
Decentralised Multi-robot
manufacturing simulation

Master Thesis

Marek Raška

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg

Copyright © Aalborg University 2023

This thesis was developed using the Open Robotics framework ROS2 (Robot Operating
System 2) and the Gazebo simulator, both of which are open-source and licensed under
the Apache 2.0 license.

Preface

This Master Thesis has been completed as a part of obtaining master thesis title
done in coordination with study curriculum at Aalborg University with frame-
work theme focusing on swarm robotics used in manufacturing. This thesis is the
culmination of work achieved in Decentralised Multi-robot manufacturing simu-
lation.

October 23, 2023

Marek Raška
<mraka21@student.aau.dk>

ii

Acronyms and abbreviations

Acronym Definition
ROS2 Robot Operating System 2
CNN Convolutional Neural Network
DNN Deep Neural Network
EKF Extended Kalman Filter
GUI Graphical User Interface
IMU Inertial Measurement Unit
SLAM Simultaneous Localisation And Mapping
SOTA State Of The Art
URDF Unified Robot Description Format
Open-RMF Open Robotics Middleware Framwork
PoI Points of Interest
LTS Long term support
API application programming interface

iii

Contents

1 Introduction 1

2 Problem Analysis 4
2.1 3D Robotics Simulators . 4
2.2 Environment . 9
2.3 Robotic control . 11
2.4 Solution . 15

3 Requirements and Delimitations 17
3.1 Requirements . 17
3.2 Delimitation . 18

4 Design and Implementation 20
4.1 Structure . 20
4.2 Hardware and software . 20
4.3 Linorobot2 and Turtlebot3 . 21
4.4 Multi-robot simulation . 22
4.5 Changing the launch files . 22
4.6 Navigation and Simple Commander 23

5 Testing and Creation guide 25
5.1 Tests . 25
5.2 Creation guide . 27

6 Discussion 30
6.1 Testing number of robots . 30
6.2 Simple commander . 30

7 Conclusion 31

Bibliography 32

iv

1 - Introduction
In recent years, the manufacturing industry has been part of a significant shift
towards automation and robotics, driven by the need to enhance productivity,
flexibility, and cost-effectiveness compared to simple robot manufacturing. Tra-
ditional centralized manufacturing systems, where a single controller manages
and coordinates the activities of all robots and systems, have limitations in terms
of scalability, adaptability, and fault tolerance. To address these challenges, the
concept of decentralized multi-robot manufacturing has emerged as a promising
approach. This thesis explores the potential of decentralized multi-robot manufac-
turing through simulation, with the aim of optimizing production processes and
achieving greater efficiency in the factory of the future.

The essence of decentralized multi-robot manufacturing lies in the distribution
of decision-making and control among a network of autonomous robotic agents.
Each robot possesses its own sensing, reasoning, and acting capabilities, allow-
ing it to perform tasks independently or collaboratively with other robots. This
paradigm shift empowers manufacturing systems to operate in a more flexible,
scalable, and fault-tolerant manner compared to the centralized approach.

In a centralized manufacturing system, a single controller is responsible for man-
aging and coordinating the activities of all robots. While this approach provides a
high level of control and coordination, it can become a bottleneck as the number
of robots increases. The centralized controller must process and respond to all
the information from the robots, leading to potential delays and decreased over-
all system performance. Additionally, a single point of failure in the centralized
controller can bring the entire system to a halt and all the robots with it. This lack
of scalability limits the potential of centralized manufacturing systems to adapt to
changing production requirements or recover from failures quickly.

In contrast, decentralized multi-robot manufacturing systems distribute decision-
making and control among multiple autonomous robots. Each robot can make
decisions based on local information and collaborate with other robots to perform
tasks efficiently. This decentralized approach enables a higher degree of scalability,
as the addition or removal of robots does not heavily impact the overall system
performance. Furthermore, by removing the reliance on a single controller, the
system becomes more robust, as failures in individual robots do not necessarily

1

2 Chapter 1. Introduction

Figure 1.1: BMW logistics robots in colaboration with NVIDIA [1].

disrupt the entire system. Decentralization also allows for greater adaptability, as
robots can dynamically allocate tasks and adjust their behavior based on chang-
ing conditions. That is at least in theory as dynamically changing behavior is still
challenging to program even in realm of machine learned models.

The primary objective of this master’s thesis is to develop a comprehensive simu-
lation framework for decentralized multi-robot manufacturing systems and com-
pare it with the centralized approach. By using the power of simulation, this
thesis aims to explore and evaluate the advantages and disadvantages of both
approaches in terms of control, scalability, adaptability, and fault tolerance. The
simulation environment will provide a platform for modeling and analyzing the
interactions between multiple robots, their coordination algorithms, and resource
management techniques.

Through this research, this thesis seeks to show valuable insights into the capabil-
ities and limitations of decentralized multi-robot manufacturing systems in com-
parison to the centralized approach. By identifying the trade-offs and potential
benefits of each approach, we aim to contribute to the decision-making process for
manufacturers considering the implementation of collaborative automation sys-
tems. Ultimately, through the simulation-based approach, we hope to unlock the
potential of decentralized multi-robot manufacturing and pave the way for more
efficient, flexible, and resilient factories of the future. Thesis and projects such as
this are made in hope that this becomes a standard tool that will help people make
better robotic systems. In the future this swarm simulation workbench could help

3 Chapter 1. Introduction

Figure 1.2: Simulated robot swarm in Gazebo simulator.

more fields is not limited to only research in manufacturing, but any decentralised
robotics research such as intelligence emergence.

How can robotic swarm operate independently from each other and still achieve common
goal in manufacturing process?

