Security analysis of JSON web
tokens- Attack scenarios and
countermeasures

Project Report

Name: Hafizur Rahman Anik
Student ID: 20210769

Aalborg University
Electronics and IT

o @.EW GRp

&

S Yo
<

Ly

o

m

; &
v

< PN o
G yn W
Title:

Security analysis of JSON web tokens-
Attack scenarios and countermeasures

Theme:
Masters Thesis

Project Period:
Fall Semester 2024

Project Group:

Participant(s):
Hafizur Rahman Anik

Supervisor(s):
Henning Olesen

Page Numbers:

Date of Completion:
January 4, 2024

Electronics and IT
Aalborg University
http://www.aau.dk

Abstract:

JSON Web Token (JWT) is a very pop-
ular open standard for transmitting in-
formation securely between parties as
a JSON object. They are being used
in common data flows in many mod-
ern technologies such as OAuth 2.0,
DPoP-JWTs, OpenlD Connect, Selec-
tive Disclosure (SD-JWTs), and as al-
ternatives to session tokens. Regard-
less of all their uses and high popu-
larity, JWT has its own flaws as well.
This project will focus on a deeper sys-
tematic analysis of the uses of JWTs
in different data flows to get an over-
all assessment of how secure they are.
The research will proceed further with
finding out commonalities and differ-
ences among them, Security objectives
provided by the JWT with the current
attack scenarios on those data flows
that disrupts those objectives to be ful-
filled with their countermeasures and
some recommendations for best prac-

tices as well.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued in agreement
with the author(s).

Contents

2 Methodology |

B JWT in details |

31 TheHeader,
.1.1 The Payload|.
3.1.2° GSignature| o oL

[3.2 The JSON Object Signing and Encryption group (JOSE)[.

|4 Different Uses Of JWT]|

4.1 JWT as an alternative to sessiontokens|
@.1.1 The traditional session authentication/
BI12 TLimitationsl
4.1.3 JWTasanalternative|
414 TLimitationsl o oo

4.2 Observations:]

4.3 OAuth 2.0 Authorization Frameworkl
#.3.1 Relevant security objectives| 000
@432 Importantattacks: 000

B4 DPoP-TWTs|.

(4.5 Relevant security objectives oo L.
#4.5.1 Importantattacks:] 000

4.6 mTLS-better security option than DPoP.

4.7 OpenlD Connect (OIDC)[.
@471 Important termstoknow| 000

iii

vi

AW W P =

Contents iv
......................... 36

473 Different Usesof OIDCl 38

.74 SAML (Security Assertion Markup Language) vs OIDC| . . . 38

4.7.5 Relevant security objectives| 38

@4.7.6 Importantattacks 000 39

|4.8 Selective Disclosure JWT (SD-JWT)|. 40
¥4.8.1 Verifiable Credentials| 41

4.8.2 Issuance of SD-JWT| 42

(4.9 Relevant security objectives| 44
4.9.1 Security aspects of SD-JWT| 45

16
[>.1 Some similarities and differences amongst the data tlows in terms of |

| using JWI| o oo 46
5.2 Uses of JWT in different data flows|. 47
p.2.1 Usage of JWT as authorization grant and token request . . . 47

.22 Usage of JWT as an access token and resource request| 49

.2.3 Usage of JWT as an authentication request| 50

.24 Usage of JWT as a way of information transmission|. 50

A n ditferen flows 51

b31 AttacksonOauthl. 52

5.3.2 Attacks on DPoP-JWTs|. 53

£33 Attackson OIDC oo 54

[>.4 Attacks that makes the different steps in ditferent data flows vulner- |
-) = 55
[0.5 The impact of using TLS on the mentioned attacks| 56
[>.6 Some recommendations for the best practices 57

6 Discussion| 61
1 Futur e 62
[Z__Conclusion 63
Bibliography; 65
[A Appendixes| 73
[A.1 Some practical demonstration on JWT vulnerability| 73
[A.1.1 Brute forcing on weak secrete keys|. 73

[A.1.2° "None" Algorithm vulnerability] 75

Contents v

(B Some Important technical terms | 79
[B.1 Confidential and Public Application| 79
B2 TLS 79
[B.3 X.509 Certificate and Public key infrastructure (PKI)|. 81
[B.4 Proof Key for Code Exchange (PKCE)[. 82
[B.5 Single-Sign On (SSO) 83

[B.5.1 Federated Identity Management (FIM)| 83

Preface

Aalborg University, January 4, 2024

Hafizur Rahman Anik
hanik21@student.aau.dk

vi

Chapter 1

Introduction

In digital realm it is very important to ensure the security of web applications
through proper user authentication and authorization. Where the authentication
refers to verify a user’s identity and authorization is the procedure to verify that the
user has the necessary permissions to access an application resources or perform
specific actions. In a web application at first the authentication takes place and
then authorization is performed.

11 JWT

Now to perform both authentication and authorization one of the popular method
is using JSON Web Token (JWT). JSON Web Token, or JWT (“jot”) is a very popu-
lar compact, standard and URL-safe means for representing and safely transferring
claims between two parties as a JSON object [59]. Now couple of things needs to
be elaborated to achieve more precise understanding about JWT. Such as JSON or
JavaScript Object Notation which is both human and machine readable lightweight
and text-based data interchange format. Despite the name JavaScript Object Nota-
tion and its derivation from the ECMAScript programming language [26], it is ac-
tually language-independent which is used for the serialization of structured data
and exchanging it between a server and web applications over a network [91] [31].
JSON consists of four primitive data types which are strings, numbers, booleans,
null and two structured data types which are objects and arrays. Some of the uses
of JSON are- storing user-generated data such as submitting form on a website,
transferring data between systems such as sending email address via JSON format
to validation service API to check the validity or verify the address.[37]. In addi-
tion, the claim is referred to the information about an user or a subject and some
additional data. The representation of a claim has a claim Name and a claim Value.
JWT Claims Set refers to a JSON object that contains the claims conveyed by the
JWT [91] [106]. More details about JWT and claims can be found in chapter

1.1. JWT 2

JWTs as a JSON object can be used in authentication, authorization and for
information exchange as well. The claims are represented in a compact way for
space constrained environments such as HTTP Authorization headers and URI
query parameters. Some of the reasons for their popularity are the relatively small
size and compact transmission format, which avoids querying a database more
than once to verify an entity [77]. Also JWT plays an important role to ensure the
authenticity of the sender and to ensure that the message has not been tempered
on its way via digital signature and encryption. The basic structure of JWT are as
below:

JSON Web Tokens consist of header, payload and signature. The header typ-
ically consists of two parts— name of the signing algorithm for example HMAC
SHA256 or RSA and type of the token which is jwt. payload contains the claims.
The third part which is the signature is the combination of Base64 encoded header,
payload and a secrete [32]. figure Now the Base64 encoding [36] is the rep-
resentation of binary data in an American Standard Code for Information Inter-
change (ASCII) string format which allows to transport binary over protocols that
can not accept binary data and required printable text [13].

HEADER

eyJhbGci0iJIUzI1NiIsINR5cCI6IkpXVCJ9. ey
JzdWIi01iIxMjMBNTY30DkwIiwibmFtZSI6Ikpva t1| j *\T -
GAgRGI1IiwiaWFOIjoxNTE2MjMEMDIYTQ.Fyjfi
VnS15VBUOVdyb3YUpbjre2YT-YjuQwj_ac7Lo4

PAYLOAD:

) [0 secret base64 encoded

Figure 1.1: Different parts of JWT [40]

Due to its simple deployment as a security token format it is being widely
used in different protocols and applications such as OAuth 2.0, OpenlD Connect,
Single Sign-on (SSO), verifiable credentials and Selective Disclosure (SD-JWTs) and
as alternatives to session tokens.

Regardless of all uses and high popularity of JWT, it has its own vulnerabil-
ity or weaknesses [107]. Since JWT has been used for safely transferring claims
between two parties, it needs to fulfill some security objectives during their imple-

1.2. Security objectives: 3

mentations to ensure that nobody can intercept and modify it at the mid point of
the transmission.

1.2 Security objectives:

Before co-relating those security objectives with the use of JWT, it is essential to
know some basic information about them.

1. Confidentiality: It refers to the assurance for keeping the sensitive informa-
tion private via providing authorized access on personal information [97].
Encryption can be used to keep the data confidential. If sensitive informa-
tion is used in JWT claims then it can provide the confidentiality of those
claims by using JSON web encryption (JWE) standard. More about JWE can
be found in 2]

2. integrity: It ensures the protection of data from tampering or manipulation
during transmission over a network. Signed JWT can provide the integrity of
the claims or message inside it to ensure that it has not been tampered on its
way. More about JSON web signature (JWS) can be found in

3. non-repudiation: It refers to ensure that the transmission occurred via agree-
ing by both senders and the receiver so that no parties can deny having pro-
cessed the data later on. In this case sender needs to send data with the proof
of delivery and proof of the sender’s identity needs to be provided to the re-
ceiver as well so that the receiver can not deny it [64] [8]. It can be done by
using of digital certificates and public key cryptography to sign transactions,
messages, and documents [80]. More about digital certificate and signature
can be found in section Point to be noted that in terms of JWT which
is signed with a symmetric signature or shared secrete can not ensure non-
repudiation since if the key is compromised then anyone can create a new
JWT with that secrete and can impersonate himself as an authentic sender.

4. Authenticity: Authenticity ensures that the message is coming from an au-
thentic source and it is not being altered along the way via assuring or ver-
ifying that the person at the other end is really what it claims to be. It can
be achieved by digital signature [47]. JWT can ensure the authenticity of the
sender if it is signed with using public/private key scheme

1.3 Some common attacks

Some common attacks that disrupts these security objectives are as below:

1.3. Some common attacks 4

¢ Man-in-the-middle attack (MITM): Man-in-the-middle attack (MITM) oc-
curs when the attacker or an unauthorized intruder intercepts a communica-
tion or often even altering the exchanged information between two parties.
The captured information can be a session cookie, also changing an amount
of money transaction, private discussions and other sensitive information can
also be possible [46]. Avoiding public wifi and using a secure VPN to ensure
all information is encrypted and cannot be viewed and implementing multi-
factor authentication for business purposes can reduce the risk of MITM at-
tack [45]. Now if JWT is not encrypted or not uses TLS during transmission,
it might be vulnerable by MITM attack.

* Session hijacking: Session hijacking is an impersonation attack where the
attacker successfully manage to exploit web session control mechanism by
stealing session token to achieve unauthorized access to the Web Server [83].
Some common ways to compromise or steal the session token are—

1. session sniffing where the attacker uses the sniffing tools to capture the
‘session ID” which is a valid token session.

2. if an attacker sends a malicious link to the victim which includes mali-
cious JavaScript and if the victim clicks the link it can sends the cookie

value of the current session to the attacker known as Cross-site script
attack (XSS) [83].

3. MITM attack.

Prevention can be done by ensuring that all server communication is com-
pletely encrypted or protecting the communication with VPN during work-
ing in public spaces cause public wifi can be very dangerous [84].

* Cross Site Request Forgery (CSRF): It happens when the attacker causes the
victim user who is already authenticated in a web application to perform
an action unintentionally by tricking victim’s browser into sending a request
from different browser. Performing an undesired function on the victim’s
behalf can cause changing the email address, making a funds transfer. But
if the victim is an administrator’s account then the attacker can take the
full control over the entire web application. Normally any browser requests
automatically include the user’s session cookie, IP address etc. But if the
user already authenticated to the site then the server can not distinguish
in between forged or legitimate request [42]. Suppose, if the application
depends only on session cookies to identify the user then the attacker can
send an HTTP request to the vulnerable web site to change the user’s email
address and if the victim were in logged in state in the same website. The
browser will automatically include the session cookie in the request and will

1.3. Some common attacks 5

take it as a normal legitimate request. Some prevention machanism are using
CSRF tokens and SameSite cookies. [14]. Point to be noted that JWT can
prevent both XSS and CSRF by implementing it with HttpOnly cookie [75]
[63]. Now in brief, HTTPOnly is just an additional flag that needs to be added
in a Set-Cookie HTTP response header which helps to reduce or mitigate the
risk by preventing the attacker to get or access the protected cookie by XSS
or CSRF attack [29] [51]]. Short-lived JWTs can also be helpful. JWT that are
not stored as cookies, can also prevent CSRF [73]. Some other prevention
procedure can be found in OWASP Cheat Sheet Series [15].

* Server-side request forgery (SSRF): SSRF can take place when the server
somehow failed to validate the client supplied URL that allows the attacker
to force the the server-side application to send a modified request to an unin-
tended location. It can happen even if the protection is provided by a firewall,
VPN, or another type of network access control list (ACL) [81] [82].

Some of the SSRF attacks will be described in section 4.7l with their counter-
measures.

Some more attacks can be found on OWASP Top Ten [71]].

Now it is essential to know that security for JWT depends on how tokens are being
used and validated. Although JWTs contain a cryptographic signature, it does not
make them completely secure, and a number of attack scenarios have been iden-
tified. Unless following good practices, JWTs can be vulnerable to cyber attacks.
Since JWT can be used in authentication, session management, authorization and
information exchange there are some attacks on JWT which can cause a disruption
to fulfill the above mentioned security objectives. Such as token hijacking can be
possible where the attacker can get the access of the token and send the modified
token to the server to bypass authentication and access controls by impersonating
another user who has already been authenticated which is violating both integrity
and confidentiality of data[41]. If the JWT contain sensitive information without
encryption, it can cause data breach of this confidential information to unintended
parties. [107]. JWT can also be vulnerable by CSRF and XSS attack if it is stored
inside cookies [73].

It is therefore essential to analyse why, how and for which purposes JWT are
being used on those modern technologies and the possible attacks and counter-
measures that have been studied so far to find out exactly where those security
implications are needed. In chapter 4| we will explain in details how and for which
purposes JWT are being used nowadays on those technologies which leads us in
chapter | to find some commonalities in between them in terms of uses of JWT
and have some practical demonstrations of attacks on JWT and analyse how uses
of JWT can be vulnerable for each of those technologies with particular types of
attacks including some recommendations for best practices and better security.

1.4. Problem Formulation 6

1.4 Problem Formulation

This project will focus on a deeper systematic analysis of the use of JWTs in differ-
ent scenarios to get an overall assessment of how secure they are. Based on primar-
ily literature studies, the research will proceed with finding out commonalities and
differences among them, the current attack scenarios and their countermeasures.

So the main goal of this project is to find—

what are the main threats or vulnerability of different uses of JWT in different
data flows in between client-server communications and IAM, and what are the
best practices of using JWT for these purposes?

We can consider this problem statement as our main goal which can be subdi-
vided further in order to narrow down the project scope as below:

* What are the commonalities and differences in terms of using JWT in differ-
ent data flows?

¢ What are the common types of use of JWTs and which security objectives
need to be fulfilled?

¢ What are the most important types of attacks on JWTs can take place when it
has been for these purposes and how can they be prevented or minimized?

¢ What are the recommendations for best practices when using JWTs in order
to fulfill the security objectives?

So, in brief the expected outcome of this thesis paper would be comparing the
different uses of JWT and recommend some best practices of using JWT on them.

Chapter 2

Methodology

This chapter has been dedicated to explain the scientific method used through-
out the project to conduct the research. Among many research methodology it
is important to choose the right one so that it can lead us in the right direction
throughout our project work and can help us to fulfill our proposed goals. Some
of the important research methodology are as below-

1.

Descriptive research: This kind of research related with survey and fact-
finding investigation where the researcher has no direct control over it as it
is just an explanation of the set of circumstances which is happening or has
happened before.

Analytical research: In this scenario researchers can research facts, informa-
tion, data which is already available and analyse them at the end to make
some hypothesis.

Applied research: It refers to proceed the research in such a way which
can lead the researcher to find the solution for any problem facing by the
individual or organizations. For example- how to wiped out hate crime from
a society.

Fundamental research: It is based on Formulating a theory and generalize
them such as generalizing human behavior.

Quantitative research: It uses statistical, mathematical or computational tech-
niques for systematic experimental analysis on something that can be counted.

Qualitative research: It involves upon in depth analysis on non-numerical
data.

Survey research: it is about to collect a huge amount of real-time data by
questionnaires and interviews for research purposes. [2] [72]

If we observe our project topic including the problem formulation and project
scope then we can say that analysis research types of methodology can be the best
option for systematic analysis on security perspective of JWT. The reason to choose
this research methodology for this report is we needed to gain in depth knowledge
in regards JWT, its uses in different data flows including their security perspective
which could not be possible without collecting authentic research papers and anal-
yse them carefully to find the security vulnerability for each of them and analyse
their countermeasures.

To fulfill our goal we needed to choose couple of platforms like Google scholar
and IEEE to find some project related research paper. Also Request for Comments
(RFC) documents were played a vital role in this project to gather some really
valuable and authentic scientific information about JWT and its different uses. It is
produced by the Internet Engineering Task Force (IETF) which deals with different
aspects of computer networking [78|]. Moreover, As our project is based on security
aspects of JWT the Open Worldwide Application Security Project (OWASP) helps
us to know about some common vulnerabilities related with web application in a
more understandable way. It is a nonprofit organization which works to enhance
the security of software [1].

In addition, the keyword has been used throughout the project to find the
related research papers are JWT, JWT rfc, JWT handbook, JWT vs session token,
Attacks on JWT, Security on JWT rfc, DPOP rfc, Oauth rfc, Oauth 2.1 rfc, mTLS rfc,
SD-JWT rfc, Verifiable credential, Single sign on(SSO) rfc, OpenID Connect (OIDC),
OIDC handbook. Most of the cases through those above mentioned keywords it
can lead us directly to some authentic and trustworthy web portal including the
rfc documents about related topics.

Chapter 3

JWT in details

We already know what is JWT. Now it is time to dive deep to know more about the
basic structure of JWT and how it works and can be used. As mentioned in chapter
that JWTs has three different parts header, payload, and the signature/encryption
data. The header and the payload contains JSON objects of a certain structure. The
signature part depends on the algorithm used for signing or encryption. JWTs
can be encoded in a compact representation where three Base64-URL encoded
[36] strings separated by dots which can be easily passed in HTML and HTTP
environments figure [1.1|[73]. The signature can be produced with a secrete which
is known to both the sender and receiver or with a private key which only known
by the sender [33] [59]. JWTs can be either signed or encrypted or can be both.

3.1 The Header

Every JWT contains a header known as JOSE header as well. The encrypted JWT
header contains type of the token and name of the signing algorithm. If we refer
to figure 3.1/ then the example represents that the object is a JWT, and the JWT is a
JWS which used HMAC SHA-256 algorithm [59] [88]. But the unencrypted header
only contains alg claim where the value of the claim must be 'none’ [73].

Figure 3.1: Different parts of JWT header [32]

3.1. The Header 10

3.1.1 The Payload

The payload is a JSON object which contains the claims. Claims can be user data
and also can be some other additional data that are defined in JWT spec. No claims
are mandatory but if any claims are not understood by the implementation then it
should be ignored [73].

There are three types of claims: registered, public, and private claims.

Registered claims

There are seven reserved claims mentioned in the JWT specification figure
which is registered with the Internet Assigned Numbers Authority (IANA) [39]
to allow interoperability with third-party applications. These claims are not are
not mandatory but recommended [38].

e iss (issuer): Issuer of the IWT

e sub (subject): Subject of the JWT (the user)

s exp (expiration time): Time after which the IWT expires

* nbf (not before time): Time before which the JWT must not be accepted for processing

s iat (issued at time): Time at which the JWT was issued; can be used to determine age of the JWT

e jti (JWT ID): Unique identifier; can be used to prevent the JWT from being replayed (allows a token to be
used only once)

Figure 3.2: Registered claims [38]

Public claims

These claims can be defined at will by those using JWTs. To prevent collision it
either needs to be registered in the IANA JSON Web Token Registry or be a public
name which contains a collision resistant name through namespacing and ensure
that you are in control of the namespace you use [59]]. In a more general way we can
refer it as a custom claims which might contain name and email. For example we
can check TANA JSON web token claims Registry [39] to search for public claims
registered by OpenID Connect (OIDC): auth_time, acr and nonce [38].

3.2. The JSON Object Signing and Encryption group (JOSE) 11

Private claims

We can also call these types of claims as a custom claims but the main difference
is it is not collision resistant like public claim, so it should be used with caution.
Both producer and consumer of a JWT may agreed upon using these claims to
share information between them [59].

