbine model is developed. The model is devel-
oped such that structural safety critical components
of the wind turbine are included. The resulting model
is able to produce emergency shutdown trajectories
of a typical 5-MW wind turbine.
The construction of safety envelopes is formulated
as sum of squares programs (SOSP), with optimisa-
tion criteria related to the safety envelope size. The
SOSP of the complete wind turbine system turns out
to be computational complex. To reduce the com-
plexity of the calculations, two different approaches
are tested; safety envelope construction of separate
subsystems and a compositional technique which in-
cludes the subsystem interconnections in the enve-
lope construction. Both methods are implemented
and tested on the fictitious NREL 5-MW wind tur-
bine in the simulator FAST. The results indicate that
multivariate safety supervisors, that guarantee the
safety of complex wind turbines, can successfully be
designed using this method.
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Nomenclature

Acronyms
BMI Bilinear Matrix Inequality
IEC International Electrotechnical Commission
LMI Linear Matrix Inequality
NREL National Renewable Energy Laboratory
SDP Semidefinite Program
SOS Sum of Squares
SOSP Sum of Squares Program
WECS Wind Energy Conversion System
Symbols and notation
Γ Interconnection polynomial Gram matrix
λ Lagrangian dual variables
B Blade coordinate system
H Hub coordinate system
N Nacelle coordinate system
T Tower coordinate system
Λ Lagrangian
Z Set of integers
R Set of real numbers
S Set of symmetric matrices
B Covariance matrix from normal operation
c Normal operation mean
E Symmetric decision matrix for hyperellipsoid scaling
g0 Safety envelope polynomials
gD Disturbance polynomials
gu Unsafe set polynomials
gX State space polynomials
Q Polynomial representation Gram matrix
z Monomial vector
D Disturbance set
I(F ) Ideal generated by F
M(F ) Multiplicative monoid generated by F
P(F ) Preordering cone generated by F
Q(F ) Quadratic module generated by F
Rd

x Set of all polynomials in variables x with degree d
S Binary safety condition
U Input set
X State space
X0 Initial set/safety envelope
X0,comp Composed safety envelope
X0,opt Optimal safety envelope
Xn Normal operation set
Xs Safe set
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Xu Unsafe set
γ Diagonal elements of interconnection polynomial Gram matrix
Σd

x Set of all sum of squares polynomials in variables x with degree d
τ0,i Safe set coupling variable of ith subsystem
τu,i Unsafe set coupling variable of ith subsystem
τw,i(ui,yi) Interconnection coupling variable of ith subsystem
ϕ Lagrangian dual function
B(x) Barrier certificate
Bi(xi) Barrier certificate of ith subsystem
d Locked parabola zero crossing
s· Sum of squares polynomial
Model parameters and variables
β(t) Blade-pitch angle [deg]
γβ,max Maximum blade-pitch [deg]
γβ,min Minimum blade-pitch [deg]
γ∆ Drive train torsion angle ultimate load limit [rad]
γβ,sr Blade-pitch rate limit [deg/s]
γfa Tower fore-aft angle ultimate load limit [rad]
γflap Flapwise blade tip displacement ultimate load limit [m]
γLL Lead-lag blade tip angle ultimate load limit [rad]
γr Rotor speed ultimate load limit [rad/s]
γw,cut−in Cut-in wind speed [m/s]
γw,cut−out Cut-out wind speed [m/s]
λ(t) Tip speed ratio [-]
ωβ(t) Blade-pitch rate [deg/s]
ωg(t) Generator angular velocity [rad/s]
ωr(t) Rotor angular velocity [rad/s]
vw Mean wind speed [m/s]
ρ Air density [kg/m3]
σV Standard deviation of the turbulence [-]
τa1 Rotor axis torque [Nm]
τa2 Generator axis torque [Nm]
τaero(t) Aerodynamic torque generated by the wind-field [Nm]
τg(t) Generator load torque [Nm]
τr(t) Blade torque [Nm]
θ∆(t) Drive train torsional angle [rad]
θβ(t) Blade-pitch state [deg]
θg(t) Generator angle [rad]
θn1(t) Internal gearbox angle [rad]
θn2(t) Internal gearbox angle [rad]
θr(t) Rotor azimuth angle [rad]
ξflap Flapwise break point factor [-]
ξLL Lead-lag break point factor [-]
Ba1 Drive train torsional friction [Nm/(rad/s)]
Ba Drive train total torsional friction [Nm/(rad/s)]
Bg Generator friction [Nm/(rad/s)]
Br Rotor friction [Nm/(rad/s)]
Bfa Tower fore-aft damping [Nm/(rad/s)]
Bflap Flapwise blade bending damping constant [N/(m/s)]
BLL Lead-lag blade bending damping constant [Nm/(rad/s)]
Cp Power coefficient [-]
Cq Torque coefficient [-]
Ct Thrust coefficient [-]
Faero(t) Aerodynamic thrust generated by the wind-field [N]
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FD(t) Aerodynamic drag [N]
FL(t) Aerodynamic lift [N]
Fr(t) Blade thrust [N]
g Gravitational acceleration [m/s2]
Hturb(s) Turbulence filter [-]
Iref IEC expected hub-height turbulence intensity [-]
Jg Generator inertia [kg m2]
JLL Lead-lag blade inertia beyond the break point [kg m2]
Jr Rotor inertia [kg m2]
Ka1 Rotor shaft spring constant [Nm/rad]
Ka2 Generator shaft spring constant [Nm/rad]
Ka Drive train total spring constant [Nm/rad]
KV Turbulence power [-]
Kfa Tower fore-aft stiffness [Nm/rad]
Kflap Flapwise blade bending spring constant [N/m]
KLL Lead-lag blade bending spring constant [Nm/rad]
Mflap Fictitious mass of the blade beyond the break point [kg]
Mn Tower fictitious mass [kg]
N Gear ratio [-]
n1 Rotor gear teeth number [-]
n2 Generator gear teeth number [-]
R Rotor radius [m]
TV Turbulence frequency bandwidth [-]
Ve50 IEC expected wind speed (3 sec avg.) with 50 years recurrence interval [m/s]
veff(t) Rotor effective wind speed [m/s]
Vref IEC reference mean wind speed [m/s]
vw,t1(t) Wind turbulence component 1 [m/s]
vw,t2(t) Wind turbulence component 2 [m/s]
vw(t) Horizontal hub height wind speed [m/s]
w(t) Driving turbulence noise [-]
z IEC height (vertical distance) [m]
zhub IEC definition of hub height [m]
hωLL,x(t) Lead-lag blade tip angular velocity [rad/s]
hθLL,x(t) Lead-lag blade tip angle [rad]
hvflap,x(t) Flapwise blade tip velocity [m/s]
hxflap(t) Flapwise blade tip displacement [m]
tωfa,y(t) Tower fore-aft angular velocity [rad/s]
tθfa,y(t) Tower fore-aft angle [rad]
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1Introduction

1.1 Background

In recent years, wind power has become a popular source in energy conversion systems. As
dependence on fossil fuels and concerns about the environment are increasing, so is the attention
towards sustainable energy sources, giving Wind Energy Conversion Systems (WECS) increased
attention. Today approximately 2.5% of the world’s electrical usage is supplied by wind turbines.
In Denmark alone, wind power contributes to 21% of the electrical production. Wind power
showed in 2010 a global annual capacity growth rate of 23.6% [WWE10].

For wind turbines to be an attractive electrical power source, the wind turbine energy must be
cheap and reliable. In recent years much research effort has been done to reduce the cost of the
wind turbine energy. To reduce the cost of energy, the trend in wind turbine design has been
leading towards increasingly larger wind turbines. Along with the increase in size, the complexity
of the designs has also increased. The wind turbines implement a range of different sensors and
the ability to control electrical converters, individual pitching of the blades and yaw of the rotor.
The control of a wind turbine aims to achieve a maximum amount of power production while at
the same time reducing structural loads and acoustical noise.

As the control systems and mechanical structures have become increasingly complex, it has si-
multaneously become difficult to guarantee that the wind turbine structure is not damaged in any
given situation. Faults in the control system could lead to inappropriate behaviour of the wind
turbine, which could potentially lead to a structural breakdown. Additionally, external events
such as wind gusts could also cause the system to get damaged.

To avoid damage to the wind turbine, a safety supervisor system should be implemented. The
purpose of a safety supervisor is to keep the mechanical and electrical components of the wind
turbine from being damaged. When a critical situation arises, the safety supervisor should take
action such that the wind turbine is not damaged. Safety critical situations can arise given some
internal or external event. The objective of the safety supervisor is not to identify the source of a
given event or malfunction, but simply to ensure that the wind turbine is not damaged. This is
typically done by bypassing the control system and initialising an emergency shutdown procedure
which takes the wind turbine to a complete stop. The safety supervisor has a higher priority level
than the operational wind turbine control. Consequently, the safety supervisor can at any time
take the control of the system.

Today, the design of the safety supervisors and the resulting trigger of an emergency shutdown are
often very simple. Such a simple safety supervisor system might be an inadequate implementation
given a large wind turbine with a complex control system. Additionally, the emergency shutdown
procedure itself exposes the wind turbine structure to stress, why the design of a safety supervi-
sor system, which guarantees the safety of the wind turbine system in every situation, becomes
nontrivial.

A detailed safety analysis could possibly offer several positive results in relation to safety and
reliability of large and complex wind turbines. This will in turn lead to lower cost of energy. In
the following section a brief introduction to the terminology related to safety systems will be given.
Once the terminology has been introduced the scope of the project can be defined.
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1.2 Terminology

The terminology will be defined in general terms and later be defined more specifically towards a
wind turbine system.

Safety The safety of a system is a binary condition, being either safe or unsafe.

Safe system A system is considered safe if the current state is not violating any of the ultimate
load limits of the system and will not possibly lead to violation in the future given a bounded
external disturbance.

Unsafe system A system is considered unsafe if it is not safe. If the system is in an unsafe state,
it is assumed that the ultimate load limits of the system are violated or that there is a risk
that they will be violated in the future.

Safety supervisor The purpose of a safety supervisor is to prevent the system from being unsafe.
The safety supervisor may have access to certain actuators, which can be used to prevent the
system from being unsafe. Two classes of safety supervisors are considered: the univariate
safety supervisor and the multivariate safety supervisor. The univariate safety supervisor
maps a single state into the safety condition (Supervisor: R → {Safe, Unsafe}). The class
of multivariate safety supervisor maps multiple states into the safety condition (Supervisor:
Rn → {Safe, Unsafe}). A system can implement several univariate or multivariate safety
supervisors.

Safe set The safe set is in the state space defined as the region in which the system is within
the ultimate load limits. If the system state is in the safe set, it is not violating any of
the ultimate load limits of the system. However, the ultimate load limits might possibly be
violated in the future (notice the difference between safe set and safe system). The safe set
will be denoted Xs.

Unsafe set The unsafe set is in the state space defined as the region in which the system violates
the ultimate load limits. The unsafe set will be denoted Xu and is the complement of the
safe set.

Safety envelope A safety envelope defines a region in the state space in which the system is
safe. The region of the safety envelope is a subset of the safe set. The safety envelope set
will be denoted X0. If an emergency shutdown is initialised inside the safety envelope, the
system trajectory will not evolve to some state in the unsafe set Xu.

Ultimate load limits The ultimate load limits of a system are defined to be a set of constraints
which the system must not violate. The ultimate load limits define the boundary between
the safe set and the unsafe set. The constraints could be defined by mechanical or electrical
limits of the system.

Normal operation The normal operation is defined as the region in state space where a func-
tional system is observed during typical operation given typical external conditions.

Emergency shutdown When an emergency shutdown is triggered, the wind turbine is brought
to a stop as fast as possible. Several different methods can be used in the emergency
shutdown procedure. Often the emergency shutdown procedure is based on a combination
of aerodynamic and mechanic braking principles.

Safe life Certain components of a wind turbine are labelled safe life. These components are
designed to be very reliable. Systems using safe life components can assume that these are
always functional. As a result, safe life components can be used in critical systems.

2



1.3 Safety Supervisor

In the following, the general concept and purpose of safety supervisors are introduced.

The mechanical structure and the electrical components of a wind turbine are designed to be able
to handle the loads expected during normal operation. However, several situations can cause a
wind turbine to diverge from normal operation. In the case of wind turbines an external event,
such as an extreme wind gust, could cause the system to leave the normal operation. To make
sure that the wind turbine is not damaged during operation, a safety supervisor should trigger an
emergency shutdown prior to any component being damaged. Throughout this thesis the limits
of the system components which must not be exceeded are denoted ultimate load limits. A simple
example could be the bending of the wind turbine blades. If the wind speed suddenly increases or
the control system is faulty, this could lead to extreme bending of the blades. The objective of the
safety supervisor would in this case be to shut down the wind turbine prior to the blades being
damaged. An obvious safety constraint of the blade bending is the distance to the wind turbine
tower.

In the design of a safety supervisor it is assumed that the components of the system are functional.
This assumption separates the safety supervisor from a fault detection system. In the wind turbine
case, it is assumed that the mechanical and electrical systems used in the emergency shutdown
are working. In particular, it is assumed that the sensors used by the safety supervisor provide
valid measurements and that the actuators used by the safety supervisor are functional. The
sensors which can be used in critical systems such as the safety supervisor are labelled safe life.
It is, however, not assumed that the control systems of the wind turbine are working correctly.
The safety supervisor will be able to guarantee the safety of the wind turbine even if the control
systems are faulty.

The fact that the safety supervisor should be able to guarantee safety of the system regardless of the
condition of the controller has an important practical advantage. When new control algorithms are
introduced, the new controller must be certified. However, if a safety supervisor is implemented,
only the supervisor needs to be certified. As the safety supervisor has a higher priority than the
controller, a change in the control algorithm does not require a recertification of the system. As
a result, control algorithms can easily and cheaply be changed.

According to [IEC06] automatic or remote restart of the wind turbine is not allowed if an emergency
shutdown has been initiated. Consequently, power production is not only lost during the shutdown,
but also until the wind turbine has been examined by appropriate personnel. Designing a too
conservative shutdown strategy may lead to frequent emergency shutdowns, which in turn lead to
loss of power production and unnecessary mechanical stress.

1.4 Project Scope

The scope of this project is to find a method which can be used in the design of a wind turbine safety
supervisor and use the method in the design of a safety supervisor. The safety supervisor should
be able to guarantee the safety of the mechanical and electrical components of a wind turbine
during operation, given a set of bounded external conditions, such as bounded wind speeds.

In the design of a safety system, the concept of safety envelopes will be considered. The safety
envelope defines a subset of the state space in which the system is safe. A safety envelope of the
system should be designed such that an emergency shutdown can safely be executed as long as the
system is in the safety envelope. If such a safety envelope can be constructed, then the boundary of
the envelope can be used as shutdown criterion. The safety envelope should be designed according
to the normal operation of the wind turbine, such that the resulting safety system becomes useful
in practice.
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The objective of this project is to find a method which can be used to construct a practical useable
safety envelope which guarantees the safety of the wind turbine system. This safety envelope can
in turn be used as an emergency shutdown criterion in a safety supervisor implementation.

1.5 Outline

The thesis is divided into chapters. Below an outline of the chapters is given in order to provide
an overview of the thesis.

Chapter 2: System Description
In this chapter an overview of a typical wind turbine is given. Additionally a specific wind turbine
model and type are chosen and the general operation of this wind turbine introduced. This includes
specification of the specific wind turbine and its control system.

Chapter 3: IEC Wind Turbine Standards
In this chapter, the safety regulations during operation of a wind turbine according to the IEC-
61400 standards are examined. In particular the requirements and recommendations to the safety
system and emergency shutdown procedure of the wind turbine are discussed.

Chapter 4: Safety Critical Situations
In this chapter some safety critical situations, in relation to the wind turbine operation, are
examined. In particular three different situations are simulated. This is done in order to identify
the effects which should be considered in the design of a wind turbine safety system.

Chapter 5: Safety Verification Methods
In this chapter, methods which can be used to construct a safety system are examined. The
requirements to the methods are listed and the method which fit the requirements the best is
chosen.

Chapter 6: Wind Turbine Dynamic Model
In this chapter a dynamical model of a wind turbine is developed. First the components which
should be included in the model are identified. The wind turbine model is divided into parts,
which are modelled separately. Finally the model parts are assembled into one complete model,
which is compared to a reference wind turbine model.

Chapter 7: Operation Analysis
In this chapter the normal operation of the NREL 5-MW wind turbine is examined. This is done
such that the safety supervisor system can be designed according to the normal operation. By
including the normal operation of the wind turbine in the safety supervisor design, the amount of
emergency shutdowns can be reduced. Additionally the ultimate load limits of the wind turbine
are defined from the normal operation measurements.

Chapter 8: Safe Operation Envelope
In this chapter the concept of safety envelopes and barrier certificates are formulated. A simple
example using the Lyapunov equation in the design of a safety envelope is given in order to clarify
the concept. Additionally the shape of the safety envelopes is chosen and a range of suitable
optimisation criteria are discussed.

Chapter 9: Envelope Construction
In this chapter the theory which is used in the search of safety envelopes is introduced. This
includes two different barrier certificate formulations, introduction to sum of squares decomposition
of polynomials and introduction to the usage of the Positivstellensatz’ by Stengle and Putinar.
Additionally it is demonstrated how this theory will be used in the search of a wind turbine safety
envelope.
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Chapter 10: Computation of Safety Envelope
In this chapter the search of the wind turbine safety envelope is formulated and the problem is
discussed. In order to solve the problem, a range of assumptions are introduced. Subsequently,
safety envelopes which are valid given the assumptions are found. From the safety envelopes, the
safety supervisor system is constructed and the resulting safety supervisor system implemented
on the reference wind turbine. A range of safety critical situations are simulated in order to verify
the developed safety supervisor system.

Chapter 11: Compositional Safety Envelope Construction
In this chapter a compositional safety envelope method is utilised. Using this method, the problem
of constructing safety envelopes can be split up into smaller problems, which are connected through
a few shared variables. By considering a range of small connected problems, the computational
requirements are lowered. A range of safety critical situations are simulated in order to verify the
developed safety supervisor system.

Chapter 12: Conclusion
In this chapter conclusions to the results obtained throughout the thesis are given, as well as a
conclusion of the final results.

Chapter 13: Future Work
In this chapter some suggestions to further work are given.

In this chapter a motivation has been given to consider a design of wind turbine safety systems
targeted large and complex wind turbines. Possible advantages of a safety system designed specif-
ically towards large and complex wind turbines have been discussed. Additionally the scope of
the project has been formulated. Finally an outline of the chapters of the thesis was given. In the
following chapter an overview of the considered wind turbine system is given.
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2System Description

As no physical wind turbine is available, a wind turbine simulator will be used as replacement. In
the following, the selected simulator and a wind turbine reference model are introduced.

2.1 Wind Turbine Overview

In this section an overview of the general wind turbine system will be presented. Many different
wind turbine design concepts exist. In general the concepts can be divided into vertical axis and
horizontal axis rotor designs, with the latter being the most popular. Additionally, the horizontal
axis rotor wind turbines can be divided by up-wind and down-wind designs and by the number of
blades of the rotor [JFM09].

In this project the class of horizontal axis wind turbines is considered. The wind turbine is assumed
to be of the up-wind design with three blades.

In Figure 2.1 the general components of a wind turbine are illustrated.

Generator

High-speed
shaft

Gearbox

Low-speed
shaft

Brake

Blade Tower

Yaw mechanism

Nacelle
Hub

Figure 2.1: Wind turbine structural overview

In the following the functionality of the main components of the wind turbine will be described
[JFM09].

Rotor - The rotor comprises the blades of the wind turbine. The blades convert the kinetic
energy of the wind into rotational mechanical energy. In variable-blade-pitch wind turbines, the
blade-pitch angle can be changed to change the torque delivered by the rotor.
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Hub - The hub connects the rotor to the low speed shaft. The blade-pitch actuator system is
located inside the hub.

Nacelle - The nacelle contains components such as the shafts, gearbox, brakes and generator.
Additionally the nacelle provides the structural connection between the tower and the rotor.

Transmission system - In most wind turbine designs the rotor is connected to the generator
through a transmission system. The system consists of the two shafts. The low-speed shaft
connects the rotor to the gearbox and the high-speed shaft connects the gearbox to the generator.
In this way the transmission system transmits the mechanical power of the rotor to the electrical
generator. The gearbox increases the rotational speed of the shaft, such that the speed is more
suitable for driving the electrical generator. Some wind turbines are designed with gearless drive
trains.

Brakes - Most wind turbines include a mechanical brake which can be used to stop the rotor, and
keep it stopped. The brake can be applied during an emergency shutdown of the wind turbine.
Some wind turbine brakes are only designed to be used for parking.

Generator - The generator converts the mechanical energy into electricity. In variable-speed
wind turbines a converter is used to interface the generator to the AC grid.

Tower - The tower provides structural support to the nacelle and rotor. A tall tower allows long
blades resulting in a large coverage area of the rotor. Additionally, a tall tower provides favourable
aerodynamic conditions. The nacelle is mounted on the top of the tower. The mount allows a
yaw mechanism to rotate the nacelle. By yaw-rotation, the rotor can be aligned with the wind. In
upwind wind turbine designs an active yaw mechanism is essential as the orientation of the rotor
does not self-align with the wind.

In the following section, the general operation of a wind turbine is discussed.

2.2 General Operation

The general operation of the wind turbine is controlled by a superior controller sometimes denoted
the sequence controller. The objective of the sequence controller is to control the general operation
of the wind turbine based on the wind conditions. The general operation can typically take the
following set of states [Hau06]:

• Idle

• Start-up

• Power production

• Shutdown

• Emergency shutdown

The idle and power production states are stationary, while the remaining states are transitions
between the stationary states. The changes between these general operation states are primarily
based on wind speed measurements. The operational states and the transitions between the states
are illustrated in Figure 2.2. The transition between the power production state and the emergency
shutdown state, is the main focus of this thesis.

When the wind speed vw is not sufficient for the wind turbine to produce power, the wind turbine
is in an idle state. In the idle state, the blades are pitched out of the wind, and the mechanical
brake is applied. When the wind speed exceeds the cut-in wind-speed γw,cut−in, the sequence
controller changes the operation to the start-up state. In this state, the rotor speeds up. If the
wind speed is sufficient, the rotor reaches the cut-in rotor speed γr,cut−in. When the cut-in rotor
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speed is reached, the generator is started and the wind turbine enters the power production state
and starts producing power. If the cut-in rotor speed cannot be reached, the sequence controller
initiates a shutdown of the rotor, bringing it back to the idle state. In the power production
state the objective is to maximise the power production. A controller strategy used in the power
production is briefly introduced in Section 2.5.

Idle Start-up Power production

Emergency shutdown

Shutdown

vw > γw,cut−in ωr > γr,cut−in

vw < γw,cut−in, vw > γw,cut−out
Maintenance

Wind speed insufficient

Failures
Unsafe operation

Failures
Unsafe operation

Turbine approved

Figure 2.2: General operation states of a typical wind turbine. The idle and power production states
are stationary. The remaining states are transition states. The arrows indicate the possible transitions
between the states.

If the wind speed in the power production state exceeds the cut-out wind speed γw,cut−out or goes
below the cut-in wind speed γw,cut−in the wind turbine is shut down, bringing it to the idle state.

If a failure occurs or the wind turbine enters an unsafe state (such as extensive tower bending) an
emergency shutdown can be initialised. The emergency shutdown procedure and strategy of a wind
turbine depends on the specific model. When the turbine has entered the emergency shutdown
state it is required to stay in the state, until it has been approved by a certified technician.
Consequently, the wind turbine cannot automatically be brought back to the idle state. The
part of the sequence controller which monitors the safety of the wind turbine and initialises the
emergency shutdown procedure if necessary, is throughout this thesis denoted the safety supervisor.

The safety supervisor uses safe life sensors to determine whether the wind turbine is safe or unsafe.
When it is detected that the system is evolving towards the unsafe set, the supervisory system
bypasses the operational control systems and initiates the emergency shutdown procedure. The
bypassing of the operational control and initialisation of the emergency shutdown is illustrated in
Figure 2.3.
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Control

Safety supervisor

Wind turbine

General purpose sensors

Safe life sensors

Emergency shutdown

Figure 2.3: When an unsafe situation is detected, the safety supervisor bypasses the operational control
and initiates an emergency shutdown.

In the following sections, a wind turbine simulator and a reference wind turbine model are intro-
duced.

2.3 Wind Turbine Simulator

As no physical wind turbine is available real system testing is not possible. As replacement
a wind turbine simulator will be used. The simulator will be considered equivalent to a real
system. In particular the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) wind turbine
simulator from NREL will be used. The FAST simulator can be configured to simulate three-bladed,
horizontal-axis wind turbines. The simulator models a wind turbine using a combination of rigid
and flexible bodies. A MATLAB SIMULINK interface is available. The simulator has been evaluated
by "Germanischer Lloyd WindEnergie" and found suitable for "the calculation of onshore wind
turbine loads for design and certification" [Jon10].

The simulator supports control of blade-pitch, yaw, brake and generator torque and can be con-
figured to resemble a range of different wind turbines.

To be able to use the FAST simulator as reference, the simulator should be configured according to
a specific wind turbine model. In the following section the wind turbine reference model is chosen,
and the overall specifications of the model given.

2.4 Wind Turbine Reference Model

In this project it is chosen to consider a specific wind turbine type and model. The chosen type is
a three-bladed upwind variable-speed variable-blade-pitch wind turbine. The particular reference
model is a NREL 5-MW baseline wind turbine [NRE11]. The NREL 5-MW wind turbine is a
reference model inspired by an actual 5-MW wind turbine. This specific wind turbine is chosen
as it is a representative model of a typical multi-megawatt turbine and detailed parameter data
is available in [JBMN09]. Additionally the model has been included in the FAST wind turbine
simulator [JJ05].

The general structural characteristics of the NREL 5-MW wind turbine components are given in
the Table 2.1.
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NREL 5-MW specifications
Parameter Symbol Value
Power rating - 5 MW
Blades - 3
Rotor radius R 63 m
Hub height L 90 m
Hub diameter - 3 m
Rotor mass Mr 110000 kg
Nacelle mass Mn 240000 kg
Tower mass Mt 347460 kg
Cut-in wind speed γw,cut−in 3 m/s
Rated wind speed - 11.4 m/s
Cut-out wind speed γw,cut−out 25 m/s
Rated rotor speed - 1.27 rad/s (12.1 rpm)
Rated tip speed - 80 m/s
Blade-pitch span [γβ,min, γβ,max] 0◦ − 90◦
Blade-pitch rate limit γβ,sr 8◦/sec

Table 2.1: NREL 5-MW wind turbine specifications [JBMN09]

To be able to simulate the typical operation of the NREL 5-MW turbine, a control system should be
implemented. In the following section a variable-speed variable-blade-pitch controller is described.

2.5 Wind Turbine Reference Control System

In [JBMN09] a conventional variable-speed, variable-blade-pitch controller matching the NREL 5-
MW wind turbine is designed. The control system does not include control actions such as nacelle
yaw, start-up, shutdown or protection functions. This control system will be used throughout this
project.

The control system comprises the control of the generator-torque and the control of the collective
blade-pitch. The objective of the generator-torque controller is to maximise the power capture,
when the wind turbine is operating below the rated operation point (below the power production
for which it is designed / rated). When the wind turbine operates above the rated operation point,
the blade-pitch controller will regulate the generator speed.

The control scheme is divided into three regions. The regions and the corresponding operation of
the controllers are listed in Table 2.2.

Control scheme
Region Description Torque control Pitch control

1 Below cut-in wind speed Zero torque Zero pitch
2 Above cut-in wind speed Maximise power Zero pitch
3 Above rated Constant power Constant generator speed

Table 2.2: The three operation regions define the objective controllers

The control scheme has been implemented in MATALB SIMULINK, where the control system can be
expanded to include a safety supervisor system.
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2.6 Wind Turbine Emergency Shutdown Procedure

As mentioned, no emergency shutdown procedure is specified for the NREL 5-MW wind turbine
in [JBMN09]. As no emergency shutdown procedure is given, it is chosen to consider a typical
implementation. Variable blade-pitch wind turbines can according to [Hau06] typically only stop
the rotor by pitching of the blades. The mechanical brake is in this case only applied when the
rotor has stopped. As the blade-pitch procedure is critical in order to avoid unsafe situations such
as rotor runaway, reliable operation of the emergency shutdown blade-pitch procedure is essential.
As a consequence, the blade-pitch procedure used in the emergency shutdown is typically designed
in a simple manner.

It is chosen to consider an emergency shutdown procedure using blade-pitch only. Additionally,
this blade-pitch procedure is considered static. It is assumed that the blade-pitch is designed as a
feed-forward procedure. The blade-pitch system of the NREL 5-MW wind turbine has a maximum
pitch rate of 8◦/s. The emergency shutdown blade-pitch procedure is accordingly assumed to be
a static procedure taking the blade-pitch angle from a given angle to 90◦ with a maximum blade-
pitch rate of 8◦/s. When the emergency shutdown procedure is initialised, the generator torque
will be set to zero.

In this chapter the general functionality of a wind turbine was discussed. Additionally, a wind
turbine simulator, wind turbine reference model, reference controller and emergency shutdown
procedure were chosen. In the following chapter the IEC wind turbine standards are examined in
relation to wind turbine safety systems.

11



3IEC Wind Turbine Standards

For the safety system to be applicable, it must comply with the given requirements. When
the requirements are known, the safety system can be designed accordingly. The wind turbine
requirements are defined in the IEC Wind Turbine Standards (IEC61400).

In [IEC06] the requirements to wind turbine safety are specified. The purpose of the standard is
to protect the wind turbines against damage during planned lifetime. This includes control and
protection systems. The requirements are defined according to wind turbine classes.

In the following section the wind turbine classes are described.

3.1 IEC Wind Turbine Classes

In [IEC06] wind turbines are divided into classes. Each class defines a wind speed and turbulence
intensity for which a wind turbine of the specific class should be able to stay safe and respect the
design lifetime of at least 20 years. The classes are chosen to represent many different sites and
to cover most applications. The three general classes are given in Table 3.1.

Wind turbine classes
I II III

Vref 50 m/s 42.5 m/s 37.5 m/s
A - Iref 0.16
B - Iref 0.14
C - Iref 0.12

Table 3.1: Mean wind (Vref , 10 minutes average) and turbulence intensity (Iref) parameters of wind
turbine design classes

The mean wind speed Vref is an average measure during a time period of 10 minutes. The
turbulence reference Iref is given as the ratio of the wind speed standard deviation to a constant
mean wind speed of 15 m/s. In [JB07] the NREL 5-MW wind turbine is assumed to be of class
IB. In this class the wind turbine should be able to stay safe in a mean wind of 50 m/s and with
a turbulence intensity of 0.14. It should be noted that the standard does not state any design
requirements to when the wind turbine should be operational.

From a safety perspective, primarily the turbulence intensity is of interest. As the fluctuations
of the mean wind speed are of low frequency (refer to Section 6.6), the wind turbine can be shut
down when the mean wind speed reaches the defined cut-out wind speed. If the mean wind speed
exceeds the cut-out wind speed, it can be assumed that the wind turbine is in idle mode. When
considering emergency shutdown it is assumed that the wind turbine is active. In this situation
it is important to have knowledge about the maximum expected turbulence intensity, as the high
frequencies of the turbulence could render the system unsafe during operation.

As the NREL 5-MW has a cut-out mean wind speed of 25 m/s, this is assumed to be the highest
mean wind speed for which the emergency shutdown system should be designed. Assuming a
mean wind speed of 25 m/s, the turbulence will result in wind speeds fluctuating around 25 m/s.
According to [IEC06][Hau06] the highest wind speed averaged over three seconds with a recurrence
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period of 50 years can be calculated as

Ve50 = 1.4Vref

(
z

zhub

)0.11
= 1.4 · 25 m/s ·

(
90 m
90 m

)0.11
= 35 m/s, (3.1)

with z = 90 m and zhub = 90 m being the reference height and the hub height. According to
[IEC06] the wind turbine should be able to stay safe during the 50 years recurrence wind gust.
Consequently the safety supervisor system should be able to handle wind gusts up to 35 m/s.

In the following section the IEC wind turbine protection system requirements are examined.

3.2 IEC Protection System

According to [IEC06] the wind turbine operation and safety must be governed by a protection
system. Concerns regarding structural loads must be addressed in order to ensure that the wind
turbine does not break down during its lifetime [Han08]. Concerns regarding fatigue loads are not
considered in the design of the protection system.

A protection system is in [IEC06] defined as in Definition 1.

Definition 1 (IEC, Protection system): The protection functions shall be activated as a result
of failure of the control function or of the effects of an internal or external failure or dangerous
event. The protection functions shall maintain the wind turbine in a safe condition. The activation
levels of the protection functions shall be set in such a way that the design limits are not exceeded.

Throughout this thesis, this protection system will be refer to as a safety supervisor system or
simply a safety system. The safety system shall govern the operation of the wind turbine, but
should be passive during normal operation. When the safety system detects a safety critical
situation, the system should take action.

If the safety system detects a dangerous event, it can trigger the emergency shutdown procedure.
An emergency shutdown is in [IEC06] defined as in Definition 2.

Definition 2 (IEC, Emergency shutdown): Rapid shutdown of the wind turbine triggered
by a protection function or by manual intervention.

This emergency shutdown can according to IEC-61400 be implemented using different strategies.
In [IEC06] it is recommended that both direct mechanical as well as aerodynamical braking are
applied during shutdown. The emergency shutdown procedure should be able to bring the rotor
to a complete stop from any operational condition within a defined limit [IEC06].

The safety system should according to IEC-61400 be able to trigger the emergency shutdown
procedure such that the wind turbine is not damaged given either an extreme external event or
internal failure. In both cases the emergency shutdown should be activated prior to any violations
of critical constraints. Additionally it is in [IEC01] noted that it is essential to consider the loads
arising from the emergency shutdown itself. Note that it should be possible to initialise an emer-
gency shutdown at any time, without the wind turbine being damaged. It is not allowed that the
wind turbine enters a state in which it is not possible to shut down the system without damaging
it. Consequently, the effects of the emergency shutdown procedure itself must be included in the
construction of the safety supervisor system.

In the following chapter, safety critical situations will be simulated using the FAST wind turbine
simulator.
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4Safety Critical Situations

In this chapter, situations related to the safety of a wind turbine will be simulated using the FAST
simulator, the NREL 5-MW wind turbine and the NREL 5-MW wind turbine controller. This is
done to examine how unsafe situations can arise. Additionally, the simulations can help clarify
what should be considered when designing a safety supervisor system. The simulations should be
seen as a conceptual examination, rather than typical wind turbine situations.

4.1 Emergency Shutdown Trigger

To protect the wind turbine from unsafe situations, the safety system must be able to initialise
the emergency shutdown procedure prior to any exceedance of ultimate load limits. The following
example simulates a situation with a fictitious ramp-like increase in wind speed. A fictitious
ultimate load limit on the tower top fore-aft displacement is assumed to be 0.7 m. The safety
system should ensure that this limit is not reached.

Figure 4.1 illustrates the tower top fore-aft displacement and velocity, without any safety supervisor
system. At time 10 s the wind speed increases, which results in an increase of the tower top fore-
aft displacement. The dashed line represents the fictitious ultimate load limit of the tower top
displacement. If the tower top displacement exceeds the ultimate load limit, the tower is damaged.
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Figure 4.1: Simulation with sudden increase in wind speed at time 10 s. The top plots show the horizontal
hub height wind speed, rotor angular velocity and blade-pitch angle respectively. The bottom left plot shows
the displacement of the tower top, with the dashed line indicating the ultimate load limit. The bottom right
plot shows the velocity of the tower top. The wind turbine controller is turned off at time 10 s, such that
the effect of the wind gust can be examined without the intervention of the control.

