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Abstract:

This report is a master thesis in Vision, Graphics,
and Interactive Systems. It details the work done
during two semesters abroad at UC San Diego.
The work has been research oriented, so the report
is structured with 5 separate chapters instead of a
linear product development flow.

The work has primarily been on US traffic sign
detection, but includes a chapter on pedestrian
detection as well. A comprehensive survey of traffic
sign detection systems has been made and it shows
a lack of work with US signs and a lack of public
databases for those. Thus, a publicly available
dataset with nearly 8000 annotated signs has been
created. The dataset is unique, not only because
it contains US signs, but also because it include
videos. This report also details investigations of us-
ing synthetic training data for traffic sign detectors,
but concludes that synthetic images are no match
for real-world training images. A purely model
based detection system based solely on shapes
is also presented as a building block for a full
detection system. Finally, a two-stage pedestrian
detection system has been developed and docu-
mented. The system extends a prevous system and
produces better detection with fewer false positives.

The work has resulted in the submission of four pa-

pers, one to ITS Transactions, one to ICPR and two

to ITSC. A the time of writing the journal paper is

in the second review stage.





Preface

This report is the documentation of the project “Sign detection using computer vision
- detecting US speed limit signs” which was carried out from November 2011 to May
2012.

The report constitutes a master thesis in computer engineering in the area of Vi-
sion, Graphics and Interactive Systems from the Department of Electrical Engineering
at Aalborg University in Denmark. The bulk of the work for the project was carried
out abroad at the Computer Vision and Robotics Research (CVRR) Laboratory and
Laboratory for Intelligent and Safe Automobiles (LISA), both at University of Califor-
nia, San Diego (UCSD).

Enclosed with the report are the four papers in the shape they had at the deadline
for this report, and a website has been created at http://moegelmose.com/p10, where
the code and other materials can be downloaded.

Appendix G contains an acronym list.

An example of code formatting can be seen in listing 1. Long lines are wrapped
and marked with a ¶ symbol at the end of the line and the rest of the wrapped line is
indented.

Listing 1: A example listing of (non-working) code

1 void MainWindow :: on_generateBtn_clicked ()
2 {
3 if(baseImage.channels () == 4) {
4 floodFill(baseImage , mask , Point(baseImage.cols -1,0), Scalar (255)¶

, 0, Scalar (), Scalar (), 4 | FLOODFILL_MASK_ONLY);
5 mask = mask(Range(1,mask.rows -1), Range(1,mask.cols -1));
6 threshold(mask , mask , 0, 255, THRESH_BINARY_INV);
7 }
8 }

This report was written in LATEX, most non-screenshot figures were created with
Inkscape, and plots were made with either Python plus matplotlib, Matlab, or GNU-
Plot.

Any questions about this work can be sent to andreasm@es.aau.dk.

Andreas Møgelmose, May 2012
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1
Introduction

During my stay at UCSD I have collaborated closely with the research staff in the lab,
and as such this project has not been about developing a product as projects at AAU
normally are. Instead, I have done research in the area of traffic sign detection and
pedestrian detection. My work has resulted in four papers which have been submitted
to a journal and two conferences, respectively (all papers are enclosed in appendix A):

• Vision based Traffic Sign Detection and Analysis for Intelligent Driver Assistance
Systems: Perspectives and Survey submitted to IEEE Intelligent Transportation
Systems Transactions, Special Issue on Machine Learning for Traffic Sign Recog-
nition.
• Traffic Sign Detection and Analysis: Recent Studies and Emerging Trends sub-

mitted to IEEE Intelligent Transportation Systems Conference (ITSC), 2012.
• Learning to Detect Traffic Signs: Comparative Evaluation of the Roles of Real-
world and Synthetic Datasets submitted to IAPR 21st International Conference
on Pattern Recognition (ICPR), 2012
• A Two-stage Part-Based Pedestrian Detection System Using Monocular Vision

submitted to IEEE Intelligent Transportation Systems Conference (ITSC), 2012.

As a consequence, this report does not chronicle the development process of a solu-
tion to a specific problem. Instead, it consists of 5 relatively self-contained chapters,
each about one of the papers, or about significant work I have done which did not
directly result in a paper. The chapters which take a submitted paper as their start-
ing point will contain some text taken directly from the papers, but also additional
information that did not make it into the paper.

All work presented in this report has been carried out by myself, with input from my
two supervisors, Thomas Moeslund and Mohan Trivedi. A sole exception is chapter 6,
which has been a cooperation with Antonio Prioletti. All text - including the submitted
paper - has been written by me and I have been partly responsible for the overall design
and layout of the system. The majority of the implementation and test has been carried
out by Antonio Prioletti.
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2 1.1. SURVEY OF THE STATE OF THE ART IN TRAFFIC SIGN DETECTION

The main theme for my research has been traffic sign detection, and more specifically,
detection of US traffic signs. Most of the chapters in the report are concerned with
this area. Each of the chapters are summarized in the following sections:

1.1 Survey of the state of the art in traffic sign detection

Chapter 2 is a survey of the state-of-the art in traffic sign detection. It presents the
dominant detection strategies and discusses their merits. It also gives an overview of
the available public image databases and presents the open issues in the field.

This chapter provides an overview of the state of sign detection. Instead of treating
the entire Traffic Sign Recognition (TSR) flow, focus has been solely on the detection
of signs. During recent years, a large effort has gone into TSR, mainly from Europe,
Japan, and Australia and the developments are described.

The detection process is split into segmentation, feature extraction, and detection.
Many segmentation approaches exist, mostly based on evaluating colors in various
color spaces. For features there are also a wealth of options. The choice is made in
conjunction with the choice of detection method. By far the most popular features
are edges and gradients, but other options such as HOG and Haar wavelets have been
investigated. The detection stage is dominated by the Hough transform and its deriva-
tives, but for HOG and Haar wavelet features, SVMs, neural networks, and cascaded
classifiers have also been used.

Arguably, the biggest current issue with sign detection is the lack of use of public
image databases to train and test systems. Currently, every new approach presented
uses a new dataset for testing, making comparisons between papers hard. This gives
the TSR effort a somewhat scattered look. Recently, a few databases have been made
available, but they are still not widely used, and cover only Vienna Convention com-
pliant signs.

This issue leads to the main unanswered question in sign detection: Is a model
based shape detector superior to a learned approach, or vice versa? Systems using
both approaches exist, but are hard to compare, since they all use different data sets.

Many contributions cite driver assistance systems as their main motivation for cre-
ating the system, but so far only little effort has gone into the area of combining TSR
systems with other aspects of driver assistance and notably, none of the studies include
knowledge about the driver’s behavior in order to tailor the performance of the TSR
system to the driver.

Other open issues include lack of research in finding non-European style signs and
that detected signs are hard to relate to their surroundings.
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1.2 LISA Traffic Sign Dataset

One result of the survey was the lack of public databases for US traffic signs. Because
of this, it was decided to create one. The creation and structure of this database is the
topic of chapter 3.

This chapter describes the assembly of the LISA Traffic Sign Dataset, which has
been collected during drives through urban environments in California. It is a dataset
of 7855 annotated signs in 47 classes collected over several hours of driving. A set of
tools for creating the annotations have been created with great focus on traceability so
each annotation can be traced back to its source video.

The dataset fills a gap, since it is the first publicly available dataset with US traffic
signs. It also includes full video tracks, which can enable the development and test of
detection systems using tracking.

1.3 Synthetic training data

In chapter 4, synthetic training data is covered. Creating a sign database is tedious
and time-consuming work, and given that traffic signs are all based on well defined
templates, it was natural to research whether synthetically generated training data
could be used for sign detection instead of real-world data. Chapter 4 describes the
result of this research.

This chapter describes experiments to evaluate the performance of synthetic training
data for traffic sign detection compared to real-world data. A program was developed
to generate synthetic training data that should emulate pictures of real-world signs
based on a drawn template. Then several detectors were trained with both synthetic
and real-world data. An AdaBoost cascade with Haar-wavelet like features was used
as the detection framework.

Results show that the synthetic data produced here is not of a sufficient quality to
rival real-world training data, so unfortunately synthetically generated data is not able
to replace painstakingly collected real world data.

1.4 Model based sign detection

Not all sign detection approaches involve training data, however. Chapter 5 describes
an alternative way, where the signs are detected using a theoretical model of their
shape.

This chapter describes a purely model based detector, which relies on the shape of
traffic signs. The method used is Extended Fast Radial Symmetry (EFRS), which votes
for shapes based on the gradients in input images. The method has been tested on a
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subset of the LISA dataset and shows decent per-sign detection results, with many false
positives, however. The tracking system used to reduce the number of false positives is
too simple and might even hurt the overall detection performance. The detector is not
useful in itself, but will work well as a component of a larger system. This is consistent
with the way it is used in the existing literature.

1.5 Pedestrian detection

Chapter 6 is about a pedestrian detection system that was developed in cooperation
with Antonio Prioletti of University of Parma, another visiting scholar at the CVRR
lab. This system was also created as a part of the lab’s ongoing efforts to created
intelligent vehicles.

In this chapter, a part-based two-stage pedestrian detector is presented. It builds
on previous work by Geismann and Schneider (2008), but extends it by introducing a
part-based verification system instead of just a full body verification. The system works
in two stages: A detection stage and a verification stage. The detection is based on an
AdaBoost cascade on Haar-like features. Its purpose is to find all pedestrian candidate
patches in the input image. All Regions Of Interest are sent on to the verification stage,
where the Histogram Of Oriented Gradients (HOG) is computed for the entire person,
the lower body, and the upper body. Each of the HOGs are then sent through an
SVM that computes a confidence value for which class (pedestrian or non-pedestrian)
the part belongs to. These values are then passed into a second SVM-classifier, which
performs the final verification. The system has been tested on the INRIA dataset and
the results show that when compared with the original two-stage detector, it performs
better across the full range of false positives per frame.



2
Survey of the state of the art in traffic sign

detection

This chapter is largely based on a paper written in conjunction with this project ti-
tled Vision based Traffic Sign Detection and Analysis for Intelligent Driver Assistance
Systems: Perspectives and Survey was submitted to IEEE Intelligent Transportation
Systems Transactions, Special Issue on Machine Learning for Traffic Sign Recognition,
and is currently passing through its second review stage. Provided it is accepted, it
will be published in December 2012. This chapter also includes a section on how the
literature search was conducted which is not included the the paper.

A shorter paper on traffic sign detection, but with a greater emphasis on traffic signs
classification as well, was submitted to International Conference on Pattern Recognition
(ICPR) 2012 under the name Learning to Detect Traffic Signs: Comparative Evaluation
of the Roles of Real-world and Synthetic Datasets. Both papers are attached to this
report and some of the text in this chapter is taken directly from them.

2.1 Introduction

The area of Traffic Sign Recognition (TSR) systems has been met with growing re-
search interest in the past decade, but the task of recognizing American signs is fairly
unexplored so far. TSR is a task with various well defined applications, summarized
nicely by De la Escalera et al. (2003):

1. Highway maintenance: Check the presence and condition of signs along major
roads.

2. Sign inventory: Similarly to the above task, creating an inventory of signs in city
environments.

3. Driver support systems: Assist the driver by informing of current restrictions,
limits, and warnings.

4. Intelligent autonomous vehicles: Any autonomous car that is to drive on public

5



6 2.2. USING TRAFFIC SIGN DETECTION IN DRIVER ASSISTANCE

roads must have a means of obtaining the current traffic regulations. This can
be done through TSR.

CVRR Lab has a long history of developing active and passive driver support sys-
tems, and it is within this realm that this work has been carried out. As described by
Trivedi et al. (2007); Trivedi and Cheng (2007); Tran and Trivedi (2011), it is crucial
to not only consider the car’s surrounding and external environment when designing
an assist system, but also to consider the internal environment and take the driver
into account. Fusing other types of information with the sign detector, as described by
Morris and Trivedi (2010), can make the overall system even better. When the system
is considered a distributed system where the driver is an integral part, it allows for the
driver to contribute with what he is good at (e.g. seeing speed limit signs, as it will be
seen later), while the TSR part can present information from other signs. In addition
other surround sensors can also have an influence on what is presented. It is with these
ideas in mind, that this literature survey was carried out.

In recent years, speed limit detection systems have been included in top of the line
models from various manufacturers, but a more general sign detection solution and an
integration into other vehicle systems has not yet materialized. Current state-of-the-art
TSR systems neither utilize information about the driver, nor input from the driver, to
enhance performance. Extensive studies in Human-Machine Interactivity are necessary
to present the TSR information in a careful way, to inform the driver without causing
distraction or confusion.

Initially, it was not the plan to carry out an extensive survey, but it turned out that
only two surveys in the field exist: Fu and Huang (2010) present a good introduction,
but not very comprehensive. Another survey was presented by Fleyeh and Dougherty
(2005), but is a few years old, so any improvements in the field from the past 5 years
are not presented. A very good comparison of various segmentation methods is offered
by Gomez-Moreno et al. (2010), but given that it only covers segmentation, it is not
a comprehensive overview of detection methods. Likewise, Houben (2011) provide a
good comparison of Hough transform derivatives.

2.2 Using traffic sign detection in driver assistance

Nearly all of the surveyed papers cite driver assistance as the main motivation for cre-
ating the system but despite that, little research is concerned with actually including
the driver. In order to work with the driver, TSR research needs to take into account
the visual system of the driver. This can include factors such as visual saliency of
signs, driver focus of attention, and cognitive load. According to Shinar (2007) (see
table 2.1 for a summary of the main results), not all signs are equal in their ability
to capture the attention of the driver. For example, a driver may fixate his gaze on a
sign, but neither notice the sign, nor remember its informational content. While drivers
invariably fixate on speed limit signs and recall their information, they are less likely
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Table 2.1: Significant results from Shinar (2007) regarding attention to various sign
types.

Fixated Not fixated

Target Recalled Not recalled Recalled Not recalled

Speed limit 80 km sign 100 0 0 0

Game Crossing sign 60 0 7 33

Pedestrian crossing ahead 8 54 0 38

Pedestrian crossing sign 0 21 0 79

to notice game crossing and pedestrian signs. This can endanger pedestrians, as it may
not leave enough reaction time to stop.

The implications of use of TSR in human-in-the-loop system are clear; instead of
focusing on detecting and recognizing all signs of some class perfectly, which would
be the objective for an autonomous car, the task is now to detect and highlight signs
that the driver has not seen. This gives way to various models of TSR, which take
into account the driver’s focus of attention, and interactivity issues. Driver attention
tracking is covered by Doshi and Trivedi (2010) and Murphy-Chutorian et al. (2007).
Fig. 2.1 presents examples on how TSR can be used for driver assistance. Fig. 2.1a
shows how a system should act in an autonomous car. It simply recognizes all signs
present. In fig. 2.1b there is a driver in the loop, and while the system may see all
the signs, it should avoid presenting them in order to avoid driver confusion. Instead,
it simply highlights the sign type that is easy to overlook, like the pedestrian crossing
warnings in the research. Fig. 2.1c shows how a driver is distracted by a passing car.
This causes him to miss two signs. His car has a TSR system for driver assistance,
which informs him of the signs as he returns his attention to the road ahead of him.
This could, for example, be done using a heads-up display as suggested by Doshi et al.
(2009). This chapter does not go into great detail with these issues, apart from the
scenarios mentioned here, but as TSR system increase in detection performance, these
issues are going to be increasingly relevant.

2.3 On traffic signs

Traffic signs are markers placed along roads to inform drivers about either road con-
ditions and restrictions or which direction to go. They communicate a wealth of in-
formation, but are designed to do so efficiently and at a glance. This also means that
they are often designed to stand out from their surroundings, making the detection
task fairly well defined. Guide and information signs are not particularly interesting
from a driver support system point of view, since GPS receivers perform the task of
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(a) (b) (c)

Figure 2.1: Different detection scenarios. The circle is the ego-car and 3 signs are dis-
tributed along the road. The area highlighted in red illustrates the driver’s
area of attention. (a) is the standard scenario used for e.g. autonomous cars.
Here, all signs must be detected and processed. (b) and (c) depicts a system
which tracks the driver’s attention. In (b), the driver is attentive and spots
all signs. Therefore the system just highlights the one sign that is known to
be difficult for people to notice. In (c), the driver is distracted by a passing
car and thus misses two signs. In this case, the system should inform the
driver about the two missed signs.

giving directions much better than any sign based system ever could. Therefore this
work is only concerned with the other type.

The design of traffic signs are standardized through laws and in Europe many signs
are standardized throughout the EU via the Vienna Convention on Road Signs And
Signals (United Nations Economic Commission for Europe, 2006). There, shapes are
used to categorize different types of signs: Circular signs are prohibitions including
speed limits, triangular signs are warnings and rectangular signs are used for recom-
mendations or sub-signs in conjunction with one of the standard shapes. In addition
to these, octagonal signs are used to signal a full stop, downwards pointing triangles
yield and countries have different other types, e.g. to inform about city limits.

This work was done in the US and is thus concerned with US signs. This is a topic
that is not very well covered in existing literature. In the US, traffic signs are regulated
by the Manual on Uniform Traffic Control Devices (MUTCD). It defines which signs
exist and how they should be used. It is accompanied by the Standard Highway Signs
and Markings (SHSM) book, which describes the exact designs and measurements of
signs. Curiously, the SHSM is provided in both a metric and an English version, and
the measurements are not the same in the two versions, since a “soft conversion” was
used to convert from English measurements to metric measurements. The difference is
fairly small, though so it is not of any importance for this application. At the time of
writing, the most recent MUTCD was from 2009, while the SHSM book has not been
updated since 2004, and thus it describes the MUTCD from 2003. An updated version
of the SHSM should be on its way. The MUTCD contains a few hundred different
signs, divided into 13 categories.

Each state can decide whether it wishes to follow the MUTCD. A state has tree
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(a) Stop. Sign
R1-1.

(b) Yield.
Sign R1-2.

(c) Speed
limit.
Sign
R2-1.

(d) Turn
warning
with speed
recom-
menda-
tion. Sign
W1-2a.

Figure 2.2: Examples of signs from the MUTCD. All signs exist in the national MUTCD,
and are unchanged in the California MUTCD.

options:

1. Adopt the MUTCD fully as is.

2. Adopt the MUTCD but add a state supplement.

3. Adopt a State MUTCD that is “in substantial conformance with” the national
MUTCD.

With regard to this, it is worth noting that the MUTCD covers more than just traffic
signs, so it might very well be other parts of it that the states choose to modify.
However, they do have the option to add or change signs. 19 states has adopted the
national MUTCD without modifications, 23 has adopted the national MUTCD with a
state supplement and 10 has opted to create a State MUTCD (the count includes the
District of Columbia and Puerto Rico). California has a State MUTCD.

Also of interest to TSR systems is that according to the SHSM, “standardization of
these designs does not preclude further improvements by minor changes in the propor-
tion of the symbols, width of borders, or layout of word messages, but all shapes and
colors shall be as indicated.” Some signs can also have different sizes, depending on
which type of road the are used on.

American signs are divided into a number of categories, and in this work only reg-
ulatory and warning signs are treated, since, as stated earlier, guide and information
signs are less interesting for a driver support system. Another relevant categorization
(which does not exist in the MUTCD, but are defined here for the purposes of this
project) are zone-signs versus point-signs. Zone-signs are signs that are in effect until
they are lifted explicitly by another sign or other traffic regulation, such as turning
onto a different road. Speed limit signs are a good example of that. Point-signs are
signs that are only relevant at the point where they are displayed. Examples include
stop signs and many warning signs.
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(a) Speed
limit. Sign
R2-1.

(b) Minimum
speed.
Sign R2-4.

(c) End speed
limit. Sign
R3 (CA).

(d) Red light
violation
fine. Sign
SR58
(CA).

Figure 2.3: Examples of similar signs from the MUTCD. (c) and (d) exist only in the
California MUTCD.

With the legalese out of the way, it is time to look at some signs. Figure 4.1
shows three examples of signs from the national MUTCD, which exist unchanged in
the California MUTCD. They have different shapes and colors, and seem easy to
distinguish. They are examples of the only shapes used for US signs: Octagons (used
exclusively for stop signs), downward points triangles (used exclusively for yield signs),
diamonds (used for warning signs), and rectangles of various aspect ratios. In addition
to these four shapes, Californian route signs has different shapes, such as various shield
designs. As these are guide signs, they are not included here. Many signs contain
circles, arrows, and other geometric shapes, but crucially, the signs themselves are
never circular.

With regards to colors, a few are used. Again, guide and information signs are
excluded here. Regulatory signs may have a black, blue, red, or white background,
with white being the most common. Warning signs are always yellow. At road works,
accidents or other types of temporary traffic control, versions of the normal signs are
used, but with an orange background.

A glance through the California MUTCD reveals two things to consider: Many signs
are very similar, and many signs rely on text. Examples can be seen in figure 2.3. These
are all white signs using text as the only way to communicate their message. Without
the accompanying text, it would be near impossible to tell if e.g. figure 2.3a was a
maximum or minimum speed limit. Furthermore, figures 2.3a and 2.3b are so similar,
that without understanding the text, their meaning could easily be confused. Figure
2.3d is an example of a sign that, while having the same color, practically the same
shape, and a lot of text, has absolutely nothing to do with speed limits like the other
three. This is in contrast to Europe, where a combination of color, shape, and symbols
conveys the meaning of the vast majority of signs without using text.

The number of signs in the MUTCD shows that while TSR is a well defined task -
there is not an infinite number of signs - there is still many different signs, signs with
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(a) Keep right.
Sign R4-7.

(b) Keep
right. Sign
R4-7a.

(c) Keep
right. Sign
R4-7b.

Figure 2.4: Three different signs with the same meaning.

subtle differences having different meanings, signs may have additional plaques below
for further clarification, and several different signs may even have the same meaning,
as illustrated in figure 2.4. This makes the TSR job non-trivial.

New Zealand uses a sign standard with warning signs that are yellow diamonds, as
in the US, but regulatory signs that are round with a red border, like the ones from the
Vienna Convention countries. Japan uses signs that are generally in compliance with
the Vienna Convention, as are Chinese regulatory signs. Chinese warning signs are
triangular with a black/yellow color scheme. Central and South American countries
do not participate in any international standard, but often use signs somewhat like the
American standard.

2.4 Sign detection versus classification

The task of TSR is often split into two different stages: Detection and classification.
Detection is concerned with locating signs in input images, while classification is about
determining what type of sign the system is looking at. The two tasks can often be
treated completely separate, but in some cases, the classifier relies on the detector
to supply information, such as the sign shape or sign size. This also means that if
necessary, different classifiers could be run, depending on, say, what sign shape was
detected.

In this report, the following terminology is used: Sign detection denotes the part
where the position of a sign in an input image is determined. Sign classification is
the task of figuring out exactly what type of sign it is. Sign recognition is the en-
tire flow from data acquisition to the final output, encapsulating both detection and
classification.
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2.5 Literature search

The literature search for this survey was carried out in four stages:

1. Find relevant existing surveys.
2. Select a set of about 15 representative papers and read them to get an initial

overview of the field.
3. Look at references from the initial selection of papers, as well as other papers

written by the same authors, to get a more complete understanding.
4. Search for public databases of traffic sign images.

The first step was to find out whether any surveys existed already. This step was
actually carried out before it was decided to do a detailed survey. If any comprehensive
survey papers had existed already, the subsequent steps would have been unnecessary.
As mentioned earlier, the literature features just two surveys on TSR, none of them
very comprehensive.

Step 2 was carried out by looking at references in the surveys that did exist as well
as doing searches in several scientific databases. When a selection of papers had been
found, they were read and the foundations for the tables in section 2.6 were created.

For step 3 a larger set of papers was selected, bringing the total count up to 41.
This was done by following references in the previous pool of papers, looking for further
publications by known authors, and simply doing more general searches.

After having read the papers, it was clear that almost no papers used the same
datasets for testing, so it was necessary to determine whether any public datasets
existed at all. That was step four. Some datasets do exist, but they are very new
and not well advertised, so they were mainly found by using references in a few of the
papers.

2.6 Results

2.6.1 Public sign databases

A few publicly available traffic sign datasets exist:

• German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2011,
2012)
• KUL Belgium Traffic Signs Dataset (KUL Dataset) (Timofte et al., 2011)
• Swedish Traffic Signs Dataset (STS Dataset) (Larsson and Felsberg, 2011)
• RUG Traffic Sign Image Database (RUG Dataset) (Grigorescu and Petkov, 2003)
• Stereopolis Database (Belaroussi et al., 2010)

Information on these databases can be found in table 2.2. Most of the databases have
emerged within the last two years (except for the very small RUG Dataset), and are not
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Table 2.2: Information on the publicly available sign databases.

GTSRB STS
Dataset

KUL
Dataset

RUG
Dataset

Stereopolis LISA
Dataset

Number of classes: 43 7 100+ 3 10 47

Number of
annotations:

50000+ 3488 13444 0 251 7855

Number of images: 50000+ 20000 9006 48 847 6610

Annotated images: All images 4000 images All images 0 All images All images

Sign sizes: 15x15 to
250x250 px

3x5 to
263x248 px

100x100 to
1628x1236
px

N/A 25x25 to
204x159 px

6x6 to
167x168 px

Image sizes: 15x15 to
250x250 px

1280x960 px 1628x1236
px

360x270 px 1920x1080
px

640x480 to
1024x522 px

Includes videos: No No Yes, 4 tracks No No Yes, for all
annotations

Country of origin: Germany Sweden Belgium The
Netherlands

France United
States

Extra info: Images come
in tracks
with 30
different
images of
the same
physical
sign.

Signs
marked visi-
ble/blurred/oc-
cluded and
whether
they belong
to the
current road
or a side
road.

Includes
traffic sign
annotations,
camera
calibrations
and poses.

Does not
include any
annotations,
only raw
pictures.

Images from
various
camera
types.

yet widely used. One of the most widespread databases is the GTSRB, which has been
presented by Stallkamp et al. (2011), created for the competition “The German Traffic
Sign Recognition Benchmark”. The competition was held at the International Joint
Conference on Neural Networks (IJCNN) 2011. It is a large data set containing German
signs, thus very suitable for training and testing systems aimed at signs adhering to
the Vienna Convention. A sample image from the GTSRB database can be found in
fig. 2.5a. The GTSRB is primarily geared towards classification, rather than detection,
since each image contains exactly one sign without much background. For detection,
images of complete scenes is necessary. Also, many detection systems rely on a tracking
scheme to make detection more robust and without video of the tracks (in GTSRB
parlance a “track” is a set of images of the same physical sign), this will not work
properly. Since the data set is created for the classification task, this is not so much
a problem of that database, as it is a testament to its target. In conjunction with the
competition, five interesting papers were released (Rajesh et al., 2011; Ciresan et al.,
2011; Zaklouta et al., 2011; Sermanet and LeCun, 2011; Boi and Gagliardini, 2011).
They all focus on classification rather than detection.