Point to be noted, Although a signed token is protected against tampering, the
data inside payload and header can still be readable by anyone. So it is recom-
mended not to put any secrete information in the header or payload unless it is
encrypted or it is only transmitted using TLS which ensures endpoint authentica-

tion [32] [59].

3.1.2 Signature

Signature can be created by combining the encoded header, the encoded payload,
a secret, the algorithm specified in the header and signing them together figure
3.3l The signature ensures the authenticity of the message that it wasn’t changed
along the way and signing with a private key ensures the authenticity of the user
to prove that the sender of the JWT is who it says it is [32].

HMACSHAZ 56 (
basebdUrlEncode(header) + °

base64UrlEncode(payload),
secret)

Figure 3.3: Example of the signature using the HMAC SHA256 algorithm.

3.2 The JSON Object Signing and Encryption group (JOSE)

The JSON Object Signing and Encryption group (JOSE) provides the standard-
ize mechanism for integrity protection via signature and MAC or encryption. The
JSON Web Token (JWT), JSON Web Signature (JWS), JSON Web Encryption (JWE),
JSON Web Key (JWK) and JSON Web Algorithm (JWA) all are the parts of JOSE

73]

1. JSON Web Signature (JWS): JWS represents or defines that the data con-
tained in the JWT is secured with digital signatures or Message Authentica-
tion Codes (MACs) using JSON-based data structures [60]. It is impor-
tant to know that signature does not prevent reading the content by other
parties which can be solved by the encryption. The procedure to check the
signature of a JWT is known as validation or validating a token. A JWT can be

3.2. The JSON Object Signing and Encryption group (JOSE) 12

considered valid even if there is no signature such as if the header has the alg
claim set as 'none’. Thus using the none algorithm should be avoided. More-
over, even if the JWT has the valid signature, it may be considered invalid
for other reasons such as according to the ‘exp claim’ if it becomes expired.
Stripping the signature is a common types of attack against signed JWT. Ac-
cording to the JWS spec there are several types of signing algorithm available
and a single type of algorithm needs to be supported by all conforming im-
plementations [73]. The main three recommended algorithms are—

¢ HMAC using SHA-256, called HS256.
e RSASSA PKCS1 v1.5 using SHA-256, called RS256.
e ECDSA using P-256 and SHA-256, called ES256.

There are two types of scheme used for JWS: HMAC based shared secret
which stands for HMAC SHA) and Public key pair scheme (either RSA or
ECDSA keys). Caution needs to be taken when using a shared secret, as any-
one with the secret can create or forge new JWTs. In fact, it is recommended
to use public key pair instead to validate a JWT from an untrusted client
(web-page, mobile app, etc.) [19].

2. JSON Web Encryption (JWE): JWE represents encrypted JWT using JSON-
based data structures [61] [56]. While JSON Web Signature (JWS) is used for
JWT validation, JSON Web Encryption (JWE) is used to create unreadable
encrypted tokens. Like JWS, JWE also provide two schemes— JWE essentially
provides two schemes: a shared secret scheme, and a public/private-key
scheme.

For a shared secret scheme, all parties needs to know the shared secrete
that means whoever have this shared secrete can both encrypt and decrypt
the information which is analogous with JWS shared secrete scheme where
whoever obtain the shared secerete can both verify and generate the signed
tokens.

On the other hand, it works differently for public/private-key scheme. While
in JWS the party holding the private key can sign and verify the token and
public key holder can only verify them, in JWE the holder of the private key
can both encrypt and decrypt the token but holder of the public key can
only encrypt the token. So the main difference is in terms of JWE the public
key owner can generate or introduce new data but for JWS the public key
holder can only verify data but can not generate or introduce any data. In a
more simpler way for JWS the data flow can only from private-key holders
to public-key holders but for JWE the data flow is totally opposite figure
Since JWT can be encrypted using receiver’s public key, it can only ensure

3.2. The JSON Object Signing and Encryption group (JOSE) 13

the confidentiality of the data. So from security perspective JWE does not
provide the same guarantee as JWS, therefore can not replace the role of JWS
in token exchange, rather they are complementary when public/private key
schemes are being used [73].

JWS JWE

Producer Private-key Public-key
Consumer Public-key Private-key

Figure 3.4: Comparison between JWS and JWE. [73]

Point to be noted, if both signing and encryption are required for nested JWT
then it is recommended to sign the message first and then encrypt the result
although it can be done in any order. But by following the recommended way
it can provide the privacy for the signer and prevent the signature stripping
attack as well. Also following the opposite procedure such as signatures over
encrypted text sometimes considered as invalid by many jurisdictions [59].

3. JSON Web Keys (JWK): JSON Web Key (JWK) is a JavaScript Object Notation
(JSON) data structure which represents a set of public keys [53] [54]. This
specification mainly deals with the unified representations for all keys used
for signatures and encryption which is supported in the JWA spec. This
unified representation allows easy sharing and keeps the keys independent
from the complications of other key exchange formats. Keys are specified in
different header claims where JWKs can be found under the jwk claim figure
On the other hand, the jku claim represents a set of keys stored under a
URL. Both of these claims follows the JWK format [73].

{
"kty":"EC",
"crv":"P-256",
"x":"MKBCTNIcKUSDiillySs3526iDZ8AiTo7Tu6KPAqvTD4",
"y":"4Et165RW2YiLUrNSvEvVHuhp7x8Px1tmWW1lbbMATIFyM" ,
"d":"8T7TO0MB6gfuT JAHtUnUvYMy JprS5eUZNP4Bk43bVdj3eAE" ,
"use" :"enc",
"kid":m"1"

T

Figure 3.5: Example of JWK claims. [73]]

The figure (3.5| represents the key is an Elliptic Curve [25] key which is used

3.2. The JSON Object Signing and Encryption group (JOSE) 14

with the P-256 Elliptic Curve and its x and y coordinates are the base64url-
encoded values. kid is the key identifier [53]]. Point to be noted, we should not
use the same key for both encryption and signing, even though it provides
compatible algorithms for both

4. JSON Web Algorithms (JWA): This specification registers cryptographic al-
gorithms and identifiers to be used with the JSON Web Signature (JWS),
JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications [52].

tommm e ———— L L e T e +
| "alg" Param | Digital Signature or MAC | Implementation

| Value | Algorithm | Requirements |
tommmm e ——— L L L T T trmmmr e ——— +
| HS256 | HMAC using SHA-256 | Required

| HS384 | HMAC using SHA-384 | Optional

| HS512 | HMAC using SHA-512 | Optional

RS256	RSASSA-PKCS1-v1_5 using	Recommended
	SHA-256	
R5384	RSASSA-PKCS1-v1_5 using	Optional
	SHA-384	
RS512	RSASSA-PKCS1-v1_5 using	Optional
	SHA-512	
ES256	ECDSA using P-256 and SHA-256	Recommended+

| ES384 | ECDSA using P-384 and SHA-384 | Optional |
| ES512 | ECDSA using P-521 and S5HA-512 | Optional

PS256	RSASSA-PS5 using SHA-256 and	Optional
	MGF1 with SHA-256	
PS384	RSASSA-PSS using SHA-384 and	Optional
	MGF1 with SHA-384	
PS512	RSASSA-PSS using SHA-512 and	Optional
	MGF1 with SHA-512	
none	No digital signature or MAC	Optional
	performed	
g oo e Foo o +

Figure 3.6: Algorithm used for Digital Signatures and MACs. [52]

The figure shows the algorithm used for Digital Signatures and MACs
defined in the JWA specification. Now if we look the implementation re-
quirements in figure then we can notice HS256 is required and RS256,
ES256 are recommended for implementations. There are couple of things
we can discuss regarding these suggestions. At first we can take a look and
compare in between HS256 and RS256. Both of them can be used to check
the integrity or authenticity of JWT but RS256 ensures non-repudiation as
well which provides the surety that the sender created the signature. It also
more secure and allows to rotate the keys without re-deploying the applica-
tion with a new one if the keys are being compromised whereas in terms of
HS256 the re-deployment of an application is needed. But there are some sce-
narios as well where the HS5256 suits the most such as if the application don’t
support R5256 and if the application generates large number of requests be-
cause HS256 is more efficient than RS256 [34]. On the other hand, ES256
prevents side channel attack where the attacker can measure the length of
time of a signing operation [98].

3.2. The JSON Object Signing and Encryption group (JOSE) 15

Since we are talking about JWA we can look at another algorithm based attack
called 'none” algorithm attack which is practically demonstrated in appendix
The reason to mention it here particularly because this attack can be
possible easily since many JWT libraries still support this none algorithm in
their specification. To avoid none algorithm attack it is recommended to use
php-jwt library [65] where the package does not support none algorithm or
empty signature. Another way is using TLS because it provides end-to-end
cryptographic protection. Using none algorithm can be acceptable in this
case since JWT is cryptographically protected via TLS. [107]

Chapter 4

Different Uses Of JWT

We already explained JWT and its basic structure in previous chapter, now in this
chapter we will describe about different data flows where the JWT has its involve-
ment in the authentication, authorization procedure and information exchange.

4.1 JWT as an alternative to session tokens

4.1.1 The traditional session authentication

Before the origin of JWT we had the traditional session token for user authentica-
tion which works by generating a random string. Unlike JWT, after authentication
with a username and password server generates a session token and stores that
token with user’s info in database. Upon each subsequent request by the user the
token has been included in the HTTP auth header, and then validated by checking
the database on each request.[77]]

According to figure [4.1| The explanation of the data flow are as below:
1. The user sends username and password to the server to authenticate himself.

(a) After authenticating user server generates a session token.

(b) And stores the token with user’s info in the database.
2. Server then returns a cookie containing session id to the user.

3. As long as the user remain logged in, the cookie will be sent to the server
in every subsequent request . The server then compare the session id stored
on the cookie against the session information stored in the database to verify
user’s identity and deny or approve the request. [77]

16

4.1. JWT as an alternative to session tokens 17

Browser Server
Post /user/login)
body {usemame. pw) \ Sess|0n
stored in
Sends Cooke to browser ,.} server
{sessionid) o
s & memory

Send authenticate req with « ooue
. [\
Check
/ cookie to
Sends response &
l & getuser
| info from
session

Figure 4.1: Workflow of session authentication [10]

4.1.2 Limitations

The following limitations have been observed in [79] [77] [85] [4]

1. In each user request it needs to hit the database every time to validate the
user which is fine for small or medium scale apps but it is not suitable to
handle large volume of requests in a very short time. it actually slows down
overall response time.

2. Since,cookies typically works on a single domain or subdomains it can be
problematic if APIs requests are sent to different domains.

3. session is statefull, that means it holds every information of every client ac-
cessed to server, which overloads the server and its management can be a big
challenge.

4. Cookies are relatively more vulnerable to Cross-Site Request Forgery (XSRF
or CSRF) attacks where the user can be redirected to a hostile website and
the attacker can exploit cookies with some JS and sends malicious requests
to the server.

4.1.3 JWT as an alternative

In fact, one of the alternatives to resolve the above mentioned drawbacks of session
authentication is JWT. It can be used to completely eradicate extra database lookup

4.1. JWT as an alternative to session tokens 18

Browser Server
Post luser/login .
body{usemame, pw} CFEQ'EE
JWT
Sends to browser with
. T / secret

o g
Header "o

Send authenticate req with
JWT in header

Check
JWT
signature,
Sends response get user
info from
JWT

Figure 4.2: Workflow of JWT authentication [28]

when used as a session because it includes user information inside the session
token which is signed with a secrete that only knows by the server. Even if multiple
requests are sent to multiple services the same token can be used for authentication.
The token-based technique is completely stateless , it doesn’t hold any information
about the user at all, because the token is stored in the client side and sends it
upon each request directly from client to server. CSRF attacks can also be handled
by JWT. But even if JWT stored inside cookies it can be vulnerable with CSRF
attack.It can be solved by implementing JWT on HttpOnly cookie. Because HTTP-
only cookies cannot be accessed by client-side scripts, they are not accessible via
JavaScript or other client-side programming languages.they are only sent to the
server with each HTTP request. [77] [75] [63] [85] [4]

According to figure |4.2] The explanation of the JWT authentication data flow
are as below:

1. The user sends username and password to the server to authenticate himself.

(a) The server authenticates the user via querying the database and after
authentication it generates the token using user’s info and secrete and
sends the signed token to the user.

(b) The signed token can be then stored on the client-side either in the Ses-
sion storage, Local storage or Cookie Storage.

4.2. Observations: 19

2. upon each user request it sends the token alongside the request

3. After receiving JWT token, the server validate the signed part with secret
and retrieve the user information from the payload. In this way it sort out
the extra DB call issue. [77] [75]

414 Limitations
The following limitations have been observed in [77] [75] [41] [49]

1. It can not be revoked or ivalidate or update as it has a particular expiration
time to expire itself. The complication here is if someone get the access of the
token they can easily continue their malicious activity until it expires. Even
if someone logged out the attacker can still have the possession of the token
and continue to access until its expiration.

2. If server admin wants to stop the malicious activity by blocking the user he
can not do that for the same reason. Changing users details also not possible
since it is stored on the users machine.

3. If a lot of data is encoded within the JWT, it can create a significant amount
of overhead with every HTTP request.

4. man-in-the-middle attack is possible, since JWT are often not encrypted. to-
ken stealing, header parameter injections, JWT authentication bypass, brute-
forcing secret keys are also possible.

5. JWT library has some serious vulnerability issues if not implemented prop-
erly. Such as attacks on algorithm, breaches of the weak secrete key.

4.2 Observations:

Since we already explained some pros and cons for using both of the traditional
session token and JWT as an alternative to session tokens, now it is time to have
some short conclusion or observations regarding using them.

Although both of them have some vulnerabilities in their perspective area of
uses, if we consider the performance then we can say JWT can enable faster au-
thorization and interchangeability with external apps compared with traditional
session token. Also some of the attacks on JWT can be manageable by proper im-
plementations and with some modern way of using JWT such as using DPoP-JWTs
with Oauth or mTLS explained in section .4/ and

We can think about combining them together as well where a long lived session
token can be used to retrieve a new JWT which has a short life span. To do that
the servers needs to ensure that the underlying session is still active before passing

4.3. OAuth 2.0 Authorization Framework 20

back a new JWT. The revocation of access will take place within whatever token
age is set for the JWT, If the user logs out.

4.3 OAuth 2.0 Authorization Framework

OAuth 2.0 framework, or in another way “Open Authorization” enables a website
or third party application to obtain limited access or resources from other web apps
on behalf of a user. The steps of basic oauth 2.0 flow are as below:

(A.) Client sends authorization request to the authorization server via using
resource owner’s user agent with client identifier and redirection URI. figure

(B.) The authorization server authenticates the user or resource owner and en-
sure whether the resource owner accepts or denies the access request done by the
client. After that AS sends authorization grant to the client using the same redirec-
tion URI provided in step A as a response. Here, authorization grant is a credential
which represents resource owners authorization to access its protected resources.
It is also used to obtain an access token by the client. resource owner’s autho-
rization has been expressed by one of four types of grant— authorization code,
client credentials, implicit and resource owner’s password credential. Which grant
type will be chosen is depends on the method used by the client and on the types
supported by AS.

(C.) Client requests an access token to the authorization server with presenting
the authorization grant.

(D.) Authorization server issues an access token after authenticate the client
and checking the validity of the authorization grant.

trmmmm - + Fomm e, ———— +
| |--(A)- Authorization Request ->| Resource

| | | Owner |
| |<-(B)-- Authorization Grant ---|

| | o e m e mmmm o +
| |

| | S +
	--(C)-- Authorization Grant -->	Authorization
Client		Server
	<-(D)----- Access Token -------	
	tommm e e e m oo o +	

| | S +
| |--(E)----- Access Token ------ >| Resource

| | | Server |
| |<-(F)--- Protected Resource ---| |
R + o m e oo oo +

Figure 4.3: Oauth protocol flow. [22]

(E.) Client sends the access token to the resource server to achieve protected
resources.

4.3. OAuth 2.0 Authorization Framework 21

(E) If the provided access token is valid then in return resource server allows
to access the protected resources [22]. figure

Point to be noted that we can see the client can achieve authorization grant
from the resource owner in the step no A and B in figure but the preferred
method is to use the authorization server as an intermediary in terms of obtaining
authorization grant shown in figure

| Resource |
| Owner |

Hmmmmm e +

e + Client Identifier Fom e +
-+----(A)-- & Redirection URLI ---->		
User-		Authorization
Agent -+----(B)-- User authenticates --->	Server	
I	\	
-+----(C)-- Authorization Code ---<		
e R R oo +		
\	" v	
(A) (C)		
\		
S		
CRRRTEE +		
	>---(D)-- Authorization Code --------- !	
Client	& Redirection URI	
	<---(E)----- Access Token -------------oomoo- !	
Fommmmmmmm + (w/ Optional Refresh Token)

Figure 4.4: Oauth Authorization Code Flow. [22]

4.3.1 Relevant security objectives

Before explaining the relevant security objectives, we need to recall back the data
flow to recognize exactly on which steps JWT has its involvement. First of all,
oauth 2 specification did not make any token format mandatory, which means it
can be any as usual token or JWTs can be used as OAuth 2.0 access Token [100].

1. In step C from figure oauth can use a new types of authorization grant
which can uses a JWT Bearer Token [55] to request an access token [5]]. Point
to be noted, in OAuth 2.0 specification the JWT Bearer token as authorization
grant type and authorization code grants are two different things where the
JWT bearer token authorization grant types is not a common types of grant
and it can be used in some special cases but authorization code grants can be
used in any apps or integrations figure (4.5 [99].

2. In step D from the figure AS can issued an access token in the form of
JWT which is consumed by the client or relying party. Proper client authen-
tication plays a vital role here for issuing and supplying the token by AS
otherwise client impersonation attack can take place. Also token leakage and

4.3. OAuth 2.0 Authorization Framework 22

token substitution attack can also take place in this step. Both of them is
described in section £.3.2

3. And in step E from the figure 4.3l when the same client wants to access any
resources on behalf of a user, it again needs to use that very same JWT to get
the access of the resources. If it uses JWT then the resource server can parse
and validate the token directly without any involvement of AS. In addition,
Proper validation of the issuer is needed here to avoid Cross-JWT confusion
explained in section [4.3.2]

Access Token Machine Client Credentials
Owner? Grant

Browser based
app

Server app Authorization

i ?
Client Type? Code Grant

Authorization
Code Grant
with PKCE

Native app

Figure 4.5: Oauth 2 grant. ||

4.3.2 Important attacks:

Some important attacks on Oauth that can cause to disturb these security objectives
are as below—

1. Client impersonation: The AS should not allow the client to register an ar-
bitrary client id value because In step no D in figure if the AS uses this
arbitrary client id as "sub’ value for token issuance then any malicious client
can select the 'sub” of a high-privilege resource owner to confuse resource
server which is dependent on ‘sub’ value during token introspection if re-
source server does not carry out any additional check. It can cause both the

4.3. OAuth 2.0 Authorization Framework 23

leakage of confidential resources of user and failure of proper authentication
[100].

It can be prevented by AS through restricting the client to influence their
client id or sub value or any other Claim. If it is not possible then AS must
provide other means for RS to differentiate in between access token autho-
rized by a resource owner and by the client itself [94].

2. Cross-JWT confusion: It is a specific type of substitution attack where the
JWT token have been used for another purpose rather than its intended pur-
pose [107]. It can hampers confidentiality if the same JWT is used to obtain
different resources rather than the intended resources it issued for.

For the countermeasure in step E from figure [4.3| after receiving JWT from
client proper validation of the issuer is needed. If a same issuer can issue
a JWT for the purpose of using it by more than one client or applications
then it must needs to use distinct identifier as an "aud’ claim value to ensure
that the same issuer issued the JWT for distinct resources [100] [107]. Also
if the JWT contains an "iss" (issuer) claim, application must need to confirm
that cryptographic keys used in the JWT are belongs to the issuer otherwise
it must reject the JWT. Such as— in OIDC it uses "jwks_uri" value which is a
"https" URL for retrieving issuer’s keys as a JWK Set [107].

3. Access token leakage: In figure [4.3| the access token leakage can take place
in step D. If the token is sent by AS to the client through a URI fragment of
the redirect URI without making the communication or endpoint secure, the
token can be leaked by the returned URI and the attacker can get the access
of confidential data from resource server using that leaked token.