To prevent damage to the tower, an emergency shutdown is introduced. The shutdown is performed
by pitching the blades to 90◦ with a maximum rate of 8 deg/s. The shutdown is initiated when
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the tower top displacement reaches the ultimate load limit of 0.7 m. The effect of blade-pitching
is discussed further in Chapter 6. Figure 4.2 illustrates the effect of the emergency shutdown. The
red dashed lines indicate the time at which the emergency shutdown is initialised.
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Figure 4.2: Simulation of effect of emergency shutdown. The top plots show the horizontal hub height wind
speed, rotor angular velocity and blade-pitch angle respectively. The bottom left plot shows the displacement
of the tower top. The bottom right plot shows the velocity of the tower top. The black and red dashed lines
indicate the ultimate load limit and the emergency shutdown trigger time respectively.

It is clear from Figure 4.2 that this safety system does not prevent the exceedance of the tower
ultimate load limit. As energy is stored in the velocity of the tower top (and possible other
states), the initialisation of the shutdown is too late. The fact that this trigger strategy does not
protect the wind turbine is in this case somewhat obvious; however similar problems could apply
to less obvious cases. To prevent that the ultimate load limit is exceeded, either the tower top
displacement trigger should be lowered or additional states should be included in the emergency
shutdown trigger. The velocity of the tower top is an obvious state to include in the trigger. A
trigger strategy which includes more than one state will be denoted a multivariate safety supervisor,
whereas a trigger which only considers a single state will be denoted a univariate safety supervisor.
From a theoretical perspective, an univariate safety supervisor would have to be very conservative
in order to guarantee safety, if even possible. Even if the tower bending is zero, a high velocity
of the tower top could cause the ultimate load limit to be possibly violated at a later time.
Consequently, an emergency shutdown trigger based solely on the tower top displacement will
theoretically never be able to guarantee that the ultimate load limit is not violated.

In Figure 4.3 the tower top displacement and velocity trajectory is illustrated. The left plot il-
lustrates the trajectory of the shutdown in Figure 4.2. In the right plot a fictitious multivariate
emergency shutdown trigger is introduced. The multivariate trigger initiates the emergency shut-
down procedure, if the tower top displacement and velocity trajectory enters the region marked
in grey. By considering both the tower top displacement and the velocity, the ultimate load limit
is not exceeded. It should be noted that this obviously does not imply safety of the system in
general. An illustration of the right plot in Figure 4.3 as a function of time, can be found in
Appendix A.
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Figure 4.3: The tower top fore-aft displacement is plotted against the tower fore-aft velocity. The dashed
line indicates the ultimate load limit. The grey region illustrates an imaginary multivariate emergency
shutdown trigger. The red and green circles mark the unsafe and safe trigger times respectively. As the
pitch angle is changed to 90◦ in a continuous motion, no abrupt changes can be seen on the trajectory at
the time of emergency shutdown trigger.

As a wind turbine introduces several energy storing elements the calculation of an appropriate
emergency shutdown trigger is not a trivial task and should possibly be a function of many states.
As indicated in Figure 4.3 the safety system should not only trigger the shutdown procedure at
the ultimate load limit but also in any region which could possibly cause the limit to be reached
at a later time, if an emergency shutdown is initiated.

4.2 Aerodynamic Shutdown

In the following two situations, the effects of the emergency shutdown itself are examined trough
simulation.

It is in [IEC01] noted that it is essential to consider effects arising from the emergency shutdown
procedure itself. The following example demonstrates an emergency shutdown based on the aero-
dynamic braking principle only. This is done by pitching the blades to 90◦ with a pitch rate of 8◦/s
and turning off the generator torque. The wind speed is kept constant at 23 m/s. The shutdown
procedure is initialised at time 10 s.

The rotor torque and rotor thrust are often described by the coefficients Cq and Ct. A positive
Cq means that the rotor torque is positive and a positive Ct that a positive force is applied to
the rotor, pushing it backwards. The coefficients will be described in detail in Section 6.3. Only
the signs of the coefficients are of interest for now. Figure 4.4 illustrates how the pitching of the
blades results in a negative rotor torque coefficient (Cq).
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Figure 4.4: Simulation of emergency shutdown using an aerodynamic braking principle. The top plots
show the wind speed, generator torque and blade-pitch angle. The bottom left plot shows the aerodynamic
torque coefficient (Cq) of the rotor. The bottom right plot shows the rotor angular velocity (ωr). The short
positive spike on the rotor velocity is due to the disconnection of the generator torque as the emergency
shutdown is initialised.

As illustrated in Figure 4.4, the pitching of the blades results in the torque constant (Cq) going
negative, which successfully brings the rotor to a stop.

As the emergency shutdown illustrated in Figure 4.4 seems smooth and undramatic, an exam-
ination of some additional states reveals that the wind turbine has been under excessive stress
during the shutdown. In Figure 4.5 the thrust coefficient (Ct), tower top fore-aft displacement
and flapwise blade tip displacement (out-of-rotor-plane blade tip displacement) are illustrated.

As illustrated in Figure 4.5 the pitching of the blades results in the thrust coefficient Ct going
from positive to negative. As a result, the thrust changes from forcing the rotor backwards, to
driving the rotor forwards. The change in direction of the rotor force affects in particular the
tower top displacement and the flapwise blade tip displacement. Prior to the initialisation of the
emergency shutdown, the tower top is constantly forced backwards approximately 0.2 m. As the
thrust coefficient changes the tower top is driven forwards, resulting in an oscillation of the tower
top. The peak value of the tower top displacement reaches a magnitude of approximately 0.4 m.
Likewise, the flapwise bending of the blades experiences a forward bending spike magnitude of
almost 4 m.

In Figure 4.6 the values of the torque Cq and thrust Ct coefficients are illustrated as contours
along the emergency shutdown trajectory. The emergency shutdown trajectory is given by the tip
speed ratio (λ) and blade-pitch angle (β) (commonly used for wind turbines).

In the two top plots the tip speed ratio and blade-pitch angle trajectory are illustrated on the
contours of the Cq and Ct coefficients. From the plots it can be seem that the trajectory enters
the negative region of both coefficients as the blade-pitch angle is changed towards 90◦. The
separation of positive and negative Cq and Ct coefficients are illustrated by black lines denoted
the zero levels. The shutdown is initiated at the black dot.
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Figure 4.5: Simulation of emergency shutdown using an aerodynamic braking principle. The top plots
show the wind speed, generator torque and blade-pitch angle. The bottom left plot shows the aerodynamic
thrust coefficient (Ct) of the rotor. The bottom middle plot shows the tower top fore-aft displacement. The
bottom right plot shows the mean flapwise blade tip displacement of the three blades.
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Figure 4.6: Top left plot shows the shutdown trajectory compared to the Cq contours. Top right plot
shows the shutdown trajectory compared to the Ct contours. In the bottom plot, the zero crossings of the
Cq and Ct contours are compared to the shutdown trajectory.

The bottom plot in Figure 4.6 compares the zero levels of the Cq and Ct contours with the
shutdown trajectory. The comparison of the Cq and Ct zero levels reveals that the zero levels
follow closely. Thus it is not possible to obtain af negative rotor torque (Cq) without at the same
time generating a negative rotor thrust (Ct). Consequently it is on this specific wind turbine not
possible to obtain a negative rotor torque to stop the rotor, without at the same time obtaining
an unwanted negative thrust.
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To reduce the unwanted effect of the negative thrust force, the emergency shutdown procedure
could be designed such that the negative magnitude of the thrust is limited. In Figure 4.7 a
fictitious shutdown trajectory is illustrated. By following such a trajectory in the emergency
shutdown procedure, the magnitude of the negative thrust coefficient is reduced.
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Figure 4.7: Fictitious shutdown trajectory compared to the contours of the Ct-table.

From the above situation an essential discovery was made in relation to the design of a safety
supervisor. It was found that the emergency shutdown procedure itself can expose the wind
turbine system to dangerous loads. Consequently, it cannot be assumed that the loads of the
wind turbine are decreasing from the point of emergency shutdown initialisation. This discovery
entails that the emergency shutdown procedure should be included in the safety supervisor design,
such that the safety guarantee includes the trajectory which will be produced by the emergency
shutdown procedure itself.

4.3 Mechanical Shutdown

In this example an emergency shutdown using a combination of aerodynamic and mechanical
braking will briefly be discussed. As mentioned, mechanical braking is usually not used on variable
blade-pitch with turbines, why this emergency shutdown procedure will primarily apply to smaller
wind turbines.

Some wind turbines implement mechanical brakes on the drive train which can assist in the
emergency shutdown. The mechanical brake can be installed on the high speed shaft, as illustrated
in Figure 2.1. As the brake is applied, the torque is transferred to the rotor through the gearbox
and the low speed shaft.

Figure 4.8 illustrates the wind speed, brake torque, blade-pitch angle, rotor angular velocity, drive
train torsion and blade lead-lag tip displacement (in-rotor-plane blade tip displacement) during an
emergency shutdown using a combination of aerodynamic and mechanical braking. The emergency
shutdown procedure is initialised at time 10 s. By the introduction of mechanical braking, the
drive train torsion and lead-lag blade tip displacement are in particular exposed to loads during
the emergency shutdown.

19



Lead-lag blade tip displacement

T
ip

d
is

p
.

[m
]

Time [s]

Drive train torsion angle

T
or

si
on

[r
ad

]

Time [s]

Rotor angular velocity

ω
r

[r
ad

/s
]

Time [s]

Blade-pitch angle

β
[d

eg
]

Time [s]

Brake torque

τ b
[k

N
m

]

Time [s]

Wind speed

v
w

[m
/s

]

Time [s]

0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50

0

0.5

1

1.5

2

2.5

0

0.01

0.02

0

0.5

1

1.5

0

50

100

0

100

200

10

15

20

25

Figure 4.8: Simulation of emergency shutdown using aerodynamic and mechanical braking. The top plots
show the wind speed, brake torque and blade-pitch angle. The bottom left plot shows the angular velocity
of the rotor. The bottom middle plot shows torsion angle of the drive train. The bottom right plot shows
the mean lead-lag blade tip displacement of the three blades. The emergency shutdown is initiated at time
10 s.

As in the example with aerodynamic braking only, this emergency shutdown procedure seems
undramatic from the inspection of the rotor velocity only. However, the inspection of the drive
train shaft torsion and lead-lag blade tip displacement reveals that the system has been undergoing
stress during the shutdown.

In the above three simulation examples, it was found that the wind turbine is exposed to stress
during the emergency shutdown procedure. Additionally it was found that the initialisation of
the emergency shutdown procedure should be triggered in time such that the ultimate load limits
cannot possibly be violated at a future time. Consequently, the design of a safety supervisor
system should include the coupling of the wind turbine states as well as the trajectory produced
by the emergency shutdown procedure itself. Additionally the safety supervisor should take the
changing wind conditions into consideration, such that the wind turbine can be safely shut down
given the stochastic behaviour of the wind speed.

In the following chapter, methods which can be used to design a safety supervisor system are
discussed.
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5Safety Verification Methods

As described in the previous chapters, a safety system is a mandatory part of the wind turbine
design, to ensure that the system is not damaged during operation. As the main purpose of the
wind turbine is to produce power, it is desirable to keep the wind turbine operational for as much
of the time as possible. This implies that the safety system must activate the emergency shutdown
procedure in time to avoid violations of the ultimate load limits, but, at the same time, not be
limiting the power production unnecessarily by being too conservative. In this chapter, different
methods to identify safety envelopes will be discussed.

In [JF11] univariate safety supervisors monitor the rotor speed and tower acceleration. If the
rotor speed or tower acceleration exceeds a given limit, the emergency shutdown procedure is
initialised. It is in [JF11] noted that acceptable univariate threshold values can be difficult to
establish. Additionally it is found that some structural elements can be difficult to protect using
univariate threshold criteria (such as the drive train torsion). This kind of univariate safety
supervisors are typical implementations of safety supervisors on wind turbines today. In Chapter
4 it was similarly found that the violation of a given ultimate load limit can be difficult to avoid
based solely on univariate safety supervisors. It is difficult to tell which combination of system
states that can result in a possible violation of a given ultimate load limit. Consequently, it seems
difficult to develop an univariate safety supervisor, which guarantees safety in every imaginable
situation. A practical implementation of an univariate safety supervisor can, in order to provide
a safety guarantee in most situations, prove to be very conservative.

In Chapter 4 it was additionally found that the emergency shutdown procedure itself can produce
unsafe trajectories. As a result, it is not sufficient to consider if a given state of the system is safe
or unsafe. The trajectory produced by the emergency shutdown from the specific state should also
be considered. The stochastic behaviour of the wind disturbance must additionally be included in
the emergency shutdown trajectory, e.g. the trajectory should not be able to evolve to some state
in the unsafe set, given any wind disturbance in some bounded set.

To resolve the above issues and to possibly improve the uptime of the wind turbines, this project
seeks a multivariate safety supervisor system, which includes the shutdown trajectory and a
stochastic bounded wind disturbance in the safety guarantee. The safety supervisor system should
be developed in such a way that real time evaluation of the safety criterion is possible.

In the design of a multivariate safety supervisor system, the emergency shutdown, given an initial
state, is classified as being either a safe or an unsafe emergency shutdown. To describe the region in
which an emergency shutdown of the system is safe, the concept of safety envelopes is considered.
An imaginary example in two dimensions is illustrated in Figure 5.1. The set Xu denotes the unsafe
set of the wind turbine, with the boundaries defined by the ultimate load limits of the system. If
the system enters the unsafe set, it is assumed to get damaged. In the initial set X0, an emergency
shutdown can be initialised without the system trajectory evolving to some state in the unsafe
set Xu, given any stochastic disturbance in some bounded set. The initial set is consequently a
possible safety envelope candidate. Throughout this thesis, the set X0 will be denoted either as
a possible safety envelope or the initial set, depending on the context. The set Xn is the set in
which the wind turbine operates in normal conditions. In Figure 5.1 a fictitious system trajectory
is illustrated by a dashed line, with the emergency shutdown initiated at the point marked by a
red circle.
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Xu Xs
X0

Xn

Figure 5.1: Illustration of a fictitious state space of a system. The four sets Xu, Xs, X0 and Xn denote
the unsafe set, safe set, initial set and normal operation set of the system respectively. An emergency
shutdown trajectory initialised in the red dot, is illustrated by a black dashed line. As the emergency
shutdown trajectory is initialised in the initial set X0, the trajectory is guaranteed not to evolve to some
state in the unsafe set Xu, given any stochastic disturbance in some bounded set.

If the wind turbine is about to leave the initial set, the safety supervisor must trigger the emergency
shutdown procedure. It is not tolerated that the wind turbine operates in regions, where the
turbine cannot be shut down safely. Following this philosophy, it will at all times be possible to
shut down the wind turbine without damaging the system.

To keep the wind turbine operational as much of the time as possible, it is desirable that the
initial set X0 is as large as possible. If the initial set can be expanded, the frequency of emergency
shutdowns is lowered, resulting in a higher power production.

5.1 Safety Envelope Identification Methods

In this section, methods used to identify a safety envelope are discussed. The objective is to find
a method which can be used to identify a safety envelope of the wind turbine system, given a
bounded disturbance.

The concepts of reachability and invariant sets are concepts which are closely connected to the
search of safety envelopes. The concept of reachability considers the set of states which the system
trajectory can reach given an initial state and a possible control signal. If the reachable set can be
separated from the unsafe set Xu given the control signal of the emergency shutdown procedure,
then the system trajectory cannot reach the unsafe set, which guarantees the safety of the system.
If the reachable set of a set of initial points X0 is separated from the unsafe set, then this initial set
can be used as a safety envelope. As an exact description of such a reachable set for an arbitrary
system is hard to determine, methods for over-approximating the set can be used.

Three principles which can be used to identify safety envelopes are discussed. The principles are
respectively based on:

1. Identification using system measurements

2. Identification using model simulation

3. Identification using model examination and uncrossable state barriers
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5.1.1 Identification using system measurements

Inspired by [Aga08] the safety envelope search can be based on measurement data obtained from a
real wind turbine system and if necessary supported by data obtained through simulation. Using
the available data, statistical extrapolation can possibly be used to calculate probabilities of the
wind turbine entering the unsafe set Xu. This kind of approach is recommended by [IEC06] to
predict ultimate loads. Given an emergency shutdown criterion, the probability of ultimate load
limit exceedance can be calculated. The safety envelope should be found such that the probability
of violation of the ultimate load limits is below some probability within the safety envelope.

The advantage of the method is that it can be based solely on measurement data, if sufficient
data is available. This eliminates the problem of model uncertainty. Further, the stochastic wind
disturbance is somewhat directly included in the measurement data.

The disadvantage of the method is that a huge number of measurement data might be required
to obtain a reliable safety envelope. Additionally, as the method is based on extrapolation, the
reliability of the solution might be hard to determine. Further it might be very difficult to include
the effect of the emergency shutdown itself in the safety envelope construction.

5.1.2 Identification using model simulation

By simulating trajectories of the emergency shutdowns from initial points in the state space
distributed in some resolution, the safe trajectories can be separated from the unsafe trajectories.
The boundary between the safe and unsafe initial points can then be used to construct a safety
envelope. As the resolution of the simulation grid will be limited to some finite number, a criterion
such as nearest neighbour should be used to determine the safety of intermediate points.

The construction of a safety envelope using simulation is illustrated in Figure 5.2 given a two
dimensional system.

Xu

(a) A safe and an unsafe emergency
shutdown trajectory

Xu

(b) Grid of safe and unsafe initial
points

Xu

X0

(c) Safety envelope separates safe
from unsafe initial points

Figure 5.2: Grid of simulations of system in two dimensions. Green dots indicate safe initial points.
An emergency shutdown initialised in the green points, will produce a safe system trajectory. Red dots
indicate unsafe points. An emergency shutdown initialised in the red points, will produce an unsafe system
trajectory. The boundary of the safe points is used as safety envelope and as emergency shutdown criterion.

The advantage of this method is that the true shape of the optimal safety envelope can be closely
approximated by increasing the resolution of the simulation grid. As an arbitrary shape of the
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safety envelope can be obtained, the method will provide a close to optimal emergency shutdown
criterion. This implies that the amount of emergency shutdowns is reduced to a minimal. Addi-
tionally, the method allows a direct inclusion of the emergency shutdown procedure in the safety
envelope construction.

The primary disadvantage of the method is the time it takes to obtain a safety envelope. If a
system in R12 is verified with a resolution of 100 in each dimension, it requires 1024 simulations.
This number of simulations will take considerable time to produce, given the normal complexity
of a wind turbine model. The FAST simulator uses approximately 15 s to simulate an emergency
shutdown from a given initial state, on a modern PC. If the number of simulations is reduced, so is
the resolution of the grid. Additionally it seems difficult to include the stochastic behaviour of the
wind in the simulation, as the wind speed can change arbitrarily during the emergency shutdown
procedure.

5.1.3 Identification using model examination and uncrossable state bar-
riers

The system trajectories can be obtained directly from the system description. It is however in
general difficult to obtain system solutions. As a consequence, Lyapunov theory has proven to be
a powerful tool, as a Lyapunov candidate function provides information of the system, without
the need of a solution. In the following, the concept of Lyapunov like functions, which can be used
to construct a safety envelope, is discussed.

If an initial set X0 can be found to be positively invariant and exclusive from the unsafe set Xu,
the system is guaranteed to be safe in X0. A set Ω is said to be positively invariant if, once the
system is in Ω it will never leave it (∀x0 ∈ Ω the trajectories x(t, x0) ∈ Ω, ∀t ≥ 0 [Kha02]). In
Figure 5.3 an invariant set X0 is illustrated. If the system is initialised in X0, it will not be able
to evolve to some state in the unsafe set Xu.

Xu
Xs

X0

Figure 5.3: The invariant set X0 is given in blue, with the red arrows indicating the direction of the
vector field. Due to the direction of the system vector field, it is not possible to cross the boundary of the
invariant set. Consequently, no system trajectory initialised in X0 will be able to evolve to some state in
the unsafe set Xu.

The Lyapunov equation enables the construction of a Lyapunov candidate function given a linear
system description. The level sets of the Lyapunov function constitute invariant sets. Con-
sequently, the safety envelope can directly be constructed from the level sets of the Lyapunov
function, which are separated from the unsafe set, without the need of solutions to the system.
As the modelling of a wind turbine includes highly non-linear parts (such as the aerodynamic
properties) it seems difficult to model the system using a linear description only.
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In [Pra06] it is proposed to design a Lyapunov-like scalar function which maps the system state x
onto the set of real numbers, where the sign of the function is non-positive in the initial set X0 and
positive in the unsafe set Xu, and safisfy certain restrictions on its time derivative. Such a function
is denoted a barrier certificate. Recently proposed methods enable a search of such a barrier
certificate given a polynomial system description and the sets being semi-algebraic (specified by
polynomial equalities and inequalities). The search for a fixed degree polynomial barrier certificate
can be defined as a sum of squares program (SOSP, described in Chapter 9), which in turn can be
formulated as an SDP [Par03]. As a result, the existence of such a barrier provides a certificate
that trajectories initialised in the initial set X0 cannot evolve to some state in Xu.

If the wind turbine can be modelled using a polynomial system description, the search of a safety
envelope can be formulated as an SDP, which can be solved using existing software. The procedure
in [Pra06] uses the barrier certificate method to verify the safety of a given set, why this method
can be used to verify if a given initial set X0 is indeed a feasible safety envelope. This project does
not seek a safety verification method, but rather a method for optimisation of the safety envelope
size. However, as the barrier certificate search is formulated as an SDP, it should be possible to
include an optimisation criterion. In [Pan10] a similar optimisation is performed using the sum
of squares framework and Lyapunov theory to find the largest reachable set limited by a specified
shape. In [SSE08] the unreachable set of a process is optimised from barrier certificates, given an
initial set. To the author’s knowledge, optimisation of the safe area using barrier certificates has
not been made before.

The advantage of the barrier certificate method is that an optimised analytical safety envelope
can be obtained without the need of system solutions. Additionally, the emergency shutdown
procedure and a stochastic disturbance can directly be included in the search of safety envelope.
The disadvantage of the method is that it is limited to polynomial model descriptions, and that the
reliability of the resulting safety envelope will be limited by model uncertainties. Additionally the
search of a safety envelope will be limited to a search of a set with some specified finite complexity.
The blade-pitch procedure used in the emergency shutdown is static and can be modelled as an
independent autonomous system, which can then be included in the method. As the barrier
certificate method complies with the requirements to the safety envelope identification method, it
seems to be worth pursuing. To the authors knowledge, the barrier certificate method using the
sum of squares (SOS) framework has only been tested on a very few simple practical systems.

In the following chapter, a polynomial wind turbine model description will be developed. If it is
possible to develop a reasonable model of the system using polynomials only, a safety supervisor
can be constructed using barrier certificates and the SOS framework.
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6Wind Turbine Dynamic Model

In this chapter a dynamical model of a wind turbine will be developed. The model must be
designed such that it can be used in the search of a safety envelope. The model is in Chapter
10 used in the search of a safety envelope. As no wind turbine is available, the model will be
designed to resemble the fictitious NREL 5-MW wind turbine, implemented in the FAST wind
turbine simulator.

To be able to model the wind turbine it is essential first to determine the effects of the wind
turbine that should be modelled. The model objective is to be able to model the behaviour of a
wind turbine during extreme conditions and shutdown. The model has to include the elements
of the wind turbine which are exposed to significant loads during operation and the emergency
shutdown procedure.

As discussed in Chapter 2.6, the emergency shutdown procedure is chosen to be based on the
aerodynamic principle. To obtain the aerodynamic braking of the rotor, the blades are pitched to
90◦ using a static feed-forward blade-pitch angle procedure. This emergency shutdown principle
was in Chapter 4 found to introduce loads to the tower and blades. Consequently, these loads
should be included in the model.

According to [Han08] the three most important sources of loads on the wind turbine in normal
operation are:

• Gravitational loading

• Inertial loading

• Aerodynamic loading

The gravitational loading is mostly due to the repetitive sinusoidal loading of the blades as a
result of rotation of the rotor. As this load is mainly interesting when considering fatigue, it is
considered non-essential with respect to the safety of the wind turbine.

The inertial loading occurs when the turbine is accelerated or decelerated. A safety shutdown will
result in a hard deceleration of the rotor. As a result, the inertial loading must be included in the
wind turbine model.

The Aerodynamic loading is due to the aerodynamic forces from the wind field. From a safety
perspective, the wind field can be considered as an unknown disturbance, which can render the
wind turbine unsafe. As the wind field will directly inflict loads on the structural components of
the wind turbine, an aerodynamic model of the wind turbine must additionally be considered.

To reduce the amount of states considered in the safety system, it is chosen to consider structural
components only. Oil temperature, generator temperature and electrical issues etc. will not be
included in the safety system. Additionally it is assumed that the wind turbine is using a collective
pitch strategy, that the wind turbine is aligned with the wind direction and that the wind field
is uniform. These assumptions allow further simplification of the safety system and modelling, as
issues such as yaw moments in the nacelle can be ignored.

The components to be considered in the design of the safety system should be based on the specific
wind turbine model and type. The above considerations and assumptions together with the FAST
simulations in Section 4 are used to identify the mechanical components which should be protected
by the safety system.
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Inspired by the NREL 5-MW reference wind turbine, the components which should be modelled
are chosen to:

• Rotor speed

• Generator speed

• Drive train torsion

• Tower fore-aft bending

• Blade flapwise bending (out-of-rotor-plane bending)

• Blade lead-lag bending (in-rotor-plane bending)

As the aerodynamic braking is achieved by pitching of the rotor blades, the pitching procedure
should be modelled. The pitch procedure must be modelled as an autonomous system. The
dynamics of the generator should be considered, as the generator torque is set to zero when the
emergency shutdown is initialised.

The actuators which should be modelled are:

• Blade-pitch system

• Generator torque

Additionally, the stochastic behaviour of the wind field should be modelled according to [IEC06],
and included in the complete model as a disturbance.

The model will be divided into parts, which finally will be connected. In Figure 6.1 the model
parts are illustrated as boxes and the interconnections of the parts as arrows.

Wind
+

+

AerodynamicsPitch Blades

Drivetrain

Tower

Generator

w
vw

veff

τaero

Faero

τr

Fr

ωg
ωr

τg

β

tvfa,x

Figure 6.1: Model parts given as boxes. The interconnections are given as arrows. The symbols will be
introduced in the modelling sections, and can be found in the nomenclature. The wind disturbance w is
the only external signal to the model.

The system illustrated in Figure 6.1 is able to model an emergency shutdown trajectory given
an initial state. The model can be used to test if a given initial state produces a safe or unsafe
emergency shutdown trajectory. The objective of the model separates from conventional wind
turbine models used for control, as it is not designed to model the behaviour of the wind turbine
during normal operation. The blade-pitch will autonomously be taken from the initial value to
90◦. The model will include an unknown bounded wind disturbance, as the only external signal
to the model.
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In the remaining of this chapter the model will be designed. First the mathematical structure
of the model and the wind turbine coordinate systems will be defined. Subsequently, each of the
model parts will be modelled individually. Finally the model parts are connected into one system.

An overview of the wind turbine modelling chapter is given below.

6.1 - Model Structure
6.2 - Coordinate Systems
6.3 - Aerodynamic Model
6.4 - Structural Model

6.4.1 - Drive train
6.4.2 - Blades

6.4.3 - Tower
6.5 - Actuator Model

6.5.2 - Blade-pitch actuator system
6.5.1 - Generator

6.6 - Wind Model
6.7 - Model Composition

In the following section, the mathematical structure of the model will be specified.

6.1 Model Structure

The framework based on barrier certificates and the SOS decomposition described in Chapter 5 is
limited to handle multivariate polynomials. The model must be consistent with this mathematical
structure.

In particular, the wind turbine model should, in order to be used in later analysis, be described
by a set of first order differential equations. The differential equations are limited to the class of
multivariate polynomials.

The differential equations ẋ = f(x) of the model must be on polynomial form given as

f(x1, ..., xn) =
∑
i

cimi, ci ∈ R, mi ∈M(x1, ..., xn), (6.1)

where M(x1, ..., xn) is the set of finite products generated by the family X = {x1, ..., xn} and ci
is a constant term.

The polynomial f(x1, x2) will in this specific case be given as a finite linear combination of mono-
mials

f(x1, x2) =
∑
i

cimi = c0 + c1x1 + c2x2 + c3x1x2 + c4x
2
1 + c5x

2
2 + c6x

2
1x2 + ... ,

with ci ∈ R, and mi ∈M(x1, x2).

The complete model should be given on the form

˙
x1(t)
x2(t)
...

xn(t)

 =


f1 (x1(t), · · · , xn(t), d1(t), · · · , dq(t))
f2 (x1(t), · · · , xn(t), d1(t), · · · , dq(t))

...
fn (x1(t), · · · , xn(t), d1(t), · · · , dq(t))

,
with the polynomials {f1, f2, · · · , fn} defined by (6.1) and the states and disturbances defined by
x ∈ Rn, d ∈ Rq respectively.

In the following section, the coordinate system used to model the wind turbine will be defined.
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6.2 Coordinate Systems

In this section, the coordinate systems which will be used in the modelling of the wind turbine
will be defined.

It is chosen to define the coordinate systems according to [IEC01]. Four systems - tower coordinate
system (T ), nacelle coordinate system (N ), hub coordinate system (H) and blade coordinate
system (B) - are used to describe the motions and forces of the wind turbine.

The following notation will be used to describe rotation and translation. An angle (θ) of some
object in the nacelle coordinate system (N ), around the x-axis will be denoted nθname,x, with name
being the name of the object. A translational velocity parallel to the x-axis in the tower coordinate
system (T ) will similarly be denoted tvname,x. The notation of translations, e.g nxname,x will be
shortened to nxname. Some frequently used rotations or translations will be given specific names,
such as the blade-pitch angle, which is denoted β.

The tower coordinate system T = (tx, ty, tz) is placed at the base of the tower with tz coaxial
with the tower. The nacelle coordinate system N = (nx, ny, nz) is placed in the nacelle such that
nx is aligned with the rotor axis and nz is vertical, pointing up.

The (T ) and (N ) coordinate systems are illustrated in Figure 6.2. The naming is abused, as the
tower fore-aft tθfa,y and side-side tθss,x bending usually are defined relative to the nacelle direction.
The yaw angle tθyaw,z is, however, assumed to be zero.

tz

tx

ty

tθyaw,z

tx ty

nz

nx

ny

(a) Tower yaw rotation tθz

tz

ty

tθss,x

tz

ty

nz

ny

nx
tx

(b) Tower side-side rotation tθx

tz

tx

tθfa,y

tz

tx

nz

nx

ny
ty

(c) Tower fore-aft rotation tθy

Figure 6.2: The tower system T and nacelle system N . Rotations of the tower tθz,tθx and tθy are given
in 6.2a, 6.2b and 6.2c respectively.

The hub coordinate system H = (hx, hy, hz) is placed in the nacelle fixed to the rotating shaft.
This coordinate system has an angle θr = nθaz,x relative to the nacelle coordinate system. The
angular velocity of the hub coordinate system in the nacelle coordinate system nωr,x will be called
the rotor angular velocity and be denoted ωr. The blade coordinate system B = (bx, by, bz) is
aligned along one of the blades with bz along the chord. The angle hy relative to by will be called
the blade-pitch angle and be denoted β (β is defined positive towards feather). The blade-pitch
angle is in accordance with standard practice measured in degrees.
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In Figure 6.3 the hub and one blade are illustrated in the hub and blade coordinate systems
respectively.

hx nx

θr = 30◦

nz

ny

hz

hy

(a) Hub coordinate system in the nacelle coordinate sys-
tem

by

bx

hx

hy

β

bz
hz

(b) Blade coordinate system in the hub
coordinate system

Figure 6.3: The hub coordinate system H and the blade coordinate system B. In the left plot the hub
coordinate system is given in the nacelle coordinate system. In the right plot the blade-pitch angle is
illustrated.

In the above section, the coordinate systems which will be used in the modelling of the wind
turbine have been defined. In the following section, the aerodynamic model will be developed.

6.3 Aerodynamic Model

The aerodynamic model describes the connection between the wind and the resulting effects on
the wind turbine, as illustrated in Figure 6.1 on Page 27.

The rotor of the wind turbine captures some of the kinetic energy in the wind, and converts it
into mechanical energy, which in turn is turned into electrical energy through a generator. The
aerodynamic forces acting on the wind turbine will be modelled according to [FDB07]. All forces
will be described in the nacelle coordinate system N .

A wind turbine rotor works by deflecting the wind by means of cambered blades and appropriate
angles of attack, producing a lift force (FL) perpendicular to the wind direction and a drag force
(FD) along the wind direction. An example cross-section of a wind turbine blade, with wind
direction and resulting forces, is illustrated in Figure 6.4b.

30



Faero

τaero

(a) Rotor effects

FL

FD

Fτ

Faero

β
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vw,rel

(b) Cross-section of a wind turbine blade

Figure 6.4: Left the rotor, with the aerodynamic torque (τaero) and thrust force (Faero), is shown. Right
the aerodynamic lift (FL) and drag (FD) forces affecting the blade are shown. The forces can be resolved
into a rotor force (Fτ ) and rotor thrust (Faero). The wind speed is denoted vw and the wind speed relative
to the rotation of the rotor denoted vw,rel. The forces affecting the blade change with the blade-pitch angle
(β).

The lift and drag forces are dependent on the angle of attack. Different angles of attack can
be achieved by pitching of the blades. The lift and drag forces can be resolved into the nacelle
coordinates, one giving a thrust force (Faero) along nx and one giving a torque τaero around nx,
as illustrated in Figure 6.4a. During normal operation a lift/drag ratio giving a high torque is
wanted. During shutdown, the wind turbine can be actively stopped by pitching of the blades
such that a negative torque is obtained.

An appropriate measure of the relative wind speed is the tip speed ratio, given in (6.2). The tip
speed ratio λ is a unit-less number describing the ratio of the blade tip speed to the wind speed,
given as

λ = Rωr

vw
, (6.2)

where R and vw denotes the rotor radius and horizontal hub height wind speed respectively.

The kinetic power Pw in the wind through the rotor coverage area A is given as

Pw = 1
2ρAvw

3, (6.3)

where ρ denotes the air density.

As the lift and drag forces are complex, the resulting power, thrust and torque are usually cal-
culated offline as efficiency coefficients and used as lookup tables. The power coefficient (Cp)
describes the amount of power that can be captured from the wind in (6.3). The power coefficient
is usually written in terms of the collective blade-pitch β and the tip-speed ratio λ. The captured
aerodynamic power is calculated as

Paero = PwCp(λ, β) = 1
2ρAvw

3Cp(λ, β), (6.4)

with Cp(λ, β) typically given as a lookup table.
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The torque delivered to the rotor can likewise be described using the torque coefficient (Cq) as

τaero = 1
2ρARvw

2Cq(λ, β), (6.5)

with Cq(λ, β) typically given as a lookup table.

The torque coefficient can be calculated from the power coefficient by

Cq = Cp/λ.

The aerodynamic thrust force is similarly described as

Faero = 1
2ρAvw

2Ct(λ, β), (6.6)

with Ct(λ, β) typically given as a lookup table.

