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Abstract

While cross-lingual synthesis has
emerged in Singing Voice Synthesis
(SVS), its usage is limited due to
language barriers in songwriting. To
ease the language barrier, this work
presents an attempt at English to
Japanese lyrics translation by fine-
tuning. This is done jointly with
an overarching cascaded solution for
singing voice to singing voice trans-
lation. The task at hand is to trans-
late an English singing voice into
a synthesized Japanese voice with
lyrics and aligned melody. Such a
system is successfully created using
state of the art methods, but eval-
uations show that the translation
model creates poorly singable lyrics.
Moreover, a deeper understanding of
the Japanese language is needed to
create accurate yet singable singing
voice to singing voice translations.
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1 | Introduction

Singing Voice Synthesis (SVS) has in recent years become capable of extremely human like
expression in both the commercial 1 2 and open source [Liu et al., 2022] [Yamamoto et al., 2022]
field. With the capabilities of AI voices to sing songs in languages they have never been trained
on, the musical expression in which they can operate manifolds.

However, while the AI voice is capable of synthesizing songs in foreign languages, the musician
behind the facade is still limited to writing songs in his native language or making covers of
foreign songs.

With rapid development in multi-lingual machine translation [Tang et al., 2020] [Team et al.,
2022] and the mainstreaming of Large Language Models (LLMs) [Radford et al., 2018] [Touvron
et al., 2023], the question arises to whether such technology can be utilized for assisting musicians
in writing cross-lingual songs.

While AI voices in SVS systems are becoming better at automatic tuning, i.e. creating smooth
and musical intonations and transitions between notes, one of the most labour intensive parts
about SVS it the creation of human like or otherwise beautifully musical tuning. Letting an SVS
musician use his own voice for note creation and tuning will enable an alternative workflow than
manual editing in the editor.

Therefore this work presents a joint approach at cross-lingual lyrics creation and automatic
creation of notes along with their tuning, based on the musicians own voice.

Since Japanese, English and Chinese by far are the most popular languages in the SVS music
scene, they will be the the languages in focus. Since there has been prior examples at English
to Chinese lyrics translation [Guo et al., 2022] [Li et al., 2023], this work will focus on English
to Japanese.

The structure of this report will in chapter 2 analyze the components required for such a system.
Chapter 3 goes into how the system is created. chapter 4 conducts a small scale mean opinion
score test with Japanese natives. Chapter 5 concludes the work and chapter 6 goes in depth
with shortcomings and potential work to fix them.

1https://dreamtonics.com/synthesizerv/
2https://www.vocaloid.com/en/
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2 | State of The Art in Singing Voice
Synthesis and Information Retrieval

Possibly the most related field of research to this work, is S2ST (speech-to-speech translation).
At the current state of S2ST, there are two approaches to the problem. The conventional
way of handling the problem is with a cascaded system consisting of a STT (Speech-To-Text)
module, a MT (Machine-Translation) module and a TTS (Speech-To-Text) module [International
Telecommunication Union, 2016]. Alternatively, there has been rapid progress in end-to-end
solutions for direct S2ST using sequence-to-sequence models [Jia et al., 2019] and LLMs (Large
Language Models) [Rubenstein et al., 2023]. The use of LLMs for speech understanding and
audio generation show promising results in both translation and voice synthesis with capabilities
of preserving features such as speaker identity and intonation. However, while such system are
becoming great competitors to cascaded system and will possibly soon overtake, they are very
scarce in their public availability due to end-to-end S2ST systems being a technology in very early
stages of development. as of August 2023, Meta AI publicly released SeamlessM4T [Seamless
Communication et al., 2023] on GitHub 1

S2ST systems offer much less control than a cascaded system, and at the current time it is
unknown how well they will work for applications outside general speech generation, i.e. high
quality singing-voice translation as intended with this project. Direct S2ST systems are highly
sophisticated systems in early development by large research teams such as Google and Meta AI,
so while creating an end-to-end solution for direct sing-to-sing translation could be an end-goal
to pursue, it has been deemed beyond the scope of this work.

Therefore, the focus will be to create a cascaded system for sing-to-sing translation. By doing
so, there will be a higher level of control over the entire pipeline and there will be more focus on
researching what capabilities a system must have to generate high quality sing-to-sing translation
along with what limitations and intricacies there might be.

In the remainder of this chapter, the modules required for a cascaded sing-to-sing solution are
explored in depth.

1https://github.com/facebookresearch/seamless_communication
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2.1. Singing Voice Synthesis Aalborg Universitet

2.1 Singing Voice Synthesis

One of the first pioneers to commercialize and mainstream singing synthesis was Yamaha
Corporation with their engine Vocaloid [Kenmochi and Ohshita, 2007]. Vocaloid is comprised
of three parts; a score editor, a singer library (often referred to as a voicebank) and a synthesis
engine. The score editor is an environment in which musical notes with an onset, duration and
lyrics can be created along with capabilities for automating features such as note transitions and
vibrato. The lyrics are automatically broken down into syllables and phonemes by a dictionary.
The voice bank is a library of samples recorded from a real human singer, mostly as diphones.
All phonetic combinations must be covered for all pitches in the desired range, which is reported
to be approximately 2000 samples per pitch. These voicebanks are not created by Yamaha, but
by third party companies who are licensed to do so. The synthesis engine uses the score made in
the editor to select the necessary samples from the voicebank, and automatically concatenates
them.

In 2008 UTAU 2 came to rise as a free competitor to Vocaloid where users could make and share
their own custom made voicebanks. Since 2013 UTAU stopped getting updates, so OpenUTAU
3 emerged as an unofficial open source UTAU successor.

With much development in deep learning, AI voicebanks/engines became the next generation of
singing voice synthesis. Usually, they consist of an acoustic model to generate acoustic features
(e.g. mel-spectrograms) from a musical score (i.e notes and lyrics) and a vocoder to transform
acoustic features into wave forms [Nakamura et al., 2019][Hono et al., 2021]. Diffsinger [Liu et al.,
2022] shows remarkable results using shallow diffusion for acoustic modeling, and is an open
source solution for users to create AI voicebanks 4. NNSVS [Yamamoto et al., 2022] embraces
the cascaded nature of SVS pipelines, and creates an open source toolkit where users are free to
integrate their own acoustic models, vocoders, time lag models and duration models for lyrics
to phoneme alignment. The baseline system whom they themselves propose reaches the current
state of the art with a mean opinion score of 3.86 out of 5. NNSVS is targeted at research, so a
plugin called ENUNU 5 enables the usage of NNSVS voicebanks in the UTAU editor for music
recreation. Here is an example of an original musical score written in the UTAU editor using a
high quality voicebank created in NNSVS with several singing styles (standard/sweet/rock) 6.

in 2018 a new commercial singing voice synthesis engine called Synthesizer V 7 emerges as the next
popular alternative to Vocaloid. Synthesizer V started out by releasing concatenated voicebanks
in the Vocaloid style, but introduced AI voicebanks in 2020 which are by themselves and licensed
third party companies. In 2021 cross-lingual synthesis was enabled for AI voicebanks which has
since expanded to support Japanese, English, Chinese, Cantonese and Spanish. Cross-lingual
synthesis enables an AI voicebank to synthesize singing in a language which it has not been
trained, i.e. a voicebank trained on Japanese data can synthesize English singing.