To prevent this issue AS must ensure the confidentiality of the response by
using TLS for the communication in between client and the server [96]. Using
DPoP-JWTs with oauth can also be an useful countermeasure for this types
of attack if it is used instead of the typical bearer token because it uses DPoP
proof JWT with token request which helps the AS to verify that the client
possesses the private key and after verifying the client in return the AS pro-
vide public key bound access token. DPoP-JWTs in details is explained in
section

4. Token Substitution: This vulnerability can take place on an application
which depends on OAuth protected service API to get identity data of a
user for login the users. In a nutshell, for a client resource server API can
be treated as an "identity" API because after getting access token by oauth
server, client look up for an identifier inside Identity API or resource server
and uses this identifier to find out internal user account data. If the client
find those data then it assumes that the user has been authenticated. Now

4.4. DPoP-JWTs 24

the attack scenario can take place when the attacker trapped the victim to
logging into a malicious app and uses the same identity provider to issue an
access token. Attacker then achieve this access token through the malicious
app. After manipulating the authorization response, the attacker then uses
or substitute his identity bound access token to get the access of the victims
confidential or private resources.

The countermeasures can be using OIDC [50] for user login by the client
because audience restrictions on clients are supported there [96]. Point to be
noted that ‘aud’ claim helps to identify the intended recipients of JWT.

44 DPoP-JWTs

DPoP is an OAuth 2.0 security extension which helps to prevent attackers from
using leaked or stolen access tokens by providing sender-constraining access to-
kens. That means during the issuance of access token it binds the access token
to a public part of a client’s key pair and client needs to prove the possession of
the private key to use the token thus used in contrast to the typical bearer token.
The value of the DPoP header is a JSON Web Token (JWT) that enables to bind
issued tokens to the public part of a client’s key pair. In a traditional mechanism,
API access can be allowed if the client application can provide a valid token but
in DPoP it does an additional check to prove whether the client application is the
same one that the access token has been issued to. BTW DPoP mechanism is not a
client authentication procedure. The use of DPoP is primarily for applications on
a user’s device which do not use client authentication. [9]

Fommm i — o + S
| |--(A)-- Token Request ------------------- >|

| Client | (DPoP Proof) | Authorization
| | | Server

| |<-(B)-- DPoP-bound Access Token ---------- |

| | (token_type=DPoP) e
| |

| |

| | e
| |--(C)-- DPoP-bound Access Token --------- >

| | (DPoP Proof) | Resource

| | | Server

| |<-(D)-- Protected Resource --------------- |

| | e e — =
o e m +

Figure 4.6: Basic DPoP Flow [9]

4.5. Relevant security objectives: 25

According to figure 4.6/ the basic DPoP flows are as below—

(A.) Before token request there are some steps that needs to be mentioned. The
process starts with Generating public and private key pair. Then preparing JSON
including the generated public key and a payload which will be used as the header
of the JWT. Then generating signature using private key for the created data. After
that DPoP proof JWT has been produced by packing them into a JWT. Now it is
ready for sending request for access token (and potentially a refresh token) to the
token endpoint.

(B.) Token endpoint then Extract the DPoP proof JWT from the token request.
Verify the signature using the public key included in the DPoP proof JWT that
ensures the client application has the private key which is corresponds with the
public key. Token endpoint then generate the access token and bind public key to
the access token and sends it to the client application. If refresh token is issued
then it also bound to the public key.

(C.) Client generates fresh proof and send access token with newly created
DPoP proof JWT to the resource server.

(D.) The resource server then check whether the public key included in the
DPoP proof JWT matches the one that is bound to the access token. If it matches
then it grants the access. [9]] [35]

4.5 Relevant security objectives:

If we look figure 4.6/ then we can see in every steps JWT has its involvement except
step D.

1. In step A, Client needs to proof its authenticity to AS. For this purpose,
client sends the token request to the AS with DPoP proof JWT through which
the AS can ensure the authenticity of the client by ensuring that the client
possesses the private key.

In addition, It needs to be ensured during implementation that only asym-
metric digital signature algorithms for example ES256 are used for signing
DPoP proofs JWT which considered as more secure and recommended as
per JSON Web Algorithms (JWA) specification {4

Now if the attacker exfiltrate the authorization code through Authorization
Code Rebinding Attack explained in section then it can sends the token
request in this step with his own created DPoP key and DPoP proofs.

2. In step B, AS needs to check the authenticity of the client and must verify
that the typ field is dpop+jwt in the headers of the JWTs otherwise it must
not accept it. The AS then sends the sender constrained access token binding

4.5. Relevant security objectives: 26

it with the client’s public key which prevents the attacker to use the stolen
token.

Moreover, in this step, DPoP proof JWT replay detection and prevention can
be done by AS through sending an error with ‘dpop-nonce” header in re-
sponse to ensure the freshness of the DPoP proof JWT Figure [4.74.8] Details
about DPoP proof replay attack is explained in section

CLIENT-SIDE AUTH-SIDE SERVER-SIDE

@ OIDC client @ Authorization server & Resource server

1. Generatas public/private
key pair for use with DFoP

2. Adds public key to JWT header
and signs JWT with private key

3. Adds JWT to ‘DPoP' request header
and sends raquest to token endpoint

4, Verifies 'DPoP' header
and sends errorwith
‘dpop-nence’ header in response I

6. Adds ‘nonce’ and 'jti’ values to

JWT payload and sends request again

6. Binds public key to access token
and sends response

¢

7. Sends DPoP-bound accass tokan to MSOUrce Server

8. Validetes the DPoP-bound access token and grants access to client

® © ¢ o o

Figure 4.7: Refreshing DPoP Flow with nonce challenge. ||

In addition, an authorization server may also issue access token which is not
DPoP bound with a value of Bearer in the token type parameter of the access
token response. In this case client must discard the response if it wants to
maintain the application security. otherwise,it may continue as in a regular
OAuth interaction. Moreover, a different token type value than DPoP can not
ensure the security protection provided by DPoP. 9]

3. In step C, client needs to produce a fresh DPoP proof JWT and sends it

4.5. Relevant security objectives: 27

Protected Resource nonce challenge

Authorization Server nonce challenge HTTP/1.1 401 Unauthorized

WwW-Authenticate: DPoP error="use_dpop_nonce"”,

HTTP/1.1 468 Bad Request error_description="plz use nonce in next DPoP proof"

DPoP-Nonce: 7c1P25czb-3yBHA-Z.GvAwdxY DPoP-Nonce: ab3d6eqGo6ye@i@999Z_HX42t77x
{

"error": "use_dpop_nonce"

"error_description”: "AS needs nonce in DPoP proof"
¥

Next nonce provided with successful response (no challenge)

HTTP/1.1 200 OK
DPoP-Nonce: I1m3n0pel7545zGPeYlbYuciQmJxj26

Figure 4.8: Example of server provided nonce challenges.

alongside with the public key bound access token to the RS so that the RS
can compare the public key in between them to ensure the authenticity of the
client.

Moreover, in this step client can proof the authenticity of DPoP proof JWT
by sending the fresh DPoP proof JWT which also been used to prevent DPoP

proof JWT replay attack [9]. Figure

Explicitly typed {
“typ":“dpop+jwt", A ‘tr) t
" w,n n Symmeitric signature
The public key to verify “é'llg" :"ES2567, algorithms only
the signature and Jwk":
proof-of-possession is {
being demonstrated "kty":"EC", "crv":"P-258",
"x":"18tFrhx-34tV3hRICRDY9zCkD1lpBhF42UQUfWVAWBFs™,
Only valid for a limited "y":"9VE4jf_Ok_064zbTTlcuNJajHmt6voOTDVrUBCdvGRDA"
time window relative } Unique identifier for

the HTTP request

to creation time } . replay checking Minimal info about

Hash of the access token
(only for protected
resource access)

"jti":"-BwC3ESchacc21Tc",
"htm":"POST",
"htu":"https://rs.example.com/important/stuff",

Server-provided nonce “iat": 1637259115,

value (when previously "ath":"fUHy02r2Z3DZ53EsNrWBboxWXoaNy59IiKCAqksmQEQ",
provided by the server) "nonce": "aiJ65fh_zG.e.yffsUZ—Hvdw—?v"
for freshness & time T R

Figure 4.9: Anatomy of a DPoP Proof JWT.

point to be noted that before providing the protected resources the RS may
also supply 'nonce” as a response for an additional security check which can
be used to prevent DPoP Proof Pre-computation Attack. Figure

Both of the attacks are explained in section

4.5. Relevant security objectives: 28

4.5.1 Important attacks:

1. Authorization Code Rebinding Attack: Now even before the token request
DPoP flow can be brought backward to create an end to end connection or
binding of the entire authorization flow. figure

@ Authorization Request & Authenticate user and issue
Authorization Code (AC)

QAuthor'\zat'\on Response with AC

Y) .

@ Client sends public key, DPoP Proof + AC /QIdP bind client controlled

cryptographic keys to
((@Semder Constrained Access and Refresh 'dentity Provider tokens

Tokens

@ Client generates
fresh proofs
Client @ RP accept tokens if proof of possession is valid
Q @ Resource Access Granted @

© Client presents fresh proof of Resource
possession with Access Token

_) identiverse #identiverse

Figure 4.10: Authorization Code Binding to DPoP Key. [35]

In a traditional public client authorization request it uses Proof Key for Code
Exchange (PKCE). But even though using PKCE and having authorization
codes one-time-use practice, there are often a time window during when
the replay attack can be possible. Attacker can also use XSS to obtain the
authorization code and PKCE parameters. [68].

In brief, after authorization request when authorization server responds with
authorization code, the attacker can get access of this code where the HTTP
messages containing them are logged such as- proxy or Web server. figure

dI1

The solution can be including dpop_jkt Parameter in the authorization code
request figure The value of dpop_jkt Parameter is DPoP jwk thumbprint.
Now in return, AS binds the authorization code with DPoP JWK.

So even if the attacker exfiltrate authorization code from log file and sends his
own created DPoP key and DPoP proofs as a token request in step A, from
figure [4.6| to the AS, the AS can compares JWK Thumbprint of the proof-of-
possession public key in the DPoP proof with the dpop_jkt parameter value
in the authorization request. It reject the request if it does not match. figure

In brief, JWK thumbprint is a method to compute a hash value over a JSON
Web Key (JWK) to identify which fields in a JWK are used in the hash compu-

tation so that it can be used for identifying the key represented by the JWK.
[62].

4.5. Relevant security objectives:

Authorization Code Rebinding Attack

@ Authenticate user and issue
eAuthorizat\'on Request Authorization Code (AC)

> @ IdP bind keys

to tokens

@ Authorization Response with AC [o000=]

XY, Identity Provider
} xfiltrate AC
@ Attacker generates own from log file | © Sender
DPoP key and DPoP proofs Constrained
% @ Attacker public key and Access and
. 9 Attacker creates fresh proofs DPoP Proof (+AC) Refresh
Attacker_ ¢ Tokens

Client © Attacker presents fresh
DPoP proof & Access Token l

The Attacker re-binds the authorization code
with a DPoP key under its own control
@Resource Access Granted

Resource
Provider

RP accept tokens if proof of #identiverse 'J
nossession is valid s

Figure 4.11: Authorization Code Rebinding Attack.

Authorization Code Rebinding Attack: Mitigation

@ Authorization Request Qﬁ:;:‘?:szceafc
+ DPoP JWK Thumbprint , and bind it to
Q Authorization Response with (AC) CITTE the DPoP JWK
T

‘l:r:uxy!.l Identity Provider
| @ exfiltrate AC ©IdP compares
@ Attacker generates own

from log file DPoP JWK with
DPoP key and DPoP proofs -
% @ Attacker public key,
DPoP Proof & AC

Attacker

pr
public key and
rejects the

- request if they
(5] Reject request don't match.

Authorization Code binding prevents
attackers from registering their own
DPoP keys using exfiltrated
authorization codes.

Resource
Provider

Figure 4.12: Authorization Code Rebinding Attack Mitigation. ||

29

2. DPoP Proof Pre-computation attack: The attack can take place in step no
C, from figure An attacker who is a legitimate user of the client can
pre-compute DPoP proofs by using the iat value in the DPoP proof to be
signed by the proof-of-possession key figure For example, the attacker
can pre-generate or pre-compute DPoP proofs on one computer holding the
proof-of-possession key upon which they were generated and copy them to
another machine which does not possess the key for using in future. Then
the attacker can use that pre-computed DPoP proof with exfiltrated token as

a request to the resource server.

The prevention can be done by using resource server provided 'nonce” which

is not predictable by the attacker figure

3. DPoP Proof Replay: DPoP proof replay can be possible in step no B figure

if the attacker somehow can get hold of a DPoP proof JWT.

4.6. mTLS-better security option than DPoP 30

GET /authorize?response_type=code&client_id=séBhdRkgl3&state=xyz
Gredirect_uri=httpsk3A%2F%2Fclient%2Eexample%2Ecom%2Fch
&code_challenge=E9Melhoa20wvFrEMTJguCHaoek 1 tBURWbuGJSstw-cM
&code_challenge_method=5256
&dpop_jkt=NzbLsXh8uDCcd-6MNwXFAN_7noWXFZATHKkxZsRGC9Xs HTTP/1.1

Host: server.example.com

Figure 4.13: Authorization Request using the dpop_jkt Parameter. [El]

@cClient presents public key and @) IdP bind client controlled cryptographic
proof of possession to IdP keys to tokens

B
© sender Constrained Access /
and Refresh Tokens Identity Provider

@ Client generates and
presents tokens and‘proofs @Pre—compute proofs for attacker selected iat values
to the resource provider as

before. It may pre-compute
DPoP proofs.

Client

Deploy malware
@ Exfiltrate tokens |9 Py

and pre-computed I @RP verifies proof (including valid iat)
proofs off-box. & © Present exfiltrated token

and pre computed proof J resource
Provider

thker S granted
<) identiverse #identiverse
@Tlme passes...

Figure 4.14: DPoP Proof Pre-computation Attack.

Prevention can be done by AS if after verifying DPoP header AS can pro-
vide an additional check by sending an error with ‘dpop-nonce’ header in
response to ensure the freshness of the DPoP proof JWT. If it is the case, then
the client must needs to send request again including 'nonce’ and ’jti" values
in the JWT payload. Here ‘jti’ is an unique identifier for the DPoP proof JWT.

In addition, if the attacker tries to replay that DPoP proof JWT to get the
access of the resources from protected RS in step no C, figure then it
can also be prevented by using fresh DPoP proof JWT by the client which
contains an additional claims which is “ath’. It is a hash of the associated
access token. In this way, Uses of a same proof with multiple different access
token values across different requests can be prevented. Point to be noted, to
check ath only is not enough to prevent replay of the DPoP proof. It is also
important to check ‘htm’, “iat” and ‘htu’ parameter as well. [9]. Figure

4.6 mTLS-better security option than DPoP

Before jumping on explaining mTLS it is necessary to know the basic rules of TLS
to verify identities which is explained in Appendix Bl TLS is fine For everyday as
usual use to keep private data secure and encrypted as it crosses the various net-
works and to verify the server’s identity. But it is not enough to prove the identity
for the client as anyone can connect to the server and initiate a secure connection,

4.6. mTLS-better security option than DPoP 31

@ Client presents public keyand @ IdP bind client controlled cryptographic
proof of possession to IdP keys to tokens

© Sender Constrained Access /
and Refresh Tokens Identity Provider

@ Client generates and
presents tokens and proofs @Pre—compute proofs for attacker selected iat values

to the resource provider as

before.
Client

©@Deploy malware @ RP checks proof for server supplied
0 Exfiltrate tokens
and pre-computed fresh nonce if one is absent.

proofs off-box. © Present exfiltrated token @ Proof .
and pre-computed proof J Resource roof pre-computation
Provider attack prevented
@ Amiker mHP sends server supplied nonce to attacker

) identiverse @ #identiverse
@ Attacker can't generate proof or use stolen token M

nonce and request a proof with a

@Time passes...

Figure 4.15: DPoP Proof Pre-computation attack Mitigation: Server Nonces. ||

even if the client is not authorized to do so. Here, to avoid this situation an extra
security implementation is needed. Whereas in TLS only the Server presents the
certificate issued by a Certificate Authority (CA) in mTLS the Client also presents
a client certificate issued by the CA to establish its identity and a mutual trust in
between them. Since, it is an extension of TLS, the TLS connection in between
client and the authorization server needs to be re-established with mutual-TLS
X.509 certificate authentication.
The basic mTLS flow is shown in figure

Client Server
1 Chient connects to server
¥

Clignt verifies s:g“xmt:
server's certificate

@ errvroeer e B

; -
T L —_—

Cliznt prasents - | Seruer verifies Server [_ .
TLS cartificate —_| client's cartificate grants access -

: 5 N

Client & server exchange information over
ancrypted TLS connection

&)

Figure 4.16: mTLS flow. ||

Client Certificate-Bound Access Tokens

Some important observation in between DPoP and mTLS are as below:
In DPoP, authorization server can bind DPoP with issued access token such

4.6. mTLS-better security option than DPoP 32

a way so that it can be accessed or verified by the protected resource. In mTLS it
bind the issued access token with the certificate hash directly using JWT Certificate
Thumbprint or which enables mutual TLS to serve purely as a proof-of-possession
mechanism. In this case, the access token itself can not be used to make decision
whether to request mTLS or not, to use mTLS or certificate-bound access tokens
the resource server must have the knowledge that mTLS is to be used for all of
its resource accesses. In mTLS protected resource-access flow, client request upon
getting protected resources must be done over a mutually authenticated TLS con-
nection using the same certificate that was used at the token endpoint using mtLS.
To ensure that same certificate has been used, the protected resource server must
obtain the client certificate used mTLS from TLS implementation layer to compare
it with the certificate bind with access token. If they do not match then resource
access request must be rejected with an HTTP 401 status and the invalid token
error code.

JWT Certificate Thumbprint Confirmation Method

Here JSON Web Tokens (JWT) is used to represent access token. The hash of a
certificate also represented by a JWT where the payload contains x5t#5256 for the
X.509 Certificate SHA-256 Thumbprint confirmation method [57]. In JWT claim
set the X.509 certificate thumbprint confirmation method can be found inside a cnf
claim under "x5t#5256" header or confirmation method member which contains

the hash of the client certificate to which the access token is bound. [7]. figure

"iss": "https://server.example.com"”,
‘sub”: "ty.webb@example.com”,

"exp”: 1493726488,

'nbf": 1493722888,

‘enf":
m: bwcKBesc3ACC3DB2Y5_1ESSXEB091tcB50897dN-dg2”

Figure 4.17: JWT Claims Set with an X.509 Certificate Thumbprint Confirmation Method. [7]

here the hash of the certificate carries the meta information to the protected
resource in a token introspection response. The protected resource then compares
this certificate hash with the hash of the client certificate used for mutual-TLS au-
thentication and rejects or accepts the resource access on the basis of the comparing

result.figure4.18]

4.6. mTLS-better security option than DPoP 33

HTTF/1.1 288 0K
Content-Type: application/jscn

{

}

‘active” ! true,
'iss": "https://server.example.com",
‘sub”: "ty.webb@example.com”,
"exp” : 1493726480,
‘'nbf": 1493722888,
"enf” 1§
"x5t#5256" : "bwcKBesc3ACC3DB2Y5_lESsXE8091tcB5089jdN-dg2”
h

Figure 4.18: Introspection response for certificate bound access token. [7]

Security aspects

Since mTLS is based on zero trust architecture, it can give high level security.
Where it can prevent modifying communication, spoofing web server, credential
leakage, Brute force attack, Malicious API requests [102]. Even though its high se-
curity assurance, in digital realm nothing is hundred percent secure. As implicitly
granted access assuming all the origination is from the authentic client, it can be
dangerous in case of misconfigured server where due to inappropriate it might not
ask certificate from the client. This opens the possibility for the attacker to inject
the request and the request can be served silently unauthenticated.

Some more security aspects are as below which needs to be considered seri-
ously —

1.