Lookup tables of Cp, Cq and Ct coefficients used in (6.4), (6.5) and (6.6) matching the aerodynamic
properties of the NREL 5-MW wind turbine are generated using the software WT_Perf [Buh11].
The resulting tables are illustrated in Figure 6.5.
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Figure 6.5: Power (left), thrust (middle) and torque (right) coefficient lookup tables matching the aero-
dynamic properties of the NREL 5-MW wind turbine. Negative values in all tables have been set to zero.

The power generated by the wind turbine is usually essential in the modelling. However from a
safety perspective, the torque and thrust generated by the rotor are essential. In order to model
the rotor torque and thrust force, Equation (6.5) and (6.6) must be implemented in the model.
This implies according to Section 6.1 that the equations must be on polynomial form. Disregarding
the lookup tables, the torque (6.5) and thrust (6.6) equations are on polynomial form. The lookup
table will be approximated by polynomials. The tables in (6.5) and (6.6) are given as functions
of λ and β. The definition of λ in (6.2) is not on polynomial form (as vw in the denominator is
variable). It is chosen to separate λ into the wind speed vw and the angular velocity of the rotor
ωr. The polynomials representing the torque and thrust coefficients will, as a result, be given as
functions of the three variables vw, ωr and β, given by

Cx(vw, ωr, β),

with Cx(vw, ωr, β) being on polynomial form, as given in Equation (6.1).

Lookup tables of Cq(vw, ωr, β) and Ct(vw, ωr, β) coefficients, are generated using WT_Perf. The
tables are found by calculating Cq and Ct for at range of vw, ωr and β, resulting in multidimensional
matrices. As the approximation of a polynomial to the lookup tables is linear in the unknown
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coefficients, least squares can be used in the approximation. Details regarding the approximation
can be found in Appendix B.

The normalised sum of squares errors using different polynomial degrees are illustrated in Figure
6.6.
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Figure 6.6: Normalised sum of squares errors using different polynomial degrees. The left and right plots
illustrate the Cq and Ct approximation errors respectively.

The choice of polynomial degree in the approximation of Cq and Ct is a compromise between
the accuracy of the approximation and the complexity of the resulting polynomial. In Figure
6.7 and 6.8 the Cq and Ct approximations using 10th degree polynomials are illustrated. The
surfaces illustrate the polynomial approximations to the lookup tables illustrated by black dots.
The polynomial approximations are illustrated for 4 fixed values of the wind speed vw.
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Figure 6.7: Polynomial approximation of the Cq lookup table. The surface illustrates the polynomial
approximation to the lookup table given as black dots. The approximation is illustrated for four fixed
values of the wind speed vw.
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Figure 6.8: Polynomial approximation of the Ct lookup table. The surface illustrates the polynomial
approximation to the lookup table given as black dots. The approximation is illustrated for four fixed
values of the wind speed vw.

The polynomial approximations illustrated in Figure 6.7 and 6.8 are valid in the wind interval
vw = [3 m/s ; 30 m/s].

Using the polynomial approximation, the aerodynamic torque model is given as

τaero = 1
2ρARvw

2Cq(vw, ωr, β), (6.7)

with Cq(vw, ωr, β) being the polynomial approximation of the Cq lookup table.

Likewise, using the polynomial approximation, the aerodynamic thrust force model is given as

Faero = 1
2ρAvw

2Ct(vw, ωr, β), (6.8)

with Ct(vw, ωr, β) being the polynomial approximation of the Ct lookup table.

Equation (6.7) and (6.8) are now on polynomial form and can be used in the model. In Section
6.4.3 the rotor will be connected to the top of the tower. As the tower top is not stationary, the
effective wind speed experienced by the rotor will be a function of wind speed vw and the fore-aft
velocity of the tower top tvfa,x. The aerodynamic equations will as a result be functions of the
effective wind speed veff

τaero = 1
2ρARveff

2Cq(veff , ωr, β), Faero = 1
2ρAveff

2Ct(veff , ωr, β),

with veff = vw − tvfa,x.

In the above section, a polynomial model of the aerodynamic torque and thrust force has been
developed. The aerodynamic torque τaero and the aerodynamic thrust force Faero are transferred to
the mechanical structure of the wind turbine. In the following chapter, the model of the structural
parts of the wind turbine will be developed.
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6.4 Structural Model

The structural modelling of the wind turbine will be divided into subsystems which will later be
connected. The subsystems include the drive train (Section 6.4.1), the blades (Section 6.4.2) and
the tower (Section 6.4.3).

6.4.1 Drive train

In the following, the model of the drive train is developed. The purpose of the drive train is
to connect the rotor to the generator. In most modern wind turbines the drive train includes a
gearing, to increase the angular velocity of the rotor shaft to be suitable in the electrical generation.

The drive train model is divided into three parts: the rotor, the gear and the generator, as in
[SWBB11]. The rotor connects to the gearbox and the gearbox connects to the generator by
rotating shafts. As the shafts are relatively elastic, the shafts will introduce dynamics. This will
be modelled as a torsional spring. Both the rotor and the generator have an angular momentum.
Each of the parts will be considered as free-body elements. The drive train is modelled in the
nacelle coordinate system N . The complete calculations done in this chapter can be found in
Appendix C.

The rotor is modelled as a rotational disc. The moment of inertia of the disc results in an angular
momentum. The rotation of the disc is damped by a rotational viscous friction proportional to
the angular velocity of the disc. The rotor is driven by the rotor torque τr. Finally the rotor is
connected to the load torque of the gearbox τa1 .

The rotor and generator are illustrated as free body diagrams in Figure 6.9

Jr

τa1

τr

Brωr

Jrω̇r

(a) Rotor

Jg

τg

τa2

Bgωg

Jgω̇g

(b) Generator
,

Figure 6.9: Free body diagrams of the rotor and generator.

where ωr is the angular velocity of the rotor, Br is the rotor friction, Jr is the inertia of the rotor,
τa1 is the torque from the shaft, τr is the torque from the rotor, ωg is the angular velocity of the
generator, Bg is the generator friction, Jg is the inertia of the generator, τa2 is the torque from
the shaft at the other side of the gearbox and τg is the applied torque from the generator.

From Figure 6.9a the model describing the rotor body can be found using D’Alembert’s law,

Jrω̇r = τr −Brωr − τa1 . (6.9)

The generator is driven by the torque from the gearbox. As with the rotor, the generator includes
angular momentum and friction. Additionally the generator introduces a variable load torque τg.
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The model of the generator is likewise given as,

Jgω̇g = τa2 −Bgωg − τg. (6.10)

The gearbox, including the rotational shafts, connects the rotor to the generator as illustrated
in Figure 6.10. The rotor to gearbox and the gearbox to generator shafts are denoted a1 and
a2 respectively. The gearbox gearing ratio is denoted N . The reference angles of the rotor and
generator are denoted θr and θg respectively. It is assumed that the inertia of the gearbox is small
compared to the inertia of the rotor and the generator, and is as a result set to zero.
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ot
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Figure 6.10: The rotor is connected to the generator through two flexible shafts and a gearbox

The gear ratio is given by the ratio of the number of teeth as

N = n2

n1
,

where n1 is the number of teeth on the rotor gear and n2 is the number of teeth on the generator
gear. It should be noted that the choice of gear ratio results in N < 1.

The shafts are flexible with a stiffness Ka1 and Ka2 . Additionally damping in the torsion of the
shafts is included. The torques delivered by the shafts are given as

τa1 = Ka1(θr − θn1) +Ba1(ωr −Nωg), (6.11)

τa2 = Ka2

(
θn1

N
− θg

)
, (6.12)

where θn1 is the angle of the rotor gear, Ka1 is the stiffness coefficient of the rotor shaft, Ka2 is
the stiffness coefficient of the generator shaft and Ba1 is the friction coefficient of the torsion, as
illustrated in Figure 6.10.

The torque produced by the rotor is transferred to the generator through the two shafts and the
gearing. The sum of the torques through the gear equals zero. The angle of the of the gearbox
(θn1 in Figure 6.10) is found by

0 = Ka1(θr − θn1) +Ba1(ωr −Nωg)−
(
Ka2

(
θn1

N
− θg

))
1
N

⇔

θn1 = N(Ka1Nθr +Ka2θg +Ba1N(ωr −Nωg))
Ka1N

2 +Ka2

. (6.13)

In (6.13) the angle of the gearbox θn1 is given as a function of the rotor and generator angles and
the rotor and generator angular velocities.
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The interconnecting torques in (6.11) and (6.12) are substituted into (6.9) and (6.10), which
becomes

Jrω̇r = τr −Brωr − [Ka1(θr − θn1) +Ba1(ωr −Nωg)] , (6.14)

Jgω̇g = Ka2

(
θn1

N
− θg

)
−Bgωg − τg. (6.15)

The angular position of the gear in (6.13) is substituted into (6.14) giving

Jrω̇r = τr −Brωr −
{
Ka1

[
θr −

N(Ka1Nθr +Ka2θg +Ba1N(ωr −Nωg))
Ka1N

2 +Ka2

]
+Ba1(ωr −Nωg)

}
= τr −Brωr −

Ka1Ka2

Ka1N
2 +Ka2

(θr −Nθg)− Ba1Ka1

Ka1N
2 +Ka2

(ωr −Nωg). (6.16)

The angular position of the gear in (6.13) is substituted into (6.15) giving

Jgω̇g = Ka2

(
1
N

(
N(Ka1Nθr +Ka2θg +Ba1N(ωr −Nωg))

Ka1N
2 +Ka2

)
− θg

)
−Bgωg − τg

= Ka1Ka2

Ka1N
2 +Ka2

N(θr −Nθg) + Ba1Ka2

Ka1N
2 +Ka2

N(ωr −Nωg)−Bgωg − τg. (6.17)

Identical constant terms are found in both (6.16) and (6.17). New coefficients describing the
torsional angle, the total torsional spring constant and the total damping constant are introduced
as

θ∆ , θr −Nθg, Ka ,
Ka1Ka2

Ka1N
2 +Ka2

, Ba ,
Ba1Ka2

Ka1N
2 +Ka2

, (6.18)

where θ∆ is the torsional angle, Ka is the total spring constant and Ba is the total friction constant.

By inserting (6.18) into (6.16) and (6.17) the state space equations for the entire drive train
becomes

ω̇r = J−1
r [τr −Brωr −Kaθ∆ −Ba(ωr −Nωg)] ,

ω̇g = J−1
g [KaNθ∆ +BaN(ωr −Nωg)−Bgωg − τg] ,

θ̇∆ = ωr −Nωg.

(6.19)

The resulting states are the torsion of the shafts θ∆, the angular velocity of the rotor ωr and the
angular velocity of the generator ωg. The model in (6.19) is linear, with the connection to the
rotor torque τr being polynomial. Consequently, the model can be used directly, as the model
complies with the required model structure defined in Section 6.1.

In Figure 6.11 the angular velocity of the rotor, the angular velocity of the generator and the shaft
torsion are simulated, using the above simplified model, and compared to the FAST simulator. The
behaviour of the wind and the blade-pitch angle are identical in the two simulations.
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Figure 6.11: Simulation results of rotor speed, generator speed and shaft torsion. The simplified model
is compared to the FAST simulator. The behaviour of the wind and the blade-pitch angle are identical in
both simulations. The simulation illustrates an extreme situation without generator torque.

In the above section, a simplified model of a wind turbine drive train was developed. The drive
train is driven by the torque from the rotor. The rotor torque is partly given by the aerodynamic
model described in Section 6.3 and partly by the blade model developed in the following section.

6.4.2 Blades

In this section the model of the wind turbine blades will be developed. The three blades form the
rotor which is connected to the drive train and is affected by the wind. The connections of the
blade model to the remaining model are illustrated in Figure 6.1 on page 27.

The blades of a wind turbine are relatively flexible and will consequently introduce additional
dynamics to the system. According to [TGKP04] the bending of the blades should be considered
a significant part of the rotor and drive train dynamics, actually being more dominant than the
flexibility of the drive train shaft in relation to the dynamics of the system.

The bending of the blades is separated into motion parallel to the axis of rotation of the rotor and
motion in the plane of rotation, referred to as flapwise and lead-lag bending respectively [JFM09].
Lead-lag motions introduce fluctuations in torque in the drive train. Equivalently, the flapwise
motion introduces translational forces parallel to the axis of rotation. These forces will directly
affect the bending of the wind turbine tower.

The flapwise and lead-lag bendings are illustrated in Figure 6.12.
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(a) Flapwise blade bend-
ing

(b) Lead-lag blade bending

Figure 6.12: Illustration of flapwise and lead-lag bending of the wind turbine blades

To simplify the modelling of the blade bending, the blades will be considered being piecewise
rigid. The motion of the blades is only allowed in hinges between the rigid pieces. This approach
is known as a hinge-spring model. Additionally the motions of the three blades are assumed to be
identical, such that the three blades can be considered as one object, i.e. a rotatory disc modelled
in the hub coordinate system.

Both flapwise and lead-lag bending will be modelled as simple mass, spring and damper systems.
Each blade is considered to be consisting of two rigid pieces connected by a hinge. The position
of the hinge is denoted the break point. As the geometry of the blade is not uniform, the position
of the break point along the blade might not be identical, when considering flapwise and lead-lag
bending.

The simple hinged blade model is illustrated in Figure 6.13.

Hinged break point

Figure 6.13: Hinged blade model. The blade is composed by two rigid pieces, which can bend in the hinge,
denoted the break point.

In the following, the flapwise and lead-lag bending will be modelled using the hinged blade model
principle.

Flapwise blade bending

Flapwise bending of the blades refers to the motion of the blades parallel to the axis of rotation of
the rotor. In the case that the wind turbine is aligned with the wind direction, flapwise bending
will additionally be parallel to the direction of the wind. According to [JFM09] the flapwise
bending is the single factor which induces the largest load on the blades. The flapwise motion of
the blades additionally introduces forces which affect the fore-aft motion of the tower and vice
versa.
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In Figure 6.14 the hinged model of the flapwise bending is illustrated. The massMflap is a fictitious
mass of the blade beyond the break point.

Break point

Mflap

Figure 6.14: Flapwise blade bending as mass, spring and damper system. The blade bends in the break
point.

The hinged blade is affected by the thrust force of the wind. Some of the wind will hit the hinged
part of the blade and some the rigid part. The proportion of the wind force which affects the
hinged part of the blade is denoted ξflap. The remaining wind force will affect the rigid part of the
blade directly.

The load of the hinged spring is determined by the hx displacement of the blade tip. The position
of the blade tip will be denoted hxflap. The velocity of the blade tip is likewise denoted hvflap,x in
the hub coordinate system H and tvflap,x in the tower coordinate system T . It is as mentioned,
assumed that the motions of the three blades are identical.

The states of the system are the flapwise velocity of the tip mass and the flapwise displacement
of the blade tip. The hinged part of the blade and the inner part of the blade are considered as
two rigid bodies. The bodies are illustrated in Figure 6.15

MflapFaeroξflap

Kflap
hxflap

Bflap
hvflap,x

Mflap
tv̇flap,x

(a) Hinged part of the blades

Kflap
hxflap

Faero(1− ξflap)
Fr

(b) Rigid part of the blades
,

Figure 6.15: Model of flapwise blade tip displacement separated into two rigid bodies.

where Kflap is the spring constant of the blade flapping, Bflap is the damping of the blade flapping,
ξflap is the proportion of the wind thrust which hits the hinged part of the blade, Fr is the total
horizontal rotor force along nx delivered by the rotor and Faero is the thrust of the wind field given
in (6.8).

From Figure 6.15a the model of the hinged part of the blades can be found as

Faeroξflap = Kflap
hxflap +Bflap

hvflap,x +Mflap
tv̇flap,x.

From Figure 6.15b the total thrust force from the rotor disc is given as

Fr = Faero(1− ξflap) +Kflap
hxflap. (6.20)
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As the rotor is connected to the tower, the rotor force Fr will be delivered to the tower structure.

The flapwise blade model is in state space form given as

tv̇flap,x = M−1
flap
[
Faeroξflap −Kflap

hxflap −Bflap
hvflap,x

]
,

hẋflap = hvflap,x.
(6.21)

To avoid describing the motion of the blades partly in the hub coordinate system H and partly in
the tower coordinate system T , all coordinates are rewritten with respect to the hub coordinate
system. To do this the top of the tower is used as reference.

Assuming small bending angles of the tower, the transformation of coordinates is given as

txflap = hxflap + txfa,
tvflap,x = hvflap,x + tvfa,x,

(6.22)

where txfa and tvfa,x are the fore-aft displacement and velocity of the tower top in the tower
coordinate system T respectively.

Inserting (6.22) in (6.21) results in the flapwise blade state space equations given as

hv̇flap,x = M−1
flap
[
Faeroξflap −Kflap

hxflap −Bflap
hvflap,x

]
− tv̇fa,x,

hẋflap,x = hvflap,x.
(6.23)

The flapwise blade model introduces two additional states, the flapwise displacement and the
velocity of the blade tip.

The blade flapping model in (6.23) satisfy the required model structure given in Section 6.1. The
force induced by the flapwise motion can be linked to the tower model using Equation (6.20).

In the following, the blade lead-lag bending model will be developed.

Lead-lag blade bending

The angular acceleration or deceleration of the rotor will result in a bending of the blades in
the plane of rotation. As with the flapwise blade bending, the lead-lag blade bending will be
considered equal for each blade. If the angle of the blade tips in the plane of rotation is positive,
the blades are said to be leading the rotor. Likewise the blades are said to be lagging the rotor if
the angle is negative.

The modelling of the blade bending is approximated by representing the rotor as a two inertia
model as in [TGKP04]. The outer part of the blades act as a single inertia, while the inner part of
the blades combined with the hub comprises the inner inertia. The separation point of the inner
and outer part of the blade is the blade break point.

The lead-lag blade bending angle and angular velocity are given in the hub coordinate system
H, and denoted hθLL,x and hωLL,x respectively. The blade tip angular velocity is in the nacelle
coordinate system N denoted nωLL,x.

The two inertia blade lead-lag model is illustrated in Figure 6.16. The inner disc represents the
inertia of the inner rigid part of the blades. The outer disc represents the inertia of the outer
hinged part of the blades. In accordance with the hinged blade model, the two inertias are linked
by a spring and damper system.
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(a) Inner and outer inertias are syn-
chronous

hθLL,x

(b) The blade tips lead the hub

Figure 6.16: The two inertia rotor model. In 6.16a the lead-lag angle is zero. In 6.16b the blade tips
lead the inner part of the rotor, resulting in a positive lead-lag blade bend angle.

The hinged lead-lag blade bending is affected by the aerodynamic torque of the wind. Some of
the aerodynamic torque will affect the hinged part of the blade and some the rigid part. The
proportion of the aerodynamic torque which affects the hinged part of the blade is denoted ξLL.
The remaining aerodynamic torque will affect the inner rigid part of the rotor directly.

In Figure 6.17 the inner and the outer part of the rotor are separated into two bodies.

JLL

KLL
hθLL,x

τaeroξLL

BLL
hωLL,x

JLL
nω̇LL,x

(a) Outer hinged part of the blades

KLL
hθLL,x

τr
τaero(1− ξLL)

(b) Inner rigid part of the blades

Figure 6.17: Free body diagrams of the inner and outer blade parts.

From Figure 6.17 the model equations are given as

τaeroξLL = JLL
nω̇LL,x +BLL

hωLL,x +KLL
hθLL,x,

τr = τaero(1− ξLL) +KLL
hθLL,x. (6.24)

The lead-lag blade bending model is in state space form given as

nω̇LL,x = J−1
LL
[
τaeroξLL −BLL

hωLL,x −KLL
hθLL,x

]
,

hθ̇LL,x = hωLL,x.
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As with the blade flapping model, a change of coordinates are introduced, such that the system
states are given in hub coordinates only. The change of coordinates are given as

nθLL,x = hθLL,x + θr,
nωLL,x = hωLL,x + ωr,

where θr and ωr denotes the rotor angle and angular velocity given in the nacelle coordinate system
respectively.

The resulting state space description is given as
hω̇LL,x = J−1

LL
[
τaeroξLL −BLL

hωLL,x −KLL
hθLL,x

]
− ω̇r,

hθ̇LL,x = hωLL,x.
(6.25)

The lead-lag blade model introduces the lead-lag bending angle hθLL,x and the angular velocity
hωLL,x of the blade tips as additional states.

The blade lead-lag model in (6.25) satisfy the required model structure given in Section 6.1. The
model can directly be combined with the drive-train model given in (6.19) by using (6.24).

In Figure 6.18 the flapwise blade model and the lead-lag blade model are simulated using varying
wind speeds and a constant 15◦ pitch (β) angle and compared to a similar simulation using the
FAST simulator. The FAST simulator considers individual bending of the three wind turbine blades.
To get comparable results, the mean bending of the three blades is used.
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Figure 6.18: Simulation results of blade bending. The result of the FAST simulation is given as the mean
bending of the three blades. Note that the lead-lag angle is multiplied by the rotor radius R to obtain a
lead-lag blade tip displacement, which can be compared to the blade flapwise tip displacement.

From Figure 6.18 it seems that the flapwise and lead-lag simulation results are offset slightly
compared to the FAST simulator. However, the flapwise and lead-lag blade models are considered
sufficiently accurate.
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In the above section, models of the flapwise and lead-lag bending of the blades have been developed.
The models can be connected to the remaining model of the wind turbine as illustrated in Figure
6.1 on Page 27. In the following section, the wind turbine tower will be modelled.

6.4.3 Tower

The wind turbine tower is affected by several different forces; aerodynamic forces from the rotor,
acceleration and deceleration of the drive train and the gravitational force.

In the modelling of the tower it is assumed that the rotor axis is aligned with the wind direction.
In this case the aerodynamic thrust force of the rotor will result in a motion of the tower along
tx, which will be called the fore-aft motion of the tower. The generator torque and mechanical
braking of the rotor will result in a side-side motion of the tower top along ty. As the side-side
motion of the tower is considered insignificant in relation to emergency shutdown, the side-side
effect will not be modelled.

The top of the tower will be modelled as a constant mass. The mass will be able to move along
the tx-axis. The length of the tower is considered constant and the torsion of the tower is not
considered, which results in one degree of freedom.

The dynamics of the tower will be modelled as a rigid lever connected to the ground by a hinge.
The lever and hinge form a spring, mass and damper systems. The tower fore-aft bending along
the tx-axis is illustrated in Figure 6.19

L

tz

Mn

Fg
tθfa,y

tx

ty

vw

,

Figure 6.19: Fore-aft motion of the tower given in the tower coordinate system T

where Fg denotes the gravitational force, Mn is the mass of the tower top, L is the length of the
tower and tθfa,y is the fore-aft angle of the tower bending.

The system illustrated in Figure 6.19 is given as a free-body diagram in Figure 6.20
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Fg sin(tθfa,y)
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,

Figure 6.20: Forces affecting the tower top along the tx-axis (fore-aft) in the tower coordinate system T
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where Kfa is the spring constant of the hinge and Bfa is the damping in the hinge.

From Figure 6.20 the tower system equations are found to

Fr cos(tθfa,y) + Fg sin(tθfa,y) = Kfa
tθfa,yL

−1 +Bfa
tωfa,yL

−1 +Mn
tω̇fa,yL ⇔

tω̇fa,y = (MnL
2)−1 [FrL cos(tθfa,y) + FgL sin(tθfa,y)−Kfa

tθfa,y −Bfa
tωfa,y

]
. (6.26)

The system given in (6.26) is not on polynomial form. The system is simplified by introducing
the following approximations Fr cos(tθfa,y) = Fr and Fg sin(tθfa,y) = Fg

tθfa,y. The approximations
can be introduced under the assumption of small tower bending angles. The resulting state space
description is given as

tω̇fa,y = (MnL
2)−1 [FrL+ FgL

tθfa,y −Kfa
tθfa,y −Bfa

tωfa,y
]
,

tθ̇fa,y = tωfa,y.
(6.27)

The state space description of the tower system given in (6.27) satisfy the required model structure
given in Section 6.1.

In Figure 6.21 the tower bending is simulated using varying wind speeds and a constant 15◦ pitch
angle (β) and compared to a similar simulation in the FAST simulator. The bending is in Figure
6.21 given as displacement of the tower top.
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Figure 6.21: Simulation results of tower bending with constant generator torque and blade-pitch.

In the above section a model of the tower fore-aft bending has been developed. The model can be
connected to the remaining model of the wind turbine as illustrated in Figure 6.1 on Page 27. In
the following section, models of the wind turbine actuators will be developed.

6.5 Actuator Model

The actuators of a typical wind turbine include the blade-pitch, nacelle yaw, rotor brake and the
generator torque. The actuators are controllable and can be used to control power production and
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to keep the wind turbine safe.

In Figure 6.22 the actuators of the wind turbine are illustrated. In individual blade-pitch wind
turbines an individual pitch actuator will be assigned to each blade.

Yaw actuator

Torque actuator

Brake actuator

Pitch actuator

Figure 6.22: Actuators of the wind turbine

As mentioned in Section 2.6, the emergency shutdown procedure will be using blade-pitch only to
stop the rotor. When the emergency shutdown procedure is initialised, the generator torque will be
set to zero and the blade-pitch actuators will be activated. As the brake and yaw mechanisms are
not used during the considered shutdown procedure, they will not be modelled. In the following
sections, the generator torque and blade-pitch are considered, as these are active during emergency
shutdown.

6.5.1 Generator

The generator torque should be set to zero when the emergency shutdown is initiated. According
to the definition of the NREL 5-MW wind turbine, the time constant of the generator torque is
very small compared to the dynamics of the wind turbine in general. Simulations show that the
generator torque can be changed from a given value, during normal operation of the wind turbine,
to zero within < 1 s. As a result, it is chosen not to consider the dynamics of the generator torque.
When the emergency shutdown is initialised, the generator torque will simply be changed from
the current value to zero instantaneously.

6.5.2 Blade-pitch actuator system

In the following a blade-pitch model will be developed.

The blade-pitch angle (β) is during normal operation used in the control of the rotor speed, as
mentioned in Section 2.5. When an emergency shutdown procedure is initialised, a fixed pitch
procedure will be executed such that the blade-pitch angle is taken to β = 90◦.

Due to the inertia of the blade masses and to avoid overloading of the pitch actuators, the blade-
pitch mechanism is rate limited. The blade-pitch rate limit of the NREL 5-MW wind turbine is
given in Table 2.1 to 8◦/s. Although the NREL 5-MW wind turbine implements an individual
blade-pitch mechanism, it is chosen to consider collective blade-pitching only.

To model the static pitching procedure, the pitching system is modelled as an autonomous system.
In Figure 6.23a a static pitching procedure from 0◦ to 90◦ with a pitch rate of 8◦/s is illustrated.
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The objective of the blade-pitch model is to develop a dynamical model which resembles the
procedure illustrated in Figure 6.23a.
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(a) Reference blade-pitch procedure with a pitch rate
of 8◦/s. The pitch angle is initialised at β = 0◦.
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Figure 6.23: Left, blade-pitch reference. Right, dynamic autonomous model of the static blade-pitch
procedure.

The model parameters will be designed such that the model resembles Figure 6.23a. The param-
eters will have no direct physical interpretation.

To resemble Figure 6.23a, the pitch procedure is modelled as a second order system. The linear
system of the second order pitch system is given as[

ω̇β
θ̇β

]
= Apitch

[
ωβ
θβ

]
=
[
−a1,β −a2,β

1 0

] [
ωβ
θβ

]
, (6.28)

where the parameters a1,β and a2,β are unknown.

The objective is to find parameters a1,β and a2,β which result in a system that resembles 6.23a.
As the blade-pitch rate is 8◦/s, the pitch angle should reach β = 45◦ at time 45◦

8◦/s = 5.625 s when
the system is initialised in β = 0◦. This is used as design criterion in the search of parameters.

To design the blade-pitch model the solution of the differential equations in (6.28) is found. As
the system is coupled, the solution is not directly given. In order to reduce the linear system to
an uncoupled system, a state transformation is introduced

P = [v1,v2],

where v denotes the eigenvectors of the linear system (6.28) [Per00, 6].

Using the state transformation the system is decoupled

Ãpitch = P−1ApitchP =
[
f1(a1,β , a2,β) 0

0 f2(a1,β , a2,β)

]
.

The solution of the transformed decoupled system can be found directly, using the general solution
to first order linear differential equations.[

ω̃β(t)
θ̃β(t)

]
=
[
eÃpitch(1,1)t 0

0 eÃpitch(2,2)t

] [
c̃1
c̃2

]
,

with the constants c̃1 = ω̃β(0) and c̃2 = θ̃β(0).
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The solution to the original system can be found using the reverse transformation[
ωβ(t)
θβ(t)

]
= P

[
eÃpitch(1,1)t 0

0 eÃpitch(2,2)t

]
P−1

[
c1
c2

]
.

To obtain a pitch model with 45◦ at time 5.625 s the system θβ(5.625 s) = 45◦ is solved with
respect to a1,β , a2,β . As the equation has two unknowns, a constant a1,β is chosen iteratively to
obtain real poles. The calculations can be found in Appendix D on Page 131.

The resulting system in the original coordinates is found to[
ω̇β
θ̇β

]
=
[
−0.6 −0.0894

1 0

] [
ωβ
θβ

]
. (6.29)

The system in (6.29) is designed such that the angle goes to zero. During an emergency shutdown,
the angle will go to 90◦. To obtain this, an output equation is introduced as

β = −θβ + 90.

A simulation of the blade-pitch model with initial pitch angle β = 0 is illustrated in Figure 6.23b.
The red circle in the plot marks the point θβ(5.625 s) = 45◦ used in the search of the model
parameters.

The modelled behaviour of the actuators during an emergency shutdown is simulated using FAST
and the NREL 5-MW controller. The emergency shutdown is initialised at time 50 s and illustrated
in Figure 6.24. At time 50 s, the pitch procedure developed above is used to take the pitch angle
of the NREL 5-MW wind turbine to 90◦. Simultaneously, the generator torque is set to zero.
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Figure 6.24: The top plots show the horizontal hub height wind speed and the rotor angular velocity.
The bottom plots illustrate the blade-pitch angle and generator torque. The dashed lines indicate the time
of emergency shutdown initialisation. The blade-pitch model is used to take the pitch angle to 90◦. The
generator torque is set to zero when the emergency shutdown is initialised.

6.6 Wind Model

In this section a wind model is described. The wind model will be used to model the disturbance
from the stochastic wind field.
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In relation to the safety of a wind turbine, the stochastic behaviour of the wind field can possi-
bly render the wind turbine unsafe and damage the wind turbine structure. Consequently, the
disturbance from the wind field should be included in the system safety guarantee.

The wind is characterised by its speed, direction and turbulence. The behaviour of the wind
depends on numerous factors, such as height above ground, geographic location and climate. The
motion of the wind is mainly driven by temperature differences. Close to the surface the wind
speed and direction are affected by frictional forces which cause turbulence.

In Figure 6.25 the van der Hoven kinetic wind energy spectrum is illustrated [dH56].
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Figure 6.25: Hoven spectrum [dH56]. The spectrum illustrates a typical kinetic wind energy distribution.
SV(ω) is the power spectral density at the angular frequency ω. The product ωSV(ω) yields a measure of
the kinetic energy of the wind. The separation of the two energy peaks is denoted the energy gab, which
ranges from 10 min to 2 h. The frequencies ω are plotted using a logarithmic scale and given in cycles per
hour.

The Hoven spectrum reveals that the kinetic energy of the wind exhibits two energy peaks sep-
arated by an energy gab. The low and high frequency peaks originate from the geostrophic flow
and the local turbulence respectively. The specific peak frequencies depend on factors such as
geographic position and local terrain. However the spectrum at different sites follow the same
shape [FDB07].

The wind energy gab allows the separation of the wind speed into two components, the mean wind
v̄w and the turbulent wind speed vw,t, given as

vw = v̄w + vw,t, (6.30)

where vw is the wind speed experienced by the wind turbine.

As illustrated in Figure 6.25, turbulence is defined by the wind speeds above the energy frequency
gab. These frequencies span from minutes to seconds. The high frequencies of the turbulence are
essential when considering the aerodynamic loads and accordingly the safety of the wind turbine,
as the turbulent wind speed can change suddenly.

As the mean wind speed changes slowly, it cannot cause sudden changes in the wind speed.
Accordingly, the mean wind speed can be considered piecewise constant. This entails that the
mean wind speed can be considered constant during an emergency shutdown of a few seconds.

In addition to the mean wind and the turbulence, the wind turbine itself introduces additional
wind phenomena such as wind shear and tower shadow [Han08]. As many factors affect the wind
field, the wind field model can be made arbitrarily complex. To simplify the modelling of the
wind, it is chosen to consider a scalar wind field composed from a constant mean wind and a
turbulence component. Additionally the wind shear, tower shadow etc. are neglected. As no
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specific geographical location is considered, the purpose of the wind model will be to model a
typical wind situation.

In the following, a simple turbulence model will be described.

6.6.1 Turbulence model

The turbulence at a specific site is often described stochastically by its power spectrum density.
Generally it is accepted to consider the turbulent wind field as a wide-sense stationary random
process using approximation models such as the Karman, Kaimal or Mann models. These models
approximate the power spectrum densities of the turbulence [FDB07].

The parameters of the spectrum models are highly dependent on the specific location of the wind
turbine and should be experimentally obtained from measurements. The model of the turbulence
spectrum density has to satisfy a range of requirements listed in [IEC06].

To model the turbulence a standard turbulence model will be used, specifically the Karman tur-
bulence filter. This is essentially a simple low-pas filter, given as

Hw,t(s) = σV
KV

(1 + sTV)5/6 ,

where the filter parameters TV, KV and σV represent the turbulence frequency bandwidth, turbu-
lence power and standard deviation of the turbulence respectively. These parameters should be
obtained experimentally on the location of the wind turbine. The turbulence vw,t(t) is generated
by passing white noise w(t) through the filter.

In [FDB07] the filter is approximated by a rational second order filter given as

Hturb(s) ≈ σVKV
0.4sTV + 1

(sTV + 1)(0.25sTV + 1) . (6.31)

Some specifications of a typical wind field are in given in [FDB07] from which the following
parameters can be calculated:

TV = 12.0, KV = 4.2, σV = 2.4.

In Figure 6.26 the frequency response of the Karman filter (6.31) and a simulation of the wind
field given a constant mean wind v̄w = 15 m/s are illustrated. The cut-off frequency of the filter
is just below 1000 cycles/h, which is similar to the Hoven spectrum.
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Figure 6.26: Left the frequency response of the turbulence model is illustrated using a logarithmic scale.
Right a simulation of the wind speed vw is illustrated using a mean wind speed v̄w = 15 m/s and white
driving noise w.
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To be able to use the above wind model with the remaining model subsystems, the frequency
domain model is using MATLAB transformed to state space form. The wind turbulence model in
state space form is given by[

v̇w,t1
v̇w,t2

]
=

[
−0.42 −0.22
0.13 0

] [
vw,t1
vw,t2

]
+
[
2
0

]
w, (6.32)

with vw,t1 and vw,t2 as internal turbulence states and w as the driving white noise. The turbulence
wind component is given by

vw,t = 0.68vw,t1 + 1.14vw,t2. (6.33)

Using the (6.33) the total wind field can be calculated using (6.30).

In this section a simple wind model was developed, based on the Karman wind model. The model
is used to filter the wind disturbance, such that high frequencies are removed.

In the above sections the model parts have been developed. In the following section, the parts are
assembled into a single model description.

6.7 Model Composition

To form the complete model, each model equation must be given by known terms only. Ultimately
the complete model should be given by known constant terms, states and disturbances only. As
the model is autonomous, no input terms will be present.

