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ABSTRACT:

Pain is a widely present condition, with as many
as 19 % of the european population suffering from
chronic pain. In many cases pain is treated with
opioids, but since little is known about the underly-
ing mechanisms of opioid treatment, further stud-
ies are warranted.
This randomized, cross-over and double-blinded
study included 15 healthy subjects in order to in-
vestigate the effects of buprenorphine administered
through a transdermal patch. During treatment,
measurements were made for blood plasma con-
centrations, occurrence of adverse effects and pain
assessments.Evoked brain potentials (EPs) were
recorded using electrical stimulation at the median
nerve.
Features were extracted from the EPs using Conti-
nous Wavelet Transform to detect the latency and
amplitude of the most dominant waveforms within
four frequency bands (delta, theta, alpha and beta).
Features were log-transformed and baseline cor-
rected before analysis using two-way repeated mea-
sures analysis of variance (ANOVA). Afterwards, fea-
tures which exhibited significant differences com-
pared to placebo treatment, were correlated with
the clinical scores.
Significant differences between buprenorphine and
placebo treatment were found for all amplitude fea-
tures in all frequency bands, but not for latency
(ANOVA). Correlation was found between the beta
band feature and bone pain scores (P = 0.008) as
well as the plasma concentrations (P = 0.02).
This study showed that features found in the EEG
reflect the analgesic effect of buprenorphine. This
discovery might be useful in clinical drug trials to
monitor the analgesic effect.
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published study. Trine Andresen developed the protocol for the study
and carried out the experiments [Andresen et al., 2011].
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CHAPTER 1

Introduction

Pain is widely present, with 19 % of the European population and 25 -
30 % of the population in the USA suffering from chronic pain [Breivik
et al., 2006; Smith and Torrance, 2012; Varrassi et al., 2010]. Currently
pain treatment is based on the three-step ladder developed by the
World Health Organization (WHO), which includes opioid treatment
for moderate to severe pain [WHO, 1996]. Buprenorphine has been
used in pain treatment for more than 30 years utilizing various meth-
ods of administration. Interest in the drug has increased recently
after delivery through a transdermal patch became possible, ensur-
ing stable plasma concentrations, and increased patient compliance
[Andresen et al., 2010; Karlsson and Berggren, 2009].

This is partly due to the fact that the opioid-recepters affected by
buprenorphine and its metabolite norbuprenorphine may be im-
portant in the treatment of bone-associated pain which is diffi-
cult to treat in clinical practice. Previous studies have found that
buprenorphine provided a better analgesic effect with respect to
bone-associated pain compared to another opioid, fentanyl [An-
dresen et al., 2010]. Therefore, buprenorphine administered through
a transdermal patch is interesting for the treatment of patients with
persistent pain [Andresen et al., 2010].

Pharmacological-Electroencephalography (EEG) using evoked brain
potentials (EPs) has proven as a viable tool for analyzing the analgesic
effects of different drugs [Graversen et al., 2011]. However it is impor-
tant to make sure that differences found in the EEG are relevant for
the study, and not caused by a general effect of the drug. Therefore
any differences found in the EEG should correlate to the analgesic
effect. Otherwise the differences might describe another effect of the
drug such as sedation, instead of the analgesic effect [Graversen et al.,
2011].

Many previous EEG studies have analyzed the spectral energy of the
signals using time-frequency methods. One of the most basic meth-
ods is the short-time fourier transform, which analyses the signal
through small windows. More recently the wavelet transform which
analyses the signal by compressing and extending a mother wavelet
has become more popular. The wavelet transform provides a better
time-frequency resolution than the short-time fourier transform, and
studies have determined it to be superior for signal analysis of EEG
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1. INTRODUCTION

[Akin, 2002; Hubbard, 1996].

Another method for time-frequency analysis is Matching Pursuit
(MP), which has so far not been as widely used in EEG analysis. MP
decomposes the signal into atoms chosen from a large dictionary,
which describe the largest amount of energy in the signal [Durka,
2007]. Since MP is very specific about the phase, frequency and am-
plitude of the atoms that match the signal best, it might be an inter-
esting tool for EEG analysis.

EEG studies using EPs generally stimulate the subjects multiple times,
each time recording an EP, or sweep. This is done since the EP signal
is relatively small compared to the background EEG activity [Sanei
and Chambers, 2007]. Averaging of the recorded sweeps is com-
mon to improve the signal/noise ratio of the recorded signals, but
the method has drawbacks as it only effectively preserves compo-
nents of the EP that are time- and phase-locked. Studies have shown
that nociceptive input to the brain originating from the C-fibers are
generally not phase-locked, and therefore removed in the averaging
process [Domnick et al., 2009; Sanei and Chambers, 2007]. Therefore
single-sweep analysis of the EP is preferable in order to not remove
important data from the recording before analysis.

Extracted features can be correlated directly to the clinical scores,
but another possibility is that the analgesic effect is only reflected by
inspection of several features at once. This is possible using meth-
ods for multivariate analysis such as Support Vector Machine (SVM).
These methods can estimate the total discriminative ability of a com-
bination of several features [Ivanciuc, 2007].

We hypothesized that buprenorphine induces differences in the EEG
and that these can be correlated to the analgesic effect.

Aims

The aims of this study were then a) to utilize the wavelet transform
and matching pursuit to find features in the Pharmacological-EEG of
single-sweep EPs that exibit significant differences in buprenorphine
treatment compared to placebo, b) investigate the pros and cons of
the extracted features, c) investigate if these features correlate to the
clinical effects and d) investigate if the performance of the SVM can
be used for correlation to the clinical scores.
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CHAPTER 2

Pain physiology and treatment

The International Association for the Study of Pain (IASP) defines
pain as [Smith and Torrance, 2012]:

"An unpleasant sensory and emotional experience associ-
ated with actual or potential tissue damage, or described
in terms of such damage".

This means that pain is a highly individual perception, which is not
necessarily connected to actual tissue damage [Jensen and Sjøgren,
2009].