Two other datasets should be highlighted: The STS Dataset and the KUL Dataset.
They are both very large, though not as large as the GTSRB, and they contain full
images. This means that they can both be used for detection purposes. The STS
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(a) (b)

Figure 2.5: Example sign images from (a) the GTSRB and (b) the STS Dataset with
the sign bounding boxes superimposed.

Dataset does not have all images annotated, but it does include all frames from the
videos used to obtain the data. This means that tracking systems can be used on this
dataset, but it can only be verified with ground truth every 5 frames. An example from
the STS Dataset can be seen in fig. 2.5b. The KUL Dataset also includes 4 recorded
sequences which can be used for tracking experiments. KUL also includes a set of sign-
free images which can be used as negative training images and it has pose-information
for the cameras for each image.

The details of the dataset assembled in this project are also listed in table 2.2. The
dataset is described further in chapter 3.

2.6.2 Detection methods

The approaches in the detection stage have traditionally been divided into two kinds:

• Color based methods.

• Shape based methods.

Color based methods take advantage of the fact that traffic signs are designed to be
easily distinguished from their surroundings, often colored in highly visible contrasting
colors. These colors are extracted from the input image and used as a base for the de-
tection. Just like signs have specific colors, they also have very well defined shapes that
can be searched for. Shape based methods ignore the color in favor of the characteristic
shape of signs.

Each method has its pros and cons. Color of signs, while well defined in theory,
varies a lot with available lighting, as well as with age and condition of the sign. On
the other hand, searching for specific colors in an image is fairly straight forward. Sign
shapes are invariant to lighting and age, but parts of the sign can be occluded, making
the detection harder, or the sign may be located at a background of a similar color,
ruining the edge detection that most shape detectors rely on.
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The division of systems in this way can be problematic. Almost all color based
approaches take shape into account after having looked at colors. Others use shape
detection as their main method, but integrate some color aspects as well. Instead,
the detection can be split into two steps as proposed by Gomez-Moreno et al. (2010):
Segmentation and detection. Here, the detection step is split further into a feature
extraction step and the actual detection, which acts on the features that are extracted.
Many shape-only based methods have no segmentation step. The flow is outlined in
fig. 2.6.

2.6.3 Surveyed papers

An overview of all surveyed papers and their methods is listed in table III in the survey
paper included in appendix A. To conserve space, the tables are not reproduced here.
It contains each of the systems and lists which segmentation method, feature type,
and detection method that is used. The author group numbers are used to mark the
papers that are part of an ongoing effort from the same group of authors. They do
not constitute a ranking in any way. In tables IV and V in the survey paper, some of
their more detailed properties are listed. The systems are split into two tables. Table
IV displays those which do not use any tracking. Table V contain those which do
use tracking, something that is crucial when using TSR in a driver assistance context,
as mentioned earlier. Apart from this division, the two tables are structured in the
same way: Sign type in paper describes which sign types the authors of the paper have
attempted to find, while emphsign type possible are the types of signs the method
could be extended to include, usually a very broad group. Real-time is about how fast
the system runs, if that information is available. Any system with a frame rate faster
than 5 fps is considered to have real-time potential. Rotation invariance tells whether
the used technique is robust to rotation of signs. Model vs. training describes if the
detection system relies on a theoretical model of signs (such as a pre-defined shape), if
it uses a learned type of classifier, or if it uses a combination of the two. Test image
type is the image resolution the system is designed to work with. Low-res images are
usually video frames, while high-res are still images.

Segmentation

Feature
extraction

Detection

Figure 2.6: The general flow followed by typical sign detection algorithms.
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The detection performance of the surveyed papers are presented in table VI, also in
the survey paper included in appendix A. Very few papers use common databases to
test their performance and the papers detect various types and numbers of signs. Thus,
the numbers should not be directly compared, but nevertheless they give an idea of
performance. Not all papers give all the measures reported in the table (detection rate,
false positives per frame, etc.), so some fields in the table could not be filled. In other
cases these exact measures were not given, but could be calculated from other given
numbers. Where figures are available, the best detection rate the system obtained is
reported along with the corresponding measure of false positives. The detection rate
is per frame, meaning that 100% detection is only achieved if a sign is found in every
frame it is present. It is not sufficient to just detect the sign in a few frames. This is
the way results are presented in most papers, so this is the measure chosen here, even
if a real- world system would work fine if each sign is just detected once. Papers which
only report the per-sign detection rate as opposed to the per-frame detection rate are
marked with a triangle in the right-most column of the table.

Different papers report the false positives in different ways, so a few different mea-
sures - which are not directly comparable - are presented in the table:

FPPF False postives per frame: FPPF = FP
f where FP is the number of false

positives and f is the number of frames analyzed.

FPR False positive rate: FPR = FP
N where N is the number of negatives in the test

set. This measure is rarely used in detection, since the number of negatives does
not always make much sense (how many negatives exist in a full frame?).

PPV Positive predictive value: PPV = TP
TP+FP where TP is the number of true

positives.

FPTP False/true positive ratio: FPTP = FP
TP

WPA Wrong pixels per area: WPA = WP
AP where WP is the number of wrongly

classified pixels and AP is the total number of pixels classified.

When papers present results for different sign types, the mean detection performance
is also presented in the table. In many cases that will give a better view of the true
performance of the approach.

Five papers stick out, claiming a 100% detection rate. Gil Jiménez et al. (2008) test
only on synthetic data. It is possible that the synthetic data does not fully encapsulate
real world variations, so the performance of that approach is not guaranteed to be as
good in real-world scenarios. At first glance Ruta et al. (2010) achieve a 100% detection
rate, but that is only the case for one of their sign types. The mean performance is a
more accurate (and still promising) gauge of the actual performance. The same is the
case for Larsson and Felsberg (2011). Loy and Barnes (2004) detect all signs in the
test set, but at the cost of a large number of false positives per frame. Hoferlin and
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Zimmermann (2009) only present the per-sign detection rate, so that figure cannot be
compared to the other systems.

Generally, systems achieve detection rates well into the 90% range, some at very low
false detection rates. From the table no “best system” can be chosen, since the test sets
are very different, both in size and content. A system that can detect several different
sign types at a low detection rate may in some applications be considered better than a
system that can only detect one specific sign type, but do that very well. Good options
are presented by Timofte et al. (2009); Baro et al. (2009); Gu et al. (2011); Overett
and Petersson (2011). They have all been tested on large datasets and report detection
rates above 90% with a decent low number of false positives.

Now that the basics about sign detection are in place, the following sections go in
depth with how recent papers perform each step.

2.6.4 Segmentation

The purpose of the segmentation step is to achieve a rough idea about where signs
might be, and thus narrow down the search space for the next steps. Not all authors
make use of this step. Since the segmentation is traditionally done based on colors,
authors who believe this should not be part of a sign detection often do not have any
segmentation step, but go directly to the detection.

Of the papers that do use segmentation, all except Gu et al. (2011); Keller et al.
(2008) use colors to some extent. Normally, segmentation is done with colors and
subsequently a shape detection is run in a later stage. Gu et al. (2011) reverses the
usual order, so they use radial symmetry voting (see section 2.6.6) for segmentation and
a color based approach for the detection. Keller et al. (2008) also run radial symmetry
voting as preprocessing, but follow it up with a cascaded classifier using Haar wavelets
(see again section 2.6.6).

Generally, color based segmentation relies on a thresholding of the input image in
some color space. Since many believe that the RGB color space is very fragile with
regards to changes in lighting, these methods are spearheaded by the HSI-space (or its
close sibling, the HSV-space). HSI/HSV is used by Kuo and Lin (2007); Nguwi and
Kouzani (2008); Ren et al. (2009); Xu (2009); Chiang et al. (2010); Qingsong et al.
(2010). The HSI-space models the human vision better than RGB and allows some
variation in the lighting, most notably in the intensity of light. Some papers, like the
ones by Vázquez-Reina et al. (2005); Maldonado-Bascon et al. (2007); Gil Jiménez et al.
(2008); Lafuente-Arroyo et al. (2010), augment the HSI thresholding with a way to find
white signs. Hue and saturation are not reliable for detecting white, since it can be at
any hue, so they use an achromatic decomposition of the image proposed by Liu et al.
(2002).
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(a) Before thresholding (b) After thresholding

Figure 2.7: An example of thresholding, looking for red hues.

Some authors are not satisfied with the performance of HSI, since it does not model
the change in color temperature in different weather, but only helps in changing light
intensity. Gao et al. (2006, 2008) instead threshold in the LCH color space, which is
obtained using the CIECAM97-model. This allows them to take variations in color
temperature into account. The RGB space is used by Timofte et al. (2009); Prisacariu
et al. (2010), but they use an adaptive threshold in an attempt to combat instabilities
caused by lighting variations.

Of special interest in this color space discussion is the excellent paper by Gomez-
Moreno et al. (2010), which has shown that HSI-based segmentation offers no significant
benefit over normalized RGB, but that methods which use color segmentation generally
perform much better than shape-only methods. They do, however have trouble with
white signs. For a long time, it has simply been assumed that the RGB color space
was a bad choice for segmentation, but through rigorous testing, they show that there
is nothing to gain from switching to the HSI color space instead of a normalized RGB
space. As the authors write: “Why use a nonlinear and complex transformation if a
simple normalization is good enough?”.

A color based model not relying on thresholding was put forward by Deguchi et al.
(2011), which use a cascaded classifier trained with AdaBoost, similar to the one pro-
posed by Viola and Jones (2001), but on Local Rank Pattern features instead of Haar
wavelets. Also, Ruta et al. (2010) use a color-based search method that, while closely
related to, is not directly thresholding-based. Here, the image is discretized into colors
that may exist on signs. The discretization process is less destructive than threshold-
ing in that it does not directly discard pixels, instead it maps them into the closest
sign-relevant color. In a more recent contribution (Ruta et al., 2011), they replace the
color discretization method with a Quad-tree interest region finding algorithm, which
finds interesting areas using an iterative search method for colored signs. In the same
realm lies Houben (2011), who use a learned probabilistic color preprocessing.

Kastner et al. (2010) propose a unique approach: Using a biologically inspired at-
tention system. It produces a heat map denoting areas where signs are likely to be
found. An example can be seen in figure 2.8. A somewhat similar system was put forth
by Xie et al. (2009), who uses a saliency measure to find possible areas of interests.
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Figure 2.8: The biologically inspired detection stage from Kastner et al. (2010). Image
source: Kastner et al. (2010)

2.6.5 Features and modeling

While various features are available from the vision literature, the choice of feature set
is often closely coupled with the detection method, though some feature sets can be
used with a selection of different detection methods. The most popular feature is edges
- sometimes edges obtained directly from the raw picture, sometimes edges from pre-
segmented images. Edges are practically always found using a Canny edge detection
or some method very similar, and they are used as the only feature by Ruta et al.
(2010, 2011); Loy and Barnes (2004); Barnes and Loy (2006); Barnes et al. (2008);
Nunn et al. (2008); Meuter et al. (2011); Garcia-Garrido et al. (2011); Gonzalez et al.
(2011); Timofte et al. (2009); Liu et al. (2002); Kuo and Lin (2007); Moutarde et al.
(2007); Belaroussi and Tarel (2009); Ren et al. (2009); Chiang et al. (2010); Qingsong
et al. (2010); Deguchi et al. (2011); Houben (2011). Prisacariu et al. (2010) combine
the edges with Haar-like features and Ruta et al. (2007); Hoferlin and Zimmermann
(2009) look only at certain color filtered edges.

Even though edges comprise the most popular feature choice, there are other options.
Histogram of Oriented Gradients (HOG) is one. It was first used to detect people in
images, but has been used by Alefs et al. (2007); Pettersson et al. (2008); Overett and
Petersson (2011); Gao et al. (2006); Xie et al. (2009) to detect signs. HOG is based
on creating histograms of gradient orientations on patches of the image and comparing
them to known histograms for the sought after objects. HOG is also used by Creusen
et al. (2010), but they augment the HOG feature vectors with color information to
make them even more robust.

A number of papers by Bahlmann et al. (2005); Keller et al. (2008); Prisacariu et al.
(2010); Baro et al. (2009) use Haar wavelet-like features, Bahlmann et al. (2005) only
on certain colors, and Baro et al. (2009) in the form of so-called dissociated dipoles
with wider structure options than traditional Haar wavelets.

More esoteric choices are Distance to Bounding box (DtB), FFT of shape signatures,
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(a) Possible
circles for a
gradient

(b) Intersect-
ing vote
lines

Figure 2.9: The basic principle behind the radial symmetry detector. Image inspired by
Barnes et al. (2008).

tangent functions, simple image patches, and combinations of various simple features.
DtB, as used by Maldonado-Bascon et al. (2007); Lafuente-Arroyo et al. (2010), are a
measure of distances from the contour of a sign-candidate to its bounding box. Sim-
ilarly, the FFT of shape signatures used by Gil Jiménez et al. (2008) is based on the
distance from the shape center to its contour at different angles. Tangent functions,
used by Xu (2009), calculate the angles of the tangents at various points around the
contour. Simple image patches (though in the YCbCr color space) are championed
by Nguwi and Kouzani (2008) and a combination of simple features, such as corner
positions and color is used by Kastner et al. (2010).

2.6.6 Detection

The detection stage is where the signs are actually found. This is in many ways the most
critical step, and often also the most complicated. The selection of detection method is
a bit more constrained than the previous two stages, since the method must work with
the features from the previous stage. The decision is therefore often made the other
way around: A desired detection method is chosen, and the feature extraction stage
is designed to deliver what is necessary to perform the detection. As known from the
previous section, the most popular feature is edges, and this reflects on the most popular
choice in detection method. Using Hough transforms to process the edges is one option,
as done by Moutarde et al. (2007); Garcia-Garrido et al. (2011); Gonzalez et al. (2011);
Ren et al. (2009). Moutarde et al. (2007) use a proprietary and undisclosed algorithm
for detection of rectangles in addition to the Hough transform used for circles. That
said, Hough transforms are computationally expensive and not suited for systems with
real-time requirements. Because of that, the most popular methods are derivatives of
the radial symmetry detector first proposed by Loy and Zelinsky (2003) and first put
to use for sign detection by Barnes and Zelinsky (2004). The algorithm votes for the
most likely sign centers in an image based on symmetric edges and is itself inspired
by the Hough transform. The basic principle can be seen in fig. 2.9. In a circle, all
edge gradients intersect at the center. The algorithm finds gradients with a magnitude
above a certain threshold. In the direction pointed out by the gradient, it casts a vote
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Figure 2.10: Votes from a radial symmetry system superimposed to the original image.
The brightest spot coincides with the center of the sign. This image is from
a system developed in conjunction with this paper and is a radial symmetry
voting algorithm extended to work for rectangles

in a separate vote image. It looks for circles of a specific radius and thus votes only in
the distance from the edge that is equivalent to the radius. The places with most votes
are most likely to be the center of circles.

This algorithm was later extended to regular polygons by Loy and Barnes (2004)
and a faster implementation for sign detection use was proposed by Barnes and Loy
(2006). It is also used in some form by Barnes et al. (2008); Keller et al. (2008); Meuter
et al. (2011); Hoferlin and Zimmermann (2009); Gu et al. (2011); Nunn et al. (2008).
An example of votes from a system which is extended to work for rectangular signs can
be seen on fig. 2.10. An alternate edge-based voting system is proposed by Belaroussi
and Tarel (2009).

The HOG features can be used with an SVM, as done by Xie et al. (2009); Creusen
et al. (2010), or be compared by calculating a similarity coefficient as Gao et al. (2006)
does. Another option with regard to HOG is to use a cascaded classifier trained with
some type of boosting. This is done by Pettersson et al. (2008); Overett and Peters-
son (2011). Cascaded classifiers are traditionally used with Haar wavelets, and sign
detection is no exception, as presented by Bahlmann et al. (2005); Keller et al. (2008);
Prisacariu et al. (2010); Baro et al. (2009).

Finally, also neural networks and genetic algorithms are represented by Nguwi and
Kouzani (2008) and Liu et al. (2002), respectively.

The detection stage reflects the philosophical difference that was also seen in the
feature extraction stage: Either reliance on a simple, theoretical model of sign shapes is
preferred - at this stage it is nearly always shapes that are searched for - or reliance on
training data and then a more abstract detection method. Since it is extremely hard to
compare systems tested across different data sets, it is not clear which methods perform
the best, so that is clearly an area with a need for further studies. Both ways can be
fast enough for real-time performance, and most of them could also work with signs
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of any shape. There are outliers using different methods, but no compelling argument
that they should perform significantly better.

2.7 Discussion

In the previous sections, different methods and philosophies for each stage are presented.
This section discusses the current state of the art and outlines ideas for future directions
of research.

At the moment, the problem in TSR is the lack of use of standardized sign image
databases. This makes comparisons between contributions very hard. In order to
obtain meaningful advances in the field, the development of such databases is crucial.
Until now, research teams have only implemented a method they believe has potential,
or perhaps tested a few solutions. Without a way to compare performance with other
systems, it is not clear which approaches work the best, so every new team starts back
at square one, implementing what they think might work best. Two efforts to remedy
this situation deserve to be mentioned: The sign databases presented earlier and the
segmentation evaluation done by Gomez-Moreno et al. (2010). As mentioned earlier
(section 2.6.1), a few public sign databases have recently emerged, but have not yet
been widely used. Gomez-Moreno et al. (2010) compare various segmentation methods
on the same data set containing a total of 552 signs in 313 images. They also propose
a way to evaluate the performance of segmentation methods. That paper provides a
very good starting point for determining which segmentation method to use.

These two efforts notwithstanding, public databases covering signs from non-Vienna
Convention regions are necessary. Databases which include video tracks of signs would
also be very beneficial to the development of TSR systems, since many detectors employ
a tracking system for signs. This is, to some extent, included in the KUL Dataset.

The absence of usage of public database may not explain in entirety why very few
comparative studies of methods exist. Another reason is that TSR systems are long,
complex chains of various methods, where it is not always possible to swap individual
modules. When it is not feasible to swap, say, the detection method for something else,
it is naturally hard to determine whether other solutions may be better. This is solved,
if more papers divide their work more clearly into stages, ideally as fine grained as the
ones used in this survey, plus a similar set of stages for classification. This is done with
success by Gomez-Moreno et al. (2010), as they test different segmentation methods
while keeping the feature extraction, detection, and classification stages fixed.

Another problem is the need for work on TSR in regions not adhering to the Vienna
Convention. The bulk of the existing work comes out of Europe, Australia, and Japan.
Japan and Australia are not parts of the Vienna Convention, but they use similar
signs, for example to convey speed limits. Of the surveyed papers here, only two are
concerned with US traffic signs (Keller et al., 2008; Moutarde et al., 2007), and even
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Figure 2.11: Example of sign relevancy challenges in a crop from our own collected data
set. The signs have been manually highlighted, and while both signs would
likely be detected, only the one to the right is relevant to the driver. The
sign to the left belongs to another road, the one the black and white cars
come from.

they only look at speed limit signs.

When looking at sign detection from a driver-in-the-loop perspective, it is also un-
fortunate that the bulk of research now focuses on speed limit signs. A wealth of papers
cite driver assistance as their main application, but carries on focusing on speed limit
signs. Detection of speed limits is highly relevant for an autonomous vehicle, but as it
turns out, humans are already very good at seeing speed limit signs themselves (Shinar,
2007). As such, recognition of signs other than speed limit is actually more interesting.

The final problem to be highlighted in this section is the relation of signs to the
surroundings. TSR has seen significant work, as is evident from this paper, but little
work has been done on ensuring that the detected signs are relevant for the ego-car
(with the notable exception of Garcia-Garrido et al. (2011)). In many situations, it
can occur that a detected sign is not connected to the road the car is on. An example
from our own collected data can be seen in fig. 2.11. In this case, two stop signs can be
seen, but only the rightmost one pertains to the current road. Similar situations occur
often on freeways, where some signs may only be relevant for exit lanes. Related to this
problem is that when the driver changes to a different road, most often the restrictions
from earlier detected signs no longer apply. This should be detected and relayed to the
system. It is very likely that research in other areas, such as lane detection can be of
benefit here. Another idea with regard to the surroundings would be to link knowledge
of weather and current lighting conditions to enhance the robustness of the detector,
similar to what is done for detection of people by Doshi and Trivedi (2007). It is also
possible that vehicle dynamics can be taken into account and used in the tracking of
detected signs.
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3
LISA Traffic Sign Dataset

When doing computer vision projects, training data and test data is essential. If
algorithms that train themselves based on images are used, the need of training data
is obvious. However, also simpler systems need training data that the algorithms can
run on, to asses and adjust their performance. A test set is necessary for evaluating
system performance. It is important that the system is not tested on the same data as
it is trained on, since that cannot tell if the system generalizes to other data.

This chapter is about the traffic sign dataset that has been created in this project.
The survey in chapter 2 showed that no dataset with American signs existed, an given
that the ultimate goal of this project was to investigate detection of US traffic signs,
creating such a database was necessary.

3.1 Introduction

When training and testing a system like this, it is generally preferable to use data from
existing public databases as opposed to collecting data for the particular project. Not
only is it saving time and effort, it is also convenient for comparing results to previous
works in the area.

In more established fields, such as detection of people, a number of public databases
exist. Notable examples are the MIT CBCL Pedestrian Database and the INRIA
Person Dataset (Dalal and Triggs, 2005). In the realm of TSR, a few databases has
recently emerged, as described in chapter 2, but none of them include US signs.

The recent emergence of these datasets is a very welcome addition to the field of TSR,
as the performances of methods in previous papers have been very hard to compare
without actually implementing them. Considerations on how the dataset created for
this project has been assembled are presented in the following sections.
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3.2 Methods

This section describes the methods used to obtain the LISA Traffic Sign Dataset. It
describes both considerations about the actual data content, and the technical means
with which is was collected. During this section there will be no distinction between
training and test data. In the end, splitting the dataset into separate training and test
pools is discussed.

3.2.1 Dataset content and structure

The design and content of the real-world dataset has been inspired by the other available
datasets presented earlier. The more similarly packaged the different datasets are, the
easier they are to use, so some effort has gone into this.

All significant existing datasets contain a number of images annotated with the type
and position of signs. That is the bare minimum required for any traffic sign dataset.
The German Traffic Sign Recognition Benchmark (GTSRB) dataset has significantly
more classes and pictures than the STS dataset. The KUL set is also large and contains
the most classes of all. However, the STS and KUL datasets one significant advantage:
They include full frames, making them useful for both detection and classification
systems. This is critical, especially since this project is on detection. Furthermore,
the STS dataset includes additional annotation data: Information on whether a sign is
visible, blurred or occluded, and whether it belongs to the current road or a side road.
As described in chapter 2, the task of determining whether a recognized sign actually
belongs to the current road is not yet well explored, and including this information
in datasets lays the groundwork for this effort. All datasets save their annotations in
comma separated text files (csv-files) in slightly different formats.

The dataset from this report - named the LISA dataset from the name of the Lab-
oratory for Intelligent and Safe Automobiles at UCSD - tries to take the best from
each dataset while also adding even more data. None of the existing databases include
video to any large extent (the KUL dataset has 4 video tracks). They all have a large
collection of annotated single images, but this means that they cannot be used to test
detectors relying on temporal information. Many systems already use various tracking
schemes to minimize the number of false positives, and it is quite likely that in the
future, detections using temporal data even more will emerge. Therefore, the LISA
dataset includes video as well as stand alone frames. The organization of the dataset
can be seen in fig. 3.1 and is described further below.

In order to actually create the dataset, two tools were developed: Video Annotator
and Frame Annotator, each responsible for one part of the annotation process (see
below). Care was taken to create the annotation tools in a way so the can be used
for general annotation purposes, not only for annotating traffic signs. This way, the
programs may also be used for future unrelated projects which require video annotation.
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Source video Annotated tracks Annotated frames

Included in LISA dataset

Figure 3.1: An overview of the dataset structure. Each source video is split into a number
of tracks. The tracks are annotated with the sign type they contain, but may
include other signs. From each track, up to 30 frames are extracted and all
signs in these framed are tagged with position, type, and some additional
meta data.

Tracks

The source videos are obtained from a driving vehicle. Several different cameras and
vehicles have been used to ensure a dataset that is not favored towards a specific setup.
Some of the source data is in color, while some of it is grayscale video. Each source
video is split into smaller videos which contain signs. These smaller videos are called
tracks, just like in the GTSRB dataset. Each track has an annotation of the sign that
is present in it. In urban driving, it is very common to have several other signs present
in one track. This means that the only guarantee about a track is that it contains the
sign described by the annotation, but it may still contain other signs as well.

Track annotations do not contain any information on the pixel-wise position of the
annotated sign, simply that the sign is present. If pixel positions are desired, they can
be inferred from the frame annotations discussed below. Along with the sign type, the
annotation of each track includes information on which source file the track comes from
and exactly which frames it consists of. This information ensures the traceability of
the track to its source.

The technical details and the exact format of the tracks and their annotations are
covered below in section 3.2.2.

Frames

A number of frames are extracted from each track and annotated in detailed fashion.
Each extracted frame is annotated with the exact position of all signs present in the
image. This means that even if a track is annotated as a speed limit sign-track, all
other signs in the frames will be annotated too. Inspired by the STS dataset, each sign
annotation contain this information:
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Tag: The type of sign as a string without spaces, e.g. speedLimit or pedestrianCross-
ing.

Position: The rectangular bounding box of the sign, given as the upper left and lower
right corner.

Occluded: True if the sign is partially occluded.
On side road: True if the sign does not belong to the road currently being driven on,

but instead to a side road.

Similar to the track annotations, additional traceability information is included so every
annotated frame can be traced back to both its origin track and origin source video.
Contrary to the STS dataset, the frame annotations in the LISA database does not
contain information on whether a particular sign is blurred. This is omitted since it
seems to be a subjective measure and of limited use.

For the LISA dataset, it was decided not to annotate all frames in tracks. In each
track a maximum of 30 equidistant frames were annotated, an the annotated frames
were required to be at least 5 frames apart. This ensured that long tracks are not
overrepresented in the dataset and that there is some variation from sign to sign, since
two adjacent frames are likely to produce very similar signs. It also lessens the work
load of the annotator.

The technical details for the frame annotations are covered in section 3.2.3.

3.2.2 Video annotation tool

The program Video Annotator was implemented in C++ using OpenCV for image and
video I/O and drawing, and Qt for the user interface. An OpenGL based custom Qt
widget was used for connecting Qt and OpenCV. A screenshot can be seen in fig. 3.2.
A short guide to the usage of Video Annotator can be found in appendix D, so the
actual usage and interface of the program will not be discussed here. It should be
mentioned, though, that it was created to have a minimum of visual clutter and with
keyboard shortcuts to make the usage as efficient as possible.