A complete list of model states and disturbances is given in Table 6.1.

States and disturbances of the model
Description Symbol Unit Type

Drive train
Rotor angular velocity ωr rad/s State
Generator angular velocity ωg rad/s State
Drive train torsion angle θ∆ rad State

Flapwise blade bending
Flapwise blade tip velocity hvflap,x m/s State
Flapwise blade tip displacement hxflap m State

Lead-lag blade bending
Lead-lag blade tip angular velocity hωLL,x rad/s State
Lead-lag blade tip angle hθLL,x rad State

Tower
Tower fore-aft angular velocity tωfa,y rad/s State
Tower fore-aft angle tθfa,y rad State

Blade-pitch actuator system
Blade-pitch angular velocity ωβ deg/s State
Blade-pitch angle θβ deg State

Wind Model
Wind turbulence component 1 vw,t1 m/s State
Wind turbulence component 2 vw,t2 m/s State
Driving turbulence noise w - Disturbance

Table 6.1: States and disturbances of the model
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In Appendix E the unknown terms of the model equations are substituted by known terms and
the equations are manipulated, such that the linear and nonlinear terms appear clearly. The result
of the model composition is given in Equation (6.34). The model is separated into a linear and a
nonlinear part.
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The constant parameters of the model in (6.34) are given in Table 6.2.

Model parameters
Parameter Symbol Value

Aerodynamic Model
Rotor radius R 61.5 m
Rotor area A 11.88e3 m2

Air density ρ 1.22521 kg/m3

Drive train
Gearing N 1/97
Rotor inertia Jr 19.38e6 kg ·m2

Generator inertia Jg 534.12 kg ·m2

Rotor friction Br 150e3 Nm · s
Generator friction Bg 0 Nm · s
Shaft damping Ba 12.15e6 Nm/(rad/s)
Shaft stiffness Ka 15.00e6 Nm/rad

Flapwise blade bending
Flapwise blade mass Mflap 66.00e3 kg
Flapwise stiffness Kflap 55.25e3 N/m
Flapwise damping Bflap 250.00e3 N/(m/s)
Flapwise break point factor ξflap 0.5

Lead-lag blade bending
Lead-lag blade inertia JLL 12.40e6 kg ·m2

Lead-lag stiffness KLL 67.50e6 Nm/rad
Lead-lag damping BLL 300.00e6 Nm/(rad/s)
Lead-lag break point factor ξLL 0.51

Tower
Tower height L 87.6 m
Tower fictitious mass Mn 557.97e3 kg
Tower fore-aft stiffness Kfa 10.13e9 Nm/rad
Tower fore-aft damping Bfa 221.e6 Nm/(rad/s)
Gravitational acceleration g 9.82 m/s2

Table 6.2: Model parameters

The model given in (6.34) has been designed to resemble the NREL 5-MW wind turbine imple-
mented in the FAST wind turbine simulator. To test the validity of the model, it is compared to
a simulation performed in FAST. In the simulation, the stochastic wind speed and autonomous
blade-pitch are replaced by controlled inputs, such that the simulations can be compared. The
blade-pitch angle sequence is chosen such that it resembles a series of emergency shutdowns.

In Figure 6.27 the equations given in (6.34) with parameters given in Table 6.2 are simulated and
compared to a similar simulation in FAST. The wind speed vw and the blade-pitch angle β are
equal in both simulations. The aerodynamic functions τaero(veff , ωr, β) and Faero(veff , ωr, β) are
given by 10th order polynomial approximations as described in Section 6.3.
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Figure 6.27: Comparison of polynomial model simulation and FAST simulation. Both simulations share
the same wind field and blade-pitch angle sequence. The lower 6 plots share a common time axis given
below the bottom plot. It should be noted that the lead-lag blade bending and tower bending have been
converted from angles to translations.

The comparison in Figure 6.27 indicates that the model on polynomial form in general resembles
the NREL 5-MW wind turbine, implemented in FAST, satisfactorily. It seems however that the
lead-lag bending of the blades is either under modelled or that the parameters related to the
lead-lag bending are not correct.

A similar simulation has been performed using a range of polynomial approximations of the aero-
dynamic lookup tables. This is done to examine the required order of the polynomials used in
the approximation. The examination is given in Appendix F. From the examination it is clear
that polynomials must be at least 9th order to resemble the original aerodynamic lookup tables.
To reduce the order of the polynomials, the ranges in with the approximations are valid could be
reduced - e.g. the wind speed range could be limited to vw = [15m/s ; 25m/s].

The complete model has been assembled using the models of the subsystem. The complete model
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description was tested, and found sufficient. It has been shown that a reasonable polynomial
model of a wind turbine can be developed, including polynomial approximations of aerodynamic
properties.

Given a set of initial states, the autonomous pitch procedure will resemble a wind turbine emer-
gency shutdown starting at the chosen initial state. By initiating the model in a given state, the
solution to the model will provide a state trajectory of the emergency shutdown, using the static
blade-pitch procedure. The trajectories of the model states from a given initial state are illustrated
in Figure 6.28.
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Figure 6.28: Model trajectories from a given initial state, indicated by red circles. The pitch angle is
autonomously taken from the initial angle of β = 15◦ to β = 90◦, according to the pitch model. The
wind speed is constant 15 m/s. The simulation was stopped at the time when the rotor speed got below
3 rpm (0.1 rad/s). The lead-lag blade bending and the tower bending have been converted from angles to
translations, in order to simplify the comparison of the states.

Figure 6.28 illustrates the use and purpose of the developed model. Using the model, it is possible
to test if an emergency shutdown triggered at a specific state will produce trajectories which could
damage the wind turbine or not. The shutdown model can be found on the enclosed DVD. A
solution to a system as in (6.34) is in general difficult to obtain analytically. In the following
Chapters, the barrier certificate method, which was shortly introduced in Section 5, will be used
to design a wind turbine safety supervisor system, without the use of explicit solutions to the
model equations.
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7Operation Analysis

In this chapter, practical considerations of the safety supervisor design will be discussed.

To recapitulate, the wind turbine safety supervisor should be able to distinguish when the system
is safe and when it is unsafe. The developed model can be used to find trajectories of an emergency
shutdown given an initial state. By studying the trajectories, it can be found whether a trigger
of the emergency shutdown, from the initial state, is safe or unsafe. As this study cannot be
performed for every initial state a method, which does not require the explicit solution to the
system model, will be used. In Chapter 5 the concept of safety envelopes is introduced. If the
system is in a safety envelope X0, an emergency shutdown, given the static pitch procedure, can
be performed without violating the ultimate load limits of the wind turbine. To avoid that the
wind turbine enters the unsafe set Xu, an emergency shutdown should be triggered no later than
on the border of the safety envelope. To verify if an initial set X0 is safe or not, the barrier
certificate and sum of squares framework can be used [PJP07]. This method handles polynomial
system descriptions and will be used in the following chapters in the search of a safety envelope
in which the wind turbine is safe - denoted the initial set X0. The safety envelope will be a subset
of the safe set. The safety envelope can eventually be implemented in a safety supervisor, which
monitors the system online and initiates an emergency shutdown if the wind turbine is about to
leave the safety envelope. It should be emphasised that the safety envelope will be calculated
given the static pitch procedure and a limited wind disturbance.

To be able to use the safety system in practice, the safety supervisor must be able to run in an
online implementation. As a consequence, the calculations which are to be performed by the safety
supervisor should be simple enough to enable online evaluation. Using the framework of barrier
certificates, the safety evaluation is a matter of evaluating one to a few multivariate polynomials.
The safety of the system is then directly given from the result. In the simple situation of a single
safety envelope, the safety of the system is given by evaluation of a single polynomial.

The design of the safety supervisor system may require considerable calculations. As the calcu-
lations should be performed offline, the calculation time is not critical. However, the calculations
should be possible to do on a modern PC in reasonable time. If the wind turbine system or
the blade-pitch procedure is changed, the safety supervisor should be recalculated. The safety
supervisor is however not dependent on the implementation of the control system. As a result,
the control system can be changed without the need of a new safety supervisor, as mentioned in
Section 1.4.

As the designed safety supervisor will be multivariate and model-based, the supervisor will require
knowledge of the system states. This is in contrast to an univariate supervisor, which can be found
on some wind turbines today. As mentioned in Section 1.4, a wind turbine safety system should
be based only on safe life components, why the safety supervisor is limited to measurements from
safe life sensors. Safe life sensors often include blade-pitch angle, acceleration of tower top, rotor
velocity and strain of blades. Consequently, the safety supervisor is limited to measurements from
the mentioned sensors. To make measurements of states (such as the drive train torsion) available,
the states should either be estimated from the available sensors or an additional safe life sensor
should be installed. The estimation, and validity of such an estimation, is out of the scope of this
project. In the following, it will be assumed that full state information is available and reliable.

For the safety supervisor to be usable in practice, the safety supervisor system should be designed
in accordance with the normal operation of the wind turbine. In the following section, the normal
operation of the NREL 5-MW wind turbine will be examined. The information about the normal
operation of the wind turbine will later be used in the search of a practical usable safety supervisor.

57



7.1 Normal Operation of NREL 5-MW

In this section the normal operation of the NREL 5-MW reference wind turbine is found. The
knowledge of the normal operation region will later be used in the design of a safety supervisor
system. In order for the safety envelope to be usable in practice, it should cover the normal
operation best possible.

To find the normal operation of a given wind turbine, the wind field at the specific site should
be taken into consideration. As no real wind measurements are available it is chosen to generate
a wind field using the stochastic turbulent-wind field generator, TurbSim [NK11]. The generator
is able to output a wind field which can be used in the simulation of the NREL 5-MW reference
wind turbine in FAST and comply with the IEC-61400 standard. A wind field is generated using
an increasing mean wind speed in the range from 5 m/s to the cut-out wind speed of 25 m/s.
In Figure 7.1 the horizontal hub-height wind speed magnitude is illustrated. The generated wind
field spans a time period of nearly 30 hours.
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Figure 7.1: Illustration of the horizontal hub-height wind speed magnitude. The mean wind speed spans
the range from 5 m/s to 25 m/s. The wind field covers a time window of nearly 30 hours.

A simulation is run using the NREL 5-MW wind turbine, the controller described in Section 2.5
and the generated wind field in Figure 7.1. During the simulation of nearly 30 hours, the safety
critical states listed in Table 6.1 are measured.

A sample of the measurements during the 30 hour simulation is given as point clouds in Figure
7.2. It should be noted that the density of a cloud is dependent on the choice of wind field. In
Appendix G the projections of the measurement cloud on every plane are illustrated.
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Figure 7.2: Illustration of three selected point cloud projections from the normal operation simulation.
The left point cloud illustrates the rotor velocity and tower top bending angle. The middle point cloud
illustrates the rotor velocity and flapwise blade tip displacement. The right point cloud illustrates the
tower top bending angle and flapwise blade tip displacement. The red and green circles indicate the mean
and median points of the clouds.

58



From Figure 7.2 (and Figure G.1 in Appendix G) it can be seen that some of the normal operation
clouds seem to be composed by two chunks. This is due to the behaviour of the wind turbine
controller. As described in Section 2.5, the control of the wind turbine is divided into regions. In
region 2 the speed of the rotor is variable, while the speed of the rotor is kept constant in region
3 - which results in a separation of the normal operation clouds into two parts.

The mean, median and standard deviation of the measured states are given in Table 7.1.

Normal operation statistics
State Mean Median Standard deviation
ωr 1.17 rad/s 1.25 rad/s 163.11 · 10−3 rad/s
ωg 113.95 rad/s 121.27 rad/s 15.82 rad/s
θ∆ 13.62 · 10−3 rad 14.9 · 10−3 rad 53.15 · 10−3 rad

hvflap,x ≈ 0 m/s ≈ 0 m/s 194.15 · 10−3 m/s
hxflap 2.27 m 2.01 m 1.46 m
hωLL,x ≈ 0 rad/s ≈ 0 rad/s 901.34 · 10−6 rad/s
hθLL,x 6.74 · 10−3 rad 6.9 · 10−3 rad 3.4206 · 10−3 rad
tωfa,y ≈ 0 rad/s ≈ 0 rad/s 147.82 · 10−6 rad/s
tθfa,y 2.42 · 10−3 rad 2.3 · 10−3 rad 809.47 · 10−6 rad

Table 7.1: Mean, median and standard deviation of the measured states in the normal operation simula-
tion

The normal operation statistics given in Table 7.1 can be used in the search of a safety envelope.
The mean and median measures provide information about the center of the normal operation
region. These can be used to center the safety envelope such that a practical useable envelope
is found. The mean value of the measurement clouds might in some cases be affected by a few
extreme measurements, in which case the median could be a better measure. Additionally the
standard deviation provides information about the scaling of the states, which can be used as
weighting parameters in an optimisation of a safety envelope. The normal operation measurement
data can be found on the enclosed DVD.

In the above section, statistics of the normal operation of the NREL 5-MW wind turbine were
found. This information will later be used in the search of a practical safety envelope. In the
following section, the ultimate load limits of the NREL 5-MW wind turbine will be defined.

7.2 Ultimate Load Limits

As defined in Section 1.2, the ultimate load limits of the wind turbine are a set of constraints
which the system must not violate.

The ultimate load limits of a wind turbine should be based on structural calculations and experi-
ence. As this project is based on the fictitious NREL 5-MW wind turbine, no real ultimate load
limits can be found. To obtain some realistic ultimate load limits of the NREL 5-MW, the limits
will be based on the normal operation simulation described in Section 7.1.

To fit the framework of barrier certificates, the ultimate load limits must be given as semi-algebraic
sets (i.e. polynomial equalities and inequalities) [PJP07]. Consequently, the ultimate load limits
can be defined as polynomial functions of the system states, which are given in Table 6.1. As
no specific constraints can be found from the definition of the NREL 5-MW in [JBMN09], it is
chosen to define constraints on the flapwise blade tip displacement, lead-lag blade bending, tower
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fore-aft top bending, drive train torsion and the rotor angular velocity. This leaves the states of
blade velocities, tower velocity and generator angular velocity unconstrained.

The ultimate load limits are chosen to be based on the 0.1% measurements with the highest
numerical value, denoted x0.1%. Specifically the ultimate load limits are chosen to be 2x0.1%,
inspired by the ultimate load limit criteria typically used on aircrafts [NG00]. The 2x0.1% ultimate
load limits of the tower bending and flapwise blade tip displacement are illustrated in Figure 7.3
- the remaining state histograms with ultimate load limits are given in Appendix H.
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Figure 7.3: Left a histogram of the tower top bending during the normal operation simulation is illustrated.
Right the normal operation point cloud of tower bending and flapwise blade tip displacement is illustrated.
On both plots, the 2x0.1% ultimate load limits are indicated by red dashed lines.

The 2x0.1% ultimate load limits of the selected states, found from the normal operation, are listed
in Table 7.2. The ultimate load limits of the drive train torsion, flapwise blade tip displacement,
lead-lag blade bending and tower top fore-aft bending are considered equal in both directions
(symmetric). This assumption might not be realistic in practice. It is chosen to consider only an
upper ultimate load limit on the rotor angular velocity. As an 2x0.1% ultimate load limit on the
rotor seems extreme, it is chosen to limit this specific state to 1.5x0.1%.

State ultimate load limits
State discription State Limit Value
Rotor angular velocity (1.5x0.1%) ωr γr = 2.025 rad/s [− ; γr]
Generator angular velocity ωg - -
Drive train torsion angle (2x0.1%) θ∆ γ∆ = 441.42 · 10−3 rad [−γ∆ ; γ∆]
Flapwise blade tip velocity hvflap,x - -
Flapwise blade tip disp. (2x0.1%) hxflap γflap = 11.57 m [−γflap ; γflap]
Lead-lag blade tip angular velocity hωLL,x - -
Lead-lag blade tip angle (2x0.1%) hθLL,x γLL = 26.00 · 10−3 rad [−γLL ; γLL]
Tower fore-aft angular velocity tωfa,y - -
Tower fore-aft angle (2x0.1%) tθfa,y γfa = 9.54 · 10−3 rad [−γfa ; γfa]

Table 7.2: Ultimate load limits of the system states

The ultimate load limits define the boundary between the safe set Xs and the unsafe set Xu. The
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safe set is defined by the ultimate load limits as

Xs =


x ∈ Rn

ωr ≤ γr,

|θ∆| ≤ γ∆,

|hxflap| ≤ γflap,

|hθLL,x| ≤ γLL,

|tθfa,y| ≤ γfa


.

The complement Xu = Rn \Xs forms the unsafe set. As the design of the safety supervisor system
will be based on the system model, any model limitations should either be included in the unsafe
set or be excluded from the state space in consideration (this will be done is Section 10.2).

In the above section, fictitious ultimate load limits of the NREL 5-MW wind turbine were defined.
The limits define the safe set and will be used in the search of a safety envelope. In the following
chapter the concept of barrier certificates is introduced, along with mathematical tools used in
the barrier certificate framework.
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8Safe Operation Envelope

In this chapter the concepts of safety envelopes, barrier certificates and the methods which will
be used in the optimisation of the safety envelopes are introduced. In the first section the concept
of safety envelopes and barrier certificates are introduced using the familiar concept of linear
Lyapunov functions and invariant sets. Subsequently a short survey of safety envelope search
methods is given. Finally, some safety envelope optimization criteria are discussed. The methods
are specified in detail in Chapter 9.

In the following, the concept of safety envelopes and barrier certificates are introduced using a
simple linear example.

8.1 Concept of Safety Envelopes

If a system is initialised inside a safety envelope, the system is guaranteed not to evolve to some
unsafe region of the state space. In the specific case of wind turbine emergency shutdowns, the
envelope should guarantee that the wind turbine trajectory does not violate the ultimate load
limits of the wind turbine, given an emergency shutdown initialised within the envelope. A similar
concept of safety envelopes is used on aircrafts in order to ensure that the aircraft does not evolve
to an unsafe region, which could damage the aircraft.

The wind turbine model is given by a set of polynomial differential equations on the form

ẋ(t) = f(x(t),d(t)). (8.1)

Let φ(t,x0,d(t)) denote the solution of equation (8.1) from an initial state x0 given some distur-
bance d(t) and the reachable map ψ(t,X0,D) = {φ(t,x0,d(t)) | x0 ∈ X0,d(t) ∈ D} denote the set-
valued solution from all initial states. The total system is a 5-tuple consisting of (f ,X ,D,X0,Xu),
where f is the vector field in (8.1), X is the state space, D is the disturbance set, X0 is the initial
set and Xu is the unsafe set provided in Section 7.2.

The concept of the safety envelope is illustrated in Figure 8.1. All shutdown trajectories initialised
in X0 cannot evolve to some state in the unsafe set Xu given some disturbance d(t) in a bounded
set D.

Xn

φ(t,x0,d(t))Xu

X0
x0

Xs

ψ(t,X0,D)

Figure 8.1: The unsafe set Xu is marked in grey, the normal operation Xn in green, the initial set X0 in
blue, the safe set Xs in white and the reachable set ψ(t,X0,D) in red. The reachable set should be separate
from the unsafe set. An example trajectory is given as a black line initialised in x0.

The safety of a system is defined in Definition 3.
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Definition 3 (Safe system): The system (f ,X ,D,X0,Xu) is defined as being safe, if all trajec-
tories initialised in a set X0 ⊆ Xs stays within the safe set (ψ(t,X0,D) ⊆ Xs, ∀t ≥ 0).

The initial set X0 in Definition 3 forms a safety envelope. If a set X0 can be constructed, which
guarantees the safety of the wind turbine, the boundary of such a set can be used as a shut-
down criterion (recall that the safety envelope is found given an initialisation of the wind turbine
emergency shutdown).

The method of barrier certificates can be used to verify if a given initial set is a safety envelope,
without the need of calculating system trajectories. A barrier certificate is a function of state,
satisfying a range of inequalities on the function itself and its Lie derivative along the flow of the
system. The zero level of the barrier certificate separates the unsafe set from every trajectory
initialised inside the zero level set. If a barrier certificate can be found given an initial set X0,
then this initial set is safe and will be denoted a safety envelope [PJP07].

The objective of finding the largest possible safety envelope (denoted X0,opt) of the system will not
be pursued. Instead it is chosen to search for safety envelopes with bounded complexity. A safety
envelope with some bounded complexity may not be unique. Consequently, the safety envelope
should be chosen given some criterion, such as the safety envelope with the maximum volume,

max vol X0 s.t. ψ(t,X0,D) ⊆ Xs. (8.2)

Optimization criteria related to emergency shutdowns of wind turbines are discussed in Section
8.3.

In the following, a simple example of a barrier certificate is given using the familiar concept of
Lyapunov functions. The example is based on the Lyapunov equation in the search of a Lyapunov
function.

Example 1 (Tower safety envelope): An example of safety envelope construction using a
Lyapunov function will be given. A sub-optimal solution to (8.2) will be found from an quadratic
Lyapunov function, making X0 ellipse shaped. In the example a simplified version of the tower
top fore-aft bending is considered. The ultimate load limit of the tower top bending used in the
example is |tθfa,y| ≤ γfa = 4.77 · 10−3 rad.

The tower model is in (6.27) given as

tω̇fa,y = (MnL
2)−1 [FrL+ FgL

tθfa,y −Kfa
tθfa,y −Bfa

tωfa,y
]
,

tθ̇fa,y = tωfa,y.

The nonlinear external term Fr will be neglected, such that the system becomes linear,[
tω̇fa,y
tθ̇fa,y

]
=
[
− Bfa
MnL2

FgL−Kfa
MnL2

1 0

][
tωfa,y
tθfa,y

]
.

A Lyapunov function V (x) of the tower system can be found using the Lyapunov equation

PA + ATP = −Q. (8.3)

Solving Equation (8.3) for P given some positive definite matrix Q, a Lyapunov function can be
found as V (x) = xTPx, with the directional derivative of V (x) given as ∇V f(x) = xT(PA +
ATP)x.

Invariant sets can be derived from the Lyapunov function level sets. Given a Lyapunov function
V (x) for the system, the set Ω = {(tωfa,y,

tθfa,y) | V (x) ≤ a} is invariant if ∇V f(x) ≤ 0 in Ω

63



[Kha02]. As the Lyapunov function found using the Lyapunov equation is quadratic, the Lyapunov
conditions hold globally and every level set of V (x) is an invariant set.

Using MATLAB to determine the Lyapunov function for Q = diag(500, 1) gives

V (x) = 2055tωfa,y
2 + 4866tθfa,y

2 + 211tωfa,y
tθfa,y,

∇V f(x) = −tωfa,y
2 − 500tθfa,y

2
.

The invariant level sets of the Lyapunov function can be used as safety envelopes. If the system is
initialised within a given level set of V (x), it will never be able to evolve to some state outside the
level set. To obtain a safety envelope, the level set must separate the initial set from the unsafe
set. This is obtained if the level set is in Xs. To visualise it, a function is defined as

Bfa(x) = V (x)− a.

Figure 8.2 illustrates Bfa(x) using different values of a. This can be seen as lowering the Lyapunov
function parabola in the safe set Xs. When the parabola is lowered, the zero level set generates a
range of invariant ellipses.
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Figure 8.2: Left the Lyapunov function parabola is lowered in the safe set. A zero level set is illustrated
in blue. Right a range of zero level sets are illustrated. The vector field of the tower system is illustrated
by arrows. In both plots the unsafe set Xu is given in grey.

From Figure 8.2 it is clear that the size of the zero level set of Bfa(x) depends on how much the
parabola is lowered. The unsafe set needs to be in the exterior of the zero level set. The value of
a for which the zero level set of Bfa(x) = V (x) − a is maximised given the choice of Q, is found
by solving Bfa(tωfa,y, γfa) = a and choosing a such that the resulting second order equation yields
a single solution. In this way a is found to a = 0.11.

The maximum zero level ellipse of Bfa(x), denoted the Barrier is illustrated in Figure 8.3. Any
initial set X0 which is in the interior of the barrier zero level ellipse is a safety envelope.

64



 

 

Trajectory

Barrier
Safe

Unsafe

Start

t
ω

fa
,
y

[r
ad

/s
]

t
θfa,y [rad] ×10−3

−8 −6 −4 −2 0 2 4 6 8
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Figure 8.3: Zero crossing of the barrier certificate, using the value of a which maximises the ellipse, is
given in blue. The unsafe set Xu is given in grey. An arbitrary trajectory of the system initialised within
the safety envelope is given in black. The green and red dots show simulated safe and unsafe initial states
respectively.

In Figure 8.3, the found safety envelope is compared to simulated safe and unsafe initial states.
It should be noted that the orientation and shape of the ellipse are chosen arbitrarily through the
choice of Q.

The barrier Bfa(x) has certain properties. As indicated in Figure 8.2, Bfa(x) is positive in the
unsafe set Xu, non-positive in the interior of the ellipse and the directional derivative is non-
positive.

The above example shows how a safety envelope can be designed using the Lyapunov equation
in the case of a linear system description, without the need of system solutions. As the wind
turbine model given in (6.34) is not on linear form, this Lyapunov equation approach cannot be
used. In Chapter 9, the sum of squares framework is introduced. The framework allows a similar
search of a barrier certificate when the vector field of the system is defined by polynomials and
the sets (initial set X0, unsafe set Xu, state space X and disturbance set D) are semi-algebraic.
The method handles uncertain disturbance input, which can be used to include the stochastic
behaviour of the wind.

In the following section the methods, which will be used in the search of barrier certificates given
a polynomial system description, are briefly introduced.

8.2 Safety Envelope Design Approach

This section introduces in short the methods which are used in the search of a safety envelope.
In order to formulate a safety envelope search, which is computationally tractable, a number of
methods are used.

Figure 8.4 illustrates the methods which will be used in the search of a safety envelope. The
methods in white boxes are in [PJP07] used to formulate a safety verification of a given initial set
X0. The methods in grey boxes are introduced in [SPW12] as a practical extension to the safety
verification (in order to reduce the problem size).
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Safety envelope

Barrier cert. Compositional barrier cert.

Positivstellensatz
Sum of squares program (SOSP)
Semidefinite programming (SDP)

Decomposition

Figure 8.4: Methods which will be used in the search of a safety envelope. The top layer is the safety en-
velope itself. The problem of safety envelope design is propagated through the layers to form a semidefinite
program, which can be solved on a PC.

The concept of barrier certificates and the relation to safety envelopes were introduced in Example
1. This concept is formulated in [Pra06] and is introduced in the context of safety verification
with disturbances in [PJP07]. A polynomial barrier certificate that separates the initial set X0
from the unsafe set Xu should satisfy a range of conditions which can be stated as polynomial
equalities and inequalities. These conditions can be transformed using the Positivstellensatz.

The Positivstellensatz states a relationship between a semi-algebraic set, and the existence of a
certain polynomial [Las10]. The conditions of the barrier certificate can be satisfied if a solution
to such a polynomial identity can be found. To examine if such a polynomial identity exists, the
sum of squares (SOS) framework can be used [Par03].

In [Par03] it is shown how a sum of squares decomposition can be computed using semidefinite pro-
gramming (SDP). Consequently, the search of a sum of squares decomposition becomes tractable.
The main result shows that the sum of squares procedure allows the search of solutions to the
Positivstellensatz equation, with bounded complexity.

In [SPW12] the safety envelope verification is divided into smaller problems, which can be solved
separately. Using this compositional method, the computational requirements of the calculations
can be reduced. To obtain a solution which is valid for the complete system, the dual decomposition
method is introduced.

To sum up, the validity of a barrier certificate can be examined using a polynomial identity from
the Positivstellensatz. The existence of a solution to the Positivstellensatz identity can be cast
as a sum of squares decomposition problem, which in turn can be transformed to a semidefinite
program. A feasible solution to a semidefinite program can be searched for using existing SDP
software.

In [PJP07] the sum of squares framework and barrier certificates are used to verify the safety of
a given system. In the verification it is assumed that the initial set and the unsafe set are known.
This verification produces an SDP feasibility problem. In the case of wind turbine safety supervisor
design, it is desired to maximise the size of the safety envelope in order to keep the wind turbine
operational without unnecessary emergency shutdowns. The safety validation problem should be
changed to a safety envelope optimisation and validation problem. As an SDP can be formulated as
an optimization problem with constraints, it is possible to include a safety envelope optimisation
criterion in the SDP directly. This enables an optimization of the size of the envelope which
satisfies the required conditions of the original safety validation problem. The SDP formalism is
in general limited to linear optimization criteria.

In the following section possible optimization criteria, which can be used in the safety envelope
search and which respect the limits of the SDP formulation, are examined. The criteria are chosen
such that they make sense in the context of wind turbines.
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8.3 Safety Envelope Optimisation Criteria

As mentioned in the above section, the method used to find barrier certificates is based on the
concept of sum of squares and the use of SDP. Consequently, the search of a safety envelope should
fit this framework.

Recall from Section 8.1, that the search of a safety envelope X0 has been limited to a search of a
subset of the optimal safety envelope X0,opt. The safety envelope is given as

X0 ⊆ X0,opt ⊆ Xs.

In Figure 8.5 a range of different safety envelopes X0 are placed inside a fictitious optimal safety
envelope X0,opt. The shapes of the safety envelopes X0 are limited to circles.

Xu

Xu

Xs

X0,opt

X0

Figure 8.5: A range of different safety envelopes X0 marked in blue are placed inside the optimal safety
envelope X0,opt marked in black. The grey regions symbolise the unsafe set, Xu.

As illustrated in Figure 8.5 the safety envelope X0, in the optimal safety envelope X0,opt, given
a specific shape of the safety envelope, is not unique. In order to select the safety envelope, a
criterion is required. Such an optimisation criterion could be to select the safety envelope X0 with
the largest volume in X0,opt.

For the safety envelope to be useful, the practical problem must be taken into consideration. The
main objective in the design of the safety envelope is to ensure safety of the wind turbine, while
maintaining its operational uptime. The safety envelope should accordingly be designed with the
objective of keeping the wind turbine operational.

To design a safety envelope which minimises the possibility of the system trajectory leaving it,
the safety envelope should be designed with respect to the normal operation set Xn of the wind
turbine.

In Figure 8.6 a fictitious sampled normal operation set Xn is illustrated. The safety envelope X0
is constructed with respect to the normal operation and the shape of the envelope is limited to
the shape of an ellipse.
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Xu

Xu

Xs

X0,opt

X0
Xn

Figure 8.6: The green circles symbolise measurements from the normal operation. The normal operation
outline is given in red, Xn. The safety envelope X0 marked in blue, is placed inside the optimal safety
envelope X0,opt marked in black. The grey regions symbolise the unsafe set, Xu.

In Figure 8.6 the safety envelope covers the normal operation of the wind turbine. Using this
choice of safety envelope, the possibility of the system trajectory leaving the safety envelope might
be lower compared to the biggest volume envelope, even though the volume of the ellipse is smaller.

In Section 7.1 the normal operation of the NREL 5-MW wind turbine was found using a collective
pitch controller and a varying wind field. Information from the normal operation such as mean
value and orientation of the measurement point clouds can be used to choose a practical useable
shape of the safety envelope.

8.3.1 Safety envelope optimisation formulation

As briefly introduced in Section 8.2, the search of a safety envelope is formulated as a semidefinite
program. A standard SDP includes an optimisation of a linear cost function over symmetric
positive semidefinite matrix variables.

The problem of minimising a linear function of variables x ∈ Rn is given as

min
x

cTx

s.t. F(x) � 0,

where F(x) � 0 is a matrix inequality that defines a convex feasible set [BV04]. Consequently, the
safety envelope is restricted to be an LMI representable set with a linear optimisation criterion.
In the following, optimisation criteria of a hyperellipsoid are considered.

8.3.2 Hyperellipsoid

The hyperellipsoid is a simple geometric shape. The safety envelope X0 defined by a hyperellipsoid
is given as

X0 = {x ∈ Rn|(x− c)TE(x− c) ≤ 1 , E = ET � 0}, (8.4)

where x is the vector of variables, c is the vector defining the center of the hyperellipsoid and E
is some positive symmetric matrix.

The hyperellipsoid allows the centre, scaling, orientation and shape as degrees of freedom. The
scaling, orientation and shape of the hyperellipsoid are controlled by E in (8.4).
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If E is limited to be diagonal E = diag(a1,1, a2,2, ..., an,n) the hyperellipsoid axes will coincide
with the Cartesian axes. An ellipse given by a diagonal E is illustrated in Figure 8.7a. An ellipse
with off-diagonal elements different from zero in E can have an arbitrary orientation, which is
illustrated in Figure 8.7b.

X0

(a) Locked orientation

X0

(b) Arbitrary orientation

Figure 8.7: The orientation of the ellipse is given by E. Left the ellipse is given by diagonal E. Right
the ellipse is given by E with off-diagonal elements different from zero.

8.3.3 Hyperellipsoid optimisation criteria

To obtain a safety envelope which best possible covers the normal operation, the safety envelope
should be maximised according to some suitable measure.

In Figure 8.8 fictitious safety envelopes are respectively maximised according to the volume and
the minimum distance to the normal operation.

X0

Xn

(a) Volume maximisation

X0

Xn

(b) Minimal distance maximisation

Figure 8.8: Left the safety envelope defined by an ellipse is optimised with respect to volume. Right the
objective in the optimisation is to maximise the minimal distance to the normal operation set, which is
given by an arrow. The normal operation is given as green circles symbolising measurement points. The
normal operation outline is marked in red, Xn. The ellipse safety envelope X0 is given in blue.

The disadvantage of maximising the volume of the safety envelope is that the distance to the
normal operation might be small in some regions, or not even cover the normal operation. To
minimise the probability of leaving the safety envelope, the measure of the minimal distance from
the safety envelope to the normal operation could be used as optimisation criterion.

As mentioned, the optimisation of the safety envelope must be consistent with the SDP formula-
tion. This limits the optimisation to be linear in the decision variables.
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Maximum volume of hyperellipsoid

The volume of a hyperellipsoid defined as in (8.4) is given by the determinant of E,

Velip ∝
1√

det E
.

The volume of the hyperellipsoid can be maximised by maximising det E−1 [Pan10]. This is
a nonlinear optimisation problem. In [BV04] the optimisation problem is changed to become
convex. This is done by introducing log det E−1. The resulting optimisation problem becomes

max log det E−1

s.t. E � 0,
X0(E) is safe,

where both the objective and constraint are convex.

Both in the case of E having non zero off-diagonal elements and E being diagonal, the volume
maximization is not linear. However as the optimisation is convex, it can in certain special cases
be transformed to be linear by introducing additional constraints to the SPD problem as given in
[BV04].

The above given optimisation criterion can be used to maximise the volume of the safety envelope
when given as a hyperellipsoid. The optimisation optimises the true volume of the hyperellipsoid,
but is only tractable in special cases.

Maximum sum of hyperellipsoid semi-principal axes

To relax the problem of finding the maximum volume of the safety envelope hyperellipsoid, the
maximum sum of magnitudes of semi-principal axes of the hyperellipsoid can be considered.

The true volume of an hyperellipsoid is proportional to the magnitudes of the semi-principal axes
as

Velip ∝
n∏
i=1

σi,

where σi denotes the magnitudes of the semi-principal axes of the n dimensional hyperellipsoid.
The eigenvalues of E−1 are the squares of the magnitudes of the semi-principal axes.

A maximisation of the sum of magnitudes of the semi-principal axes results in a measure which re-
sembles the volume of the hyperellipsoid. In Figure 8.9 two ellipses with equal sums of magnitudes
of the semi-principal axes are illustrated.