2 - Problem Analysis
To create simulation for multi robot manufacturing scenario I will need software
on which to simulate this scenario, framework on which to operate these robots
and control them. The simulation control should be also usable for real life ap-
plications. In this chapter I will focus on comparing available resources that can
be used in achieving this simulation, from simulators, scenarios and worlds run-
ning on these simulators, maps made for them. This includes setting up important
way-points for robots (be it to workstation or for general navigation), to visualising
what tasks the robots do in the simulated world.

2.1 3D Robotics Simulators

This section compares simulation engines that are used for simulating robots from
Gazebo and NVIDIA’s Isaac to Unity. These are the most popular simulators and
each will have their own section explaining their capabilities and features. At the
end of this section they will be compared in their strengths and weaknesses to find
which one is most suitable for the task of simulating environment of multi robot
manufacturing for our given problem.

2.1.1 Gazebo

Gazebo is in the developers own words Advanced robot simulator for research,
design, and development. As it is an open project with direct collaboration with
ROS2 it has been designed to offer high-performance simulation capabilities. It
supports distributed simulation, where computation is distributed across multi-
ple servers, leading to improved performance. Additionally, Gazebo can auto-
matically load and unload simulation assets based on spatial information, further
enhancing performance. The ability to tune the simulation time step size allows
running simulations in real-time, faster than real-time, or slower than real-time,
providing flexibility in performance settings. This is very usefull feature as it
makes gazebo work even on weaker machines.

Gazebo is cross-platform, currently supporting Linux and MacOS and Windows
. It also seamlessly integrates with the cloud, enabling users to access, down-
load, and upload simulation models and worlds on a cloud-hosted server at

4

5 Chapter 2. Problem Analysis

Figure 2.1: Gazebo environment showcase [2].

app.gazebosim.org, this might slow down first startup of simulation server a
lot, because of models downloads. Local models have to be added to system
gazebo_path Integration with ROS2 is possible via a ROS/Gazebo bridge since
ROS Melodic, ensuring smooth communication and data exchange between the
two systems.

Gazebo offers an array of sensors, including monocular cameras, depth cameras,
LIDAR, IMU, contact sensors, altimeters, and magnetometers, all of which can be
utilized within simulations. Its default physics engine, DART, offers highly pre-
cise and accurate physics simulations, surpassing game engines’ capabilities. You
can use your own physics engine and this is supported by gazebo from command
line or C++ API.
Extensibility is a key feature of Gazebo, allowing its users to customize and en-

hance the simulation environment. The majority of Gazebo libraries offer a plugin
interface, enabling the use of custom code at runtime. This allows for the inte-
gration of additional rendering engines and GUI libraries. Gazebo also provides
a plugin simulation systems mechanism, allowing the loading of custom systems
that can interact directly with the simulation, enabling introspection and modifica-
tion of the simulation on the fly. Usability of custom systems differs from version
to version, so strict version control is required.
Gazebo also offers convenient command-line interfaces through the "gz" command-
line tool, which provides tools for topic introspection, message introspection,
launch management, and logging. For a more visual experience, a graphical in-

6 Chapter 2. Problem Analysis

terface based on QtQuick is available, allowing users to visualize the simulation
environment and access plugins for topic visualization, message delivery, and sim-
ulation world control and statistics. Gazebo also provides a web interface, which
enables users to discover new simulation assets, manage their assets, participate
in simulation competitions, and run simulations on cloud resources.
In summary, Gazebo offers a robust and flexible simulation environment that pri-
oritizes performance. [2]

2.1.2 NVIDIA Isaac ROS

Isaac ROS provides packages (GEMs) and complete pipelines (NITROS) for image
processing and computer vision, highly optimized for NVIDIA GPUs and Jetson
platforms. This means Isaac has a lot of prepared professional packages with high
fidelity ready to use. Downside is that this is only usable on the latest NVIDIA
GPUs.
The flexibility of modular packages empowers anyone developing on Isaac to se-
lect precisely the components they need for integration into their applications.
This modular approach facilitates seamless replacement of entire pipelines or in-
dividual algorithms, offering an efficient and adaptable solution for simulation.
Isaac boasts an extensive collection of Perception AI Packages, encompassing
cutting-edge DNN-based algorithms crucial for achieving high-performance per-
ception. These packages are designed to harness the power of hardware accelera-
tion, contributing to expedited development processes.
The latest Humble ROS 2 release enhances performance by harnessing hardware
accelerators on compute platforms. NITROS, an NVIDIA implementation of type
adaptation and negotiation, comprises hardware-accelerated modules known as
GEMs within the Isaac ROS ecosystem. Developers now have access to the source
code of NITROS, granting them the freedom to customize and extend its function-
alities according to their specific requirements.
Isaac also offers the Stereo Visual Odometry (SLAM) GEM, delivering highly ac-
curate real-time stereo camera visual odometry. This functionality is seamlessly
integrated into existing applications, ensuring precise localization capabilities.
3D Scene Reconstruction with nvblox in its preview stage, utilizes RGB-D data to
create a dense 3D representation of a robot’s surroundings. This advanced feature
aids in the detection of unforeseen obstacles, crucial for real-time decision-making
and safe navigation. This is basically RVIZ for gazebo, but with better GUI and
features.
DNN Inference GEM presents a collection of ROS 2 packages that enable devel-
opers to leverage NVIDIA’s extensive library of inference models, whether from
NGC or custom creations. These packages facilitate fine-tuning and optimization
of pre-trained models using the NVIDIA TAO Toolkit. The deployment of these

7 Chapter 2. Problem Analysis

Figure 2.2: NVIDIA Isaac simulation environment showcare [3].

optimized models is achieved through TensorRT or Triton, NVIDIA’s inference
server. Optimal inference performance is ensured through TensorRT, while Triton
offers flexibility for unsupported models. This presents easy to use machine learn-
ing connection between Isaac simulation and real life collected data.
In conclusion, Isaac is comprehensive platform for high-fidelity simulation, with
a wide array of tools and capabilities designed to empower robotics applications
with SOTA (State of the art) AI-driven functionalities.[3]