2http://utau2008.xrea.jp/
3https://www.openutau.com/
4https://github.com/MoonInTheRiver/DiffSinger
5https://github.com/oatsu-gh/ENUNU
6https://www.youtube.com/watch?v=1V41mghsxIU
7https://dreamtonics.com/synthesizerv/
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2.1. Singing Voice Synthesis Aalborg Universitet

Synthesizer V has since become famous in the SVS music production community for their high
quality AI voicebanks. Here is an example of a song created with a synthesizer V AI voicebank
8

The latest release of Vocaloid 9 in 2022 also adds AI voicebank support, however Synthesizer V
is more renowned for their AI voicebanks, while Vocaloid remains the most popular choice by far
for concatenated voicebanks. While The concatenated approach to SVS is far from as natural
and human-like as AI voicebanks, it is an artistic choice of creating beautiful synthesized voiced
instead of replicating the human voice. Here is an example of a popular song made with Vocaloid
10

Synthesizer V supports scripting in their editor to programmatically create and automate musical
scores as well as control any parameter in the engine. Vocaloid does not support scripting, neither
does UTAU/OpenUTAU natively. Considering scripting capabilities, the AI voicebank quality,
and a well made editor, Synthesizer V makes for a good development environment in this sing-to-
sing work. Synthesizer V will therefore be the choice for SVS in this work. Vocaloid might serve
as a cumbersome engine without a programmable interface, as it will solely rely on external files
(e.g generated MIDI files) which can be dragged and dropped in the editor or manual editing.
NNSVS might however be a very good candidate for future works as it is free and open source.
NNSVS will allow for full control of the synthesis engine and custom made voicebanks. NNSVS
can be used with recipes closely related to Kaldi recipes 11. Musical scores can be in MusicXML
format or UST (UTAU Sequence Text File), but UTAU via ENUNU itself will not provide a
programmable interface to automatically generate UST files.

8https://www.youtube.com/watch?v=0MKomCQ_KSA
9https://www.vocaloid.com/en/vocaloid6/

10https://www.youtube.com/watch?v=e1xCOsgWG0M
11https://nnsvs.github.io/recipes.html
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2.2 Automatic Lyrics Transcription

Traditionally, the different works regarding ASR (Automatic Speech Recognition) has often
revolved around acoustic modelling with CTC (Connectionist Temporal Classification), HMM
(hidden markov model), and language modeling. State Of the Art solutions in ASR are
maintained in the Kaldi ASR Toolkit 12. However, the singing domain encompasses different
challenges than the speech domain, as phoneme recognition and keyword spotting often are
unsatisfactory when using ASR models due to altered properties such as alternate pronunciation,
duration and vibrato [Kruspe, 2016]

While ALT (Automatic Lyrics Transcription) has not gotten the same level of attention as ASR,
a few works have been published the last couple of years. Naturally, ALT has been merged with
Kaldi based approaches such as [Demirel et al., 2020] using dilated convolutional neural networks
for monophonic audio recordings, i.e. recordings of isolated singing with no background music.
This approach reports a WER (Word Error Rate) of 14.96% on the Dsing Test dataset [Dabike
and Barker, 2019]. Sing! 300x30x2 is a part of the DAMP database 13, and consist of the 300
most popular songs sung by both males and females in the 30 most famous countries in the Smule
karaoke app 14. In order to make Sing! 300x30x2 into an ASR oriented dataset, the dataset was
cleaned, curated and temporally realigned with the lyrics, resulting in the Dsing ASR dataset
[Dabike and Barker, 2019]

Transcribing lyrics from polyphonic music is a more complicated task to solve, with a proposed
solution being MSTR-net [Demirel et al., 2021] which is a variant of a Multistreaming Time-
Delay Neural Network. While The Dsing dataset is the typical benchmark for monophonic
singing, DALI [Meseguer-Brocal et al., 2018] is the leading dataset for polyphonic music with
aligned lyrics. DALI consist of 5358 songs collected from YouTube with automatically created
and synchronized lyrics and notes at four levels of granularity. MSTRE-Net utilizes both Dsing
and DALI for robust training. MSTRE-Net did not surpass the previous solution using dilated
convolutional networks as it obtained a WER of 15.38% on Dsing Test, but it did perform much
better than previous attempts at DALI Test. However, while the results on DALI Test are
comparatively impressive, it got a WER of 42.11% which is not suitable for a robust sing-to-sing
solution.

As transformers are becoming more and more popular especially for LLMs (Large Language
Models) [Devlin et al., 2018] [Radford et al., 2018] as well as other fields such as computer vision
[Dosovitskiy et al., 2020], Wav2Vec [Baevski et al., 2020] has also become a popular choice for
ASR. One of the major advantages of such transformer models is that they don’t solely rely on
supervised training, but can expand to a larger domain of non-labeled data for self-supervised
training. Transformers are also able to train faster than RNNs and LSTMs as there are no
recurrent elements. With faster training and non-labeled data combined with the scalability
allowed my modern hardware, transformers have become the State of The Art within most fields
of NLP (Natural Language Processing).

12https://github.com/kaldi-asr/kaldi
13https://ccrma.stanford.edu/damp/
14https://www.smule.com/
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One of the difficulties of training an ALT system is the scarcity of high quality labeled data
for supervised training. Therefore, the pretrained Wav2Vec model was attempted for ALT by
transfer learning to the singing domain by first fine tuning on speech data with CTC loss and then
fine tuned on Dsing and DALI with a hybrid CTC/Attention ALT head. while this approach is
aimed at monophonic singing, advances in source separation [Défossez, 2022] allow for isolated
singing from polyphonic music. Transfer learning of Wav2Vec reaches a WER of 12.99% on
Dsing Test and 30.85% on DALI Test with source separation, setting the state of the art for
both test sets. However, we still see a WER above 30% which is not suitable for implementation
in a cascaded sing-to-sing solution, suggesting such a solution might only work with monophonic
voice recording.

As of 2023, Whisper [Radford et al., 2022] is the current state of the art ASR model from
OpenAI which was released the same year as the previously mentioned transfer learned Wav2Vec
for ALT. With the update to Whisper-Large-V3 in November in 2023, it is the most popular
ASR model on HuggingFace Model Hub in December 2023 15. While there are no empirical
studies on Whisper’s capabilities in the singing domain such as a WER for Dsing and DALI,
personal tests show promising results that suggest a lower WER than previously discussed ALT
models. Whisper surpasses all previous ASR in amount of training data with 680K hours of non-
standardized labeled speech used for large-scale weak supervision, which they claim produces
a robust model across datasets and domains. While personal test suggest that it generalized
better for the ALT domain than previous ALT models, an empirical study must be made to
state any claim. This will be left for future work, along with the possibility of fine tuning
Whisper for the speech domain, as further discussed in chapter 6. As Whisper seems to produce
high quality transcriptions from singing, and it is very simple to implement and control through
the HugginFace API, it will be the current choice for ALT.

15https://huggingface.co/openai/whisper-large-v3
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2.3 Phoneme Level Lyrics Alignment

Alongside the lyrics, alignment is needed to get the length of words, or more specifically the
length of phonemes are needed to obtain the rhythm and pronunciation during singing.