Nociceptive pain is conducted to the brain from the nociceptors,
which are responsible for detecting tissue damage. They are present
in many different tissues except for the liver, lungs and brain [Jensen
and Sjøgren, 2009].
Nociceptors react to many different stimuli, such as pressure, strec-
thing, chemical and thermal stimuli. They conduct signals to the
brain through the C- and Aδ-fibers. The Aδ-fibers are myelinated and
have a conduction velocity of 5 - 25 m

s , whereas the unmyelinated C-
fibers conduct signals at a velocity of 0.1 - 2 m

s . This difference in
conduction velocity means that signals from the Aδ-fibers reach the
pain first, which is also refferred to as first pain. First pain is felt as a
sharp and well-defined pain, which is followed by the pain originat-
ing from the C-fibers which is more blunt and harder to locate [Jensen
and Sjøgren, 2009].
Prolonged sensation of pain can induce a plastic change in the Cen-
tral Nervous System (CNS), which can lead to chronic pain [Jensen
and Sjøgren, 2009].

2.1 Epidemiology

Pain is widely present in the population, with 19 % of the european
and 25 - 30 % of the population in the USA suffering from chronic
pain [Breivik et al., 2006; Smith and Torrance, 2012; Varrassi et al.,
2010].
Pain affects patients in a number of ways. General health condition
of patients is adversely affected by the presence of chronic pain. In
most cases chronic pain is linked to depression and vice versa. It is
therefore evident that pain decreases the quality of life significantly
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[Smith and Torrance, 2012].
It is hard to estimate the cost related to pain and it’s treatment, due
to the complex nature the condition. One study in the UK estimated
the cost of back pain to a total of £ 10.7 billion with £ 1.6 billion in
direct healthcare costs. Since this is just from one sub-group of pa-
tients suffering from pain, it is clear that pain imposes a large burden
for society [Smith and Torrance, 2012].

2.2 Treatment

Currently pain is primarily treated based on the three-step ladder de-
veloped by the WHO, for use in treatment for cancer pain [WHO,
1996]:

1. Non-opioid analgesic should be used for moderate pain

2. If treatment is insufficient, a weak opioid can be added

3. If treatment is still insufficient, the patient should be switched
to a strong opioid

Since then the three steps have been used to treat chronic pain in
general. However, in many cases these guidelines have not made it
into daily practice [Varrassi et al., 2010; WHO, 1996].
There is evidence to suggest that the treatment of pain today is in-
sufficient. Out of the 19 % of europeans suffering from chronic pain,
40 % were unsatisfied with the management of their pain. Since pre-
existing pain is the highest risk factor to further develop chronic pain,
improved treatment of pain has great potential [Breivik et al., 2006;
Smith and Torrance, 2012; Varrassi et al., 2010].

2.3 Opioids

Opioids is a group of pharmacological drugs that consists of mor-
phine and morphine-like drugs [Jensen and Sjøgren, 2009] They are
common in use for treatment of moderate to severe chronic pain, due
to their strong analgesic effect. They affect the body by binding to the
different opioid-receptors (µ, δ and κ) that are present both in the
central nervous system and periferically [Jensen and Sjøgren, 2009].
The effects of opioids both include desired effects which is primar-
ily the analgetic effect, but also adverse effects such as drowsiness,
respiratory depression, constipation, dizziness, nausea and a strong
sense of euphoria [Jensen and Sjøgren, 2009].
Each opioid has a specific affinity to the opioid receptors, and this
affinity determines the biological response of the opioid. The re-
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sponse also varies from person to person, making decision of the
right opioid difficult [Jensen and Sjøgren, 2009].

2.3.1 Buprenorphine

Buprenorphine has been widely used in pain treatment for more than
30 years using various methods of administration. Recently, the in-
terest in the drug has increased after transdermal patch delivery sys-
tems became available, ensuring stable plasma concentrations, and
increased patient compliance [Andresen et al., 2010; Karlsson and
Berggren, 2009].

This is partly due to the fact that the opioid-recepters affected by
buprenorphine and its metabolite norbuprenorphine may be im-
portant in the treatment of bone-associated pain which is diffi-
cult to treat in clinical practice. Previous studies have found that
buprenorphine provided a better analgesic effect with respect to
bone-associated pain compared to another opioid, fentanyl [An-
dresen et al., 2010].

7





CHAPTER 3

Electroencephalography

EEG is the recording of electrical brain activity which is recorded by
applying electrodes to the scalp [Sanei and Chambers, 2007].
Since the electrical field generated by a single neuron is very small,
only the summation of many simultaneous discharges will be mea-
surable from the scalp and even in this case the signal will be small
[Sanei and Chambers, 2007].

3.1 EEG frequency bands

It is common to analyze EEG based on the spectral content. For this
purpose five frequency bands have been created to divide the spec-
trum in a consistent way. The five bands are:

• Delta: 0.5 - 4 Hz

• Theta: 4 - 8 Hz

• Alpha: 8 - 12 Hz

• Beta: 12 - 32 Hz

• Gamma: 32 - 80 Hz

On figure 3.1 is shown examples of EEG signals in the different bands.

Figure 3.1: Example of the five frequency bands: delta, theta, alpha, beta
and gamma.

The presence of activity within each frequency band changes from
individual to individual but also from which state the person is in.
Some frequency bands are more connected to sleep such as the delta

9



3. ELECTROENCEPHALOGRAPHY

waves, whereas others are more active if the person is awake. In addi-
tion many brain disorders are diagnosed by inspection of the activity
within the different bands [Sanei and Chambers, 2007].

3.2 Evoked Brain Potentials

EPs refer to the specific brain response to a stimuli (such as visual,
auditory or somatosensory stimuli). When the stimulus is applied, a
large number of Action Potentials (APs) will be induced within the
brain. The sum of these APs will be measurable at the scalp elec-
trodes, inducing a response in the EEG.
The EP signal is small compared to the background EEG activity.
Therefore pre-processing of the signals is necessary to isolate the EPs
[Sanei and Chambers, 2007].
Averaging is a very common method to improve signal/noise ratio,
where the stimuli is reapeated a number of times, also referred to as
performing several sweeps. All the recorded signals are then aver-
aged to form a single EP, representing the average EEG response to
the stimuli. This method is widely used because of it’s ability to su-
press noise, but unfortunately it also has unwanted effects. Figure
3.2 shows how the averaged EP differs from two single sweeps used
as examples.