2.1.3 Unity

Unity, a robust and versatile game development engine, emerges as a pivotal tool
for crafting interactive 3D simulations, including those appropriate to the field of
robotics.
Unity excels in the realm of real-time graphics and physics simulation, enabling
the creation of visually stunning and physically precise environments for simula-
tions. This attribute is pivotal for achieving a high degree of realism in simulated
scenarios.
Unity boasts an extensive ecosystem comprising a plethora of assets, plugins, and
tools accessible through the Unity Asset Store. This invaluable resource empowers
users with pre-built models, environments, and scripts, expediting the develop-
ment process and enhancing the quality of simulations. As a game engine Unity
has an edge in pre-build resources such as models and worlds, when it comes to
their quantity and quality.
Unity’s compatibility with multiple platforms, encompassing desktop, mobile,

8 Chapter 2. Problem Analysis

Figure 2.3: Unity Robotics Demo Showcase [5].

and web, offers significant convenience when deploying simulations across di-
verse devices. This compared to other robotics simulators opens the possibilities
for simulation on different devices other than high-end servers and desktops.
Unity uses C# as its primary scripting language, which provides a familiar and ac-
cessible programming environment for developers. While Unity lacks native inte-
gration with the Robot Operating System (ROS), it is worth noting that community-
driven packages like ROS (ROS Sharp) have emerged to bridge the gap between
Unity and ROS.These packages facilitate seamless communication between Unity-
based simulations and ROS-based robotic systems, allowing for the exchange of
data and commands, a crucial consideration for robotics-oriented applications.[4]

2.1.4 comparison of the simulators

Gazebo, NVIDIA Isaac ROS and Unity all have their strong points, such as ex-
tensive model library for gazebo and Unity, high fidelity AI driven simulation for
Isaac. So lets focus on their drawbacks, which every single one of these simula-
tors have a few. For NVIDIA Isaac it is its hardware requirements. It is limited to
only newer NVIDIA CUDA GPUs and its OS requirements are ironically outdated:
Ubuntu 18.04 even though ROS2 Humble is recommended to run on Ubuntu 22.04.
Unity has other problems as there is only fan support for robotics programming
in that simulation environment as can be seen in ROS and is by no means official
ROS supported bridge between python or C++ versions of ROS. That leaves us
with Gazebo simulator. It is made from under Open robotics umbrella, which also
has ROS itself and Open-RMF (Open Robot Middleware Framwork). Open-RMF
could be though of as a centralised competition to this Master Thesis as it is frame-

9 Chapter 2. Problem Analysis

work for simulation and control of multiple robots thought central server. Gazebo
also has a large user community, extensive resources and relatively low computer
spec requirement. This concludes comparison between simulators, with Gazebo
being chosen for this project.

2.2 Environment

Once Simulator is selected a creation of environment that robot will be performing
in must take place. In Gazebo this environment is defined by the .world file, where
various objects, models and properties can be added for the simulated world. This
world can be made with inbuilt tools like Gazebo GUI, Gazebo Model Editor or
defined directly using an XML format in the file. All the physical properties of the
objects can be determined there, such are mass, friction, collision shapes etc.. This
is for collision model purposes.
There can be collision model and visible model that differs from it. Visible model
is usually defined as .sdf file or .model file. If the global Gazebo library does not
contain model that you would want or if there is a need for more specific model
they can be imported locally by sourcing gazebo_path to model system path. For
creation of such models - custom models, Blender or CAD software can be used.
Objects can be static structures like building or terrain that can be created by the
gazebo building editor as can be seen on the figure 2.4. They can be also items
enhancing the environment such as furniture, manufacturing station or any other
number of things. They can be also dynamic models that react to robots or can be
transported by them such as boxes, containers or other cargo items.

Visuals of the environment can be enhanced by lighting and visual effects that
gazebo provides, so you can achieve the visual feel of the simulated scene or its
dynamics such as day and night cycle. Gazebo is not focused on photo-realistic
visuals that can be found in NVIDIA Isaac simulations, but it can still have realistic
looking appearance with proper texturing and lighting combinations.

2.2.1 Spawning robots into the environment

Adding functional robot into environment requires a model specification file,
which for ROS2 is either URDF (Unified Robot Description Format) or XACRO
(XML Macros) file that defines robots. URDF (Unified Robot Description Format)
is an XML-based file format used to describe the structure and visual properties
of robots in the context of robot modeling and simulation. URDF files are com-
monly used in conjunction with ROS2 (Robot Operating System 2) for describing
the kinematics, dynamics, and geometry of robots.
In URDF you can describe hierarchical structure of the robot, including links,

10 Chapter 2. Problem Analysis

Figure 2.4: Gazebo building editor.

joints, and their relationships. Links represent physical components of the robot,
such as bodies or end-effectors, while joints define the connections between links
and specify their motion characteristics. You can also specify visual and collision
properties of robot links. Visual elements define the appearance of the robot, such
as meshes or geometries, while collision elements define simplified representa-
tions used for collision detection.
URDF can also define properties for simulator such as physical properties for the
robot’s links and joints, such as mass, inertia, and friction coefficients. This helps
the physics based simulations in Gazebo, NVIDIA Isaac or even UNITY engine.
Final thing we can define in URDF file is sensors, such as cameras, lasers, or
force/torque sensors, within the robot model. Sensor definitions allow simulation
of sensor data generation and integration with control algorithms.