Classic ASR approaches such as the ones presented in Kaldi usually optimze w.r.t phoneme
posteriors. To extract the phoneme alignments, audio frames get classified into phonemes, as can
be seen in MSTRE-net [Demirel et al., 2021] by training a GMM(Gaussian Mixture Model)-HMM
model on "singer adaptive features" [Anastasakos et al., 1996] and applying forced alignment
[Gales et al., 2008].

While Whisper generates high quality transcriptions, it is an end-to-end solutions which operates
by predicting BPE (Byte-Pair Encoding) tokens which usually are either complete words or a set
of graphemes. Word level timestamps are possible with Whisper either through the HuggingFace
API or external solutions building upon the functionality of Whisper [Bain et al., 2023]. Hence, to
generate phoneme level alignments for Whisper’s transcriptions, it is necessary to use a solutions
dislocated from Whisper.

Assuming high quality lyrics are generated by Whisper, arguably the best solution for the current
problem is text-informed phoneme level lyrics alignment [Schulze-Forster et al., 2021]. The text-
informed aligner shows competitive results for word-level alignment compared to the state of
the art [Gupta et al., 2019], but will not serve as the best solution for that purpose. While
MSTRE-net does not share a measure on the error rate of its phoneme alignments, the Montreal
Forced Aligner [McAuliffe et al., 2017] is used to train a Kaldi based baseline GMM-HMM
model to test up against the text-informed aligner, which share similarities with MSTRE-net’s
approach. For solo singing, the text-informed aligner achieved a PCAS (Percentage of Correctly
Aligned Segments) score of 85.94% on the NUS-48E CORPUS [Duan et al., 2013] compared to
the baseline at 77.94%. However, no study has been done on the performance of a lyrics aligner
which has also trained on "singer adaptive feature" compared to text informed alignemt. While
it would be interesting future work to conduct such a test, the given state of the art results for
phoneme-level lyrics alignment and the ease of implementing the model 16, makes it the current
choice for the sing-to-sing solution.

16https://github.com/schufo/lyrics-aligner
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2.4 Vocal Melody Extraction

SVT (Singing Voice Transcription) is the task of extracting note events from a singing voice.
SVT can commonly be broken into sub-tasks such as pitch detection, onset detection, offset
detection and sequence-level modelling, but by far the most researched sub-task of SVT is frame
level vocal melody extraction. SVT is not a very well defined problem and it is thus extremely
difficult to create a humanly annotated dataset. VOCANO [Hsu and Su, 2021] tries to make a
clearer definition of SVT and leverages unlabeled data through semi-supervised learning. As the
state of the art in SVT, VOCANO has been integrated in Omnizart [Wu et al., 2021], a toolkit
for music transcription.

While there for certain is progress in the SVT field, what exactly the boundaries of a note is, is not
very accurately defined, and thus their transcription is inconsistent with what an implementation
such as this one might need. instead, by using frame level pitches along with phoneme alignment,
the onset and duration of a phoneme will define a note.

Vocal melody extraction itself is however a more well defined task. Praat 17 is a popular toolkit
for all sorts of speech analysis. For vocal melody extraction, their standard method is by acoustic
periodicity detection [Boersma, 2000] and might work well in many implementations. However,
some manual labor is needed to reproduce good results, such as setting variables to match
the vocal range and intensity. Jitter is also sometimes a problem alongside the handling of
background noise.

For better recognition of the desired signal, polyphonic vocal melody extraction has similarly been
approached by carefully engineered approaches to the notion of salience by audio prepossessing,
salience function computation, fundamental frequency tracking and voicing decisions [Dressler,
2011] [Salamon and Gomez, 2012]. As described in [Bittner et al.], These approaches are heuristic
in their nature and are limited by the data they weer designed for, so they approach the problem
with a fully data driven classification problem which outputs the frame-level likelihood for each
pitch.

Neural networks have been applied to vocal melody extraction with great success, e.g using CNNs
for semantic segmentation [Lu and Su, 2018] [Chen et al., 2019], semi-supervised training [Kum
et al., 2020] and graph modelling [Gra, 2023].

[Lu and Su, 2018] has been implemented in omnizart [Wu et al., 2021] to seamlessly extract
vocal melodies in MIDI pitches. Considering how well developed vocal melody extraction is, this
will serve as an excellent candidate and will therefore be used in this work for a sing-to-sing
solution. [Chen et al., 2019] is open source and will most likely also be an excellent solution.
These two methods have not been directly compared, but both show state of the art results on
several datasets.

17https://www.fon.hum.uva.nl/praat/
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2.5 Lyrics Translation

lyrics translation is a more involved task than direct translation. A more poetic understanding of
the language and culture at both the source and target side is needed to make quality translations.
This makes word choice and placement within the sentence more difficult, as the translation also
need to fit a rhythm and melody. Apart from semantics and melody alignment, rhyme is a big
part of poetry and song lyrics, along with a sense of "musical color" which allows for an artist
to bring life to the song by allowing compromises and creative recreation [Franzon, 2015]

While neural networks have been greatly used for general machine translation [Bahdanau et al.,
2014] [Vaswani et al., 2017], lyrics translation is still in much need for research. The first attempt
at neural poetry translation [Ghazvininejad et al., 2018] achieved acceptable translations 78.2%
of the time, based on human evaluations. Lyric translations between western languages can often
be viewed as poetry translation, but it is not so much the case when e.g. translating to a tonal
language such as Chinese.

GagaST (Guided AliGnment for Automatic Song Translation) [Guo et al., 2022] attempts to
solve song translation as constrained text translation, by constrained beam search. A problem
in lyrics translations is the very low accessibility to paired translated songs. Therefore, GataST
adopts self supervised learning on mono lingual songs in English and Chinese after first training
a transformer for general translation, and finally fine tuning on a small dataset of paired English-
Chinese song translations 18. These paired translations are not necessarily singable. The decoder
is then constrained according to three properties, length alignemt, intra-syllable alignment and
inter-syllable alignment. The length constraint is to make sure that the translation either has
exactly the same amount of syllables as the input, or exactly as many syllables as there are notes
in the musical score. Intra-syllable is to stay consistent with the tonal shape for a syllable in case
it is attached to more than one note, as Chinese is a tonal language. Inter syllable alignment is
to make sure that the transition between notes are correct, as the same set of syllables might
have a very different meaning with different tones.

LTAG (Lyrics-Melody Translation with Adaptive Grouping) [Li et al., 2023] argues that a rule
based system is too rigid of a solution for the delicate nature of lyrics. Their approach consist
of note embeddings which get fed to a encoder-decoder transformer together with lyrics, which
is trained to generate a sequence of tokens dependant on both the embeddings and lyrics. The
note embeddings and translated lyrics are then passed to a separate lightweight neural network
which aligns the lyrics with the notes. To evaluate the result, they synthesize the generated
lyrics and notes are synthesized by DiffSinger [Liu et al., 2022]. As no dataset exist with paired
lyrics and lyrics alignment, they create a small dataset themselves with manual annotations. For
training they create another lyrics translator with a length constraint similar to GagaST which
backtranslates lyrics and automatically generate a melody for the backtranslation [Yu et al.,
2019].

18https://lyricstranslate.com/
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This will create a noisy source but accurate target. comparing GagaST and LTAG in MOS tests
shows the folowing on a scale from 0 to 5:

• LTAG scoring 0.05 higher than GagaST in MOS-T (intelligibility and naturalness) when
translating from English to chinese, and 0.13 higher when translating from Chinese to
English.