X0 X0

Figure 8.9: The semi-principal axes are marked by red lines. The sums of magnitudes of the semi-
principal axes of the ellipses are equal. The volume of the left ellipse is however approximately 1.5 times
the volume of the right ellipse.
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In the special case of a real square matrix, the sum of eigenvalues equals the sum of diagonals of
the matrix. As E−1 is square with real elements, the relationship between sum of eigenvalues and
sum of diagonal elements can be exploited in the optimisation.

The eigenvalues of E−1 are denoted λi and the sum of diagonal elements by the trace of the matrix.
The sum of eigenvalues equal the sum of diagonal elements

n∑
i=1

λi = Tr E−1.

As the trace of the matrix E−1 is simply the sum of diagonals, this can easily be calculated. The
maximisation of the semi-principal axes can in the SDP formulism be given as

min Tr E
s.t. E � 0,
X0(E) is safe,

where the optimisation problem is linear in the objective.

The above objective of maximising the sum of magnitudes of the semi-principal axes is not iden-
tical to the objective of volume maximisation. However the trace of E does provide a similar
measure and can directly be used in the SDP. In the following, an optimisation criterion which
uses information from the normal operation is discussed.

Locked orientation and shape

In the following, the objective of maximising the minimal distance to the normal set is discussed,
as illustrated in Figure 8.8b. As the true maximisation of the minimal distance to the normal
operation set is difficult to formulate a similar measure will be used.

The idea of the following is to lock the orientation and shape of the safety envelope hyperellipsoid.
The orientation is locked according to the shape of the normal operation.

The general shape of the normal operation can be found by calculating the covariance matrix
of the measurements. The covariance matrix provides information about the orientation of the
measurement point cloud. Choosing the hyperellipsoid matrix to be equal to the inverse of the
covariance matrix locks the orientation and shape of the safety envelope.

The hyperellipsoid with orientation and shape defined by the normal operation covariance matrix
is given by

X0 = {x ∈ Rn|(x− c)TB(x− c) < d , d ≥ 0}, (8.5)

with B being the inverse of the covariance matrix of the normal operation measurements and c
being a measure of the center of the measurements, such as the mean or median.

Figure 8.10 illustrates two examples of normal operation locked ellipses. By adjusting d in (8.5),
different level curves of (8.5) can be found.
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Figure 8.10: Safety envelopes X0 are marked in blue. The normal operation point cloud projections onto
the hωLL,x,hvflap,x and tθfa,y,hxflap planes are illustrated by black crosses. The medians of the point clouds
are given as green dots. A range of ellipses are found using different values of d. The axes are given
without units.

As illustrated in Figure 8.10 the orientation and shape of the ellipse can be locked using the
covariance matrix of the normal operation. The size of the ellipse can be maximised by adjusting
d in (8.5). Defined as an SDP,

max d
s.t. d ≥ 0,
X0(d) is safe.

The above optimisation objective is not equal to a maximisation of the minimal distance to the
normal operation, as illustrated in Figure 8.8b. However, the optimisation provides a similar
measure and can directly be formulated as an SDP, as the optimisation is linear. The covariance
matrix of the normal operation measurement data can be found on the enclosed DVD.

8.3.4 Composite safety envelope

In the above, two different optimisation criteria have been discussed, respectively optimisation
of the sum of magnitudes of semi-principal axes and the optimisation of the ellipse with locked
orientation and shape. Several additional optimisation criteria could be formulated. Further the
center of the hyperellipsoids could be chosen according to a range of criteria. As every envelope
guarantees the safety of the system, independently of the optimisation criterion, the envelopes can
be combined into one collective envelope, denoted X0,comp.

In Figure 8.11 fictitious envelopes found using respectively trace and locked orientation in the
optimisations are combined into one collective envelope.
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X0,comp

Xn

Figure 8.11: Composed safety envelope X0,comp in solid blue. The safety envelope is composed by two
ellipses. The normal operation measurements are given as green dots and bounded by the normal operation
set in red.

The system is safe as long as it is within at least one of the safety envelopes, as given in

X0,comp =
⋃
i

X0,i,

where X0,i ⊆ X0,opt ⊆ Xs. If the state is in X0,comp then the system is safe.

The fact that the safety envelopes can be combined is useful in practice. Assume that it is found
that the wind turbine is often shut down due to the states leaving the safety envelope in a given
region of the state space. To reduce the frequency of the emergency shutdowns, a search of safety
envelope in the specific region could be performed and the resulting envelope could be included in
the combined envelope.

As mentioned in Section 2.5, the operational control of the wind turbine in power production mode
is divided into regions given roughly by the wind speed. This is evident from the normal operation
clouds given in Figure 7.2 and Figure G.1 in Appendix G. In order to cover normal operation, it
might be beneficial or even necessary to design a safety envelope specifically to each region of the
operational controller.

In Figure 8.12 the normal operation cloud of the rotor angular velocity and the tower top bending
is separated into the measurements obtained in controller region 2 and region 3 respectively.
Two ellipses are constructed according to the shape of the region 2 and region 3 measurements.
Additionally a fictitious optimal safety envelope is illustrated.
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Figure 8.12: Composed safety envelope designed according to the regions of the operational controller.
The safety envelopes are given in blue. The optimal safety envelope X0,opt is given in black. The means of
the normal operation in controller region 2 and region 3 are given by a green square and dot respectively.
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In the case illustrated in Figure 8.12 it is not possible to cover the normal operation using a single
ellipse. By using ellipses designed specifically to each controller operation region, the normal
operation is covered.

In this section some optimisation criteria of hyperellipsoids were introduced. The maximisations
of volume and minimum distance to the normal operation set were relaxed to similar metrics,
which can be formulated in an SDP.

The concept of safety envelopes, mathematical tools used in the search of a safety envelope and
safety envelope optimisation criteria have been introduced. In the following chapter the search
of ellipse shaped safety envelopes given the optimisation criteria found in this chapter, will be
formulated.
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9Envelope Construction

In this chapter two different barrier certificates formulations are given. A safety envelope search is
formulated using a convex barrier certificate description, the Positivstellensatz and SDP. Finally
the computation of the resulting SDP is discussed.

9.1 Barrier Certificate Formulations

In this section two different barrier certificate formulations are given.

The barrier certificate guarantees that a trajectory initialised in the initial set X0 cannot evolve
to the unsafe set Xu, given a piecewise continuous and bounded disturbance d ∈ D. The barrier
certificate formulation, which will be denoted the "strict barrier certificate", is given in Theorem
1.

Theorem 1 [PJP04]: Given a system (f ,X ,D,X0,Xu), let B(x) be a differentiable scalar func-
tion satisfying

B(x) ≤ 0, ∀x ∈ X0, (9.1)
B(x) > 0, ∀x ∈ Xu and (9.2)

∇B(x)f(x,d) < 0, ∀(x,d) ∈ X ×D s.t. B(x) = 0. (9.3)

If such a function exists the system is safe.

In the above formulation the derivative along the flow of the system should be negative only on the
zero level set of the barrier certificate. In this formulation of the barrier certificate, a trajectory
initialised in the initial set X0 cannot cross the zero level set of the barrier certificate.

As will later be evident, the search of a barrier certificate satisfying the strict barrier certificate
formulation in (9.3) is not convex. In the following a convex barrier certificate formulation is
given.

In the following barrier certificate formulation the derivative constraint is changed to be negative
everywhere in X ×D. As a result the formulation becomes convex. The convex barrier certificate
formulation, which will be denoted the "weak barrier certificate", is given in Theorem 2.

Theorem 2 [PJP04]: Given a system (f ,X ,D,X0,Xu), let B(x) be a differentiable scalar func-
tion satisfying

B(x) ≤ 0, ∀x ∈ X0,

B(x) > 0, ∀x ∈ Xu and
∇B(x)f(x,d) ≤ 0, ∀(x,d) ∈ X ×D. (9.4)

If such a function exists the system is safe.

In the above formulation of the barrier certificate, the derivate along the flow of the system should
be non-positive everywhere in X ×D. As a result, every level set of the barrier certificate becomes
an invariant set. In this formulation the barrier certificate is somewhat similar to a Lyapunov
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function, as demonstrated in Example 1. As the derivative constraint in (9.4) is clearly stricter
than in (9.3), the weak barrier certificate formulation becomes conservative.

In Figure 9.1, the barrier certificate formulations in Theorem 1 (left) and Theorem 2 (right) are
illustrated. The arrows indicate the derivative of the barrier certificates along the flow of the
system with disturbances.

Xu Xs

X0

Xu

Xs

X0

Figure 9.1: Barrier certificate examples with arrows indicating the derivative ∇B(x)f(x,d). Left the
derivative of the barrier certificate along the flow is non-positive on B = 0. Right the derivative of the
barrier certificate along the flow is negative on X .

The constraints of the barrier certificate formulations can all be expressed as checking functions
for negativity and non-negativity on the sets (X0,Xu,X × D). Checking global non-negativity
of a function is in general a computational difficult problem. To relax the problem, the barrier
certificate is limited to the class of multivariate polynomials with the sets being semi-algebraic. By
using the special class of multivariate polynomials, the sums-of-squares polynomials, the problem
of designing positive functions become computationally tractable [Par03]. In the following section
the definition of general polynomials (which was shortly introduced in Section 6.1) and the sum
of squares (SOS) polynomials will be defined.

9.2 Sum of Squares Polynomials

A general polynomial is given as a linear combination of monomials (finite products of variables)

f(x) =
∑
i

cimi, {ci} ⊂ R, {mi} ⊂ M(x),

where ci is constant and mi is from the family of monomials generated by X = {x1, ..., xn}.

The set of all polynomials in variables x will be denoted Rx. The degree of a monomial is defined
as the sum of the exponents. The degree of a polynomial is defined as the maximum degree of its
monomials. The set of all polynomials with degree k will be denoted Rk

x.

A special class of polynomials is the sum of squares (SOS) polynomials. A given polynomial F (x)
is an SOS polynomial if it can be decomposed by a sum of squared polynomials

F (x) =
∑
i

f2
i , fi ∈ R. (9.5)

As the polynomial F (x) can be decomposed by a sum of squared polynomials, it is guaranteed to
be globally nonnegativ, F (x) ≥ 0 ∀x ∈ Rn. An obvious necessary condition of the existence of the
decomposition is that degree k of F (x) is an even number.

The set of all polynomials in variables x which is SOS will be denoted Σx, defined as

Σx =
{
f f =

∑
i f

2
i , fi ∈ Rx

}
.
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It should be noted that the existence of an SOS decomposition of f(x1, ..., xn) is only a sufficient
condition of global nonnegativity. The set of positive polynomials and the set of SOS polynomials
are only equal in special cases. Thus a function might be globally nonnegativ even though an SOS
decomposition does not exist [Par03].

In the following section the search of a polynomial barrier certificate, being positive on semi-
algebraic sets, is cast as a problem of finding a certain type of polynomial - using the Positivstel-
lensatz.

9.3 Positivstellensatz

The Positivstellensatz’ of Stengle and Putinar in the field of real algebraic geometry are key theo-
rems in the construction of a barrier certificate using SOS decomposition. The Positivstellensatz’
enable a transformation of a range of requirements as e.g. in Theorem 1, to a dual problem.
Feasibility of the dual problem implies feasibility or infeasibility of the primal problem, depending
on the choice of Positivstellensatz [Lal11].

To be able to utilize the Positivstellensatz’ the concepts of monoids, cones and ideals have to
be defined. Monoids, cones and ideals can be used to formulate inequalities, inequations and
equalities of the primal problem.

Definition 4 (Multiplicative monoid): Given G = {g1, ..., gt} ∈ R, the multiplicative monoid
generated by the family G is defined by

M(g1, .., gt) =
{ t∏
i=1

glii

∣∣∣∣ li ∈ Z≥0

}
.

The empty product is defined to beM(∅) = 1.

Given {g1, g2, g3} ∈ R the multiplicative monoid is given as

M(g1, g2, g3) =
{
gk1

1 gk2
2 gk3

3
∣∣k1, k2, k3 ∈ Z≥0

}
.

Definition 5 (Preordering): Given F = {f1, ..., fr} ∈ R the preordering P generated by the
family F is a convex cone defined as

P(f1, .., fr) =
{ l∑
i=0

sibi

∣∣∣∣ l ∈ Z+, si ∈ Σ, bi ∈M(f1, ..., fr)
}
. (9.6)

A polynomial f in the preordering generated by two polynomials {f1, f2} could be

P(f1, f2) 3 f = s0 + s1f1 + s2f2 + s3f1f2 + s4f
5
1 + s5f

5
2 . (9.7)

The definition of the preordering (9.6) enables f ∈ P(f1, f2) to be an infinite sum of products,
since an infinite combination of multiplicative monoids exists. It is, however, possible to reduce
the unique expressions of the preordering to 2r terms [Zac03]. The preordering in Example (9.7)
can be reduced to

f = s0 + s1f1 + s2f2 + s3f1f2 + s4f
2
1 f

2
1 f1 + s5f

2
2 f

2
2 f2

= s0 + (s1 + s4f
2
1 f

2
1 )f1 + (s2 + s5f

2
2 f

2
2 )f2 + s3f1f2

= s0 + s′1f1 + s′2f2 + s3f1f2.

It should be noted that the term s0 originates from the empty monoid productM(∅) = 1.
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Definition 6 (Quadratic module): A quadratic module Q generated by {f1, ..., fr} ∈ R is a
convex cone defined by

Q(f1, .., fr) =
{
s0 +

r∑
i=1

sifi

∣∣∣∣ si ∈ Σ
}
. (9.8)

From the definition it can be seen that the quadratic module is a preordering without cross
products. Further it should be noted that the quadratic module is a finite sum of products, in
contrary to the preordering. A polynomial f in the quadratic module generated by two polynomials
{f1, f2} is given as

Q(f1, f2) 3 f = s0 + s1f1 + s2f2.

Definition 7 (Ideal): A polynomial ideal I generated by H = {h1, ..., hu} ∈ R is defined by

I(h1, .., hu) =
{ u∑
k=1

hkfk

∣∣∣∣ fk ∈ R
}
.

The ideal is a finite sum of products. A polynomial h in the ideal generated by the two polynomials
{h1, h2} is given as

I(h1, h2) 3 h = h1f1 + h2f2, f1, f2 ∈ R.

The above definitions enable the introduction of the Positivstellensatz’ theorems of Stengle and
Putinar. The Positivstellensatz’ are used to transform the primal problem of the barrier certificate
search to a dual problem.

Stengle’s Positivstellensatz states a relation between the emptiness of a semi-algebraic set and the
solvability of a given polynomial identity.

Theorem 3 [Ste74]: Given polynomials {f1, ..., fr}, {g1, ..., gt} and {h1, ..., hu} in R, the follow-
ing statements are equivalent:

1. The set

K =

 x ∈ Rn
f1(x) ≥ 0, ..., fr(x) ≥ 0, {f1, ..., fr} ∈ Rx

g1(x) 6= 0, ..., gt(x) 6= 0, {g1, ..., gt} ∈ Rx

h1(x) = 0, ..., hu(x) = 0, {h1, ..., hu} ∈ Rx

 (9.9)

is empty.

2. There exist polynomials g ∈M(g1, ..., gt), f ∈ P(f1, .., fr) and h ∈ I(h1, .., hu) such that

f + g2 + h = 0. (9.10)

Using Stengle’s Positivstellensatz it is possible to change the problem from evaluation of the set
K to a search of a solution to the polynomial in (9.10). If the dual problem is feasible, then the
primal problem is infeasible

f + g2 + h = 0 ⇒ K = ∅. (9.11)

If the set is given by inequality constraints only, they describe a compact set and generate an
Archimedean quadratic module - Putinar’s Positivstellensatz theorem can in these cases be used
to reduce the number of free parameters [Las10]. If some polynomial u(x) from the quadratic
module generated by the inequalities makes {x ∈ Rn|u(x) ≥ 0} compact, the quadratic module
is Archimedean. Considering only basic semi-algebraic sets, Putinar’s Positivstellensatz gives
certificates of positivity of polynomials.
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Theorem 4 [Put93]: Given polynomials {f1, ..., fr} ∈ R, polynomial F (x) ∈ R and the basic
semi-algebraic set

K =
{

x ∈ Rn f1(x) ≥ 0, ..., fr(x) ≥ 0, {f1, ..., fr} ∈ R
}
.

If the quadratic module Q(f1, ..., fr) is Archimedean, then

F (x) > 0, ∀x ∈ K ⇔ F (x) ∈ Q(f1, ..., fr).

Putinar’s Positivstellensatz states that, if a polynomial F (x) ∈ Rx is strictly positive on K then
F (x) ∈ Q(f1, ..., fr). As defined in (9.8), the quadratic module Q is a finite sum of products. As
a consequence, Putinar’s Positivstellensatz can be used when possible to reduce the complexity of
the barrier certificate construction.

A simple example of the usage of the Positivstellensatz is given in Appendix I.

The Positivstellensatz’ of Stengle and Putinar can be used to transform the problem of finding a
barrier certificate (as given in Theorem 1 and 2) over semi-algebraic sets, into a problem of solving
polynomial equations. The search of a solution to the polynomial equations can be formulated as
the existence of a sum of squares decomposition, which will be described in Section 9.5. In Stengle’s
Positivstellensatz the set K which should be empty is formulated. In Putinar’s Positivstellensatz,
the positivity of the barrier certificate over a set can be formulated more directly.

In the following section a tractable SOS decomposition of a polynomial is formulated.

9.4 Sum of Squares Decomposition

A result of [Par03] is that the existence of a sum of squares decomposition as given in (9.5) can be
formulated as an LMI feasibility problem. This allows the search of such a decomposition using
existing SDP algorithms and software. The possibility to search for an SOS decomposition of a
polynomial can be used in many applications, as discussed in [Zac03]. Besides the possibility to
search for a sum of squares decomposition of a given polynomial, the SDP formulation also allows
a construction of a sum of squares decomposable polynomial - given some free parameters of the
polynomial.

The search of a sum of squares decomposition is given in Theorem 5.

Theorem 5 [Par03]: Given a set of polynomials {pi} ⊂ R, the existence of some {ai} ⊂ R to
satisfy

p = p0 +
∑
i

aipi ∈ Σ, (9.12)

is an LMI feasibility problem.

A polynomial p of degree 2d can be written in the form

p = zTQz, (9.13)

where z is a vector containing the monomials of the polynomial of degree ≤ d and Q is a symmetric
matrix, called the Gramian. The Gram matrix is in general not unique. If some Q � 0 can be found
satisfying (9.13), then the polynomial p is an SOS polynomial. In the case of a decomposition of a
static polynomial, this becomes an LMI feasibility problem of finding some Q such that p = zTQz.
In the case where the polynomial p contains some free parameters, these will be related to the
entries of Q. The LMI feasibility problem in this case becomes a problem of finding values of the
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free parameters (ai in (9.12)), such that p becomes SOS. The latter formulation allows tractable
answers to questions such as

Given p0, p1 ∈ R, does there exist a k ∈ R such that

p0 + kp1 ∈ Σ. (9.14)

The above question can be formulated as in (9.12) by writing the polynomial k as a linear combina-
tion of its monomials, k =

∑s
j=1 ajmj , where aj are scalar variables and mj are given polynomials

(found from the monomials of k). Inserting the linear combination of k in (9.14), the problem
becomes p0 +

∑s
j=1 aj(mjp1) ∈ Σ, with decision variables ai and number of monomials s. This

question is now on the form (9.12) and can as a result be formulated as an LMI feasibility problem.
The above question is very similar to the problem of finding barrier certificates formulated by the
Positivstellensatz’ using SOS decomposition, as will be evident in Section 9.5.

It should be noted that the free parameters of p must be related affinely to the entries of Q in
order for the problem to be defined as an LMI. Using the Positivstellensatz it can be noted that
only the definition of the barrier certificate in Theorem 2 becomes LMI’s.

The formulation of SOS decomposition problems on the form in (9.13) produces a number of
decision variables in the corresponding LMI. The number of decision variables is given as Ndec =(
n+2d

2d
)
, the length of the vector z given as

(
n+d
d

)
and the size of Q given as

(
n+d
d

)
×
(
n+d
d

)
[Par03].

The transformation from the SOS conditions to an LMI can be done manually for small problems.
In larger problems, it is necessary to automate the translation process. The YALMIP [Löf04] toolbox
for MATLAB can be used to translate an SOS problem into an SDP, use a given SDP solver (in this
case SeDuMi [Oli05]) to solve the problem and convert the solution back to the original SOS
problem. As this process is done automatically, it can be assumed that an SOS decomposition
problem can be solved directly. In the following an SOS decomposition problem will be denoted
a Sum Of Squares Program (SOSP) (similar to a Semidefinite Program).

An SOSP is given as:

Sum Of Squares Program

min
{ai}⊂R

I∑
i=1

wiai

s.t. pj,0 +
I∑
i=1

aipj,i ∈ Σ, for j = 1, . . . , J

(9.15)

The SOSP formulation in (9.15) define a convex optimisation problem, where ai are scalar real
decision variables, wi are given constant real numbers and pj,i are given polynomials with fixed
coefficients. If a problem can be formulated as in (9.15) it can be passed to an SDP using YALMIP
and solved using standard software [PP05].

In this project, the SOS decomposition is used in relation to the Positivstellensatz, such that a
feasible barrier certificate can be computed. In the following section the formulation of a search
of polynomial barrier certificates using the Positivstellensatz’ of Stengle and Putinar is described.
Additionally it is given how the hyperellipsoidal shape of X0 is included in the search, using the
optimisation criteria discussed in Section 8.3.
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9.5 Polynomial Barrier Certificate

The Positivstellensatz’ of Stengle and Putinar can be used to transform the requirements of the
barrier certificate into the existence of a polynomial identity. The search of a barrier certificate
has accordingly been transformed into a question of finding a solution to this polynomial identity.
It turns out that the SOS decomposition described in Section 9.4, can be used to search for such
a solution.

In this section, the sets X , X0, Xu and D are formulated as semi-algebraic sets, such that they
can be included in the Positivstellensatz. Additionally it is shown how the ellipses described in
Section 8.3 can be used as an initial set X0. Assuming that the barrier certificate is polynomial,
an SOSP can be used to search for a feasible certificate. Finally it is shown how the optimisation
criteria of the ellipse described in Section 8.3 can be included in the SOSP.

The sets in consideration must be semi-algebraic sets according to the formulating of the Posi-
tivstellensatz’ (be given as polynomial equalities, inequalities and inequations),

X = {x ∈ Rn | gX(x) ≥ 0,gX(x) = 0,gX(x) 6= 0} ,
X0 = {x ∈ Rn | g0(x) ≥ 0,g0(x) = 0,g0(x) 6= 0} ,
Xu = {x ∈ Rn | gu(x) ≥ 0,gu(x) = 0,gu(x) 6= 0} ,
D = {x ∈ Rn | gD(x) ≥ 0,gD(x) = 0,gD(x) 6= 0} ,

(9.16)

where the equalities and inequalities are element-wise. A one variable polynomial g(x) positive on
[x, x] can be constructed by g(x) = (x− x)(x− x) [PJP07].

In order to formulate the SOSP, the three conditions of the barrier certificates in Theorem 1, 2
should be put on form of the SOSP given in (9.15). In the following it is shown how the three
conditions of the weak barrier certificate are formulated as an SOSP.

Condition 1 - Safe set

The first condition of the weak barrier certificate states that B(x) ≤ 0, ∀x ∈ X0. As described in
Section 8.3, the set X0 is chosen to be hyperellipsoidal, defined as X0 =

{
x ∈ Rn | 1− xTEx ≥ 0

}
.

As a result, X0 is defined inside the ellipse, as illustrated in Figure 9.2.

X0 = {x ∈ R
n | 1 − x

T
Ex ≥ 0}

(1
−

x
T

E
x

)
[-

]

x2 [-] x1 [-]
−3

−2
−1

0
1

2
3

−2

0

2

−1

0

1

Figure 9.2: Two dimensional initial set example. The parabola is nonnegative (green) in X0 and negative
(blue) outside X0.

The initial set X0 given by the ellipse (green in Figure 9.2) has a single polynomial inequality,
making X0 compact in Rn. As a result, Putinar’s Positivstellensatz can be used to transform the
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requirement of B(x) to,

B(x) ≤ 0, ∀x ∈ X0 ⇐ −B(x) ∈ Q(1− xTEx).

If some −B(x) can be taken from the quadratic module Q(1 − xTEx), it is guaranteed to be
negative on X0. An example B(x) is illustrated in Figure 9.3.

X0

B(x) ≤ 0

Figure 9.3: By Putinar’s Positivstellensatz, all polynomials which are negative on X0 are from the
quadratic module Q(1− xTEx).

The resulting polynomial identity becomes (using the definition of the quadratic module in (9.8))

−B(x) = s0 + s1(1− xTEx), (9.17)

where B(x) ∈ Rx and {s0, s1} ⊂ Σx. If some polynomial B(x) and some SOS polynomials s0
and s1 can be found such that the above equation holds, then the barrier certificate is negative
on the ellipse X0. If the objective is to maximise the initial set X0 (refer to Section 8.3), the term
(1 − xTEx) becomes a decision variable. In the case of maximisation of the trace, E becomes a
decision matrix. In the optimisation using an ellipse with locked orientation and shape, the matrix
B is static and the scalar variable d becomes a decision variable, (d− xTBx) (can be interpreted
as raising the polynomial illustrated in Figure 9.2).

As the quadratic module is generated by 1 − xTEx, which is a free polynomial, Equation (9.17)
becomes a bilinear matrix inequality (BMI). Solvers for solving BMI’s locally are applied with
success in [SSE08]. It is however chosen to consider problems which are linear in the decision
variables only. By setting the SOS variable s1 in (9.17) to 1 (which is SOS) the problem becomes
linear in the decision variables.

The resulting problem (by rearranging) becomes,

−B(x)− (1− xTEx) ∈ Σ,

which comply with the SOSP defined in (9.15).

Condition 2 - Unsafe set

The second condition of the weak barrier certificate states that B(x) > 0, ∀(x) ∈ Xu. In this case
the set Xu is defined by the ultimate load limits of the system. The unsafe set can be defined by
a number of state inequality constraints forming Xu = {x ∈ Rn | gu ≥ 0}. As the ultimate load
limits do not define a compact set, Putinar’s Positivstellensatz cannot be used. Consequently
Stengle’s Positivstellensatz is used.
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By the use of Stengle’s Positivstellensatz, the set which should be empty is formulated. As the
second condition of the strict barrier certificate states that B(x) should be positive in Xu, the set
which should be empty is constructed as all the points where B(x) is non-positive in Xu. The set
is Ku = {x ∈ Rn | gu ≥ 0, −B(x) ≥ 0}. According to Stengle’s formalism, the set is empty if zero
can be taken from the preordering P(−B(x),gu(x)).

B(x) > 0, ∀x ∈ Xu ⇔ f = 0, f ∈ P(−B(x),gu(x))

If Xu is defined by a single ultimate load limit, the preordering becomes

0 = s0 − s1B(x) + s2gu(x)− s3B(x)gu(x).

If a polynomial B(x) ∈ Rx and some SOS polynomials {s0, . . . , s3} ⊂ Σx can be found such that
the above equation is satisfied, then the set is empty and the barrier certificate satisfy the unsafe
set condition. The above problem is not linear in the decision variables. By manually picking
s1 = 1 and s3 = 0, the problem becomes linear (but conservative). A barrier certificate which
satisfy the condition related to the unsafe set is illustrated in Figure 9.4.

Xu

B(x) > 0

Figure 9.4: By Stengle’s Positivstellensatz, all polynomials which are positive on Xu satisfies f = 0, f ∈
P(−B(x),gu(x)). The barrier certificate B(x) is positive on Xu.

The resulting SOSP becomes,

B(x)− s2gu(x) ∈ Σ,

which comply with the SOSP defined in (9.15). Several ultimate load limits (gu’s) can directely
be included in the SOSP by formulating additional constraints. The problem of finding a B(x)
positive on Xu, when the nonlinear SOS terms are removed, is equivalent to B(x) ∈

⋂
i P(gu,i).

Condition 3 - Derivative

The derivative condition of the weak barrier certificate states that,

∇B(x)f(x,d) ≤ 0, ∀(x,d) ∈ X ×D,

where X defines the state space in consideration and D the set of disturbances. Using this formu-
lation, the barrier derivative condition can be relaxed to only be satisfied in a part of the state
space X , which in practice can ease the search of a feasible barrier certificate.

Using Stengle’s Positivstellensatz, the set which should be empty is formulated as the points at
which the barrier derivative is positive in X ×D. The set is

K∇ = {x ∈ Rn | gX ≥ 0, gD ≥ 0, ∇B(x)f(x,d) ≥ 0} .

According to Stengle’s formalism, the set is empty if zero can be taken from the preordering
P(∇B(x)f(x,d),gX(x),gD(x)),

∇B(x)f(x,d) ≤ 0, ∀(x,d) ∈ X ×D ⇔ f = 0, f ∈ P(∇B(x)f(x,d),gX(x),gD(x)).
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The concept of the barrier derivative being negative in the defined state space X is illustrated in
Figure 9.5.

If X and D each are defined by a single polynomial inequality, the preordering becomes

0 = s0 + s1∇B(x)f(x, d) + s2gX + s3gD

+ s4∇B(x)f(x, d)gX + s5∇B(x)f(x, d)gD + s6gXgD

+ s7∇B(x)f(x, d)gXgD.

The terms with s1, s4, s5 and s7 contain products of unknown terms. As a result the SOS variables
in these terms must be picked manually in order to obtain a linear problem. Choosing s1 = 1 and
the rest to be zero, resulting in

0 = s0 +∇B(x)f(x, d) + s2gX + s3gD + s6gXgD,

which is linear in the decision variables. The resulting SOSP becomes,

−∇B(x)f(x, d)− s2gX − s3gD − s6gXgD ∈ Σ,

which comply with the SOSP defined in (9.15). It should be noted that more limits on the state
space and additional disturbances can directly be included in this program.

X

∇Bf ≤ 0

B

Figure 9.5: By Stengle’s Positivstellensatz, all polynomials which have a negative derivative (grey area)
along the vector field (blue arrows) on X (green area), satisfy f = 0, where f is from the preordering
P(∇Bf ,gX,gD).

In the above, SOSPs of each weak barrier condition have been formulated. The SOSP defined
in (9.15) enables multiple SOS constraints to be formulated in one SOSP. Thus it is possible to
include the above three SOSPs into one program. If a barrier certificate B(x) can be constructed
which satisfy all SOS constraints, then this is a certificate that X0 is safe.

The optimisation criteria in (9.15) must be linear in the decision variables. Both the optimisation
of the trace of E and the optimisation of the locked ellipse are linear in the decision variables.
Consequently, both optimisation criteria can be formulated directly in the SOSP. In Figure 9.6
the optimisation of X0 is illustrated.
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Xu

X0

B(x) = 0

Figure 9.6: Optimisation of initial set. The blue ellipse illustrate the initial set X0 which is being
maximised. The black curve is the zero level set of the barrier certificate, which is a certificate for the
safety of the initial set. The unsafe set Xu is given in grey.

The initial set X0 in Figure 9.6 can be enlarged as long as a feasible barrier certificate can be
found (as long as the SOSP is able to find a feasible barrier certificate).

In the following an example of a barrier search using SOS is given. The example demonstrates how
a barrier certificate can be obtained. The example uses the strict barrier certificate formulation,
which is effectively relaxed to the weak barrier certificate in order to obtain a solvable problem.

Example 2 (Barrier certificate construction using SOS): Consider the dynamical system
in one state given as

ẋ1 = −x1.

The state space X , initial set X0 and unsafe set Xu are given as

X = {x ∈ R},
X0 = {x ∈ R | |x| ≤ 1},
Xu = {x ∈ R | − 4 < x < −2}.

The objective is to examine if the initial set X0 is safe given an unsafe set Xu using a barrier
certificate.

The safe and unsafe sets are formulated as polynomial inequalities, using the technique given in
(9.16)

g0(x1) = (x1 − (−1))(1− x1) = 1− x2
1,

gu(x1) = (x1 − (−4))(−2− x1) = −x2
1 − 6x1 − 8,

where X0 = {x ∈ R | g0(x1) ≥ 0} and Xu = {x ∈ R | gu(x1) ≥ 0}.

The initial set X0, unsafe set Xu, initial set polynomial g0(x1), unsafe set polynomial gu(x1) and
the vector field of the system are illustrated in Figure 9.7.

To find a barrier certificate that guarantees the separation of the initial set from the unsafe set,
the strict barrier certificate formulation in Theorem 1 on Page 75 is used. To search for a barrier
certificate, the requirements of the strict barrier certificate will be formulated using Stengle’s and
Putinar’s Positivstellensatz’.

The barrier certificate should according to (9.1) be non-positive in the initial set X0. As the
polynomial defining X0 is compact, the requirement can be formulated using Putinar’s Positivstel-
lensatz. Given the closed set X0 = {x ∈ R | g0(x1) ≥ 0} , the barrier certificate −B(x1) is
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according to Putinar’s Positivstellensatz positive on X0 if −B(x1) ∈ Q(g0), given as

Q(g0) 3 −B(x1) = s0 + s1g0(x1),

where the polynomials {s0, s1} ⊂ Σx1 . By rearranging, the requirement can be formulated as

s0 = −B(x1)− s1g0(x1),

which is equivalent to testing if −B(x1)− s1g0(x1) ∈ Σ.

The barrier certificate should according to (9.2) be positive in the unsafe set Xu. As Xu is also
compact, Putinar’s Positivstellensatz is used. Given the closed set Xu = {x ∈ R | gu(x1) ≥ 0},
the barrier certificate B(x1) is according to Putinar’s Positivstellensatz positive on Xu if B(x1) ∈
Q(gu), given as

Q(gu) 3 B(x1) = s2 + s3gu(x1),

where the polynomials {s2, s3} ⊂ Σx1 . By rearranging, the requirement can be formulated as

s2 = B(x1)− s3gu(x1),

which is equivalent to testing if B(x1)− s3gu(x1) ∈ Σ.

The final requirement of the strict barrier certificate states that ∇B(x1)f(x1) < 0 on the zero
level set of the barrier certificate. As this set description includes the equality constraint of the
zero level set, Stengle’s Positivstellensatz is used. In Stengle’s formulation, the set which should
be empty is formulated, as given in (9.11).

The set

K =
{

x ∈ R
∇B(x1)f(x1) ≥ 0

B(x1) = 0

}
,

should be empty. This is equivalent to the existence of a solution to the polynomial P(∇B(x1)f(x1))+
I(B(x1)) = 0, given as

s4 + s5∇B(x1)f(x1) +B(x1)f1 = 0,

with the polynomials {s4, s5} ⊂ Σx1 and f1 ⊂ Rx1 . By rearranging, the requirement can be
formulated as

s4 = −s5∇B(x1)f(x1)−B(x1)f1,

which is equivalent to testing if −s5∇B(x1)f(x1)−B(x1)f1 ∈ Σ.

The barrier certificate can now be found by choosing {s1, .., s5} ⊂ Σx1 and f1 ∈ Rx1 such that

−B(x1)− s1g0(x1),
B(x1)− s3gu(x1),
−s5∇B(x1)f(x1)−B(x1)f1, (9.18)

is SOS. The requirement in (9.18) is not convex, as it includes products of free terms. By choosing
s5 = 1 and f1 = 0, the requirement becomes −∇B(x1)f(x1) ∈ Σ, which is convex. This is
effectively equivalent to the weak barrier certificate formulation, given in Theorem 2.