X.509 Certificate Spoofing attack: When the attacker uses certificate with
the same subject (DN or SAN) but issued by a different CA whom the au-
thorization server trusts, then this kinds of certificate spoofing attack can
be possible. Here point to be noted, X.509 certificates are traditionally used
for mTLS OAuth client authentication. It does that by validating certificate
chain and comparing a single subject distinguished name (DN) or a single
subject alternative name (SAN). For each client only one subject name value
is used. In TLS handshake besides validating client’s possession of the pri-
vate key, it also validate the corresponding certificate chain which contains
an ordered list of all certificates and Certificate Authority (CA) Certificates
which used to verify the trustworthiness of the sender and the CA. In terms
of validating (SAN) it checks if the single expected subject which is used to
register a client is matched with the subject information in the certificate.
For comparing the certificate’s subject DN to the client’s registered DN the
distinguishedNameMatch rule from [89] are needed. To avoid this threat,the
authorization server should accept only some limited trustworthy CAs which
meets its security requirements in terms of issuing certificate policy. To vali-

4.7. OpenID Connect (OIDC) 34

date the certificate chain the client and the server must agreed upon a set of
trust anchors. Without consider these precautions it might open the possibil-
ity of certificate spoofing attacks.

2. Parsing and Validation of X.509 Certificate: Without parsing and validating
certificate properly which is a complex procedure and due to implementation
mistakes, many security vulnerabilities may take place. [7]

BTW both mTLS and DPoP are designed to provide sender constraint and ensure
the legitimacy of the token sender but DPoP is recommended to use only if there
is no mTLS or oauth token binding are available. [95]. The reason behind it can be
many. some reasons are as below-

1. DPoP is a newer method compared to mTLS, that means it may not have the
same level of widespread acceptance. mTLS was already adopted by FAPI
1.0 Advanced [66] and is widely used in Open banking UK where DPoP is
relatively new.

2. mTLS provide strong security guarantees since it relies on Public Key Infras-
tructure (PKI) and certificate-based authentication.

Even though mTLS has widespread adoption and strong security, the situ-
ation might change cause DPoP does not rely on PKI infrastructure, which
makes it easier to implement compared to mTLS, it also provide Application-
layer security with asymmetric cryptography and lightweight JSON Web To-
kens (JWTs). Both public and confidential clients can use it. Most importantly,
in the new version of FAPI 2.0 Security Profile allows both mTLS or DPoP to
be used. [20]

4.7 OpenlD Connect (OIDC)

OIDC is an authentication protocol which supports different applications to au-
thenticate and verify the identities of their users in a secure way. The apps that
uses OIDC rely on identity provider for secure authentication and verify the iden-
tities of their users. Point to be noted, identity provider is not employed inside
OIDC, the OIDC protocol uses authorization server to authenticate end users.

In a more simpler way we can say, if we use an application which provide
their services only to the authenticated users, instead of using users credentials the
app can use OIDC to redirect the authentication request to an identity provider
(for example— Google, Microsoft) to prove their identities. After authenticating the
user via identity provider, the app can allow the authenticated user to access their
services. How those identity providers maintain the authentication procedure of
the users in the first place is not something that OIDC needs to be concerned about.

4.7. OpenlD Connect (OIDC) 35

The main role of OIDC is to ensure the secure interaction in between apps and the
identity provider to authenticate users. [43]

4.7.1 Important terms to know

¢ Client registration: In OIDC client needs to register itself first at the Au-
thorization Server so that it can recognize the registered client whenever it
requests something from the authorization server on behalf of the user. To do
that new client needs to send an HTTP post message to the Client Registra-
tion Endpoint of authorization server with any Client Metadata parameters.
Client specify the metadata for itself. The authorization server then assigns
a unique client ID, optionally client secrete and associates client’s metadata
with this issued Client Id. The authorization server can reject any of the
Client’s requested field values and substitute them with suitable values. If
it happens then authorization server must includes those fields with its re-
sponse. The response from authorization server may contain a Registration
Access Token which can be used by the client to perform any subsequent
operations afterwards. figure [67]

HTTP/1.1 201 Created
Content-Type: application/json
! no-store
Pragma: no-cache

{
"client id": "s6BhdRkqt3"”,
"client secret":

”ZJYCEEEGGRVQrudZ{yZSDXl’:GV Z45DuKhCUKOgBR1VZK",
“:'.ien:_secret_exp‘_:es_at":7'_577559403,
"registraticn access token":

"this.is.an ezs.token.value.ffxB3",
"registration client uri":

"https:.a‘.a‘se:ver.examp'_e.:om_.":cn.‘:ec:,f':egister?c;ient_id=363hd3kq13",
"token endpoint suth method":

"client secret basic”,

“appli:at{:\n_typg" : "web",
"redirect uris":
["https://client.example.org/callback"”,
"https://client.example.org/callback2"],

"client name": "My Example",
ent namefja-Jpan-JP":

nGS AT "'g"r
"logo uri™: "https://client.example.org/logo.png™,
"suhjgct type": "pairwise",
"sector ! ifier uri":

"https://other.example.net/fi le of redirect uris.json",
"Jwks uri": "https: //client.example .crg_!:ny_public_keya . Jwks",

"userinfo encrypted response_alg”": "RSAl 5",
"userinfo encrypted response enc": "R128CBC-HS256",
"contacts": ["velitbfexample.org”, "marylexzample.org”l,
"request_uris":
["https://client.example.org/rf.txt
#orXaRLh n93TTROF252ValdatUQvQiJiSBlub2BeznA"]

]

Figure 4.19: example of OIDC client registration request to the authorization server client registration
endpoint. [67]]

¢ ID token: ID token is a JSON Web Tokens (JWT). it contains:

- unique user identifier.

4.7. OpenID Connect (OIDC) 36

— issuing authority that means the AS URIL
- The intended audience which is the client application.
— Issue and expiration times.

- How the user was authenticated for example either via password or
multi-factor-authentication.

ID tokens are used for enabling user access to client-hosted resources, that
means it is an identity and authentication assertion issued by the AS and
consumed by the client. In order to provide the authenticity and integrity of
the token, the OP or OpenlD provider or identity provider is responsible for
signing it using JSON Web Signature (JWS). figure

"iss" : "https://c2id.com",
"sub" : "alice",

"aud" : "s6BhdRkgt3",
"nonce" : "n-0S6_WzA2Mj",
"exp" : 1311281970,

"iat" : 1311280970,

"acr" : "https://loa.c2id.com/high",

"amr" . ["mfa", Ilp'dll’ "Cltp"]

Figure 4.20: Example of OIDC ID token. |@|

* Access token: On the other hand, access tokens are used for enabling user
access to a resources hosted by a resource server. Which is an identity and
authorization assertion issued by the AS and consumed by the RS.

4.7.2 How OIDC Works

1. When end user wants to get access of resources on the client, the user re-
quests to start authentication procedure via the client. Client then prepares
authentication request with desired parameters or scopes which contains the
information the client wants to access on behalf of the user.

2. The client redirects user to the identity provider which is the authorization
server in this case. The identity provider or OP or OpenlD Provider redirects
to the user with some artifacts where it might ask which particular identity
provider the user wants to use to prove his identity or to authenticate himself

4.7. OpenlD Connect (OIDC)

37

(such as - Google or Microsoft). This user choice used by the app or relying
party to issue the request to the identity provider to complete user authen-
tication. OP or open ID provider then authenticate end-user and obtain end

user consent or authorization

+ |

+ |
C—————— {3) AuthN Responze————-———|
| ————————— {4) UserInfo Request--—--—->|

| {5) Userinfo EResponse—————|

. figure

I
| I
|<——(2) ButhN & AuthZ-->|
| |
| | ©P
|
I

Figure 4.21: Basic OIDC flow.

3. The token endpoint of OP or OpenID provider then responds with an ID
token and an access token. Client then validates the token and recovers the
End-User’s Subject Identifier from the token.

4. If client needs some more information about enduser then it can send HTTPS
“GET” request to the user info endpoint including access token in the autho-

rization header.

“sub"
"name"
"given_name"
"family name"

"email"
"email_verified" :
"phone_number"
"profile"

"ldap_groups"

: "alice",

: "Alice Adams",

: "Alice",

: "Adams",

: "alice@wonderland.net",

true,

: "+359 (99) 88200305",
: "https://c2id.com/users/alice",

["audit", "admin"]

Figure 4.22: Example of user info in JSON format.

5. User info endpoint of OP responds with user info as a JSON document asked
by the client or RP when fetched via HTTP. figure (50] [104]

4.7. OpenlD Connect (OIDC) 38

4.7.3 Different Uses of OIDC

Most interestingly OIDC can be used in three different scenarios—

1. Without asking the user to create new user profile or account with their cre-
dentials, the application can take the advantage of OIDC to reuse their ac-
counts on an identity provider to authenticate themselves. It can make sign
up procedure much more smoother. It also make it easier to acquire more
personal information about users.

2. By using OIDC the app can connect to a single hub that works for multiple
identity provider, instead of communicating with multiple providers sepa-
rately. The connection of OIDC with SSO and Federated Identity Manage-
ment (FIM) is explained in appendix

3. Thirdly it can be used as a proxy for other protocols like SAML.

4.74 SAML (Security Assertion Markup Language) vs OIDC

Now another important question is both SAML (Security Assertion Markup Lan-
guage) [6] and OIDC uses digitally signed token to carry users personal data and
both can be used for the same purposes, then why using OIDC. First of all, SAML
does not support SSO for mobile devices or provide API access, it can only be
used to access browser-based applications. Also SAML is XML based which can
create an issue during signature verification if two elements listed in a different
order, also another reason is XML format can be very heavy where there is a low-
speed connection and also just for authenticating an end-user with some of their
attributes. In addition, from security perspective using JWT format referred to as
JOSE for signing and encryption provide more compact security tokens than XML
used in SAML. Small security tokens are also suitable for addressing the URL and
header size constraints in mobile environments. [43]

4.7.5 Relevant security objectives

As we know about the data flow of OIDC and how it works, now it is essential
to point out exactly where the JWT plays its role in OIDC to fulfill the security
objectives.

1. if we look into figure we can see in the first step the relying party sends
the authentication request to the OpenlID provider or OP. Now OIDC can use
JWT to sign and optionally encrypt the authentication requests to provide the
confidentiality of the request. To do this it uses some authorization request
parameters such as request_uri or request parameters which are represented
as JWTs. SSRF via request_uri parameter can take place if the request_uri

4.7. OpenlD Connect (OIDC) 39

is not pre-registered by the client during registration procedure which can
allow a malicious client to use any arbitrary request_uri and impersonate
itself as a benign client. It might cause leaking of sensitive data, such as
authorization credentials. Disclosure of server response can also take place
in this step which can be prevented by authenticating the client properly by
AS. Details about this kind of attacks is explained in section

2. In step no 3, The authentication response by OpenlID provider contains an ID
token which is a JWT figure The integrity of the token can be hampered
and leakage of confidential data can take place If it is been compromised by
the attacker. if a malicious "jwks_uri" has been used by the attacker during
new client registration then the attacker can achieve an authorization code for
any user and can obtain the token from this step by using that code which is
explained in section [4.7.6]

3. In step 5 the user info response can also be signed and/or encrypted using
JWT [50]. Again as the additional user info as per figure needs to be
transferred in this step in the form of JWT from OpenlD provider to relying
party, the integrity of the JWT and confidentiality of the data inside it needs
to be maintained.

4.7.6 Important attacks

1. SSREF via request_uri parameter

In OIDC new clients needs to register itself to the Client Registration End-
point which is an OAuth 2.0 Protected Resource. In this endpoint new client
registration can be requested. request_uri is a part of a client metadata which
is sent during registration request. Clients may pre-register request_uri by
the RP for use at the OP. OPs can cache and pre-validate the request parame-
ters at Registration time, that means they don’t need to be retrieved at request
time. The RP can use this request_uri to provide a URL that contains a JWT
with the request information. figure [4.23|

To avoid SSRF attack the client must need to serve this uri beforehand dur-
ing registration so that server can whitelist those URLS and don’t allow any
arbitrary request_uri. [50] [90]

2. SSRF during dynamic client registration

If we look figure which is an example of a POST request send by the
client to the registration endpoint for registering itself with the OpenlID provider.
One of the value is "jwks_uri" which is passed in via URL links and can be
potentially vulnerable to SSRF attack. Also most of the servers do not resolve

4.8. Selective Disclosure JWT (SD-JWT) 40

httpa://aerver.exanple.com/authorize?
regponse type=codetilid token
tclient id=s6BhdRkgt3
treguest uri=httpsidhi2FiZFclient.example.orgiZFrequest.jwt
F23GKkurEx fSTOY-mnPFCHgWOMIZi4V5138cQ0 VIPZHAGM
Estate=aflifjsldk]jincnce=n-056 WzAZM]
Escope=sopenid

Figure 4.23: Example of authorization request made by the client to the authorization endpoint using
req_uri. [50]

those URLS immediately, they just save those parameters for later use during
Oauth authorization flow.

jwks_uri: This refers to the client’s set of JSON Web Key [JWK] document.
During the use of JWT for client authentication the server needs those key
sets to validate signed request made by the client to the token endpoint.
SSRF attack may take place through this parameter by sending a malicious
"“jwks_uri" during new client registration which can allow to obtain an au-
thorization code for any user. [90].

The countermeasures can be done by making the client registration proce-
dure much more stricter so that client can not register itself without con-
firming "jwks_uri" and the AS needs to whitelists those "jwks_uri" so that no
malicious "jwks_uri" can be accepted by the AS later on.

3. Disclosure of server response

As the server response might contain the sensitive information about client,
it can be vulnerable with different types of attack if it is been disclosed to
the attacker. The disclosure can be prevented by using the client_id and
client_secret to authenticate the client by AS. Also the response needs to be
sent over TLS. In addition a signed and encrypted JWT can also be used to
protect the confidentiality and integrity of the response.

Since OIDC works on top of the the OAuth 2.0 protocol, some of the attacks
explained in section 4.3| can also be applied on OIDC as well.

4.8 Selective Disclosure JWT (SD-JWT)

JSON Web Token (JWT) has its many uses. Representing a user’s identity is one
of the common use case of a signed JWT. If a person wants to disclose some of his
verifiable information to a specific verifier, he typically uses one-time JWT which
contains those claims. Due to increasing number of uses of this kinds of JWT the
“Holder” of the JWT or the user needs to create a signed JWT once and then used

4.8. Selective Disclosure JWT (SD-JWT) 41

it number of times. Here selectively disclosure JWT or SD-JWT takes the control
where it creates a subset of those claims depending on the verifier to ensure min-
imum disclosure and prevent Verifiers from obtaining unnecessary or irrelevant
claims. SD-JWT also can provide the protection against undetected modification
as the claims can be hidden, but cryptographically secure [21].

4.8.1 Verifiable Credentials

One of the example of above mentioned multi-use JWT is a verifiable credential
where the authorship of the claims about a subject can be verified cryptographi-
cally. In a more simpler way, we can compare verifiable credentials with physical
wallet where we can hold one or more physical identity cards. In digital world an
app on a mobile phone can act as a digital wallet. Verifiable credentials are like the
identity cards into the wallet app. A verifiable credential can be presented to a web
service, same as a loyalty card that we need to present during making purchases
at a grocery store.

Important terms to know
1. Claim: A claim is an assertion or statement about a subject.

2. Holder: Holder is the possessor of one or more verifiable credentials of a
subject. It stores these credentials in credential repositories.

3. Issuer: The role of issuer is asserting claims about one or more subjects,
generating verifiable credential from these claims and transmitting them to a
holder.

4. verifiable presentation: It is a cryptographic method where the authorship
of the data can be trusted after cryptographic verification process. It derived
from one or more verifiable credentials which can be referred as a subset
of one’s persona. It packed in such a way that the authorship of the data is
verifiable or trusted. We can co-relate this with zero-knowledge proofs where
without disclosing the actual value an entity can prove to another entity that
they know a certain value.

5. Verifier: It receives one or more verifiable credentials, optionally inside a
verifiable presentation for processing. It can be co-relate with relying party.
[101]

Relationship in between Issuer-Holder-Verifier

1. In general issuer generate verifiable credentials from claims and issues it to
the holder.

4.8. Selective Disclosure JWT (SD-JWT) 42

oo +

‘ ‘+ S —— +

| Verifiers ||+ | Status

| 1]----- optionally ------- >| Provider |

AR LR TR + retrieve status of | |
o +| Verifiable Credential +------------ +
R +

Figure 4.24: Issuer-Holder-Verifier Model. [70]

2. Holder then presents the verifiable credential to the verifiers.

3. Verifiers then verifies the authenticity of the data inside verifiable credential
which is a cryptographically signed statements or claims about a Subject.
Also it optionally asks the holder to proof possession of a cryptographic key
mentioned in the credential to ensure that they are the actual holder of the
Verifiable Credential.

4. The role of status provider here is optional where revocation information
about a verifiable credential are kept and it is being used to retrieve those
informations or the current status of a credential.

This common specification can be used both with SD-JWT based verifiable
credential and without selective disclosable claims as well. figure [70]

4.8.2 Issuance of SD-JWT

Some important terms to know

1. Digest hash: Digest hash or Digest/Hash function generates a digital sum-
mary of information known as message digest which provides a digital iden-
tifier for a digital document. It is Base64 encoded that represents binary data
in an American Standard Code for Information Interchange (ASCII) string
format. [24]

2. Random salt: Random salting refers to adding random data into the input

4.8. Selective Disclosure JWT (SD-JWT) 43

Presents
SD-JWT-R and SD-JWT

Figure 4.25: Issuance of SD-JWT with presentation flow. [21]

of a hash function to generate a completely unique output even though the
inputs are the same which strengthen the data against different attack vectors.
such as hash table or brute force attack. [3]

3. SD-JWT Salt/Value Container (SVQO): It is the container of the mapping be-
tween salt value for each claim and raw claim values contained in the SD-JWT
which is a JSON object created by the issuer.

4. SD-JWT Release (SD-JWT-R): It is a subset of the claim values of an SD-JWT
created by the holder. It is a JWT which contains those informations in a
verifiable way.

5. Holder binding: It is the ability of the holder to prove its possession of
SD-JWT. It does that by proving its control over a same private key during
issuance and presentation. When issuer signed a SD-JWT, it contains or refers
a public key which matches with the private key of the holder. [21]

Explanation of the SD-JWT Issuance and Presentation Flow

1. The first step is to generate SD-JWT by the issuer which contains hash digests
over the claim values including unique random salts and other metadata. It is

4.9. Relevant security objectives 44

a digitally signed document using the issuer’s private key. The issuer sends
this SD-JWT with SVC.

2. In the next step holder creates a JWT known as SD-JWT-RELEASE which
contains a subset of the SD-JWT claim values in a manner so that it can be
disclosed to the verifier and the verifier can varify the information. Holder
then sends that SD-JWT-RELEASE alongside with the SD-JWT to the verifier.
Optionally the holder binding can also be added. To do that holder needs
to sign SD-JWT-RELEASE with its private key which corresponds to holder’s
public key.

3. Vrifier then checks if the hash digest hash matches the one under the given
claim name in SD-JWT for each claim in SD-JWT-RELEASE. Which means it
validate the claim values by calculating the hashes of those values received
in SD-JWT-R and comparing them with the hashes in the SD-JWT. figure
[21]

4.9 Relevant security objectives

Now couple of security measures needs to be taken to make the SD-JWT flow
secure or fulfilling the security objectives [21].

1. If we follow figure where the flow of sd-jwt has been explained with
Issuer-Holder-Verifier model then we can see in the first flow Issuer needs
to issue sd-jwt and sends it to the holder. Here issuer must need to sign the
SD-JWT with its private key to ensure the integrity of the claims so that the
attacker can not modify the claims.

Now after receiving the SD-JWT and SVC from the issuer, the holder should
check or verify the bindings in between them by checking that all the claims
mentioned in SVC are present in the SD-JWT and the hashes of the claims in
the SVC are matches with those in the SD-JWT.

2. In the next step verification needs to be done by the verifier when it Receives
SD-JWT and SD-JWT-R from the holder.

At first, ensure if the holder binding needs to be checked (as it is optional) to
prove that the SD-JWT contains the public key corresponds with the private
key of the holder. It ensures the authenticity of the SD-JWT.

To ensure the integrity of the SD-JWT that it has not been tampered on its way
since its issuance by the issuer, the verifier must need to check the signature
of the SD-JWT to ensure that the signing key belongs to this issuer. In this
way it validated the issuer as well. The SDjWT must be rejected, if the
signature can not be verified.

4.9. Relevant security objectives 45

The verifier needs to Check the validity of SD-JWT by using nbf, iat, and exp
claims.