• LTAG scores 0.19 higher than GagaST in MOS-S (singability) when translating from
English to Chinese. Since They synthesized with a DiffSinger voicebank trained for Chinese
synthesis, MOS-S is not presented for Chinese to English.

• LTAG scoring 0.04 higher than GagaST in MOS-Q (overall quality) when translating from
English to Chinese. Since They synthesized with a DiffSinger voicebank trained for Chinese
synthesis, MOS-Q is not presented for Chinese to English.

LTAG shows better results than GagaST and has a high chance at generally translating better
between any language pair as it doesn’t rely itself on any constrains. The problem however is
collecting a dataset. If using backtranslation for generating training data, constrains will still be
necessary specific to the target language anyway. None of the datasets nor recipes for LTAG are
public, and reproducing such a system or emproving it is beyond the scope of this work.

Reproducing a system such as GagaST, i.e. fine tuning a transformer on lyrics data and applying
language specific constrains, is a simpler approach proven to work well on Chinese. Therefore
This work will take a similar approach for a sing-to-sing translation pipeline.
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3 | Implementation

This proposed solution for a Singing Voice to Singing Voice Translator, is a cascaded system of
state of the art models in Singing Voice Synthesis and Singing Voice Information Retrieval. The
structure of the proposed pipeline can be seen in figure 3.1. In the remainder of this chapter,
the individual modules of the pipeline will be explained in detail.

Figure 3.1. Overview of The Pipeline
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3.1 Singing Voice in English

This is the input for which the pipeline has been designed for English singing. This pipeline is at
this time built for monophonic recordings of singing. However, it has not been tested how well
it functions on polyphonic music with or without source separation using e.g. [Défossez, 2022]

3.2 Lyrics Transcription

Due to its popularity, streamlined usage and capabilities for generalization in speech domains,
Whisper [Radford et al., 2022] is the model of choice in this pipeline for Automatic lyrics
transcription.

Whisper is an ASR system with the goal to create a speech recognizer which generalizes well to
different domains (e.g multi-lingual speech transcription, language detection and translation)
without the need of fine-tuning on a specific dataset as fine-tuning can often times be a
disadvantage. With this goal in mind, Whisper focuses on the capabilities of large-scale weak
supervision, and not the creation of a a new model. Whisper is based on the encoder-decoder
transformer [Vaswani et al., 2017]. See section 3.2.1 for more information on transformers. For
training Whisper, they create one the larges labeled ASR datasets ever, at 680.000 hours of
labeled speech data.

Whisper is trained in a multitask training format. The encoder input is mel-spectrograms which
get passed through a Conv1D network. The Decoder’s task is to jointly predict a sequence of
tokens arching over several tasks, e.g. the transcription, language token, voice activity detection.

In this pipeline, the pretrained Whisper-Large-V3 is used 1 which is the largest checkpoint
available. The model is run on CPU for inference as it takes up to much memory for a 6GB
GPU, but can very well run on 16GB of RAM with relatively low inference time (about 15s for a
30s audio recording). However, a chunking algorithm will be necessary if longer recordings than
30s are desired. By chunking every 30s of audio, Whisper uses about 15GB of memory.

Whisper has not been fine-tuned in anyway, but is used straight out of the box. The literature
doesn’t indicate that Whisper has been trained on any singing data, so it is unknown what fine-
tuning Whisper might lead to. DALI [Meseguer-Brocal et al., 2018] might be a candidate for
fine-tuning, as Whisper has supposedly been trained on data with background music. However,
their own literature suggest that fine-tuning might not be a positive thing to do, and is counter
intuitive to what Whisper was designed for.

Here are a few examples of transcriptions by Whisper:

Example 1: Audio can be found here 2

• "So I heard you found somebody else And at first I thought it was a lie I took all my things
that make sounds The rest I can deal without"

1https://huggingface.co/openai/whisper-large-v3
2https://drive.google.com/file/d/1lxO6ybG9CFsgGVaqge2v8RfuncHRl_oB/view?usp=drive_link
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Example 2: Audio can be found here 3

• "If I go crazy then will you still call me Superman? If I’m alive and well, will you be there
to hold in my hand? I’ll keep you by my side with my superhuman might, Kryptonite."

Example 3: Audio can be found here 4

• "I heard there was a secret chord that David played and it pleased the Lord, but you don’t
really care for music, do you? It goes like this, the fourth, the fifth, the minor fall, and the
major lift, the baffled king composing Hallelujah."

Example 4: Audio can be found here 5

• "Fly me to the moon, let me play among the stars. Let me see what spring is like on
Jupiter and Mars. In other words, hold my hand In other words Baby kiss me"

Example 5: Audio can be found here 6

• "Don’t try to make yourself remember Darling, don’t look for me I’m just a story you’ve
been told So let’s pretend a little longer Cause when we’re gone, everything goes on"

These same 5 examples will be used for the rest of the tests throughout the report.

3.2.1 Transformers

The transformer is a sequence-to-sequence model first proposed in "Attention is All You Need"
[Vaswani et al., 2017] as an encoder-decoder architecture. An essential partner to the transformer
is the tokenizer. A tokenizer maps entries from a vocabulary to a number which serve as the
input for the transformer. The input layer of the transformer, i.e. embedding layer, embeds these
tokens with a very simple neural network which is trained jointly with the entire transformer.
Each token get embedded independently, but with the exact same weights in the network. This
allows for sequences of variable length.

Since a sentence can have very different meanings depending on the position of each word, a
positional encoding gets added to each embedding. Several methods exist, however Attention is
All You Need implements alternating sine and cosine encoding. The positional embeddings are
given by alternating sines and cosines in decreasing frequencies. The more tokens there are, the
more sines and cosines will be used. See figure 3.2. These encodings are simply added to the
embeddings

Self Attention is a mechanism to measure the similarity between words. This is useful for the
transformer to understand context, e.g. what object is being referred to by the word "it" in the
sentence "the dog came to greet me and it was so happy"?

Self attention is calculated by three metrics, queries Q, keys K and values V. Q is simply the
outcome of multiplying the positionally encoded embedding with some weights to get a set of

3https://drive.google.com/file/d/1Tk-1Hr5RCAnkI74fvvmB8rjWE9Jt-rM1/view?usp=drive_link
4https://drive.google.com/file/d/1WsVMsLk4VO3MJ6CBEiUCh2SRm1nBrOur/view?usp=drive_link
5https://drive.google.com/file/d/13h1njgErkobjDZL9l0j8FIAf0B7aI8Rd/view?usp=drive_link
6https://drive.google.com/file/d/1xGnYbPU_SDo3-0E4DWmpZ41e5Lzm07vi/view?usp=drive_link
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Figure 3.2. Illustration Of Positional Embedding

Q values. Similarly, a set of K values are created from other weights. Then, a K set is also
generated for another word, and thus by calculating the dot product between Q and all Ks, the
similarity between the Q word and the K word can be measured, including itself. When encoding
a word, each similarity score will be ranked to how much influence they will have on encoding
the given word, which is done with the softmax function to have them on a scale from 0 to 1.
Similarly to Q and K, V is created by multiplying the embeddings with some weights. V is used
to scale the dot product bewtween Q and Ks. The softmax outputs which are scalled by V are
then the final self-attention scores for the word.

