Department of Computer Science {{L

Aalborg University

The Optimized Link State Routing Protocol

Performance Analysis through Scenario-based Simulations

M.Sc. Thesis
by
Lars Christensen
&

Gitte Hansen

Spring 2001

Supervisor: Thomas Heide Clausen

Department of Computer Science

Aalborg University

Title:
The Optimized Link State Routing
Protocol — Performance Analysis

through Scenario-based Simulations

Project:
Master’s Year
Dat 6, Spring 2001

Project group:
E3-101b

Group members:
Lars Christensen, larsch@cs.auc.dk
Gitte Hansen, gitte@cs.auc.dk

Supervisor:
Thomas Heide Clausen

Number of copies: 7
Number of pages: 138

Appendices:
Simulation Overview
Simulation Data

(S

In this project we perform an empirical study
of the performance of the Optimized Link
State Routing Protocol with exhaustive sce-
nario based simulations in Network Simula-
tor 2. We propose the use of enforced jitter
and piggybacking on the transmission of con-
trol messages. Furthermore we test a simple
link hysteresis and adjust the message con-
trol intervals. We show that the use of jitter
has a substantial effect on the performance
of the protocol and that using piggyback-
ing, link hysteresis, and adjusting the control
message intervals does not have a significant
effect. Finally, we perform a comprehensive
comparison of OLSR with AODV that un-
cover the types of scenarios in which each of
the protocol excel. The result of the compar-
ison is that OLSR perform equal to AODV
in many scenarios, but substantially better in
networks with low mobility, high load, high
density and/or sporadic traffic.

To assist us in performing this evaluation
we have developed a framework for perform-
ing the simulations. This framework includes
a scenario generator that generates random
scenarios within the constraints of predefined
parameters that characterize the scenarios.
The complete framework includes the simula-
tor, the scenario generator, and a set of util-
ities to gather descriptive measures for the
simulator output.

Aalborg Universitet - Fredrik Bajers Vej 7 - 9220 Aalborg st - T1f. 96 35 80 80 - Telefax 98 15 98 89

Institut for Datalogi

Aalborg Universitet

Titel:
The Optimized Link State Routing
Protocol — Performanceanalyse med
udgangspunkt i scenariebaserede sim-
ulationer

Projekt:
Specialesemester

Dat 6, Foraret 2001

Projektgruppe:
E3-101b

Gruppemedlemmer:
Lars Christensen, larsch@cs.auc.dk
Gitte Hansen, gitte@cs.auc.dk

Vejleder:
Thomas Heide Clausen

Antal eksemplarer: 7
Antal sider: 138

Bilag:
Simulation Overview
Simulation Data

(S

I dette projekt foretager vi et empirisk studie
af ydeevnen af routningsprotokollen ‘Opti-
mized Link State Routing Protocol’ omtgm-
mende scenariobaserede simulationer i Net-
work Simulator 2. Vi foreslar brugen af
patvunget jitter og piggybacking pa ud-
sendelse af kontrolbeskeder. Desuden tester
vi en simpel link-hysterese og justerer kon-
trolbeskedintervallerne. Vi viser, at bru-
gen af jitter har en betydelig effekt pa pro-
tokollens ydeevne og at brugen af piggy-
backing, link-hysteresen og justering af kon-
trolbeskedintervallerne ikke giver en tydelig
effekt. Viforetager en analyserende sammen-
ligning med AODV, der viser i hvilke tilfeelde
hver af protokollerne yder bedst. Resultat
af dette er, at OLSR yder lige sa godt som
AODV i mange scenarier, men betydeligt
bedre i netveerk med lav mobilitet, megen og
sporadisk traffik og/eller hgj densitet.

Som hjelp til at udfgre denne evaluering, har
vi udviklet et framework til at afvikle simula-
tionerne. Dette framework indeholder en sce-
nariegenerator, der kan opstille tilfzldige sce-
narier baseret pa en foruddefineret maengde
af scenarieparametre der karakteriserer sce-
narierne. Frameworket bestar af netveerk-
simulatoren, scenariegeneratoren og et saet af
vaerktgj til at indsamle beskrivende malinger
fra outputtet af selve simulationerne.