The output from Video Annotator is the most interesting thing to discuss here. The
main output format is a plain text file with annotations. This format was chosen for
several reasons:

• A text-based format is standard and used in all other available databases.
• It is human readable, making manual lookups possible for debugging of tools.
• Unix/Linux contains a very comprehensive suite of text-file handling tools, which

helps when handling thousands of annotations in many files.
• Developing tools to handle text-based formats is easy and does not depend on

the ability to decode and encode obscure binary formats.

When a video is annotated, a semi-colon separated text file with the annotations is
created with the name of the video file as a base. If the video is named vid_cmp2.avi, the
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Figure 3.2: Screenshot of Video Annotator

Listing 3.1: The header and two sample annotations in a video annotation file

1 Filename;Track type;Origin file;First frame;Length
2 stop_1323802788.avi;vid0/vid_cmp2.avi ;10243;145
3 yield_1323802820.avi;yield;vid0/vid_cmp2.avi ;10963;30

annotation file is name vid_cmp2.avi_annotations.csv. Each line contains an annotation
of a track in the format listed in listing 3.1.

The first column, Filename contains the name of the other output Video Annotator
produces: An XviD compressed video file containing the track. The track video is
named after the sign in the track, and a creation timestamp is created. The timestamp
acts as a unique key for that particular track, ensuring no naming conflicts between
tracks with the same sign appear, even in tracks across different source videos. An-
other option would be to use a video-content based hash of some sort. That might
be necessary if the annotation program should work in an environment where multiple
videos are annotated in parallel (so to tracks could theoretically be created in the same
second), but a timestamp was deemed secure enough for these purposes and chosen
due to its simplicity. Track type is the sign type the video contains. As mentioned
earlier, there is no guarantees that no other signs are present in the track. To ensure
traceability, the remaining three columns contain a reference to the original video file
and frame numbers so the video of the track can be recreated as long as the original
file is retained.

The output file from Video Annotator can be loaded into Frame Annotator, or used
stand-alone, for example to extract all tracks which contain a specific sign. This could
be relevant a as test pool for a detector.
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Figure 3.3: Screenshot of Frame Annotator

3.2.3 Frame annotation tool

Frame Annotator was created using the same tools as video annotator: C++ with
OpenCV for image and video I/O and drawing, and Qt for the user interface. An
OpenGL based custom Qt widget was used for connecting Qt and OpenCV. A short
user guide for Frame Annotator is included in appendix E. A screenshot is in fig. 3.3.

Frame Annotator is a more complex program, both implementation- and interface-
wise. It is built to work on top of Video Annotator, but as described in the user guide,
it can be used with stand alone videos if necessary. The philosophy of Video Annotator
is carried over: The output consists of a text-file with annotations and it also saves all
annotated frames as PNG image files. The basic idea is simple: The program allows the
user to draw rectangular annotations around objects and attach a tag to them - in this
case the sign type. The user can annotate multiple signs in the same frame and also
save various meta data for each annotation. The program can be set up to annotate all
frames in a track, or a maximum number of frames with a minimum internal distance
as discussed earlier.

The main output file is called frameAnnotations.csv and a short example can be seen
in listing 3.2. Each line is an annotation, so if a frame contains several signs, it will
have several lines in the annotation file. The two first columns contain the filename
for the image of the frame and the tag (sign type) associated with the image. Then
four columns describe the location of the annotation. The next column is dynamic:
It contains a comma-separated list of binary meta data for the annotation. Because
Frame Annotator is flexible and can be used with any number of meta-data fields, but
tools should be able to expect at fixed number of columns, all meta data are put in the
same column. Finally, four columns provide traceability, both back to the origin track,
but also back to the origin video. This means that any annotation made in Frame
Annotator can be carried all the way back to the original video and used to test the
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Listing 3.2: The header and 5 sample annotations in a frame annotation file. Extra
spaces have been added for readability.

1 Filename;Annotation tag;Upper left corner X;Upper left corner Y;Lower ¶
right corner X;Lower right corner Y;Occluded ,On another road;Origin¶
file;Origin frame number;Origin track;Origin track frame number

2

3 yield_1323802820.avi_image0.png;yield ;651;38;684;66;0 ,0; vid0/vid_cmp2.¶
avi ;10965; yield_1323802820.avi;2

4

5 yield_1323802820.avi_image1.png;yield ;660;42;693;70;0 ,0; vid0/vid_cmp2.¶
avi ;10970; yield_1323802820.avi;7

6

7 yield_1323802820.avi_image2.png;yield ;668;36;701;65;0 ,0; vid0/vid_cmp2.¶
avi ;10975; yield_1323802820.avi ;12

8

9 keepRight_1323802829.avi_image1.png;keepRight ;229;45;250;68;0 ,0; vid0/¶
vid_cmp2.avi ;11134; keepRight_1323802829.avi;46

10

11 noLeftTurn_1323803031.avi_image0.png;noLeftTurn ;62;29;86;51;0 ,0; vid0/¶
vid_cmp2.avi ;16018; noLeftTurn_1323803031.avi;2

performance of a detector which takes advantage of tracking or needs video for other
reasons.

3.2.4 Annotation handling tools

Apart from the to tools to do annotations, a set of tools to handle the annotation files
was created. The set consists of 4 Python scripts accessed through a command line
interface:

• mergeAnnotationFiles.py

• splitAnnotationFiles.py

• extractAnnotations.py

• evaluateDetections.py

The tools have been tested with Python 2.7.3, but care was taken to make the code
Python 3 compatible, so provided all dependencies exist for Python 3, they should be
easily portable. Instead of a user guide, each tool has a comprehensive help-page which
explains the command line parameters. It can be accessed using the -h parameter.
Example: python extractAnnotations.py -h.

mergeAnnotationFiles.py can combine multiple annotation files into one. When using
Frame Annotator, one frameAnnotations.csv-file is created for each source video and put
in a subfolder. mergeAnnotationFiles.py crawls a directory structure at combines all the
annotation files into one, while changing the file paths to be relative to the new, large
annotation file. It works with both video annotation files and frame annotation files.
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It is used to create an easy-to-use index of all annotations in the same format as the
individual annotation files.

splitAnnotationFiles.py is used to randomly split annotation files into two. It is most
commonly used on the combined annotation file to create random sets of training and
test data. It allows for the user to specify the split percentage (for example 80% to
one file and 20% to the other) and is it also possible to create a split only for a specific
sign type. Creating an 80/20 split of all stop signs can for example be done with the
command python splitAnnotationFiles.py -f stopSign 80 allAnnotations.csv.

extractAnnotations.py is the most powerful of the annotation handling tools. It also
operates on annotation files, most commonly the combined one. It output is always a
set of images in a folder called annotations. It has several use cases, which can all be
used with a type-filter:

Copy : This mode simply copies all the full images to a different directory. It can be
used to easily extract all images containing a stop sign, for example.

Mark : Marks the annotations on the full frames and saves them to the output folder.
Good for manually evaluating annotations.

Black-out : Puts a black box over all annotations. This can be used to black out
signs that should not be present in test-images.

Crop : Crops the images at the annotation. A margin can be set. Used for extracting
training images from the dataset.

As mentioned, all functions can be used with a tag-filter, but they can also be used
with a category-filter. Speed limit signs, for example, span several tags: speedLimit15,
speedLimit25, etc., which could each be extracted with the filter switch: -f speedLimit15¶

. If all speed limit signs, regardless of speed, should be extracted, the category switch
can be used instead: -c speedLimit. Categories are defined in the file categories.txt

which must be present in the current working directory.

evaluateDetections.py is used to evaluate the performance of a detector. It compares
the annotation file (ground truth) with the output of any detector. The detections
are given in a csv file. It displays various detection statistics and can be set up to
display or save false detections for further manual evaluation. Currently, the script
tests if all four corners of the detection are within +/- 10 pixels of the ground truth
in both dimensions. In the future, the Pascal detection measure should be used in-
stead. It has been implemented, but too late to be used for the bulk of this project (it
was implemented in conjunction with the pedestrian detection project, see chapter 6).
Appendix F contains commands which demonstrate the use of these tools along with
come convenient Linux commands for handling the dataset.
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(a) (b)

(c) (d)

Figure 3.4: Randomly chosen examples of annotated signs from the LISA dataset.

3.3 Results

Using the tools described above, a database with traffic sign images and videos was
collected. It is available for download at http://cvrr.ucsd.edu/LISA/, but was too
large to be included on physical media with this report. The dataset consists of 7855
annotations on 6610 images. It contains 47 classes, listed in table 3.1 along with the
number of instances for each type. Speed limit signs has been broken into types after
their denominations. Those which are named Urdbl had an unreadable speed limit,
but could still be determined to be speed limit signs. Fig. 3.4 shows some annotated
sample images from the dataset. The dataset was assembled from footage from drives
around California, mostly in San Diego, with several different vehicles and cameras.
The resolution of the full captured frames vary from 640x480 to 1024x522 pixels and
the annotations vary from 6x6 to 167x168 pixels. Some images are in color and some
are grayscale. A comparison of key stats between this dataset and others is shown on
table 2.2 in chapter 2.

3.4 Discussion

From the survey, it was evident that there was a need for a set of US traffic signs and a
need for datasets which include full video tracks to allow for development of tracking-
based detection systems. As a part of this project such a dataset has been assembled.
There has been great emphasis on enabling complete traceability for all annotations



34 3.4. DISCUSSION

Table 3.1: The content of the LISA Traffic Sign Dataset broken down by sign type.

294 addedLane 34 slow
37 curveLeft 11 speedLimit15
50 curveRight 349 speedLimit25
35 dip 140 speedLimit30
23 doNotEnter 538 speedLimit35
9 doNotPass 73 speedLimit40
2 intersection 141 speedLimit45

331 keepRight 48 speedLimit50
210 laneEnds 2 speedLimit55
266 merge 74 speedLimit65
47 noLeftTurn 132 speedLimitUrdbl
26 noRightTurn 1821 stop

1085 pedestrianCrossing 168 stopAhead
11 rampSpeedAdvisory20 5 thruMergeLeft
5 rampSpeedAdvisory35 7 thruMergeRight
3 rampSpeedAdvisory40 19 thruTrafficMergeLeft
29 rampSpeedAdvisory45 60 truckSpeedLimit55
16 rampSpeedAdvisory50 32 turnLeft
3 rampSpeedAdvisoryUrdbl 92 turnRight
77 rightLaneMustTurn 236 yield
53 roundabout 57 yieldAhead
133 school 21 zoneAhead25
105 schoolSpeedLimit25 20 zoneAhead45
925 signalAhead

In total: 7855 sign annotations
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throughout the annotation tool chain. Two questions must be asked when evaluating
such a database: Does it contain enough signs? Does it cover the sign types necessary?

The size of the dataset is in league with the two similar European datasets, the
STS dataset and the KUL dataset. However, it spans many sign types, and not all
sign types are well represented. Depending on the learning algorithm used for a TSR
system, thousands of images might be needed. pedestrian crossing, stop, and signal
ahead are the only signs with numbers anywhere near that. If the larger sign categories
are evaluated, however, speed limit signs and warning signs are both well represented.
A larger dataset would not hurt, but in many situations, especially if training a general
purpose warning or speed limit sign detector, the size of the dataset is sufficient.

The dataset does not cover the full MUTCD, which is nearly impossible, but it does
cover a good selection of signs. Given that the dataset has been collected from hours
of real driving through urban environments, it should represent the real-world class
distribution well.

One potential problem with the dataset is that a major part of it is in grayscale.
This makes it useless for developing color-dependent detectors. While this sounds like a
major drawback, it also reflects reality: The grayscale images originate from the newest
vehicle in the laboratory, an Audi A8 outfitted with sensors directly from Audi. Due
to cost considerations when mounting cameras in mass produced cars, it is common
to use grayscale cameras only for other purposes, such as lane detection. Thus, the
dataset reflects reality, and if it forces researchers to focus on shape-based detectors,
that is only good, because those are the detectors that can be implemented in today’s
cars.
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4
Synthetic training data

This chapter covers the work presented in the paper Learning to Detect Traffic Signs:
Comparative Evaluation of the Roles of Real-world and Synthetic Datasets which was
submitted to the ICPR 2012 conference. At the time of writing, no decision has been
made as to whether it will be accepted for the conference. Like the previous chapters
based on papers, some of the text has been reused and further details has been added
in some areas. There was also a poster created for this work, which was presented at
the Jacobs Research Expo at UCSD, an annual conference where PhD and graduate
students can present their current work. A downsized version of the poster is enclosed
in appendix B.

4.1 Introduction

Many sign detection systems (see chapter 2) rely on large amounts of training data
to work. Over the past two years, a few traffic sign datasets has appeared, but there
are not yet datasets which cover anything outside of Vienna Convention signs or -
with the contribution from this project - US signs. Since signs differ from region to
region and in many cases from country to country, an interesting proposition is to use
synthetically generated training data instead of real images, saving a lot of time and
effort in gathering data. Synthetic training data has not yet been widely used in the
field of TSR, but given that traffic signs have an appearance well defined by law, it is
possible to randomly distort templates to simulate real-world variations.

Synthetic data has not been investigated thoroughly for traffic sign detection yet.
Ishida et al. (2006); Hoessler et al. (2007) discuss generation of synthetic data specif-
ically for classification. Overett et al. (2011) investigate some aspects of detecting
non-US signs with synthetic data. The detection task is somewhat harder the classifi-
cation due to the lack of knowledge about whether a sign is present, where it is, and
what size it has.

The purpose of this chapter is to train similar detectors with both synthetic and
real-world training data and compare their performance. This work required a dataset

37



38 4.2. METHODS

to be assembled, but if is showed promising results from the synthetic training data,
maybe in the future it would be unnecessary to create new databases for training. Test
datasets would still be necessary, but they do not need to be as large.

4.2 Methods

The work in this chapter can be divided into three parts: The generation of synthetic
data, creation of a machine learning based detector, and evaluating the detection per-
formance. Each is described in further detail below.

4.2.1 Generating synthetic training data

The idea is to generate synthetic training images from a template which is simply a
drawing of the sign that should form the base for the training. Examples can be seen
in fig. 4.6 later in this chapter.

The goal is to emulate how signs of the given type might look on pictures from
the real world. In order to do this, several transformations are made randomly to the
template:

Hue variations emulates faded signs and color casts due to lighting of the natural
scene.

Lighting variations emulates shadows and variations in exposure.

Rotations around the x-, y-, and z-axis with the origin in the center of the template.
To emulate signs captured from different perspectives.

Backgrounds taken from a real image are added to the template. This emulates the
various backgrounds a sign might have in real life.

Occlusions are added in the form of tree branches growing in front of some signs.

Gaussian blur is added to emulate an unfocused camera. It should be noted that
Gaussian blur does not really emulate the bokeh produced by an unfocused lens,
but emulating bokeh properly is hard, and it would likely not give any notable
detection benefit.

Gaussian noise to emulate sensor noise.

The transformations are applied in the order specified in the list above. To yield a
wide variety of training images, each transformation is applied with a random parameter
within some realistic boundaries. In some cases it is possible that only a subset of the
transformations are applied, just as that is possible in real life. Adding/subtracting
from the hue value must be implemented so it “wraps around” if the hue value goes out
of bounds, since it is an angle measurement.
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(a) Base image for backgrounds (b) Base image for occlusions

Figure 4.1: The two base images from where backgrounds and occlusions are cut.

First step is to convert the template to the HSV color space (Agoston, 2005). The
hue and lighting variations are done by adding or subtracting a value to the hue and
value parameters, respectively. After this, the image is converted back to the RGB
space for the remaining operations. Rotations are carried out by applying a perspective
transformation matrix, T to each pixel in the source image:


dx

dy

dz


 = T


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sx

sy

sz


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The angles Θx,y,z denote rotations around each axis.

In reality, the transformation is performed as a backwards mapping where T−1 is
applied to each destination pixel to get the corresponding source pixel. This is done
so the destination will not have any blank spots in pixels that does not correspond
directly to a pixel in the source.

Backgrounds are cut randomly from an image with a road scene containing no signs
(displayed in fig. 4.1a). When the initial template is loaded, a background mask
is created based on the transparent layer in the png-file, if such a layer is present.
Otherwise, it is created by flooding from the corners. This mask is rotated with the
same transformation matrix as the sign so it stays current, and in the background
step, all pixels inside the mask are substituted for those from the background patch.
Occlusions are added in a similar way, except they are cut from an image with the
background masked out.

Gaussian blur is added by convoluting a Gaussian kernel with the image with a ran-
dom (within the boundaries) radius. Gaussian noise is applied by adding/subtracting
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Figure 4.2: Screenshot of the synthetic training generator, showing 4 sample images
generated from a template. The distorted template image in the interface is
an error and does not affect the output.

a Gaussian random variable to/from each color channel in the image.

In order to perform these transformations, the tool Synthetic Training Generator
was created in C++ using OpenCV and Qt. It provides a GUI (see fig. 4.2) in which
the boundaries for each parameter can be adjusted. Sample results of any given set
of settings can be previewed before the actual training images are generated. On a
standard laptop, generating 10000 training images takes a few seconds. Samples of
generated images can be seen in fig. 4.7 later in this chapter.

The program and algorithm for generating synthetic training data works for both
color and grayscale images, but since the detector chosen for the evaluation (see next
section) works only on grayscale, all generated images was converted to that.

4.2.2 AdaBoost cascade on Haar-like features

To evaluate the training data, a machine learning based detection algorithm was nec-
essary. The survey shows several different types, with AdaBoost cascades on Haar-like
features (from now on Haar-cascades for short) and HOG+SVM detectors as the most
common ones. Several papers use Support Vector Machines (SVMs) on other sets of
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Figure 4.3: Examples of Haar-like features. The value of a single feature is calculated as
the difference in total intensity between the white area and the black area.

features as well. In the end, the Haar-cascade was chosen because of its inherent scale
invariance and because the OpenCV implementation was easy to use. It is important
to remember that this work was not about creating a system with a great detection per-
formance, but rather to compare the detection performance between the same system
trained with different training sets.

Haar-cascades were first proposed by Viola and Jones (2001) in a person detection
context and has since been applied in a wealth of situations. Due to their cascaded
nature and use of integral images, they are very fast and also have a decent detection
rate. This section describes how Haar-cascades work. In short, they slide a detection
window over an image and calculate a set of learned features. The detector is run as
a cascade, where each stage is harder than the previous one, and only windows which
pass all stages are considered a true detection. Each stage is a so-called strong classifier,
which is a linear combination of several weak classifiers, learned using the AdaBoost
algorithm. The division in stages means that each stage does not have to be excellent.
They must have a very high detection rate each, but a rather high false positive rate
it also allowed. The final detection performance is then the product of the detection
rates and false positive rates of all stages.

Haar-like features and integral images

The full name of Haar-like features is Haar-wavelet like features, due to their visual
resemblance to the mathematical concept Haar wavelets. Examples can be seen in
fig. 4.3. They are calculated on grayscale images. In essence they are very simple to
calculate: The cumulative intensity of the pixels in the black area(s) is subtracted from
the cumulative intensity of pixels in the white area. The features can have different
aspect ratios from the ones shown, and can also be freely scaled.

The Haar-features have two major advantages: They can be calculated very quickly
using integral images, and they can be easily scaled to detect objects at other scales
than in the training images.

Integral images are images where each pixel contain the sum of all previous pixels,
that is, all pixels above and to the left of the current. So a pixel at position (0, 0) in an
integral image only holds the value of pixel (0, 0) in the original image, but the integral
pixel at (1, 1) contains the cumulative value of pixels (0, 0), (1, 0), (0, 1), and (1, 1) in
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the original. Mathematically, that can be expressed as:

ii(x, y) =

x′≤x∑

x′=0

y′≤y∑

y′=0

i(x′, y′) (4.1)

where ii(x, y) are pixels in the integral image and i(x, y) are pixels in the original
image. Remember that Haar-like features are built on the accumulated intensities of
certain areas, and the usefulness of integral images becomes apparent. The sum of an
area defined by (0, 0) and (x, y) is simply ii(x, y). But the sum of an arbitrary area is
can also be computed with only four queries to the integral image. Consider fig. 4.4.
The goal is to find the cumulative value of the marked area, d in the original image.
a, b, c, and d are areas in the original image, while i, j, k, and k are points in the
corresponding integral image. The value at point i equals the area of a and similarly
j = a + b, k = a + c, and l = a + b + c + d. d can be expressed in terms of the four
integral points as d = l − k − j + i because:

l − k − j + i = (a+ b+ c+ d)− (a+ c)− (a+ b) + a

= a+ b+ c+ d− a− c− a− b+ a (4.2)

= d

When one rectangle can be computed with 4 queries, the difference between two can be
done with 8. But since the simplest Haar-like features share two corners between the
rectangles, they can be computed with only 6 references. The middle-stripe features can
be calculated in 8 references. So a large number of Haar-like features can be computed
extremely fast by creating the integral image once and referring to that for each feature
calculation.

Not only can they be computed quickly, they can also be easily resized when search-
ing for objects larger than the initial feature size. So instead of having to run the
expensive operation of resizing the target image in a resolution pyramid, the features
are resized and evaluated once more on the same integral image, a much quicker op-
eration. This insight means that even for a scale invariant detector, only one integral
image must be calculated, and no resizing is necessary.

Learning stages with AdaBoost

The Haar-like features are very simple and only become powerful when combined. A
single search-window of 24x24 pixels contains 45,396 different Haar-like features if all
original features suggested by Viola and Jones (2001) are calculated in all sizes, so it
is not feasible to calculate them all. Instead, the AdaBoost algorithm is used to select
the best features (called weak learners) and combine them into a more powerful strong
learner, which is a weighted sum of weak learners. This is the training phase of the
algorithm. For training, it is fed a set of positive images, known to contain signs and
a negative set known not to contain any signs.
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Figure 4.4: Using an integral image to calculate the sum under an arbitrary rectangle.

AdaBoost work by focusing on the training samples that are hard to classify. First
step is to take a single feature and create a weak classifier, hj(x):

hj(x) =

{
1 if pjfj(x) < pjΘj

0 otherwise
(4.3)

where pj is a parity, which can switch the direction of the inequality, fj(x) is the
output of the feature fj given the window x, and Θj is a threshold. In words: It
defines a detection as true if the feature is above a certain threshold. The threshold is
set by running the feature on all training images and selecting the threshold that best
separates the training set.

This procedure is run for all possible features on all training images. The final
strong classifier is a combination of the features with the best classification performance,
weighted after performance. Each training image also has a weight attached and during
the training, the training images which are hard to classify has their weight increased.
Weak classifiers which are good at classifying hard training images are given a higher
weight and are more likely to be included in the final strong classifier. Not all features
are included in the strong classifier, only enough to achieve the desired stage detection
performance, and as long as a weak classifier which have a detection rate better than
chance (50%) can be found, it can be added to the strong classifier and improve its
performance.

The algorithm described here it the one used by Viola and Jones (2001) and is a
slightly modified AdaBoost algorithm. More information on AdaBoost and boosting in
general can be found in Duda et al. (2001).

The full detection structure

The full detection structure is a cascade of stages trained with AdaBoost. A diagram of
that can be seen on fig. 4.5. Each stage is a strong classifier, and later stages are only
trained with the training images that have passed all previous stages, so each stage is
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Figure 4.5: Flow of a detection window through a cascaded classifier.

progressively harder. In detection, only windows which pass all stages are considered
true. If a window is rejected already at stage 1, only the features involved in that
classifier has been calculated. Thus, it is very rarely necessary to compute all features
in all stages, a fact that makes the algorithm faster.

As mentioned earlier, each strong classifier only trains until the stage reaches its
performance requirements to ensure that they are not consuming any more computation
time than necessary. The stage performance requirements can be calculated from the
desired total cascade performance requirements if the number of stages is known. For
a total detection rate of 95%, each stage in a 20 stage detector must have a detection
rate of 20

√
0.95 = 0.997. The false positive rates are compounded in a similar way, so

if a maximum false positive rate of 6 · 10−6 is required, each stage must have a false
positive rate of no more than 20

√
6 · 10−6 = 0.548. So with enough stages, even very

high false positive rates per stage can be allowed.

Training and using Haar-cascades in practice

The Haar-cascades has not been implemented from the ground up in this project.
Instead the built-in implementation in OpenCV has been used, along with the training
program provided with OpenCV. Appendix C contains a guide on how to perform the
training using the tools that come with OpenCV.

4.2.3 Evaluating performance

4.3 Results

Haar-cascades were trained for four different sign types: Stop sign, pedestrian crossing,
speed limit 35, and signal ahead (fig. 4.6). These were chosen because the cover various
shapes and color, and because they are well represented in the LISA dataset. Initially,
the detectors were trained with a subset of the LISA dataset, and with a corresponding
number of synthetic training images. Generally, Haar-cascades perform better if the
training set is larger, and since generating larger synthetic data sets require no more
effort, these were also added to the test. Finally, for the classes where more real-
world training images could be collected, the real-world detectors were also trained
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(a) Pedes-
trian
crossing

(b) Signal
ahead

(c) Stop (d) Speed
limit

Figure 4.6: The four signs that were used to train the detector.

with larger data sets. The training images were 20x20 pixels, except for the speed limit
signs, which were 18x24 pixels. Subsets of the training images used can be seen in fig.
4.7. The cascades were generally trained with an aim of 20 stages, but in some cases
the training terminated early because the required performance on the training set was
achieved early.

The detection results can be seen in table 4.1. The tests were carried out on real-
world images which were separate from the training set. They were randomly selected
from the LISA dataset with the splitAnnotationFiles.py tool. The detection perfor-
mance was evaluated with the evaluateDetections.py tool. See section 3.2.4 for more
information on both.

To evaluate how well the synthetic images cover the variance present in the real-
world data, two measures were plotted: The average intensity of pixels in each training
image and the blur measure of different training sets (fig. 4.8). Each cross represents
a single training image. For fig. 4.8a the mean of all pixels the the training images
were calculated and plotted. For fig. 4.8b the blur measure, as described by Marziliano
et al. (2002), was calculated for each image. The blur measure is the mean of the width
of vertical edges in an image:

B =
1

n

n∑

i=0

ei (4.4)

where B is the blur-value, n is the number of vertical edges in an image and ei is the
edge width of a specific edge pixel, given as the distance between the pixels with the
local maximum and minimum intensity around the edge pixel.