URDF is strict format that can be edited or generated, but cannot be changed
parameticaly like XACRO. XACRO is an extension of URDF that allows for more
modular and reusable robot descriptions. This can be thought of as using the
same classes over again in programming with different parameters having differ-
ent values. You can generate URDF files from XACRO files which can be then
used for robot definition in simulation. XACRO even has its own python library
for this purpose. Key features of XACRO is use of variables, which can store val-
ues or text strings. Variables provide a way to reuse values across different parts
of the robot description, making it easier to maintain consistency and facilitate
modifications. Xacro supports the inclusion of other Xacro files within a main
Xacro file. This allows the composition of complex robot descriptions by modular-

11 Chapter 2. Problem Analysis

izing different components and combining them in a single file. Includes promote
code reusability and make it easier to manage large and complex robot models.
This sort of nesting is useful on bigger projects that have lot of changing compo-
nents from robotic arms, sensors or even types of mobility. Changes in mobility
for robotic platform can be 2WD (two-wheeled drive), 4WD (4-wheeled drive) or
legged propulsion, which provide mobility by locomotion.
Xacro files are pre-processed before generating the final URDF files. The Xacro
preprocessor parses the Xacro syntax, resolves macros and variables, and outputs
the resulting URDF file. This process simplifies the maintenance and generation
of URDF files, especially for robots with repetitive structures or parameter vari-
ations. This can be done in CLI (Command-Line Interface) or in program using
above mentioned XACRO library. Using Xacro alongside URDF enhances the
readability, reusability, and modularity of robot descriptions, making it a popular
choice within the ROS community.

When we have our desired description file written we can spawn the robot directly
into running simulator with ROS2 command

ros2 run gazebo_ros spawn_entity.py -entity <robot_name> -file <
path_to_robot_model> -x <x_position> -y <y_position> -z <z_position> -
Y <yaw_angle>

This command works in gazebo simulator, but the structure for other simulators
should be similar to this CLI script for gazebo. spawn_entity is ROS2 standard
library package that spawns robots described by the URDF file into simulation.
This can be used with namespaces and grouping in .launch to spawn homoge-
neous robotic swarm. [6] [7]

2.3 Robotic control

Control refers to the process of regulating the behavior and actions of a robot to
achieve desired tasks and objectives. There are two primary approaches to robotic
control: centralized control and decentralized control. Each approach has its own
advantages and disadvantages, depending on the specific application and system
requirements.

2.3.1 Comparison between centralised and decentralised approach

Centralized control, also known as monolithic control, involves having a single
controller or decision-making entity that coordinates and governs the actions of
the entire robot system. This central controller typically receives sensor data from
various robot components, processes it, and generates control commands to drive
the robot’s actuators.

12 Chapter 2. Problem Analysis

Advantages of Centralized Control:
Global System View: Comprehensive decision-making based on complete system
information.
Optimal Coordination: Efficient coordination of robot components for synchro-
nized actions.
Complex Task Execution: Execution of intricate tasks involving multiple robot
components.

Disadvantages of Centralized Control:
Single Point of Failure: Controller malfunction can lead to system breakdown.
Communication Overhead: Data collection and command distribution may intro-
duce latency.
Scalability: Challenges with large and distributed robotic systems.

Decentralized control distributes decision-making across multiple controllers or
modules in the robot system.
Advantages of Decentralized control:
Modularity and Fault Isolation: Modular design enhances fault isolation. Be it
physical defect or programming bug
Parallel Processing: Enables faster decision-making through concurrent operation.
Scalability: Easily accommodates new components and distributed controllers.

Disadvantages of Decentralized control:
Lack of Global View: May lack a complete system-wide view for complex tasks.
Inter-robot Communication: Effective coordination among robots is crucial.
Consistency and Synchronization: Maintaining coordination can be complex for
multiple robots.

Choosing the Control Approach:
If this Thesis was not focused on Decentralised swarm control the choice between
centralized control and decentralized control would depend on the specific re-
quirements of the robotic system. Considerations such as system complexity, fault
tolerance, scalability, and the level of coordination required for the tasks at hand
play a significant role in determining the most suitable control approach.
It’s worth noting that hybrid control approaches also exist, which combine ele-
ments of centralized and decentralized control to leverage the strengths of both
approaches. These hybrid approaches aim to strike a balance between system-
wide coordination and modular autonomy. Hybrid-control algorithms run into a
problem of proper information bridging such as processing local data on either
central system, local or both. As such they have the highest complexity of all
control algorithms.

13 Chapter 2. Problem Analysis

Figure 2.5: Diagram of centralised and decentralised control.

Ultimately, the control approach selected based on goals

2.3.2 Global and local goals

In robot control systems, the concepts of global and local goals are pivotal for
shaping a robot’s behavior and navigation strategy. Let’s delineate the distinctions
between these two approaches:
A global goal represents the ultimate destination or objective that the robot aims to
achieve. It is typically defined in a coordinate system relative to the environment
or a specific reference frame, most of the time a map. Global goals are usually set
by an external agent, such as a human operator or a higher-level planning system.
Examples of global goals include reaching a specific location, navigating to a tar-
get object, or following a predefined path.
When pursuing a global goal, the robot takes into account the overall task and
plans its actions accordingly. It involves long-term decision-making and nav-
igation strategies to reach the desired destination. Global goal planning often
considers factors such as obstacle avoidance, path optimization, and global map
information. The robot continuously updates its path based on the changing en-
vironment and optimizes its trajectory to achieve the global goal efficiently. Local
Goal

A local goal, on the other hand, represents an intermediate or short-term objective
within the robot’s immediate vicinity. It is determined based on the current state
of the robot and its surrounding environment. Local goals are typically computed
in real-time using sensor feedback and local perception algorithms. They provide
short-term targets that help the robot navigate and make decisions in its local

14 Chapter 2. Problem Analysis

Figure 2.6: Navigation2 architecture showing global and local costmaps.