Aalborg Universitet - Fredrik Bajers Vej 7 - 9220 Aalborg @st - T1f. 96 35 80 80 - Telefax 98 15 98 89

Preface

This report documents our work on the master’s year at the Department of Computer
Science, Aalborg University, Denmark. The thesis documents the results of the work done
from September 2000 to July 2001 under the thematic frame of distributed systems.

The formal purpose of the report is to document our ability to work autonomously with
a project encompassing empirical and/or theoretical investigation of one or more problem
areas relating to central subjects within the area of distributed systems, and to apply
theories and methods on a scientific level.

To do this, we have evaluated the performance of the Optimized Link State Routing
(OLSR) protocol alone and in comparison with the Ad Hoc On-Demand Distance Vec-
tor Routing protocol (AODV). We have implemented OLSR for Network Simulator 2 [nsh|
and created a scenario generator. We have developed a framework for simulation and an-
alyzing the results hereof. We introduce the use of enforced jitter and piggybacking as
enhancements to OLSR and test a method for using link hystereses. We test and describe
the performance of OLSR and AODYV in various scenario settings.

References are shown in brackets and refers to the bibliography at page 100. (for example
[JMQ™01]). The bibliography contains the sources and references we have used trough out
the project. We have included a vocabulary with special expressions used in this report,
starting at page 97. This is to prevent misinterpretations in the different contexts.

We would like to thank the research unit Project Hipercom, INRIA Rocquencourt, France
for their hospitality during our stay in the fall of 2000 and their cooperation throughout
the project, our supervisor Thomas Heide Clausen for extensive and helpful support and
critique during the project, and the Mindpass Center for Distributed Systems for allowing
us to use their cluster for running simulations.

Lars Christensen Gitte Hansen

Contents

Preface

1.

Introduction

1.1. Network Organization
1.2. Issues Related to MANETS it
1.3. MANET Routing
1.4. Related Work
1.4.1. Analytical Modeling L
1.4.2. Simulations
1.4.3. Practical Experiences
1.5. Previous Work

1.6. Goals. .

. Methods and

Structure

2.1. Work Process

2.2. Theses .
2.3. Method
2.4. Overview

. Study of Two

of the Report

Manet Routing Protocols

3.1. Optimized Link State Routing Protocol,
3.1.1. Multi Point Relay Lo
3.1.2. OLSR Messages o oo
3.1.3. Routing

3.2. Ad Hoc On-Demand Distance Vector Routing
3.2.1. Functionality
3.2.2. AODV Updates e

3.3. Protocol Discussion L

. Scenario Modeling and Generation

4.1. Motivation for Creating a Scenario Generator
4.2. Requirements of Modeling Lo
4.3. The Scenario Generatoro

4.4. Summary

13
13
14
15
17
17
17
20
20
21

23
23
24
25
26

27
27
28
28
30
30
30
31
32

35
35
35
36
39

. Conclusion

10 Contents
5. Simulator, Setup and Simulation Procedures 41
5.1. Motivation for using Network Simulator2 41
5.2. Simulator 41
5.2.1. The Extent of the Universe 41

D.2.2. Setup 43

5.23. Output L 43

5.2.4. Limitations 43

5.2.5. Technical Issues 44

5.3. Measured Variables 45
DA, SUMMATY o o e e 46

6. Statistical Methods 47
6.1. Motivation for using statisticso 47
6.2. Descriptive Measures 47
6.3. Chi-Square Test of Independence 48
6.4. Summary 20

7. OLSR Performance 51
7.1. Test Configuration ol
T2, Jitter e 51
7.3. Piggybacking o4
7.4. Control Message Intervals 63
7.4.1. The Hello Interval 63

7.4.2. The TC Interval 63

7.5. Link Stabilityo 65
7.6, SUMMATY o e e 68

8. Comparison of OLSR and AODV 71
8.1. Test Configuration 71
8.2. Thesis and Assumptionso 72
8.3. Performance with Variable Mobility 72
8.4. Performance with Variable Density 74
8.4.1. Variable Amount of Traffic 74