4.4 Discussion

The synthetic data performs consistently worse than the real data. In all cases the
real-world detectors have a detection rate above 70%, whereas the synthetic detectors
never go above 30%, except in the case of the synthetic stop sign detector which was
intentionally only employing 10 stages. That one reaches 58.3% but at a cost of a
prohibitively high false positive rate. Providing more training data in the synthetic
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(a) Synthetic
training
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training
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(f) Real-world
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Figure 4.7: Samples from the training image sets.

(a)

(b)

Figure 4.8: Distribution of two parameters in the training sets.
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Table 4.1: Results of the comparative evaluations of detectors

Training type Training images
(positive/nega-
tive)

Stages Signs to find TP FP FN

Stop
Real-world 1218/2500 20 103 76 (73.8%) 11 27
Real-world 1686/3000 20 103 75 (72.8%) 8 28
Synthetic 1218/2500 17 103 18 (17.5%) 2 85
Synthetic 5000/10000 19 103 26 (25.2%) 5 77
Synthetic 1218/2500 10 103 60 (58.3%) 1500 43

Pedestrian crossing
Real-world 364/800 20 40 29 (72.5%) 10 11
Real-world 1044/2000 20 40 30 (75%) 2 10
Synthetic 364/800 14 40 11 (27.5%) 28 29

Speed limit 35
Real-world 253/500 20 21 15 (71.4%) 1 6
Synthetic 253/500 7 21 5 (23.8%) 32 16
Synthetic 2000/4000 7 21 6 (28.6%) 6 15

Signal ahead
Real-world 597/1500 20 56 42 (75%) 10 14
Real-world 859/2000 20 56 38 (67.9%) 4 18
Synthetic 597/1500 13 56 14 (25%) 117 49
Synthetic 2000/4000 13 56 16 (28.6%) 53 48
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case does help, but even a large increase (more than a doubling) of the training data
does not make the synthetic data perform comparably to the real-word data, as seen
in the case of the stop sign detector.

The reason for this discrepancy must be that the synthetic training data does not
encapsulate the variance found in the real world. This is evaluated in fig. 4.8. While
the intensity variance is not always fully covered, the sets realWorld/stop and synthet-
ic/stopHuge are very similar, and even in that case the difference in detection rate is
enormous. The blur is generally captures well by the synthetic data. This analysis
only covers two of the ten parameters used to generate the synthetic data - the others
are hard to measure and plot - so it is possible that the lack of variance stems from
one of the remaining 8 parameters, but also that it is caused by a lack of parameters.
Unfortunately there is no straight forward way of determining which parameters are
necessary to properly emulate the real world in this context.

The experiments performed here shows that it is hard - if not impossible - to create
synthetic data of a quality that is useful to train a detector. A visual inspection seems
to show that the real world is emulated well, but detector test shows otherwise.



5
Model based sign detection

This chapter is not based on a paper, but instead presents the work done upon arrival
at UCSD. The system is intended to be used as a building block in the lab’s continuous
work with intelligent cars and in future full sign detection systems. It is not meant
to act as a stand-alone sign detection system. It investigates a purely model based
detection approach, as opposed to the machine learning based approaches presented
earlier in this report.

5.1 Introduction

So far this report has mainly been concerned with machine learning based detection
approaches using training sets. But as mentioned in chapter 2, model based approaches
are also common. This chapter covers the most common model based approach, the
Fast Radial Symmetry (FRS) detector which was first presented by Loy and Zelinsky
(2003). FRS is the most common shape-based detector in traffic sign detection and
is used stand-alone or in combination with color thresholding. For this project it has
been implemented as a stand-alone detector and is essentially a shape detector. In
the present version there is no mechanism to remove detections of shapes which fit the
model of a sign shape, but which are not signs. It was chosen for several reasons:

• Earlier experiments had shown that color based detection methods were quite
unreliable with changing lighting conditions, so it was desired to test a shape
based detector.

• There was no guarantee that input data would be color video, which also counted
towards a purely shape-based approach.

• US speed limit signs are monochrome with a white background, making them
hard to detect with color based approaches (Gomez-Moreno et al. (2010) have
shown that achromatic decomposition can be used, albeit with mixed results).

• FRS is the most common sign detection algorithm of all.

49
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(a) Intersect-
ing vote
lines

(b) Possible cir-
cles for a
gradient

Figure 5.1: The basic principle behind the radial symmetry detector. Image inspired by
Barnes et al. (2008).

• It is often part of larger systems, so it could likely be used as a building block if
a larger system was to be developed.

Furthermore, an extended version, EFRS, was developed and implemented which
is able to find rectangular shapes. This was necessary in order to be able to find the
rectangular US speed limit signs. Regular FRS is only able to find circles and regular
polygons.

This chapter presents the FRS and EFRS algorithms, the implementation that was
created, and a test of its detection abilities.

5.2 Methods

This section covers how the EFRS algorithm works and describes the implementation
made for this project.

5.2.1 Radial Symmetry Voting

FRS is similar to the Hough transform, but it works directly on the edges of an image
instead of in the Hough space. This section will begin by explaining the simplest
incarnation of FRS which is able to find circles. Then it is expanded to regular polygons
and finally to rectangles.

FRS is a voting based detector. It evaluates pixels one at a times and casts a vote
for the center of the shape the current pixel would be a part of. Positions which get
many votes are likely to be a center of such a shape, whereas positions with few votes
will have gotten them from pixels which are not part of a shape, so they can safely be
ignored.

The principle for the simplest case of FRS can be seen on fig. 5.1. The gradients of
the edge of a circle are all intersecting in one place: The circle center. This can be seen
in fig. 5.1a. A single gradient can be associated with any number of circles - or none at
all - as shown in fig. 5.1b. The horizontal line depicts the gradient of the edge shown
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Figure 5.2: Four example gradients when searching for a circle. These gradients result
in 8 votes, 4 in the same place, which is the center of the circle.

by the vertical line. The edge could be part of any of the circles show. So to find a
circle of a radius r, a vote is cast in the distance r from all edge pixels in the direction
of the gradient. A vote is cast to both sides of the edge, because it cannot be known
a priori if the circle is dark on a light background or light on a dark background, so
the direction of the gradient with respect to the circle is unknown. The voting can be
expressed mathematically like this:

pv = p± round(rg(p)) (5.1)

where pv is the point to cast a vote on, p is the edge point, r is the radius of the circle,
and g(p) is the unit gradient of edge point p.

An example of the voting is shown in fig. 5.2. For clarity only 4 example votes are
shown, but in reality there would be votes from each pixel along the edge of the circle.
The gradients (gray lines) exist along the circle edge perpendicular to the edge. Each
of the blue points outside the circle receive one vote as they are on the gradient in the
distance r from the source pixel. But the center of the circle receives one vote from
each gradient, for a total of four votes in this example. To find the center, it is enough
to just find the point with the most votes.

In an actual application, the gradients must first be found, and that can be done
using the Canny edge detector (Canny, 1986) or by convoluting the image with a Sobel
kernel the x and y direction and combining them. That is essentially Canny’s algorithm,
but without non-maximum suppression. Once the gradients are found, all gradients
with a magnitude below some threshold are discarded. This reduces the computational
load of the algorithm and is allowed because shapes are expected to differ significantly
from their background. Then it is simply assumed the each non-zero gradient is part
of a circle and a vote is cast accordingly, as described above. The votes are kept track
of on a separate vote-image of the same dimensions as the input image. Because votes
are cast for a specific circle size, the algorithm must be run in several passes if it should
look for circles of different sizes. Then either all points with a sufficient number of
votes, or a fixed number of points with the most votes are selected a circle centers.

When the method is extended to regular polygons, votes are still cast at the distance
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Figure 5.3: Votes cast when searching for regular polygons. + indicate a positive vote
and − indicate a negative vote. p is the edge point, r is apothem of the
shape, and g(p) is the unit gradient of edge point p

.

r from the edge point. Now r is the apothem, the perpendicular distance from the edge
to the center. The center of the shape is no longer necessarily at the gradient, so a line
of votes is cast to make sure the center is hit by a vote. To compensate for the extra
votes, negative votes are introduced at the ends of the vote line. An example is in fig.
5.3. As p is moved, the voting line is moved along with it. Even in the extreme cases at
the ends of an edge, as shown here, a vote will hit the center of the shape, highlighted
in green. The negative votes make sure that votes outside the center are neutralised as
the vote line is moved along. w defines how long the vote lines are, and is calculated
as:

w = round(r tan
(π
n

)
) (5.2)

where n is the number of sides of the targeted polygon. The voting line is defined as:

L(p,m) = pv(p) + round(rḡ(p)) (5.3)

where ḡ(p) is a unit vector orthogonal to g(p) and m is a set of distances from the
center of the voting line, pv(p). Positive votes are given when:

L(p,m) |m ∈ [−w,w] (5.4)

and negative votes when:

L(p,m) |m ∈ [−2w,w − 1] ∪ [w + 1, 2w] (5.5)

For sign detection, the assumption is made that the signs are in an upright position,
and as such, the possible edge angles can be narrowed down. A square has two possible
angles: 0◦ and 90◦, so any gradients outside those angles (plus/minus some tolerance)
are not processed. This speeds up the algorithm. Fig. 5.3 shows examples for two
shapes, a square and an octagon, but the method can be used with any regular polygon.
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Figure 5.4: Screenshot of the model based detector

Th final extension is that to rectangles. It is the simple act of having different values
of r and thus also w depending on the gradient angle. This ensures that the center of
the shape is hit by a positive vote also on the sides that are longer.

5.2.2 Implementation

As almost all programs in this project, the implementation was made in C++ with
OpenCV, Qt, and OpenGL. A screenshot is in fig. 5.4. It is possible to set a variety
of parameters with regards to the shape type and size and it can be set up to find a
certain number of shapes in each image (say, the 5 best rectangles), to simply find all
shapes with a certain number of sides, or a combination of the two. The program has
a very simple tracking algorithm built in, which requires detected shapes to be present
in two consecutive frames before it is accepted as a true detection. The tracking simply
checks if a similar shape was present at roughly the same coordinates (+/- 5 pixels) in
the previous frame.

5.3 Results

The program has been tested on 3 different sign shapes: Octagonal stop signs, diamond
shaped signal ahead signs, and rectangular speed limit signs. Because of the tracking,
the program cannot be tested on single frames. Instead, 5 tracks for each sign type
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Table 5.1: Test results for the model based EFRS detector.

True
posi-
tives

False
posi-
tives

Misses Frames Detection
rate

FP per
frame

Per sign de-
tection rate

Speed limit signs 86 717 319 354 21.23% 2.02 100%

Signal ahead signs 198 315 560 534 26.12% 0.59 60%

Stop signs 67 795 426 537 13.59% 1.41 100%

were processed and the detections counted, both as per-frame and per-sign statistics.
Results can be seen in table 5.1.

No attempt was made to optimize the detection parameters, they were simply chosen
from what seems reasonable, an a few of the misses are caused by the sign being too
large. It is likely that slightly better results could be obtained if the setting were
tweaked carefully. Also, a cap was set, so the detector only presented the 5 best shapes
in each frame (if more than 5 shapes passed the two-frame tracking requirement). This
makes it possible, though unlikely, that the signs were found but as a less strong shape
than others in the frame.

5.4 Discussion

The detector has a large number of false positives and cannot work on its own, but it
was not intended for that. It is important to remember that this is a general shape
detector so some of the false detections may actually be true positives in the sense that
they are actually such a shape, just not a sign. A qualitative evaluation of performance,
however, shows that is rarely the case. More often the detector is fooled by branches
and tree trunks which form shapes against the sky.

The per-frame detection rates are not impressive, but in most cases the sign is at
least found at some point in the track. Judging from the per-frame detection rates, the
stop sign is the hardest one to find, something that is not much of a surprise, since it is
the most complex shape. However, many of the stop sign tracks are of very bad quality,
which might explain the poor performance. The best performance is achieved for signal
ahead signs, possibly because the combination of diagonal lines is not something found
elsewhere in the environment.

A qualitative evaluation of the detection results show that the detector performs
much better on sharp, non-shaken pictures, which makes sense as the detector works
by looking at sharp gradients formed by strong contrast. As with any detection method,
the better the source material is, the better is works.



6
Pedestrian detection

This chapter covers the work presented in A Two-stage Part-Based Pedestrian Detection
System Using Monocular Vision, which was submitted to IEEE Intelligent Transporta-
tion Systems Conference (ITSC), 2012. The work was carried out in close collaboration
with Antonio Prioletti of University of Parma, who was responsible for carrying out all
implementation and testing.

6.1 Introduction

Pedestrian detection is currently a very large research field. It can be used in surveil-
lance, Advanced Driver Assistance Systems (ADAS), and many other places. The
ADAS scenario offers plenty of challenges (as summarized in Geronimo et al. (2010)):
High variability in appearance among pedestrians, cluttered backgrounds, highly dy-
namic scenes with both pedestrian and camera motion, and strict requirements in both
speed and reliability. Input from a reliable pedestrian detection system can be used
to warn the driver about people in front of the car, prepare or even activate a braking
maneuver to prevent a collision, or deploy other safety systems such a airbags.

ADAS is a a challenging domain to work within. Braking systems take a short
while to apply, and reaction times must be fast for driving, where fractions of a second
can be the deciding factor between a collision and a near-miss. At the same time,
the system must be robust, so the braking system is not deployed mistakenly (due to a
false positive detection), which could itself lead to accidents, or worse, not employ at all
(due to a missed detection). Further reasoning than just detection is necessary in such
a framework, with pedestrian intent estimation being a good example, as presented
by Gandhi and Trivedi (2008) or as another example, automatic breaking as done by
Broggi et al. (2009).

The algorithm introduced here is a part-based 2-stage detection method, an ex-
tension what Geismann and Schneider (2008) suggested. It combines the speed of a
Haar-based boosted cascade with the low number of false positives from the HOG-SVM
detector, bringing it closer to the strict ADAS requirements than any of the two algo-
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rithm on their own. Here it is extended to a part-based solution, which lowers the false
positive rate even further.

6.2 Methods

As mentioned, pedestrian detection is a field with much attention from the research
community. Even when narrowed to applications in connection with cars and ADAS, a
large body of work exist. A classic method of pedestrian detection is a boosted cascade
on Haar-like features, first presented by Viola and Jones Viola and Jones (2001). It is
very fast, but lacks robustness due to the high appearance variability among pedestrians
in the real world. Instead, many people turn to the HOG-SVM solution presented
by Dalal and Triggs Dalal and Triggs (2005). It is much more robust and generally
detect pedestrians in harder situations, while keeping a low number of false positives.
Its problem lies in processing speed. As mentioned, the ADAS application requires
fast processing, something that is not immediately obtainable with the HOG-SVM
detector. The HOG-SVM method was explored for use with infrared images in Suard
et al. (2006). For further exploration of pedestrian detectors, we refer the reader to the
general survey by Geronimo et al. (2010) or, for vision-only based systems, Gandhi and
Trivedi (2006, 2007). The system presented in this chapter uses monocular vision as
base for the detection. This means that the hardware requirements for the car are low
and realistically possible - many cars are already outfitted with a front facing camera
for other purposes, such as lane detection. For a survey of monocular vision based
methods, see Enzweiler and Gavrila (2009).

This method combines the speed of the Haar detector with the robustness of a
part-based HOG-SVM detector. The base for the method used in this paper was
first presented by Geismann and Schneider (2008), but is also covered by Yuan et al.
(2011); Yongzhi et al. (2010) in various versions. Apart from using a combination of a
Haar-cascade and HOG-SVM, Geismann and Schneider also evaluated using a sparse
HOG descriptor to speed up the verification. Part-based pedestrian detection has been
presented in various versions before, such as Mao et al. (2007); Wu and Nevatia (2005,
2007).

The properties of the Haar cascade and the HOG-SVM detector makes them prime
candidates for combination: The Haar cascade does the initial pass, finding Regions Of
Interest (ROIs) that are passed on to the HOG-SVM detector which verifies the initial
findings by the Haar cascade. The first stage is called the detection stage and the
second the verification stage. That is the basics of the approach outlined in Geismann
and Schneider (2008).

The goal is to lower the number of false positives without too much penalty in the
detection rate. In order to do this, the verification stage is altered to not only verify
based on a full body classification, but also a lower body and upper body classifier. We
combine these results to figure out whether the ROI contains a person.
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Detection stage
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for detection
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Figure 6.1: The flow of the algorithm described in this paper.

The combination of verification results is done in two ways, which are compared: A
simple majority vote, requiring at least two of three classifiers to verify the detection,
and a more advanced way, which introduces a third stage to the algorithm, classifying
each window based on the estimated function value from an SVM regression performed
on each part.

An overview of the flow through the algorithm can be seen in fig. 6.1.

6.2.1 Detection stage

The detection stage is an AdaBoost cascade on Haar-features (Viola and Jones, 2001).
It has already been described in detail in chapter 4, so this chapter does not go into
details with how the methods works.

Throughout the chapter, the INRIA Pedestrian Dataset Dalal and Triggs (2005)
has been used. Thus, the detection cascade was trained with the training set given
therein: 2416 positive images and 12180 negative images. The training images were
cropped closely around the annotated persons, because Haar-cascades do not benefit
from having as much background included as HOG-based classifier. After the crop the
training images were resized to 12x28 pixels.

The detection stage is set up so that it finds the maximum possible number of
pedestrians, which also means that it will return plenty of false positives. A larger
number of false positives will slow down the computation, since the verification stage
must process more, but it is a worthy trade-off given that the true positive rate of this
stage forms the upper bound of detections for the entire system.

The detection stage returns bounding boxes of all the potential pedestrians in the
picture, which are sent on to the verification stage. Part based detection in the detection
stage is not used, since the data from Alonso et al. (2007) shows that the Haar cascade
generally performs bad in part-based detection schemes. An example of the output of
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Figure 6.2: Example of the output from the detection stage. It is clear that it contains
several false positives, but that is desired, since it ensures that also the true
positives are included.

the detection stage can be seen on fig. 6.2.

6.2.2 Histogram of Oriented Gradients

Histograms of Oriented Gradients (HOG) is a descriptor for an image patch. The
classic way of using them for person detection was presented by Dalal and Triggs
(2005) and involves computing the HOG feature in a sliding window across the target
image, sending each descriptor into an SVM, which will determine if the current window
contains a detection or not. That is also the method used in this work. A few variants
of the HOG descriptor exist, but the most common in the R-HOG (R for rectangular),
which is the one described here. The elements of HOG is illustrated in fig. 6.3. At the
highest level is the source image over which the sliding window is passed. In the original
implementation the detection window i 128x64 [px]. The descriptor is divided into a
number of overlapping blocks. The overlap is defined by the block stride parameter,
which defines the spacing with which the blocks are calculated. Experiments indicate
that a large overlap is beneficial for detection performance. The part-based verification
stage used in this work differs from the full-body verification stage of Geismann and
Schneider’s Geismann and Schneider (2008). We use a part-based detection scheme.
The verification stage consists of two sub-stages: The individual part verification and
the combined verification. Three SVM regressions based on dense HOG descriptors
are calculated and applied to the ROIs given by the detection stage. One is for full
body classification, one is for lower body classification, and one is for upper body
classifications.

Our algorithm uses classic dense HOG descriptors (as opposed to the sparse de-
scriptors used in Geismann and Schneider (2008)). They are calculated using integral
images in an effort to speed up the process, as described in Porikli (2005). Since HOG
works best if some amount of background is introduced to the detection window, the
ROIs are resized appropriately from the tight boxes that are returned by the detection
stage. Then the content of the ROIs is scaled so it matches the size the SVMs were
trained with. At this point the HOG is calculated and passed on to the SVMs.
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Figure 6.3: Illustration of the elements of a HOG-computation. One HOG descriptor is
calculated for each position of the sliding window.

As in the detection stage, each SVM is trained with the INRIA training set. The full
body SVM was trained with the full training images, whereas the lower- and upper-body
SVMs were trained with the lower and upper half of the training images, respectively.
In our system, there is no overlap between the lower and upper body. The parts of
training images used for each type are shown in fig. 6.5. So in total, three SVMs were
used.

According to Dalal and Triggs (2005), the best performance for human detection is
achieved with a grid of 3x3 cells with a size of 6x6 px, however, a cell size of 8x8 px
matches better with a window width of 64 px and a block stride of 4 px and does not
decrease performance significantly. This makes a block 24x24 px. There is no require-
ment the the block stride is aligned with cell size, since the cells are calculated relatively
to the block’s position, but the condition [window size]%[block width in pixels] ==

0&&[window size]%[block height in pixels] == 0 must be true to be able to calculate
the descriptor for the entire window.

For each cell, a histogram of oriented gradients is calculated. The gradients are
calculated using 1D masks [-1, 0, 1] in both the horizontal and vertical direction. Then
the gradient angles are divided into 9 bins spanning 0-180◦ evenly. Because the “sign” of
the gradient is unimportant, 0-180◦ span all possible gradient directions. Each gradient
votes in its bin with an amount corresponding to its magnitude, so strong gradient have
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more weight, and furthermore, each gradient’s vote is bilinearly interpolated between
the two closest bins. So given blocks with a size of 3x3 cells, each block contains 9
histograms of 9 bins. These histograms are concatenated, so the descriptor of a single
block is a vector of 81 values. Finally the values are normalized. The final HOG
descriptor is a concatenation of all the block vectors in the window.

6.2.3 Support Vector Machines

In this pedestrian detection a Support Vector Machine (SVM) is used in the verification
stage. SVMs classify samples based on a maximum margin decision boundary. The
principle is shown in fig. 6.4. For simplicity, this is the linearly separable 2d case, but
most often SVMs are used one datasets with a much greater dimensionality - the HOG
features, for example, are thousands of dimensions, depending on settings.

The basic idea is simple. In this example two classes must be separated by a line, a
task that can be accomplished with an infinite number of lines. In the figure, two possi-
ble lines are shown: The “correct” decision boundary and one example of a non-optimal
boundary. The best boundary is chosen as the one which maximizes the margins be-
tween the training data and the boundary. Classification of new samples is then done
by determining which side of the decision boundary the new sample is on. In the case of
a dataset with more than two dimensions, the decision boundary is a p−1 dimensional
hyperplane for a data dimensionality of p.

The true value of SVMs, however, lies is their ability to be used in data that is not
directly linearly separable. Even though the decision boundary is a linear hyper-plane,
SVMs transform the input data up to a higher dimensional space where the data is
separable. This is done with a so-called SVM kernel and it can be chosen from among
several options depending on the actual problem. Normally it will transform the data
non-linearly to achieve linear separation.

6.2.4 Verification stage

The part-based verification stage used in this work differs from the full-body verifi-
cation stage of Geismann and Schneider’s Geismann and Schneider (2008). We use a
part-based detection scheme. The verification stage consists of two sub-stages: The in-
dividual part verification and the combined verification. Three SVM regressions based
on dense HOG descriptors are calculated and applied to the ROIs given by the detec-
tion stage. One is for full body classification, one is for lower body classification, and
one is for upper body classifications.

Our algorithm uses classic dense HOG descriptors (as opposed to the sparse de-
scriptors used in Geismann and Schneider (2008)). They are calculated using integral
images in an effort to speed up the process, as described in Porikli (2005). Since HOG
works best if some amount of background is introduced to the detection window, the
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Figure 6.4: A sketch of the output from a Support Vector Machine in the 2 dimensional
case. Two classes are linearly separated and the optimal separation plane
(or, in this case, line) that is found, is the one with the longest possible
margins to the classes. The samples which are closest to the decision plane
are called support vectors.

Figure 6.5: The four types of training images used in this system: The three parts for
the verification stage, and a closer crop for the detection stage.

ROIs are resized appropriately from the tight boxes that are returned by the detection
stage. Then the content of the ROIs is scaled so it matches the size the SVMs were
trained with. At this point the HOG is calculated and passed on to the SVMs.

Each SVM is trained with the INRIA training set. The full body SVM was trained
with the full training images, whereas the lower- and upper-body SVMs were trained
with the lower and upper half of the training images, respectively. In our system, there
is no overlap between the lower and upper body. The parts of training images used for
each type are shown in fig. 6.5. So in total, three SVMs were used.

To do the combined verification, two different methods were tested: Majority voting
and regression output classification.

For majority voting, a regular SVM for classification was trained. It returns which
class (pedestrian vs. non-pedestrian) the current detection window belongs to. If at
least two out of three classifiers label the window as a pedestrian, it is described as a
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Table 6.1: Overview of the detection rates achieved by Geismann and Schneider Geis-
mann and Schneider (2008) with 0.2 false positive per frame

Video 1 2 3 4 5 Mean

Dense descriptor 52% 70% 91% 61% 55% 65.8%

Sparse descriptor 45% 53% 85% 69% 58% 62%

detection. If a detection is labeled 1 and no detection is labeled -1, the formula used
for the majority voting is:

lout =

{
1 if

∑i<3
i=0 li >= 1

−1 if
∑i<3

i=0 li < 1
(6.1)

where lout is the final decision and li is the output from one of the three part-based
detectors.

For regression output classification, the three part SVMs were instead trained for
regression. The training was performed so the resulting function would ideally return 1
in the case of a detection and -1 when nothing was found. When an unknown window is
passed through the output function, it will return a value close to 1 if it is a pedestrian,
and a value close to -1 otherwise. The output of these three regressions create their
own 3 dimensional feature space. Another SVM has been trained to classify in this
space. The output from the three regressions is passed into this second SVM and the
output from that classifier is the final label.

6.3 Results and discussion

In order to set various parameters so that the best possible performance is achieved,
several experiments have been performed. While the training part of the INRIA dataset
was used to train both the detection stage and the verification stage, the test part has
been used as base for these experiments. It contains 742 images in total, of which 289
contain one or more persons. In total the test set contains 589 persons that should be
detected by a perfect system.

The baseline for the comparison is the performance of the system in a configura-
tion similar to the one by Geismann and Schneider: Two stages, but no part-based
verification. The principal results from their paper can be seen in table 6.1. Each of
the five results in the table are from a test video they obtained from a driving car.
Unfortunately we do not have access to the test videos they used, so our results cannot
be compared directly with those. Instead we compare the performance of our own
implementation of their algorithm to out part-based algorithm.

One of the most important parameters in the system is the number of stages in
the Haar-cascade, in this paper designated k. It is interesting to see what impact the
changes in k has on the complete system. In fig. 6.6, an ROC curve is shown for the full
system with varying depths in the detection stage. The importance of this parameter
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Figure 6.6: Receiver-Operating-Characteristic for the full system with varying k, cascade
depths in the detection stage.

Table 6.2: Changes in processing speed for different values of k

Number of images 100

Mean image width 711.88 pixel

Mean image height 818.72 pixel

k Mean time per frame

12 2.5 s

13 1.84 s

14 1.57 s

15 1.46 s

16 1.39 s

17 1.22 s

is evident. As k is lowered, the number of detections rise, but at a large cost in false
positives. For the final system, we chose to go with k = 15, since it seems to give an
acceptable trade-off between true positives and false positives.