vicinity.
Local goals are often generated based on information such as obstacle detection,
proximity to obstacles, or local landmarks. The robot uses these goals to plan im-
mediate actions and adjust its trajectory to avoid obstacles or reach specific way-
points. Local goal planning focuses on short-term navigation, reactive behaviors,
and obstacle avoidance to ensure safe and efficient movement in the immediate
surroundings.
Integration and Importance
Global and local goals are not mutually exclusive but rather complementary in
robot control systems. They work together to guide the robot towards achieving
its ultimate objective while ensuring real-time adaptability to the immediate en-
vironment. The integration of global and local goals allows robots to navigate
dynamically, respond to changing conditions, and handle unexpected obstacles or
detours.
The global goal provides a high-level objective and guides the overall navigation
strategy, while local goals help the robot react to local conditions and make imme-
diate adjustments to its trajectory. By combining both approaches, the robot can
navigate complex environments, handle dynamic obstacles, and efficiently reach
its destination while maintaining local safety and adaptability.
In summary, the global goal sets the long-term objective for the robot, while lo-
cal goals guide its short-term actions and adapt to immediate surroundings. The
integration of both global and local goals enables robots to achieve efficient, safe,
and adaptive navigation in a variety of environments and tasks. [8]

15 Chapter 2. Problem Analysis

2.3.3 Navigation strategy

There are few strategies that can be used for Decentralised swarm robotics, such
as Decentralized coordination:
is a strategy used in robotics and multi-agent systems where multiple individual
agents or robots work together to achieve a common goal without relying on a
centralized controller to make decisions for the entire group. Instead, each agent
has some level of autonomy and makes local decisions based on its own percep-
tion of the environment and interactions with neighboring agents. This approach
offers several advantages and is often inspired by principles observed in nature,
such as in ant colonies, flocking birds, and social insect behavior.[9]

Decentralized coordination strategies can take various forms, including:

Swarm Intelligence inspired by behaviors observed in social insects like ants and
bees, swarm robotics uses local interactions between robots to achieve group ob-
jectives. Algorithms like ant colony optimization and particle swarm optimization
are commonly used for this purpose.

Distributed algorithms, such as consensus algorithms and distributed control, al-
low agents to reach agreements or make decisions collectively without relying on
a central authority.

Multi-Agent Reinforcement Learning in complex environments, agents can use
reinforcement learning techniques to independently learn and adapt their behav-
iors, with rewards based on the collective performance of the group.

Communication Protocols agents can communicate with each other through de-
centralized communication protocols, exchanging information about their state
and intentions. These protocols enable cooperation without central control.

2.4 Solution

As can be seen from previous sections and subsections, there are many ways how
to solve decentralised swarm simulation with different methods of controlling it.
It is then important to limit focus of this thesis to one solution. It is also important
to realise that there maybe issues with combining technologies for a novel solution
As can be seen from previous text there are many ways to simulate robot swarm

16 Chapter 2. Problem Analysis

and establishing communication between each of the robots or agents in the swarm.
Therefore, it must be made clear in the early stages which setup can be used as it is
limited by hardware and time that can be used on this thesis. To limit the scope of
this thesis, it will be focused on decentralised swarm workbench of heterogeneous
robots with connection to navigation stack that can perform navigation between
PoI (Points of Interest). This will limit the hardware demand on the simulating
desktop, so the limiting factor can be number of robots in the swarm instead of
their complexity.
With the system determined and all the robots of the swarm being the same with
same algorithm running on them with just different goals it should be possible to
see the throughput of this made up manufacturing system.
For the swarm workbench to work properly, a setup of environment, maps of en-
vironment, robot models, their parametric files and such must be prepared for
default operation. They should be interchangeable, but should be set up as a de-
fault workbench for any user to use. Robots should also have default algorithm
with goals established beforehand so they can be used "out-of-the-box".

With these considerations in mind, the needed tasks wanted from the system can
be explored. These tasks and delimitation are described in the following chapter.

3 - Requirements and Delimita-
tions

As described in last section 2.4 a system must be developed to work as a robot
swarm workbench with a navigational algorithm for all agents of the swarm. In
order to determine whether this system can be used for a given task a set of
requirements must be set. Also, because of the limited scope of this Thesis a set of
delimitations must be set. These are described in this chapter.

3.1 Requirements

A satisfactory prototype workbench and algorithm must meet a certain set of pre-
defined requirements. These requirements should be testable and measurable ac-
cording to applicable metrics. They also should be comparable to their commercial
counterparts, which are intended for a similar use case. The requirements of this
Thesis can be conveniently divided into several parts, corresponding to different
sub tasks, as seen below.

3.1.1 Workbench

Main component of the solution is working robot swarm workbench, a way to
spawn several robots and allocate to them proper controls. As such, the following
requirements should be met:

• Workbench should be able to spawn at least 20 robots at the same time.

• All robots running should have their namespace (Grouping of nodes) sepa-
rated from every other robot to insure decentralisation.

• All robots should have their own RVIZ and nav2 stack running at the same
time.

• The environment and robot models should be changeable.

3.1.2 Algorithm

To reach the goals set for the robots in the swarm, it is important that the algorithm
satisfies the following requirements:

17

18 Chapter 3. Requirements and Delimitations

• Robots should reach their goal 100% of a time irrespective of a time it took
to reach their goal.

• Robots should avoid static and dynamic obstacles 100% of the time. Colli-
sions should not happen with either other robots or the environment.

• After receiving their goals, robots should move autonomously, without help
from the user.

These requirements, are for an ideal version of the solution. The following section
describes the delimitation of these requirements.