50 100 150 200 250 300 350 400 450 500
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m
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itu

de

Average
Singe−sweep

50 100 150 200 250 300 350 400 450 500
[ms]

A
m
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Figure 3.2: Illustration comparing the averaged evoked potential til two
single sweeps.

While the averaging technique is very efficient at preserving the com-
ponents of the EEG that are phase-locked, it will supress components
that are not. This effectively means that information about these
components are removed in the averaging process. Previously stud-
ies have shown that this is a drawback to the averaging procedure,
since nociceptive input to the brain from the C-fibers are generally
not phase-locked [Domnick et al., 2009; Sanei and Chambers, 2007].
Inspection of figure 3.2 reveals that a lot of high-frequency compo-
nents are lost in the averageing process.
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CHAPTER 4

Matching pursuit

MP is another method to decompose a signal. The method searches a
large and redundant dictionary of signals to find the one that matches
the signal best [Durka, 2007].
To perform decomposition using MP, a large dictionary of signals
is required. The Gabor atoms, which are sine waves of varying fre-
quency, modulated by gassian functions of varying widths, is an ex-
ample of such a dictionary. However any dictionary of signals can be
used depending on the desired application.
MP is then performed using an iterative process in the following steps
[Durka, 2007]:

• Locate the atom in the dicationary that describes the largest
amount of energy in the original signal

• Subtract the atom from the original signal, to obtain the first
residual

• Repeat this process of comparison an deduction until the stop
criteria is met

The process is depicted in figure 4.1, that shows an example of de-
composition of a signal into 3 atoms.

The stop criteria can be chosen to fit the application. The most com-
mon stop criteria are to either decompose the signal into a chosen
number of atoms, or to decompose the signal until the selected atoms
describe more than a certain amount of the energy in the original sig-
nal [Durka, 2007].

The benefit of MP is that the decomposition is very specific about
both phase, frequency and amplitude of the most dominant wave-
forms in the signal. On the other hand the decomposition is not com-
plete in the way that not every frequency is investigated and repre-
sented in the decomposition.

4.1 Multivariate Matching Pursuit

Multivariate Matching Pursuit (MMP) is a generalization of MP. Here
the method is applied to several signals at once, and the atom that
provides the best overall match to all signals is then selected.

11



4. MATCHING PURSUIT

Original signal Atom 1

Residual 1 Atom 2

Residual 2 Atom 3

Residual 3

Figure 4.1: The basic principle of matching pursuit. An example of decom-
position into 3 atoms is shown here. The original signal is first
decomposed into the first atom, which is the signal in the dic-
tionary that matches the signal best. The first atom is then sub-
tracted from the original signal, resulting in the first residual.
Then the second atom is found from the first residual, and so on.
This process continues until the stop criteria is met.

The decomposition finds the atom that overall describes the largest
amount of energy in the signals. The atom is then fitted to each sig-
nal by varying the amplitude. This means that each signal will be as-
signed the same atom with an individual amplitude, but a common
phase [Durka et al., 2005].
When using MMP for classification, all signals are simultaneously de-
composed into a set of atoms, which are all identical except for the
amplitude. These amplitudes can be used as features for the classifi-
cation.

12
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4.2 Temporal Matching Pursuit

Temporal Matching Pursuit (TMP) is similar to the MMP in that it
also decomposes multiple signals at once, but does not maintain a
common phase for the atoms. This means that the atoms are fitted
to the individual signal, by adjusting both the phase and amplitude
of the atom. This property is important for applications where both
the phase and amplitude of the signal is important. Previous stud-
ies have demonstrated phase shifts in the EP of healthy patients after
pharmaceutical intervention [Schmidt et al., 2007].

13





CHAPTER 5

Continuous wavelet transform

The Continuous Wavelet Transform (CWT) is used for time-frequency
analysis much like the fourier transform. However, it possesses sev-
eral advantages with regards to resolution in both time and frequency
over the fourier transform [Hubbard, 1996].

The CWT works by utilizing a mother wavelet function that is con-
voluted with the signal. The wavelet is compared to the signal over
several iterations where the wavelet is stretched and compressed in
order to achieve different frequencies. The amount the wavelet is
stretched is reffered to as the scale (a). At each scale the wavelet is
translated along the signal, performing convolutions continuously.
The convolutions result in a set of wavelet coefficients (c), which can
be describred a function defined both by the scale of the wavelet (a)
and the latency (b). Equation 5.1 shows how a and b are used in the
mother wavelet function (ψ) to generate a wavelet with the correct
scale and latency [Hubbard, 1996].

c(a,b) =
∫

f (t )ψ(a · t +b)d t (5.1)

The results of the CWT depend both on the scales chosen for analysis
and the type of mother wavelet. Several predefined mother wavelets
are available depending on the application.
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CHAPTER 6

Support Vector Machine

The SVM is a pattern recognition method based on statistical learn-
ing theory. The idea was developed for the seperation of data from
different classes, and works by finding the hyperplane that seperates
the classes with the largest margin [Ivanciuc, 2007].

The example data in figure 6.1A can be seperated using many differ-
ent hyperplanes, but when looking at the data, not all possible so-
lutions will be optimal for classifying new samples. In SVM classifi-
cation the hyperplane with the highest margin between the classes,
represent the optimal solution for seperation of the classes. An illus-
tration of this is shown in figure 6.1.

A B

Figure 6.1: Illustration of a classification problem. A shows that many dif-
ferent hyperplanes can seperate the data. B shows a SVM classi-
fier where the maximum margin (δ) for seperation of the classes
have been found. (Illustration modified from Ivanciuc [2007])

When computing the hyperplane, a number of support vectors are
used. Support vectors are the data samples on the margin. The solu-
tion to the classification problem is hereby defined based on a smaller
subset of the data, more specifically the support vectors [Ivanciuc,
2007].

Sometimes the data is not linearly separable, and another kernel type
can be used for seperation. This is useful for where the data is related
in a non-linear way. However, care should be taken with regard to
choice of kernel, since it can lead to overfitting. Since this is most

17



6. SUPPORT VECTOR MACHINE

likely to happen with complex kernels, there should always be a well
defined reason for choosing a more complex kernel [Ivanciuc, 2007].