The choice of k has an impact on the speed of the system, since more detection
windows means slower performance. The full (but non-optimized) system has been run
with several numbers of stages and timed, to get a sense for the speed effects it might
have. The results are seen in table 6.2

Another important parameter is the padding, p: The amount with which the ROIs
returned by the detection stage is enlarged with. The HOG-SVM detector works better
if more background is included than what the Haar-cascade uses, so there is no question
that the ROIs must be enlarged. Experiments showed that a padding of 3 performed
best. Because HOG-SVM is not scale invariant, so when the padding rises, the pedes-
trian in the ROI becomes a lot smaller, relative to the image, than the pedestrians
in the training set. That will alter the output of the detector and some testing was
required to make it work properly. The padding value itself is used to calculate the
padding in pixels to apply to the ROI. The width in pixels is calculated as:

ppixels =
wROI

wt
· p (6.2)

where p is the padding value, wROI is the width of the found ROI, wt is the width
of the training images, and ppixels is the padding measured in pixels. The padding is
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Figure 6.7: Receiver-Operating-Characteristic for the final system. The majority vot-
ing approach is not performing better than the full-body approach, but the
regression classification approach is consistently better.

(a) (b) (c)

Figure 6.8: Example outputs of the detector. Input images are images captured using
one of LISA’s experimental cars. Red boxes indicate a detection, blue are
the candidates from the detection stage, and green are the candidates with
added padding. In (a) the pedestrian is detected, while a couple of false
candidates from the detector are ignored. In (b) the pedestrians are not
detected, since the detection stage does not find accurate enough candidate
boxes. In (c) the pedestrian is detected and no false windows are found in
the detection stage.

applied on all four sides of the image.

After introducing part-based verification to the system, experiments were made to
determine whether the simple majority voting or the confidence classification worked
the best. These tests were done with the best settings, as determined earlier in this
section. The results are shown in fig. 6.7. In absolute numbers, the detection rate
is not overwhelming. The important part is the difference between the old two-stage
approach with only full-body verification and the new approach. While the voting based
approach is not any better then the old full-body verification, the part-based version
with regression output classification is better all across the range of false positives per
frame.

Examples of detections can be seen in fig. 6.8.



7
Conclusion

This report has detailed the work I have done during my stay in the CVRR lab at
UC San Diego. It has been a very interesting stay, especially to work in a research
environment as a contrast to the very product oriented approach my previous AAU
projects have taken. I believe it is a benefit to have tried both. It has also improved
my ability to write scientific papers immensely, something that I had previously only
tried at 7th semester.

The main theme in the work has been traffic sign detection, with a brief detour
through pedestrian detection, which is related and provided another opportunity to
use the methods that was initially investigated with sign detection in mind. The work
has resulted in 4 papers which has been submitted for review, one at a journal, and
three at conferences.

A large part of the work has been the assembly of a comprehensive and up-to-date
survey of traffic sign detection methods in the literature, show a need for research in
detection of non-European style signs. It also shows that while a reasonable amount of
research has been done, traffic sign detection - and TSR systems in full - is not yet a
solved problem.

To facilitate more research in US traffic sign detection specifically, a database of
nearly 8000 signs has been assembled. Its structure has been modeled after the most
prominent existing databases, but it is extended with full video tracks of signs, some-
thing that enables the development of detectors which use tracking.

Synthetic training data based on well-defined traffic sign templates has been investi-
gated for use in machine learning based detectors. Unfortunately the performance has
not been as good as hoped, and with the current synthetic generation algorithm, the
synthetic data is simply not good enough compared to real-world data.

As a counterpoint to the ML-based approach, a purely model-based detector has
also been implemented and tested. The chosen algorithm is the most commonly used
in existing systems, and while the test here has used it as a stand-alone detector, most
systems combine it with other detection schemes.
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Finally, a novel two-stage part-based pedestrian detector has been developed and
described. Tests show that it has improved performance from the original work it was
based on, and it performs similarly to competing detection methods, but at a faster
frame rate.
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Vision based Traffic Sign Detection and
Analysis for Intelligent Driver Assistance Systems:

Perspectives and Survey
Andreas Møgelmose, Mohan M. Trivedi, and Thomas B. Moeslund

Abstract—In this paper, we provide a survey of the traffic sign
detection literature, detailing detection systems for Traffic Sign
Recognition (TSR) for driver assistance. We separately describe
the contributions of recent works to the various stages inherent
in traffic sign detection: segmentation, feature extraction, and
final sign detection. While TSR is a well-established research
area, we highlight open research issues in the literature,
including a dearth of use of publicly-available image databases,
and the over-representation of European traffic signs. Further,
we discuss future directions for TSR research, including
integration of context and localization. We also introduce a new
public database containing US traffic signs.

Index terms: Machine vision, machine learning, object detec-
tion, active safety, human-centered computing.

I. INTRODUCTION

IN this paper, we provide a survey of traffic sign detec-
tion for driver assistance. State-of-the-art research utilizes

sophisticated methods in computer vision for traffic sign
detection and it has been an active area of research over
the past decade. On-road applications of vision have included
lane detection, driver distraction detection, and occupant pose
inference. As described in [1]–[3], it is crucial to not only
consider the car’s surrounding and external environment when
designing an assist system, but also to consider the intenal
environment and take the driver into account. Fusing other
types of information with the sign detector, as described in
[4], can make the overall system even better.

When the system is considered a distributed system where
the driver is an integral part, it allows for the driver to con-
tribute with what he is good at (e.g. seeing speed limit signs, as
we shall see later), while the TSR part can present information
from other signs. In addition other surround sensors can also
have an influence on what is presented.

In recent years, speed limit detection systems have been
included in top of the line models from various manufacturers,
but a more general sign detection solution and an integration
into other vehicle systems has not yet materialized. Current
state-of-the-art TSR systems neither utilize information about
the driver, nor input from the driver, to enhance performance.
Extensive studies in Human-Machine Interactivity are
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necessary to present the TSR information in a careful way,
to inform the driver without causing distraction or confusion.
The literature features just two surveys on TSR: [5] is a
good introduction, but not very comprehensive. [6] is a
few years old, so any improvements in the field from the
past 5 years are not presented. A very good comparison of
various segmentation methods is offered in [7], but given
that it only covers segmentation, it is not a comprehensive
overview of detection methods. Likewise, [8] provides a good
comparison of Hough transform derivatives. In this paper
our emphasis is on framing the TSR problem in the context
of human-centered driver assistance systems. We provide a
comparative discussion of papers published mostly within the
last 5 years and to provide an overview of the recent work in
the area of sign detection, a subset of the TSR problem.

We provide a critical review of traffic sign detection, and
offer suggestions for future research areas in this challenging
problem domain. The next section establishes the driver as-
sistance context and covers TSR systems in general. Section
3 provides a problem description, and a gentle introduction
to traffic sign detection. Section 4 deals with segmentation
for traffic sign detection. Section 5 details models and feature
extraction. Section 6 deals with the detection itself. In the
final section, the authors provide analysis and insight on future
research directions in the field.

II. HUMAN-CENTERED TSR FOR DRIVER ASSISTANCE:
ISSUES AND CONSIDERATIONS

Traffic sign recognition research needs to take into account
the visual system of the driver. This can include factors such
as visual saliency of signs, driver focus of attention, and
cognitive load. According to [9] (see table I for a summary
of the main results), not all signs are equal in their ability
to capture the attention of the driver. For example, a driver
may fixate his gaze on a sign, but neither notice the sign, nor
remember its informational content. While drivers invariably
fixate on speed limit signs and recall their information, they
are less likely to notice game crossing and pedestrian signs.
This can endanger pedestrians, as it may not leave enough
reaction time to stop.

The implications of use of TSR in human-in-the-loop sys-
tem are clear; instead of focusing on detection and recognizing
all signs of some class perfectly, which would be the objetive
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(a) (b) (c)

Fig. 1. Different detection scenarios. The circle is the ego-car and 3 signs are distributed along the road. The area highlighted in red illustrates the driver’s
area of attention. (a) is the standard scenario used for e.g. autonomous cars. Here, all signs must be detected and processed. (b) and (c) depicts a system
which tracks the driver’s attention. In (b), the driver is attentive and spots all signs. Therefore the system just highlights the one sign that is known to be
difficult for people to notice. In (c), the driver is distracted by a passing car and thus misses two signs. In this case, the system should inform the driver about
the two missed signs.

for an autonomous car, the task is now to detect and highlight
signs that the driver has not seen. This gives way to various
models of TSR, which take into account the driver’s focus of
attention, and interactivity issues. Driver attention tracking is
covered in [10] and [11]. Fig. 1 presents examples on how
TSR can be used for driver assistance. Fig. 1a shows how a
system should act in an autonomous car. It simply recognizes
all signs present. In fig. 1b there is a driver in the loop,
and while the system may see all the signs, it should avoid
presenting them in order to avoid driver confusion. Instead,
it simply highlights the sign type that is easy to overlook,
like the pedestrian crossing warnings in the research. Fig. 1c
shows how a driver is distracted by a passing car. This causes
him to miss two signs. His car has a TSR system for driver
assistance, which informs him of the signs as he returns his
attention to the road ahead of him. This could, for example,
be done using a heads-up display as suggested in [12].

Even though this paper is mostly concerned with using
TSR for driver assistance, TSR has various well defined
applications, summarized nicely by [13]:

1) Highway maintenance: Check the presence and condi-
tion of signs along major roads.

2) Sign inventory: Similar to the above task, create an
inventory of signs in city environments.

3) Driver assistance systems: Assist the driver by informing
of current restrictions, limits, and warnings.

4) Intelligent autonomous vehicles: Any autonomous car

Detection Classification

Tracking

Fig. 2. The basic flow in most TSR systems.

that is to drive on public roads must have a means
of obtaining the current traffic regulations. This can be
done through TSR.

This paper uses the term TSR to refer to the entire chain
from detection of signs to their classification, and potentially
presentation to the driver. Generally, TSR is split into two
stages: Detection and classification (see fig. 2). Detection
is concerned with locating signs in input images, while
classification is about determining what type of sign the
system is looking at. The two tasks can often be treated as
completely separate, but in some cases the classifier relies
on the detector to supply information, such as the sign shape
or sign size. In a full system, the two stages are depending
on each other and it does not make sense to have a classifier
without a detection stage. Later, we divide the detection stage
into three sub-stages, but these should not be confused with
the two main stages of a full TSR-system: Detection and
classification.

Apart from shape and color, another aspect may be used
in TSR: Temporal information. Most TSR systems are
designed with a video feed from a vehicle in mind, so
signs can be tracked over time. The simplest way of using
tracking is to accept sign candidates as signs only if they
have shown up on a number of consecutive frames. Sign
candidates that only show up once are usually a result of
noise. Employing a predictive method, such as a Kalman
filter, allows for the system to predict where a sign candidate
should show up in the next frame, and if its position is too
far away from this prediction, the sign candidate is discarded.
A predictive tracking system has the additional benefit
of handling occlusions, hence preventing signs that were
occluded from being classified as new signs. This is very
important in a driver assistance system where signs should
only be presented once, and in a consistent way. Imagine a
scenario where a sign is detected in a few frames and the
occluded for a short while, before being detected again. For
an autonomous car it is likely not a problem to be presented
with the same information twice: If the first sign prompted
the speed to be set at 55 mph, there is no problem in the
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TABLE I
SIGNIFICANT RESULTS FROM [9] REGARDING ATTENTION TO VARIOUS SIGN TYPES.

Fixated Not fixated
Target Recalled Not recalled Recalled Not recalled

Speed limit 80 km sign 100 0 0 0
Game Crossing sign 60 0 7 33
Pedestrian crossing ahead 8 54 0 38
Pedestrian crossing sign 0 21 0 79

system being told once again that the speed limit is 55 mph.
In a driver assistance system, the system must not present
more information than absolutely necessary at any given
moment, so the driver is not overwhelmed with information,
for instance, forcing the driver to pay attention to a sign he
has already seen should be avoided.

Many TSR systems are tailored to a specific sign type. Due
to the vast differences in sign design from region to region
(see the following section), and the differences in sign design
based on their purpose, many systems narrow their scope down
to a specific sign type in a specific country.

There is a wide span in speeds of the systems. For use in
driver assistance and autonomous vehicles, real-time perfor-
mance is necessary. This does not necessarily mean a speed
of 30 Hz, but the signs must be read quickly enough to still
be relevant to act on. Depending on the exact application, a
few Hz is required.

Instead of treating the entire TSR-process in what could
easily become a cursory manner, we have opted to look
thoroughly on the detection stage. The line between detection
and classification is a bit blurry, since some detectors provide
more information to the classifier than others. It is normal for
the detector to inform the classifier of the general category
of signs, since that is often defined by either the overall sign
shape or its color, something that the detector itself may use
to to localize the sign.

Even though this paper is targeted towards the problem
of detecting traffic signs, one must not forget that without
a subsequent classification stage, the systems are useless. So
even though we encourage a decoupling of the two tasks, this
does not mean that the classification is a solved problem. It is
a crucial part of a full system.

III. TRAFFIC SIGNS

Traffic signs are markers placed along roads to inform
drivers about either road conditions and restrictions or which
direction to go. They communicate a wealth of information,
but are designed to do so efficiently and at a glance. This also
means that they are often designed to stand out from their
surroundings, making the detection task fairly well defined.

The designs of traffic signs are standardized through laws,
but differ across the world. In Europe many signs are standard-
ized via the Vienna Convention on Road Signs And Signals
[14]. There, shapes are used to categorize different types of
signs: Circular signs are prohibitions including speed limits,

triangular signs are warnings and rectangular signs are used
for recommendations or sub-signs in conjunction with one of
the other shapes. In addition to these, octagonal signs are used
to signal a full stop, downwards pointing triangles yield, and
countries have other different types, e.g. to inform about city
limits. Examples of these signs can be seen in fig. 3.

In the US, traffic signs are regulated by the Manual on
Uniform Traffic Control Devices (MUTCD) [15]. It defines
which signs exist and how they should be used. It is accompa-
nied by the Standard Highway Signs and Markings (SHSM)
book, which describes the exact designs and measurements
of signs. At the time of writing, the most recent MUTCD
was from 2009, while the SHSM book had not been updated
since 2004, and thus it described the MUTCD from 2003. The
MUTCD contains a few hundred different signs, divided into
13 categories.

To complicate matters further, each US state can decide
whether it wishes to follow the MUTCD. A state has three
options:

1) Adopt the MUTCD fully as is.
2) Adopt the MUTCD but add a State Supplement.
3) Adopt a State MUTCD that is “in substantial confor-

mance with” the national MUTCD.

In the US 19 states have adopted the national MUTCD
without modifications, 23 have adopted the national MUTCD

(a) Speed limit. Sign
C55.

(b) End speed limit.
Sign C56.

(c) Start of free-
way. Sign E55.

(d) Right turn. Sign
A41.

Fig. 3. Examples of European signs. These are Danish, but many countries
use similar signs.
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(a) Stop. Sign R1-1. (b) Yield. Sign R1-2.

(c) Speed limit.
Sign R2-1.

(d) Turn warning with
speed recommendation.
Sign W1-2a.

Fig. 4. Examples of signs from the US national MUTCD. Image source:
[15]

with a state supplement and 10 have opted to create a State
MUTCD (the count includes the District of Columbia and
Puerto Rico). Examples of US signs can be seen in fig. 4.

New Zealand uses a sign standard with warning signs that
are yellow diamonds, as in the US, but regulatory signs that
are round with a red border, like the ones from the Vienna
Convention countries. Japan uses signs that are generally
in compliance with the Vienna Convention, as are Chinese
regulatory signs. Chinese warning signs are triangular with
a black/yellow color scheme. Central and South American
countries do not participate in any international standard, but
often use signs somewhat like the American standard.

While signs are well defined through laws and designed to
be easy to spot, there are still plenty of challenges for TSR
systems. They include:
• Signs being similar within or across categories (see fig.

5).
• Signs may have faded or be dirty so they are no longer

their specified color.
• The sign post may be bent, so the sign is no longer

orthogonal to the road.
• Lighting conditions may make color detection unreliable.
• Low contrast may make shape detection hard.
• In cluttered urban environments, other objects may look

very similar to signs.
• Varying weather conditions.

A. Assessing performance of sign detectors

When comparing sign detectors, some comparison metrics
must be set up. The straight forward and most important
measure is the true positive rate. However, even if all signs
are detected, the system is not necessarily perfect. The
number of false positives must also be taken into account. If
the amount of false positives is too high, the classifier will
have to handle a lot more data than it should, degrading the

overall system speed. For cases when a system must work
in real-time in a car, obviously the detection must be fast.
In general, the faster the detection runs, the more time is
left over for the classification stage. Adjusting these goals is
a trade-off. Often, the target will be to create a system that
is just fast enough for a given application, while keeping
the receiver operating characteristic acceptable. Another
interesting performance characteristic is what sign types a
given system works for.

Even with the parameters in mind, and a clear idea of the
performance metrics, comparing the performance of different
systems is not a straightforward task. Unlike other computer
vision areas, until recently no standardized training and test
data set existed, so no two systems were tested with the
same data. The image quality varies from high resolution still
images (as in [16]–[18]) to low resolution frames from in-car
video cameras (such as [19]–[21]). That, combined with the
facts that signs vary wildly between countries, and many
papers limit their scope to specific sign types, makes for a
quite uneven playing field.

For a discussion of the performance of the papers presented
in this survey, see section IV

B. Public sign databases

A few publicly available traffic sign datasets exist:
• German Traffic Sign Recognition Benchmark (GTSRB)

[22], [23]
• KUL Belgium Traffic Signs Dataset (KUL Dataset) [24]
• Swedish Traffic Signs Dataset (STS Dataset) [25]
• RUG Traffic Sign Image Database (RUG Dataset) [26]
• Stereopolis Database [27]
Information on these databases can be found in table II.

Most of the databases have emerged within the last two
years (except for the very small RUG Dataset), and are
not yet widely used. One of the most widespread databases
is the GTSRB, which has been presented in [22], created
for the competition “The German Traffic Sign Recognition
Benchmark”. The competition was held at the International
Joint Conference on Neural Networks (IJCNN) 2011. It is
a large data set containing German signs, thus very suitable
for training and testing systems aimed at signs adhering to
the Vienna Convention. A sample image from the GTSRB
database can be found in fig. 6a. The GTSRB is primarily

(a) Speed limit.
Sign R2-1.

(b) Minimum
speed. Sign
R2-4.

(c) End speed
limit. Sign R3
(CA).

Fig. 5. Examples of similar signs from the MUTCD. (c) exists only in the
California MUTCD. Image source: [15]
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TABLE II
INFORMATION ON THE PUBLICLY AVAILABLE SIGN DATABASES.

GTSRB STS Dataset KUL Dataset RUG Dataset Stereopolis LISA Dataset

Number of classes: 43 7 100+ 3 10 49

Number of
annotations:

50000+ 3488 13444 0 251 7855

Number of images: 50000+ 20000 9006 48 847 6610

Annotated images: All images 4000 images All images 0 All images All images

Sign sizes: 15x15 to
250x250 px

3x5 to 263x248
px

100x100 to
1628x1236 px

N/A 25x25 to
204x159 px

6x6 to 167x168
px

Image sizes: 15x15 to
250x250 px

1280x960 px 1628x1236 px 360x270 px 1920x1080 px 640x480 to
1024x522 px

Includes videos: No No Yes, 4 tracks No No Yes, for all
annotations

Country of origin: Germany Sweden Belgium The Netherlands France United States

Extra info: Images come in
tracks with 30
different images
of the same
physical sign.

Signs marked
visi-
ble/blurred/occluded
and whether they
belong to the
current road or a
side road.

Includes traffic
sign annotations,
camera
calibrations and
poses.

Does not include
any annotations,
only raw
pictures.

Images from
various camera
types.

geared towards classification, rather than detection, since each
image contains exactly one sign without much background.
For detection, images of complete scenes is necessary. Also,
many detection systems rely on a tracking scheme to make
detection more robust and without video of the tracks (in
GTSRB parlance a “track” is a set of images of the same
physical sign), this will not work properly. Since the data
set is created for the classification task, this is not so much
a problem of that database, as it is a testament to its target.
In conjunction with the competition, five interesting papers
[28]–[32] were released. They all focus on classification
rather than detection.

Two other datasets should be highlighted: The STS Dataset
and the KUL Dataset. They are both very large, though not
as large as the GTSRB, and they contain full images. This
means that they can both be used for detection purposes. The
STS Dataset does not have all images annotated, but it does
include all frames from the videos used to obtain the data.
This means that tracking systems can be used on this dataset,
but it can only be verified with ground truth every 5 frames.
An example from the STS Dataset can be seen in fig. 6b. The
KUL Dataset also includes 4 recorded sequences which can
be used for tracking experiments. KUL also includes a set
of sign-free images which can be used as negative training
images and it has pose-information for the cameras for each
image.

From the research it was evident that there was a lack of
databases with US traffic signs, so in conjunction with this
paper we have assembled one. Its details are also listed in
table II. One novel feature of this dataset is that it includes
video tracks of all the annotated signs. Many systems already
use various tracking schemes to minimize the number of false
positives, and it is quite likely that in the future, detectors
using temporal data even more will emerge. Therefore, the

(a)

(b)

Fig. 6. Example sign images from (a) the GTSRB and (b) the STS Dataset
with the sign bounding boxes superimposed.

LISA dataset includes video as well as stand alone frames.
Not all frames have been extracted for annotation, but all
annotated frames can be traced back to the source video so the
annotations can also be used to verify systems using tracking.
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IV. SIGN DETECTION

The approaches in this stage have traditionally been divided
into two kinds:
• Color based methods.
• Shape based methods.
Color based methods take advantage of the fact that traffic

signs are designed to be easily distinguished from their sur-
roundings, often colored in highly visible contrasting colors.
These colors are extracted from the input image and used as
a base for the detection. Just like signs have specific colors,
they also have very well defined shapes that can be searched
for. Shape based methods ignore the color in favor of the
characteristic shape of signs.

Each method has its pros and cons. Color of signs, while
well defined in theory, varies a lot with available lighting,
as well as with age and condition of the sign. On the other
hand, searching for specific colors in an image is fairly straight
forward. Sign shapes are invariant to lighting and age, but parts
of the sign can be occluded, making the detection harder, or
the sign may be located at a background of a similar color,
ruining the edge detection that most shape detectors rely on.

The division of systems in this way can be problematic.
Almost all color based approaches take shape into account
after having looked at colors. Others use shape detection as
their main method, but integrate some color aspects as well.
Instead, the detection can be split into two steps as proposed
by [7]: Segmentation and detection. In this paper we go
one step further and split the detection step into a feature
extraction step and the actual detection, which acts on the
features that are extracted. Many shape-only based methods
have no segmentation step. The flow is outlined in fig. 7.

An overview of all surveyed papers and their methods
is listed in table III. It contains each of the systems and
lists which segmentation method, feature type, and detection
method that is used. The author group numbers are used to
mark the papers that are part of an ongoing effort from the
same group of authors. They do not constitute a ranking in
any way. In tables IV and V, some of their more detailed
properties are listed. The systems are split into two tables.
Table IV displays those which do not use any tracking. Table
V contain those which do use tracking, something we find
crucial when using TSR in a driver assistance context, as
mentioned earlier. Apart from this division, the two tables
are structured in the same way: Sign type in paper describes

Segmentation

Feature extraction Detection

Fig. 7. The general flow followed by typical sign detection algorithms.

which sign types the authors of the paper have attempted to
find, while emphsign type possible are the types of signs
the method could be extended to include, usually a very
broad group. Real-time is about how fast the system runs, if
that information is available. Any system with a frame rate
faster than 5 fps is considered to have real-time potential.
Rotation invariance tells whether the used technique is robust
to rotation of signs. Model vs. training describes if the
detection system relies on a theoretical model of signs (such
as a pre-defined shape), if it uses a learned type of classifier,
or if it uses a combination of the two. Test image type is
the image resolution the system is designed to work with.
Low-res images are usually video frames, while high-res are
still images.

The detection performance of the surveyed papers are
presented in table VI. As mentioned earlier, very few papers
use common databases to test their performance and the
papers detect various types and numbers of signs. Thus, the
numbers should not be directly compared, but nevertheless
they give an idea of performance. Not all papers report all the
measures reported in the table (detection rate, false positives
per frame, etc.), so some fields in the table could not be
filled. In other cases these exact measures were not given, but
could be calculated from other given numbers. Where figures
are available, the best detection rate the system obtained
is reported along with the corresponding measure of false
positives. The detection rate is per frame, meaning that 100%
detection is only achieved if a sign is found in every frame it
is present. It is not sufficient to just detect the sign in a few
frames. This is the way results are presented in most papers, so
this is the measure chosen here, even if a real-world system
would work fine if each sign is just detected once. Papers
which only report the per-sign detection rate as opposed to
the per-frame detection rate are marked with a triangle in the
right-most column of the table.

Different papers report the false positives in different ways,
so a few different measures - which are not directly compa-
rable - are presented in the table:

FPPF False postives per frame: FPPF = FP
f where FP

is the number of false positives and f is the number
of frames analyzed.

FPR False positive rate: FPR = FP
N where N is the

number of negatives in the test set. This measure
is rarely used in detection, since the number of
negatives does not always make much sense (how
many negatives exist in a full frame?).

PPV Positive predictive value: PPV = TP
TP+FP where

TP is the number of true positives.
FPTP False/true positive ratio: FPTP = FP

TP
WPA Wrong pixels per area: WPA = WP

AP where WP is
the number of wrongly classified pixels and AP is
the total number of pixels classified.

When papers present results for different sign types,
the mean detection performance is also presented in the
table. In many cases that will give a better view of the true
performance of the approach.
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Five papers stick out, claiming a 100% detection rate. The
first [33] is only tested on synthetic data. It is possible that the
synthetic data does not fully encapsulate real world variations,
so the performance of that approach is not guaranteed to be
as good in real-world scenarios. At first glance [34] achieves
a 100% detection rate, but that is only the case for one of
their sign types. The mean performance is a more accurate
(and still promising) gauge of the actual performance. The
same is the case for [25]. [35] detects all signs in the test set,
but at the cost of a large number of false positives per frame.
[36] only presents the per-sign detection rate, so that figure
cannot be compared to the other systems.

Generally, systems achieve detection rates well into the
90% range, some at very low false detection rates. From
the table no “best system” can be chosen, since the test sets
are very different, both in size and content. A system that
can detect several different sign types at a low detection
rate may in some applications be considered better than a
system that can only detect one specific sign type, but do that
very well. A few papers that should be highlighted are [18],
[37]–[39]. They have all been tested on large datasets and
report detection rates above 90% with a decent low number
of false positives.