8.4.2. Constant Amount of Traffic 76

8.5. Performance with Various Types of Traffic 79
8.5.1. Variable Duration L. 79

8.5.2. Bulk Transfer Test 81

8.5.3. Transfer Time 83

8.6. Performance with Variable Load 86
8.7. Clusters e e 88
8.8. Summary 89

Contents 11
Vocabulary 97
Bibliography 100
A. Simulation Overview 105

B. Simulation Data

109

12

Contents

1. Introduction

For at least the last quarter of a century, research in wireless data communication and
networks has been ongoing. In the past, wireless networks were mainly studied in defense
research under the name packet radio networks, for example [JT87|. The advances in the
computing power of mobile computers, and in wireless communication, have increased the
applications of and hence the commercial interest in this field. During recent years there
has thus been substantial development in the field of wireless data communication. For
example GSM is widely spread. Other examples of wireless technologies are: Bluetooth
[Blu01|, HIPERLAN [ETS95|, and IEEE 802.11 [LAN99a]. Bluetooth includes specifica-
tions for medium, data/link, and transport layers (plus additional functionally such as
service discovery). HIPERLAN, which is an ETSI standard for mobile LANs, includes
medium access layer routing. The IEEE 802.11 standard includes specifications of the
physical and medium access layers. These new technologies are convenient alternatives to
traditional wired networks — users do not need to connect wires to be on the network. An
example of this convenience is printing on a network printer. A person can print from his
laptop without having to connect physically to the network. Likewise, he will be able to
surf the web or to synchronize his PDA wirelessly.

1.1. Network Organization
There are two fundamentally different ways of organizing a wireless network.

Cellular networks

An existing LAN is extended with base stations which allow mobile devices to con-
nect over a wireless medium. The base stations and the attached LAN work as a
backbone to the mobile devices. The mobiles devices never communicate directly
but always through a base station. Some of the problems in these network are secu-
rity problems, and transit between different base stations (especially minimizing the
‘hand-oft” period).

Self organizing networks

A replacement of LANs with self organizing wireless, mobile devices — nodes!. There
is no wired infrastructure and the hosts communicate directly or by multiple hops

'In the following all nodes are routers, and may also have one or more hosts associated.

13

14 1. Introduction

using each other as routers. The network may be connected to other networks through
gateways. Such a network is also called a Mobile Ad-Hoc Network (MANET). The
main problem in a MANET is how to maintain connectivity, that is, how to route
data through this ad-hoc infrastructure. The network is more dynamic and unreliable
than in wired networks, so routing is not as simple as in the latter.

An alternative use of multiple hop wireless communication is as transit networks —
a group of small inexpensive devices used only for establishing contact between two
nodes out of each others radio range. As an example, assume two military units in
the field wishing to communicate. Using a multihop transit network with low power
transmitters would allow them to conceal the communication, while the use of a
single powerful transmitter to establish a single-hop path would make the network
more vulnerable, as there is only one point of failure, and one point that the enemy
has to detect and supervise.

In this project we will be working only with self organizing networks, in particular
MANETS.

1.2. Issues Related to Manets

In this section we will describe the issues and considerations that are related to MANETS.
The purpose is to expose the areas that may be problematic in MANETS and which should
be taken into consideration, when working with this type of network.

Mobility

Nodes in a wireless network may be mobile. When they move, new links will be
created and others will break causing the topology of the network to change. The
problem, when mobility exists, is how to maintain connectivity between devices when
the topology changes continuously and, potentially, rapidly.

Distributed operation

A MANET should work without any central authority because a node cannot rely on
connectivity to such an authority. For a MANET to be functional, even if any subset
of nodes are down or out of radio range, all nodes must be equivalent: they must all
provide the ability to route data to other nodes, and be able to be self organizing.

Bandwidth

Bandwidth is typically low compared to wired LAN networks. In IEEE 802.11 the
maximum bandwidth is 2 Mbit/s [LAN99a|, in IEEE 802.11a it is 54 Mbit/second
[LAN99b|, and in IEEE 802.11b the maximum bandwidth is 11 Mbits/second [LAN99¢].
Furthermore, the radio frequencies used in these standards are “public frequencies”.
This means that they may be used by other devices which may impact the available
bandwidth as a result of interference. Interference is especially a problem, because

1.3 MANET Routing 15

wireless communication channels are not shielded as cables may be. The lower band-
width of wireless networks is a problem because people using it as a replacement for
a LAN will expect the same performance.