The original formulation of the SVM was developed solely for cases
where the data could be perfectly seperated by a hyperplane. How-
ever, since this is not the case for most cases of classification prob-
lems it was later expanded to allow for errors. This introduced slack
variables which help minimize the amount of errors while still maxi-
mizing the margin [Cortes and Vapnik, 1995; Ivanciuc, 2007].
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CHAPTER 7

Study protocol

The protocol for the data has previously been published [Andresen
et al., 2011]. The randomized cross-over double-blind study involved
treatment using buprenorphine, fentanyl and placebo through a
transdermal patch. However, only data from buprenorphine and
placebo is included in this study to reduce the complexity of the
study.

7.1 Study design

The study was carried out at the research laboratories at Mech-Sense,
Aalborg Hospital, Denmark. Twentytwo healthy male subjects (age:
23.1 ± 3.8 years) without long-lasting pain complaints or lesions at
the testing sites were included. In addition, routine medical exam-
inations and blood samples were normal. Before inclusion in the
study all subjects gave informed consent.

Each treatment was administered in 7 days with 3 days follow-up.
Patients were hospitalized during the 7 days, in case of adverse ef-
fects. The treatment was administered through a transdermal patch,
to achieve a stable release of the drug. The patches were adminis-
tered by a nurse or pharmacist not otherwise involved in the project.
Treatments were administered in random order, and both the sub-
ject or the investigator had no knowledge as to which treatment was
being administered.

The treatment periods lasted 144 hours. During treatment 3 kinds
of measurements were made at regular intervals. Blood plasma, EPs
and pain measurements were performed, at the times shown in table
7.1.
Adverse effects was reported by the patient as well throughout the
treatment period.

7.2 Pain assessment

Each time pain measurements were made, several modalities was
used. However, for this study only heat, bone and electrical pain was
included [Andresen et al., 2011]
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7. STUDY PROTOCOL

Time [h] Plasma EP Pain

0
p p p

4
p

6
p

9
p

12
p

24
p p p

28
p

36
p

48
p p p

60
p

72
p p p

78
p

84
p

96
p

120
p

144
p p p

168
p

192
p

216
p

Table 7.1: Table showing when the different kind of measurements where
performed in relation to the treatment.

7.2.1 Heat stimulation

For the heat stimulation, an area of 9 cm2, 10 cm proximal to the wrist
of the right volar forearm, was heated using a "Thermo Tester" (TSA
II NeuroSensory analyser, Medoc Ltd, Ramat Yishai, Israel).

The temperature was gradually increased from a baseline of 32 ◦C at
a rate of 1

◦C
s to a maximum temperature of 52 ◦C. The subjects were

instructed to press a button when the heat tolerance threshold (HTT)
was reached. Three successive stimulations were performed, and the
average was calculated.

7.2.2 Bone pressure stimulation

Bone pressure stimulation was applied to a marked area on the right
tibialis 15 cm below the patella. Since the site was marked, it was
possible to stimulate the same area for all measurements.

Pressure stimulation was applied using a hand-held algometer (Type
2, Somedic Production AB, Sollentuna, Sweden) using a probe size of
2 mm in diameter. The pressure was gradually increased with a rate
of 30 kPa

s .

The subjects were instructed to press a button when the pressure tol-
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erance threshold (PTT) was reached.

7.3 Adverse effects

At each pain stimulation (baseline, 24 h, 48 h, 72 h and 144 h) patients
were asked to report 4 of the most common adverse effects (nausea,
drowsiness, dizziness and local irritation due to the patch). The Ad-
verse effects were rated on the following scale:

• 1 = Nothing

• 2 = Light feeling

• 3 = Moderate feeling

• 4 = Intolerable feeling

Other adverse effects reported by the patients were rated on the same
scale and recorded.

7.4 Evoked potentials

Electrical stimulation was performed using two bipolar electrodes
(Neuroline 720, REF: 72001-K/12, Ambu a/s, Denmark). The elec-
trodes were placed on the left volar forarm over the median nerve,
2 cm distal to the wrist with an inter-electrode distance of 1 cm.

The stimulation was controlled by a stimulator (Isolator Stimulator
Noxi IES 230, JNI Biomedical, Klarup, Denmark).

The stimulation was performed using single stimulation (2 ms) at the
pain detection threshold (PDT).

EEG recordings were sampled at 1000 Hz in AC mode at the Cz elec-
trode (NuAmp, Neuroscan, El Paso, TX, USA). Recordings were band
pass filtered online from 0.05 to 200 Hz.

Two identical recordings of 60 sweeps were performed every time EPs
were recorded.

23





CHAPTER 8

Pre-processing

Data was filtered using a notch filter with cut-off frequencies at 49
and 51. Epochs were extracted from the data from 50 ms before until
500 ms after each stimulus. Baseline correction and linear detrend-
ing was then applied to the epochs.

8.1 Scaling

In order to make the data comparable, scaling was performed on the
data. The two baseline measurements where scaled to each other.
Afterwards all the other timepoints where scaled by the same amount
as the corresponding baseline.
Two different approaches to the scaling was tested; Area under curve
based scaling, and peak-to-peak based scaling.

Area under curve

This method works by equalizing the area under the curve of the sig-
nals. For each baseline, the averaged signal for all sweeps is found.
The area under the curve is then calculated by rectifying the signal by
taking its absolute value and calculating the mean.
The object of the scaling was to scale this value to 1 for both baselines.
This was done by finding the scaling factor (k) for each baseline, using
equation 8.1.

k = 1

AUC
(8.1)

For both types of treatment all EP sweeps where multiplied by the
scaling factor for the corrosponding baseline.