So the procedure is to calculate Q and make self-attention values by comparing its similarity to
every K in the sequence. Thus, to get the self-attention for the next word , it is simply doing
the same procedure with a new query. All weights are the same. This is however only a single
self-attention cell. In Attention is All You Need, they make a stack of 8 cells with their own
unique weights that run in parallel, called multi-head attention.

All of these calculations can be done in parallel, making it very scalable for parallel computing
with GPU servers. Calculating the self-attention values of a word does not depend on any other
self-attention values, which is a major reason for the popularity of transformers in large-scale
data driven solutions.

The positional encoded embeddings are added to the self-attention values as residual connections
to not loose positional data in the self-attention mechanism. This creates the foundation of the
encoder in a transformer.

The decoder uses the same mechanisms as the encoder, however by embedding the target
sequence. By inputting a "Start Of Sequence" token, the transformer will predict the next
token, which is then input as the next token in the decoder. This procedure will continue until
it produces a "End Of Sequence" token. While self-attention makes the encoder and decoder
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compare similarities between words, the encoder and decoder is also connected for encoder-
decoder attention. This is to make sure that the decoder keeps track of the words from the
encoder with high self-attention scores. The procedure is the same as in self-attention; compare
similarities between Q (i.e. the decoder output) and all Ks (i.e. the encoder outputs).

To get an overview of the transformer, see figure 3.3

Figure 3.3. Original transformer from Attention is All You Need [Vaswani et al., 2017]

3.3 Phoneme Alignment

Given the quality of lyrics transcripts by Whisper, it can be taken advantage of with text informed
phoneme-level lyrics alignment [Schulze-Forster et al., 2021]. This lyrics aligner is designed with
the goal of assisting a model at singing voice separation. The models are however run sequentially,
and it is possible to run the aligner alone.

It starts with a text encoder and an audio encoder. The text encoder consist of a BLSTM
(Bidirectional Long Short-Term Memory) [Hochreiter and Schmidhuber, 1997] which turns a
phoneme sequence into hidden phoneme representations H. The audio encoder generates the
STFT (Short Time Fourier Transform) of the audio signal comprised of both the singing voice
and accompaniment. the transformed audio signal is fed through a fully connected layer and a
tanh function followed by two BLSTM layers, which generates the the hidden audio features G.

The aligner then aligns H and G. One audio fra matches exactly one phoneme, whereas one
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phoneme can align to multiple audio frames. It is assumed that no phonemes are skipped, and
they are pronounced in a specific order.

Singing has too much variance in phonetic pronunciation due to wider range of pitch etc. so
they force monotonic alignment with a hybrid of attention and DTW (Dynamic Time Warping).
The attention mechanism is useful for measuring the similarity between all elements in H and
G, i.e. how likely is it that phoneme m was pronounced in frame n. With the obtained attention
values, DTW is used to find the alignment which result in the optimal patch of minimum distance
between phoneme and audio frame features.

The aligner is trained on 100 songs from the MUSDB dataset [Rafii et al., 2017] dataset which
have been human annotated with phonetic alignments.

When using the aligner, a VAD (voice activity detection) threshold must be set, which defaults
to 0. Choosing a VAD threshold is ambiguous, but with loud and clear singing, and little to no
background noise, a VAD of 0 often works. The phonemes phonetics used are from the CMU
(Carnegie Mellon University) pronunciation dictionary, and will therefore not always transcribe
the exact pronunciation that was sung, but rather the standard pronunciation. See figure 3.4 for
examples of alignments.

Figure 3.4. Example of aligned phonemes. the alignment to phonemes are in seconds and are denoted
as onsets. ">" denotes the onset of a pause between phonemes
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3.4 Syllable Concatenation

According to the literature [Guo et al., 2022], singing is usually done in a syllable wise manner,
however the Japanese language is structured by mora, and not syllables. Mora are similar to
syllables as a unit of speech, but are more specifically defined as the rhythm of speech, meaning
that each mora has the same length in pronunciation. As such, mora is a timing based system.
Japanese is made of three writing system. Hiragana and Katakana have different symbols but
the exact same pronunciations of their 46 characters. There are five vowel sound あ, い, う, え,
お (a, i, u, e, o) which each represent one mora. They can be combined with a consonant such
as k to make か, き, く, け, こ (ka, ki, ku, ke, ko) which also makes one mora. However a long
vowel such as "kaa" will represent two mora and be written as かあ in hiragana. In that way,
hiragana and katakana characters represent one mora each.

the thrid writing system, kanji, are letters adopted from the Chinese alphabet and convey a
meaning. Kanji will often not have a one true pronunciation in sentences, but will indeed
depend on the context. However, their pronunciation is true to the other alphabets, and as such
their pronunciation can be written in hiragana and katakana. 雨 for instance is pronounced with
the two hiragana あめ (ame) which means rain.

for this work, the length constrain inspired by [Guo et al., 2022], is defined as minimum one
Japanese mora per English syllable, and at maximum an amount of mora equal to syllable count
+ some threshold for allowed surplus. However, this approach has some flaws which will be
discussed in section 6

By looking up English words in the CMU dictionary with the cmudict python wrapper 7, their
pronunciations can be obtained. The phonetics are consistent with the lyrics aligner since it also
uses the CMU dictionary. Pronunciations from the CMU dictionary also has indicators for vowel
sounds which are the building blocks of syllables.

For this work, an algorithm was developed to look up an English word and concatenate the
phonemes into syllables, based on simple rules in the following order:

• if phoneme p is a vowel sound, create new syllable entry
• if phoneme p is not a vowel sound, append it to the last generated syllable, or start a new

one if there is none.
• If phoneme p+2 is a vowel sound, create new syllable entry
• proceed to next phoneme

Since the sound Y is sometimes inconsistent with being categorised as a vowel sound or not, the
algorithm adapts to surrounding syllables in order to shift over spare consonants:

• if first entry of syllable S is Y and the last entry of S-1 is not a vowel sound, and S-1 has
at least 3 entries, then move the last entry of S-1 to be the first entry of S

Some of these methods are specific to encountered errors in syllable creation, so more errors
might be encountered when not using a fully dynamic solution, but from personal experiments
this solution is very consistent with the vowel dictionary in Synthesizer V.

7https://github.com/prosegrinder/python-cmudict
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Since the phonemes are the exact same as in the lyrics alignment, the timings can be
concatenated as well to generate notes with onsets and durations for each syllable. However,
some pronunciation information is lost when using the overall syllable duration instead of the
individual phoneme durations. See figure 3.5

Figure 3.5. Example of syllables concatenated from phonemes. Syllables are split into cells, and in
each syllable the phonemes are separated by white-space
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3.5 Automatic Lyrics Translation

Inspired by the design of GagaST [Guo et al., 2022], this implementation of ALT will focus on
the fine-tuning of a translation model on lyrics data. While it would likely be ideal to use a
massive LLM such as ChatGPT [Radford et al., 2018] or LLaMA [Touvron et al., 2023], it is not
feasible to run, let alone train, these models without access to large quantities of remote compute
power. Therefore, a more compact solution is desired. As the research conducted in this work is
mostly interested in the question of how a model can be trained for automatic lyrics translation,
the choice of model might not be the most important part.