Security

The lack of a shielded channel in wireless communication implies that MANETS do
not have the inherent physical security as assumed in wired networks. It is easy to
eavesdrop on wireless data communication because gaining unauthorized access to
the media is simple: radio waves may be intercepted directly whereas it is necessary
to gain physical access to wires. For instance, communication on a wireless network
in an office environment could easily be eavesdropped on by a person sitting in a car
in the parking lot. Therefore, the use of encryption and secure authentication, for
example using public key cryptography, is very important.

Routing

A MANET that allows wireless, mobile devices to communicate by multiple hops to
nodes beyond their radio range, requires a routing protocol. This should either update
the routing tables in each node to reflect the continuous changes in the topology, or
have a method of finding a route to a specific node, when it is needed.

Traditional routing protocols which as specifically designed for wired networks, per-
form poorly in MANETS. Such protocols are designed for highly reliable, high band-
width networks with a relatively static topology. In contrast to this, MANETS typ-
ically have low available bandwidth, are much more unreliable, and may have a
highly dynamic topology. Hence, routing protocols designed specifically for MANETS
are needed.

Address assignment

For MANETS to be completely autonomous and self organizing, some sort of address
assignment scheme needs to exist. This is a problematic requirement, because no
central authority can exist. A simple scheme to handle address assignment has been
suggested in [RBP00|, but there are a lot of possible complications such as healing
of network partitions, authenticity etc. that the approach does not handle.

In this project, we are working only with the problems of routing in a MANET.

1.3. Manet Routing

Design of protocols to handle routing in MANETS involves many considerations. The IETF
has established a MANET working group [IET| whose focus is to develop and evolve MANET
routing specification(s) and introduce them to the Internet Standards track. The MANET
working group defines a MANET as:

16 1. Introduction

A “mobile ad hoc network” (MANET) is an autonomous system of mobile
routers (and associated hosts) connected by wireless links — the union of which
form an arbitrary graph. The routers are free to move randomly and organize
themselves arbitrarily; thus, the network’s wireless topology may change rapidly
and unpredictably. Such a network may operate in a stand-alone fashion, or
may be connected to the larger Internet. [IET]

There are two general methods of providing routing in a MANET. Either topology
information is continuously diffused into the network in order for each node to continuously
maintain routes to all other reachable nodes (proactive routing). Alternatively, each node
should be able to request a route to any other node when it is needed (reactive routing). The
“Optimized Link-State Routing Protocol” (OLSR) [JMQ™01] is an example of a proactive
routing protocol for MANETS, while the “Ad-Hoc On-Demand Distance Vector Routing
Protocol” (AODV) |[PRDO01]| is an example of a reactive routing protocol. Both protocols
have been proposed under the IETEF MANET working group. We will be working with
OLSR in this project, using AODV for comparison.

There are a number of issues that must be taken into account in the design of a MANET
routing protocol. In the following, we list a selection hereof:

Topology dynamics

As described in section 1.2, the topology of a MANET is often far more dynamic that
conventional wired networks. The density and size of a MANET also varies.

Bandwidth

As described in section 1.2, bandwidth in wireless network is typically low. Hence
it is important for the routing protocol to avoid generating unnecessary overhead in
order to maximize the amount of bandwidth available to data traffic. To use the least
bandwidth the protocol must also provide the shortest routes (to avoid unnecessary
retransmissions of data packets), and provide routing over stable links (to avoid too
many packet losses due to a low quality link which causes retransmissions of packets).

Link stability

As described in section 1.2, the links in a wireless network are much less reliable
than those of a traditional wired network, because of radio interference from objects
and other radio communication on the same frequency band. A link may have a
low throughput rate because of transient interferences, or may appear to switch be-
tween being available and unavailable because of periodic interferences. Furthermore,
under some circumstances, links can be uni-directional. For example, if one of the
transmitters is more powerful than the other.

Security

As described in section 1.2, security, and in particular authenticity, is a problem
in wireless networks. In connection with routing in MANETS, taking over another

1.4 Related Work 17

nodes’ identity and transmitting invalid request and responses into the network is
an easy task. For example, a node could transmit incorrect topology information in
order to confuse other nodes relying on this information to be true.