Peak-to-peak

This method is similar to the previous, except that it uses the peak-
to-peak value of the signal instead of the area under the curve.
The average of the EP sweeps for each baseline measurement was ex-
amined from 75 ms to 315 ms after stimulation onset. The maximum
and the minimum value was found within the period of time, and the
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8. PRE-PROCESSING

difference between them calculated as the peak-to-peak value. The
scaling factor was then found using equation 8.2

k = 1

Peak − to −Peak
(8.2)

After finding the two scaling factors, all EPs where multiplied by the
scaling factor for the corrosponding baseline.
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CHAPTER 9

Feature extraction

9.1 Matching pursuit

TMP was used for decomposition of the recorded EEG sweeps since
the latency of EP components might be affected by the treatments
[Schmidt et al., 2007].
Using the TMP, 15 common atoms where found for all subjects, that
best described all of the recorded single sweeps. Afterwards atoms
ability to seperate the two treatment was tested using the SVM. The
baseline-corrected features from each atom were used to classify be-
tween treatments at 24, 48, 72 and 144 hours after treatment. The
avererage of these classification performances was the used to de-
scribe the atoms discriminative power.
Atoms which exibited a large discriminative power were then selected
for further analysis.

9.2 Wavelet

This project implemented the CWT in a way to analyze the different
frequency bands of EEG oscillations. The objective was to find the
amplitude and the latency of the most dominant waveforms within
each band. This was thought to be similar to the matching pursuit
algorithm, with the added benefit of additional control over the fre-
quency bands to analyze. The four frequency bands to analyze were
defined as:

• Delta: 0.5 - 4 Hz

• Theta: 4 - 8 Hz

• Alpha: 8 - 12 Hz

• Beta: 12 - 32 Hz

The morlet wavelet was chosen in order to make the two methods for
feature extraction more comparable. Since MP uses a dictionary of
gabor atoms, the morlet wavelet was chosen for decomposition.
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9. FEATURE EXTRACTION

Scale selection

Scales where selected based on the frequency bands. Therefore, fre-
quencies from 0.5 to 32 Hz had to be covered by the transform with a
chosen interval of 0.5 Hz.
Since wavelets are defined by scale and not frequency, a conversion
to ensure that the correct scales are used for analysis is needed. For
this the center frequency of the wavelet was used, which for morlet
wavelets should be accurate, since the morlet wavelet is basically a
sinusoid modulated by a gaussian function.
Previously a method to calculate the pseudo-frequencies from a set of
given scales, using the center-frequency of a wavelet has been devel-
oped [Misiti et al., 2011]. The calculation is performed using equation
9.1.

Fa = Fc

a ·∆ (9.1)

Where Fa is the pseudo-frequency, Fc is the center-frequency of the
chosen mother wavelet, a is the scale and ∆ is the sampling period.
This equation was rewritten to obtain the scale from a given fre-
quency (Equation 9.2).

a = Fc

Fa ·∆
(9.2)

Using this function, scales for the morlet wavelet where chosen cor-
responding to frequencies ranging from 0.5 to 32 Hz, with intervals of
0.5 Hz.

Dominant waveforms

Each EP was decomposed using the CWT for the calculated scales,
resulting in a set of wavelet coefficients for each scale.
The scales were then further divided into the four different frequency
bands. For each band, the maximum absolute wavelet coefficient was
found. This coefficient marks the most dominant waveform within
that band and the value of the coefficient was recorded as the am-
plitude. The latency was recorded as the value b for the coefficient,
since b is the latency of the wavelet.
The basic principle is shown on figure 9.1 with data generated for the
purpose.

This resulted in features for both the latency and amplitude of the
most dominant waveform for each frequency band within each single-
sweep EP.
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9.2. Wavelet
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Figure 9.1: The principle in of the implemented wavelet features using a
plot of generated data. The time-frequency contour plot is di-
vided into the frequency bands by lines. Within each band the
dominant component is identified with an arrow. The ampli-
tude and latency of these components are extracted as features.
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CHAPTER 10

Group analysis

Group analysis of the extracted features were performed by means of
statistical analysis to indentify if differences in the EEG correlated to
the analgesic effect.

10.1 Statistical analysis

The extracted features where log-transformed, baseline-corrected
and for each recording time the mean of the feature was found.
The features were then analysed using two-way repeated measures
ANOVA, with time and treatment as factors.

10.2 Correlation

Features which exibited statistically significant differences between
treatment with placebo and buprenorphine were checked for corre-
lation to the clinical scores using the z-score and Pearson’s linear cor-
relation. P-value below 0.05 indicated statistical significance.

For correlation with the plasma concentrations, the values obtained
24 hours after drug administration was excluded from the correla-
tion. This is done to account for the delay before analgesic effect is
present.

Since the features of interest where pre-hoc defined by the results
of the ANOVA test, adjustments for mass significance were not per-
formed as to not discard important findings due to type II errors,
which is a common problem using e.g. the Bonferroni correction
[Perneger, 1998].
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CHAPTER 11

Individual analysis

Features from the group analysis which showed correlation to the
clinical scores, where used in an individual analysis using SVM, to
determine if the results found at the group level also translated to the
individual.

11.1 Classification

Classification was performed by an SVM using a linear kernel func-
tion. Classification performance was determined using leave-one-
out crossvalidation.
To account for the placebo effect, the classification scheme shown on
figure 11.1 was used, where the classification is performed between
each recording time for buprenorphine and placebo treatment.

Buprenorphine

Placebo
0 24 4828 72 1444

0 24 4828 72 1444

Figure 11.1: The classification scheme used to account for the placebo ef-
fect. The arrows indicate which recordings are compared in the
classification.

This classification scheme also serves another important purpose,
which is to verify the reproducability of the experiment. This is done
when comparing the two baseline recordings. Here the classification
performance should be close to 50 % (insignificant classification),
since the two baseline recordings should be similar. Therefore it was
checked that the baseline recordings were classified as being similar.
Otherwise the chosen features could not be used to describe differ-
ences between the treatments.

11.2 Correlation

Afterwards correlation was performed in the same manner as de-
scribed in chapter 10. Correlation was performed between the per-
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11. INDIVIDUAL ANALYSIS

formance curves obtained from the SVM and clinical scores.
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CHAPTER 12

Scaling

After performing both types of scaling of the data, the baselines were
plotted against eachother for each method, to determine by visual
inspection which method seemed to provide the most accurate esti-
mate. The plots are shown on figure 12.1. Inspection revealed that
though the methods were very similar, scaling using peak-to-peak
aplitudes performed better in a few cases, such as case number 8 and
9.
In the cases there were differences in the scaling methods, it seemed
to be because the main peak being wider for one of the signals. This
resulted in higher difference in amplitudes, for scaling using energy.
Based on these observations, scaling was performed using peak-to-
peak amplitudes.