In order to search for a barrier certificate B(x1), the degree of the barrier certificate and SOS
polynomials should be chosen. In order to obtain a barrier certificate, deg(B(x1)) ≥ 2. The SOS
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polynomials s1, s3 are chosen to the simplest case of scalars. With second order barrier certificate
B(x1) = x2

1c1 + x1c2 + c3, the expressions by substitution become

−x2
1c1 − x1c2 − c3 − c4(1− x2

1),
x2

1c1 + x1c2 + c3 − c5(−x2
1 − 6x1 − 8),
2c1x2

1 + c2x1,

(9.19)

which should be SOS, with {c4, c5} ⊂ Σx1 and {c1, c2, c3} ⊂ R. If the expressions can be written
as in (9.13) and {c1, ..., c5} found such that Q � 0, then B(x1) is a certificate that the initial set
X0 and the unsafe set Xu are separated. The expressions in (9.19) on the form given in (9.13),
with the vector z = [x1, 1]T as the base of monomials, are

zT

[
c4 − c1 −c2

2
−c2

2 −c3 − c4

]
z, zT

[
c1 + c5

c2
2 + 3c5

c2
2 + 3c5 c3 + 8c5

]
z, zT

[
2c1 c2

2
c2
2 0

]
z, (9.20)

where the matrices should be positive semidefinite simultaneously, in order for B(x1) to be a
feasible barrier certificate. The search of {c1, ..., c5} can according to (9.12) be formulated as an
LMI feasibility problem, and solved using standard SDP solvers. As the example is very simple,
the coefficients will be picked manually. A solution using the SDP solver SeDuMi can be found in
Appendix K.

The coefficients {c1, c2, c3} belong to the quadratic barrier certificate. By inspection of the sets
illustrated in Figure 9.7, it is obvious that c1 > 0 and c3 < 0, in order for the barrier certificate
to be negative in the initial set and positive in the unsafe set. The SOS coefficients {c4, c5} are
chosen to positive scalars as R≥0 ⊂ Σ. Substituting {c1, c2, c3, c4, c5} = { 1

2 , 0,−1, 1, 1} into (9.20)
gives

zT

[
1
2 0
0 0

]
z, zT

[
3
2 3
3 7

]
z, zT

[
1 0
0 0

]
z,

which are all positive semidefinite. As a result, an SOS decomposition of the expressions in (9.19)
using the found coefficients exist. Inserting the coefficients in (9.19) gives

1/2x2
1,

3/2x2
1 + 6x1 + 7,

x2
1,

where the first and third expressions are directly given as sums of squared polynomials. The
second expression cannot directly be recognised as being SOS. By using Q = LTL, the SOS
decomposition can be found as[

3
2 3
3 7

]
=
[

1.2247 2.4495
0 1.0000

]T [
1.2247 2.4495

0 1.0000

]
.

Using L, the SOS decomposition is found to (1.2247x1 + 2.4495)2 + 1, which is clearly a sum of
squared polynomials.

The barrier certificate, using the found coefficients {c1, c2, c3}, is given as B(x1) = 1
2x

2
1 − 1 and

illustrated in Figure 9.7.

As a barrier certificate exist, no trajectory initialised in X0 can evolve to some state in Xu and the
system is accordingly safe.

In the above example the procedure of the barrier certificate search using SOS was given. A similar
procedure will be used in the search of safety envelope of the wind turbine system. As the wind
turbine system in relatively complex, this search cannot be performed by hand.
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B(x1)

gu(x1)

Xu

g0(x1)

X0

x1 [-]
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Figure 9.7: The solid green and red lines illustrate the initial X0 and unsafe Xu sets. The dashed green
and red lines illustrate the initial g0(x1) and unsafe gu(x1) polynomials, which are positive in the respective
sets. The vector field of the system is given by grey arrows. The resulting barrier certificate is given in
blue. The barrier certificate is negative in the safe set and positive in the unsafe set.

In the following section, the SOSP solution search using the complete wind turbine model is
discussed.
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10Computation of Safety Envelope

In this chapter, safety envelopes of the wind turbine system will be constructed. Initially the
search of a single safety envelope of the complete wind turbine system is formulated as one SOSP.
As the memory requirement of the complete SOSP is found to be very large, the wind turbine
system is divided into subsystems from which separate safety envelopes are constructed. Finally
the safety envelopes are assembled into a safety supervisor system, which is implemented and
tested on the NREL 5-MW wind turbine in FAST.

10.1 Safety Envelope of Complete System

In this section the safety envelope search given the complete wind turbine system model in (6.34)
is formulated in a single SOSP and the memory and computational requirements of the SOSP
are examined. In order solve the SOSP on a standard PC, simplifications to the problem are
introduced.

The complete polynomial model description in (6.34) includes 13 states with polynomial degree
12. The high polynomial degree of the model is due to the degree of the polynomial aerodynamic
table approximations given in Section 6.3.

Using the weak barrier certificate formulation, the wind turbine safety envelope search can be
formulated as demonstrated in Section 9.5. The SOSP of the safety envelope search, given the
complete wind turbine system and the trace safety envelope optimisation criterion, is given in SOS
Program 1.

SOS Program 1 Complete wind turbine system

min Tr E over B ∈ Rx, E ∈ S13
+ , s1, s2, s3, s4, s5 ∈ Σx, sX,D ∈ Σx,d

s.t. B − s1(ωr − γr) ∈ Σ
B − s2(θ∆

2 − γ∆
2) ∈ Σ

B − s3(hxflap
2 − γflap

2) ∈ Σ

B − s4(hθLL,x
2 − γLL

2) ∈ Σ

B − s5(tθfa,y
2 − γfa

2) ∈ Σ
−B − (1− xTEx) ∈ Σ
−∇Bf − sT

X,DgX,D ∈ Σ

In SOS Program 1, f is the wind turbine system in (6.34), B is the barrier certificate, E is the
matrix of the safety envelope ellipse, {γr, γ∆, γflap, γLL, γfa} are the ultimate load limits of the
chosen states and gX,D is a vector defining the state space and disturbance set. The bounded wind
disturbance can be defined as an element in gX,D. Additionally, the state space X in consideration
can be limited through gX,D, which in practice can ease the search of a feasible barrier certificate.

As the model f is of relative high dimension and the degrees of the polynomials are at the same
time relative high, the SOSP becomes very large. A single constraint such as s1 ∈ Σ generates a
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matrix inequality constraint Q1 � 0. With 13 states and polynomial degree 2d = 12, the size of
Q1 becomes (

n+ d

d

)
×
(
n+ d

d

)
=
(

13 + 12/2
12/2

)
×
(

13 + 12/2
12/2

)
= 27132× 27132.

With 64 bit double representation of the elements in MATLAB this requires 5.9 GB of memory.
Furthermore, a decision matrix of this size has 5.2 million decision variables.

A set of linear matrix inequalities,
Q1 � 0, . . . ,Qk � 0,

can be formulated as a single LMI and included as a single matrix inequality constraint. The
resulting LMI can be constructed as

Q = diag (Q1, . . . ,Qk) � 0, (10.1)
where the eigenvalues of Q are the union of the eigenvalues of Q1, . . . ,Qk [SW04].

It is clear from (10.1) that the size of Q increases with the number of matrix inequality constraints.
As the safety envelope search in SOSP 1 produces several matrix inequality constraints, it is not
possible to solve this complete SOSP on a regular PC.

In order to reduce the size of the problem, it is chosen to reduce the complexity of the model. In
the model description given in (6.34) the wind disturbance enters through the wind turbulence
model. As the wind turbulence model is considered the least important part of the model, it is
removed. This implies that the disturbance enters the model unfiltered. By removing the wind
turbulence model, the order of the complete model is reduced by two (reduced by two states).

The model in Chapter 6 was developed to handle wind speeds in the range vw = [3 m/s ; 30 m/s].
This resulted in high degree polynomial approximations of the aerodynamic tables (as they should
span a large wind range). In order to reduce the required degree of the aerodynamic approxima-
tions, the wind range is limited to vw = [15 m/s ; 25 m/s]. This limitation allows reasonable
approximations of the aerodynamic tables using 4th degree polynomials. A comparison of the 4th

degree polynomial approximations to the original aerodynamic tables can be found in Appendix
L. Using the above simplifications, the model is reduced to 11 states with a polynomial order of 6.
These simplifications reduce the overall memory requirement to a few GB implemented in MATLAB,
which allows the problem to be created. However, the SDP solvers use additional memory in
setting up and solving the problem. Consequently, the problem is in spite of the model reduction,
too large using a standard PC.

In Section 10.2 the simplified system model is separated into subsystems and separate safety en-
velopes of the subsystems are constructed. The problem with this technique is that the subsystem
interconnections are not included in the safety guarantee. In Chapter 11 a recently proposed
method of compositional barrier certificates, which can be used to verify safety of higher dimen-
sional systems, is used to formulate the safety envelope search. Both techniques enable solutions
to the resulting SOSPs to be obtained on a standard PC.

Ill-conditioning of SOSPs is often a problem. The problem of finding barrier certificates validating
the safety of the wind turbine has also shown to be numerically difficult to compute. Albeit having
reduced the problem size considerably, the SDP solver SeDuMi sometimes exits prematurely due
to numerical issues. According to [L0̈9] a solution to an SDP (produced from the SOSP) does
often not produce a strictly feasible SOS decomposition due to finite precision in the solver. As a
result, the barrier certificates constructed using the SOSPs are in general not strictly certificates
of safety. If a strictly feasible numerical certificate is required, the residuals of the SDP can be
examined. This can be done using Theorem 8 in Appendix J. It is however in [Löf11] noted that a
solution obtained from an SDP in most cases is sufficiently close to being feasible. In the following
computations, the SOSPs will be slightly relaxed, such that better numerical results are obtained.

In the following section the problem is divided into subproblems which are solved individually.
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10.2 Safety Envelopes of Separate Subsystems

The model is divided into subsystems which are considered individually. As the subsystems are
considered separately the interconnections between the subsystems are not directly included in the
calculation of the safety envelopes. Interconnections which are considered essential are introduced
as unknown bounded disturbances to a given subsystem.

The complete model is divided into the following subsystems; the drive train and blade-pitching,
the tower top bending, the flapwise blade bending and the lead-lag blade bending. The drive train
and blade-pitching subsystem includes the drive train, blade-pitch model and the aerodynamic
properties of the rotor - such that the emergency shutdown procedure is included in this subsystem.

The subsystems and their interconnections are illustrated in Figure 10.1. The interconnections
are given as arrows between the subsystems. The solid arrow is the real wind disturbance, the
curly arrows the fictitious disturbances (as replacements for the interconnections) and the dashed
arrows the interconnections which are not considered using this technique.

Lead-lag blade bending Tower

Drive train & pitching Flapwise blade bending

(ωr, β)
(ω̇r, ωr, β)hθLL,x

tvfa,x

(tv̇fa,x,
tvfa,x) hxflap

tvfa,x

(ωr, β)vw

τaero

vw

Faero

vw

vw

Faero

Figure 10.1: The four separate subsystems are illustrated by boxes. The solid arrow is the real wind
disturbance, the curly arrows the fictitious disturbances and the dashed arrows the interconnections which
are not considered.

As the interconnections are not considered, the subsystems do not interact. Consequently, it
is only analysed whether a given subsystem is safe or not. To indirectly include the effects of
the interconnections, some interconnections are replaced by unknown bounded disturbances. The
choices of the unknown disturbances require practical knowledge, e.g. knowledge of the wind
thrust force that affects the tower.

In the following, the safety envelopes of the four separate subsystems are computed.

10.2.1 Drive train & blade-pitching - safety envelope

The states of the drive train & blade-pitching subsystem are xr = [ωr ωg θ∆ θβ ωβ ]T. The drive
train & blade-pitching subsystem will in the following be called the drive train subsystem for
short. This subsystem incorporates the emergency shutdown procedure through the blade-pitch
model and the aerodynamic functions. The drive train is in the complete model connected to the
lead-lag bending of the blades and tower top velocity. The lead-lag bending of the blades affect
the rotor torque, while the tower top velocity affects the wind speed experienced by the rotor.
These interconnections are due to the separation of subsystems not included in the following drive
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train subsystem. The drive train subsystem is given as
ω̇r = J−1

r [τaero −Brωr −Kaθ∆ −Ba(ωr −Nωg)] ,
ω̇g = J−1

g [KaNθ∆ +BaN(ωr −Nωg)−Bgωg] ,
θ̇∆ = ωr −Nωg,

θ̇β = ωβ ,

ω̇β = −0.6ωβ − 0.0894θβ ,

with τaero = 1
2ρARvw

2Cq(vw, ωr, β) and β = −θβ + 90.

The state space Xr, unsafe set Xu,r and disturbance set Dr of the drive train subsystem are given
as

Xr =


x ∈ R5

0.5 rad/s ≤ ωr ≤ 3 rad/s,
0.5 · 97 rad/s ≤ ωg ≤ 3 · 97 rad/s,
−0.5 rad ≤ θ∆ ≤ 0.5 rad,

0◦ ≤ θβ ≤ 90◦,
−20◦/s ≤ ωβ ≤ 20◦/s


,

Xu,r =
{

x ∈ Xr ωr − γr ≥ 0
}
∪
{

x ∈ Xr θ∆
2 − γ∆

2 ≥ 0
}
,

Dr =
{

vw ∈ R 15 m/s ≤ vw ≤ 25 m/s
}
,

(10.2)

where γr is the ultimate load limit of the rotor velocity and γ∆ the ultimate load limit of the drive
train torsion which are given in Section 7.2.

The state space in consideration has been limited such that only rotational speeds of the rotor in
the interval [0.5 rad/s ; 3 rad/s] and the generator in the interval [0.5 · 97 rad/s ; 3 · 97 rad/s] are
considered. Consequently, it is assumed that the wind turbine cannot become unsafe when the
rotor angular velocity is below 0.5 rad/s. Additionally it is assumed that the blade-pitch angle β
is limited to the interval [0◦; 90◦]. To facilitate the numerical solution it is found that the state
space should be bounded in all dimensions. To obtain this, some fictitious state space bounds are
constructed for the remaining states. These bounds are large enough to not impose additional
restrictions to the practical solution. The wind disturbance is bounded such that it can only take
values in the range 15 m/s to 25 m/s (due to the previously simplifications of the aerodynamic
polynomial approximations).

To find a safety envelope of the drive train subsystem, the weak barrier certificate formulation
is used. The technique demonstrated in Section 9.5 is used to transform the safety envelope
optimisation into a tractable SOSP. The sets of the drive train given in (10.2) are transformed
to the SOSP given in SOS Program 2. In the SOSP the trace optimisation criterion is used.
The degrees of the SOS variables in (10.3) are chosen such that min(deg s1,deg s3) ≥ degBr and
min(deg sX,D) ≥ deg fr, where fr is the drive train subsystem [JWFP05]. The barrier certificate
should be chosen to some predefined degree. It is in this case chosen to consider a quartic barrier
certificate (if a feasible barrier certificate cannot be found, the degree can be increased).

SOS Program 2 Drive train subsystem

e∗ = min Tr Er over Br ∈ R4
xr
, Er ∈ S5

+, s1, s3 ∈ Σ4
xr
, sX,D ∈ Σ6

xr,dr

s.t. Br − s1(ωr − γr) ∈ Σ
Br − s3(θ∆

2 − γ∆
2) ∈ Σ

−Br − (1− xT
r Erxr) ∈ Σ

−∇Brfr − sT
X,DgX,D ∈ Σ

(10.3)
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The vector gX,D in (10.3) contains all state space and disturbance polynomials designed from
(10.2). The optimisation in SOSP 2 is quite big and turns out to be numerical difficult to calculate.
To obtain a better numerical result a feasibility problem is formulated

Solve SOSP 2 as a feasibility problem
s.t. Tr Er < 1.05e∗.

(10.4)

In (10.4) the optimisation problem is changed to a feasibility problem. The trace of the initial set
ellipse X0 obtained in SOSP 2 is made slightly larger (recall that the definition of E entails that a
smaller trace enlarge X0) and it is verified if a feasible solution (feasible barrier certificate) can be
found. The value 1.05 in (10.4) has been found through iteration such that a numerical acceptable
result is obtained. The resulting initial set X0,r,Tr is found to

X0,r,Tr =
{
x ∈ Xr

∣∣ xT
r Erxr ≤ 1

}
,

Er =


0.23 −4 · 10−8 −3.1 · 10−8 7.38 · 10−9 −3.80 · 10−8

−4 · 10−8 5.5 · 10−7 −1.16 · 10−10 −1.30 · 10−11 1.07 · 10−12

−3.1 · 10−8 −1.16 · 10−10 861.7 −3.41 · 10−12 5.97 · 10−13

7.38 · 10−9 −1.30 · 10−11 −3.41 · 10−12 0.56 · 10−4 −3.23 · 10−11

−3.80 · 10−8 1.07 · 10−12 5.97 · 10−13 −3.23 · 10−11 0.13 · 10−3

 .

The initial set X0,r,Tr can be used as a safety envelope of the drive train subsystem. The optimi-
sation was computed on a 2.6 GHz AMD64, 96 GB ram computer and took 4 hours to complete.

The safety envelope X0,r,Tr is given as a five-dimensional hyperellipsoid. The hyperellipsoid is in
Figure 10.2 projected onto three dimensions.
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Figure 10.2: Left X0,r,Tr given a constant blade-pitch angle and blade-pitch rate is illustrated. Right
X0,r,Tr given a constant drive train torsion and blade-pitch rate is illustrated. On both plots, example
system trajectories initialised in the safety envelopes are illustrated. The green dots indicate the initial
points of the trajectories.

The left plot in Figure 10.2 illustrates the drive train safety envelope given a constant blade-pitch
angle β = 10◦ and blade-pitch rate β̇ = 0◦/s. If β = 10◦ and β̇ = 0◦/s, then the drive train, given
an emergency shutdown, is safe if the system trajectory (of the drive train) is inside the ellipsoid.
Two example system trajectories are initialised in the ellipsoid. Notice that the ultimate load
limit of the rotor γr = 2.025 rad/s is not violated. The right plot in Figure 10.2 illustrates the
drive train safety envelope given a constant drive train torsion θ∆ = 0 rad and blade-pitch rate
β̇ = 0◦/s. If θ∆ = 0 and β̇ = 0◦/s, then the system is safe, given an emergency shutdown, within
the safety envelope (illustrated as a part of an ellipsoid). Three system trajectories are initialised
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within the ellipsoid. Notice that the diameter of the ellipsoid decreases as the blade-pitch angle
goes towards zero. Consequently, the rotor angular velocities for which the system is safe, are
dependent on the blade-pitch angle (if the blade-pitch angle is close to zero, the rotor may not
rotate as fast).

An initial set optimisation using the locked ellipse optimisation criterion proved to numerically
difficult given the drive train subsystem. Consequently, it is not possible to obtain a satisfactory
safety envelope using the locked ellipse optimisation criterion.

The procedure demonstrated above will likewise be used for the following three subsystems.

10.2.2 Tower - safety envelope

The tower subsystem consists of the tower top bending angle and tower top angular velocity. The
tower subsystem states are xt = [tθfa,y

tωfa,y]T. This subsystem is separated from the emergency
shutdown procedure, which will consequently not be incorporated in the subsystem model. The
tower model is connected to the aerodynamic thrust force Faero (through the aerodynamic thrust
function) and the flapwise blade tip displacement. The connection to the flapwise blade model
will be neglected, while the aerodynamic thrust force will be included as an unknown bounded
disturbance. The tower subsystem is given as

tθ̇fa,y = tωfa,y,
tω̇fa,y = (MnL

2)−1 [FaeroL+ FgL
tθfa,y −Kfa

tθfa,y −Bfa
tωfa,y

]
,

with Faero as disturbance.

The state space Xt, unsafe set Xu,t and disturbance set Dt of the tower subsystem are given as

Xt =
{

x ∈ R2 −0.01 rad ≤ tθfa,y ≤ 0.01 rad,
−0.02 rad/s ≤ tωfa,y ≤ 0.02 rad/s

}
,

Xu,t =
{

x ∈ Xt
tθfa,y

2 − γfa
2 ≥ 0

}
,

Dt =
{

Faero ∈ R Faero
2 − γFaero

2 ≤ 0
}
,

where γFaero = 10 kN is the disturbance bound and γfa the ultimate load limit of the tower top
bending given in Section 7.2. The specific choice of disturbance bound requires as mentioned some
practical knowledge of the specific wind turbine.

Using the weak barrier certificate formulation, the tower subsystem safety envelope search is
formulated as an SOSP. The X0,t,Tr trace optimisation given a quadratic barrier certificate is
formulated in SOS Program 3.

SOS Program 3 Tower subsystem

e∗ = min Tr Et over Bt ∈ R2
xt
, Et ∈ S2

+, s1 ∈ Σ2
xt
, sX,D ∈ Σ2

xt,dt

s.t. Bt − s1(tθfa,y
2 − γfa

2) ∈ Σ
−Bt − (1− xT

t Etxt) ∈ Σ
−∇Btft − sT

X,DgX,D ∈ Σ

As with the drive train, the solution e∗ to the minimisation problem is relaxed and solved as a
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feasibility problem

Solve SOSP 3 as feasibility problem
s.t. Tr Et < 1.01e∗.

The resulting initial set X0,t,Tr is found to

X0,t,Tr =

x ∈ Xt

∣∣∣∣∣∣
[

tθfa,y
tωfa,y

]T [
11041 76

76 4590

][
tθfa,y
tωfa,y

]
≤ 1

 .

A similar SOSP is formulated using the locked ellipse optimisation, centered in the mean value of
the normal operation measurements. The resulting initial set X0,t,Locked is found to

X0,t,Locked =x ∈ Xt

∣∣∣∣∣∣
([

tθfa,y
tωfa,y

]
−

[
0.0025

0

])T [
1838.6 −361.6
−361.6 6400.9

]
· 103

([
tθfa,y
tωfa,y

]
−

[
0.0025

0

])
≤ 60.7

 .

The initial sets X0,t,Tr and X0,t,Locked can be used as safety envelopes of the tower subsystem. Note
that this subsystem does not incorporate the emergency shutdown procedure and is accordingly
only safe if the aerodynamic thrust force Faero is in Dt at all times. Both optimisations were done
on a 2.6 GHz AMD64, 96 GB ram computer and took approximately 30 s to complete.

The safety envelopes X0,t,Tr and X0,t,Locked are illustrated in Figure 10.3.
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Figure 10.3: Left the safety envelopes are illustrated along with the vector field of the system. Right an
example trajectory is initialised inside the safety envelopes.

In Figure 10.3 both the trace optimised ellipse and the optimised ellipse with locked orientation
are illustrated. The left plot illustrates the safety envelopes along with the vector field of the tower
subsystem. The right plot illustrates a trajectory initialised inside the safety envelope. Note that
the locked ellipse X0,t,Locked is almost included in X0,t,Tr. Consequently, the union of the safety
envelopes is not significantly enlarged by the inclusion of the locked ellipse in this specific case.

10.2.3 Flapwise blade bending - safety envelope

The flapwise blade bending subsystem consists of the flapwise blade tip displacement and flapwise
blade tip velocity. The flapwise blade bending subsystem states are xflap = [hxflap

hvflap,x]T.
This subsystem is separated from the emergency shutdown procedure which will consequently not
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be incorporated in the subsystem model. The flapwise blade bending model is connected to the
motion of the tower top and the aerodynamic thrust force Faero (through the aerodynamic thrust
function). The connection to the tower motion will be neglected, while the aerodynamic thrust
force will be included as an unknown bounded disturbance. The flapwise blade bending subsystem
is given as

hẋflap = hvflap,x,
hv̇flap,x = M−1

flap
[
Faero −Kflap

hxflap −Bflap
hvflap,x

]
,

with Faero as disturbance.

The state space Xflap, unsafe set Xu,flap and disturbance set Dflap of the flapwise blade bending
subsystem are given as

Xflap =
{

x ∈ R2 −15 m ≤ hxflap ≤ 15 m,
−30 m/s ≤ hvflap,x ≤ 30 m/s

}
,

Xu,flap =
{

x ∈ Xflap
hxflap

2 − γflap
2 ≥ 0

}
,

Dflap =
{

Faero ∈ R Faero
2 − γFaero

2 ≤ 0
}
,

where γFaero = 10 kN is the disturbance bound and γflap the ultimate load limit of the flapwise
blade tip displacement given in Section 7.2.

Using the weak barrier certificate formulation, the flapwise blade bending subsystem safety enve-
lope search is formulated as an SOSP. The X0,flap,Tr trace optimisation given a quadratic barrier
certificate is formulated in SOS Program 4.

SOS Program 4 Flapwise blade bending subsystem

e∗ = min Tr Eflap over Bflap ∈ R2
xflap

, Eflap ∈ S2
+, s1 ∈ Σ2

xflap
, sX,D ∈ Σ2

xflap,dflap

s.t. Bflap − s1(hxflap
2 − γflap

2) ∈ Σ
−Bflap − (1− xT

flapEflapxflap) ∈ Σ
−∇Bflapfflap − sT

X,DgX,D ∈ Σ

The solution e∗ to the minimisation problem is relaxed and solved as a feasibility problem

Solve SOSP 4 as feasibility problem
s.t. Tr Eflap < 1.01e∗

The resulting initial set X0,flap,Tr is found to

X0,flap,Tr =

x ∈ Xflap

∣∣∣∣∣∣
[

hxflap
hvflap,x

]T [
9.07 1.15
1.15 1.93

]
· 10−3

[
hxflap

hvflap,x

]
≤ 1

 .

A similar SOSP is formulated using the locked ellipse optimisation. The resulting initial set
X0,flap,Locked is found to

X0,flap,Locked =x ∈ Xflap

∣∣∣∣∣∣
([

hxflap
hvflap,x

]
−

[
2.32

0

])T [
0.43 −0.06
−0.06 2.17

]([
hxflap

hvflap,x

]
−

[
2.32

0

])
≤ 29.56

 .
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The initial sets X0,flap,Tr and X0,flap,Locked can be used as safety envelopes of the flapwise blade
bending subsystem. Note that this subsystem does not incorporate the emergency shutdown
procedure and is accordingly only safe if the aerodynamic thrust force Faero is in Dflap at all times.
Both optimisations were done on a 2.6 GHz AMD64, 96 GB ram computer and took approximately
30 s to complete.

The safety envelopes X0,flap,Tr and X0,flap,Locked are illustrated in Figure 10.4.
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Figure 10.4: Left the safety envelopes are illustrated along with the vector field of the system. Right
example trajectories are initialised inside the safety envelopes.

In Figure 10.4 both the trace optimised ellipse and the optimised ellipse with locked orientation
are illustrated. The left plot illustrates the safety envelopes along with the vector field of the
flapwise blade bending subsystem. The right plot illustrates trajectories initialised inside the
safety envelope. As with the tower subsystem, the locked ellipse X0,flap,Locked is almost included
in X0,flap,Tr.

10.2.4 Lead-lag blade bending - safety envelope

The lead-lag blade bending subsystem consists of the lead-lag blade tip bending and lead-lag an-
gular blade tip velocity. The lead-lag blade bending subsystem states are xLL = [hθLL,x

hωLL,x]T.
This subsystem is separated from the emergency shutdown procedure which will consequently not
be incorporated in the subsystem model. The lead-lag blade bending model is connected to the
aerodynamic torque τaero (through the aerodynamic torque function) and the motion of the drive
train. The connection to the drive train will be neglected, while the aerodynamic torque will be
included as an unknown bounded disturbance. The lead-lag blade bending subsystem is given as

hθ̇LL,x = hωLL,x
hω̇LL,x = J−1

LL
[
τaero −BLL

hωLL,x −KLL
hθLL,x

]
,

with τaero as disturbance.

The state space XLL, unsafe set Xu,LL and disturbance set DLL of the lead-lag blade bending
subsystem are given as

XLL =
{

x ∈ R2 −0.03 rad ≤ hθLL,x ≤ 0.03 rad,
−0.2 rad/s ≤ hωLL,x ≤ 0.2 rad/s

}
,

Xu,LL =
{

x ∈ XLL
hθLL,x

2 − γLL
2 ≥ 0

}
,

DLL =
{

τaero ∈ R τaero
2 − γτaero

2 ≤ 0
}
,
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where γτaero = 10 kNm is the disturbance bound and γLL the ultimate load limit of the lead-lag
blade tip bending given in Section 7.2.

Using the weak barrier certificate formulation, the lead-lag blade bending subsystem safety enve-
lope search is formulated as an SOSP. The X0,LL,Tr trace optimisation given a quadratic barrier
certificate is formulated in SOS Program 5.

SOS Program 5 Lead-lag blade bending subsystem

e∗ = min Tr ELL over BLL ∈ R2
xLL

, ELL ∈ S2
+, s1 ∈ Σ2

xLL
, sX,D ∈ Σ2

xLL,dLL

s.t. BLL − s1(hθLL,x
2 − γLL

2) ∈ Σ
−BLL − (1− xT

LLELLxLL) ∈ Σ
−∇BLLfLL − sT

X,DgX,D ∈ Σ

The solution e∗ to the minimisation problem will be relaxed and the problem solved as a feasibility
problem

Solve SOSP 5 as feasibility problem
s.t. Tr ELL < 1.01e∗

The resulting initial set X0,LL,Tr is found to

X0,LL,Tr =

x ∈ XLL

∣∣∣∣∣∣
[

hθLL,x
hωLL,x

]T [
1.65 0.04
0.04 0.15

]
· 103

[
hθLL,x
hωLL,x

]
≤ 1

 .

A similar SOSP is formulated using the locked ellipse optimisation. The resulting initial set
X0,LL,Locked is found to

X0,LL,Locked =x ∈ XLL

∣∣∣∣∣∣
([

hθLL,x
hωLL,x

]
−

[
0.007

0

])T [
0.94 −0.17
−0.17 1.5

]
· 105

([
hθLL,x
hωLL,x

]
−

[
0.007

0

])
≤ 30.09

 .

The initial sets X0,LL,Tr and X0,LL,Locked can be used as safety envelopes of the lead-lag blade
bending subsystem. Note that this subsystem does not incorporate the emergency shutdown
procedure and is accordingly only safe if the aerodynamic torque τaero is in DLL at all times. Both
optimisations were done on a 2.6 GHz AMD64, 96 GB ram computer and took approximately 30
s to complete.

The safety envelopes X0,LL,Tr and X0,LL,Locked are illustrated in Figure 10.5.
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Figure 10.5: Left the safety envelopes are illustrated along with the vector field of the system. Right
example trajectories are initialised inside the safety envelopes.

In Figure 10.5 both the trace optimised ellipse and the optimised ellipse with locked orientation
are illustrated. The left plot illustrates the safety envelopes along with the vector field of the lead-
lag blade bending subsystem. The right plot illustrates trajectories initialised inside the safety
envelope. As with the tower and flapwise blade bending subsystems, the locked ellipse X0,LL,Locked
is almost included in X0,LL,Tr.

The SOSPs implemented in MATLAB with YALMIP can be found on the enclosed DVD.

In the following section, the separate safety envelopes found above will be combined into a safety
supervisor system, implemented and tested on the NREL 5-MW wind turbine in FAST.

10.3 Implementation Results

In the above, safety envelopes of the drive train, tower, flapwise blade bending and lead-lag blade
bending were found. These safety envelopes can be assembled into one safety supervisor system. In
order for the system to be safe, the trajectory should be within at least one of the safety envelopes
of each of the subsystems. Recall that the safety envelopes are designed using assumptions of the
connections between the subsystems. Consequently, the safety supervisor does only ensure safety
as long as these assumptions are satisfied.

The safety envelopes found in Section 10.2.1, 10.2.2, 10.2.3 and 10.2.4 can be combined into a
safety supervisor system. The resulting safety supervisor system is given in (10.5).

Sr =
{

Safe,
Unsafe,

xr ∈ X0,r,Tr

else

St =
{

Safe,
Unsafe,

xt ∈ X0,t,Tr ∪ X0,t,Locked

else

Sflap =
{

Safe,
Unsafe,

xflap ∈ X0,flap,Tr ∪ X0,flap,Locked

else

SLL =
{

Safe,
Unsafe,

xLL ∈ X0,LL,Tr ∪ X0,LL,Locked

else

(10.5)

If one of the safety conditions {Sr,St,Sflap,SLL} in (10.5) become unsafe, then the emergency
shutdown procedure should be initialised immediately. The safety condition should be evaluated
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continuously. This does in practice entail that the polynomial safety envelope functions of the
subsystems should be continuously evaluated. The signs of the results determine if an emergency
shutdown should be triggered or not.

As the safety needs to be continuously verified, evaluation of the polynomials needs to be fast
to compute. To test the safety of the system the seven polynomials of the subsystem envelopes
should be evaluated. This evaluation involves 74 multiplications and 57 summations.

In the following, the safety supervisor system in (10.5) is implemented on the NREL 5-MW wind
turbine in FAST. When the system is safe, the control of the wind turbine is given by the NREL
5-MW controller. When an unsafe situation is detected by the safety supervisor, the emergency
shutdown procedure is initialised.

It should be noted that the NREL 5-MW model in FAST is far more complex than the model
developed in Chapter 6. To be able to use the safety supervisor system, the mean of the lead-lag
blade bendings and the mean of the flapwise blade tip displacements are considered. A wind
field with a mean wind speed of 20 m/s is produced using TurbSim. The wind field produced by
TurbSim is 3-dimensional, whereas the wind assumed by the safety supervisor is scalar.

The initial test of the safety supervisor system is to verify that the wind turbine can operate in
normal operation without the emergency shutdown being triggered by the supervisor. A 30 minute
test is performed in FAST with the safety supervisor being active. During the 30 minute test, the
wind turbine is not shut down by the safety supervisor. As the wind turbine is not shut down
during the simulation, it seems that the safety supervisor is not too conservative to allow normal
operation, which is very important in relation to power production.

Four safety critical situations are simulated, each coupled with an illustration (illustrations on
Page 102 and onwards). Each figure is divided into two parts, the top part illustrating the signals
of the system and the bottom part the evaluation of the safety supervisor system. In the top
part eight signals are illustrated over time, respectively the wind disturbance, the controllable
generator torque and blade-pitch angle and five safety critical system states. In the bottom part,
the safety critical states of each subsystem are illustrated in the state space. Safety envelopes
optimised according to the trace are given in blue and the safety envelopes with locked shape and
orientation in light blue (cyan). The emergency shutdown is triggered if a system trajectory leaves
the safety envelopes. The point of an event (error or external event) is given in pink, and the
trigger of the emergency shutdown in green. The safety critical situations tested are:

1. Blade-pitch controller error (Figure 10.6)

Situation of error in the blade-pitch angle control. At a given point in time, an error occurs
in the control of the blade-pitch, such that the rate of the blade-pitch angle stays at 0.5◦/s
towards β = 0◦. This error results in an increase of the rotor angular velocity. A simulation
of the pitch error and the trigger of the emergency shutdown is illustrated in Figure 10.6.
In the figure it can be seen that the emergency shutdown is triggered by the safety envelope
of the drive train subsystem (the drive train state trajectory reaches the edge of the safety
envelope). In this case the emergency shutdown supervisor manages to shut down the wind
turbine without any state evolving to the unsafe set.

2. Wind gust (Figure 10.7)

Situation with wind gust. At a given point in time, a wind gust hits the rotor. The
frequency of the wind gust is approximately 1/3 Hz, which is in the turbulence range of
the Hoven spectrum in Figure 6.25 (which seems to be close to the NREL 5-MW tower
resonance frequency). The wind gust results in an oscillation of the tower top. In Figure
10.7 it can be seen that the emergency shutdown is triggered by the safety envelope of the
tower subsystem. Note that the angular velocity of the rotor is not noticeably affected by
the wind gust, why this situation would be difficult to detect using a simple rotor overspeed
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guard. In this case the emergency shutdown supervisor manages to shut down the wind
turbine without any state evolving to the unsafe set.