1.4. Related Work

A number of routing protocols for MANETS have been proposed under the IETF MANET
working group (prime July, the number of proposed unicast routing protocols is 9). Each
of the protocols uses different methods and strategies for routing data packets through the
network. Only few performance analyses have been performed, be that analytical modeling,
simulations, or practical experiments. The number of comparisons of the methods in the
different protocols are even rarer and the main works are simulations. This section will
describe an analytical modeling of OLSR, simulations and comparisons of MANET routing
protocols, and finally a practical experiment with a MANET routing protocol.

1.4.1. Analytical Modeling

“Overhead in Mobile Ad-hoc Network Protocols” [JV00] is a theoretical comparison of the
overhead in mobile ad hoc network in terms of control traffic and overhead due to route
suboptimality. The article’s conclusion is in favor of OLSR when the number of active
routes is high and when there is relatively low mobility.

1.4.2. Simulations

Most simulations that do exist are scenario based and performed using Network Simulator
2 (NS2) [nsh]. This includes [BMJ*98], [JLH*99| and [Sam00], which are the three main
works in simulations of MANETS. Furthermore this section describes a simulation of OLSR
in a custom made simulator.

Broch, Maltz, Johnson, Hu, and Jetcheva

“A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Proto-
cols” [BMJ*98| compares AODV, DSDV, DSR, and TORA using NS2 with up to 50
nodes in a MANET and speeds up to 20 m/s. The following scenario parameters were
varied: the movement pattern (7 different node rest times) and the communication
pattern (3 different numbers of Constant Bit Rate (CBR) sources). The reason for
not using TCP sources is that TCP offers a conforming load to the network and
the authors therefore found it to be unsuited for comparison. 10 scenarios of each
movement pattern were generated, and 210 simulations for each protocol were per-
formed, in all 840 simulations. With no mobility, DSDV delivers almost all packets,
but fail to converge when the mobility is high. TORA is the worst performer. DSR
and AODV perform best, but have different expenses, in terms of overhead, with
different scenario parameters.

18

1. Introduction

Johansson, Larsson, Hedman, Mielczarek, and Degermark

Das,

“Scenario-based Performance Analysis of Routing Protocols for Mobile Ad-hoc Net-
works” [JLHT99| uses scenario-based performance tests for the comparison of AODV,
DSDV, and DSR with the network simulator NS2. Results are presented as a func-
tion of a mobility metric designed to reflect the relative speed of the nodes and are
based on up to a maximum of 50 nodes in a MANET. The following scenario pa-
rameters were varied: the mobility metric (8 different values corresponding to from
0 to 20 m/s) and the traffic load (4 different packet rates, all with CBR sources).
Furthermore, 3 specific scenarios were simulated: a conference scenario, an event
coverage scenario, and a disaster area scenario. These are intended to model realistic
scenarios. The tests were performed with varied mobility, and with varied mobility
and load. One scenario with each scenario parameter set was simulated, and 43 sim-
ulations for each protocol was performed, in all 129 simulations. The main result is
that the reactive protocols, AODV and DSR, perform better than the proactive one,
DSDV, at different loads of traffic, and that AODV performs best.

Perkins, and Royer

“Performance Comparison of two On-demand Routing Protocols for Ad Hoc Net-
works” [Sam00| uses scenario-based performance tests for the comparison of AODV
and DSR with the network simulator NS2 with 50 or 100 nodes in a MANET. The
following scenario parameters were varied: the movement pattern (7 different node
rest times), the communication pattern (4 different numbers of CBR sources), and
the traffic load (7 different loads). 5 scenario of each scenario parameter set were
generated, and 245 simulations for each protocol was performed, in all 490 simula-
tions. The main result is that in the “less stressed” situations, that is, small mobility,
small load, small number of nodes, DSR performs best, while AODV performs best
in “highly stressed” situations. DSR, however, generates the smallest overhead in all
situations.