37



12. SCALING

200 400
−3
−2
−1

0
1
2
3

Subject 02

200 400
−3
−2
−1

0
1
2
3

Subject 03

200 400
−3
−2
−1

0
1
2
3

Subject 04

200 400
−3
−2
−1

0
1
2
3

Subject 05

200 400
−3
−2
−1

0
1
2
3

Subject 06

200 400
−3
−2
−1

0
1
2
3

Subject 07

200 400
−3
−2
−1

0
1
2
3

Subject 09

200 400
−3
−2
−1

0
1
2
3

Subject 11

200 400
−3
−2
−1

0
1
2
3

Subject 12

200 400
−3
−2
−1

0
1
2
3

Subject 13

200 400
−3
−2
−1

0
1
2
3

Subject 14

200 400
−3
−2
−1

0
1
2
3

Subject 16

200 400
−3
−2
−1

0
1
2
3

Subject 17

200 400
−3
−2
−1

0
1
2
3

Subject 18

200 400
−3
−2
−1

0
1
2
3

Subject 20

Energy scaled

Peak-to-peak scaled

0h BUP
0h PLA

0h BUP
0h PLA

200 400
−0.6

−0.3

0

0.3

0.6
Subject 02

200 400
−0.6

−0.3

0

0.3

0.6
Subject 03

200 400
−0.6

−0.3

0

0.3

0.6
Subject 04

200 400
−0.6

−0.3

0

0.3

0.6
Subject 05

200 400
−0.6

−0.3

0

0.3

0.6
Subject 06

200 400
−0.6

−0.3

0

0.3

0.6
Subject 07

200 400
−0.6

−0.3

0

0.3

0.6
Subject 09

200 400
−0.6

−0.3

0

0.3

0.6
Subject 11

200 400
−0.6

−0.3

0

0.3

0.6
Subject 12

200 400
−0.6

−0.3

0

0.3

0.6
Subject 13

200 400
−0.6

−0.3

0

0.3

0.6
Subject 14

200 400
−0.6

−0.3

0

0.3

0.6
Subject 16

200 400
−0.6

−0.3

0

0.3

0.6
Subject 17

200 400
−0.6

−0.3

0

0.3

0.6
Subject 18

200 400
−0.6

−0.3

0

0.3

0.6
Subject 20

Figure 12.1: Comparison of scaling using the energy of the signal(top) and
the peak-to-peak value (bottom). The baselines are plotted
against each other, to visualise how the data is scaled to each
other.
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CHAPTER 13

Group analysis

The study was completed for 15 out of 22 subjects. One left the study
due to a job offer distant from the site, and another was hospitalized
due to reasons unrelated to the study. Furthermore 2 patients were
excluded based on poor data quality of the EPs while 3 patients were
excluded due to several missing measurements caused by adverse ef-
fects preventing them to participate in the experiment.

Two patients had few missing measurements. The pain scores from
these patients were interpolated from the other measurements, while
the extracted features from these missing measurements were re-
moved from the analysis.

13.1 Wavelet features

Each feature was analysed using two-way repeated measures ANOVA,
and the results are summarized in table 13.1, which shows the P-
values obtained from each test, representing differences between
treatments, recording times and if there is interaction between the
two factors.

Feature Treatment Time Interaction

ADel t a 0.34 0.03 0.19
AT het a - - 0.03
A Al pha - - <0.001
ABet a - - 0.02

LDel t a 0.33 0.06 0.33
LT het a 0.82 0.63 0.99
L Al pha 0.31 0.15 0.51
LBet a 0.80 0.83 0.79

Table 13.1: Overview of the P-values obtained through two-way repeated
measures ANOVA, for the different extracted features. P-values
which are statistically significant are written in bold.

Latency features were discarded from further analysis, since no dif-
ferences were revealed between treatments (ANOVA). All amplitude
features showed significant differences (ANOVA). Their development
over time is shown in figure 13.1.
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Figure 13.1: Plot of the development of amplitude features over time for all
frequency bands.

The amplitude features were all checked for correlation with the clin-
ical scores and the results are shown in table 13.2.

Clinical scores ADel t a AT het a A Al pha ABet a

Bone pain 0.79 0.81 0.77 0.96
Heat pain 0.59 0.66 0.67 0.84
Electrical pain 0.19 0.33 0.41 0.42
Adverse effects 0.02 0.06 0.04 0.33
Plasma concentration 0.83* 0.81* 0.74* 0.98*

Table 13.2: Correlations between the wavelet amplitude features for every
frequency band and clinical scores. Statistically significant (P <
0.05) correlations are marked in bold. *: Note that a measure-
ment (24 hours after treatment) has been removed before cor-
relation. This is done to account for the delay before analgesic
effect is present.

The correlations in table 13.2 show a significant relationship between
the features for the beta band and the bone pain scores. Figure 13.2
shows the development over time for this feature, as well as the clini-
cal scores.
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Figure 13.2: Figure showing the development of the ABet a feature and clin-
ical scores over time on seperate scales to ease comparison. A:
Graph of ABet a and the subjective pain scores. B: Graph of
ABet a and the adverse effects and plasma concentrations.

13.2 Matching pursuit

Twelve atoms were decomposed to select best performing ones by
use of the SVM. Features for latency were discarded beforehand, due
to the findings with the latency features of the wavelet transform.
Figure 13.3 shows the average performance amplitude features from
the atoms at 24, 48, 72 and 144 hours after treatment initiation. Clas-
sification was performed between placebo and buprenorphine treat-
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Figure 13.3: Figure showing the discriminative power of the amplitude fea-
ture from the extracted atoms determined using the SVM. The
average performance is the average of classifications for record-
ing times 24, 48, 72 and 144 hours after treatment initiation
when classifying between placebo and buprenorphine treat-
ment.

ment. The plot was then used to select the features that were most
discriminative.