No Language Left Behind-200 (NLLB-200) [Team et al., 2022] is a model made for multi-lingual
translation especially for low resource languages. NLLB-200 has achieved state of the art result
over a wide range of translation directions. While their baseline model is quite large at 54b
parameter which makes it infeasible for use in this pipeline, they have also released it at several
smaller checkpoint. NLLB-200-600M with 600M parameters is a lightweight model which is
also very popular on HuggingFace 8 Japanese is however not considered a low level language
as it serves as one of the most abundant monolingual corpora for NNLB which is also true for
mBART-50 [Tang et al., 2020], another very popular multilingual translator on HuggingFace 9.
As the two primary choices for open source multilingual translation in lightweight models, both
NLLB and mBART will most likely be good candidates for this pipeline; especially if there is a
drive to expand to more languages than English and Japanese in the future.

For this implementation NLLB-200-600M is used. NLLB is a sequence-to-sequence model based
on the transformer [Vaswani et al., 2017], see section 3.2.1 for more details on this architecture.
The main contribution of NLLB is the 6creation of datasets and recipes to create large-scale
training datasets including low resource languages.

In [Guo et al., 2022] they argue that they would ideally train on paired lyrics, but such data
doesn’t exist in any substantial quantity between English and Chinese. They instead pretrain
their model for general translation on the WMT14 dataset 10 containing 29.6M English to Chinese
sentence pairs. They then perform self-supervised learning on 12.4M lines of Chinese monolingual
lyric lines and 109M English Lyric lines. In the end they fine-tune the model for the lyrics
translation task using 140K lines of low quality lyrics translation.

in [Li et al., 2023] they create a small human annotated paired lyrics dataset of a couple throusnad
verses. For training they automatically backtranslate monolingual songs and automatically
generate melodies for bakctranslated songs to facilitate supervised training. It is not stated
how many songs were undergone this procedure, but they argue that having a noisy source in
translation is not much of a problem with high quality targets, as it will learn to generate singable
lyrics from poorly written lyrics.

Assuming NNLB is properly pretrained, the remaining task is to fine-tune on lyrics. Considering
the pursuit of supervised training and success in using noisy source language data, There might
be data in paired English and Japanese which are adequate.

8https://huggingface.co/facebook/nllb-200-distilled-600M
9https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt

10https://huggingface.co/datasets/wmt14
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Japan has a huge entertainment media in animation shows which is very popular in the western
word. Demon Slayer: Mugen Train for instance was the highest grossing movie of 2020 reaching
over $507 million at the worldwide box office 11. Every Japanese animation show has an intro
song and an outro song which change about once per season or movie. Typically, these songs
english subtitles. These are most likely not very consistently singable, but one might argue that
human made subtitles might be of higher quality than backtranslated ones. However, there is
no evidence for such a statement.

Nonetheless, the web was scraped of anime lyrics with their original Japanese lyrics and English
translations. After cleaning the data by removing pairs that don’t have the same amount of lines
on both sides or is inconsistent with the tokenization process, there is a total of 212.698 lines,
191.429 of which are used for training.

Training was performed on Kaggle 12 with a P100 GPU, facilitating 16GB of memory. To
max out on memory, the training was done with a batch size of 32 using the the adafactor
optimizer, as Adam took up too much memory. Gradient accumulation was also enabled to
reduce memory overhead but it will however slow down training time. The starting learning
rate was the HuggingFace Transformers standard at 2e-4, and for regularization weight decay
was used. There was experimentation with data augmentation through random word swapping,
synonym substitution and word deletion. However, it did not make it to the final revision of
training the model due to inconsistencies with the tokenization process, but might very well be
something to add in the future. Considering the dataset size it will most likely be better to scrape
more data first instead, as the web has not been thoroughly scraped for Japanese Animation
lyrics and other Japanese songs.

On figure 3.6 the results of training can be seen. Notice how there is a spike at the 18th epoch,
this is due to the last 8 epochs having s higher starting learning rate at 2e-4. This was done to
see if anything could be done to the flat-lining of the evaluation loss, but ended up overfitting
intead. With the minuscule changes to the evaluation loss, the lowest loss achieved was 2.1208
at the 14th epoch.

As loss is the only objective measure present, the checkpoint at the 14th epoch will serve as the
model for testing.

For inference, beam search is applied to guide the translation. The number of beams are set
to 45 as that is what comfortably runs on 16GB of RAM. As discussed in section 3.4, it is not
known what the pronunciation of a kanji is before it has been transformed to its pronunciation in
context. How this conversion is done is discussed in section 3.6. Therefore, as many outputs as
possible are generated in the beam search, in this case 45. After the kanji conversion to hiragana,
the sentence with an amount of mora closest to the amount of syllables in the english sentence
is chosen as desired output. If there are more than one sequence at such a length, the one with
the highest likely token sequence according to the beam search is selected.

To guide the beam search, a bias towards shorter outputs is added, as the outputs have a tendency
of being too long. In an attempt to preserve them meaning as much as possible in translation,
top_k=100 and top_p=0.96 is used. However, this might not necessarily be the best idea for
singability [Franzon, 2015] as it will limit the "artistic freedom" of the model.

11https://www.imdb.com/title/tt11032374/
12https://www.kaggle.com/
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Figure 3.6. The results of fine-tuning NLLB-200-600M on Japanese Animation intro/outro songs

Here are some examples of outputs, given the inputs from Whisper

Example 1

• So I heard you found somebody else And at first I thought it was a lie I took all my things
that make sounds The rest I can deal without

• 他に誰かがいたと聞いた最初は嘘だと思ってた音が出るものを全て取って残した

Example 2

• If I go crazy then will you still call me Superman? If I’m alive and well, will you be there
to hold in my hand? I’ll keep you by my side with my superhuman might, Kryptonite.

• 気が狂ったらまだスーパーマン生きていれば抱きしめてくれるの僕の超人力クリプトナ
イトで

Example 3

• I heard there was a secret chord that David played and it pleased the Lord, but you don’t
really care for music, do you? It goes like this, the fourth, the fifth, the minor fall, and the
major lift, the baffled king composing Hallelujah.

• ダビデが弾いた秘密の和音神様に甘えて音楽なんていうか四番五番マイナーでメジャー
リフト戸惑う王がハレルヤをぐ

Example 4

• Fly me to the moon, let me play among the stars. Let me see what spring is like on Jupiter
and Mars. In other words, hold my hand In other words Baby kiss me

• 月に飛ばして星の中で遊ぼうよ木星火星で春を見せてよつまり手を握ってよ
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Example 5

• Don’t try to make yourself remember Darling, don’t look for me I’m just a story you’ve
been told So let’s pretend a little longer Cause when we’re gone, everything goes on

• 思い出さないでダーリン探さないで君に話された物語だからもう少し気取って居なくな
るから

3.6 Conversion of Kanji to Hiragana

Conversion of Kanji is in this work done with pykakasi 13, a NLP library for conversion between
Japanese writings romanization of Japanese text.

Converting a kanji to hiragana as an isolated event will often not give an accurate result as it
lacks context. An option would be to convert token wise from the lyrics translation output, but
that is also not very consistent as tokens can sometimes so sub-words and again, kanji that can’t
be converted on their own are a singular token. Thus, what is done in this pipeline is simply
passing the entire sentence to to pykakasi, for full context. However a problem with this approach
is that it relies on a well structured sentence were every context is correct. An alternative could
be an algorithm that can recognize and split words.