Now that the basics about sign detection are in place, the
following sections go in depth with how recent papers perform
each step.

V. SEGMENTATION

The purpose of the segmentation step is to achieve a rough
idea about where signs might be, and thus narrow down the
search space for the next steps. Not all authors make use of
this step. Since the segmentation is traditionally done based
on colors, authors who believe this should not be part of a
sign detection often do not have any segmentation step, but
go directly to the detection.

Of the papers that do use segmentation, all except [38], [40]
use colors to some extent. Normally, segmentation is done
with colors and subsequently a shape detection is run in a
later stage. In [38], the usual order is reversed, so they use
radial symmetry voting (see section VII) for segmentation and
a color based approach for the detection. [40] also run radial
symmetry voting as preprocessing, but follow it up with a
cascaded classifier using Haar wavelets (see again section VII).

Generally, color based segmentation relies on a thresholding
of the input image in some color space. Since many believe
that the RGB color space is very fragile with regards to
changes in lighting, these methods are spearheaded by the
HSI-space (or its close sibling, the HSV-space). HSI/HSV is
used by [41]–[46]. The HSI-space models the human vision
better than RGB and allows some variation in the lighting,
most notably in the intensity of light. Some papers, like the
ones in the series starting with [16] and followed by [33],
[47], [48], augment the HSI thresholding with a way to find
white signs. Hue and saturation are not reliable for detecting

white, since it can be at any hue, so they use an achromatic
decomposition of the image proposed by [49].

Some authors are not satisfied with the performance of HSI,
since it does not model the change in color temperature in
different weather, but only helps in changing light intensity.
[17], [50] instead threshold in the LCH color space, which
is obtained using the CIECAM97-model. This allows them
to take variations in color temperature into account. The
RGB space is used by [18], [51], but they use an adaptive
threshold in an attempt to combat instabilities caused by
lighting variations.

Of special interest in this color space discussion is the
excellent paper [7], which has shown that HSI-based segmen-
tation offers no significant benefit over normalized RGB, but
that methods which use color segmentation generally perform
much better than shape-only methods. They do, however have
trouble with white signs. For a long time, it has simply been
assumed that the RGB color space was a bad choice for
segmentation, but through rigorous testing, they show that
there is nothing to gain from switching to the HSI color space
instead of a normalized RGB space. As the authors write:
“Why use a nonlinear and complex transformation if a simple
normalization is good enough?”.

A color based model not relying on thresholding was put
forward in [52], which use a cascaded classifier trained with
AdaBoost, similar to the one proposed by [53], but on Local
Rank Pattern features instead of Haar wavelets. Also, [34] use
a color-based search method that, while closely related to, is
not directly thresholding-based. Here, the image is discretized
into colors that may exist on signs. The discretization process
is less destructive than thresholding in that it does not directly
discard pixels, instead it maps them into the closest sign-
relevant color. In a more recent contribution [20], they replace
the color discretization method with a Quad-tree interest
region finding algorithm, which finds interesting areas using
an iterative search method for colored signs. In the same realm
lies [8], which uses a learned probabilistic color preprocessing.

In [21], a unique approach is proposed: Using a biologically
inspired attention system. It produces a heat map denoting
areas where signs are likely to be found. An example can be
seen in figure 9. A somewhat similar system was put forth by
[19], who uses a saliency measure to find possible areas of
interests.

VI. FEATURES AND MODELING

While various features are available from the vision liter-
ature, the choice of feature set is often closely coupled with
the detection method, though some feature sets can be used
with a selection of different detection methods. The most
popular feature is edges - sometimes edges obtained directly
from the raw picture, sometimes edges from pre-segmented
images. Edges are practically always found using a Canny
edge detection or some method very similar, and they are used
as the only feature in [8], [18], [20], [34], [35], [41], [43], [45],
[46], [49], [52], [54]–[61]. [51] combine the edges with Haar-
like features and [36], [62] look only at certain color filtered
edges.
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(a) Before thresholding (b) After thresholding

Fig. 8. An example of thresholding, looking for red hues.

Fig. 9. The biologically inspired detection stage from [21]. Image source:
[21]

Even though edges comprise the most popular feature
choice, there are other options. Histogram of Oriented Gra-
dients (HOG) is one. It was first used to detect people in
images, but has been used by [17], [19], [39], [63], [64] to
detect signs. HOG is based on creating histograms of gradient
orientations on patches of the image and comparing them to
known histograms for the sought after objects. HOG is also
used in [65], but they augment the HOG feature vectors with
color information to make them even more robust.

A number of papers [37], [40], [51], [66] use Haar wavelet-
like features, [66] only on certain colors, and [37] in the form
of so-called dissociated dipoles with wider structure options
than traditional Haar wavelets.

More esoteric choices are Distance to Bounding box (DtB),
FFT of shape signatures, tangent functions, simple image
patches, and combinations of various simple features. DtB, as
used in [47], [48], are a measure of distances from the contour
of a sign-candidate to its bounding box. Similarly, the FFT of
shape signatures used in [33] is based on the distance from
the shape center to its contour at different angles. Tangent
functions, used in [44], calculate the angles of the tangents
at various points around the contour. Simple image patches
(though in the YCbCr color space) are championed by [42]
and a combination of simple features, such as corner positions

and color is used in [21].
an area that warrants further research.

VII. DETECTION

The detection stage is where the signs are actually found.
This is in many ways the most critical step, and often also
the most complicated. The selection of detection method is
a bit more constrained than the previous two stages, since
the method must work with the features from the previous
stage. The decision is therefore often made the other way
around: A desired detection method is chosen, and the feature
extraction stage is designed to deliver what is necessary to
perform the detection. As we know from the previous section,
the most popular feature is edges, and this reflects on the most
popular choice in detection method. Using Hough transforms
to process the edges is one option, as done by [43], [58]–
[60]. In [60], a proprietary and undisclosed algorithm is
used for detection of rectangles in addition to the Hough
transform used for circles. That said, Hough transforms are
computationally expensive and not suited for systems with
real-time requirements. Because of that, the most popular
methods are derivatives of the radial symmetry detector first
proposed in [67] and first put to use for sign detection in
[68]. The algorithm votes for the most likely sign centers in
an image based on symmetric edges and is itself inspired by
the Hough transform. The basic principle can be seen in fig.
10. In a circle, all edge gradients intersect at the center. The
algorithm finds gradients with a magnitude above a certain
threshold. In the direction pointed out by the gradient, it casts
a vote in a separate vote image. It looks for circles of a specific
radius and thus votes only in the distance from the edge that is
equivalent to the radius. The places with most votes are most
likely to be the center of circles.

This algorithm was later extended to regular polygons by
[35] and a faster implementation for sign detection use was
proposed by [54]. It is also used in some form by [36], [38],
[40], [55]–[57]. An example of votes from a system which is
extended to work for rectangular signs can be seen on fig. 11.
An alternate edge-based voting system is proposed by [61].

The HOG features can be used with an SVM, as in [19],
[65], or be compared by calculating a similarity coefficient
as in [17]. Another option with regard to HOG is to use a
cascaded classifier trained with some type of boosting. This is



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, MACHINE LEARNING FOR TRAFFIC SIGN RECOGNITION, DECEMBER 2012 9

done in [39], [64]. Cascaded classifiers are traditionally used
with Haar wavelets, and sign detection is no exception, as used
in [37], [40], [51], [66].

Finally, also neural networks and genetic algorithms are
represented in [42] and [49], respectively.

The detection stage reflects the philosophical difference that
was also seen in the feature extraction stage: Either reliance
on a simple, theoretical model of sign shapes is preferred
- at this stage it is nearly always shapes that are searched
for - or reliance on training data and then a more abstract
detection method. Since it is extremely hard to compare
systems tested across different data sets, it is not clear which
methods perform the best, so that is clearly an area with a need
for further studies. Both ways can be fast enough for real-time
performance, and most of them could also work with signs of
any shape. There are outliers using different methods, but no
compelling argument that they should perform significantly
better.

VIII. DISCUSSION AND FUTURE DIRECTIONS

In the previous sections, different methods and philosophies
for each stage are presented. This section discusses the current
state of the art and outlines ideas for future directions of
research.

At the moment, the problem in TSR is the lack of use of
standardized sign image databases. This makes comparisons
between contributions very hard. In order to obtain meaningful
advances in the field, the development of such databases is
crucial. Until now, research teams have only implemented a
method they believe has potential, or perhaps tested a few
solutions. Without a way to compare performance with other
systems, it is not clear which approaches work the best,
so every new team starts back at square one, implementing
what they think might work best. Two efforts to remedy
this situation deserve to be mentioned: The sign databases
presented earlier and the segmentation evaluation in [7]. As
mentioned earlier (section III-B), a few public sign databases
have recently emerged, but have not yet been widely used.
In [7], the authors compare various segmentation methods
on the same data set containing a total of 552 signs in 313
images. They also propose a way to evaluate the performance
of segmentation methods. That paper provides a very good
starting point for determining which segmentation method to
use.

These two efforts notwithstanding, public databases
covering signs from non-Vienna Convention regions are

(a) Possible circles for a
gradient

(b) Intersecting vote
lines

Fig. 10. The basic principle behind the radial symmetry detector. Image
inspired by [55].

Fig. 11. Votes from a radial symmetry system superimposed to the original
image. The brightest spot coincides with the center of the sign. This image
is from a system developed in conjunction with this paper and is a radial
symmetry voting algorithm extended to work for rectangles

necessary. Databases which include video tracks of signs
would also be very beneficial to the development of TSR
systems, since many detectors employ a tracking system
for signs. This is, to some extent, included in the KUL
Dataset. In relation to the work on this present survey, we
have assembled such a database for US traffic signs, one that
includes full video tracks of signs. It is our hope that the
GTSRB database will also be extended to include video and
full frames and that more US databases will be created.

The absence of usage of public database may not explain
in entirety why very few comparative studies of methods
exist. Another reason is that TSR systems are long, complex
chains of various methods, where it is not always possible to
swap individual modules. When it is not feasible to swap,
say, the detection method for something else, it is naturally
hard to determine whether other solutions may be better.
This is solved, if more papers divide their work more clearly
into stages, ideally as fine grained as the ones used in this
survey, plus a similar set of stages for classification. This is
done with success in [7], as they test different segmentation
methods while keeping the feature extraction, detection, and
classification stages fixed.

Another problem is the need for work on TSR in regions
not adhering to the Vienna Convention. The bulk of the
existing work comes out of Europe, Australia, and Japan.
Japan and Australia are not parts of the Vienna Convention,
but they use similar signs, for example to convey speed
limits. Of the surveyed papers here, only two are concerned
with US traffic signs [40], [60], and even they only look at
speed limit signs.

When looking at sign detection from a driver-in-the-loop
perspective, it is also unfortunate that the bulk of reseach
now focuses on speed limit signs. A wealth of papers cite
driver assistance as their main application, but carries on
focusing on speed limit signs. Detection of speed limits is
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Fig. 12. Example of sign relevancy challenges in a crop from our own
collected data set. The signs have been manually highlighted, and while both
signs would likely be detected, only the one to the right is relevant to the
driver. The sign to the left belongs to another road, the one the black and
white cars come from.

highly relevant for an autonomous vehicle, but as it turns out,
humans are already very good at seeing speed limit signs
themselves [9]. As such, recognition of signs other than speed
limit is actually more interesting.

The final problem we wish to highlight in this section
is the relation of signs to the surroundings. TSR has seen
significant work, as is evident from this paper, but little work
has been done on ensuring that the detected signs are relevant
for the ego-car (with the notable exception of [58]). In many
situations, it can occur that a detected sign is not connected
to the road the car is on. An example from our own collected
data can be seen in fig. 12. In this case, two stop signs can be
seen, but only the rightmost one pertains to the current road.
Similar situations occur often on freeways, where some signs
may only be relevant for exit lanes. Related to this problem
is that when the driver changes to a different road, most often
the restrictions from earlier detected signs no longer apply.
This should be detected and relayed to the system. It is very
likely that research in other areas, such as lane detection can be
of benefit here. Another idea with regard to the surroundings
would be to link knowledge of weather and current lighting
conditions to enhance the robustness of the detector, similar to
what is done for detection of people in [69]. It is also possible
that vehicle dynamics can be taken into account and used in
the tracking of detected signs.

IX. CONCLUDING REMARKS

This paper provides an overview of the state of sign detec-
tion. Instead of treating the entire TSR flow, focus has been
solely on the detection of signs. During recent years, a large
effort has gone into TSR, mainly from Europe, Japan, and
Australia and the developments have been described.

The detection process has been split into segmentation, fea-
ture extraction, and detection. Many segmentation approaches
exist, mostly based on evaluating colors in various color
spaces. For features there are also a wealth of options. The
choice is made in conjunction with the choice of detection
method. By far the most popular features are edges and
gradients, but other options such as HOG and Haar wavelets

have been investigated. The detection stage is dominated by
the Hough transform and its derivatives, but for HOG and
Haar wavelet features, SVMs, neural networks, and cascaded
classifiers have also been used.

Arguably, the biggest issue with sign detection as it is
currently is the lack of use of public image databases to train
and test systems. Currently, every new approach presented uses
a new dataset for testing, making comparisons between papers
hard. This gives the TSR effort a somewhat scattered look.
Recently, a few databases have been made available, but they
are still not widely used, and cover only Vienna Convention
compliant signs. We have contributed with a new database, the
LISA Dataset, which contains US traffic signs.

This issue leads to the main unanswered question in sign
detection: Is a model based shape detector superior to a learned
approach, or vice versa? Systems using both approaches exist,
but are hard to compare, since they all use different data sets.

Many contributions cite driver assistance systems as their
main motivation for creating the system, but so far only little
effort has gone into the area of combining TSR systems with
other aspects of driver assistance and notably, none of the
studies include knowledge about the driver’s behavoir in order
to tailor the performance of the TSR system to the driver.

Other open issues include lack of research in finding non-
European style signs and detected signs are hard to relate to
their surroundings.
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TABLE III
OVERVIEW OF DETECTION METHODS IN 41 RECENT PAPERS. PAPERS WITH THE SAME BACKGROUND COLOR ARE PAPERS WRITTEN BY THE SAME GROUP. WHITE BACKGROUND INDICATE STAND-ALONE

PAPERS.

Paper Year Author group Segmentation method Features Detection method

[16] 2005 1 HSI thresholding with addition for white signs ( [49]) Boundary distance transform Correlation with model distance transforms

[47] 2007 1 HSI thresholding with addition for white signs ( [49]) DtB (distance to bounding box) Linear SVM

[33] 2008 1 HSI thresholding with addition for white signs ( [49]) FFT of shape signatures Euclidian nearest neighbor

[48] 2010 1 HSI thresholding with addition for white signs ( [49]) DtB (distance to bounding box) Linear SVM

[66] 2005 2 None Haar wavelet features computed on specific color channels Cascaded classifier

[40] 2008 2 Extended radial symmetry voting Haar wavelet features Cascaded classifier

[17] 2006 3 LCH thresholding (obtained with CIECAM97) HOG Comparison with template vectors

[50] 2008 3 LCH thresholding (obtained with CIECAM97) None None

[62] 2007 4 None Color filtered edges Extended radial symmetry voting

[34] 2010 4 HSV discretization Edges Extended radial symmetry voting

[20] 2011 4 Quad-tree color selection Edges Extended radial symmetry voting

[35] 2004 5 None Edges Extended radial symmetry voting

[54] 2006 5 None Edges Extended radial symmetry voting

[55] 2008 5 None Edges Radial symmetry voting

[56] 2008 6 None Edges Votes for symmetric areas to be used as ROI with another shape-detector

[57] 2011 6 None Edges Two-tier radial symmetry voting

[58] 2011 7 None Edges of closed contours with certain aspect ratios Hough shape detection

[59] 2011 7 None Edges of closed contours with certain aspect ratios Hough shape detection

[18] 2009 8 Adaptive RGB threshold Edges Fuzzy templates (a Hough derivative)

[51] 2010 8 Adaptive RGB threshold Edges and Haar-like features Fuzzy templates, cascaded classifier, and SVM

[64] 2008 9 None HistFeat (HOG derived) Cascaded classifier

[39] 2011 9 None Various HOG-features 5 stage cascaded classifier trained with LogitBoost

[49] 2002 None HSI thresholding with edge detection and removal of
achromatic colors

Edges Genetic algorithm looking for circles

[63] 2007 None None Edge orientation histograms Comparison with template vectors

[41] 2007 None HSI thresholding Edges Hough shape detection

[60] 2007 None None Edges Hough transform for circular signs, proprietary (not described) for rectangular

[42] 2008 None HSI thresholding 30x30 px YcbCr patches Neural network

[37] 2009 None None Dissociated dipoles Cascaded classifier

[61] 2009 None None Edges Vertex and Bisector transform (VBT)

[36] 2009 None Radial symmetry voting combined with SIFT features Edge colors Contracting Curve Density

[43] 2009 None HSV thresholding Edges Hough shape detection

[19] 2009 None Saliency detection with color and edges HOG SVM

[44] 2009 None Hue thresholding on chromatic colors only Tangent function of simplified contours Distance from model tangent function

[45] 2010 None HSI thresholding Edges Circle center voting

[65] 2010 None None HOG augmented with color information SVM

[21] 2010 None Biologically inspired attention model Color, corner positions, height, excentricity Color, corner positions, height, excentricity

[46] 2010 None HSI thresholding Edges Radial symmetry voting

[52] 2011 None Nested cascade classifier with Local Rank Pattern fea-
tures (based on 7 RGB based colors)

Edges RANSAC circle fit

[38] 2011 None Radial symmetry voting Colors in modified RGB-space Distance to learned colors

[8] 2011 None Probabilistic color preprocessing Edges Hough derivative shape detector

[25] 2011 None None Fourier descriptors Correlation based matching
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TABLE IV
OVERVIEW OF DETAILED PROPERTIES OF THE 27 PAPERS WHICH DO NOT USE TRACKING

Paper Year Author group Sign type in paper Sign type possible Real-time Rotation inv. Model vs. training Test image type

[16] 2005 1 5 regular polygons, various colors Colored N/A Yes Both High-res

[33] 2008 1 Circular, triangular, square and semiellipses Colored N/A Yes Both Low-res

[48] 2010 1 Circular red Circular colored No No Both Low-res

[17] 2006 3 Circular red, circular blue and triangular red Colored No Yes Both High-res

[50] 2008 3 Circular red and blue Colored N/A Yes Training High-res

[62] 2007 4 Circular, triangular and square, various colors Regular, colored polygons Yes No Both N/A

[35] 2004 5 Regular polygons Regular polygons Yes Yes Model Low-res

[54] 2006 5 Regular polygons Regular polygons Yes No Model Low-res

[55] 2008 5 Circular red Circular Yes Yes Model Low-res

[18] 2009 8 Circular red, circular blue, diamond white Colored No No Both High-res

[64] 2008 9 Circular, triangular and octagonal red Any sign Yes No Training Low-res

[39] 2011 9 Circular red Any sign Yes No Training Low-res

[49] 2002 None Circular, red Colored N/A Yes N/A N/A

[63] 2007 None Circular, triangular, diamond, octagonal Any sign Yes No Training Low-res

[41] 2007 None Circular and triangular, red Colored N/A Yes N/A N/A

[42] 2008 None Circular red, triangular red, and octagonal red Colored No No Training N/A

[37] 2009 None Circular and triangular, red Any sign No No Training N/A

[61] 2009 None Triangular red and blue Triangular Yes Yes Model Low-res

[43] 2009 None Circular, triangular, square, various colors Colored No Yes Model Low-res

[19] 2009 None Circular, red and square blue Colored N/A Yes Training Low-res

[44] 2009 None Circular, triangular, square, various colors Colored N/A No Both Low-res

[45] 2010 None Circular red Colored No No Model Low-res

[65] 2010 None Circular red, circular blue and triangular red Any sign N/A No Training High-res

[21] 2010 None Triangular and octagonal, red Any sign Yes N/A Model N/A

[46] 2010 None Circular red Colored N/A No Both Low-res

[8] 2011 None Circular and triangular, red and blue Regular, colored polygons No No Both High-res

[25] 2011 None 7 sign types Any sign N/A Yes Model Low-res No
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TABLE V
OVERVIEW OF DETAILED PROPERTIES OF THE 14 PAPERS WHICH USE TRACKING

Paper Year Author group Sign type in paper Sign type possible Real-time Rotation inv. Model vs. training Test image type

[47] 2007 1 Circular and triangular, red Colored No No Both Low-res

[66] 2005 2 Circular red Any sign Yes No Training Low-res

[40] 2008 2 Rectangular white Any sign Yes No Both Low-res

[34] 2010 4 40 different signs Any sign Yes No Model Low-res

[20] 2011 4 Circular red and blue Regular, colored polygons Yes No Both Low-res

[56] 2008 6 Circular, triangular and octagonal Any sign Yes No Model N/A

[57] 2011 6 Circular Circular Yes Yes Model Low-res

[58] 2011 7 100 different signs, circular and triangular Any sign Yes Yes Model Low-res

[59] 2011 7 8 sign categories Any sign No Yes Model Low-res

[51] 2010 8 N/A Colored Yes N/A Both Low-res

[60] 2007 None Circular red and rectangular white Circular and rectangular N/A N/A Model Low-res

[36] 2009 None Circular red Circular N/A Yes Both Low-res

[52] 2011 None Circular red Colored No Yes Training Low-res

[38] 2011 None Circular red and blue Circular colored Yes Yes Both Low-res
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TABLE VI
OVERVIEW OF THE PERFORMANCE OF THE PAPERS INCLUDED IN THIS SURVEY. FOR THOSE PAPERS WHERE THE NUMBERS ARE AVAILABLE, THE BEST AND MEAN DETECTION RATE IS PRESENTED, ALONG

WITH THE CORRESPONDING FALSE POSITIVE MEASURE. NOTE THAT THE SYSTEMS HAVE ALL BEEN TESTED IN DIFFERENT WAYS, SO A DIRECT COMPARISON IS NOT FEASIBLE. SEE SECTION IV FOR
FURTHER DETAILS.

Paper Year Group Evaluation data format Pos/neg in evaluation data Best detection rate False positives for best detection Mean detection rate Mean false positives
[16] 2005 1 No statistical results given

[47] 2007 1 5176 images from 5 videos containing 104 signs N/A N/A N/A N/A N/A

[33] 2008 1 2000 synthetic images N/A 100% WPA: 0.74% 89.08% WPA: 13.17%

[48] 2010 1 No statistical results given

[66] 2005 2 Images from videos 1700 pos/40000 neg 98.6% FPR: 0.03% - -

[40] 2008 2 16828 images from videos 80 positives 98.75% FPPF: 0.062 - -

[17] 2006 3 Images from videos 98 positives 95% N/A - -

[50] 2008 3 128 images 142 positives 94% PPV: 23% 89.67% PPV: 26%

[62] 2007 4 No results given for the detection stage only

[34] 2010 4 Images from videos containing 210 signs N/A 100% N/A 92.9% N/A

[20] 2011 4 No statistical results given (graphs are available in the paper)

[35] 2004 5 45 images 49 positives 100% FPPF: 0.67 96.67% FPPF: 0.56

[54] 2006 5 47 images from 1 video 47 positives 93.62% FPPF: 2.26 - -

[55] 2008 5 Images from videos N/A 93% FPPF: 0.5 - -

[56] 2008 6 No statistical results given (graphs are available in the paper)

[57] 2011 6 Images from 34 videos containing more than 100 signs N/A 87.12% FPR: 0.14% - -

[58] 2011 7 30000 images from 1 video 340 positives 97.74% FPPF: 0.0024 96.45% FPPF: 0.0014

[59] 2011 7 Images from videos containing 500 signs N/A 99.96% N/A 99.52% N/A

[18] 2009 8 7356 images containing 269 signs 2459 positives 95.7% FPPF: 2.5 - -

[51] 2010 8 No statistical results given (see [18] instead)

[64] 2008 9 No statistical results given (graphs are available in the paper)

[39] 2011 9 Images from videos 21500 pos/40000 neg 98.68% FPR: 10−8% - -

[49] 2002 None No statistical results given

[63] 2007 None Video tracks, 10-200 frames in length 105 positives 81.9% N/A - -

[41] 2007 None No results given for the detection stage only

[60] 2007 None Images from videos containing 281 signs N/A 88.97% FPPF: 0 - -

[42] 2008 None 164 images 164 positives 92.45% N/A - -

[37] 2009 None 4755 images from 4 videos N/A 97% FPPF: 0.056 92% FPPF: 0.048

[61] 2009 None 48 images 40 positives 82.5% FPPF: 0.042 - -

[36] 2009 None Images from 1 30 min. video containing 94 signs N/A 100% N/A - - 4
[43] 2009 None Images from videos containing 20 signs N/A N/A N/A - -

[19] 2009 None More than 500 images from videos N/A 99.16% FPR: 5.56% 98.3% FPR: 4.72%

[44] 2009 None 1000 images N/A 95% FPTP: 0% 91.8% FPTP: 0.9%

[45] 2010 None Images from videos 397 pos/697 neg 89.42% FPR: 0.05% - -

[65] 2010 None 3000 images N/A 85% N/A 72.47% N/A

[21] 2010 None 820 images from 2 videos 117 positives 89.8% PPV: 98.3% - -

[46] 2010 None 85 images from video 95 positives 76.64% FPPF: 0.094 - -

[52] 2011 None 2967 images from videos 4886 positives 90.1% PPV: 85.6% - -

[38] 2011 None 2134 images from videos 3298 positives 94.03% FPPF: 3.41 - -

[8] 2011 None Comparison of different methods, thus no final result to report.

[25] 2011 None STS dataset 641 positives 95.33% PPV: 100% 77.08% PPV: 91.85%



Traffic Sign Detection and Analysis:
Recent Studies and Emerging Trends

Andreas Møgelmose, Mohan M. Trivedi, and Thomas B. Moeslund

Abstract— Traffic sign recognition (TSR) is a research field
that has seen much activity in the recent decade. This paper
introduces the problem and presents 4 recent papers on traffic
sign detection and 4 recent papers on traffic sign classification.
It attempts to extract recent trends in the field and touch upon
unexplored areas, especially the lack of research into integrating
TSR with a driver-in-the-loop system and some of the problems
that presents. TSR is an exciting field with great promises for
integration in driver assistance systems and that particular area
deserves to be explored further.

I. INTRODUCTION

Traffic Sign Recognition (TSR) has seen much work
in the past decade. With the emergence of increasingly
complex Driver Assistance Systems (DAS), such as adaptive
cruise control, including some sort of TSR for driver
support has become a logical next step for inclusion in
top-of-the-line cars. Some cars already come equipped with
TSR for speed limit detection, but there are obviously many
other signs that would be interesting to recognize from a
DAS perspective.