3.2 Delimitation

In section 2.4 a general solution has been given and as such, requirements could
be drawn in section 3.1. Due, to resources and hours for the thesis being limited
and do not allow for the setup of an ideal version of that generalised solution.
Therefore, the scope of the thesis must be reduced according to the following
criteria. This delimitation is based on the simulators, computers, time available,
as well as the focus of the initial thesis proposal.

General scope

For scoping the thesis, most of the modules that work out of the box can be used to
save time and focus on making a working swarm robotics package. Additionally,
the system can have a already available models of robots. In the case of the imple-
mented solution, these models are linorobot2 and turtlebot3 robots respectively.
Development should be prioritise scalability in swarm size, but with all parts of
solution working. The scope of this thesis is limited making one self-made algo-
rithm for control of the swarm.

Hardware

For simulation a laptop will be used with generation of NVIDIA GPU older then
2018 models.

Robot Workbench

Workbench must be scale-able with number or robots it can spawn up to a limit,
this limit can should not exceed 100 fully running robots. It also should be able
to change most of the variables that user could want, such are .world file for
environment and .sdf/.model/.urdf file for the robot.

19 Chapter 3. Requirements and Delimitations

Map

Map will be distributed centrally to every robot through the simulation, as if a
central authority was giving a map (not fully decentralised)

Workstations

Workstations will be represented by points on the map and will not have their
own model or forms of communication.

One plane limit

there will not be any multi-floor solutions for either spawning nor controlling
robots

Algorithm

Will have a spatial limitation in a sense that at least 2 robots with can pass around
each other without running into their inflation (safe) zones. Also there will be
topology limitation in a sense that environment must have place where robots can
take a holding patern while waiting for free space on workstations.

Randomly set goals

As this is not the focus of the thesis, workstation goal selection will be randomised
for testing and will not be selected by any system.
This delimitation with the solution presented in 2.4 leads to a final problem for-
mulation that guided the design and implementation of the rest of this thesis:

How can a Decentralised Robotic Swarm Simulation Workbench work with a given control
algorithm?

4 - Design and Implementation
As described in the last chapter 3, the setup of the system must be designed
according to this limited scope. This section will describe what different tools
and packages were used in order to achieve functioning swarm workbench with
control algorithm connected to every agent of the swarm.

4.1 Structure

As described in the introduction of this thesis, the robots will run on decentralised
structure. As there is only one simulation server, there should be big difference
in the load compared to how it would be in real life robot scenario. As in that
scenario every robot would take on its own workload, but because this is the
only point of computing and it has to simulate numerous robots running at the
same time, all running their own nav2 stack, RVIZ and Simple_commander. This
means this simulation has additive load for the simulation PC. Which means every
additional robot simulated takes as much memory and processing time as the last
one. this can be very noticeable with larger number of robots in the swarm. This
structure can be seen in figure 4.1 and more detailed working version can be seen
on 4.2.

4.2 Hardware and software

Simulating Gazebo is laptop with 32gb of RAM and NVIDIA 970m GPU. OS is
Ubuntu 22.04 Jammy running ROS Humble.

Figure 4.1: General schematic of the swarm workbench, color is to show different grouping of nodes.

20

21 Chapter 4. Design and Implementation

Figure 4.2: Swarm Workbench seen by using RQT_graph.

ROS Humble is the latest LTS (Long term supported) version of ROS2 - is an open-
source, flexible, and modular framework for building robot software. It is a signif-
icant advancement of the original ROS and is designed to meet the evolving needs
of the robotics community. ROS2 provides a powerful set of tools and libraries for
developing robotic applications and enables collaboration, consistency, and flexi-
bility in the development process. It offers improved communication capabilities,
including support for Publish/Subscribe and Request/Response communication
patterns. This enables robust and efficient data exchange between different com-
ponents of a robotic system.

4.3 Linorobot2 and Turtlebot3

Linorobot2 is an open-source project focused on creating a low-cost, educational,
and versatile robotic platform that combines hardware and software components
for robotic enthusiasts, hobbyists, and educators. The project emphasizes ease of
use, affordability, and adaptability for various applications. And as such it found
its way to AAU (Aalborg University), where it serves as test bench for student
projects. This thesis will only be using .URDF and .Xacro files of the project along
with its navigation packages.
TurtleBot3 is another open-source robot platform, but it’s designed for a different
set of use cases compared to Linorobot2. This thesis will be using its .URDF and
.sdf files for simulating this robot, along with its nav2 implementation of multi-
robot spawning.

22 Chapter 4. Design and Implementation

Figure 4.3: Turtlebot3 series of robots used in this project as models alongside linorobots2[10].

4.4 Multi-robot simulation

Goal of running multiple robots in one simulation is to have all their transforms,
sensors and nodes separated by namespaces which can be seen in 4.2. Available
.launch files in linorobot2 and turtlebot3 are not made for handling more than 2
robots at a time in simulation and thus have to be modified. Not just their robot
spawning behaviors, but also their node allocation methods have to be changed.

4.5 Changing the launch files

there are 2 launch files spawning multiple robots in this project and both have dif-
ferent approaches. One is from box-bot project, minimal simulation project, that
was changed to suit linorobot2 and given number of robots from terminal.
Second aproach was done with Turtlebot3. This aprroach was taken from nav2_bringup
multi_tb3_launch.py. As both of these approaches were found lacking their struc-
ture had to change, for linorobot2 it was with grouping namespaces for each robot
and all the nodes that belonged to that particular robot. this approach was prob-
lematic with spawning of RVIZ as the parameter file was not defined for multiple
robots and had to be remade. Linorobot2 also has a separate file for launching
nav2 stack which gives it bigger capacity for number of robots, up to 100.
Turtlebot3 compared to linorobot2 had multirobot support before, but only for 2.
YAML file generator for parameter files had to be added to launch file along with
dynamic creation of desired number of robots. Turtlebot3 has automatic nav2 and
RVIZ startup, but as a result can handle much less robots at the same time, up to
15 only, but this is limitation of the hardware only.