Validating the SD-JWT-R is also required by ensuring both SD-JWT-R and
SD-JWT has been signed using the same key and by checking that SD-JWT-
R was created for this particular verifier using a nonce and aud field inside
SD-JWT-R.

Claims in the SD-JWT Release are also needs to be verified to ensure that all
the claims inside SD-JWT are present in SD-JWT-R in a verifiable way.

4.9.1 Security aspects of SD-JWT

1. SD-JWT signing must be mandatory

Issuer must protect the integrity of the issued claims by signing the SD-JWT
with its private key to avoid the modification of the claims such as changing
email attribute to take the possession of the victim’s account or adding claims
or attributes to produce a fake academic qualification. On the other hand,
verifier must check the SD-JWT signature to ensure it is not been tempered
since the issuance by the issuer. It also must reject the SD-JWT if it is not
possible to varify it by the verifier.

2. Ensuring Uniqueness of the salt

To maintain the security principle of the model it is necessary to ensure that
salt must be cryptographically random, unique, long enough and has high
entropy which must be at least 128 bits so that it can not be guessed by the
attacker.

3. hash function choice

The hash algorithms MD2, MD4, MD5, RIPEMD-160, and SHA-1 must not be
used since they have some fundamental weaknesses. Also the hash function

needs to be collision resistant where it is hard to find 2 inputs with the same
hashed output. [21] [93]

Furthermore, Using those insecure hashes can make the data vulnerable to
collision attacks where the attacker can produce two similar hashes for two
different pieces of data which can be used to substitute one piece of data for
another silently without being detected. It can cause sensitive data disclosure,
dictionary attacks to break weak or outdated hashes. [30]

Chapter 5

Analysis

As we already described in details about JWT, its uses in different data flows,
the relative security objectives which needs to be fulfilled on those flows and also
some important attacks, now it is time to draw some reflections upon our overall
findings.

In this chapter, we will try to summarise our overall findings and give some
overviews which can lead us to fulfill our thesis goal mentioned in section

5.1 Some similarities and differences amongst the data flows
in terms of using JWT

In table |5.1) we can see different uses of JWT in different data flows. It has total 7
columns which represents the different uses of JWT and it has total 5 rows which
represents the name of the different data flows. If any row or column space filled
with red then it means that the particular uses of JWT is not applicable for that
particular data flow. But if any column space or rows is filled with green color
including check marks then it means that the particular uses of JWT is applicable
for that particular data flow.

Now if we look for the similarities and differentiation among the data flows
regarding different uses of JWT from table5.1|then we can observe JWT as an access
token can be used in four of the data flows whcih is Oauth, DPoP-JWTs, OIDC,
mTLS. Since access token is used for requesting resources from the RS (Resource
server), the above mentioned four data flows uses that same access token as JWT
from Authorization server to request resources from the RS. Now in terms of token
request, only oauth uses JWT as an authorization grant in some special cases since
it is not a common types of grant. The common types of grant used in oauth 2.0
can be found here [103]. DPoP-JWTs can also be used in token request but none of
the other flows such as OIDC, mTLS uses JWT for token request. Among the data

46

5.2. Uses of JWT in different data flows 47

flows mentioned in table [5.1] only OIDC uses JWT for authentication request and
as an ID token.

5.2 Uses of JWT in different data flows

Here if we look at table [5.1| then we can observe the different types of uses of JWT
in different data flows which is explained in chapter [4]

Name Authentication |AuthorizationToken Access ID token Resource [Information
request grant request token request transmission

OAuth v v

DPoP- v v

JWT

Table 5.1: Uses of JWT in different data flows

5.2.1 Usage of JWT as authorization grant and token request

JWT can be used as an authorization grant for Oauth which is used by the client
to request an access token from AS and through this access token the user can
grant the limited access of his resources to another entity without exposing his
credentials. So, JWT plays a very important role in this case because through
this request JWT conveyed the client secrete that can be used to authenticate the
client by AS. Now if this grant somehow intercepted by the attacker specially if the
authorization flow happens over a non TLS or vulnerable TLS connection or if a
user’s router has been compromised then it can make the whole flow vulnerable
because if we observe the security objectives which needs to be fulfilled by the JWT
as an authorization grant then we can notice that the grant is used to ensure the
authenticity of the client and also to provide the non-repudiation so that the client
can not deny the request sent by it later on. Also if the grant can be leaked then the
attacker can obtain the access token using that same grant from AS which disrupts
the integrity of the token and using this token the attacker can also gain access of

5.2. Uses of JWT in different data flows 48

the confidential data of the user. So, four of the security objectives explained in
section [1.2| can be hampered if the attacker gain the possession of this grant.

Now we can try to co-relate this problem with some of the other data flows
discussed in chapter [and try to overlook if we can find any uses of JWT in this
similar point where we need to use authorization grant or code for token request
to avoid this grant leakage by the attacker.

One solution can be using oauth 2.1. Although, it is not finalized yet but we
can discuss it as a future usage and countermeasures. The reason to have oauth 2.1
in this discussion because oauth 2.1 specification made the usage of PKCE manda-
tory for all oauth 2.1 clients which can solve this issue by providing the protection
against authorization code exfiltration during its issuance by AS. It was primarily
designed to protect public clients or native apps from authorization code exfiltra-
tion attacks in oauth 2. But in reality all clients are vulnerable to authorization
code injection attacks which can be solved by PKCE using the authorization code
flow.

Moreover, even if we use PKCE and one-time authorization code usage practice,
there are often a time window where the attacker can obtain the authorization code
and PKCE parameters and do the replay attack.

So, lets see if we can find some other data flows from the table that uses
JWT for token request, can give more strong security in this case. We can see from
the table that DPoP-JWTs also can be used with oauth in an HTTP header for the
token request. If we recall the usage of DPoP-JWTs with oauth flow from section
we can find that during the authorization code request DPoP jwk thumbprint
as a dpop_jkt Parameter can be included. So, even if the attacker get the code and
manipulate it using his own created DPoP key and DPoP proofs for token request,
the AS can compare the JWK thumbprint value from DPoP proof JWT with the
dpop_jkt Parameter. So, in this scenario if it does not match with attackers created
DPoP proofs then it rejects the request thus prevents the access token stealing using
the exfiltrated authorization grant or code.

Point to be noted, in both cases where we can use only Oauth with PKCE
or Oauth with DPoP-JWTs might not be able to prevent the authorization code
exfiltration or leakage but even if the attacker obtain the authorization code, the
attacker can not obtain the access token using that same authorization code if we
use DPoP-JWTs with Oauth.

That means the four security objectives can be ensured if we use DPoP-JWTs
with oauth because in this way client authentication by AS can be more secure
since DPoP proof JWT can provide client’s proof of possession of private key. In
the same way it can establish non-repudiation as well. In addition, by preventing
leakage of the access token it can ensure the integrity of the token as well. But one
security aspect needs to be considered here which is, even if we use DPoP-JWTs, a
legitimate user can still use the token for some malicious purposes which can be

5.2. Uses of JWT in different data flows 49

the reason to obtain the confidential data or resources by the attacker. The details
about this kind of vulnerability will be discussed in the next sub-section.

5.2.2 Usage of JWT as an access token and resource request

In previous sub-section we explained what security objectives need to be main-
tained during using JWT as a token request, how it can be vulnerable and disrupts
those objectives and how we can make the secure usage of JWT in a token re-
quest. Now here in this sub-section we will keep the continuation of the previous
sub-section where we will discuss after achieving the token securely what security
complications can take place regarding using JWT as an access token.

JWT as an access token is one of the most important usage of JWT in terms
of providing application security since it is related to obtaining resources from
the resource server. Ensuring the integrity of the token is very important here to
safeguard the leaking of confidential data from the resource server.

Now when AS issues an access token, it issues the refresh token as well which
is used to generate a new access token. Normally the life span of a refresh token
is much more higher than the access token that is why it needs more attention and
care to secure it. Otherwise if the attacker get it then he can make a new access
token with it and the resources protected by that access token are no longer safe
anymore.

The countermeasures to detect refresh token replay attack can be done by en-
suring that it must be either sender-constrained by using mTLS, DPoP or one-time
use where it rotate the new refresh token with the older one in every access token
refresh response. In this way even if the attacker get the refresh token and the
same refresh token being used by both attacker and legitimate user, then one of
them will show invalidated refresh token. Although the server will not be able to
find the attacker using invalidated refresh token, It at least can withdraw the active
refresh token and also the access authorization grant associated with it so that the
legitimate client needs to obtain a fresh authorization grant.

In addition, some security complications may take place during using the JWT
as an access token to gain the access of resources from the RS. Such as, using the
same JWT for another purposes rather than its intended purpose and access token
manipulation by sending attacker bound access token to the RS. Another security
concern regarding access token is if any legitimate user of a client turned into an
attacker or a malicious user then he can use the access token for malicious purposes
to achieve the protected resources from RS.

To avoid above mentioned scenarios the RS needs to take some extra precau-
tions so that it can ensure the client authenticity, token integrity, non-repudiation
and preventing confidential data leakage from RS by the attackers.

One of the measures can be using DPoP-bound access token or certificate bound

5.2. Uses of JWT in different data flows 50

access token with mTLS so that the RS can easily check the authenticity of the
client and ensure non-repudiation. If client authentication can be ensured properly
by using mTLS or DpoP then we can ensure the token integrity as well. Thus,
prevents the confidential data leakage. Some additional countermeasures can be
using resource server supplied 'nonce” which can not be guessed by the attacker.
Also to prevent the usage of same JWT for retrieving different resources rather
than its intended resource we can use OIDC because it uses "jwks_uri", restricting
‘aud’ claim to be pre-registered by the client and adding ‘iss” claim. All of them
ensures that the same issuer issued the JWT for distinct resources.

5.2.3 Usage of JWT as an authentication request

JWT can also be used as an authentication request in OIDC as per table |5.1| where
it needs to maintain the confidentiality of the request. Here the relying party
sends the request to the OpenlD provider (OP). So, client’s authenticity and non-
repudiation needs to be ensured here. Disclosure of this request can reveal the
sensitive information about client such as client id and client secrete.

We can discuss some of the methods to ensure the security objectives men-
tioned above to make this authentication request secure. First of all, it can be
signed and optionally encrypt the authentication request with JWT to ensure the
confidentiality of the request. But it might not be ensure the safety always because
a request_uri has been used to transfer this request which can be vulnerable with
SSRE.

One countermeasure can be pre-register this request_uri during client registra-
tion so that any malicious client can not use any arbitrary request_uri to imperson-
ate itself as a benign client. If not possible then another solution can be to use DPoP
proof JWT which can ensure the client authenticity, non-repudiation and integrity
of the request at the same time.

5.2.4 Usage of JWT as a way of information transmission

From the table 5.1) we can see that JWT can be used to convey the information of
user’s identity in the form of SD-JWT.

If we follow the flow of SD-JWT from the figure then we can see that in this
flow the issuer issues SD-JWT which contains some claims to represents a user’s
identity and sends it to the holder and the holder sends it to the verifiers whenever
the user wants to disclose some of his verifiable information to a specific verifier.

Here in this overall flow, it is very important to maintain the integrity of those
claims inside SD-JWT during its transmission from issuer to holder and from
holder to the verifier. The most important part of this flow is to transfer the SD-
JWT from holder to verifier because the verifier needs to check the integrity of this

5.3. Attacks on different data flows 51

SD-JWT to ensure that the confidentiality of those claims inside it are maintained
and authenticity of the issuer and the holder also needs to be ensured.

To maintain all those above mentioned security objectives the verifier must need
to verify the signature of SD-JWT to check the authenticity of the issuer that the
signing key belongs to this issuer. Besides proving the authenticity of the issuer it
also ensures the integrity of the SD-JWT since its issuance by the issuer. To check
the validity of SD-JWT nbf, iat, and exp claims and by checking that the same key
has been used to sign both SD-JWT-R and SD-JWT. By checking a nonce and aud
field inside SD-JWT-R the verifier can ensure that this particular SD-JWT-R has
been created for this particular verifier.

Now we can discuss some of the security aspects to focus on how above men-
tioned security checking can make the flow of SD-JWT secure. First of all, It ensures
the integrity of the selectively disclosable claims in a way that a malicious holder
can not modify any values from those claims because during the issuance of the
SD-JWT to the Holder, the issuer includes a duplication of all hidden claims in
cleartext besides issuer-signed JWT so that the verifier can verify that all disclosed
claim values were part of the original issuer-signed JWT. In this way the verifier
can detect if any modification happens by the malicious holder. Moreover, even if a
verifier can turned into a malicious attacker, it can not obtain any claim value from
an SD-JWT that was not revealed by the holder because the holder is in full control
to decide which claims he wants to disclose or keep secrete. In addition, checking
holders legitimacy by the verifier is also an important security concern which can
be done by binding an SD-JWT to a Holder’s public key. Although, This feature
is optional but we think it can provide an extra security layer to prove the authen-
ticity of the holder and the integrity of the claims as well during transmission the
SD-JWT from holder to verifier if it can be mandatory.

5.3 Attacks on different data flows

In previous section we explained the different usage of JWT in different data flows
and some issues which can be the reason against fulfilling the security objectives
related with those usage of JWT. In this section we will focus on particular attacks
which hampers the security objectives directly or indirectly provided by the JWT
in different data flows.

Now if we look at the table no b.5[5.3] and [5.4] then we can see the different
attacks on different data flows including the disruption of security objectives oc-
curred by them. Now we already explained in details about these attacks in section
and [£.7] Now it is time just to explain how we categorized them in terms
of hampering those objectives.

5.3. Attacks on different data flows 52

5.3.1 Attacks on Oauth

By following table 5.5 we can come up with the following explanations

Using arbitrary ‘client id” as a 'sub” value by the AS during token issuance can
be the reason of client impersonation attack because after issuing the token any
malicious client can select the ‘sub” of a high-privilege resource owner to confuse
RS if it depends on the ‘sub” value during token introspection. Client authenticity
can not be ensured in this case since AS can take it as a benign client but ultimately
it is a malicious client. In this way if it uses the token to achieve high privilege
user’s resources from RS then the confidentiality of data can not be guaranteed as
well. The integrity of the token can also be questionable. Non-repudiation can also
be hampered since the AS can not ensure the authenticity of the client thus, client
can deny its actions later on.

Name of the Authenticity Confidentiality Integrity Non-
attacks repudiationf
Client imper- v v v v
sonation

Cross-JWT v

confusion

Access token v v

leakage

Token Substi- v v

tution

Table 5.2: Attacks on Oauth which can be the reason to disrupt the security objectives provided by
the JWT

Cross-JWT confusion happens if the same JWT has been used to obtain dif-
ferent resources rather than the intended resources it issued for, which causes the
leakage of confidential data.

If access token leakage and token substitution happens then the integrity of
the token is interrupted. And confidential data leakage can take place if the same
token used to obtain sensitive or personal information from RS.

5.3. Attacks on different data flows 53

5.3.2 Attacks on DPoP-JWTs

The brief explanation of table |5.3|are as below.

Authorization Code Rebinding Attack is possible if the attacker somehow
manage to get the authorization code and PKCE parameters. Now the complica-
tion of this kinds of attack can be vast. Because if the attacker obtain authorization
code then he can issue an access token using this code from authorization server’s
token endpoint. The accessed token by the attacker can also be used to get sensi-
tive or private information of the user from RS. The above mentioned actions by
the attacker can make the whole DPoP flow vulnerable since it can make the au-
thenticity of the client, integrity of the token and confidentiality of the private data
questionable. Non-repudiation can not be maintained as well.

Name of the attacks Authenticity Confidentiality Integrity Non-
repudiation)

Authorization v v v v

Code Rebinding

Attack

DPoP Proof Pre- v v

computation at-

tack

DPoP Proof Re- v v v

play

Table 5.3: Attacks on DPoP-JWTs which can be the reason to disrupt the security objectives provided
by the JWT

If a legitimate user becomes a malicious user then DPoP Proof Pre-computation
attack can take place. In this case the pre-computed DPoP proof with exfiltrated
token are used to gain the access of resources from the RS by the attacker. If we
follow the pattern of this attack then we can say it can hampers the integrity of the
DPoP proof JWT and the access token which can be the reason of confidential data
leakage as well from RS.

Due to lack of proper client authentication by the AS the DPoP Proof Replay
attack can take place where the attacker can get hold of DPoP proof JWT. If this
is the case then failure of client authentication, leakage of confidential data and

5.3. Attacks on different data flows 54

manipulation of DPoP proof JWT can be occurred.

5.3.3 Attacks on OIDC

Attacks on OIDC is showcased in table 5.4 including there security disruptions.

When client uses authorization request to the AS, it uses request URL which
includes request_uri that contains a JWT. If the AS allows the client to use an
arbitrary request_uri without preregistering and whitelisting it then SSRF via re-
quest_uri parameter can take place by the attacker. Authenticity of the client and
integrity of the JWT used in this request can not be guaranteed if AS allows any
arbitrary ‘request_uri’ to be used by the client. It also carries some sensitive and
confidential information about the client and the user which can be leaked as well.
Due to improper client authentication non-repudiation can be impeded.

Name of the attacks Authenticity Confidentiality Integrity Non-
repudiation)

SSRF via re- v v v v

quest_uri

SSRF during v v v v

client registration

Disclosure of v v
server response

Table 5.4: Attacks on OIDC which can be the reason to disrupt the security objectives provided by
the JWT

Same scenario goes with the SSRF during dynamic client registration as well
because it can happen by sending a malicious "jwks_uri" during new client reg-
istration by the attacker which can allow to obtain an authorization code for any
user. By obtaining the authorization code can cause the obstruction of ensuring
four of the security objectives that we explained before.

On the other hand, disclosure of server response can happen due to improper
client authentication. In terms of security objectives, it disrupts authenticity of the
client and non-repudiation.

5.4. Attacks that makes the different steps in different data flows vulnerable 55

5.4 Attacks that makes the different steps in different data
flows vulnerable

We already explained different uses of JWT in different data flows and their secu-
rity aspects in section [5.2| and explained different attacks separately for each data
flows including their impact on particular security objectives in section In this
section we will try to focus on which direction of the communication in between
client and server can be affected by those attacks.

From the table no we can go through separately for each of the attack to
have an overall overview.

If we focus on oauth first then the client impersonation attack can take place
during communication from client to RS. Although the malicious client can only
impersonate itself if the authorization server uses arbitrary client id as 'sub’ value
for token issuance in previous step in oauth flow figure (4.3 which open the door
for the attacker to change the 'sub’ value and gain the unauthorized access from
the next step. So the main attack attempts can be done by the attacker during com-
munication from client to RS, although it depends on the action of AS in previous
step where the direction of the flow is from AS to client. In Cross-JWT confusion
the attack flow is from client to RS when the attacker uses the JWT for different
purposes rather than its intended uses. The Access token leakage and the token
substitution attack can happen after token issuance by the AS. So the attack can
take place during data flow from AS to client.

If we see the attacks on DPoP-JWTs then we can notice that the authorization
code rebinding attack can take place if the attacker obtain the code during data
transmission from AS to client when the AS issues the authorization code and
sends it to the client. DPoP proof pre-computation attack happens when the
legitimate user becomes a malicious user and pre-compute DPoP proof for future
use with exfiltrated token to get the resources from RS. So the attack scenario can
take place through transferring that pre-computed proof with the token from client
to the RS. Although the DPoP proof replay can take place when the attacker can
obtain the DPoP proof when the AS issues the proof and sends it to the client, the
main impact of the attack can be noticed when the attacker uses the same proof
with the token to achieve unauthorized access from RS. So the attacker uses the
data flow from client to the RS to fulfill his malicious purposes.

In OIDC both SSRF via request_uri and SSRF during client registration can
take place if the client becomes a malicious attacker. In the first case, the attacker
sends arbitrary request_uri and in the next one malicious jwks_uri from client to
the AS. The disclosure of server response can take place whenever the AS issues
or response in returns of clients request.

Now If we look carefully then we can notice that most of the attacks we found
for Oauth, DPoP-JWTs and OIDC happens during communication from authoriza-

5.5. The impact of using TLS on the mentioned attacks 56

tion server to client almost for 5 of the attacks out of 10. So, the precaution needs to
be higher as well in this part of the flow because the authorization code and token
is sent to the client from AS through this flow. The purpose of the whole flow can
be broken down if the authorization code or token leakage takes place which can
create a pathway for the attackers to generate some other types of attacks.