The recent research in the field has been focused on
the narrow vision-problem of detection, classification, and
- to some extent - tracking of signs in images. For true
integration in DAS, a TSR system should rather been
looked upon as a driver-in-the-loop system where the driver
is an integral part, as described in [1], [2], [3]. By also
monitoring the driver, the system can tailor its output to
specific situations. Furthermore, research indicates [4] that
people are better at perceiving some signs than others,
something that a TSR system could also benefit from taking
into account to make sure that only relevant information is
presented to the driver. There is not point in presenting a
sign that the driver has already noticed.

TSR systems are traditionally split into a detection stage
and a classification stage. The detection stage takes care
of finding signs, while the classification stage figures out
what a particular sign means. This paper describes each
stage separately. It is possible to add a third stage that does
tracking of the detected signs. The structure can be seen in
fig. 1. The purpose of this paper is not to be a complete
survey, but to highlight trends in the TSR research by using
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some recent prominent papers as examples. The next section
describes traffic signs along with some of the challenges
and problem in detecting and recognizing them. After that
is sections on how selected recent papers do the detection,
classification, and tracking, respectively. That is followed up
by a discussion of future directions in which the recent trends
are examined and new or under-developed research areas are
described.

II. ON TRAFFIC SIGNS

Traffic signs have the purpose of guiding people through
the traffic in a safe manner. They are defined through laws,
so the TSR task is quite well-defined. It is still, however, a
complicated multi-class detection and classification problem,
in some cases with extremely low intra-class variance.

The designs of traffic signs are standardized through laws,
but differ across the world. In Europe many signs are
standardized via the Vienna Convention on Road Signs And
Signals [5]. There, shapes are used to categorize different
types of signs: Circular signs are prohibitions including speed
limits, triangular signs are warnings and rectangular signs are
used for recommendations or sub-signs in conjunction with
one of the standard shapes. In addition to these, octagonal
signs are used to signal a full stop, downwards pointing
triangles yield and countries have different other types, e.g.
to inform about city limits. Examples of these signs can be
seen in fig. 2.

In the US, traffic signs are regulated by the Manual on Uni-
form Traffic Control Devices (MUTCD) [6]. It defines which
signs exist and how they should be used. It is accompanied
by the Standard Highway Signs and Markings (SHSM) book,
which describes the exact designs and measurements of
signs. At the time of writing, the most recent MUTCD was
from 2009, while the SHSM book has not been updated

Detection Classification

Tracking

Fig. 1. The basic flow in most TSR systems.



since 2004, and thus it describes the MUTCD from 2003.
An updated version of the SHSM should be on its way. The
MUTCD contains a few hundred different signs, divided into
13 categories. US signs are white rectangles for regulatory
signs, yellow diamonds for warnings, downwards pointing
triangles for yield and octagons for full stop. Examples of
American signs can be seen in fig. 3.

The Vienna Convention and the US MUTCD are the main
standards. Most other countries use standards that are close to
one of them, or a combination of the two. While signs seem
to be well defined in many cases, the TSR task is made
more difficult by a number of challenges. The signs may
not be placed properly, so they are not perpendicular to the
road, colors may be off due to wear or lighting conditions,
they may be occluded by trees, poles, or other cars. Many
signs, such as speed limit signs with different limits, are
very similar to each other, making the classification task
complicated.

III. DETECTION

As mentioned, the purpose of the detection stage is to find
sign and pass them on to a classifier. It is common to treat
detection and classification as two separate steps, but the
interface between them is not standardized. Some classifiers
rely on the detector to provide information on not only the
center of the sign, but also its size, shape or overall sign
type (e.g. regulatory sign vs. warning sign). Very often the
attributes that determine the sign type - commonly shape and
color - are also attributes the detector use, so this information
is directly available.

Traditionally [12], [13], sign detectors have been clas-
sified as being either color-based or shape-based. Color-
based detectors would find signs based on their distinctive
background- or border-color, whereas shape-based detectors

(a) Speed limit. Sign
C55.

(b) End speed limit.
Sign C56.

(c) Start of
freeway. Sign
E55.

(d) Right turn. Sign
A41.

Fig. 2. Examples of European signs. These are Danish, but many countries
use similar signs.

(a) Stop. Sign R1-1. (b) Yield. Sign R1-2.

(c) Speed limit.
Sign R2-1.

(d) Turn warning with
speed recommendation.
Sign W1-2a.

Fig. 3. Examples of signs from the US national MUTCD. Image source:
[6]

would ignore color-information completely and find sign-
shapes instead. This classification of detectors seem a bit
outdated, since all color detectors also use shape information
for further filtering. Champions of shape-based methods
argue that color-detection is unreliable due to changes in
lighting and sign wear. However, similar arguments can be
put forth against shape-based detectors: Signs can be partly
occluded or they may be rotated or otherwise distorted so
their shapes look different, something not all shape based
detectors can handle.

A better way to look at detectors is by splitting them into
three blocks: Segmentation, feature extraction, and detection.
Classification is not covered here, as that second part of
the system is described in section IV. Almost all detection
algorithms can be split into these blocks, making comparison
across systems easy. Segmentation is usually color-based, but
it may also be shape-based. It is the act of narrowing down
the search to areas that are likely to contain signs. When
that is done, features can be extracted from their areas. The
choice of features is usually made in combination with the
choice of the detector, since they work in unison to determine
the actual signs.

In this paper, we have chosen to cover 4 recent leading
papers [7], [9], [10], [11] that describe different methods of
detecting signs. They were selected as recent trend-setting
papers from the pool shown in table ??. These papers, apart
from being very recent, cover trends in the area well: Some
use theoretical sign models, some use learned models, some
are mainly color-based, some rely more on shapes, some have
extensive focus on tracking. This means that they cover most
directions in the field. An overview of the selected papers
can be seen in table I. Each of the following subsections
cover their methods used for the three blocks: Segmentation,
feature extraction, and detection.



TABLE I
OVERVIEW OF DETECTION METHODS IN 4 RECENT PAPERS.

Paper Year Segmentation method Features Detection method

[7] 2010 HSI thresholding with addition for white
signs ([8])

DtB (distance to bounding box) Linear SVM

[9] 2011 Quad-tree color selection Edges Extended radial symmetry voting

[10] 2011 None Various HOG-features 5 stage cascaded classifier trained with Log-
itBoost

[11] 2010 Biologically inspired attention model Color, corner positions, height, eccentricity Color, corner positions, height, eccentricity

A. Segmentation
[9] opts to use a color based segmentation. They propose

a quad-tree attention operator. First step is a filtering that
amplifies red and blue colors, the colors of the signs that
the system is intended to work with. Then they compute a
gradient magnitude map for each of the colors, and their
corresponding integral images. Now, the image is evaluated
for whether it contains a total color gradient over a certain
threshold. If it does not, there is simply not enough colored
edges in the sign to constitute any signs. If it does, the image
is now split into four quarters, and the same check is done
for each quarter. This process continues until a region goes
below the threshold, or the minimum region size is reached.
Adjacent regions that reach the minimum size while still
containing enough gradients are clustered and constitute a
sign candidate.

In [7], they follow the method described in their earlier
paper, [14], and segment with a thresholding in the HSI
(Hue, Saturation, Intensity) color space. It is argued that
the HSI space is more robust to changes in lighting than
the regular RGB (Red, Green, Blue) color space. They do,
however add a method (originally pioneered by [8]), that
finds achromatic colors and use this to find white signs. After
the segmentation, image pixels that belong to the same color
are grouped together.

[11] use a biologically inspired segmentation algorithm,
which attempts to find areas in the image that are “inter-
esting”. They compute an attention map based on various
features, such as Difference of Gaussians (DoG), and Gabor
filter kernels that mimics the brain of a mammal. This is done
in the RGBY space, since that models how an eye works.
These features are weighted and result in a map where high
value areas are likely to contain signs.

In [10] they simply opt to not do any segmentation or
preprocessing, but jump directly into feature extraction and
detection.

For more on segmentation, see the great overview and
comparison in [15].

B. Feature extraction
The features that must be extracted must be chosen in

close connection with the detection method. In [9], they test
both an edge based detector and a cascade using Haar-like
feature [16], but end up using the edge based one. Thus, their
features are simply the image gradients.

The detector in [7] relies on Distance to Bounding box
(DtB) features. It is a measure of distances from the edges of

an object to its rectangular bounding box. A rectangular sign
will have zero distance to its bounding box, while an upwards
pointing triangle will have zero distance to the bottom of its
bounding box, but increasing distances when approaching to
the upper corners of the bounding box.

To obtain features in [11], they run a color thresholding
and then calculate a number of geometric features, such as
corner positions, size and eccentricity.

In [10], two different types of Histogram of Oriented
Gradient (HOG) features are used. HOG features are, as the
name suggests, histograms detailing the orientation of the
gradients in an area. Thus, all horizontal lines are binned
together, as are vertical lines, etc.

C. Detection

The detection block is where the features for each sign
candidate are evaluated and it is determined whether they
describe a sign or not. The detection can either be done
by matching a theoretical model with the feature (such as
deciding whether the candidate looks like a circle), or by
matching the features with a learned model of how signs
should look in these particular features.

[9], [11] use a theoretical model. In [9], a center-voting
scheme based on circles’ edges, first presented in [17], is
used to find sign candidates. [11] use a template for where
corners should be located.

[7], [10] instead use learned classifiers. [7] use a Support
Vector Machine (SVM) classifier on the DtB features and
[10] use a similar cascaded classifier, trained with Logit-
Boost.

IV. CLASSIFICATION

Classification is where the meaning of the detected
signs are determined. It is a classical computer vision
task. Recently, the competition “The German Traffic
Sign Recognition Benchmark” (GTSRB) [22] has put
renewed focus on the classification. It is a competition
with the objective of classifying a number of German
(and thus Vienna Convention compliant) signs in no less
than 43 classes. The number of classes alone makes
this a challenging task. The competition attracted many
competitors and spawned four papers [18], [19], [20],
[21] from the best competitors. These papers can be said
to represent the state-of-the-art in sign classification. An
overview can be seen in table II. They achieve very good
classification rates for the GTSRB dataset.



TABLE II
OVERVIEW OF CLASSIFICATION METHODS IN THE 4 PAPERS FROM THE GTSRB CONTEST.

Paper Year Features Classification method Classification rate

[18] 2011 Hue histograms and HOG Network of SVM classifiers 96.89%

[19] 2011 48x48 pixel color normalized image patches Convolutional neural network 98.98%

[20] 2011 32x32 pixel image patches in the YUV color space Convolutional neural network 98.97%

[21] 2011 HOG-features K-d trees and random forests 97.2%

Unlike the detection task, where some systems employ a
theoretical model instead of a learned one, all competitors
used a learned classifier. [18] use a network of SVM classi-
fiers. It runs a preprocessing to normalize and enhance colors
and calculate the features used: A set of hue histograms and
a set of HOG-features. [19] - the winner of the competition
- use a Convolutional Neural Network (CNN) and does
not extract specific features, but use full 48x48 pixel color
normalized image patches. A CNN is inspired by the primary
visual cortex [23] and described further in [24], [25]. [20]
also use a convolutional network on full image patches, this
time resized to 32x32 pixels and converted to the YUV color
space. [21] use K-d trees (similar to [26]) with the Best
Bin First algorithm described in [27] and random forests on
HOG-features.

V. TRACKING

Tracking is the act of following a sign through several
frames. Tracking is not used by any of the papers mentioned
in the classification section above, since they were simple
passed an image of a sign and could leave any tracking to the
detector. Detectors, however, can benefit vastly from incorpo-
rating a tracking algorithm. Not only can it be used to discard
false positives by discarding signs that only appear in a single
frame - usually the result of noise - they can also use it to
only present new signs to the classifier, enhancing the speed
of the system. Furthermore, a sophisticated tracking system
can make sure that signs that are temporarily occluded are
not reported as new signs when they show up again.

Of the selected papers, only one employ tracking: [9]. It
has a sophisticated tracking system based on the changes in
appearance of the sign. When detecting a sign, it is assumed
to be undistorted. Then a number of random deformations of
that particular sign is generated. These distorted views are
used to train the tracker on the fly. The motion is learned by
fitting these to the sign in following frames using regression.
The system is described further in [28], [29].

VI. DISCUSSION AND FUTURE DIRECTIONS

TSR is an area that has seen a lot of contributions
recently, and it is an area that is well researched. The main
shortcoming is that for detection, no standardized dataset
is used, so comparison among papers is hard. One public
dataset exist that is suitable for detection: The Swedish
Traffic Signs Dataset [30]. It is not yet widely used. That
situation was recently remedied for the classification stage,
where the GTSRB dataset is a good contribution which is
already used in a few papers. Another publicly available

dataset for both detection and classification is the KUL
Belgium Traffic Signs Dataset and its companion, the KUL
Belgium Traffic Sign Classification Benchmark.

The trends seem to be towards more thoroughly tested
and compared systems. This effort is spearheaded by the
GTSRB, but something similar is needed for detection. It
also seems that the trend goes toward learned systems rather
than pre-programmed heuristics. Earlier, the common thing
has been to create full systems covering both detection and
classification, but with the GTSRB, systems has been more
modularized and it has become common to create systems
that only do classification, something that will make it
easier to mix and match approaches to arrive at a system
that is fit for a specific application.

However, when looking at TSR in a bigger perspective,
much remains to be done. Good detection and classification
systems exist, but little work on how to apply TSR in actual
systems exist. As mentioned in the introduction, many TSR
systems cite driver assistance as their motivation, but simply
recognizing signs does not help the driver. In order for
TSR to be really applied to driver-in-the-loop systems, it
is crucial to take him into account. One option is to look at
driver attention: Why present the driver with signs that he
has already seen? That will only contribute to information
overload. It may also be necessary to pay special attention
to signs that drivers are known to simply glance over, as
presented in [4].

For a driver-in-the-loop system tracking becomes even
more crucial than it already is. As of now, it is mostly used to
increase robustness, or not at all. When a driver is present, it
is important not to present the same sign to him twice, again
to prevent information overload. This means that when a sign
is temporarily occluded, it should be handled by tracking so
it is not discovered as a new sign when it shows up again.
There is also the issue of how to present recognized signs to
the driver. In general, the area of really including the driver
in TSR systems are virtually unexplored.

VII. CONCLUDING REMARKS

This paper has presented 4 significant recent papers in
the area of sign detection and 4 in the area of classification.
TSR systems have seen much activity recently, but progress
is hampered by the fact that comparison across papers is
hard when no standardized dataset for detection exists. Still,
very good systems show up, and especially the classification



seems to fare very well. This is helped by the new image
database, the GTSRB.

Still, much research remains to be done in the area of
applying TSR to DAS. Proper integration of the two is a
very promising and exiting task that is in need of much more
attention. While many systems perform well in the area when
viewed strictly as an object detection or classification task,
not much work has been done in applying such systems to
driver assistance.
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Abstract

This study compares the performance of sign detec-
tion based on synthetic training data to the performance
of detection based of real-world training images. Viola-
Jones detectors are created for 4 different traffic signs
with both synthetic and real data, and varying numbers
of training samples. The detectors are tested and com-
pared. The result is, that while others have successfully
used synthetic training data in a classification context,
it does not seem to be a good solution for detection.
Even when the synthetic data covers a large part of the
parameter space, it still performs significantly worse
than real-world data.

1 Motivation

With the emergence of more advanced sensors em-
bedded in cars, the field of Traffic Sign Recognition
(TSR) has seen increasing interest over the last decade.
TSR systems can be used in a number of scenarios,
ranging from Driver Assistance Systems (DASs) to
fully autonomous cars.

Many sign detection systems (see section 2) rely
on large amounts of training data to work. Over the
past two years, a few traffic sign datasets has shown
up: The GTSRB dataset [11, 12], the Swedish Traffic
Signs Dataset [7], and the KUL Belgium Traffic Signs
Dataset. A commonality among these datasets is that
they contain European Signs conforming to the Vienna
Convention. Since signs differ from region to region
and in many cases from country to country, an interest-
ing proposition is to use synthetically generated training
data, saving a lot of time and effort in gathering the data.
Synthetic training data has not yet been widely used in
the field of TSR, but is worth researching since no US
dataset exist. A recent survey [9] shows that research on
the detection and recognition of US traffic signs is lack-

ing in general. This paper investigates if using synthetic
data for the detection of traffic signs is feasible.

The role and importance of high quality, representa-
tive datasets in the development of TSR systems cannot
be overemphasized. Collection of such datasets is ex-
pensive (in time as well as effort) task. This brings for-
ward the idea of using synthetic data, since signs have a
well-defined appearance. The use of synthetic training
in sign detection is not yet widespread, prompting this
paper. Our paper is focused closely on the generation
of synthetic training data for detection purposes. It is
also the first of its kind dealing with US signs. In [5, 4],
generation of synthetic data specifically for classifica-
tion is investigated. In [10], some aspects of detecting
non-US signs with synthetic data is discussed. The de-
tection task is somewhat harder the classification due to
the lack of knowledge about whether a sign is present,
where it is, and what size it has.

The following section briefly covers the general
workings of TSR systems, followed by a section on how
we generate synthetic training data. Towards the end
of the paper, the performance of synthetic training data
is compared to the performance of real-world training
data when used to train a simple AdaBoost cascade with
Haar-like features [13].

2 TSR: General approaches

Overviews of TSR can be found in [9, 2, 3]. TSR
can be split into two main stages: Sign detection and
sign classification, as seen in fig. 1. Not all detection
approaches require training as such, since they are using
a theoretical model of the sign, based on e.g. the shape.
With that said, many papers present Machine Learning
(ML) based approaches. In [1], an AdaBoost Cascade
similar to the one used in this paper was used, albeit on
specific color channels. In [6], the image is segmented
with a HSI threshold and then classifies the resulting
blobs using a linear Support Vector Machine (SVM) on
Distance to Bounding Box (DtB) features. DtB features



Figure 1: Flow for ML-based TSR-systems. The stages
can be trained with synthetic or real-world data, and two
stages does not have to be trained with the same type.

(a) Pedestrian
crossing

(b) Signal
ahead

(c) Stop (d) Speed
limit

Figure 2: Examples of typical US sign templates.

are measurements of the distance between the edge of
the blob and its rectangular bounding box.

3 Synthetic training data for detection

The question this paper tries to answer is: Can we
substitute real-world training data with synthetic in ML
based sign detection systems? The idea is to generate
synthetic training images from a drawn template. Tem-
plate examples can be seen in fig. 2.

The goal is to emulate how signs of the given type
might look on pictures from the real world. In order to
do this, several transformations are made randomly to
the template:

Hue variations emulates faded signs and color casts
due to lighting of the natural scene. Done by
adding to/subtracting from the hue-parameter in
the HSV color space.

Lighting variations emulates shadows and variations
in exposure. Done by adding to/subtracting from
the value-parameter in the HSV color space.

Rotations around the x-, y-, and z-axis with the origin
in the center of the template. Emulates signs cap-
tured from different perspectives.

Backgrounds taken from a real image are added to the
template. This emulates the various backgrounds a
sign might have in real life.

Gaussian blur is added to emulate an unfocused cam-
era. It should be noted that Gaussian blur does
not really emulate the bokeh produced by an un-
focused lens, but emulating bokeh properly is not
a straightforward task, and it would likely not give

(a) Synthetic training images.
Template in fig. 2a

(b) Real-world training im-
ages.

(c) Synthetic training images.
Template in fig. 2c

(d) Real-world training im-
ages.

Figure 3: Samples from the training image sets.

any notable detection benefit.
Gaussian noise to emulate sensor noise.
Occlusions are added in the form of tree branches

growing in front of some signs.

Each transformation should be applied with a ran-
dom parameter within some realistic boundaries. Sam-
ples of training images can be seen in fig. 3.

To evaluate whether the synthetic datasets cover the
same variance in appearance as the real-world data, we
compare the distributions in intensity- and blur-values
among training sets. In fig. 4a a plot of the mean of the
intensities in the training images is shown. Each point
in the plot is a single image. Data for the detectors of
two different signs is shown. In a few sets, the intensity
span does not match, but the large 5000 image stop sign
set is similar to real-world data. Another parameter is
shown in fig. 4b: Blur. Blur is calculated as

B =
1

n

n∑

i=0

ei (1)

where B is the blur-value, n is the number of vertical
edges in an image and ei is the edge width of a spe-
cific edge pixel, given as the distance between the pixels
with the local maximum and minimum intensity around
the edge pixel. The measure is described further in [8].
This shows that the blur variance is covered well by the
synthetic data.



Table 1: Results of the comparative evaluations of detectors

Training type Training images (posi-
tive/negative)

Stages Signs to find TP FP FN

Stop
Real-world 1218/2500 20 103 76 (73.8%) 11 27
Real-world 1686/3000 20 103 75 (72.8%) 8 28
Synthetic 1218/2500 17 103 18 (17.5%) 2 85
Synthetic 5000/10000 19 103 26 (25.2%) 5 77
Synthetic 1218/2500 10 103 60 (58.3%) 1500 43
Pedestrian crossing
Real-world 364/800 20 40 29 (72.5%) 10 11
Real-world 1044/2000 20 40 30 (75%) 2 10
Synthetic 364/800 14 40 11 (27.5%) 28 29
Speed limit 35
Real-world 253/500 20 21 15 (71.4%) 1 6
Synthetic 253/500 7 21 5 (23.8%) 32 16
Synthetic 2000/4000 7 21 6 (28.6%) 6 15
Signal ahead
Real-world 597/1500 20 56 42 (75%) 10 14
Real-world 859/2000 20 56 38 (67.9%) 4 18
Synthetic 597/1500 13 56 14 (25%) 117 49
Synthetic 2000/4000 13 56 16 (28.6%) 53 48

(a)

(b)

Figure 4: Distribution of two parameters in the training
sets.

4 Comparative evaluation

To compare the synthetic training data to training
data obtained from real footage, a simple Viola-Jones
based detector [13] was trained for the four sign types
illustrated in fig. 2. The choice of detection algorithm
is not crucial, as the purpose of this paper is not to find
a perfect traffic sign detector, but rather look at the rela-
tive differences between detectors trained with synthetic
and real-world images. It was trained with an image
size of 20x20 pixels in all cases, except for the rectan-
gular speed limit sign, trained with 18x24 pixels.

The detectors created with various numbers of train-
ing images was tested on a set of real-world images, col-
lected from cars in conjunction with this lab’s research.

With all signs, the real-world data performs signif-
icantly better than the synthetic data. Providing more
training data in the synthetic case does help, but even
a large increase (more than a doubling) of the training
data does not make the synthetic data perform compa-
rably to the real-word data. All detectors were trained
with a target of 20 stages, but some terminated ear-
lier due to a sufficiently good fit to the training data,
and others were lowered to give better detection per-
formance at the cost of more false positives. It is in-
deed possible for the synthetic detector to find more true
signs, but at a huge cost in false positives, and still not
as good as the real-world detector.

Even in the cases (like the stop sign detector with
5000/10000 training images) where the synthetic data
spans nearly the same space as the real-world detector,
the synthetic detector fails to achieve a detection rate
anywhere near the real-world data.



5 Concluding remarks

We discussed a research study to assess the feasibil-
ity of using carefully synthesized training datasets for
developing traffic sign detectors. In this research, out-
put from a synthetic training generator has been used
to train a stock AdaBoost cascade and its performance
compared with real-world training images. The real-
world training data consistently performs significantly
better than the synthetic training data, even in cases
where the synthetic data seems to span a similar set of
appearances. This leads to the conclusion that there is
simply no substitute for real-world images in the case
of detection.

An ML-approach to setting the synthetic data gen-
eration parameters would be a logical place to go from
here, if further study of synthetic data for detection is
desired. It is also possible that the system could bene-
fit from further transformations to the template image,
such as motion blur. Other works have shown promising
results in using synthetic training data for classification
of signs. An interesting direction of research could be
to explore hybrid (real and synthetic) datasets for TSR
approaches.
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[4] H. Hoessler, C. Wöhler, F. Lindner, and U. Kreßel.
Classifier training based on synthetically gener-
ated samples. In Proceedings of 5th international
conference on computer vision systems. Bielefeld,
Germany, 2007.

[5] H. Ishida, T. Takahashi, I. Ide, Y. Mekada, and
H. Murase. Identification of degraded traffic sign

symbols by a generative learning method. In Pat-
tern Recognition, 2006. ICPR 2006. 18th Interna-
tional Conference on, volume 1, pages 531–534.
IEEE, 2006.

[6] S. Lafuente-Arroyo, S. Salcedo-Sanz,
S. Maldonado-Bascón, J. A. Portilla-Figueras,
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A Two-stage Part-Based Pedestrian Detection System
Using Monocular Vision

Andreas Møgelmose, Antonio Prioletti, Mohan M. Trivedi, Alberto Broggi, and Thomas B. Moeslund

Abstract— This paper introduces a part-based two-stage
pedestrian detector. The system finds pedestrian candidates
with an AdaBoost cascade on Haar-like features. It then verifies
each candidate using a part-based HOG-SVM doing first a
regression and then a classification based on the estimated
function output from the regression. It uses the Histogram of
Oriented Gradients (HOG) computed on both the full, upper
and lower body of the candidates, and uses these in the final
verification. The system has been trained and tested on the
INRIA dataset and performs better than similar previous work,
which only uses full-body verification.

I. INTRODUCTION

Pedestrian detection is currently a very large research field.
It can be used in surveillance, Advanced Driver Assistance
Systems (ADAS), and many other places. The ADAS sce-
nario offers plenty of challenges (as summarized in [1]):
High variability in appearance among pedestrians, cluttered
backgrounds, highly dynamic scenes with both pedestrian
and camera motion, and strict requirements in both speed and
reliability. Input from a reliable pedestrian detection system
can be used to warn the driver about people in front of the
car, prepare or even activate a braking maneuver to prevent
a collision, or deploy other safety systems such a airbags.

ADAS is a a challenging domain to work within. Braking
systems take a short while to apply, and reaction times must
be fast for driving, where fractions of a second can be the
deciding factor between a collision and a near-miss. At the
same time, the system must be robust, so the braking system
is not deployed mistakenly (due to a false positive detection),
which could itself lead to accidents, or worse, not employ at
all (due to a missed detection). Further reasoning than just
detection is necessary in such a framework, with pedestrian
intent estimation being a good example, as presented in [2]
or as another example, automatic breaking as in [3].

This paper introduces a part-based 2-stage detection
method, an extension to [4]. It combines the speed of a Haar-
based boosted cascade with the low number of false positives
from the HOG-SVM detector, bringing it closer to the strict
ADAS requirements than any of the two algorithm on their
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own. We extend it to a part-based solution, which lowers the
false positive rate even further.