23 Chapter 4. Design and Implementation

Figure 4.4: Recovery tactic for when goal position is occupied.

4.6 Navigation and Simple Commander

Navigation2 node is started up either at the same time as spawning or joined into
the namespace from separate launch file. This does not mean that th nav2 stack
is activated. It is only activated if autostart value was set to true, or it was start-
upped in RVIZ. After nav2 node is started up, Simple commander script can be
run. Problem is that this has to be done in separate terminals or run on different
threads as each BasicNavigator() function is terminal blocking and wont allow
another BasicNavigator() function to run. This means that in the latest version
of the project, simple commander scripts have to be manually started up in each
terminal.
In the Simple commander scripts there is space to make or call your own goals
and should be changed for each environment. The Simple commander API even
handles the holding pattern portion of the script, because when goal fails thanks
to another robot already occupying the position, it start up the holding pattern
and tries to reach that goal again.

24 Chapter 4. Design and Implementation

Figure 4.5: RVIZ with navigation stack started up, without Pose estimate.

5 - Testing and Creation guide
To test all the systems and modules put into the same .launch file a series of test
were done. After these test there will be guide how to create your own environ-
ment for swarm control, along with adding your own models.

5.1 Tests

First test was with all default setting, which are configured as such. World file
for gazebo environment is slim_blockage.world, urdf and model is set to turtle-
bot3_waffle, number of robots is 5 and their names are Srobot1 to Srobot5 (Swarm
robot), navigation stack is autostarted along side with RVIZ as seen in figure 5.1.
this test was performed to show how default behavior works. On given hardware

is after start of the launch script, all RVIZ consoles open and after them gazebo
with all spawned robots.

5.1.1 Spawning more than default

Spawning more than default number of robots yields a considerable wait time for
gazebo simulation to actually spawn the robot entity. This can be seen in figure
5.2. There is no given order in which the robots spawn as they are all assigned to
different threads on CPU and it just depends on the core load at the time, when it
come to spawn entity execution
after a minute even 10 robots are no problem spawning with autostarted nav2 and
RVIZ as can be seen in figure 5.3 . without them it is even possible to spawn up
to a 100 robots, it is in coded limit as my hardware stopped temporarily working
after trying 200 and shutting down from overheating. This coded in limitation can
allways be coded out, but it should stay as safety.

5.1.2 Using Simple_commander

moving the robots through the poses can be done either from RVIZ manualy, or
throught simple commander API script automaticaly, with holding pattern algo-
rithm. this can be seen both in RVIZ and gazebo in figure 5.4. Simple_commander
can only start when nav2 stack is active already as can be seen in RQT_graph in
figure 5.5. It initialises the position thanks to recreating the spawning sequence
for x and y positions of given namespace of the swarm robot. then it just gives the

25

26 Chapter 5. Testing and Creation guide

Figure 5.1: Default spawning method.

Figure 5.2: Problem with spawning more robots than simulation can handle on start-up.

27 Chapter 5. Testing and Creation guide

Figure 5.3: After re-running spawn entity automatically by the launch file, spawning more than
default number of robots was complete.

Figure 5.4: Simple commander can be seen running in RVIZ and gazebo in this figure.

goal position in randomised order. This should be also doable by calling a service
in the future for server given goal orders.

5.2 Creation guide

This workspace is build in ROS2 Humble, it is recommended to have full desktop
installation on Ubuntu 22.04 with turtlebot3 and gazebo_ros packages. In order to
create anything in swarm_workbench, you have to download the workspace with
command shown bellow.

mkdir swarm_workbench
cd swarm_workbench

28 Chapter 5. Testing and Creation guide

Figure 5.5: RQT_graph of simple commander API connections to navigation stack.

git clone https://github.com/TheMarksniper/swarm_workbench.git

after cloning the repository you will want to build with this command

colcon build --merge-install

if any problems arise there is small helper_commands.sh file that should have all
the troubleshooting commands. They should be continuously added with more
features. After successfully building with colcon you will have to source your new
workspace

source install/setup.bash

and after that you can finally launch the multi-robot launcher. the default launch
is like this.

ros2 launch swarm_gazebo new_multi_launch.py

if you want to change the number of robots, you can with added argument

ros2 launch swarm_gazebo new_multi_launch.py swarm_size:=10

after the desired number of robots are spawned in gazebo and all RVIZ windows
are working its time to run the python script files

python3 src/swarm/swarm_navigation/scripts/select_route.py Srobot1

this will launch the simple commander API script with randomised route selected
for given robot. You will have to open a new terminal to run more than one simple
commander script. Limitation as always should be just speed of your hardware.

5.2.1 How to change these default settings?

changing the default world can be found in

29 Chapter 5. Testing and Creation guide

Figure 5.6: Code that generates positions for robots to spawn in.

Figure 5.7: Code that generates parametric files specific to each robot namespace.

nano src/swarm/swarm_gazebo/new_multi_launch.py

file under declare_world_cmd argument, of course you can always be calling the
world:=your_path/world.world in the launch arguments, same with map:= file
(declare_map_yaml_cmd).
Bigger problems happens if you want to change model of the simulated robot, as
you have to change not only URDF file, but also sdf file and param file for RVIZ.
It isnt a problem that cannot be solved with changing few values. you can see
how to change behaviours of how robots spawn in figure 5.6 and how to make
temporary yaml files in figure 5.7

6 - Discussion
6.1 Testing number of robots

This section compares the performance of the different tests described in the previ-
ous chapter. And the tests clearly show that a lot of computing power is required
for simulation even of a few running robots in minimalist environment. In the test
it was shown that number of robots spawn is not limited by ROS or gazebo, but
pure computational strength.
testing was only done on Turtlebot3 as there was a problem with collisions on
Linorobots2, when running simple commander API they had too little inflation
for collisions and when they ran into each other they could not recover.