Another Observation can be if we look the attacks on normal oauth flow then
we can find that most of the attacks can be resolved by adding some security
extensions such as DPoP-JWTS, mTLS or protocols like OIDC with it.

Such as client impersonation attack can be prevented by using OIDC to restrict
the client from using arbitrary client id during client registration. Same goes for
Cross-JWT confusion where OIDC uses "jwks_uri to confirm that cryptographic
keys used in the JWT are belongs to the issuer and it also ensure that a valid
issuer issued the JWT for particular purposes. Restricted ‘aud” claim in OIDC can
also be used to find the intended audience or recipient of the particular JWT. It
also helps to prevent the token substitution attack. Access token leakage issue
can be solved by using DPoP-JWTs and mTLS since both of them provide sender-
constrained access tokens.

On the other hand, the attacks on DPoP-JWTs can be resolved by having some
extra precaution. Such as adding dpop_jkt Parameter in the authorization code re-
quest to prevent authorization code rebinding attack so that the AS can compares
JWK Thumbprint of the proof-of-possession public key in the DPoP proof with
the dpop_jkt parameter value in the authorization request. In addition, server
provided 'nonce’ can be used to prevent DPoP-proof pre-computation attack and
DPoP proof replay.

Same goes with attacks on OIDC where some precaution needs to be taken
during client registration so that the attacker can not use any arbitrary request_ur
or malicious "jwks_uri" to initiate the attack flow.

5.5 The impact of using TLS on the mentioned attacks

On the basis of Oauth 2.0 specification the authorization server must use TLS in
the oauth data flow [22]. Now it is important to focus or observe that how many
attacks mentioned in table |5.6/ can be prevented by just applying TLS. The details
of TLS can be found in appendix

Btw, if we analyse the attacks mentioned in table |5.6{one by one then we can see
the client impersonation attack, Cross-JWT confusion, Token substitution, DPoP
Proof Pre-computation attack, SSRF via request_uri and SSRF during client reg-
istration can not be prevented just only by applying TLS. Because if we analyse the
attack patterns for these attacks then we can see that they are not being initialized
during the data flow takes place over TLS. The possibility of client impersonation
attack being arose when the authorization server (AS) uses the arbitrary client id as

5.6. Some recommendations for the best practices 57

‘sub” value during the token issuance. And the attacks being initiated if the client
turned into a malicious client and changes this 'sub” value into a high-privilege re-
source owner to confuse resource server which is dependent on "sub” value during
token introspection. So, TLS has no contribution to prevent this kinds of attacks.
In Cross-JWT confusion the JWT has been used rather than its intended purposes
which can be prevented by proper validation of the issuer to ensure that the same
issuer issued the JWT for distinct resource.

For DPoP Proof Pre-computation attack the legitimate user becomes a ma-
licious user and pre-generate or pre-compute DPoP proof for future uses with
exfiltrated token. The SSRF via request_uri and SSRF during client registration
can be prevented if the authorization server make the client registration procedure
much more stricter by confirming request_uri and jwks_uri so that the server can
refuse the request if the attacker uses any arbitrary value in this uri.

On the other hand, Access token leakage, Authorization Code Rebinding At-
tack, DPoP Proof Replay, Disclosure of server response can be prevented by ap-
plying TLS since the attack pattern involves by stealing token, authorization code,
DPop proof and server response where these leakage are possible during their
transmission.

5.6 Some recommendations for the best practices

From our overall thesis work we can note down that JWT has its many uses in
different data flows to ensure or fulfill the different security objectives such as
integrity, confidentiality, authenticity and non-repudiation. One thing needs to
mention that these security objectives can only be ensured by JWT if it is imple-
mented and validated properly. Besides that using some security extensions such
as DPoP-JWTs, mTLS or OIDC authentication protocol can enhance the security
provided by JWT much more strongly. We already mentioned some of the coun-
termeasures by using these security extensions after explaining each of the attacks
in chapter [and chapter

Here in this section we will try to give some recommendations of using these
extensions in terms of improving the security of data flows which can ensure the
fulfillment of the security objectives strongly and also regarding the widespread
uses and adoption of these extensions.

Although JWE can provide the confidentiality and JWS can provide the in-
tegrity of the token, for ensuring the non-repudiation and authenticity strongly it
might not be enough. On the other hand if somehow the attacker obtain the to-
ken then all of the security objectives mentioned above can be disrupted. In this
case the security extensions like DPoP-JWTs and mTLS can make the difference
by providing sender constrained access token which can also be a replacement of
using bearer token since whoever obtain the bearer token can use it easily to get

5.6. Some recommendations for the best practices 58

the access of the resources. Now if we talk about which one is better regarding
the current widespread uses and adoption then we can say although both mTLS
and DPoP are designed to provide sender constraint token which ensures the legit-
imacy of the token sender, DPoP-JWTs are relatively new then mTLS. Also mTLS
provide strong security guarantees since it provides certificate-based authentica-
tion. In terms of easy implementation DPoP-JWTs can be the best option since it
does not rely on PKI infrastructure.

On the other hand, although the OAuth flow has made the uses of TLS manda-
tory, some attacks can still be possible which can be prevented by using DPoP-JWTs
as an extra security layer.

Although the attacks which is related with token or authorization code hijack-
ing can be prevented by using DPoP-JWTs, some other types of attacks which is
connected with client registration can not be solved just by using DPoP-JWTs. In
this case we need to use OIDC with DPoP-JWTs to make the client registration
much more stricter. .

5.6. Some recommendations for the best practices 59

DPoP-JWTs

Table 5.5: Attacks that makes the different steps in different data flows vulnerable.

5.6. Some recommendations for the best practices 60

Can be prevented by ap- Can not be prevented by
plying TLS applying TLS

Table 5.6: The impact of using TLS on the mentioned attacks

Chapter 6

Discussion

If we return back to the section (1.4 then we can see at the beginning of the thesis
work we have been set some thesis goals. In this chapter we will discuss about
how we accomplished the thesis goal step by step in details and try to discuss
some future work as well.

To achieve the thesis goals we needed to set a proper methodology first What
we did in chapter 2l Also it was necessary to have a broader discussion about the
structure of JWT and how the JWT works in general to dive deep into different
data flows that uses JWT in their flow for different purposes and understand them
properly as well. For this purpose in chapter 3| we explained in details the struc-
ture of JWT and how the JWT provides the stan- dardize mechanism for integrity
protection via signature and MAC or encryption. After that we started explaining
the different uses of JWT in different data flows in chapter {4|including the security
objectives fulfilled by JWT on those flows and the related important attacks as well
that causes to disrupt those objectives with some of their countermeasures and
recommendation for best practices. Now after all those details discussions about
different data flows, it is time to summarise our overall findings and give some
overviews in chapter |5/ which can lead us to fulfill our thesis goal.

Our first goal was to find the similarities and differences in between data flows
on the basis of usage of JWT. To accomplish this goal we come up with table no
where we point out different uses of JWT in different data flows and then ex-
plained in section Now it was not enough to just point out the usage of JWT
in particular purposes in different flows because each usage of JWT is related with
fulfilling some security objectives and some attacks can also be possible during us-
age of JWT on those flows to disrupt those objectives which needs to be explained
as well including some countermeasures and recommendation for best practices
to accomplish the second, third and the fourth goals from section It has been
done by discussing table no and 5.4)in details. In addition, since using
TLS is mandatory in outh 2.0 specification and the uses of TLS can be a very impor-

61

6.1. Future work 62

tant point to prevent some attacks, it is worth it to have an analysis regarding how
many attacks can be solved or prevented by just using TLS discussed in section

6.1 Future work

In this section we will discuss what else we could do if we get more time for more
expansion of this thesis work and also how our thesis work can be a good source
of information for someone who wants to work on something related.

If we look at our overall thesis work and the goals that we achieved then we can
see, our work was only limited on knowing the basic structure of JWT and how
it works in general at first then we jumped into the uses of jWT in different data
flows including the security objectives fulfilled by JWT on those flows and some
important attacks on those flows as well with mentioning some countermeasures
and recommendations for best practices.

First of all, most of our work throughout this project is based on theoretical dis-
cussions. But in future there is some scopes to add some practical demonstration.
Although we can see some of the practical demonstrations of attacks on JWT PHP
library in appendix but not all of the attacks have been showcased there. In
future we can try to add some more attacks on JWT PHP library and also try to
find attacks on other JWT libraries available as well and co-relate them with our
main project work. Some important attachment can be to develop a small web
app and deploy oauth with it and try to demonstrate attacks on oauth and prevent
some of them by adding DPoP-JWTs and mTLS with it. In addition, it can be a
good informative source for others as well if they want to do some related work in
future.

Chapter 7

Conclusion

At the end we can say JWT is an interesting approach for both authentication, au-
thorization and information exchange. JWT can be very useful if it is implemented
properly. Although they look a lot simpler, a simple mistake can create a lots of
issues such as account hijacking, data loss, and much more.

From our whole thesis work we can see JWT has its many uses nowadays in
different data flows. As in digital realm nothing is hundred percent secure, JWT
has its own flaws as well but most of them happens due to improper implementa-
tion and validation. Some can be solved by using oauth security extensions such
as DPoP-JWTs, mTLS or using OIDC authentication protocol. Some can also be
prevented by taking some extra precaution during client registration.

We can say the goals we set at the beginning to complete this thesis work has
been accomplished. Although we had scope to elaborate some of them more, in
this case we can point out some goals as partially accomplished and some of them
are completely accomplished. We explained some different data flows where the
JWT has its direct involvement for ensuring secure authentication and authoriza-
tion. We successfully pointed out the particular uses of JWT for each of those data
flows which helps us to find some similarities and differences amongst the data
flows in regards using JWT for different purposes. Here we could make some
more contributions regarding finding differences and similarities in between data
flows on the basis of some other aspects. So we can say in our case the first goal
has been accomplished partially. In terms of the second goal which was finding
the common types of use of JWTs and which security objectives need to be fulfilled
is accomplished completely. As in each data flow the JWT has its own role which
works to fulfill some security objectives, it was important to mention exactly how
JWT does that and how some attacks on those data flows can disrupt the security
objectives provided by the JWT which has been explained in details including how
they can be prevented or minimized that leads us to accomplish the third goal suc-
cessfully. The fourth goal which was about the recommendations for best practices

63

64

which is partially accomplished as it could have some more recommendations to
be added. At the end we made an overall summary and overview to explain all
our findings more decorated way with tables which leads us to explain our whole
work and contribution step by step and giving it a final touch. At the end, we can
say that JWTs can be very-useful if implemented properly and if some precautions
can be taken by particular oauth security extentions when there is no requirement
for session management.

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

About the OWASP Foundation. https://owasp.org/about/. Accessed: Novem-
ber 12, 2023.

Dr.Shanti Bhushan Mishra;Dr.Shashi Alok. HANDBOOK OF RESEARCH
METHODOLOGY. Available at https://www.researchgate.net/publication/
319207471_HANDBDOK_OF_RESEARCH_METHODOLOGY(2023/11/06)

Dan Arias. Adding Salt to Hashing: A Better Way to Store Passwords. Available
at https://auth0.com/blog/adding-salt-to-hashing-a-better-way-
to-store-passwords/ (2023/10/18).

Yjvesa Balaj. “Token-Based vs Session-Based Authentication:A survey”. In:
(September 2017). URL: https : //www . researchgate . net /publication/
320068250_Token-Based_vs_Session-Based_Authentication_A_survey.

B.Campbell;C.Mortimore;M.Jones. [SON Web Token (JWT) Profile for OAuth
2.0 Client Authentication and Authorization Grants. Available at https://
datatracker.ietf.org/doc/html/rfc7523 (2023/11/19).

B.Campbell;C.Mortimore;M.Jones. Security Assertion Markup Language (SAML)
2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants. Avail-
able at https://datatracker.ietf.org/doc/html/rfc7522 (2023/11/19).

B.Campbell;].Bradley;N.Sakimura;T.Lodderstedt. RFC 8705 OAuth 2.0 Mutual-
TLS Client Authentication and Certificate-Bound Access Tokens. Available at
https://www.rfc-editor.org/rfc/rfc8705#name- jwt- certificate-
thumbprint-|(2023/10/08).

Marianne Swanson;Joan Hash;Pauline Bowen. Guide for Developing Secu-
rity Plans for Federal Information Systems. Available at https ://nvlpubs .
nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-18r1l . pdf
(2023/11/26).

D.Fett;B.Campbell;]. Bradley;T.Lodderstedt;M.Jones;D.Waite. “OAuth 2.0 Demon-
strating Proof-of-Possession at the Application Layer (DPoP)”. In: (29 De-
cember 2022). URL: https://www . ietf . org/archive/id/draft - ietf -
oauth-dpop-12.html1#RFC7519.

65

https://owasp.org/about/
https://www.researchgate.net/publication/319207471_HANDBOOK_OF_RESEARCH_METHODOLOGY
https://www.researchgate.net/publication/319207471_HANDBOOK_OF_RESEARCH_METHODOLOGY
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
https://www.researchgate.net/publication/320068250_Token-Based_vs_Session-Based_Authentication_A_survey
https://www.researchgate.net/publication/320068250_Token-Based_vs_Session-Based_Authentication_A_survey
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc7522
https://www.rfc-editor.org/rfc/rfc8705#name-jwt-certificate-thumbprint-
https://www.rfc-editor.org/rfc/rfc8705#name-jwt-certificate-thumbprint-
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-18r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-18r1.pdf
https://www.ietf.org/archive/id/draft-ietf-oauth-dpop-12.html#RFC7519
https://www.ietf.org/archive/id/draft-ietf-oauth-dpop-12.html#RFC7519

Bibliography 66

[10] Akanksha; Akshay Chaturvedi. “Comparison of Different Authentication
Techniques and Steps to Implement Robust JWT Authentication”. In: (June
2022). URL: https://ieeexplore-ieee-org.zorac.aub.aau.dk/document/
9835796.

[11] Configure OAuth 2.0 Demonstrating Proof-of-Possession. https://developer.
okta.com/docs/guides/dpop/main/. Accessed: October 01, 2023.

[12] Scott Rose;Oliver;Borchert;Stu Mitchell;Sean Connelly. Zero Trust Architec-
ture. Available at https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-207.pdf|(2023/10/07).

[13] Anthony Critelli. Base64 encoding: What sysadmins need to know. Available at
https://www.redhat.com/sysadmin/base64-encoding (2023/11/27).

[14] Cross-site request forgery (CSRF). https://portswigger.net/web-security/
csrf. Accessed: November 11, 2023.

[15] Cross-Site Request Forgery Prevention Cheat Sheet. https://cheatsheetseries.
owasp . org / cheatsheets /Cross - Site _Request _Forgery _Prevention _
Cheat_Sheet.html. Accessed: November 11, 2023.

[16] CVE-2018-1000531 Detail. https://nvd.nist.gov/vuln/detail/CVE-2018-
1000531, Accessed: October 22, 2023.

[17] Roman Danyliw. Javascript Object Signing and Encryption. Available athttps:
//datatracker.ietf.org/doc/charter-ietf-jose/|(2023/11/11).

[18] D.Cooper;S.Santesson;S.Farrell;S.Boeyen;R. Housley;W.Polk. Internet X.509 Pub-
lic Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
Available at https://datatracker.ietf.org/doc/html/rfc5280 (2023/10/07).

[19] Brian Demers. A Beginner’s Guide to JWTs. Available at https://developer.
okta.com/blog/2020/12/21/beginners-guide-to-jwt (2023/11/14).

[20] D.Fett;D.Tonge. “FAPI 2.0 Security Profile — draft”. In: (13 September 2023).
URL: https://openid.bitbucket.io/fapi/fapi-2_0-security-profile.
html#section-5.3.1.1l

[21] D.Fett;K.Yasuda. Selective Disclosure JWT (SD-JWT). Available at https://
datatracker.ietf.org/doc/html/draft-fett-oauth-selective-disclosure-
jwt (2023/10/17).

[22] D.Hardt. The OAuth 2.0 Authorization Framework. Available at https ://
datatracker.ietf.org/doc/html/rfc6749 (2023/10/08).

[23] D.Hardt. “The OAuth 2.0 Authorization Framework”. In: (October 2012).
URL: https://datatracker.ietf.org/doc/html/rfc6749#section-2.1.

[24] Digest/Hash function. https://www.ibm.com/docs/en/app-connect-pro/7.
5.37topic=reference-digesthash-function. Accessed: October 18, 2023.

https://ieeexplore-ieee-org.zorac.aub.aau.dk/document/9835796
https://ieeexplore-ieee-org.zorac.aub.aau.dk/document/9835796
https://developer.okta.com/docs/guides/dpop/main/
https://developer.okta.com/docs/guides/dpop/main/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://www.redhat.com/sysadmin/base64-encoding
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/csrf
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://nvd.nist.gov/vuln/detail/CVE-2018-1000531
https://nvd.nist.gov/vuln/detail/CVE-2018-1000531
https://datatracker.ietf.org/doc/charter-ietf-jose/
https://datatracker.ietf.org/doc/charter-ietf-jose/
https://datatracker.ietf.org/doc/html/rfc5280
https://developer.okta.com/blog/2020/12/21/beginners-guide-to-jwt
https://developer.okta.com/blog/2020/12/21/beginners-guide-to-jwt
https://openid.bitbucket.io/fapi/fapi-2_0-security-profile.html#section-5.3.1.1
https://openid.bitbucket.io/fapi/fapi-2_0-security-profile.html#section-5.3.1.1
https://datatracker.ietf.org/doc/html/draft-fett-oauth-selective-disclosure-jwt
https://datatracker.ietf.org/doc/html/draft-fett-oauth-selective-disclosure-jwt
https://datatracker.ietf.org/doc/html/draft-fett-oauth-selective-disclosure-jwt
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749#section-2.1
https://www.ibm.com/docs/en/app-connect-pro/7.5.3?topic=reference-digesthash-function
https://www.ibm.com/docs/en/app-connect-pro/7.5.3?topic=reference-digesthash-function

Bibliography 67

[25]

[26]

[27]

DIGITAL SIGNATURE STANDARD (DSS). https: //nvlpubs . nist . gov/
nistpubs/FIPS/NIST.FIPS.186-5.pdf. Accessed: November 14, 2023.

ECMA-404.https://ecma-international.org/publications-and-standards/
standards/ecma-404/. Accessed: November 08, 2023.

Varsharani Hawannaa;V.Y.Kulkarnia;R.A.Ranea;P.Mestrib;S.Panchal. Risk Rat-
ing System of X.509 Certificates. Available at https://www.researchgate.

net/publication/306362676_Risk_Rating_System_of_X509_Certificates
(2023/10/07).

Sherry Hsu. “Session vs Token Based Authentication”. In: (2018). URL: https:
//sherryhsu.medium. com/session- vs-token-based-authentication-
11a6cbacdbed.

HttpOnly. https://owasp. org/www-community/HttpOnly. Accessed: Novem-
ber 15, 2023.

Insecure Hash. https://docs.guardrails.io/docs/vulnerability-classes/
insecure-use-of -crypto/insecure-hash. Accessed: October 19, 2023.

Introducing JSON. https : //www . json . org/ json - en . html. Accessed:
November 08, 2023.

Introduction to [SON Web Tokens. https://jwt.io/introduction. Accessed:
November 08, 2023.

Introduction to [SON Web Tokens. https://jwt.io/introduction. Accessed:
October 22, 2023.

Will Johnson. RS256 vs H5256: What's The Difference? Available at https://
auth0.com/blog/rs256-vs-hs256-whats-the-difference/ (2023/11/16).

Michael B. Jones;Pieter;Kasselman. “OAuth DPoP (Demonstration of Proof
of Possession) is what we’re doing about it”. In: (). URL: https://self -
issued.info/presentations/Identiverse_2022_DPoP.pdf.

S. Josefsson. The Basel6, Base32, and Base64 Data Encodings. Available at
https://datatracker.ietf.org/doc/html/rfc4648 (2023/11/11).

JSON Defined. https://www.oracle.com/database/what-is- json/. Ac-
cessed: November 08, 2023.

JSON Web Token Claims. https://authO.com/docs/secure/tokens/json-
web-tokens/json-web-token-claims. Accessed: November 12, 2023.

JSON Web Token (JWT). https://www . iana.org/assignments/jwt/jwt .
xhtml. Accessed: November 12, 2023.