This paper is structured as follows: In the next section,
we describe some of the work related to ours and we
provide an overview of our algorithm. In the next sections
we describe each stage in the algorithm in detail. Finally, in
V, we describe the performance of our algorithm followed
by suggestions for future work and a conclusion.

II. GENERAL APPROACH AND RELATED WORK

As mentioned, pedestrian detection is a field with much
attention from the research community. Even when narrowed
to applications in connection with cars and ADAS, a large
body of work exist. A classic method of pedestrian detection
is a boosted cascade on Haar-like features, first presented by
Viola and Jones [5]. It is very fast, but lacks robustness due to
the high appearance variability among pedestrians in the real
world. Instead, many people turn to the HOG-SVM solution
presented by Dalal and Triggs [6]. It is much more robust
and generally detect pedestrians in harder situations, while
keeping a low number of false positives. Its problem lies
in processing speed. As mentioned, the ADAS application
requires fast processing, something that is not immediately
obtainable with the HOG-SVM detector. The HOG-SVM
method was explored for use with infrared images in [7].
For further exploration of pedestrian detectors, we refer the
reader to the general survey by Gerónimo et. al. [1] or, for
vision-only based systems, Gandhi and Trivedi [8], [9]. The
system presented in our paper uses monocular vision as base
for the detection. This means that the hardware requirements
for the car are low and realistically possible - many cars
are already outfitted with a front facing camera for other
purposes, such as lane detection. For a survey of monocular
vision based methods, see [10].

We combine the speed of the Haar detector with the
robustness of a part-based HOG-SVM detector. The base
for the method used in this paper was first presented by
Geismann and Schneider [4], but is also covered by others in
various versions [11], [12]. Apart from using a combination
of a Haar-cascade and HOG-SVM, Geismann and Schneider
also evaluated using a sparse HOG descriptor to speed up
the verification. Part-based pedestrian detection has been
presented in various versions before, such as [13], [14], [15].

The properties of the Haar cascade and the HOG-SVM
detector makes them prime candidates for combination: The
Haar cascade does the initial pass, finding Regions Of
Interest (ROIs) that are passed on to the HOG-SVM detector
which verifies the initial findings by the Haar cascade. The
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Fig. 1. The flow of the algorithm described in this paper.

first stage is called the detection stage and the second the
verification stage. That is the basics of the approach outlined
in [4].

Our goal is to lower the number of false positives without
too much penalty in the detection rate. In order to do this, we
alter the verification stage to not only verify based on a full
body classification, but also a lower body and upper body
classifier. We combine these results to figure out whether the
ROI contains a person.

The combination of verification results is done in two
ways, which are compared: A simple majority vote, requiring
at least two of three classifiers to verify the detection, and
a more advanced way, which introduces a third stage to the
algorithm, classifying each window based on the estimated
function value from an SVM regression performed on each
part.

An overview of the flow through the algorithm can be seen
in fig. 1.

III. DETECTION STAGE

The detection stage is an AdaBoost cascade on Haar-
features [5]. It works by using AdaBoost to learn a number of
weak classifiers, which are combined into strong classifiers.
Several layers (called stages) of these strong classifiers are
then combined in a cascade to create the final detection. The
cascaded structure makes the algorithm very fast, since most
candidates are discarded in one of the first stages, thus not
having to be calculated in following stages. Only the actual
detections have to pass through all stages. The algorithm is
described in detail in [5].

Throughout this paper, we work with the INRIA Pedes-
trian Dataset [6]. Thus, the detection cascade was trained
with the training set given therein: 2416 positive images and
12180 negative images. The training images were cropped
closely around the annotated persons, because Haar-cascades
does not benefit from having as much background included
as HOG-based classifier. After the crop the training images
were resized to 12x28 pixels.

Fig. 2. Example of the output from the detection stage. It is clear that it
contains several false positives, but that is desired, since it ensures that also
the true positives are included.

The detection stage is set up so that it finds the maximum
possible number of pedestrians, which also means that it
will return plenty of false positives. A larger number of
false positives will slow down the computation, since the
verification stage must process more, but it is a worthy trade-
off given that the true positive rate of this stage forms the
upper bound of detections for the entire system.

The detection stage returns bounding boxes of all the
potential pedestrians in the picture, which are sent on to
the verification stage. Part based detection in the detection
stage is not used, since the data from [16] shows that the
Haar cascade generally performs bad in part-based detection
schemes. An example of the output of the detection stage
can be seen on fig. 2.

IV. VERIFICATION STAGE

The part-based verification stage used in this work dif-
fers from the full-body verification stage of Geismann and
Schneider’s [4]. We use a part-based detection scheme. The
verification stage consists of two sub-stages: The individual
part verification and the combined verification. Three SVM



Fig. 3. The four types of training images used in this system: The three
parts for the verification stage, and a closer crop for the detection stage.

regressions based on dense HOG descriptors are calculated
and applied to the ROIs given by the detection stage.
One is for full body classification, one is for lower body
classification, and one is for upper body classifications.

Our algorithm uses classic dense HOG descriptors (as
opposed to the sparse descriptors used in [4]). They are
calculated using integral images in an effort to speed up the
process, as described in [17]. Since HOG works best if some
amount of background is introduced to the detection window,
the ROIs are resized appropriately from the tight boxes that
are returned by the detection stage. Then the content of the
ROIs is scaled so it matches the size the SVMs were trained
with. At this point the HOG is calculated and passed on to
the SVMs.

As in the detection stage, each SVM is trained with the
INRIA training set. The full body SVM was trained with
the full training images, whereas the lower- and upper-body
SVMs were trained with the lower and upper half of the
training images, respectively. In our system, there is no
overlap between the lower and upper body. The parts of
training images used for each type are shown in fig. 3. So
in total, three SVMs were used.

To do the combined verification, two different methods
were tested: Majority voting and regression output classifi-
cation.

For majority voting, a regular SVM for classification was
trained. It returns which class (pedestrian vs. non-pedestrian)
the current detection window belongs to. If at least two out
of three classifiers label the window as a pedestrian, it is
described as a detection. If a detection is labeled 1 and no
detection is labeled -1, the formula used for the majority
voting is:

lout =

{
1 if

∑i<3
i=0 li >= 1

−1 if
∑i<3

i=0 li < 1
(1)

TABLE I
OVERVIEW OF THE DETECTION RATES ACHIEVED BY GEISMANN AND

SCHNEIDER [4] WITH 0.2 FALSE POSITIVE PER FRAME

Video 1 2 3 4 5 Mean

Dense descriptor 52% 70% 91% 61% 55% 65.8%

Sparse descriptor 45% 53% 85% 69% 58% 62%

where lout is the final decision and li is the output from one
of the three part-based detectors.

For regression output classification, the three part SVMs
were instead trained for regression. The training was per-
formed so the resulting function would ideally return 1 in the
case of a detection and -1 when nothing was found. When an
unknown window is passed through the output function, it
will return a value close to 1 if it is a pedestrian, and a value
close to -1 otherwise. The output of these three regressions
create their own 3 dimensional feature space. Another SVM
has been trained to classify in this space. The output from
the three regressions is passed into this second SVM and the
output from that classifier is the final label.

V. EXPERIMENTS AND TEST

In order to set various parameters so that the best possible
performance is achieved, several experiments have been
performed. While the training part of the INRIA dataset was
used to train both the detection stage and the verification
stage, the test part has been used as base for these experi-
ments. It contains 742 images in total, of which 289 contain
one or more persons. In total the test set contains 589 persons
that should be detected by a perfect system.

The baseline for the comparison is the performance of the
system in a configuration similar to the one by Geismann
and Schneider: Two stages, but no part-based verification.
The principal results from their paper can be seen in table I.
Each of the five results in the table are from a test video they
obtained from a driving car. Unfortunately we do not have
access to the test videos they used, so our results cannot
be compared directly with those. Instead we compare the
performance of our own implementation of their algorithm
to out part-based algorithm.

One of the most important parameters in the system is
the number of stages in the Haar-cascade, in this paper
designated k. It is interesting to see what impact the changes
in k has on the complete system. In fig. 4, an ROC curve
is shown for the full system with varying depths in the
detection stage. The importance of this parameter is evident.
As k is lowered, the number of detections rise, but at a large
cost in false positives. For the final system, we chose to go
with k = 15, since it seems to give an acceptable trade-off
between true positives and false positives.

The choice of k has an impact on the speed of the system,
since more detection windows means slower performance.
The full (but non-optimized) system has been run with
several numbers of stages and timed, to get a sense for the
speed effects it might have. The results are seen in table II



Fig. 4. Receiver-Operating-Characteristic for the full system with varying
k, cascade depths in the detection stage.

Another important parameter is the padding, p: The
amount with which the ROIs returned by the detection stage
is enlarged with. The HOG-SVM detector works better if
more background is included than what the Haar-cascade
uses, so there is no question that the ROIs must be enlarged.
Experiments showed that a padding of 3 performed best.
Because HOG-SVM is not scale invariant, so when the
padding rises, the pedestrian in the ROI becomes a lot
smaller, relative to the image, than the pedestrians in the
training set. That will alter the output of the detector and
some testing was required to make it work properly. The
padding value itself is used to calculate the padding in pixels
to apply to the ROI. The width in pixels is calculated as:

ppixels =
wROI

wt
· p (2)

where p is the padding value, wROI is the width of the found
ROI, wt is the width of the training images, and ppixels is
the padding measured in pixels. The padding is applied on
all four sides of the image. width of detected ROI/width of
the training image * padding

After introducing part-based verification to the system,
experiments were made to determine whether the simple ma-
jority voting or the confidence classification worked the best.
These tests were done with the best settings, as determined
earlier in this section. The results are shown in fig. 5. In
absolute numbers, the detection rate is not overwhelming.
The important part is the difference between the old two-
stage approach with only full-body verification and the new
approach. While the voting based approach is not any better
then the old full-body verification, the part-based version
with regression output classification is better all across the
range of false positives per frame.

Examples of detections can be seen in fig. 6.

VI. FUTURE WORK

The algorithm has a series of parameters that can be
adjusted to enhance performance. In this work, a few tests
and comparisons has been carried out, in order to give the
best performance. However, a more formal investigation of
the optimal parameters would be interesting. One possibility

Fig. 5. Receiver-Operating-Characteristic for the final system. The majority
voting approach is not performing better than the full-body approach, but
the regression classification approach is consistently better.

TABLE II
CHANGES IN PROCESSING SPEED FOR DIFFERENT VALUES OF k

Number of images 100

Mean image width 711.88 pixel

Mean image height 818.72 pixel

k Mean time per frame

12 2.5 s

13 1.84 s

14 1.57 s

15 1.46 s

16 1.39 s

17 1.22 s

is to use a genetic algorithm or particle swarm optimization
to set the best parameters.

This work has mostly been concerned with lowering the
number of false positives in the classic combination of a Haar
cascade and HOG-SVM, so speed has not been a primary
concern. First and foremost, several optimizations, such as
using sparse HOG calculation, are presented in [4], so they
could be implemented with little impact on performance.

The system presented here deals only with single-frame
detection. A full pedestrian detection system would very
likely benefit a lot from using tracking between frames to
enhance the performance.

VII. CONCLUDING REMARKS

In this paper, a part-based two-stage pedestrian detector
has been presented. It builds on previous work by Geismann
and Schneider [4], but extends it by introducing a part-based
verification system instead of just a full body verification.
The system works in two stages: A detection stage based on
an AdaBoost cascade on Haar-like features. Its purpose is
to find all pedestrian candidate patches in the input image.
All these Regions Of Interest are sent on to a verification
stage, where the Histogram Of Oriented Gradients (HOG) is
computed for the entire person, the lower body, and the upper
body. Each of the HOGs are then sent trough an SVM that
computes a confidence value for which class (pedestrian or



(a) (b) (c)

Fig. 6. Example outputs of the detector. Input images are images captured using one of LISA’s experimental cars. Red boxes indicate a detection, blue
are the candidates from the detection stage, and green are the candidates with added padding. In (a) the pedestrian is detected, while a couple of false
candidates from the detector are ignored. In (b) the pedestrians are not detected, since the detection stage does not find accurate enough candidate boxes.
In (c) the pedestrian is detected and no false windows are found in the detection stage.

non-pedestrian) the part belongs to. These values are then
passed into a second SVM-classifier, which performs the
final verification. The system has been tested on the INRIA
dataset and the results show that when compared with the
original two-stage detector, it performs better across the full
range of false positives per frame.
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B
Jacobs Research Expo poster

The poster presented at the Jacobs Research Expo is included on the following page.
This is to give an idea of its design and layout, and while the text is not readable at such
a small reproduction, it does not contain any information not contained in Learning to
Detect Traffic Signs: Comparative Evaluation of the Roles of Real-world and Synthetic
Datasets, which can be found in appendix A.
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C
Training a cascaded classifier with OpenCV

In order to train a cascaded classifier, positive sample image and negative sample
images must be obtained. Positives should contain a picture of the object that is to be
detected. Negatives should be guaranteed to not contain any instances of the object.

OpenCV comes with several tools to train a cascade. opencv_traincascade is the
main program that actually performs the training and opencv_createsamples can help
creating and organizing the training images. OpenCV requires the positive training
images to be of the same aspect ratio, and if they are not the same size, OpenCV is
able to resize them. However, the easiest thing is to resize them beforehand in order
to know exactly what training goes into the cascade.

When the positive training images has been obtained, two ImageMagick commands
can be used to resize and crop them into the proper size and aspect ratio (in this case
resulting in images 18 pixels wide and 24 pixels high):

1 mogrify -resize 18x24^ *.png
2 mogrify -gravity center -crop 18x24 +0+0 *.png

After that, a .dat-file (the extension does not really matter, it is a simple plain
text file) should be produced, that contains a list of all the positive images in the
format [filename] [number of objects] [[x, y, width, height of object 1] [x, y, width¶

, height of object 2] ...]. If the images are pre-cropped to only contain one object, a
line is simply [filename] 1 0 0 [image width] [image height]. For the negatives a list of
files should be created. To create a .dat-file for pre-cropped positive images and one
for negative images via the Unix command line, use:

1 find . -name ’*.png ’ -exec echo \{\} 1 0 0 18 24 \; > positives.dat
2 find . -name ’*.png ’ > negatives.dat

Based on the .dat-file, the positive image should be packed into a binary .vec-file.
This can be done with the opencv_createsamples utility (the second command simply
verifies that the .vec-file works):

1 opencv_createsamples -info positives.dat -vec positives.vec -w 18 -h 24¶
-num 7000
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2 opencv_createsamples -vec positives.vec -w 18 -h 24

Note that in the above, the -w and -h parameters are the width and height of the
positive training images, so those numbers should correspond to the numbers used in
the mogrify-commands executed earlier.

Now, the actual training can be performed with opencv_traincascade:

1 opencv_traincascade -data newCascade -vec positives.vec -bg negatives.¶
dat -numPos 7000 -numNeg 10000 -numStages 20 -precalcValBufSize 512¶
-precalcIdxBufSize 512 -featureType LBP -w 18 -h 24

The -data parameter defines where to put the resulting cascade. -vec should point
to the file containing the positive training images and -bg to the list of negative training
images. -numPos and -numNeg defines how many positive and negative images to train
with, and -numStages how many stages the classifier should contain (however, if sufficient
accuracy is obtained at an earlier stage, the training program will terminate). -¶

precalcValBufSize and -precalcIdxBufSize defines how much memory is allocated for the
training. The more, the better, but the total should not exceed the amount of free
memory on the machine running the training. -featureType can be either Haar (Viola
and Jones, 2001; Lienhart and Maydt, 2002) or LBP (Liao et al., 2007) (faster).

When training, opencv_traincascade will save each stage independently and assem-
ble them into one XML-file in the end. If you wish to assemble a detector before the
full training is done, simply run opencv_traincascade again, but with -numStages set to
a number equivalent to the number of stages that are done. It will load all the stages
that are done and assemble the final XML-file.



D
Using Video Annotator

Video Annotator is the simplest of the two annotators. Its purpose is to split long
source videos into smaller clips called tracks. When the program is started, the screen
in fig. D.1 shows. From here, click Load video... to start annotating a video. A prompt
will show, where video files can be opened.

Figure D.1: The initial state of Video Annotator.

After the video has been loaded, it will begin playing immediately. A bar informs
about the progress through the video, but the tool does not support searching to specific
places in it. When an object deserving annotation shows up, click Start new track or
press the hotkey s. This will open a dialog window as seen in fig. D.2. In the top
input field, input the tag that will be associated with this track. The field below shows
tags previously used in this session, as well as tags defined in the file trackTypeList.txt,
located in the same directory as the Video Annotator executable. Video annotator
provides auto complete on all entries in the list below the input field, but it is also
possible to input a new tag. It will automatically be added to the list, so it has auto
complete for any further annotations in this session. The tag will not be saved into
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Figure D.2: Starting a new track.

trackTypeList.txt automatically, so to add it there, the file should be edited manually.

Multiple tracks can run simultaneously, so there is no requirement of stopping a
track before starting a new one. This is relevant in case several interesting objects
appears in overlapping segments of the source video.

When the annotated object disappears from view so the track should be ended, click
End track or press the hotkey n. If only one track is currently running, it will be ended.
If several are running, the user will be prompted to tell the program which track to
end.

For each annotation ended, a video is saved containing the track, and a line is
added to the file <videoFileName>_annotations.csv. The csv file contains information on
each track: Its corresponding video file, its tag, and information on where the track
originated, ensuring full traceability of all tracks. The video files and the csv files are
all saved in the same directory as the source video is located in. They have a timestamp
appended to their file names to prevent any file naming collisions.
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Using Frame Annotator

Frame Annotator takes the output of Video Annotator and annotates it in further
detail. It allows the user to annotate frames in tracks at a specific interval. When
starting the program, the interface looks like fig. E.2. The black area is where the
frames will show up for annotations, the left pane holds information about the current
annotation, and the bottom contains various controls.

Figure E.1: The initial state of Frame Annotator.

Before annotation starts, there is the option to edit the meta data fields. This
cannot be done after annotation has been initiated, since then the header of the output
file has been written. Each annotation can carry an unlimited number of meta data
fields. A meta data field is a boolean value that can be toggled independently for each
annotation. In fig. E.2, it can be seen that the two meta data fields currently set
are called Occluded and On another road. To edit the fields, go to Annotations → Edit¶

meta data fields... (see fig. E.2), or to change the fields more permanently, edit the
file metaDataList.txt. It is also possible to change the interval of annotated frames by
editing the field Max. frame distance and an upper limit of annotated frames from each
track can be set by editing the field Max. frames per track. If these fields are changed
during run time, they will not take effect until the next track is loaded.
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Figure E.2: Editing meta data settings.

Figure E.3: Annotating with Frame Annotator.

When the fields has been set up, open a set of tracks for annotations by clicking
Open directory... and opening the csv file output from Video Annotator, which contains
a list of tracks. Frame Annotator will automatically open the first track in the set, and
show the first frame up for annotation. Frame Annotator is set up for rapid annotation,
so many functions are mapped to shortcut keys, which may appear confusing to learn
at first, but will quickly start to make sense.

An annotation is started by clicking in one corner of the annotation and ended
by clicking in the other. The annotation does not have to be completely accurate at
first, since it can easily be adjusted using the keyboard shortcuts described in table
E.1. After clicking to finish the box, the newly set annotation will be set as the active
annotations, marked by a yellow outline. Other non-active annotations that may be
in the image are marked with a green outline. The data for the current annotation
can be seen in the property pane and adjusted using either keyboard shortcuts or the
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Table E.1: Keyboard shortcuts for Frame Annotator

Operation Shortcut

Move annotation up w

Move annotation down s

Move annotation left a

Move annotation right d

Shrink annotation vertically i

Grow annotation vertically k

Shrink annotation horizontally j

Shrink annotation horizontally l

Select next annotation e

Select previous annotation q

Set tag F2

Toggle meta data field 1-8 F5 - F12

Save and continue to next frame Enter

property pane itself by double clicking the property to change. If any of the meta data
fields are toggled to true, a small red box is shown inside the annotation frame.

Starting a new annotation is as simple as clicking anywhere outside the present
annotations. When all objects have been annotated, click Save and continue >>. This
will save the current frame if it contains any annotations, and it will save info on
the annotations to the frameAnnotations.csv file. All files are saved to a folder called
frameAnnotations-<annotationFileName>, which is automatically created in the path that
contains the original track csv file. It is required that all annotations has a tag, and
when the user presses Save and continue >>, the program will prompt for a tag for any
untagged annotations.

If Retain boxes is checked, any annotations on the current frame will be preserved
for the next frame, so their position and size can simply be adjusted without the need
to create a new annotation. Annotations are never retained across tracks.

The final options are to click either Skip frame or Skip track, which will skip to the
next frame and the next track, respectively, without saving any annotations in the
current frame. All annotation up until the current frame will still be saved, though.

If Video Annotator output is not relevant, Frame Annotator can work with any
video, simply create a csv file containing the following two lines:

1 Filename;Track type;Origin file;First frame;Length
2 <videoFileName >;;;0;0
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F
Various data handling methods

F.1 Show classes and their sizes

1 cat mergedFrameAnnotations.csv | awk -F \; ’{print $2}’ | sort | uniq -¶
c

F.2 Black out signs present in the training

This procedure assumes that annotation-split1.csv contains the test and annotation-¶

split2.csv contains the training annotations.

1 python ~/p10/code/annotationTools/annotateVisually.py -n annotation -¶
split1.csv # Find test images.

2 awk -F ’;’ ’{print $1}’ annotation -split2.csv > trainingFiles.txt # ¶
Find the file names of all training files

3 grep --file=trainingFiles.txt annotation -split1.csv > ¶
trainingAnnotationsInTest.csv # Find the training annotations that ¶
exist in the test images.

4 python ~/p10/code/annotationTools/annotateVisually.py -b ¶
trainingAnnotationsInTest.csv # Black out the signs (overwriting ¶
relevant images)

Or just run the bash script blackOut.sh, which does all this automatically.

F.3 Evaluate the performance of a cascade against anno-
tated data

The backbone in this operation is the Python script evaluateDetections.py, which is
used like this:

1 $ python ~/p10/code/annotationTools/evaluateDetections.py -h
2 usage: evaluateDetections.py [-h] [-c] [-f dirname /] [-w] [-fn] [-s 20¶

x20]
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F.3. EVALUATE THE PERFORMANCE OF A CASCADE AGAINST

ANNOTATED DATA

3 detections.csv annotations.csv
4

5 Print stats on detection , given a detection file and a ground truth ¶
file.

6

7 positional arguments:
8 detections.csv The path to the csv -file containing the ¶

detections.
9 annotations.csv The path to the csv -file containing the ¶

annotations
10 that are the ground truth.
11

12 optional arguments:
13 -h, --help show this help message and exit
14 -c, --copyFP Copy images with false positives to the ¶

falsePositive/
15 directory.
16 -f dirname/, --saveFP dirname/
17 Path to the original test -images to extract the¶

false
18 positive patches to. If not given , they are not
19 extracted.
20 -w, --widthHistogram Show a histogram of the widths of true ¶

positives.
21 -fn, --falseNegativesOnly
22 Print only the false negatives.
23 -s 20x20 , --sizeMinimum 20x20
24 Disregard any annotation smaller than the ¶

specified
25 size. First number is width.

the previous

evaluateDetections.py requires that the detector has already been run and its output
is readily available. To automate the entire process, use the bash script testCascade.sh:

1 # Input arguments: <cascade file > <test file > <reference file > <result ¶
destination >

2 # Example:
3 ./ testCascade.sh synthetic/stop/stopSynCascade.xml stopTest/stopTest.¶

dat /media/Data/signDatabase/stop -split1.csv stopTestSyn

The above example runs the stopSynCascade.xml detector on the files specified in
stopTest.dat and compares the detections to the ground truth in stop-split1.csv (the
format of that file must be compatible with the output from Frame Annotator, see
appendix E). The output is saved in the folder stopTestSyn, which will contain all the
test images with markings of detections, a csv-file called detections.csv contains the
detections and a text-file called detectionResults.txt, which contains the statistics of
the detections compared to the ground truth.



F.4. CREATE ROC CURVES FOR CASCADES 119

F.4 Create ROC curves for cascades

ROC curves for cascaded classifiers can be created by changing the number of stages,
thus altering the relationship between true positives and false positives. A couple of
tools have been developed to automate this process.

First, cascades with a different number of stages mu be produced. This can be
done with the shallowCascades.sh bash script, which wraps the convert_cascade tool of
OpenCV. The usage is:

1 # Input arguments: <cascade path > <training image size > <starting ¶
number of stages > <end number of stages > <output file name >

2 # Example:
3 ./ shallowCascades.sh realWorld/stop/stopCascade 20x20 20 5 stopCascade

The above will output a number of stopCasade1.xml, stopCasade2.xml, etc. files in the
directory realWorld/stop/.

The next step is to evaluate each of these cascades. That can be done with the tool
testMultipleCascade.sh, which wraps the testCascade.sh script and runs it automatically
for several detectors:

1 # Input arguments: <start cascade number > <end cascade number > <cascade¶
file pattern > <test file > <annotation file > <result destination ¶

pattern > <minimum detection size >
2 # Example:
3 ./ testMultipleCascades.sh 20 5 realWorld/stop/stopCascade stopTest/¶

stopTest.dat /media/Data/signDatabase/stop -split1.csv stopROC 21x21

This will output an number of folders called stopROC20, stopROC19, stopROC18, etc.
and a file called stopROCResults.txt.

The final step is to generate the ROC curve. This is done with the Python script
createROC.py:

1 python createROC.py stopROCResults.txt -t ’ROC curve for real -world ¶
trained stop sign detector ’

When running this, a window with the ROC curve will show up.

So, to recap, these three commands will generate an ROC curve for a cascade:

1 ./ shallowCascades.sh realWorld/stop/stopCascade 20x20 20 5 stopCascade
2 ./ testMultipleCascades.sh 20 5 realWorld/stop/stopCascade stopTest/¶

stopTest.dat /media/Data/signDatabase/stop -split1.csv stopROC
3 python createROC.py stopROCResults.txt
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G
Acronyms

TSR Traffic Sign Recognition

HOG Histograms of Oriented Gradients

MUTCD Manual on Uniform Traffic Control Devices

SHSM Standard Highway Signs and Markings

GTSRB German Traffic Sign Recognition Benchmark

CVRR Computer Vision and Robotics Research

LISA Laboratory for Intelligent and Safe Automobiles

UCSD University of California, San Diego

ITSC Intelligent Transportation Systems Conference

ICPR International Conference on Pattern Recognition

SVM Support Vector Machine

FRS Fast Radial Symmetry

EFRS Extended Fast Radial Symmetry
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