Qayyum

Part of “Analysis and Evaluation of Channel Access Schemes and Routing Protocols
in Wireless LANs” [Qay00] concerns the performance evaluation of OLSR through
simulations. The simulator used is custom made with models of the physical layer,
signal propagation, traffic, and queuing. The simulator is simplified and does not
take into consideration such factors as reflections, interface queues, MAC overhead,
etc. The evaluation has character of theoretical and analytical modeling due the
perfectionism of the behavior in the simulator. Basic protocol behavior, protocol
performance in a static network, with and without varying load conditions, and
performance in a mobile network was evaluated. One scenario with each varied
parameter was simulated. The results and modeling showed that the theory behind
multipoint relays (MPRs) is very effective (MPRs are explained in section 3.1.1),
that OLSR is best suitable in dense networks with frequent route request for new

1.4 Related Work 19

destinations, and that OLSR creates optimal routes. A minor comparison with a
simplified DSR was made arguing in favor of OLSR. The simulated networks were
static and no expiration of routes was used in any of the protocols. Simulations
were run in two steps: first, DSR made route discovery between all nodes. Second,
simulations were run with data traffic, with DSR and OLSR, respectively. The main
conclusions were that OLSR creates better routes and hence delivers packets with
lower latency, and that OLSR is better in dense networks.

The general conclusion of these articles comparing protocols is that of the tested proto-
cols, AODV is the one that performs best in the widest range of scenarios. Not all protocols
have been tested however. Especially the OLSR protocol has not yet been compared to
others in simulations other than [Qay00].

10 scenarios were generated for each set of scenario parameters in [BMJ*98], 1 scenario
for each set in [JLHT99] and [Qay00], and 5 scenarios for each set in [Sam00]. They all
examine only CBR traffic. Some of the scenarios used in these simulations have parameters
that are distributed randomly, while 3 of the scenarios in [JLH'99] were modeled to be
realistic.

Qur Evaluation

We find the conclusions in [JLHT99| problematic, since a protocol might show better results
based on chance (or a lucky pick of scenario), when only simulating one scenario with each
set of scenario parameters. This is seen by the fact that the graphs in [JLHT99| are
ambiguous or show no tendencies. [BMJT98| and [Sam00| perform 10 and 5 scenario of
each set of scenario parameters, respectively, but only vary 3 parameters. Though better
than only one test of each situation, we find, however, that 5 and 10 are still too few
to average out lucky cases. According to [Mit97|, at least 30 of each situation should be
performed in order to get a representative set of samples. We also find that variation of
three parameters is too few to make exhaustive simulations.

It is important to take the nature of the traffic into consideration, when evaluating
the results, but it is not essential that the scenarios created from each set of scenario
parameters are identical, as long as the lucky cases are averaged out by the number of
tests. Furthermore, the simulations test only CBR traffic. We find this problematic as
well, since TCP traffic is most likely used where it would be relevant to have a MANET,
for example file transfers, downloading of files, surfing? etc. The argument for not using it
in [BMJ*98|, that TCP traffic is conforming, is to general.

We do not find the simulations in [Qay00] comprehensive enough to reveal all the
required properties and find that the simulator is too simplified. However the results from
the simulations and the analytical modeling indicates areas of importance to examine when
evaluating the performance of OLSR. Furthermore, we find the comparison between OLSR
and DSR problematic as DSR does not have the ability to act reactively in the simulations,

2Measurements on the MCI backbone show that about 25% of the bytes carried across the network are
carried by TCP. Of these 50-70% are HTTP messages [TMW97]

20 1. Introduction

because it has non-expiring and non-changing routes ready beforehand. Thereby the true
nature of DSR is not revealed making it difficult to conclude upon the results.

It may be difficult to compare “best performance” from different simulations, as this may
be measured in numerous ways. Best may be “minimum overhead”, “minimum latency”, or
“maximum throughput” depending on the measurements used. And likewise the conclusions
may be very different. It is therefore important to take the different measurements into
consideration when evaluating the results. The measurements we use are described in
sections 2.3 and 5.3.

1.4.3. Practical Experiences

“Quantitative Lessons From a Full-Scale Multi-Hop Wireless Ad Hoc Network Testbed”
[IMBJ99] test the performance of DSR in a full scale testbed. The testbed consists of 5
moving nodes and 2 stationary nodes. Each node was equipped with WaveLAN-I radios
and GPS receivers to determine each node’s location at a given point. The main results
from the test is that jitter has to be introduced in the network and there is a need for
hysteresis to prevent using transient routes.