JWT. https://jwt.io/. Accessed: October 21, 2023.

JWT attacks. https : / / portswigger . net /web - security/ jwt. Accessed:
October 01, 2023.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.researchgate.net/publication/306362676_Risk_Rating_System_of_X509_Certificates
https://www.researchgate.net/publication/306362676_Risk_Rating_System_of_X509_Certificates
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://owasp.org/www-community/HttpOnly
https://docs.guardrails.io/docs/vulnerability-classes/insecure-use-of-crypto/insecure-hash
https://docs.guardrails.io/docs/vulnerability-classes/insecure-use-of-crypto/insecure-hash
https://www.json.org/json-en.html
https://jwt.io/introduction
https://jwt.io/introduction
https://auth0.com/blog/rs256-vs-hs256-whats-the-difference/
https://auth0.com/blog/rs256-vs-hs256-whats-the-difference/
https://self-issued.info/presentations/Identiverse_2022_DPoP.pdf
https://self-issued.info/presentations/Identiverse_2022_DPoP.pdf
https://datatracker.ietf.org/doc/html/rfc4648
https://www.oracle.com/database/what-is-json/
https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-token-claims
https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-token-claims
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://jwt.io/
https://portswigger.net/web-security/jwt

Bibliography 68

[42] KirstenS. Cross Site Request Forgery (CSRF). Available at https://owasp .
org/www-community/attacks/csrf (2023/11/11).

[43] Bruno Krebs. The OpenID Connect Handbook. Available at https://authO.
com/resources/ebooks/the-openid-connect-handbook/thankyou (2023/10/11).

[44] Ado Kukic. The Definitive Guide to Single Sign-On. Available at https://
auth0.com/resources/whitepapers/definitive-guide-to-single-sign-
on/thankyou/ (2023/10/15).

[45] Man-in-the-Middle (MITM) Attack. https://snyk.io/learn/man-in-the-
middle-attack/. Accessed: November 11, 2023.

[46] Manipulator-in-the-middle attack. https : / / owasp . org / www - community /

attacks/Manipulator-in-the-middle_attack. Accessed: November 11,
2023.

[47] Charles P.Pfleeger;Shari Lawrence Pfleeger;Jonathan Margulies. Security in
Computing. 5. ed. Pearson Education,Inc., 2015.
[48] Emily McKeown. Single Sign-on vs. Federated Identity Management: The Com-

plete Guide. Available at https://www.pingidentity.com/en/resources/
blog/post/sso-vs-federated-identity-management.html (2023/10/15).

[49] Tim McLean. “Critical vulnerabilities in JSON Web Token libraries”. In: (Au-
gust 21, 2020). URL: https://authO.com/blog/critical-vulnerabilities-
in- json-web-token-libraries/.

[50] N.Sakimura;]J.Bradley; M.Jones;B.de Medeiros;C.Mortimore. OpenID Connect
Core 1.0 incorporating errata set 1. Available at https://openid.net/specs/
openid-connect-core-1_0.html (2023/10/10).

[61] Mitigating Cross-site Scripting With HTTP-only Cookies. https : / / learn .

microsoft.com/en-us/previous-versions//ms533046 (v=vs.85)7redirectedfrom=
MSDN. Accessed: November 15, 2023.

[52] M.Jones. JSON Web Algorithms (JWA). Available at https://datatracker.
ietf.org/doc/html/rfc7518 (2023/11/14).

[53] M.Jones. [SON Web Key (JWK). Available at https://datatracker.ietf.
org/doc/html/rfc7517/(2023/11/14).

[54] M.Jones. [SON Web Key (JWK) draft-jones-json-web-key-03. Available at https:
//openid.net/specs/draft-jones-json-web-key-03.html (2023/11/14).

[55] M.Jones;D.Hardt. The OAuth 2.0 Authorization Framework: Bearer Token Usage.
Available at https://www.rfc-editor.org/rfc/pdfrfc/rfc6750.txt.pdf
(2023/10/24).

[56] M.Jones;E.Rescorla;].Hildebrand. [SON Web Encryption (JWE) draft-jones-json-

web-encryption-02. Available at https://openid.net/specs/draft- jones-
json-web-encryption-02.html|(2023/11/13).

https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://auth0.com/resources/ebooks/the-openid-connect-handbook/thankyou
https://auth0.com/resources/ebooks/the-openid-connect-handbook/thankyou
https://auth0.com/resources/whitepapers/definitive-guide-to-single-sign-on/thankyou
https://auth0.com/resources/whitepapers/definitive-guide-to-single-sign-on/thankyou
https://auth0.com/resources/whitepapers/definitive-guide-to-single-sign-on/thankyou
https://snyk.io/learn/man-in-the-middle-attack/
https://snyk.io/learn/man-in-the-middle-attack/
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://www.pingidentity.com/en/resources/blog/post/sso-vs-federated-identity-management.html
https://www.pingidentity.com/en/resources/blog/post/sso-vs-federated-identity-management.html
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://learn.microsoft.com/en-us/previous-versions//ms533046(v=vs.85)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions//ms533046(v=vs.85)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions//ms533046(v=vs.85)?redirectedfrom=MSDN
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7517
https://openid.net/specs/draft-jones-json-web-key-03.html
https://openid.net/specs/draft-jones-json-web-key-03.html
https://www.rfc-editor.org/rfc/pdfrfc/rfc6750.txt.pdf
https://openid.net/specs/draft-jones-json-web-encryption-02.html
https://openid.net/specs/draft-jones-json-web-encryption-02.html

Bibliography 69

[57] M.Jones;].Bradley;H.Tschofenig. Proof-of-Possession Key Semantics for [SON
Web Tokens (JWTs). Available at https://www.rfc-editor.org/rfc/pdfrfc/
rfc7800.txt.pdf (2023/10/08).

[58] M.Jones;].Bradley;N.Sakimura. JSON Web Signature (JWS). Available at https :
//datatracker.ietf.org/doc/html/rfc7515 (2023/11/13).

[59] M.Jones;].Bradley;N.Sakimura. [SON Web Token (JWT). Available at https :
//datatracker.ietf.org/doc/html/rfc7519/(2023/10/22).

[60] M.Jones;].Bradley;N.Sakimura;D.Balfanz;Y.Goland;].Panzer;P.Tarjan. [SON Web
Signature (JWS) draft-jones-json-web-signature-04. Available athttps://openid.
net/specs/draft- jones-json-web-signature-04.html (2023/11/13).

[61] M.Jones;].Hildebrand. J[SON Web Encryption (JWE). Available at https://
datatracker.ietf.org/doc/html/rfc7516/(2023/11/13).

[62] M.Jones;N.Sakimura. “JSON Web Key (JWK) Thumbprint”. In: (September
2015). URL: https://www.rfc-editor.org/rfc/pdfrfc/rfc7638.txt.pdf.

[63] Ch.Jhansi Rani;SK.Shammi Munnisa. “A Survey on Web Authentication
Methods for Web Applications”. In: (2016). URL: https://1ijcsit . com/
docs/Volume%207/vol7issue4/1ijcsit2016070406. pdf.

[64] non-repudiation. https://csrc.nist.gov/glossary/term/non_repudiation.
Accessed: November 26, 2023.

[65] nowakowskir/php-jwt. https : / / github . com/ nowakowskir / php - jwt. Ac-
cessed: November 01, 2023.

[66] N.Sakimura;].Bradley;E.Jay. “Financial-grade API Security Profile 1.0 - Part
2: Advanced”. In: (March 12, 2021). URL: https : //openid . net / specs/
openid-financial-api-part-2-1_0.html.

[67] N.Sakimura;].Bradley;M.Jones. OpenID Connect Dynamic Client Registration
1.0 incorporating errata set 1. Available at https ://openid . net / specs/
openid-connect-registration-1_0.html (2023/10/14).

[68] N.Sakimura;].Bradley;N.Agarwal. “Proof Key for Code Exchange by OAuth
Public Clients”. In: (September 2015). URL: https://datatracker . ietf .
org/doc/html/rfc7636.

[69] OpenlD Connect Explained. https://connect2id.com/assets/oidc-explainad.
pdfl. Accessed: October 11, 2023.

[70] O.Terbu;D.Fett. SD-JWT-based Verifiable Credentials (SD-JWT VC). Available
at https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-
vc|(2023/10/17).

[71] OWASP Top Ten. https://owasp.org/www-project-top-ten/. Accessed:
November 11, 2023.

https://www.rfc-editor.org/rfc/pdfrfc/rfc7800.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7800.txt.pdf
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7516
https://www.rfc-editor.org/rfc/pdfrfc/rfc7638.txt.pdf
https://ijcsit.com/docs/Volume%207/vol7issue4/ijcsit2016070406.pdf
https://ijcsit.com/docs/Volume%207/vol7issue4/ijcsit2016070406.pdf
https://csrc.nist.gov/glossary/term/non_repudiation
https://github.com/nowakowskir/php-jwt
https://openid.net/specs/openid-financial-api-part-2-1_0.html
https://openid.net/specs/openid-financial-api-part-2-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://connect2id.com/assets/oidc-explained.pdfl
https://connect2id.com/assets/oidc-explained.pdfl
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc
https://owasp.org/www-project-top-ten/

Bibliography 70

[72]

[73]

[74]

[75]

Priya Pedamkar. Types of Research Methodology. Available at https://www.
educba.com/types-of-research-methodology/|(2023/11/06).

Sebastian Peyrott. [WT Handbook. Available athttps://auth0.com/resources/
ebooks/jwt-handbook/thankyou (2023/10/22).

PKI Fundamentals. https ://pki . treas.gov/pki_funds3.htm Accessed:
October 07, 2023.

Irfan Darmawan; Aditya Pratama Abdul Karim; Alam Rahmatulloh; Rohmat
Gunawan; Dita Pramesti. “JSON Web Token Penetration Testing on Cookie
Storage with CSRF Techniques”. In: (October 2021). URL: https://ieeexplore-
ieee-org.zorac.aub.aau.dk/document/9701965.

Public client and confidential client applications. https://learn.microsoft.
com/en-us/azure/active-directory/develop/msal-client-applications.
Accessed: October 03, 2023.

Raja Rao. “JSON Web Tokens (JWT) are Dangerous for User Sessions—Here’s
a Solution". https : //redis . com/blog/ json - web - tokens - jwt - are -
dangerous-for-user-sessions/| (accessed September 30, 2023).

RFCs. https://www.ietf .org/standards/rfcs/. Accessed: November 06,
2023.

Luca Compagna;Hugo Jonker; Johannes Krochewski;Benjamin Krumnow;
Merve Sahin. A preliminary study on the adoption and effectiveness of SameSite
cookies as a CSRF defence. Available at https : //ieeexplore . ieee . org/
document /9583694 (2023/10/07).

Security policy and objectives. https://www.ibm.com/docs/en/i/7.17topic=
security-policy-objectives. Accessed: November 09, 2023.

Server-Side Request Forgery (SSRF). https://owasp . org/www- community /
attacks/Server_Side_Request_Forgery. Accessed: December 21, 2023.

Server-Side Request Forgery (SSRF). https://portswigger.net/web-security/
ssrf. Accessed: December 21, 2023.

Session hijacking attack. https : / / owasp . org/www - community / attacks /
Session_hijacking_attack. Accessed: November 11, 2023.

Session Hijacking Attack: Definition,Damage,Defense. https://www.okta.com/
identity-101/session-hijacking/. Accessed: November 11, 2023.

Session vs Token Authentication. https://www.authgear.com/post/session-
vs-token-authentication. Accessed: September 30, 2023.

Single Sign-On (SSO). https : //www . pingidentity . com/en/resources/
identity - fundamentals / authentication/single - sign- on . html. Ac-

cessed: October 15, 2023.

https://www.educba.com/types-of-research-methodology/
https://www.educba.com/types-of-research-methodology/
https://auth0.com/resources/ebooks/jwt-handbook/thankyou
https://auth0.com/resources/ebooks/jwt-handbook/thankyou
https://pki.treas.gov/pki_funds3.htm
https://ieeexplore-ieee-org.zorac.aub.aau.dk/document/9701965
https://ieeexplore-ieee-org.zorac.aub.aau.dk/document/9701965
https://learn.microsoft.com/en-us/azure/active-directory/develop/msal-client-applications
https://learn.microsoft.com/en-us/azure/active-directory/develop/msal-client-applications
https://redis.com/blog/json-web-tokens-jwt-are-dangerous-for-user-sessions/
https://redis.com/blog/json-web-tokens-jwt-are-dangerous-for-user-sessions/
https://www.ietf.org/standards/rfcs/
https://ieeexplore.ieee.org/document/9583694
https://ieeexplore.ieee.org/document/9583694
https://www.ibm.com/docs/en/i/7.1?topic=security-policy-objectives
https://www.ibm.com/docs/en/i/7.1?topic=security-policy-objectives
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf
https://owasp.org/www-community/attacks/Session_hijacking_attack
https://owasp.org/www-community/attacks/Session_hijacking_attack
https://www.okta.com/identity-101/session-hijacking/
https://www.okta.com/identity-101/session-hijacking/
https://www.authgear.com/post/session-vs-token-authentication
https://www.authgear.com/post/session-vs-token-authentication
https://www.pingidentity.com/en/resources/identity-fundamentals/authentication/single-sign-on.html
https://www.pingidentity.com/en/resources/identity-fundamentals/authentication/single-sign-on.html

Bibliography 71

[87] Single Sign-On (SSO). https://www . ibm. com/topics/single - sign- on.
Accessed: October 15, 2023.

[88] S.Kelly;S.Frankel. Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-
512 with IPsec. Available at https://datatracker.ietf.org/doc/html/
rfc4868 (2023/11/11).

[89] S.Legg. Lightweight Directory Access Protocol (LDAP):Syntaxes and Matching
Rules. Available at https://datatracker . ietf.org/doc/html/rfc4517
(2023/10/09).

[90] Michael Stepankin. Hidden OAuth attack vectorse. Available at https://
portswigger.net/research/hidden-oauth-attack-vectors|(2023/10/16).

[91] T.Bray,ED.Textuality. The JavaScript Object Notation (JSON) Data Interchange
Format. Available at https://datatracker. ietf.org/doc/html/rfc8259
(2023/11/08).

[92] T.Dierks;E.Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
Available at https://datatracker.ietf.org/doc/html/rfc5246/(2023/10/07).

[93] Testing for Weak Encryption. https : //owasp . org / www - project - web -
security-testing-guide/v42/4-Web_Application_Security_Testing/
09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption.
html. Accessed: October 19, 2023.

[94] T.Lodderstedt;].Bradley;A.Labunets;D.Fett. OAuth 2.0 Security Best Current
Practice. Available at https://datatracker.ietf.org/doc/html/draft-
ietf-oauth-security-topics-18(2023/11/18).

[95] T.Lodderstedt;].Bradley;A.Labunets;D.Fett. “OAuth 2.0 Security Best Cur-
rent Practice”. In: (13 March 2023). URL: https://datatracker.ietf.org/
doc/html/draft-ietf-oauth-security-topics-22.

[96] T.Lodderstedt;M.McGloin;P.Hunt. OAuth 2.0 Threat Model and Security Con-
siderations. Available at https : //datatracker . ietf . org/doc /html /
rfc6819 (2023/11/18).

[97] Jennifer Cawthra;Michael Ekstrom;Lauren Lusty;Julian Sexton;John Sweet-
nam;Anne Townsend. Data Integrity: Detecting and Responding to Ransomware
and Other Destructive Events. Available at https://www.nccoe.nist.gov/
publication/1800-26/VolA/index.html (2023/11/09).

[98] T.Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA). Available at https://
datatracker.ietf.org/doc/html/rfc6979 (2023/11/16).

[99] User impersonation for Connect apps. https://developer . atlassian.com/
cloud/ jira/software /user - impersonation - for - connect - apps/. Ac-

cessed: December 20, 2023.

https://www.ibm.com/topics/single-sign-on
https://datatracker.ietf.org/doc/html/rfc4868
https://datatracker.ietf.org/doc/html/rfc4868
https://datatracker.ietf.org/doc/html/rfc4517
https://portswigger.net/research/hidden-oauth-attack-vectors
https://portswigger.net/research/hidden-oauth-attack-vectors
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc5246
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption.html
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption.html
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption.html
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-22
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-22
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819
https://www.nccoe.nist.gov/publication/1800-26/VolA/index.html
https://www.nccoe.nist.gov/publication/1800-26/VolA/index.html
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://developer.atlassian.com/cloud/jira/software/user-impersonation-for-connect-apps/
https://developer.atlassian.com/cloud/jira/software/user-impersonation-for-connect-apps/

Bibliography 72

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

V.Bertocci. JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens. Avail-
able at https://datatracker.ietf.org/doc/html/rfc9068 (2023/11/16).

Verifiable Credentials Data Model v1.1. https://www.w3.org/TR/vc-data-
model/. Accessed: October 18, 2023.

What is mutual TLS (mTLS)? https://www . cloudflare . com/learning/
access-management/what-is-mutual-tls/. Accessed: October 08, 2023.

Which OAuth 2.0 grant should I implement? https://oauth2.thephpleague.
com/authorization-server/which-grant/. Accessed: December 23, 2023.

White Paper OpenID Connect 101. https : / /www . pingidentity . com/en/
resources/content-library/white-papers/3127-openid-connect-101.
html. Accessed: October 10, 2023.

X.509 CERTIFICATES. nttps ://www . brainkart . com/article/X- 509 -
Certificates_8470/. Accessed: October 08, 2023.

M.Jones;D.Balfanz;].Bradley; Y.Goland;].Panzer;N.Sakimura;P.Tarjan. SON Web

Token (JWT) draft-jones-json-web-token-07. Available at https://openid.net/
specs/draft-jones-json-web-token-07.html (2023/11/08).

Y.Sheffer;D.Hardt;M.Jones. [SON Web Token Best Current Practices. Available
at https://datatracker.ietf.org/doc/html/rfc8725.html (2023/11/03).

https://datatracker.ietf.org/doc/html/rfc9068
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
https://oauth2.thephpleague.com/authorization-server/which-grant/
https://oauth2.thephpleague.com/authorization-server/which-grant/
https://www.pingidentity.com/en/resources/content-library/white-papers/3127-openid-connect-101.html
https://www.pingidentity.com/en/resources/content-library/white-papers/3127-openid-connect-101.html
https://www.pingidentity.com/en/resources/content-library/white-papers/3127-openid-connect-101.html
https://www.brainkart.com/article/X-509-Certificates_8470/
https://www.brainkart.com/article/X-509-Certificates_8470/
https://openid.net/specs/draft-jones-json-web-token-07.html
https://openid.net/specs/draft-jones-json-web-token-07.html
https://datatracker.ietf.org/doc/html/rfc8725.html

Appendix A

Appendixes

A1 Some practical demonstration on JWT vulnerability

Table shows the tools, libraries, and services along with the two columns De-
scription and Purpose that provide a brief explanation of the tools as well as the
goal of using them.

A.1.1 Brute forcing on weak secrete keys

If a weak secrete key has been used for signing JWT, it can be revealed by using
hashcat tool. If we use HS256 (HMAC + SHA-256) as a signing algorithm then
it is possible to use an arbitrary string as the secret key. If it is the case then the
attacker can easily guess or brute-force the key and generate JWTs with any header
and payload. [41] [107] Below is the step by step procedure to reveal weak keys
from attackers perspective—

Step 1: Sending request with postman to the login endpoint. figure|A.1

Step 2: : Intercepting response with burp suit. Point to be noted, the interceptor
needs to be turned on before submitting login file. figure

Step 3: : Copying jwt from the burp suite and use hashcat command with it to
reveal weak secrete key. The hashcat command was hashcat -a 0 -m 16500 <jwt>

Name Description Purpose

PHP-JWT library | Encode and decode JSON Web Tokens (JWT) in PHP | To find the vulnerability.
MySQL open-source relational database management system | Storing user login information.
Composer dependency manager for managing PHP libraries Download PHP-JWT library.
Postman API platform for building and using APls Interecting with API endpoints.
Burp Suite A software used for penetration testing Intercepting traffic.

Hashcat Password recovery tool Brute force attack.

Table A.1: Tools, libraries, and services used for fulfilling the attack demonstration.

73

A.l. Some practical demonstration on JWT vulnerability

@ New Request

POST v 127001/jwt/apiflogin.php
Params Authorization Headers (8) Bodys Pre-equestScript Tests Settings
none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL Text v
2
2 “email: "anikegrail.com”,
s *passuord”: "splfourare”

Sending request...