6.2 Simple commander

Simple commander API is extremely good tool to use in any application that
already uses navigation stack. you can not only go toPose(), but also goThrough-
Poses() with many more functionalities that are not explored in this thesis, but
will be in the future of this package.

30

7 - Conclusion
This Master thesis was driven purely by my interest in swarm robotics and as such
is limited in its scope and performance. Still I would like to release the code and
models as open source project in decentralised swarm robotics as it may one day
in future help with other projects in this or other fields.

This Master thesis describes Decentralised robotic swarm simulation, as well as
the performance of this setup. Chapter 5 shows the performance of the system
and while dynamically spawning number of robots, as well as connecting them
simultaneously to navigation stack and RVIZ. This can be seen taken further by
adding simple commander API script and navigating with multiple robots at the
same time. There is also a small guide for anyone who would want to contribute
to the project with their own creation.

This project is something that is not yet done in ROS2 as the only indirect competi-
tor is completely centralised system in Open-RMF, which is a professional project
that completely neglects the decentralised approach. In the future this could be
either addition to that project or become its own spin-off in the ROS2 ecosystem,
same as simple commander was. This project deserves even more features and
additions to it.

In conclusion to answer to the main problem stated in chapter 3. Yes a Decen-
tralised robotic swarm simulation can work with control algorithm that is tapered
to its needs and works well and can follow all goal without stopping.

31

Bibliography
[1] Hanns Huber. BMW Group is making logistics robots faster and smarter. www.press.bmwgroup.com,

May 2020. url: https://www.press.bmwgroup.com/global/article/
detail/T0308393EN/bmw-group-is-making-logistics-robots-
faster-and-smarter?language=en.

[2] Open Robotics. Gazebo. gazebosim.org. url: https://gazebosim.org/
(visited on 05/20/2023).

[3] NVIDIA. Isaac ROS. NVIDIA Developer, Oct. 2021. url: https://developer.
nvidia.com/isaac-ros (visited on 05/20/2023).

[4] Cameron Greene, Michael Pinol, Amanda Trang, and Jacob Platin. Robotics
Simulation in Unity. Unity Blog, Nov. 2020. url: https://blog.unity.
com/engine-platform/robotics-simulation-is-easy-as-1-2-
3 (visited on 05/01/2023).

[5] Steve Crowe. Unity Showcases ROS 2 Support with New AMR Demo. The Robot
Report, Aug. 2021. url: https://www.therobotreport.com/unity-
showcases-ros-2-support-new-amr-demo/ (visited on 10/23/2023).

[6] Open-Robotics. Xacro - ROS Wiki. wiki.ros.org, Mar. 2022. url: http://
wiki.ros.org/xacro.

[7] Open-Robotics. URDF- ROS Wiki. wiki.ros.org, Mar. 2023. url: http://
wiki.ros.org/urdf.

[8] Open Navigation LLC. Nav2 — Navigation 2 1.0.0 documentation. naviga-
tion.ros.org, 2023. url: https://navigation.ros.org/.

[9] David St-Onge, Vivek Shankar Varadharajan, Ivan Švogor, and Giovanni Bel-
trame. “From Design to Deployment: Decentralized Coordination of Hetero-
geneous Robotic Teams”. In: Frontiers in Robotics and AI 7 (May 2020). doi:
10.3389/frobt.2020.00051. (Visited on 09/01/2023).

[10] Open-robotics. TurtleBot3. robots.ros.org. url: https://robots.ros.
org/turtlebot3/.

32

https://www.press.bmwgroup.com/global/article/detail/T0308393EN/bmw-group-is-making-logistics-robots-faster-and-smarter?language=en
https://www.press.bmwgroup.com/global/article/detail/T0308393EN/bmw-group-is-making-logistics-robots-faster-and-smarter?language=en
https://www.press.bmwgroup.com/global/article/detail/T0308393EN/bmw-group-is-making-logistics-robots-faster-and-smarter?language=en
https://gazebosim.org/
https://developer.nvidia.com/isaac-ros
https://developer.nvidia.com/isaac-ros
https://blog.unity.com/engine-platform/robotics-simulation-is-easy-as-1-2-3
https://blog.unity.com/engine-platform/robotics-simulation-is-easy-as-1-2-3
https://blog.unity.com/engine-platform/robotics-simulation-is-easy-as-1-2-3
https://www.therobotreport.com/unity-showcases-ros-2-support-new-amr-demo/
https://www.therobotreport.com/unity-showcases-ros-2-support-new-amr-demo/
http://wiki.ros.org/xacro
http://wiki.ros.org/xacro
http://wiki.ros.org/urdf
http://wiki.ros.org/urdf
https://navigation.ros.org/
https://doi.org/10.3389/frobt.2020.00051
https://robots.ros.org/turtlebot3/
https://robots.ros.org/turtlebot3/

	Front page
	Table of Contents
	1 Introduction
	2 Problem Analysis
	2.1 3D Robotics Simulators
	2.2 Environment
	2.3 Robotic control
	2.4 Solution

	3 Requirements and Delimitations
	3.1 Requirements
	3.2 Delimitation

	4 Design and Implementation
	4.1 Structure
	4.2 Hardware and software
	4.3 Linorobot2 and Turtlebot3
	4.4 Multi-robot simulation
	4.5 Changing the launch files
	4.6 Navigation and Simple Commander

	5 Testing and Creation guide
	5.1 Tests
	5.2 Creation guide

	6 Discussion
	6.1 Testing number of robots
	6.2 Simple commander

	7 Conclusion
	Bibliography