Inspection of figure 13.3 shows atoms 2 (62 %) and 9 (62 %) as the
most discriminative atoms, and they were selected for ANOVA analy-
sis.
Table 13.3 shows the results from ANOVA testing. Both atoms showed
significant differences for buprenorphine treatment compared to
placebo, and where therefore checked for correlation to the clinical
scores.

Feature Treatment Time Interaction

A Atom2 - - <0.001
A Atom9 - - 0.02

Table 13.3: Results of the P-values obtained through two-way repeated
measures ANOVA, for the features extracted through MP. P-
values which are statistically significant are written in bold.

Table 13.4 shows the correlations for the atom features. No correla-
tions reached statistical significance.
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13.3. Reproducibility

Clinical scores A Atom2 A Atom9

Bone pain 0.71 -0.62
Heat pain 0.22 -0.51
Electrical pain 0.47 -0.37
Adverse effects 0.04 -0.53
Plasma concentration 0.70* -0.81*

Table 13.4: Correlations between the matching pursuit amplitude features
for atoms 2 and 9 and the clinical scores. Statistically significant
(P < 0.05) correlations are marked in bold. *: Note that a mea-
surement (24 hours after treatment) has been removed before
correlation. This is done to account for the delay before anal-
gesic effect is present.

13.3 Reproducibility

The only feature that exibited significant differences between treat-
ments and correlated to the analgesic effect was ABet a . This feature
was checked for reproducibility in order to make sure that the data
was reproducible between baselines as well as reproducible between
recordings.

Baseline reproducibility

To check whether ABet a was reproducible between baselines, a paired
t-test was performed between the baseline values for all patients. The
t-test showed that the feature was reproducible, i.e. there were no sig-
nificant differences between baselines (P = 0.23).

Agreement between recordings

At every recording time, two identical EEG recordings where per-
formed. It is important that there is agreement between the fea-
tures extracted from these recordings, since it represents the ability
to make the EEG measurements consistently.
The Bland-Altman plot is commonly used to compare measurement
techniques and was used to investigate the agreement between the
recordings [Hanneman, 2008]. Figure 13.4 shows the plot for ABet a .
The plot shows that the data is homoscedastic, meaning that the
measurement error is consistant regardless of the value of the fea-
ture.
Furthermore, the coefficient of variance was computed, to assess the
agreement between all recordings. The coefficient of variance for
Abet a was 7.78 %, which indicates a good level of agreement between
recordings [Atkinson and Nevill, 1998].
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Figure 13.4: Bland-Altman plot for ABet a . It shows the mean between
paired samples on the x-axis and the difference between them
on the y-axis.
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CHAPTER 14

Individual analysis

The results from the group analysis was used to determine individual
analysis. The wavelet feature ABet a was the only feature correlating
with the subjective bone-scores, and these were therefore chosen for
the individual analysis.

The individual analysis used ABet a for all sweeps as features for clas-
sification between placebo and buprenorphine treatment. Figure
14.1 shows the performance curves for all subjects, plotted against
their subjective pain scores.
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Figure 14.1: Figure comparing the classification performances with the
subjective bone-associated scores. Units on the left y-axis (blue)
are given in percentages of correctly classified samples. Units
on the right y-axis (green) are given in MPa.

Afterwards correlation between the performance curves and the bone-
associated pain scores where checked. Results of the correlation are
shown in table 14.1.
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Subject Bone pain

2 -0.70
3 -0.39
4 -0.08
5 0.57
6 -0.44
7 0.04
9 0.67
11 0.58
12 -0.62
13 -0.15
14 -0.82
16 0.08
17 -0.88
18 0.38
20 0.05

Table 14.1: Correlations between the bone-associated pain scores and the
performance curves when classifying using the ABet a feature.
Statistically significant (P < 0.05) correlations are marked in
bold.
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CHAPTER 15

Discussion

This study investigated single-sweep pharmacological-EEG before
and during treatment with placebo or buprenorphine administered
through a transdermal patch. It was found in the group analysis that
treatment with buprenorphine caused an increase in beta-band ac-
tivity (12 - 32 Hz) which correlated to the subjective scores for bone-
associated pain (P = 0.008) as well as the measured plasma concen-
trations of buprenorphine in the blood stream (P = 0.02).

The results in this study are reasonable compared to previous find-
ings that indicate that buprenorphine targets receptors related to
bone-associated pain [Andresen et al., 2010].

Choice of features

This study implemented features which were new or not commonly
used in EEG analysis.

Features from TMP showed siginificant differences in the ANOVA test,
but the features did not correlate to the analgesic effect. The results
reported in this work from TMP resulted from calculating common
atoms for all subjects. The weakness of this approach is due to the
fact that the atoms have to match signals from all subjects at the same
time the fit to each individual signal will be poor due to the difference
in EP morphology between patients. This is illustrated in figure 15.1
where the atom decomposed for all subjects at once clearly shows a
poor fit.

Another method was also tried where different atoms where decom-
posed for each subject, but with similar results. The problem with
this approach is that atoms between subjects can vary greatly and
therefore results between subjects are not comparable.
Another drawback of the MP method is that there is no preselection
of which frequency band is to be analyzed. This means that e.g. for
one subject the 3r d atom might be high-frequency, whereas the 3r d

atom for another subject might be low frequency. For MP to be im-
proved for analysis of EEG, a higher degree of control over the atoms
being decomposed is needed. This can be acheived by making re-
stricted dictionaries, that only decompose the signal into compo-
nents within certain frequency ranges. Several restricted dictionaries
could be made, one for each frequency band to be analyzed. Another
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Figure 15.1: Illustration of the an evoked potential and its first atom using
the two different approaches for matching pursuit. A shows the
atom from decomposing atoms individually for each subject. B
shows the atom from decomposing common atoms for all sub-
jects. It is clear that the fit of the atom in A is better. However
this approach makes atoms inconsistent between subjects.

possible solution is to bandpass filter the signal into the different fre-
quency bands before decomposition in MP.
Both methods has the advantage that only predefined frequency
band will be analysed, which would grant a higher level of control
and make MP more comparable to existing methods.