74

B save

Cancel

Cookies

Figure A.1: Sending request with postman to the login endpoint.

HTTPhistory WebSockets history) proxy settings

Response from hitp://127.0.0.1:80/wk/api/login.php

Forward Drop Intercept is on Adion

Open browser

n

Pretty Raw Hex

L HTTP/1.1 200 0K

Date: Tue, 15 Sep 2023 12:52:44 GHT

: Apache/2.4.54 (WinG4) PHP/E.2.0 mod_fegid/2.3.10-dew
0

JSON WebTokens JSON Web Token

—Hdebug-Profile-Filename: c:/wanpf4/tmp'trace 127_0_0_1 1655127954 7340 cgrind
Aeesss-Control-Allow-Origin:

Access-Concrol-Allow-Methods: POST

Aeesss-Conerol-Max-Age: 2600

L pe. 1-11, . Authorization,
M-Dequested-Uith

ontent-Length: 395

Connection: close

Content-Type: applicacion/json; charsec=UTF-g

message: "Suecessful Login. ", "Jue®
" eyJ0eXALD TRV1QiLEThh Goi0 i TURTIN IS . ey peili i JUSEVES'
13020791 1NTT 30T LLCIu¥sTL 03 E20TUM e 6lT=Us Iy 4 eCTENTY SHTE
o L¥WTAKT InIhaGlhbilsInVEYWLsT) ol

eRHITAit ZPdYeel IpFe , "emaills ' anik@gmail. con', expireAt: LEGE1204E5)

TUVSTiwi ¥4V T30 iVERFXOPVRELFTRIFT i wiaWFO
QoNSwiZEFOYS 2y IpZ CIEN wi Zulye3RuFUL LT
201 £40_ BusTi73 021075 QuB gl i6Hzh

T A e
Inspector =D @ X

Response headers 1" v

Figure A.2: Intercepting response with burp suit.

A.l. Some practical demonstration on JWT vulnerability 75

Figure A.3: Using hashcat command.

HTTP history WebSackets history 5} Proxy settings

Response from http://127.0.0.1:30/jwt/apiflogin.php
Forwara orop e adtion Open browser s, 0 s o)

Pretty Raw Hex JSON WebTokens JSON Web Token " = | inspector) = | @ X

Response headers nooov

Figure A.4: Sending request again replacing new jwt with the old one.

<wordlists/rockyou.txt> —force. 16500 used here for JWT. -a for attack mode and
-m for hash type, 0 for MD5 hash. figure

Step 4: create new jwt using revealed secrete key via jwt.io website. [40] figure
L1

Step 5: Copy paste new jwt replacing with the captured one in burp suit and
send the request again. figure

Step 6: Observing the login success message from postman. figure [A.5

A.1.2 "None" Algorithm vulnerability

Most of the JWT libraries should support one special algorithm known as "none"
algorithm. Normally it is being used where the integrity of the token has already
been verified. But some implementations may accept our JWT as correctly signed,
If we use none algorithm in the header and leave the signature [49] [16]. Below we
will see the practical example with explanation—

Step 1: Turn on the burp interceptor and sends the request with postman to the
API endpoint for user login. figure

Step 2: Intercepting request with burp suite. figure

A.l. Some practical demonstration on JWT vulnerability

76

A & Overview Gowr X posT New Request o posT hip: No Environment v
] @ New Request B save v =
E POST v 12700Vjwiapifioginphp m
Vo none form-data x-www-form-urlencoded @ raw binary GraphQL Text v
Headers (11) Tes ® 00 OK Time: 48 m Size: 7588 [) Saveas Example sor
Pretty Raw Preview Visuaize JsoN v S5 B Q
1 1
2 : "Successful login.”,
3 1013TU2TANTSInR5CC] 39. ey I2dWI 101 IxMIMONTY3O! 2 91 JoXNTE2M;! v
6 1
Figure A.5: Login successful.
= ¢ Home Workspaces v APINetwork v Explore Q Search Postman m @ 0 @ Upgade v — X
A & overview g 05T New Reavest ® ¢osT hitpifocahostiwtiar ® | POST localhostiwtiapiregi ® |+ e NoEnvironment v B
g @ New Request B save v = B
= poST v | 127001/w/apifiogin.php Cancel =
v
a0 1 |& I
o 2 ‘email”: "anikegmail.con”,
: T
Sending request...
Figure A.6: Sending login request using postman.
Dashboard _ Proy Intruder Collaborator Sequencer Decoder Comparer logger Organizer Extensions leam JSONWeb Tokens © settings
Intercep HTTPhistory WebSockets history. & Proy settings

£ reauestontip/nz10010

W wmen @

Forvard orop Adion Open browser
Pretty _Raw Hex B " = | jnspector D=z :®x
1 90ST /3we/apt/Login. php HTTP/L.1
2 Concenc-Type: Sext/plain
5 User-Agenc: Postmanhuntine/7.33.0 Requestattrbutes B ~
¢ Aceape: /%

B 2eldsag-an Request query parameters o v
< Host: 127.0.0.1 e

Accepe-Encoding: geip, detlate, br
> Connection: close Request cookies o v
s Content-Lengeh: €8
B Request headers s v
"email®: “anikGgmail.con®,
"passwora": "splfourizo®
»

Figure A.7: Intercepting request with burp suite.

A.l. Some practical demonstration on JWT vulnerability 77

JSON Web Tokens @ settings

Response from http://127.0.0.1:80 jwt/apilogin php.

Tonara oo N o | oveniower [o)

W = | inspector (D @ x

Response headers "o

BLFTHNFL 1w SWFOL ol AECTUAID O As
¢ 205 £0. BT R

reAc": 1695045010

Figure A.8: Capturing request.

B Pt muger View Help urp e o

Dashboard 7 Intruder Collaborator Sequencer Decoder Leam JSON Web Tokens @ settings

E0EXAIOURVIQILCINBGIOUIZITNUS ®re
o
&
H

Tty T g nond @re
o
B
H

€YI0eXAIOUKVIQLOINbGAIOUUB2SIIn0=

Figure A.9: Editing token header.

Step 3: Go to the action button and choose “do intercept”-> then choose re-
sponse to the request and it will capture the request. figure

Step 4: Send the first part of json web token that means the header to the
encoder section and decode it using base64 option and change the H5256 algorithm
into none algorithm and encode it again using base64 option and copy and paste
the result inside the captured token. figure

Step 5: similar way copy the payload part and decode it. Edit the decoded
payload where there is an extra third bracket at the end. Also delete the signature
then encode it and replace it with captured jwt payload and send it again using
burp suit. figure

Step 6: we can see that we can successfully login with our changed jwt in the
login endpoint through postman. figure

A.l. Some practical demonstration on JWT vulnerability

Bup Project Intruder View Help Burp SuiteProfessional v2023.10.2-23341 (Eary Adopte) - w.ttacks - lcensed o tial user - o x

Dashboard Froy Intruder Collaborator Sequencer Decoder Comparer logger Organizer Extensions Learn JSONWeb Tokens @ settings

Ot Ot @

Decode as <
Encode as <
Hash... -

Smart decode

{iss™ THE_ISSUER', aud"s THE_AUDIENCE',"iat"+ 1695044510, nbf"+1695044520,"exp"+1695045010,"data’{'id"6, Tirstname":"abdur’, lastname": rahman’,"email"anik@gmail.comT| @Text () Hex
Decode as <
Encode as <
Hash... -

Smart decode

Figure A.10: Editing token payload.

= < Home Workspaces v APINetwork v Explore Q search Postman

X

@ 0 @ Usgade v —

A & overviow

o8T NowRoquest @ PosT htpfocalhostwtl o wionment v B
@ New Request B save - = B
E] POST v 12700Niwtapifoginphp Send &
Params Authorization Headers (8) Bodye Pre-requestSeript Tests Settings Cookies </>
o
Hstor none @ form-data @ x-www-form-urlencoded @ raw @ binary ® GraphQL Text v _
@
g0 - I
o 2 nik@gmail.com”, (6]
5 ss1tourizo
Body Cookies Headers (11) Test Results ® Suts 2000k Timesm1ises Sz 738 [Save ss Example o
Pty | Raw Preview Visuaize @ Q
§rmessage”:"Successtul login. ", "Jut" 1"y J0eXALOLIKVAOLLCIRBGE 04306251 Tne. |
TjoimiakextiL 2 zetnven egnail.con’, "expireht” 1

Figure A.11: Login Successful.

Appendix B

Some Important technical terms

In this chapter we will discuss about some important technical terms which will
help us for a better understanding of different client-server data flows explained
in chapter [4]

B.1 Confidential and Public Application

According to the OAuth 2.0 specification, applications can be two types which are
either confidential or public. [23]

Confidential applications can hold clients credentials (such as a client ID and
secret) securely without exposing them to unauthorized parties during authentica-
tion procedure with the authorization server. example of confidential applications
are web apps, web API apps, or service/daemon apps.

On the other hand, Public applications cannot hold credentials securely. ex-
ample of this kinds of apps are that runs on devices, desktop computers or in a
web browser. [76]

B.2 TLS

Transport layer security protocol or TLS protocol provide a safe channel between
two communicating parties over internet which ensures privacy and data integrity
among those parties.

First of all, TLS Handshake Protocol is a tls sub-protocol works on top of the
TLS record layer.

Basic TLS handshake procedures are as below:

1. During first time communication to generate shared secrete both client and
server needs to agreed upon protocol version, cryptographic algorithms, public-
key encryption techniques. In the first step, client sends client hello includ-

79

B.2. TLS 80

Client Server
ClientHello —---oo--- >
ServerHello
Certificate*
ServerKeyExchange®
CertificateRequest*
Lommmmmm - ServerHelloDone
Certificate*®

ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]

Finished — ceeee--- >
[ChangeCipherSpec]

R Finished

Application Data Commmmmm > Application Data

Figure B.1: TLS full handshake procedure. [92]

ing above mentioned parameters. (such as- protocol version,session id,cipher
suit).

2. Inreturn server responds with server hello including server certificate, server
key exchange message which includes key exchange procedure, certificate
request message from client and finishes with server hello done.

3. In return, client sends his certificate, client key exchange message with type
of the key exchange, verify server’s certificate and finishes with change cipher
spec message which copies the pending CipherSpec into the current Cipher-
Spec that means to notify receiver that records will be preserved or protected
under newly negotiated CipherSpec and keys. Point to be noted that it is not
mandatory for client to present its certificate in typical TLS procedure. [102].

4. After getting those information from client server responds with the change
cipher spec message and finished.

The client and the server now ready to exchange application-layer data in
between them. [92]

Now to understand how mTLS works properly which is explained in section
it is important to know about the basic flow of TLS first. Because mTLS is just an
extension of TLS where it provides an extra security layer over TLS. In TLS only
the server needs to presents the certificate but in mTLS the Client also presents a
client certificate to establish a mutual trust in between them.

B.3. X.509 Certificate and Public key infrastructure (PKI) 81

B.3 X.509 Certificate and Public key infrastructure (PKI)

Version

Certificate
Siens Serinl Number
: Igll.ltllﬂ.{ leorithm

algorithm
identifier

£

2

5
Version |

Periodof j| netbefore
validity

4

£

-]
Version 2

w
‘gt
-
=
-
=
Yersion 3

public key
info

Subjeet's .g TTgorthns

Issuer Unigue
Identifier
Subject Unigue
Identifier "

Extensions

Signature {

Figure B.2: X.509 certificate.

Ve ons

In digital realm, Public key infrastructure (PKI) can be used to protect and au-
thenticate digital communications. PKI is one of the logical components of Zero
Trust architecture where trust is never granted implicitly and must be continually
evaluated. [12]]. A PKI certificate is a trusted digital identity which is comparable
with a physical identity card or a passport. Most importantly it is digitally signed
and delivered securely by a trusted third party called certificate authority (CA).
X.509 Certificate is a digital certificate which defines the format of public key in-
frastructure (PKI) certificates. In another way, X.509 certificate is the standard for
the most commonly used digital certificate formats.

The basic structure of an X.509 v3 digital certificate is shown in figure

Basic components of Public-Key Infrastructure using X.509 (PKIX) specifica-
tions are as below—

1. end entity: Subject of a certificate. It can be user or end user system.

2. CA: certification authority. It signs the digital certificate with their own pri-
vate key and then publishes the public key that can be accessed upon request.

figure

B.4. Proof Key for Code Exchange (PKCE) 82

Bob's ID

information
Unsigned certificate:

contains user 1D, -
user's public key Bob's public key

=
I i =0 |
Recipient can verity

poik CA signature by comparing
information hash code values

20— @ ——

CGrenerate hash
code of unsigned

certificate @ T

L J

70

Signed certificate

Encrypt hash code Decrypt signature

with CA’s private key with CA’s public key

to form signature to recover hash code
Create signed Use certificate to
digital certificate verity Bob's public key

Figure B.3: Creation of digital signature. [[105]

3. RA: registration authority that verifies user requests for a digital certificate
and tells the certificate authority (CA) to issue it. it works as an intermediary
in between CA and user which helps CA to receive user or device certifi-
cate requests, validate users or devices, authenticate users or devices, revoke
credentials if the certificate is no longer valid.

4. CRL issuer: a system that generates and signs a certificate revocation list
(CRL).

5. repository: Collection of certificates and CRLs. [18] [74].

The description of how the certificate can be used for mTLS is in section

B.4 Proof Key for Code Exchange (PKCE)

The Proof Key for Code Exchange (PKCE) is an extension which is used to improve
the security for public clients. It ensures that the same application were involved
in the whole authentication flow. The Basic PKCE flow are as below-

(A.) it generates a "code_verifier" which is a high-entropy cryptographic ran-
dom string and transformed it into "t(code_verifier)" known as "code_challenge"
and sends it with the transformation method "t_m” to the authorization endpoint.

B.5. Single-Sign On (SSO) 83

(B.) Authorization endpoint records the challenge and the transformation method
and sends the authorization code to the client.

(C.) Client sends access token request to the token endpoint including autho-
rization code and the "code_verifier".

(D.) Authorization server transforms "code_verifier" and compares it to "t(code_verifier)"
from (B). Access is granted if both of them matched with each other. [68] figure

f T ENREE T S
| Authz Server
—— + | Hmmmmmm et
|--{&)- Authorization Reguest ----> |
| + t{code_verifier), t m | Authorization |
| | Endpoint |
|=-({B)---- Buthorization Code ----- |
| I +
Client | |
| | tmmmmmmee ek
|--({€})-- Access Token Request —----> |
| + code_verifier | Token |
| | Endpoint |
|£-{D})————— Recess Token ————————— |
bommmmm——— + | tommmm————————— +
R ———

Figure B.4: Proof Key for Code Exchange (PKCE) flow. [68]

B.5 Single-Sign On (SSO)

Single sign-on (SSO) is an authentication procedure which enables users to sign in
by using a single set of login credentials, and gain secure access to multiple related
applications and services. For example, if an user log into Gmail the user is auto-
matically authenticated to other Google apps such as YouTube, Google Analytics
etc. In a similar way, Logging out from Gmail automatically logged out the user
from all the apps. figure [44] [86]

B.5.1 Federated Identity Management (FIM)

Now the above mentioned scenario is possible due to the presence of Federated
identity management or identity federation or federated SSO which creates a trusted
relationship between third parties and allows different apps to share identities and
authenticate users across domains. Now in traditional non SSO app it does not al-
low browsers from sharing cookies between domains that means domain2 would
have no way of knowing or accessing data from domainl which push the user
to authenticate himself every time in different domains. on the other hand, in a
centralized authorization system it allows many apps to talk directly to the autho-
rization server to check if the user is authenticated and grant them access. FIM can

B.5. Single-Sign On (SSO)

mgllgi

The user browses to the

website or application they ——

want access to (the SP).

2l
=X

The SP sends a request

84

The user is prompted

N\

The IdP validates the
user's credentials.

)

confirm authentication.

o

and redirects the userto —> to authenticate by
the SSO system (the IdP). providing credentials.
The IdP sends an i,
_ assertion to the SP to _ The user is granted access

to the desired application.

2}

Figure B.5: SSO with OIDC.

be achieved via using the standard protocols like SAML, OAuth, OpenID Connect
which enables the secure transmission of authentication and access information
across domains. Now the main difference in between SSO and FIM is SSO used for
enabling access to applications and resources within a single domain whereas FIM
enables single-sign on to applications across multiple domains. figure
48]

Identity Provider Encrypted assertion Service Provider

authenticating the user

E Federation Is passad to the 5P Federation ||
. Server Server @
Ops C
IdP checks SP accepts assertion and
credentials directs user to the app
e against identity

directory
Service Provider

On first sign-on

WSERMAME
sesmus

1P requests .
Federation
|
credentials P Server — @
o User requests Service Provider
access to an
app through
the IdP -
Federation
N — I
@ Server @

With the assertion user
Can now access any SP in
the trusted group without login

Figure B.6: IDP initiated federated SSO use case. Iﬁl

According to IBM’s Cost of a Data Breach 2021 report, most frequent initial at-
tack vector for a data breach is based on compromised credentials. Using SSO gives

B.5. Single-Sign On (SSO) 85

the attacker lesser chance to attack since it reduces the uses of many password. On
the other hand, single password can become a reason of high risk as well if it is
compromised. Some precaution can be taken to reduce this risk such as — creating
long and complex password, implementing SSO with multi-factor authentication,
or MFA which requires one additional authentication factor besides password ex—
a code sent to a mobile phone, a fingerprint etc. [87]

Through single sign-on (SSO), OpenID Connect (OIDC) allows users to au-
thenticate themselves using OpenlD Providers (OPs). More details about OIDC
explained in section

	Front page
	English title page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 JWT
	1.2 Security objectives:
	1.3 Some common attacks
	1.4 Problem Formulation

	2 Methodology
	3 JWT in details
	3.1 The Header
	3.1.1 The Payload
	3.1.2 Signature

	3.2 The JSON Object Signing and Encryption group (JOSE)

	4 Different Uses Of JWT
	4.1 JWT as an alternative to session tokens
	4.1.1 The traditional session authentication
	4.1.2 Limitations
	4.1.3 JWT as an alternative
	4.1.4 Limitations

	4.2 Observations:
	4.3 OAuth 2.0 Authorization Framework
	4.3.1 Relevant security objectives
	4.3.2 Important attacks:

	4.4 DPoP-JWTs
	4.5 Relevant security objectives:
	4.5.1 Important attacks:

	4.6 mTLS–better security option than DPoP
	4.7 OpenID Connect (OIDC)
	4.7.1 Important terms to know
	4.7.2 How OIDC Works
	4.7.3 Different Uses of OIDC
	4.7.4 SAML (Security Assertion Markup Language) vs OIDC
	4.7.5 Relevant security objectives
	4.7.6 Important attacks

	4.8 Selective Disclosure JWT (SD-JWT)
	4.8.1 Verifiable Credentials
	4.8.2 Issuance of SD-JWT

	4.9 Relevant security objectives
	4.9.1 Security aspects of SD-JWT

	5 Analysis
	5.1 Some similarities and differences amongst the data flows in terms of using JWT
	5.2 Uses of JWT in different data flows
	5.2.1 Usage of JWT as authorization grant and token request
	5.2.2 Usage of JWT as an access token and resource request
	5.2.3 Usage of JWT as an authentication request
	5.2.4 Usage of JWT as a way of information transmission

	5.3 Attacks on different data flows
	5.3.1 Attacks on Oauth
	5.3.2 Attacks on DPoP-JWTs
	5.3.3 Attacks on OIDC

	5.4 Attacks that makes the different steps in different data flows vulnerable
	5.5 The impact of using TLS on the mentioned attacks
	5.6 Some recommendations for the best practices

	6 Discussion
	6.1 Future work

	7 Conclusion
	Bibliography
	A Appendixes
	A.1 Some practical demonstration on JWT vulnerability
	A.1.1 Brute forcing on weak secrete keys
	A.1.2 "None" Algorithm vulnerability

	B Some Important technical terms
	B.1 Confidential and Public Application
	B.2 TLS
	B.3 X.509 Certificate and Public key infrastructure (PKI)
	B.4 Proof Key for Code Exchange (PKCE)
	B.5 Single-Sign On (SSO)
	B.5.1 Federated Identity Management (FIM)