3. Generator failure (Figure 10.8)

Situation with failure in the generator torque. The failure could be due to a power grid
failure or a fault in the generator itself. The failure of the generator results in a 1.5 s
absence of generator torque. In Figure 10.8 it can be seen that the 1.5 s generator failure
causes in particular a lead-lag bending of the wind turbine blades. The remaining states
do not deviate significantly. The emergency shutdown is triggered by the lead-lag safety
envelope. In this case the emergency shutdown supervisor manages to shut down the wind
turbine without any state evolving to the unsafe set.

4. Blade-pitch controller error & generator failure (Figure 10.9)

Situation with a combination of a blade-pitch controller error and a generator failure. The
error in the blade-pitch system causes the rate of the blade-pitch to stay at 4◦/s towards
β = 0◦. At the same time the generator torque goes towards zero. In Figure 10.9 it can be
seen that the emergency shutdown is triggered by the lead-lag safety envelope (additionally
the safety envelope of the drive train is close to trigger the emergency shutdown). The safety
supervisor system does in this case not manage to keep lead-lag blade bending within the
ultimate load limits. Consequently, the blades are potentially damaged.

In three of the four above safety critical situations, the safety supervisor system is able to trigger
the emergency shutdown of the NREL 5-MW wind turbine prior to the system being damaged.
In safety critical situation 4, the safety supervisor is not able to prevent the system state from
entering the unsafe set. The reason that the emergency shutdown is not initialised in time, is
either due to modelling uncertainties (difference between the NREL 5-MW model implemented in
FAST and the model developed in Chapter 6) or that the couplings of the subsystems have not been
included in the construction of safety envelopes. As the polynomial model of the NREL 5-MW
is very simple compared to the implementation in FAST, it is assumed that other situations can
be found for which the safety supervisor system does not ensure safety of the system. In Section
13.1 it is briefly discussed how modelling uncertainties can be included in the safety guarantee.
An implementation of the safety supervisor in SIMULINK can be found on the enclosed DVD.
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Figure 10.6: Safety critical situation 1. Top 8 plots show the evolution of states over time. In the bottom
4 plots, the state trajectories of the subsystems are illustrated. A pitch control error is introduced.
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Figure 10.7: Safety critical situation 2. Top 8 plots show the evolution of states over time. In the bottom
4 plots, the state trajectories of the subsystems are illustrated. A wind gust is introduced.
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Figure 10.8: Safety critical situation 3. Top 8 plots show the evolution of states over time. In the bottom
4 plots, the state trajectories of the subsystems are illustrated. A generator torque failure is introduced.
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Figure 10.9: Safety critical situation 4. Top 8 plots show the evolution of states over time. In the bottom
4 plots, the state trajectories of the subsystems are illustrated. A pitch control error and a generator torque
failure are introduced.
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11Compositional Safety

Envelope Construction

In this chapter, safety verification and optimisation using compositional barrier certificates are
described. In Section 10.1 the SOSP of the complete safety envelope search was formulated and
found too large for computation on a regular PC. In Section 10.2 the system was separated into
subsystems, for which individual safety envelopes were constructed. Using this technique, no
interconnections of the subsystems were included in the safety envelope construction.

In this chapter, a compositional barrier certificate method is considered. The compositional barrier
certificate method considers a system as a composition of coupled subsystems (with subsystems
similar to in Section 10.2) with constraints between them. In [BXMM08] it is noted that decom-
position methods can provide substantial computational savings if the problem size grows more
than linear - which is the case with sum of squares decomposition problems. As a result, the com-
positional barrier certificate method can be used to obtain a barrier certificate which is valid given
the complete system, but with lower computational complexity (reduced memory requirements).
This can be seen as a practical computational extension to the barrier certificate formulation.

The compositional barrier certificate method proposed in [SPW12] uses an iterative method in
the safety verification computation. This entails that the SOSPs of the subsystems should be
calculated a number of times. A single computation of the drive train & blade-pitching SOSP
was in Section 10.2.1 completed in approximately 4 hours. To reduce the computation time, some
simplifications will be introduced. In the simulations performed in Section 10.3, the ultimate
load limits of the drive train torsion and flapwise blade tip displacement were not close to being
violated in any of the simulated situations. As a result, these will not be included in the following
calculations.

In the following, the compositional barrier certificate method is used to include the effects of the
emergency shutdown procedure in each of the subsystems (which were not possible in Section 10.2).
This entails that the aerodynamic functions (Faero(vw, ωr, β), τaero(vw, ωr, β)) should be included
in each subsystem, with the rotor angular velocity ωr and blade-pitch angle β as interconnected
variables (from the drive train & pitching subsystem). The wind is assumed to be static at vw = 20
m/s. The wind turbine subsystem separation is illustrated in Figure 11.1.

Lead-lag blade bending Tower

Drive train & pitching Flapwise blade bending

(ωr, β)
(ωr, β)ω̇r

hθLL,x

tvfa,x

(tv̇fa,x,
tvfa,x) hxflap

tvfa,x

(ωr, β)vw

vw

vw

vw

Figure 11.1: Wind turbine system separated into four subsystems with interconnections. The solid boxes
are included in the safety envelope search. The interconnections are given by arrows. The solid arrows are
the interconnections which are included in the safety envelope search.
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The considered subsystems I = {Drive train, Tower, Lead-lag blade bending}, with output maps
(denoted y) and input maps (denoted u), are given as

Drive train :



ω̇r =
(
Jr +N−1Jg

)−1 [τaero −Brωr]
θ̇β = ωβ

ω̇β = −0.6ωβ − 0.0894θβ

yr =
[
ωr

θβ

]

Tower :


tθ̇fa,y = tωfa,y,
tω̇fa,y = (MnL

2)−1 [FaeroL+ FgL
tθfa,y −Kfa

tθfa,y −Bfa
tωfa,y]

ut =
[
ωr

β

]

Lead-lag blade bending :


hθ̇LL,x = hωLL,x
hω̇LL,x = J−1

LL
[
τaeroξLL −BLL

hωLL,x −KLL
hθLL,x

]
uLL =

[
ωr

β

]

with τaero = 1
2ρARvw

2Cq(vw, ωr, β), Faero = 1
2ρAvw

2Ct(vw, ωr, β) and β = −θβ + 90.

The three resulting subsystems each have 4th degree polynomial vector fields. The state spaces in
consideration are defined as in Section 10.2.

11.1 Compositional Barrier Certificate

The compositional barrier certificate method can be used to verify the safety of a system given as
an interconnection of multiple subsystems. This method can be seen as a decomposition of the
safety verification described in Chapter 9.

The safety verification using compositional barrier certificates splits up the system into subsystems
which are connected through some coupling constraints. The interconnections of the subsystems
are formulated by input and output maps. An interconnection input to the ith system will be given
by ui ∈ Ui and an output of a subsystem as yi. The input and output maps of the subsystems
define a relation between the subsystems.

If the system can be decomposed into interconnected subsystems with input and output maps,
the safety of the system can be verified using Theorem 6.

Theorem 6 [SPW12]: Given a system ({fi}, {Xi}, {Ui}, {Di}, {X0,i}, {Xu,i}), if a family of scalar
differentiable functions {Bi(xi)} exists, satisfying for all i ∈ I

Bi(xi) + τ0,i ≤ 0, ∀xi ∈ X0,i,

Bi(xi)− τu,i > 0, ∀xi ∈ Xu,i and
∇Bi(xi)fi(xi,ui,di) + τw,i(ui,yi) ≤ 0, ∀(xi,ui,di) ∈ Xi × Ui ×Di

(11.1)

with τ0 =
∑
i τ0,i ≥ 0, τu =

∑
i τu,i ≥ 0 and τw(u,y) =

∑
i τw,i(ui,yi) ≥ 0, then the system is

safe, with B(x) =
∑
iBi(xi) as the certificate.

The sets X , D, X0 and Xu are constructed from the Cartesian products of the sets of the subsystems

X =×
i∈I
Xi, D =×

i∈I
Di, X0 =×

i∈I
X0,i, Xu =×

i∈I
Xu,i.
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The barrier certificate subproblems in Theorem 6 can be considered equal to the weak barrier cer-
tificate with constraints on a few shared variables τ0, τu and τw(u,y). Note that the subproblems
are almost separable. As a result, the subproblems can be formulated as individual SOSPs with
some shared complicating constraints.

11.1.1 Compositional barrier certificate using SOS

Using the locked ellipse optimisation criterion, the compositional safety envelope optimisation of
the system can using Theorem 6 be formulated as a range of SOSPs

min −
∑
i∈I

di over
{di} ∈ R, {Bi} ∈ Rxi , {αi} ∈ R,
{γi} ∈ Rui,yi , {su,i} ∈ Σxi , {sX,D,U,i} ∈ Σxi,di,ui

s.t. ∀i ∈ I :


−Bi(xi)− (di − (xi − ci)TBi(xi − ci))− αi ∈ Σ
Bi(xi)− su,igu,i ∈ Σ
−∇Bi(xi)fi(xi,ui)− sT

X,D,U,igX,D,U,i − γi ∈ Σ

(11.2)

with α =
∑
i αi ≥ 0, γ =

∑
i γi ≥ 0 and Bi being the matrix defining the locked ellipse of

subsystem i.

The polynomial degree of the interconnection variable γi should be larger or equal to the polyno-
mial degree of the vector field, with respect to ui and yi.

The SOSPs in (11.2) are very similar to the SOSPs computed in Section 10.2. The only difference
is the complication variables αi and polynomial functions γi, which should satisfy the complicating
constraints. Note that free variables of the unsafe conditions τu,i from (11.1) are set to zero.

In (11.2) the individual safety envelopes are optimised such that the zero crossings di of the locked
ellipses are maximised. The compositional objective becomes to maximise

∑
i∈I di. Note that the

unsafe set Xu is defined as the Cartesian product of Xu,i.

As with the original barrier certificate formulation, the compositional barrier certificate formula-
tion is formulated to verify the safety of a given initial set X0. The objective of the wind turbine
safety envelope construction is however to maximise a variable (and in advance unknown) safety
envelope. As the weak barrier certificate formulation is used, a possible safety envelope can be
constructed by X0 ⊆ {x ∈ X |B(x) ≤ 0} with B(x) =

∑
iB(xi). As the barrier certificate in

general can be of high polynomial degree, it is desirable to formulate the safety envelope using
the ellipses. From (11.2) it is given that −Bi(xi)− (di − (xi − ci)TBi(xi − ci))− αi ≥ 0 which is
equivalent to ∑

i∈I
((xi − ci)TBi(xi − ci)− di) ≥ B(x) + α, (11.3)

with α ∈ R≥0.

From (11.3) it is given that the sum of ellipses can be used as a (possibly conservative) safety
envelope of the composed system. A safety envelope defined by a sum of locked ellipses is given as

X0 =
{

x ∈ X

∣∣∣∣∣∑
i∈I

(xi − ci)TBi(xi − ci) ≤
∑
i∈I

di

}
. (11.4)

By maximising
∑
i di in (11.4), the composed safety envelope is maximised.

To obtain a feasible result of the decomposed SOSPs, some algorithm should be used to secure
that the complicating constraints are satisfied. In the following section the dual decomposition
method will be used to solve the problem (as done in [SPW12]).
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11.2 Barrier Certificate through Dual Decomposition

The subsystems in (11.2) are not separable due to the complicating constraints. By using a
decomposition method, the subsystems can be split up into separable problems, which can be
solved individually. To obtain a feasible solution, some master algorithm should coordinate the
subproblems.

Consider a compositional system with k problems

min
x1,...,xk

f1(x1) + ...+ fk(xk)

s.t. x1 ∈ C1, ...,xk ∈ Ck
h1(x1) + ...+ hk(xk) ≤ 0,

(11.5)

with C being local feasibility constraints and h1, ...,hk defining the complicating constraints.

By forming the Lagrangian dual problem of (11.5), the problem becomes separable. To obtain
a feasible solution, a master algorithm, scaling the cost of the shared variables (interpreted as
shared resources), can be used [BXMM08].

The Lagrangian of (11.5) is Λ(x1, ...,xk,λ) = f1(x1) + ... + fk(xk) + λT (h1(x1) + ...+ hk(xk)),
which forms the Lagrangian dual function

ϕ(λ) = inf
x1∈C1,...,xk∈Ck

Λ(x,λ) = inf
x1∈C1

(
f1(x1) + λTh1(x1)

)
+ ...+ inf

xk∈Ck

(
fk(xk) + λThk(xk)

)
.

The dual function is separable, and the dual problem supλ≥0 ϕ(λ) can be solved by means of
coordinating costs of the constraints to the subproblems.

11.2.1 Polynomial compositional barrier certificate

Problem (11.2) is on the same form as (11.5), with αi and γi as complicating constraints and
−
∑
i d as objective function.

To be able to verify the feasibility of the complicating constraint γ =
∑
i γi ≥ 0, the polynomials

γi will be limited to being quadratic in the inputs and outputs [TPM09],

γi =
[
ui
yi

]T

Γi

[
ui
yi

]
,

where Γi is a diagonal matrix. Let γi denote the diagonal elements of Γi. For Γi to be positive
definite, the elements of γi must be positive. Note that the quadratic choice of γi does not comply
with the requirement of γi being of the same (or higher) order of the vector field. The problem is
however still solvable, as the state space is limited.

The Lagrangian of (11.2) is

Λi(xi,λ) = −di + λ1(−αi) + λT
2 (−γi),

where λ = [λ1,λ2]T are the dual variables. The Lagrangian dual function is

ϕ(λ) =
∑
i

(
inf

xi,αi,γi
Λi(xi,λ)

)
(11.6)

s.t. {Bi} satisfying (11.2),
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with the dual (master) problem

sup
λ≥0

ϕ(λ). (11.7)

Note that the optimisations in (11.6) are given for a constant λ (cost). If the complicating
constraints are satisfied, the dual variables λ can be slacked for a better solution. If they are not
satisfied, the costs λ must be adjusted.

The SOSP in (11.2) formulated as Lagrangian duals is given in SOS Program 6. Notice that
the i programs can be computed separately, but that the complication constraints might not be
satisfied.

SOS Program 6 Compositional subsystem

ϕi(λ) = min −di − λT[αi γi]T over di ∈ R, B4
i ∈ Rxi , αi ∈ R,

γi ∈ R2, su,i ∈ Σ4
xi , sX,D,U,i ∈ Σ4

xi,di

s.t. −Bi − (di − (xi − ci)TBi(xi − ci))− αi ∈ Σ
Bi − su,igu,i ∈ Σ

−∇Bifi − sT
X,D,U,igX,D,U,i −

[
ui
yi

]T

diag(γi)
[
ui
yi

]
∈ Σ

To solve the dual (master) problem (11.7), the subgradient method will be used. A subgradient
can, given a constant Lagrange multiplier, be found from the optimal values of the complicating
variables. Let α∗i and γ∗i denote the optimal values from an optimisation given some λ. The
function g(λ) = [

∑
i α
∗
i (λ);

∑
i γ∗i (λ)] ∈ ∂ϕ(λ) is then a subgradient at λ, where ∂ϕ(λ) denotes

the subdifferential at λ. Updating λ according to

λ(l+1) =
(

λ(l) − a(l)g(λ(l))
)

+
, (11.8)

with an appropriate diminishing step size a(l), the costs λ(l) will converge to the optimal. The
master algorithm controlling the cost (λ) is illustrated in Figure 11.2. A cost λ is broadcasted by
the master algorithm and the results are returned by the subproblems (in this case the SOSPs).

Drive train Tower Lead-lag blade bending

Master algorithm

α∗i ,γ
∗
i λ α∗i ,γ

∗
i λ α∗i ,γ

∗
i λ

Figure 11.2: Using dual decomposition, all subproblems can be solved in parallel, with a master algorithm
(in this case the subgradient method) distributing costs of the shared variables.

The algorithm is run until the dual variables have settled, and the best solution is used. It
should be noted that, using the subgradient method the result is not guaranteed to improve at
each iteration. Additionally, the solution is not guaranteed to be feasible at each iteration. The
dual decomposition algorithm is given in Algorithm 1. As with the SOSPs in Section 10.2, the
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solution of a given SOSP will be relaxed (post-processed) to a feasibility problem, to obtain a
better numerical result.

Algorithm 1 Dual algorithm to solve (11.2)

1. Initialise l = 0 and λ0.
2. Each subproblem is solved in parallel by computing SOS Program 6, and the

solutions α∗ and γ∗ are reported.
3. The master algorithm updates the constraint costs with the subgradient iterate

(11.8), and broadcasts the new costs λ(l+1).
4. Update l← l + 1 and go to step 2 (if costs have settled, go to step 5)
5. Post-process with objective relaxation and feasibility verification.

11.2.2 Computation

In the following, a compositional safety envelope of the drive train, tower and lead-lag blade
bending subsystems will be constructed. This is done using the SOSP formulation given in SOS
Program 6 and by updating the dual variables using the subgradient method given in (11.8). The
procedure will be executed as in Algorithm 1.

The sets Xi and Xu,i of the subsystems will be defined as in Section 10.2, with X and Xu given
by the Cartesian products of the subsystem sets.

Algorithm 1 is initialised in λ0 = [0.5, 0.5, 0.5] and the step size of the subgradient given as
a(l) = 0.01

10+l . In Figure 11.3 the iterative results of Algorithm 1 are illustrated. The best objective
is denoted d∗ and the Lagrange multipliers are illustrated as functions of iterate number l.
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Figure 11.3: Left plot shows the best results of the objective d∗ obtained up to iterate l. The right plot
shows the evolution of the Lagrangian multipliers as function of iterate number l.

The computation was run on a 2.6 GHz AMD64, 96 GB ram computer and took 14 hours to
complete. The optimisation script implemented in MATLAB with YALMIP can be found on the
enclosed DVD.

The optimal value d∗ =
∑
i di is, as in Section 10.2, relaxed and solved as a feasibility problem

di > 0.75d∗i to obtain a better numerical result (post-processing step in Algorithm 1). The resulting
feasible value is found to d =

∑
i di = 35.47.

In the following Section the above found barrier certificate will be tested on the NREL 5-MW wind
turbine in FAST. This is done to examine if a practical useable result has been obtained. Notice
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that the assembled unsafe set Xu is defined by the Cartesian product Xu = Xu,r ×Xu,t ×Xu,LL of
the subsystems.

To design a safety envelope which is safe for each subsystem ultimate load limits separately, several
different compositional barrier certificates must be constructed using the unsafe sets

Xu,1 = Xu,r × Rnt × RnLL , Xu,2 = Rnr ×Xu,t × RnLL , Xu,3 = Rnr × Rnt ×Xu,LL,

where nr, nt and nLL are the dimensions of the respective subsystem state spaces. A composed
safety envelope can be constructed by the intersection of the computed safety envelopes, X0 =⋂
i X0,i.

11.3 Implementation Results

In this section the safety supervisor found using the compositional barrier certificate method is
implemented and tested on the NREL 5-MW wind turbine implemented in FAST.

A safety envelope can, as described in Section 11.1, be constructed as

X0 =
{

(xr,xt,xLL) ∈ Xr ×Xt ×XLL

∣∣∣∣∣∑
i

(
(xi − ci)TBi(xi − ci)

)
− d ≤ 0

}
.

To prevent that the system enters the unsafe set Xu, the safety supervisor should trigger an
emergency shutdown when the sum of the evaluated safety envelopes becomes positive.

The resulting safety supervisor system is given in (11.9).

S =
{

Safe,
Unsafe,

x ∈ X0

else
(11.9)

If S becomes unsafe, the safety supervisor should trigger an emergency shutdown.

As the safety needs to be continuously verified, evaluation of the polynomials needs to be fast
to compute. To test the safety of the system, a second order polynomial in seven variables is
evaluated. The evaluation involves 18 multiplications and 34 summations.

In the following, the safety supervisor system in (11.9) is implemented on the NREL 5-MW wind
turbine in FAST. When the system is safe, the control of the wind turbine is given by the NREL
5-MW controller. When an unsafe situation is detected by the safety supervisor, the emergency
shutdown procedure is initialised.

The four safety critical situations from Section 10.3 are tested. Additionally a normal operation
simulation with no controller faults or external extreme conditions is illustrated in Appendix M (to
verify that the safety supervisor does not shut down the wind turbine during normal operation).
The four safety critical situations are listed below, each coupled with a figure. The figures are
separated into two parts. The top part illustrates the signals of the system. The bottom part
illustrates the evaluation of the safety condition

∑
i

(
(xi − ci)TBi(xi − ci)− di

)
(if the result of

the evaluation becomes positive, the emergency shutdown is triggered).

1. Blade-pitch controller error (Figure 11.4)

The compositional safety supervisor is able to detect the safety critical situation and safely
shut down the wind turbine.

2. Wind gust (Figure 11.5)

The compositional safety supervisor is able to detect the safety critical situation and safely
shut down the wind turbine.
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3. Generator failure (Figure 11.6)

The compositional safety supervisor is able to detect the safety critical situation and safely
shut down the wind turbine.

4. Blade-pitch controller error & generator failure (Figure 11.7)

The compositional safety supervisor is able to detect the safety critical situation and safely
shut down the wind turbine.

The safety supervisor designed using the compositional barrier certificate method is able to safely
shut down the wind turbine in all four safety critical situations. This is in contrary to the safety
supervisor designed using the separate safety envelopes, which was not able to detect the combi-
nation of pitch and generator fault. As the safety system is designed according to the Cartesian
product of the unsafe sets of the subsystems, it is expected that situations can be found for which
the safety system does not manage to keep the system safe. An implementation of the safety
supervisor in SIMULINK can be found on the enclosed DVD.
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Figure 11.4: Safety critical situation 1. Top 6 plots show system signals. Bottom plot shows evaluation
of safety supervisor. A pitch control error is introduced.
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Figure 11.5: Safety critical situation 2. Top 6 plots show system signals. Bottom plot shows evaluation
of safety supervisor. A wind gust is introduced.
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Figure 11.6: Safety critical situation 3. Top 6 plots show system signals. Bottom plot shows evaluation
of safety supervisor. A generator torque failure is introduced.
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Figure 11.7: Safety critical situation 4. Top 6 plots show system signals. Bottom plot shows evaluation
of safety supervisor. A pitch control error and generator torque failure is introduced.
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12Conclusion

The scope of this project is to design a safety supervisor system for a wind turbine. The objective
of the safety supervisor design is to improve the safety guarantee of large wind turbines while at
the same time keeping the number of emergency shutdowns low, such that the power production is
not interrupted unnecessarily. The design of the safety supervisor system is based on the fictitious
NREL 5-MW wind turbine, which represents a realistic large multi-megawatt wind turbine. An
existing reference variable-speed, variable-blade-pitch controller is used to control the wind turbine
power production in normal operation.

The IEC-61400 standard specify requirements to the external conditions for which a given wind
turbine should be able to stay safe. In the specific case of the NREL 5-MW wind turbine, it
is found that the wind turbine in operation should be able to handle wind gusts up to 35 m/s.
Consequently, this requirement should be included in the design of the safety supervisor system.
The IEC-61400 standard additionally provides some recommendations to how a safety system
can be implemented using a safety supervisor which triggers an emergency shutdown when the
condition of the wind turbine system is about to become unsafe. It is in IEC-61400 noted that the
emergency shutdown procedure itself is important to consider when the safety supervisor system
is designed.

From an examination of the NREL 5-MW wind turbine, it is found that the wind turbine expe-
riences considerable loads during an emergency shutdown. Additionally it is found that a safety
supervisor should be able to include the energy of the system and the emergency shutdown proce-
dure itself, in the emergency shutdown trigger - in order to avoid that the ultimate load limits of
the wind turbine are violated. These results indicate that a conventional rotor overspeed guard is
a possible insufficient safety supervisor implementation, given a large wind turbine. Accordingly,
it is chosen to consider a multivariate safety supervisor system.

Safety Verification Methods

To design a multivariate safety supervisor system which includes the stochastic behaviour of the
wind and the emergency shutdown procedure itself in the safety guarantee, methods based on mea-
surements, simulations and system model examination are considered. It is found that Lyapunov-
like methods can provide information about the safety of the system, without the need of explicit
knowledge of the system trajectories. Additionally, such a formulation allows inclusion of a wind
disturbance and the emergency shutdown procedure in the safety guarantee.

Due to primarily the aerodynamic properties of the wind turbine a linear model description is
found insufficient. As a result, familiar methods, such as the Lyapunov equation, cannot be used
to examine the system. A similar concept based on barrier certificates is considered. The barrier
certificate method enables safety verification of a set in the state space, without the need of explicit
knowledge of system trajectories. If the system is found to be safe in some subset of the safe set,
this set is denoted a safety envelope.

The safety envelope search using barrier certificates is a model-based method. To use the SOS
framework, a polynomial model of the wind turbine system must be developed.
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Modelling

To limit the complexity of the safety supervisor design, it is chosen to consider only the safety of
specific structural parts of the wind turbine. The specific components which are included in the
safety guarantee are found partly from observations of NREL 5-MW wind turbine simulations and
partly from literature (experiences from other wind turbines).

The model includes the dynamics of the structural components which are found to be exposed
to significant loads during normal operation and the emergency shutdown itself. The modelled
components include the aerodynamic properties of the rotor, a two-mass drive train, the tower fore-
aft bending, the blade flapwise bending, the blade lead-lag bending, the pitch procedure during
emergency shutdown and a scalar wind model. The model parts are assembled into one complete
13-state polynomial model. The aerodynamic model includes polynomial approximations of the
aerodynamic properties of the rotor, which are often given as lookup tables. To approximate the
aerodynamic properties relatively high order polynomials are required to obtain a satisfactory
approximation.

The model is developed as an autonomous model of the emergency shutdown procedure, with a
single disturbance input from the wind. The resulting model can be used to find emergency shut-
down trajectories from a given initial state. Using the model it can be examined if an emergency
shutdown initiated in a given initial state produces a safe or unsafe shutdown trajectory. The
model parameters are found partly from the specification of the NREL 5-MW wind turbine and
partly through simulation.

The polynomial model is compared to the NREL 5-MW wind turbine implemented in FAST and
is found to replicate the modelled dynamics satisfactory. This result shows that it is possible to
obtain a reasonable dynamic model of the specific NREL 5-MW wind turbine using a polynomial
system description only. This is considered essential, as it enables a search of safety envelopes
using barrier certificates.

Operation Analysis

From the polynomial system description a theoretical safety supervisor system can be found. In
practice the safety system should be designed with respect to the normal operation of the wind
turbine system. To obtain some knowledge of the normal operation of the wind turbine, the system
states are measured during typical external conditions. The knowledge of the normal operation
enables a search of a safety supervisor system which is designed specifically towards the normal
operation of the wind turbine. A natural objective in this case is to design a safety system which
covers the normal operation region best possible; as this entails that the frequency of emergency
shutdowns is lowered.

Safe Operation Envelope

It is chosen to consider safety envelopes limited to the shape of hyperellipsoids. The hyperellipsoid
allows the center, scaling, orientation and shape as degrees of freedom. Additionally it is found
that a range of optimisation criteria of a hyperellipsoid can be formulated in an SDP. In particular
it is found that an optimisation of the trace of the hyperellipsoid can be formulated in an SDP.
This measure resembles an optimisation of the volume of the hyperellipsoid. Additionally it is cho-
sen to consider hyperellipsoids with locked center, orientation and shape, found from the normal
operation of the wind turbine. It is found that the combination of trace optimised hyperellipsoids
and hyperellipsoids locked to the normal operation provide a reasonable criterion to design prac-
tical useable safety envelopes and consequently a practical usable safety supervisor system. As a
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safety envelope can be obtained by an union of safety envelopes, the two optimisation criteria can
be combined into one safety supervisor system.

Computation of Safety Envelope

The search of safety envelopes is formulated using the Positivstellensatz and sum of squares de-
composition. The resulting problem becomes a sum of squares program, which can be passed
as an SDP. The sum of squares program is formulated as an optimisation problem in which the
safety envelope, shaped as a hyperellipsoid, is maximised. This is in contrary to the verification
problems for which the barrier certificate method is originally proposed.

It is found that the developed 13-state wind turbine system produces a very large sum of squares
program. Unfortunately, the program cannot be solved when formulated directly from the 13-state
wind turbine system on a standard PC. When the sum of squares program is formulated as an
SDP, the resulting program requires considerable memory and computation time. Additionally it
is found that large sum of squares programs often produce numerical difficult problems, which are
difficult to solve accurately on a standard PC.

To obtain a problem which can be computed in practice, the wind turbine system model is sep-
arated into parts. In this way the model parts can be individually formulated as sum of squares
programs of reasonable size. Safety envelopes matching each model part using trace and locked
hyperellipse optimisation criteria are found. This relaxation of the safety envelope search problem
enables the search of separate safety envelopes to be computed on a standard PC in reasonable
time. The disadvantage of this relaxation technique is that the interconnections of the model parts
should be formulated manually as bounded disturbances, which requires some practical knowledge
of the system in order to maintain the validity of the safety guarantee.

Safety envelopes of each of the separate model parts are found using sum of squares and barrier
certificates. Trajectories initialised in a range of initial points within the safety envelopes are
tested and found to be safe. Additionally the resulting safety supervisor system designed using
the safety envelopes are implemented and tested in FAST. The safety supervisor system manages
to shut down the wind turbine prior to any exceedance of ultimate load limits in three out of four
situations. In the case of two coincident safety critical events, the safety supervisor system is not
able to initialise the emergency shutdown procedure in time to avoid exceedance of the ultimate
load limits. Additionally as modelling uncertainties are not included in the design of the safety
supervisor, it cannot be guaranteed that the safety system implemented on the NREL 5-MW wind
turbine in FAST provides a valid safety guarantee in every situation.

Compositional Safety Envelope

In order to obtain a safety supervisor system calculated from the complete wind turbine system
(in contrary to separate model parts), the recently proposed method of compositional barrier
certificates is utilised. Using this method, the interconnections of the model parts are included
directly in the formulation of the problem. The compositional barrier certificate method is used
in association with the dual decomposition method to iteratively obtain a feasible safety envelope.
The disadvantage of this strategy is that the sum of squares programs should be solved a number
of times, in order to obtain a feasible solution. In practice it is found that the sum of squares
programs of the model parts should be solved approximately 100 times. As the calculation time
of the drive train subsystem is approximately 4 hours, this result in significant computation time.
In order to reduce the computation time, simplifications to the model parts are implemented.
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Using the simplified model parts, the compositional barrier certificate method enables a search of
safety envelopes which are valid for the complete system to be computed in practice on a standard
PC. If a system can be separated into small easily solved system parts with a few interconnections
between the parts - the compositional method seems to be a very advantageous barrier certificate
search method in practice.

The safety supervisor system designed using the compositional barrier certificate method and the
Cartesian product of the unsafe sets, is implemented and tested on the NREL 5-MW wind turbine
in FAST. The results show that it is reasonable to assume that a practical useable safety supervisor
system can be designed using this method.

Overall Conclusion

Given the results obtained in this project, it can be concluded that a multivariate model-based
safety supervisor system can improve the safety guarantee and possibly improve the uptime of
large wind turbines, compared to simple univariate safety supervisors often used today. The im-
plemented safety supervisor showed ability to commence emergency shutdowns prior to unsafe
situations and to stay passive during normal operation of the wind turbine. Using the concept of
safety envelopes and barrier certificates the ultimate load limits of several safety critical compo-
nents, the emergency shutdown procedure itself and the stochastic disturbance of the wind field
can be directly formulated in a computationally tractable search of a safety supervisor system.

In practice, it is found that the barrier certificate method using sum of squares programs sometimes
produce numerical difficult problems, which complicates the search of valid safety supervisor sys-
tems. Using the recent proposed method of compositional barrier certificates, the computational
requirements of the sum of squares programming are lowered, which allow the search of safety
envelopes on relative large problems. It seems, however, that the numerical aspect of solving sum
of squares programs is still immature.

In general the combination of a polynomial model description, safety envelopes, barrier certificates
and sum of squares programming provide a framework which is very suitable in relation to safety
supervisor design. By combining the theoretical power of the framework with practical system
knowledge and experience, the framework can in its current state be used in the design of safety
supervisor systems.

As the safety system design is model-based, the validity of the safety guarantee is limited by
model uncertainties and measurement errors. In order to obtain a practical valid safety guarantee,
the possible model and measurement uncertainties must be included in the design of the safety
supervisor system.

In the following chapter some suggestions to further work and some inspirational suggestions to
solutions to the limitations of the results obtained in the project are proposed.
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13Future Work

In order to make the safety envelopes applicable to real wind turbines, further work needs to be
conducted. In the proposed method, no regards is taken towards model uncertainties. This chapter
contains ideas to make the safety envelope robust towards model uncertainties. Furthermore, it
is shown how different barrier certificates from different models can be composed into one safety
criteria (e.g. in the case of varying mean wind speeds).

13.1 Robust Safety Envelope

In this section model uncertainties included in the safety guarantee are briefly examined.

The safety envelopes designed in Chapter 10 and 11 are valid given that the system model is an
exact representation of the real wind turbine system. As a consequence, the safety envelopes will
not necessarily guarantee the safety of the physical wind turbine system. The model uncertainty
will be a result of several factors, such as simplifications of the model, parameter uncertainties,
insufficient model structure and time varying system parameters. It is assumed that the real
system description is unknown but in the family of possible models [STCS98].

In the following, the class of model parameter uncertainties is included in the construction of safety
envelope. The vector of uncertain parameters in the dynamical system is given as δ = (δ1, ..., δp).
Two different cases of parameter uncertainties are considered:

• Time-invariant uncertainties

• Time-varying uncertainties

In the case of time-invariant parameter uncertainties, the parameters δ are considered as being
fixed but unknown. The case of time-varying parameter uncertainties considers an unknown and
time varying vector δ(t), belonging to the uncertainty set δ(t) ∈ ∆,∀t. In many practical situations
it seems reasonable to assume that a combination of time-invariant uncertainties and time-varying
uncertainties are present. The class of time-invariant uncertainties can be included in the class
of time-varying uncertainties by including an additional constraint of zero rate of change, on the
relevant uncertain parameters [SW04].

Given a vector of parameter uncertainties, the dynamical system becomes

ẋ(t) = f(x(t), δ(t)),

where the elements in δ are either fixed or time-varying.

If the parameters δ(t) coincide with the system state terms, the system becomes non-linear even
if f is linear. In the case with f being polynomial as e.g.

ẋ1 = δ1x
2
1 + δx2 + δ3,

the system, with introduction of varying δ, stays polynomial. As the system description stays
polynomial, the search of a safety envelope can be formulated using barrier certificates and the
SOS framework. Given the varying uncertainty δ ∈ ∆, the weak barrier certificate formulation in
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(9.4) becomes

B(x) ≤ 0, ∀(x) ∈ X0,

B(x) > 0, ∀(x) ∈ Xu,

∇B(x)f(x, δ,d) ≤ 0, ∀(x, δ,d) ∈ X ×∆×D,

where only the differential constraint is different from the original weak barrier certificate formu-
lation. The parameter uncertainty set ∆ is given as an semi-algebraic set as in (9.16), such that
g∆ ≥ 0 in ∆.