Analysis of EEG using CWT is already common [Graversen et al.,
2011]. However features from CWT are usually the spectral indicies,
which reflect the overall energy within each frequency band. This
study implemented a new feature, attempting to mimic MP with the
added benefit of being able to choose frequency bands by finding the
latency and amplitude of the most dominant waveform in each fre-
quency band. This approach can be vulnerable, since the feature is
based on a single value from the entire wavelet decomposition, as op-
posed to all values for the spectral indicies. It is very possible that the
spectral indicies are better features for this application, since the la-
tencies did not show differences between treatments.
Features were found that correlated to the analgesic effect. However,
the feature should still be validated by comparison to the more estab-
lished method of using spectral indicies, to determine the advantages
and disadvantages of the method.

Group analysis

The group analysis revealed that all Aband features showed signifi-
cant differences between treatments. Correlation with analgesic ef-
fect revealed that the rise in ABet a correlated with the rise in PTT for
bone-associated pain as well as the plasma concentrations.
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Previous analysing pharmacological-EEG have found that treatment
with analgetics induce slower EEG oscillations [Graversen et al.,
2011]. It appears that this study shows the opposite, but this is due
to the difference in methods. Closer inspection of the extracted fea-
tures revealed that even though the ABet a feature increases, the slow-
frequency bands show even greater increases in activity. Therefore
the distribution of energy still moves to the lower frequency bands,
which makes the results consistant with previous findings.

Individual analysis

The individual analysis using SVM revealed one significant correla-
tion (P = 0.05) between SVM performance and bone-associated pain
scores. The fact that performances from only one subject correlated
with a relatively high P-value indicate that the findings do not indi-
cate a general tendency. Upon further inspected of the patient with
a significant correlation (subject 17) on figure 14.1 it becomes clear
that the correlation does not reflect the desired result. The subject
does not gain increased pain tolerance, in fact pain tolerance is actu-
ally lower during buprenorphine treatment than placebo. The corre-
lation is therefore purely due to chance.

There is another problem present in the results from the SVM. It is
clear from inspection of figure 14.1 that most performance curves
start much lower than 50 %. This means that when classifying be-
tween baselines(which have been baseline corrected to have a mean
value of 0) where the expected output should be very close to 50 %,
the SVM manages to perform worse than random assignment of sam-
ples to classes. This is an unacceptable problem, and means that the
results from the SVM can not be trusted in this case.
Several attempts were made to resolve the error. Three different im-
plementations of the SVM were tested for this purpose. Random, nor-
mally distributed data was generated as features to test the different
implementations, with varying means. Results from this test showed
that all implementations performed as expected. However, when the
generated data was replaced with actual data from the study all im-
plementations failed.
It is hard to say where the error lies, and it was not resolved during
the project period. The problem could be an interaction between the
actual data, which is not perfect normally distributed and the imple-
mentations. However further testing is needed to draw definite con-
clusions.
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Methodoligy

It is worth noting that single sweep analysis could be an important
tool in the EEG analysis, since it prevents the loss of data due to the
averaging process [Domnick et al., 2009]. This seems to be especially
important for this study, since the changes found in the beta band
are high-frequency and might have been removed in the averaging
process.

The stimulation was performed at the PDT for the patient each time
recordings were performed. This could be a problem for the results,
since the observed differences in the EEG could be caused by in-
creased stimulation current instead of the analgesic effect. However,
had the stimulation been performed using a fixed current, the sub-
ject might not have found the stimuli to be painful during treatment
with buprenorphine, due to the analgesic effect. Also, it brings further
credibility to the results that no features correlated with the electri-
cal stimulation current. Had a significant correlation been present it
would be likely that the differences in EEG where due to the increased
stimulation intensity, rather than the analgesic effect.

Before correlation with the plasma concentrations were performed,
the values from 24 hours after treatment initiation was removed. This
is done to account for the delay before analgesic effect is present.
This effect can be seen in figure 13.2B, where the plasma concetra-
tions rise during the first 24 hours of treatment. However this is not
the case for ABet a or the bone-associated pain scores. The correction
therefore seems reasonable since the plasma concentration 24 hours
after treatment initiation does not reflect in the subjective scores for
bone-associated pain.

In this study the plasma concentrations of buprenorphine in the
blood was investigated. Norbuprenorhine, the metabolite of buprenor-
phine also has an analgesic effect and therefore might also affect the
EEG [Andresen et al., 2010]. It is possible that norbuprenorphine is af-
fecting the EEG at lower frequencies, causing the low-frequency fea-
tures to not correlate with the plasma concentrations. However since
this is not reflected in subjective pain scores this effect is of less inter-
est.

The study used only the Cz electrode for analysis. It is possible that
the analgesic effect is reflected better at other electrodes. Other
studies have used a more frontal electrode (Fz), since the depth-of-
anesthesia is measured based on the EEG of frontal electrodes [Ko-
rtelainen et al., 2009].
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CHAPTER 16

Conclusion

This study investigated the effect of buprenorphine treatment through
pharmacological-EEG. Features new to EEG analysis were tried using
both MP and CWT. The group analysis found features from the CWT
to be superior, probably due to the increased control over the analysis
in the CWT.

It was found that the significantly increased activity in the beta
band correlated with the analgesic effect of morphine in the bone-
associated pain scores, as well as the measured plasma concentra-
tions of buprenorphine in the blood stream. The results are rea-
sonable since previous studies have determined buprenorphine to
be especially effective against bone-associated pain [Andresen et al.,
2010]. Previous pharmacological-EEG studies have found slowing
of the EEG oscillations which match the results of this study since
the activity in the low-frequency bands rise more than in the high-
frequency bands [Graversen et al., 2011].

It was attempted to utilize performance measures obtained with an
SVM to correlate to the clinical scores on an individual level. How-
ever despite numerous attempts with different SVM implementa-
tions the classification never performed as espected when using real
data. More work is needed to identify the problem preventing the
SVM from performing as expected.

The results from this study brings a better understanding of the
mechanisms involved regarding the analgesic effect of buprenor-
phine. In the future they might be used in clinical trials to moni-
tor the analgesic effect of the analgetic [Graversen et al., 2011; Staahl
et al., 2009]. Future work should focus on testing the effects on actual
patients instead of healthy volunteers. Furthermore the methods for
feature extraction should be tested against more established meth-
ods, to determine their reliability.
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