Due to attempts at standardizing the tokenization process of noisy data with non-Japanese tokens
(such as spaces, commas, question marks and exclamation marks), there are no punctuatuins
or break in sentences. This might lead to unnatural structure of a Japanese sentence, which in
return can make it difficult for pykakasi to convert kanji.

Here is an example of the converted kanji. Note that katakana are also turned into hiragana
since the entire sentence is passed to pykakasi:

• Original: 気が狂ったらまだスーパーマン生きていれば抱きしめてくれるの僕の超人力
クリプトナイトで

• Converted: きがくるったらまだすーぱーまんいきていればだきしめてくれるのぼくの
ちょうじんちからくりぷとないとで

13https://pykakasi.readthedocs.io/en/latest/?badge=latest

Page 22 of 36

https://pykakasi.readthedocs.io/en/latest/?badge=latest


3.7. Vocal Melody Extraction Aalborg Universitet

3.7 Vocal Melody Extraction

Vocal melody extraction is in this pipeline done with [Lu and Su, 2018]. This vocal melody
extractor takes inspiration from a successful technique often used in computer vision [Chen
et al., 2017], semantic segmentation. They present a solution for extracting a vocal melody with
a deep convolutional neural network with dilated convolutions as a semantic segmentation tool.
Symbolic data (e.g MIDI) makes it easier to make a dataset of melodies, so they develop an
adaptive model based on the progressive neural network [Rusu et al., 2016] for cross-domain
parameter sharing, with the goal of learning to shift the symbolic domain to the audio domain.

the framework is integrated in omnizart [Wu et al., 2021] for streamlined usage. When generating
the melody, the output is presented both in the symbolic domain with pitches and the audio
domain with frequencies. The melody has a resolution of 2ms. An example can be seen at figure
3.7

Here is an example of an extracted melody 14 given this recording as input 15 As you might
notice, there is a slight bug in the vocal melody extraction framework. Given a singing input,
the few last moments of the melody are rendered completely monotone. To counteract this, i
end a recording with a little hum, such that the hum will get rendered monotone instead of the
singing melody.

Figure 3.7. Example of frequencies and pitches transcribed. Start_time and end_time are in seconds,
giving a resolution of 2ms between data points

14https://drive.google.com/file/d/131Ar3TUJzu5o6rftinYoZDRik0eZzToU/view?usp=drive_link
15https://drive.google.com/file/d/1Tk-1Hr5RCAnkI74fvvmB8rjWE9Jt-rM1/view?usp=drive_link
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3.8 Synthesized Singing in Japanese

The requirements Synthesizer V is a musical score and lyrics. For this implementation, the
musical score is defined by a melodic contour extracted from a singing voice and a sequence of
notes. A specific pitch is not assigned to the note from the melody, but are instead all assigned
to a standard pitch of 60 (the musical note C4). The extracted melody contour is then used to
automate the variance from 60 across the timeline.

When phonemes are used to define notes as a means to reproduce the original singing in its
original language, a fairly high quality synthesis is produced, based on personal opinion. An
example can be heard here 16. A visual representation of the phoneme notes and melody can be
seen at figure 3.8

Concatenating the phonemes into syllables still produces an intelligible and singable synthesis,
but is slightly degraded in quality. The is most likely due to miss-alignments between the melody
and the phoneme transitions, as the synthesizer will have to handle the timings itself when the
input is a syllable. An example can be heard here 17. A visual representation of the syllable
notes and melody can be seen at figure 3.9

Figure 3.8. Notes defined by phonemes. Pitch automation by pitch contour

Figure 3.9. Notes defined by syllables. Pitch automation by pitch contour

The Japanese lyrics generation is constrained by a combination of a wide beam search and a
a narrow search for a sequence with a length equal to the syllables in the English lyrics. An
example of inputting Japanese in the syllable notes can be seen on figure 3.10. At the current
time, there has not been developed a standard way of assigning characters to notes that are

16https://drive.google.com/file/d/1XWUhmM047su_oQEf0S1xPBBCbjjafAzQ/view?usp=drive_link
17https://drive.google.com/file/d/1xW3VHa4Sz2xn3KVoVTjWnMANg-lUau8Q/view?usp=drive_link
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Figure 3.10. Notes defined by syllables with Japanese lyrics. Pitch automation by pitch contour

in surplus. Therefore they it is done randomly, which will most likely result in words getting
separated incorrectly.

Lua 18 is the scripting language used to automate functionalities of Synthesizer V such as note
generation and vocal contour.

Here are 5 examples on the generated vocal synthesis by Synthesizer V with a musical score
defined by automatically aligned syllables and vocal contour, and automatically translated lyrics
from English to Japanese captured by ASR.

Example 1: The 1975 - Somebody Else

• Source Audio 19, Synthesized Audio 20

Example 2: 3 Doors Down - Kryptonite

• Source Audio 21, Synthesized Audio 22

Example 3: Lenoard Cohen - Hallelujah

• Source Audio 23, Synthesized Audio 24

Example 4: Frank Sinatra - Fly Me To The Moon

• Source Audio 25, Synthesized Audio 26

Example 5: Porter Robinson - Everything Goes On

• Source Audio 27, Synthesized Audio 28

18https://www.lua.org/
19https://drive.google.com/file/d/1lxO6ybG9CFsgGVaqge2v8RfuncHRl_oB/view?usp=drive_link
20https://drive.google.com/file/d/1doqLm7CJe1sIiaJx2-L6mmnTPKb1v610/view?usp=drive_link
21https://drive.google.com/file/d/1Tk-1Hr5RCAnkI74fvvmB8rjWE9Jt-rM1/view?usp=drive_link
22https://drive.google.com/file/d/16IwYlrt_9sp0zc9VIc_TFh4RlzL2XejI/view?usp=drive_link
23https://drive.google.com/file/d/1WsVMsLk4VO3MJ6CBEiUCh2SRm1nBrOur/view?usp=drive_link
24https://drive.google.com/file/d/16Vr5ZaQZQ2n8kZoQ6IIkz0D3JBblohpD/view?usp=drive_link
25https://drive.google.com/file/d/13h1njgErkobjDZL9l0j8FIAf0B7aI8Rd/view?usp=drive_link
26https://drive.google.com/file/d/17B4jnJKOABiWLPht7d9fO1BYkVFhci8H/view?usp=drive_link
27https://drive.google.com/file/d/1xGnYbPU_SDo3-0E4DWmpZ41e5Lzm07vi/view?usp=drive_link
28https://drive.google.com/file/d/1woF8pdjD8IQW3HV-EdaeA93TkSh3cqIX/view?usp=drive_link
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4 | Test and Results

To evaluate the quality of the automatically generated Japanese singing voice synthesis presented
3.8, two Japanese people was asked to evaluate them on 6 questions with a 5-point scale from
very poor to very good. As to have some comparative measure, the Japanese people were also
asked to evaluate the same songs generated with the baseline NLLB-200-600M model with no
fine-tuning which can be found here 1 2 3 4 5. The questions were these:

• How much sense do the lyrics make?
• How natural is the Japanese used in the lyrics?
• How well is the meaning of the original lyrics preserved?
• How singable are the generated lyrics?
• How well is the lyrics and melody aligned?
• What is the overall quality of the generated Japanese singing?

the feedback was as follows for the fine-tuned model, represented as the average answer.