1.5. Previous Work

This section will describe the results of the work on our previous semester [CEHO1]| that
have influenced this project.

Scenario Generator

During our previous semester, we designed and partially implemented a scenario generator
to enable us to generate random scenarios with certain characteristics. This was to ensure
that we were able to generate numerous scenarios with the same set of scenario parameters.
We need to generate a large quantity of scenarios with identical scenario parameters to
ensure the validity and generality of the results. The scenario generator was finished during
this project, and is described in chapter 4.

Practical Experiments

When performing practical experiments, we discovered some idiosyncrasies of MANETS
and MANET routing protocols. The implementation of OLSR used for these experiments
was developed by [BHJT00] and reworked by Peter Jensen and ourselves.

Our experiments showed that under high load, a lot of control messages are lost due
to collisions. This results in poorer performance, because there is not enough topology
information diffused into the network. Hence, not all the nodes have information of all
other nodes and data packets are dropped due to route unavailability. Our experiments
indicated that the collisions were due to synchronized transmissions of control messages

1.6 Goals 21

by neighboring nodes. That is, using fixed control message intervals may impact the per-
formance of the protocol because nodes synchronize and, therefore, loose in the order of
10 consecutive control messages due to collisions. By introducing jitter on the transmis-
sion of control messages, the number of messages lost due to collision were significantly
reduced. Therefore our experiments indicated that performance may be substantially im-
proved by enforcing jitter on the transmission of control messages. This phenomenon was
also experienced in [MBJ99|.

A possible explanation is, that the probability of collisions is large if two neighbors begin
transmitting control messages simultaneously. If the interval between transmitting control
messages is the same at all nodes and at all times, the messages will keep on colliding until
one of the nodes either moves out of range or gets out of sync.

Furthermore, our experiments showed that the links in a MANET are unstable when the
nodes are relatively far from each other. The experiments indicated that OLSR handles
unstable links badly, which resulted in route flapping, and that the protocols performance
may be improved by detecting bad links and using this information in routing and/or link
state determination. A solution to this could be to use a conservative link hysteresis, for
example by only using links where 2 out of 3 control messages arrive. Another scheme
to solve this is to evaluating the stability of the links thereby avoiding the use of less
stable links. This has been suggested in [BCCHO1|, where experiments have shown that
performance can be improved by only using less stable links for routing when these are the
only links available.

Preliminary Simulations

To perform preliminary simulations, we implemented OLSR for NS2. We tested OLSR
against AODV, but the results indicated that a quantification of the results is necessary
to ensure validity and generality in the results.

Our simulations furthermore indicated that piggybacking control messages can improve
the diffusion of control messages into the network because more messages get through with
piggybacking than if they were transmitted individually. This has also been confirmed by
experimental results in [BCCHO1].

1.6. Goals

Besides the experimental and simulation results, there are aspects of OLSR which have yet
to be investigated. This includes the frequencies of control messages.

The goal of our project will be to perform a comparison of the Optimized Link State
Routing protocol and the Ad Hoc On-Demand Distance Vector Routing protocol (AODV),
in order to find out whether OLSR is actually better in dense networks with sporadic traffic
as claimed in the protocol specification [JMQ™*01]. Furthermore, we wish to examine the
problems of control message loss and route flapping further, especially in order to evalu-
ate the proposed solutions’ impacts on the protocol’s performance. We want to perform

22

1. Introduction

exhaustive simulations to ensure the validity and generality of the results.
The goals are to:

compare the performance of OLSR with the performance of AODV in a wide range
of scenarios.

examine the effect on the performance of OLSR of introducing jitter on the trans-
mission of control messages.

examine the effect on the performance of OLSR of introducing piggybacking.

examine the effect on the performance of OLSR by changing the frequencies of control
messages.

examining the effect of using conservative link detection to handle route flapping and
improve the performance of OLSR.

The next chapter will state the work process, theses, methods, and structure of this
report.