Using Stengle’s Positivstellensatz, the set which should be empty becomes

K =
{

x ∈ R
∇B(x)f(x) ≥ 0

g∆ ≥ 0

}
,

which is equivalent to

−s0∇B(x)f(x, δ,d)−
p∑
i=1

g∆,isi ∈ Σ

with {s0, ..., sp} ⊂ Σ. If a feasible solution to the resulting SOSP can be found, then the initial
set X0 is a safety envelope to the system, which is valid given any parameter in ∆.

13.2 Wind Span

An implementation of a safety supervisor system should guarantee the safety of the wind turbine
system in the wind span defined by the IEC-61400 standard, as described in Chapter 3. A centrally
computed SOSP given the entire wind span becomes very large.

In order to reduce the size of the safety envelope search, the aerodynamic polynomial approxi-
mations are in Chapter 10 limited to cover a part of the wind field range. Specifically the safety
envelope search is limited to cover the wind range vw = [15m/s ; 25m/s]. This simplification
allows the search of safety envelope to be achievable. Assuming that a reliable measurement of
the mean wind is available, the ranges of the 50 years wind gusts can be separated according to a
specific mean wind speed.

Wind gusts given a range of different mean wind speed, calculated using Equation (3.1), are
illustrated in Figure 13.1.

 

 

Mean wind

Gust range

IEC wind gust ranges

Wind speed, vw

0 5 10 15 20 25 30 35

Figure 13.1: The 50 years wind speed gusts (Ve50) calculated for a range of mean wind speeds.

By separating the wind field into parts of the wind field range and constructing safety envelopes for
each part, the entire operational mean wind speed range can be covered by the safety supervisor.
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The concern using this concept is the validity of the safety guarantee when the mean wind speed
changes from one safety envelope design to another.

A possible solution might be to consider the system as a hybrid system. In [PJP07] safety verifi-
cation of hybrid systems using barrier certificates is discussed. To verify the safety of the hybrid
system, barrier certificates are constructed from a set of functions, where each function corresponds
to a discrete location of the system (in this case a mean wind speed). The functions are linked
through discrete transition conditions, which take care of the transitions between the continuous
systems. The approach is similar to stability analysis of hybrid systems using a range of Lyapunov
functions.

Theorem 7 [PJP07]: Let l ∈ L be a finite set of discrete locations, Init(l) = {x ∈ X : (l,x) ∈
X0}, Unsafe(l) = {x ∈ X : (l,x) ∈ Xu}, Guard(l, l′) define the possible transitions from location
l to l′ with reset map Reset(l, l′). Suppose there exists a collection of functions {Bl(x) : l ∈ L}
which for all l ∈ L, l 6= l′, satisfy

Bl(x) ≤ 0, ∀x ∈ Init(l),
Bl(x) > 0, ∀x ∈ Unsafe(l),

∇Bl(x)fl(x,d) < 0, ∀(x,d) ∈ I(l)×D(l)
such that Bl(x) = 0,

Bl′(x′) ≤ 0, ∀x′ ∈ Reset(l, l′)(x)
for all x ∈ Guard(l, l′) s.t. Bl(x) ≤ 0.

Then the safety of the system is guaranteed.

If it is possible to construct barrier certificates of each of the systems defined by a mean wind speed
and a turbulence disturbance, and the barrier certificates satisfy Theorem 7, then the systems is
guaranteed to be safe within the combined mean wind span.
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AEmergency Shutdown Trigger

In this appendix the tower top displacement and velocity trajectory illustrated in the right plot
in Figure 4.3, is given as a function of time.

The tower top displacement and tower top velocity during the safe emergency shutdown trigger
are illustrated in Figure A.1. The safe emergency shutdown trigger is given by red dashed lines.
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Figure A.1: Simulation of emergency shutdown trigger. The top plots show the horizontal hub height wind
speed, rotor angular velocity and blade-pitch angle respectively. The bottom left plot shows the displacement
of the tower top. The bottom right plot shows the velocity of the tower top. The black and red dashed lines
indicate the ultimate load limit and the emergency shutdown trigger time respectively.

From Figure A.1 it can be seen that the ultimate load limit of the tower is not exceeded. The chosen
multivariate emergency shutdown trigger manages to keep the tower safe during the increase in
wind speed. It should be noted that this emergency shutdown trigger is not guaranteed to keep
the system safe in general.
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BAerodynamic Table

Approximation

In this appendix the polynomial approximations of Ct and Cq tables can be found. The results
are presented in Section 6.3.

The Ct and Cq lookup tables takes 3 inputs, the wind speed vw, the rotor angular velocity ωr and
the blade-pitch angle β. The output of the tables are the thrust Ct and torque Cq coefficients
respectively.

In Section 6.3 the lookup tables are approximated by a range of polynomials with different or-
der. The approximations are done using linear least squares. Least squares can be used in the
approximation as the approximation problem is linear in the coefficients.

The number of free coefficients in the approximation is depending on the order of the polynomial
and the number of variables. The total number of coefficients can be found using

ctot =
(

2d+m

2d

)
= (2d+m)!

2d!m! , (B.1)

where m is the number of variables and n = 2d is the order of the polynomial [Par03]. Each
coefficient is multiplied by a monomial with order equal to or less than the order of the polynomial.
In Figure B.1 the number of coefficients is plotted with growing polynomial order and 3 variables.
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Figure B.1: The number of coefficients in a n-order polynomial with 3 variables.

Below the approximation of a 2nd order polynomial to a lookup table is be given. As the polynomial
order is 2 and the number of variables is 3, the total number of coefficients to be found is using
(B.1) found to ctot = 10.

The i points (Cx,i, vw,i, ωr,i, βi) in the lookup table are inserted in the polynomial structure. Given
a 2nd order polynomial structure with 10 coefficients and i lookup table points, the i polynomials

127



can be written as

Cx,1 = c1v
2
w,1 + c2ω

2
r,1 + c3β

2
1 + c4vw,1ωr,1 + c5vw,1β1 + c6ωr,1β1 + c7vw,1 + c8ωr,1 + c9β1 + c10

Cx,2 = c1v
2
w,2 + c2ω

2
r,2 + c3β

2
2 + c4vw,2ωr,2 + c5vw,2β2 + c6ωr,2β2 + c7vw,2 + c8ωr,2 + c9β2 + c10

...
Cx,i = c1v

2
w,i + c2ω

2
r,i + c3β

2
i + c4vw,iωr,i + c5vw,iβi + c6ωr,iβi + c7vw,i + c8ωr,i + c9βi + c10.

(B.2)

The i polynomials in (B.2), can be written as a linear system


Cx,1

Cx,2
...

Cx,i

 =


v2

w,1 ω2
r,1 β3

1 vw,1ωr,1 vw,1β1 ωr,1β1 vw,1 ωr,1 β1 1
v2

w,2 ω2
r,2 β3

2 vw,2ωr,2 vw,2β2 ωr,2β2 vw,2 ωr,2 β2 1
...

v2
w,i ω2

r,i β3
i vw,iωr,i vw,iβi ωr,iβi vw,i ωr,i βi 1





c1

c2

c3

c4

c5

c6

c7

c8

c9

c10



.

The coefficients of the overdetermined system can be approximated using linear least squares,
given as

A†(vw,ωr,β)cx = c, (B.3)

where A(vw,ωr,β) is the matrix containing the input values, cx is the vector of output values and
c is the vector of unknown coefficients.

The least squares solution to (B.3) is found using MATLAB. The script used in Section 6.3 in the
approximation of Ct and Cq with a range of different polynomial orders, can be found on the
enclosed DVD.

Results of the least squares approximation are illustrated in Figure 6.7 and 6.8 in Section 6.3.
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CDrive Train Calculations

In this appendix the calculations done in the design of the drive train model can be found. Details
about the modelling of the drive train can be found in Section 6.4.1.

The drive train system is given by the following equations

Jrω̇r = τr −Brωr − τa1 , (C.1)
Jgω̇g = τa2 −Bgωg − τg. (C.2)

The torques delivered by the shafts are given as

τa1 = Ka1(θr − θn1) +Ba1(ωr −Nωg), (C.3)

τa2 = Ka2

(
θn1

N
− θg

)
. (C.4)

The sum of the torques through the gear equals zero. The angle of the of the gearbox (θn1 in
Figure 6.10) is found by

Ka1(θr − θn1) +Ba1(ωr −Nωg) =
(
Ka2

(
θn1

N
− θg

))
1
N
⇔

θn1 = N(Ka1Nθr +Ka2θg +Ba1N(ωr −Nωg))
Ka1N

2 +Ka2

. (C.5)

The torque τa1 given in (C.3) is substituted into (C.1)

Jrω̇r = τr −Brωr − [Ka1(θr − θn1) +Ba1(ωr −Nωg)] . (C.6)

The angle of the gearbox θn1 in (C.5) is substituted into (C.6)

Jrω̇r =τr −Brωr −
{
Ka1

[
θr −

(
N(Ka1Nθr +Ka2θg +Ba1N(ωr −Nωg))

Ka1N
2 +Ka2

)]
+Ba1(ωr −Nωg)

}

=τr −Brωr −
[
Ka1θr(Ka1N

2 +Ka2)
Ka1N

2 +Ka2

−
K2

a1
N2θr +Ka1Ka2θgN +Ka1Ba1N

2(ωr −Nωg)
Ka1N

2 +Ka2

]

− Ba1(ωr −Nωg)(Ka1N
2 +Ka2)

Ka1N
2 +Ka2

=τr −Brωr −
Ka1Ka1(θr −Nθg) +Ba1Ka1(ωr −Nωg)

Ka1N
2 +Ka2

=τr −Brωr −
Ka1Ka2

Ka1N
2 +Ka2

(θr −Nθg)− Ba1Ka1

Ka1N
2 +Ka2

(ωr −Nωg). (C.7)

The torque τa2 in (C.4) is substituted into (C.2)

Jgω̇g = Ka2

(
θn1

N
− θg

)
−Bgωg − τg. (C.8)
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The angle of the gearbox θn1 in (C.5) is substituted into (C.8)

Jgω̇g = Ka2

(
1
N

(
N(Ka1Nθr +Ka2θg +Ba1N(ωr −Nωg))

Ka1N
2 +Ka2

)
− θg

)
−Bgωg − τg

= Ka1Ka2N(θr −Nθg) +Ba1Ka2N(ωr −Nωg)
Ka1N

2 +Ka2

−Bgωg − τg

= Ka1Ka2

Ka1N
2 +Ka2

N(θr −Nθg) + Ba1Ka2

Ka1N
2 +Ka2

N(ωr −Nωg)−Bgωg − τg. (C.9)

Identical constant terms are found in both (C.7) and (C.9). These are collected into new constants
given as

Ka ,
Ka1Ka2

Ka1N
2 +Ka2

, (C.10)

Ba ,
Ba1Ka2

Ka1N
2 +Ka2

. (C.11)

The new constants (C.10) and (C.11) are substituted into (C.7) and (C.9), resulting in the following
system equations

Jrω̇r = τr −Brωr −Ka(θr −Nθg)−Ba(ωr −Nωg),
Jgω̇g = KaN(θr −Nθg) +BaN(ωr −Nωg)−Bgωg − τg.

The above calculations are used in the modelling of the wind turbine drive train described in
Section 6.4.1.
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DBlade-Pitch Model Calculations

In this appendix the calculations done in the design of the blade-pitch model can be found. The
calculations are done partly using MATLAB.

The original system is in symbolic form given as

Apitch =
[
−a1,β −a2,β

1 0

]
.

The eigenvectors of the system are found to be

P = [v1,v2] =
[
− a1,β

2 −
√

a1,β2−4 a2,β
2

√
a1,β2−4 a2,β

2 − a1,β
2

1 1

]
.

The decoupled system Ãpitch is found using the above state transformation,

Ãpitch = P−1ApitchP
=− 1√

a1,β2−4 a2,β

1
2 −

a1,β

2
√

a1,β2−4 a2,β
1√

a1,β2−4 a2,β

a1,β

2
√

a1,β2−4 a2,β
+ 1

2

[−a1,β −a2,β

1 0

][
− a1,β

2 −
√

a1,β2−4 a2,β
2

√
a1,β2−4 a2,β

2 − a1,β
2

1 1

]

= 2 a2,β√
a1,β2−4 a2,β

− a1,β
2 −

a1,β
2

2
√

a1,β2−4 a2,β
0

0 a1,β
2

2
√

a1,β2−4 a2,β
− 2 a2,β√

a1,β2−4 a2,β
− a1,β

2

 .
As the transformed system Ãpitch is now decoupled, the solutions to the first order differential
equations can be found directly. By using the invers transformation, the solution to the original
system is found [

ωβ(t)
θβ(t)

]
= P

[
eÃpitch(1,1)t 0

0 eÃpitch(2,2)t

]
P−1

[
c1

c2

]

The initial conditions are given by c1 and c2. The initial conditions is set to c1 = 0 and c2 = 90.

ωβ(t) = −

90 a2,β

e
a1,β

2 t√
a1,β2−4 a2,β − e

4 a2,β t√
a1,β2−4 a2,β


e

a1,β t
2 e

2 a2,β t√
a1,β2−4 a2,β e

a1,β2 t

2
√

a1,β2−4 a2,β
√

a1,β2 − 4 a2,β
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θβ(t) =

45
(

e
4 a2,β t√

a1,β2−4 a2,β

√
a1,β2 − 4 a2,β − a1,β e

4 a2,β t√
a1,β2−4 a2,β +

e
a1,β

2 t√
a1,β2−4 a2,β

√
a1,β2 − 4 a2,β + a1,β e

a1,β
2 t√

a1,β2−4 a2,β

)
(

e
a1,β t

2 e
2 a2,β t√

a1,β2−4 a2,β e
a1,β

2 t

2
√

a1,β2−4 a2,β

√
a1,β2 − 4 a2,β

)−1
(D.1)

The time t = 5.625 and the solution θβ(t) = 45 is substituted into (D.1). The value of the
constant a1,β is iteratively found, and inserted into (D.1), such that the resulting system yields
real eigenvalues. In (D.2) a1,β = 0.6.

0 =

e
11.3 a2,β√

0.4−4.0 a2,β
− 1.0√

0.4−4.0 a2,β
−1.7 (

45.0
√

0.4− 4.0 a2,β − 27.0
)√

0.36− 4.0 a2,β
+

e
1.0√

0.4−4.0 a2,β
−

11.3 a2,β√
0.36−4.0 a2,β

−1.7 (
45.0

√
0.4− 4.0 a2,β + 27.0

)√
0.36− 4.0 a2,β

− 45.0 (D.2)

Equation (D.2) is solved using MATLAB, resulting in a2,β = 0.089.

The constants a1,β and a2,β are inserted into the original system[
ω̇β

θ̇β

]
=
[
−0.6 −0.0894

1 0

][
ωβ

θβ

]
. (D.3)

The eigenvalues of the system in (D.3) are λ = [−0.3250− 0.2750]T.

The system in (D.3) is designed such that the blade-pitch angle goes from some value to zero.
During an emergency shutdown, the angle will go to 90◦. To obtain this an output equation is
designed

β = −θβ + 90.

A simulation of the system can be found in Figure 6.23b on Page 47.
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EModel Composition

In this appendix the composition of the model subsystems will be done. In Section 6.7 the final
model is presented. The model subsystems are developed in Chapter 6.

The model subsystems include:

• Drive train

• Flapwise blade bending

• Lead-lag blade bending

• Tower

• Blade-pitch actuator system

• Wind Model

The model subsystems should be assembled into one complete state space model. To do this,
the model equations must only be dependent on states, inputs and disturbances. In the following
each subsystem will be made ready for the final composition. This is done by substitution and
rearranging of the equations.

Drive train

The drive train model equations from Section 6.4.1 are given as

ω̇r = J−1
r [τr −Brωr −Kaθ∆ −Ba(ωr −Nωg)] ,

ω̇g = J−1
g [KaNθ∆ +BaN(ωr −Nωg)−Bgωg − τg] ,

θ̇∆ = ωr −Nωg,

with τg as input. The term τr is given in Equation (6.24) as τr = τaero(1− ξLL) +KLL
hθLL,x.

Substitution by τr gives

ω̇r = J−1
r
[
τaero(1− ξLL) +KLL

hθLL,x −Brωr −Kaθ∆ −Ba(ωr −Nωg)
]
,

ω̇g = J−1
g [KaNθ∆ +BaN(ωr −Nωg)−Bgωg − τg] ,

θ̇∆ = ωr −Nωg.

The drive train equations are expanded and simplified to

ω̇r = 1− ξLL

Jr
τaero + KLL

Jr

hθLL,x + BaN

Jr
ωg −

Br +Ba

Jr
ωr −

Ka

Jr
θ∆,

ω̇g = KaN

Jg
θ∆ + BaN

Jg
ωr −

BaN
2 +Bg
Jg

ωg −
1
Jg
τg,

θ̇∆ = ωr −Nωg,

where τaero is input from the aerodynamic model and τg is an external input.
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Flapwise blade bending

The flapwise blade bending model equations given in (6.23) are given as
hv̇flap,x = M−1

flap
[
Faeroξflap −Kflap

hxflap −Bflap
hvflap,x

]
− tv̇fa,x,

hẋflap = hvflap,x,
(E.1)

with external input Faero and the term tv̇fa,x from the tower equations. The term tv̇fa,x can be
found from Equation (6.27) to

tv̇fa,x = Ltω̇fa,y = (MnL)−1 [FrL+ FgL
tθfa,y −Kfa

tθfa,y −Bfa
tωfa,y

]
,

with Fr given in Equation (6.20) to

Fr = Faero(1− ξflap) +Kflap
hxflap.

The terms are substituted into (E.1)
hv̇flap,x = M−1

flap
[
Faeroξflap −Kflap

hxflap −Bflap
hvflap,x

]
− (MnL)−1 [(Faero(1− ξflap) +Kflap

hxflap)L+ FgL
tθfa,y −Kfa

tθfa,y −Bfa
tωfa,y

]
,

hẋflap = hvflap,x.

The flapwise bending equations are expanded and simplified to

hv̇flap,x = ξflap(Mn +Mflap)−Mflap

MflapMn
Faero −

Kflap(Mn +Mflap)
MflapMn

hxflap −
Bflap

Mflap

hvflap,x

− FgL−Kfa

MnL
tθfa,y + Bfa

MnL
tωfa,y,

hẋflap = hvflap,x,

where Faero is given by the nonlinear aerodynamic model.

Lead-lag blade bending

The lead-lag blade bending model equations in (6.25) are given as
hω̇LL,x = J−1

LL
[
τaeroξLL −BLL

hωLL,x −KLL
hθLL,x

]
− ω̇r,

hθ̇LL,x = hωLL,x,
(E.2)

with the term τaero from the aerodynamic model and ω̇r from the drive train equations. The term

ω̇r = J−1
r [τr −Brωr −Kaθ∆ −Ba(ωr −Nωg)] ,

given in (6.19) is substituted into (E.2), giving
hω̇LL,x = J−1

LL
[
τaeroξLL −BLL

hωLL,x −KLL
hθLL,x

]
− J−1

r
[
τaero(1− ξLL) +KLL,

hθLL,x −Brωr −Kaθ∆ −Ba(ωr −Nωg)
]
,

hθ̇LL,x = hωLL,x.

The lead-lag bending equations are expanded and simplified to

hω̇LL,x = ξLL(Jr + JLL)− JLL

JrJLL
τaero −

BLL

JLL

hωLL,x −
KLL(Jr + JLL)

JrJLL

hθLL,x

+ Br +Ba

Jr
ωr + Ka

Jr
θ∆ −

BaN

Jr
ωg,

hθ̇LL,x = hωLL,x,

where τaero is input from the nonlinear aerodynamic model.
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Tower

The tower model equations in (6.27) are given as

tω̇fa,y = (MnL
2)−1 [FrL+ FgL

tθfa,y −Kfa
tθfa,y −Bfa

tωfa,y
]
,

tθ̇fa,y = tωfa,y,

with Fr given in Equation (6.20) to

Fr = Faero(1− ξflap) +Kflap
hxflap.

Substitution by Fr gives

tω̇fa,y = (MnL
2)−1 [(Faero(1− ξflap) +Kflap

hxflap)L+ FgL
tθfa,y −Kfa

tθfa,y −Bfa
tωfa,y

]
,

tθ̇fa,y = tωfa,y.

The tower equations are expanded and simplified to

tω̇fa,y = (1− ξflap)
MnL

Faero + Kflap

MnL
hxflap + FgL−Kfa

MnL2
tθfa,y −

Bfa

MnL2
tωfa,y,

tθ̇fa,y = tωfa,y,

where Fr is input from the nonlinear aerodynamic model and flapwise blade bending.

Blade-pitch actuator system

The blade-pitch model is in (6.29) given as

ω̇β = −0.6ωβ − 0.0894θβ ,
θ̇β = ωβ .

The blade-pitch model is in linear form, and only dependent on states. Consequently, the model
can directly be inserted into the final model of the wind turbine.

Wind Model

The wind model is in (6.32) given as

v̇w,t1 = −0.4167vw,t1 − 0.2222vw,t2 + 2w
v̇w,t2 = 0.1250vw,t1

The wind model is in linear form, and only dependent on states. Consequently, the model can
directly be inserted into the final model of the wind turbine.

The subsystems are now dependent on either states or nonlinear terms. The final model is given
in Section 6.7 on Page 51.
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FPolynomial Model Validation

In this appendix the complete model using polynomial approximations of aerodynamic lookup
tables is compared to the model using the original lookup tables directly. The polynomial ap-
proximations of the aerodynamic lookup tables are described in Section 6.3 on Page 30. The
approximation method is described in Appendix B.
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Figure F.1: Comparison of model simulation using lookup tables and a range of polynomial approxima-
tions. The wind speed vw and pitch angle β are identical in all simulations. Polynomial approximations
using 8th to 12th order polynomials are shown. The five lower plots share the time axis given in the last
plot.

The model given in (6.34) on Page 53 is simulated, used a controlled wind speed vw and blade-
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pitch angle β (the wind turbulence model and autonomous pitch procedure are not used). The
simulation of the model is performed using the original aerodynamic lookup tables as well as a
range of polynomial approximations. In Figure F.1 the simulations are compared. The results of
the comparison are discussed in Section 6.7 on Page 6.7.
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GNormal Operation

Figure G.1 illustrates point clouds of the normal operation simulation using the NREL 5-MW
wind turbine with control system activated. The point clouds are projected onto each plane in the
state space. As nine states were measured during the simulation, this results in 81 projections.

θfa,θfaθfa,ωfaθfa,θLLθfa,ωLLθfa,xflapθfa,vflapθfa,θ∆θfa,ωgθfa,ωr
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Figure G.1: Point cloud projections of the normal operation simulation. Each plot illustrates the point
cloud projected onto the given plane. The mean-values of the clouds are marked by red circles. Note that
the names of the states have been shortened in order to fit all projections into one page.
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Each projection in Figure G.1 is labelled [state1,state2], with the states being one of the nine
states. The first state (state1 ) is given along the x-axis, whereas the second state (state2 ) is given
along the y-axis.
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HUltimate Load Limits

In this appendix, the ultimate load limits of the states are illustrated along with the state his-
tograms obtained from the normal operation simulation. The histograms are explained in detail
in Section 7.2.

In Figure H.1 the remaining histograms of Section 7.2 are illustrated. The ultimate load limits
illustrated are 2x0.1%, except from the ultimate load limit of the rotor angular velocity, which has
been chosen to 1.5x0.1%.

F
re

q
u
en

cy
[-

]

h
θLL,x [rad]

Lead-lag tip bending histogram

F
re

q
u
en

cy
[-

]

h
xflap [m]

Flapwise tip displacement histogram

F
re

q
u
en

cy
[-

]

θ∆ [rad]

Drive train torsion histogram

F
re

q
u
en

cy
[-

]

ωr [rad/s]

Rotor angular velocity histogram

0 0.005 0.01 0.015 0.02 0.0250 2 4 6 8 10 12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450 0.5 1 1.5 2

Figure H.1: Normal operation histograms from the top left the rotor angular velocity, drive train torsion,
flapwise blade tip displacement and lead-lag blade tip bending. The red dashed lines illustrate the ultimate
load limits.

The ultimate load limit values are given in Table 7.2 on Page 60.
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IPositivstellensatz Example

In this appendix a very simple example of the usage of the Positivstellensatz, described in Section
9.3, is given.

Consider two polynomials given by

f1(x1) = −x2
1 − 3x1 − 1,

f2(x1) = −x2
1 + 3x1 − 1.

(I.1)

A semi-algebraic set defined by the polynomials in (I.1) is given by

K =
{

x1 ∈ R
f1(x1) ≥ 0
f2(x1) ≥ 0

}
(I.2)

The objective is to find if there exist a solution to (I.2) in R.

Using the Positivstellensatz defined in (9.9), this question can be formulated as the existence of a
polynomial identity given in (9.10). If this polynomial identity exists, this is a certificate that the
set in (I.2) is empty, i.e. there is no solution in R which satisfy the inequality constraints.

The polynomial identity is given by

f + g2 + h = 0.

As no equalities or inequations are used in the description of the set (I.2), the identity is simplified
as

f = 0, (I.3)

where f is generated by the preordering P(f1, f2). If 0 belongs to the preordering P(f1, f2), then
this is a certificate that the set (I.2) is empty, i.e. no solution in R satisfy the inequalities defined
by f1(x1) and f2(x1). With the preordering the identity becomes

s0 + s1f1 + s2f2 + s3f1f2 = 0,

with {s0, ..., s3} ⊂ Σ.

Recall that the preordering is infinite, but can be reduced to 2r unique terms (in this case four
terms). The difficult part now becomes to find {s0, ..., s3} ⊂ Σ such that the identity is valid. In
this very simple case, the SOS variables can easily be picked by hand.

Substituting f1(x1), f2(x1) and rearranging, the identity becomes

s0 = −s1(−x2
1 − 3x1 − 1)− s2(−x2

1 + 3x1 − 1)− s3(−x2
1 − 3x1 − 1)(−x2

1 + 3x1 − 1)

which is equivalent to showing that

−s1(−x2
1 − 3x1 − 1)− s2(−x2

1 + 3x1 − 1)− s3(−x2
1 − 3x1 − 1)(−x2

1 + 3x1 − 1) ∈ Σ

As R+ ⊂ Σ, the SOS polynomials are chosen as positive constants for simplicity. Picking s1 = 1,
s2 = 1 and s3 = 0, the identity becomes

2x2
1 + 3x1 + 1 + x2

1 − 3x1 + 1 = x2
1 + 2.
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As 2x2
1 +2 is clearly a sum of squares, a solution to the identity in (I.3) exists, which bears witness

to the fact that the set defined in (I.2) is empty. Consequently, the answer to the objective is that
not solution in R exist which satisfy the inequalities.

In Figure I.1 the polynomials in I.1 are illustrated. From the figure it is obvious that no solution
in R satisfy the inequalities defined by f1(x1) ≥ 0, f2(x1) ≥ 0.

 

 

f2(x1)

f1(x1)

x1 [-]
−4 −3 −2 −1 0 1 2 3 4

0

Figure I.1: Illustration of the polynomial inequalities f1(x1) and f2(x1) which define a semi-algebraic
set.
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JSOS Numerical Considerations

In this appendix, the feasibility of the solution to an SOSP solved in YALMIP is described.

The problem of finding the SOS decomposition of a polynomial equals an LMI feasibility problem
of finding a Q such that

A(Q) = b, Q � 0,

where A(Q) is the equality constraints between the polynomials and the SOS decomposition.
Using SDP, the equality A(Q) = b will not be exactly satisfied. If the Gramian Q is "sufficiently"
positive definite, the polynomial is an SOS. The Gramian is however often close to being singular,
which have to be taking in to consideration.

Theorem 8 [L0̈9]: Let r be the residuals from the SDP solving the sum of squares decomposition
f = zTQz, Q ∈ SM. If λmin(Q) ≥M ||r||∞, the polynomial is an SOS.

143



KSOS Calculation Example

In this appendix Example 2 in Section 9.5 is expressed as an LMI [SW04][BV04] and solved using
the popular LMI solver SeDuMi.

Three matrix inequality constraints in Example 2 on Page 85 are given as

F(1) =
[
c4 − c1 −c2

2
−c2

2 −c3 − c4

]
� 0, F(2) =

[
c1 + c5

c2
2 + 3c5

c2
2 + 3c5 c3 + 8c5

]
� 0, F(3) =

[
2c1 c2

2
c2
2 0

]
� 0.

Additionally the scalar coefficients c4 and c5 are limited to be SOS. This implies that {c4, c5} ⊂
Rx≥0 ⊂ Σ, which can be written as a set of linear constraints

c4 ≥ 0, c5 ≥ 0. (K.1)

The objective is to find a feasible solution c = [c1 c2 c3 c4 c5]T, which satisfies the above con-
straints.

To find a c which satisfies the constraints, the problem is expressed as an LMI feasibility problem.
The LMI feasibility problem on standard form is given as

F(c) = F0 +
∑
i

ciFi � 0, (K.2)

where Fi = FT
i ∈ Rn×n and c is the variable.

The constrains F(1), F(2) and F(3) can be put on LMI form (K.2) as

F(1)(c) =
[

0 0
0 0

]
+ c1

[
−1 0
0 0

]
+ c2

[
0 − 1

2
− 1

2 0

]
+ c3

[
0 0
0 −1

]
+ c4

[
1 0
0 −1

]
+ c5

[
0 0
0 0

]
� 0,

F(2)(c) =
[

0 0
0 0

]
+ c1

[
1 0
0 0

]
+ c2

[
0 1

2
1
2 0

]
+ c3

[
0 0
0 1

]
+ c4

[
0 0
0 0

]
+ c5

[
1 3
3 8

]
� 0,

F(3)(c) =
[

0 0
0 0

]
+ c1

[
2 0
0 0

]
+ c2

[
0 1

2
1
2 0

]
+ c3

[
0 0
0 0

]
+ c4

[
0 0
0 0

]
+ c5

[
0 0
0 0

]
� 0.

(K.3)

The matrix inequalities in (K.3) can be combined into one LMI by

F(c) =

F(1)(c) 0 0
0 F(2)(c) 0
0 0 F(3)(c)



=



c4 − c1 − c22 0 0 0 0
− c22 −c3 − c4 0 0 0 0

0 0 c1 + c5
c2
2 + 3c5 0 0

0 0 c2
2 + 3c5 c3 + 8c5 0 0

0 0 0 0 2c1 c2
2

0 0 0 0 c2
2 0


� 0,

(K.4)
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where F(c) = F(c)T and the eigenvalues of F(c) are the union of the eigenvalues of F(1), F(2) and
F(3).

Finally the linear constraints given in (K.1) should be included in the LMI. Linear inequalities
can be expressed as a diagonal LMI by including the inequalities in the diagonal of an LMI

aT
1 x ≤ b1, . . . ,aT

k x ≤ bk ⇔ diag(b1 − aT
1 x, . . . , bk − aT

k x) � 0. (K.5)

Using (K.5) the linear constraints in (K.1) are expressed as an LMI

F(4) = diag(c4, c5) � 0. (K.6)

Including (K.6) in (K.4) the final LMI becomes

F̃(c) =


F(1)(c) 0 0 0

0 F(2)(c) 0 0
0 0 F(3)(c) 0
0 0 0 F(4)(c)

 � 0. (K.7)

The LMI in (K.7) can be solved using standard LMI software such as SeDuMi. If the LMI can
be solver, this implies that a vector c exists such that the resulting matrix becomes positive
semidefinite. A c that satisfies the constraint is a feasible solution to the LMI problem.

A feasible solution to K.7 is found using the solver SeDuMi. The resulting coefficients are found
to {c1, c2, c3, c4, c5} = {0.6844, 0.0000,−1.4521, 1.0682, 0.3824}. By substitution of the coeffi-
cients, the eigenvalues of the matrix inequalities are found to F(1) = [0.3838, 0.3839], F(2) =
[0.1584, 2.5160], F(3) = [0.0000, 1.3687] and F(4) = [1.0682, 0.3824]. As the eigenvalues are non-
negative, the matrix inequality constraints are satisfied. The linear constraints in (K.1) are also
satisfied.
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Figure K.1: The solid green and red lines illustrate the safe and unsafe sets. The dashed polynomials
illustrate the safe and unsafe polynomials, which are positive in the respective sets. The vector field of
the system is given by grey arrows. The barrier certificate calculated by hand is given in solid blue. The
barrier certificate calculated using the LMI solver SeDuMi is given in dashed blue.

The barrier certificate can be found using the description of the barrier certificate from Example
2,

B(x1)SeDuMi = x2
1c1 + x1c2 + c3 = 0.6844x2

1 − 1.4521.

In Figure K.1 the barrier certificate found using the feasible solution to the LMI is illustrated.
The barrier certificate found by hand in Section 9.5 is shown as reference. The MATLAB script used
to solve the LMI using SeDuMi can be found on the enclosed DVD.
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LAerodynamic Approximations

In this appendix, polynomial approximations of the aerodynamic tables with reduced complexity
are illustrated. In order to obtain a lower degree of the polynomial approximations, the wind span
for which the approximations are valid has been reduced to vw = [15 m/s ; 25 m/s]. In Figure L.1
and L.2 the 4th degree polynomial approximations are compared to the original lookup tables.
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Figure L.1: Polynomial approximation of the Cq lookup table. The surface illustrates the polynomial
approximation to the lookup table given as black dots. The approximations are illustrated for 4 fixed values
of the wind speed vw.
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Figure L.2: Polynomial approximation of the Ct lookup table. The surface illustrates the polynomial
approximation to the lookup table given as black dots. The approximations are illustrated for 4 fixed values
of the wind speed vw.
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MSafety Supervisor Simulation

In Figure M.1 a simulation of the safety supervisor designed in Chapter 11 is illustrated. The safety
supervisor system is implemented on the NREL 5-MW wind turbine with the control system being
active. The simulation show that the safety supervisor system does not shut down the wind turbine
during normal operation (when no controller faults or extreme external events occur).
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Figure M.1: A simulation of the NREL 5-MW wind turbine during a time window of approximately 1500
s. During the simulation no errors occur. The simulation show that the safety supervisor system does not
shut down the wind turbine during normal operation.

Additional simulations can be found in Section 11.3 on Page 112.
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NDVD

• /thesis.pdf: This thesis in digital form.

• /References/: Prints of internet sources from bibliography.

• /Matlab_Wind_Turbine_Model/: Wind turbine emergency shutdown procedure implemented
in SIMULINK. Run main.m to get shutdown trajectory.

• /Polynomial_Approximation/: Calculates the polynomial approximation of the aerody-
namic coefficient look-up tables. Run fitpoly.m to start.

• /Subsystem_Barrier_Certificate/: Finds the subsystem envelopes. Run
flapping_plot.m, bending_plot.m, tower_plot.m and rotor_plot.m to show the respec-
tive envelopes (requires YALMIP and SeDuMi).

• /Compositional_Barrier_Certificate/: Finds the compositional envelope. Run
master_algorithm.m to run algorithm (requires YALMIP and SeDuMi).

• /SOS_Example/: Calculates the SOS example from Appendix K using SeDuMi. Run
sos_example.m to solve LMIs (requires SeDuMi).

• /NREL_5MW_Separate_Safety/: Subsystem safety supervisor implementation with FAST in
SIMULINK. Use NREL_5MW_Separate_Safety.mdl to run simulation (requires FAST).

• /NREL_5MW_Compositional_Safety/: Compositional safety supervisor implementation with
FAST in SIMULINK. Use NREL_5MW_Compositional_Safety.mdl to run simulation (requires
FAST).

• /Normal_Operation/: Covariance data of normal operation and plot of normal operation
clouds. Use plot_clouds.m to run.
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