The 1975 - Somebody Else

• Q1: 2.5
• Q2: 3
• Q3: 3
• Q4: 2.5
• Q5: 2.5
• Q6: 2

3 Doors Down - Kryptonite

• Q1: 2
• Q2: 1.5
• Q3: 2
• Q4: 2.5
• Q5: 2.5
• Q6: 2

Leonard Cohen - Hallelujah

• Q1: 1
• Q2: 1
• Q3: 1.5
• Q4: 1.5
1https://drive.google.com/file/d/19h0N3fFijxUx7hLewINdTh0awXpK-fdk/view?usp=drive_link
2https://drive.google.com/file/d/16LOjK4S_iTR5zxxHfspIel1cG6l9k4NN/view?usp=drive_link
3https://drive.google.com/file/d/17ePZi9jH-5KGo5iCAFpGEEfy1kUE97hp/view?usp=drive_link
4https://drive.google.com/file/d/1Tgxbqo-Mb7V4oBZNgPl_cCLmbXYmzu6m/view?usp=drive_link
5https://drive.google.com/file/d/1u1tslXrXjyavKEt2tHng-14L5mZeDqq9/view?usp=drive_link
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• Q5: 1.5
• Q6: 1

Frank Sinatra - Fly Me To The Moon

• Q1: 3.5
• Q2: 4
• Q3: 2.5
• Q4: 2.5
• Q5: 3
• Q6: 3

Porter Robinson - Everything Goes On

• Q1: 4
• Q2: 4
• Q3: 2.5
• Q4: 3
• Q5: 3
• Q6: 3.5

the feedback was as follows for the baseline model, represented as the average answer.

The 1975 - Somebody Else

• Q1: 2
• Q2: 4
• Q3: 2
• Q4: 3
• Q5: 3
• Q6: 3

3 Doors Down - Kryptonite

• Q1: 4.5
• Q2: 4.5
• Q3: 4.5
• Q4: 2.5
• Q5: 1.5
• Q6: 2.5

Leonard Cohen - Hallelujah

• Q1: 3.5
• Q2: 3.5
• Q3: 2
• Q4: 2.5
• Q5: 3.5
• Q6: 2.5
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Frank Sinatra - Fly Me To The Moon

• Q1: 2
• Q2: 3.5
• Q3: 1.5
• Q4: 3
• Q5: 2.5
• Q6: 2

Porter Robinson - Everything Goes On

• Q1: 2
• Q2: 3
• Q3: 1.5
• Q4: 4
• Q5: 4
• Q6: 3

which means that the fine tuned model got the mean opinion scores:

• Q1: 2.6
• Q2: 2.7
• Q3: 2.3
• Q4: 2.4
• Q5: 2.5
• Q6: 2.3

and the baseline model got the mean opinion scores:

• Q1: 3.3
• Q2: 3.7
• Q3: 2.3
• Q4: 3
• Q5: 2.9
• Q6: 2.6

Even though there were only two test subject, the data indicates that the fine-tuning of the
model did not help, as the baseline model performs better at quite a large margin.

A few comment were written by one of the participant. Regardless of translation model, some
key takeaways for future improvement is that the model often doesn’t complete the translation,
which could possibly be due to length constraints. There are Unnatural cutting of words, but
that is to be expected with no standard for separation of words for either concatenation of
characters into single notes nor any determination to when it is natural to have a break in the
sung lyrics. Some of the sentences are way to long considering the melody, causing very rushed
and unnatural singing. Opposite meaning in translation occurs as key words are not spotted.
Kanji sometimes pronounced incorrectly. Sometimes the translation is very literate and sound
very "stiff".

The participant suggest that the cutting of words should be the first step in more natural
Japanese lyrics, as it is not very intelligible when pauses are made in the middle of words or they
are pronounced to quickly to hear.
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5 | Conclusion

The work presented in this report first explores and conducts a state of the art analysis in the
art of singing voice synthesis and singing voice information retrieval. After concluding what
technologies are necessary for reproducing and autonomously understanding the human singing
voice, a cascaded pipeline is proposed for autonomous singing voice to singing voice translation.
Singing voice to singing voice translation is the procedure of translating the audio of a human
singing voice in some language into audio of a singing voice in some other language. In this
proposal, that is the translation of an English singing voice into a synthesized Japanese singing
voice. In essence, the pipeline consist of an automatic speech recognizer, a phoneme level lyrics
aligner, a vocal melody extractor and a singing voice synthesizer. The pipeline is successfully
assembled and is capable of creating synthesized Japanese singing on the basis of an English
singing voice, however a brief study with Japanese natives show that the system has a far way
to go to become a high quality lyrics translator and natural singer.
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6 | Future Work

Results in this report show that further understanding of the Japanese language is needed for
lyrics translation, as well as for its alignment with a melody for a more natural singing voice.
In the presented work, mora were directly mapped to syllables from English singing which
themselves lost some alignment information in transition from phonemes. According to the
literature [Hayes, 1989], a syllable represent a mora if it is a short vowel, but it represents two
mora if it is a long vowel. In English the ending consonants of a stressed syllable represents a
mora. And if the syllable onset starts with a consonant, that consonant does not represent any
mora.

These are all very useful information about moraic languages that might very well help in
improving the alignment of Japanese lyrics

As suggested by Japanese natives during evaluation, it is very important to semantically group
the sung characters with neighbouring characters that jointly make up word. A song will sound
unnatural and be less intelligible if there are prolonged breaks in words, or if one sentence has a
word that belonged in the previous sentence.

As for pronunciation of kanji, it is yet to soon to tell if the error lies in the tools used, simply
just because of poorly generated data.

As the alignment of a Japanese singing voice will most likely not be the same as an English
singing voice, the vocal melody will most likely not completely match either. An idea could be
to guide the vocal contour. When investigating a vocal contour, it is common that there will
be deep valleys and steep hills for brief moments just as the singer transition from one word to
another. Such information which is based on incidents might be useful in correcting for another
language. An alternative would be to not directly use the vocal contour for for automation, but
use it to classify the pitches of notes.

Once a more well defined singing voice to singing voice system is defined, it is essential to make
a formal mean opinion score test with a good amount of people.

The evaluations indicate that no meaningful positives came from fine tuning NLLB-200-600M
[Team et al., 2022] on a set of around 200.000 lines of noisy translations. Therefore, further
research in the state of art in machine translation is needed to find the optimal solution for the
task, as this report did get much involved in it. However, as with most machine learning tasks,
the error is not the model but the data. Therefore, further data collection and a better data
cleaning protocol might be some of the most crucial tasks for future work.

No test have been conducted on the lyrics alignment capabilities of [Demirel et al., 2021] and its
performance versus [Schulze-Forster et al., 2021].

Neither has the lyrics transcription capabilities of Whisper [Radford et al., 2022] been formally
investigated. With this purpose, fine-tuning of whisper could be a possibility, however it would
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not seem as a high priority task considering its apparent performance.

With open source singing synthesis solutions such as [Yamamoto et al., 2022], one might consider
adapting to those for possibly more control of the synthesis.

end-to-end solutions for speech-to-speech are also gaining popularity [Seamless Communication
et al., 2023] and might as well be considered for adapting to the singing domain.

Considering more abstract approaches to the problem of creating high quality singing voice
translations, there could also be options text generation by query or keywords.
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