2. Methods and Structure

In this chapter, we will describe the methods of this project and the structure of the report.
First, we describe the work process that this M.Sc. thesis is based on, and how we have
arrived at using the applied methods to confirm or reject the theses. Next, we briefly
restate the problems described fully in section 1.5 and argue their relevance. Furthermore
we describe the applied methods and measurements. Finally, we give an overview of the
rest of the report.

2.1. Work Process

Our main goal for this and the previous semester has been to evaluate the performance of
OLSR. We want to evaluate large test beds and perform a large number of tests. To do
this we first studied the functionality of OLSR. We updated an existing implementation
for Linux from [BHJT00] with the help of Peter Jensen. This implementation was used to
make preliminary investigations. Furthermore, we have studied the functionality of AODV,
as this was the protocol we wanted to use for comparison.

Generally, there are three main performance evaluation methods; analytical modeling,
simulation, and practical experiments. We have chosen to use simulations for evaluation
rather than practical experiments and analytical modeling. Analytical work such as [JV00]
is at the risk of neglecting important features and properties of a real world network,
because simplifications and assumptions are required to enable the modeling. It is not
always practically possible to evaluate large scale situations with practical experiments
alone, because they have high resource requirements in form of equipment and manpower
etc. Hence, practical experiments are not applicable in our situation as we want to perform
numerous, repeatable tests to ensure the validity and generality of the results. With
simulations, it is possible to repeat tests which are performed in controllable environments.
This makes it easier to evaluate specific situations. However, according to [Jai91|, when
choosing an evaluation method, it is important to take into considerations the contributions
that the two other methods may add to the evaluation. We use practical experiments to
reveal areas of relevance for further investigations and furthermore use the results from the
analytical modeling in [JVO00| for finding scenarios of interest.

We have used Network Simulator 2 (NS2) [nsh| for simulating the wireless networks in
this project as this is the simulator used in the majority of other performance evaluations
of MANETS as described in section 1.4.

23

24 2. Methods and Structure

During our investigations of related work, we found that in much work, results were
based on single or few instances of random scenarios while other work was based on specific
scenarios, not necessarily impartial to the protocols. We want to create a large number
of scenarios with specific characteristics, but still impartial to any protocol. Furthermore
we want to be able to test the protocol under different conditions and different behaviors
of a MANET. To fulfill this, we have created a scenario generator that takes a set of
scenario parameters and create random scenarios within the constraints of the parameters.
Furthermore, the scenario generator automates the process of creating scenario files for
NS2, which has aided us in running a large number of simulations.

To ensure that our results are valid and general, we want to eliminate the possibility of
results appearing by chance. We have achieved this by running numerous simulations and
analyzing the results with the aid of statistical methods to assure representativity.

2.2. Theses

This section describes the different theses we advance. The first 4 exclusively concern the
performance of OLSR and enhancements hereof. The last thesis concerns the performance
of OLSR in comparison with AODV.

Jitter

In our practical experiments and in simulations, we discovered that a lot of control packets
were lost due to collisions, when a fixed control message interval was used.

We anticipate that introducing jitter on the transmission of control packages will im-
prove the performance of OLSR. If the number of dropped control messages is lowered,
more data packets will arrive at their destination because of higher route availability.

We will simulate scenarios with and without enforced jitter on the control message
intervals in order to determine the effect of enforcing jitter.

Piggybacking

In some simulations we experienced that piggybacking control messages increased the per-
formance of OLSR. We wish to verify whether piggybacking, in general, improves the
performance of the protocol.

We will simulate scenarios with a variable holdback time. The holdback time is the
time a message is held back in an attempt to piggyback it with other messages.

Control Message Intervals

Values for control message intervals used in OLSR are suggested in the draft. Although
these values may be reasonable it has not been determined whether these values are optimal.
We want to determine whether better performance can be obtained by adjusting these
control message intervals.

2.3 Method 25

We will simulate scenarios with variable control message intervals.

Handling Unstable Links

Practical experiments have shown that unstable links in a MANET affect the performance of
the protocol negatively. We want to investigate whether the simple method of conservative
link detection described in section 1.5 can improve the performance of the protocol.

We will simulate scenarios with and without conservative link detection.

Performance Comparison with AODV

It has only been evaluated through analytical modeling and simplified simulations how
well the OLSR protocol performs in comparison with other MANET routing protocols. We
want to gain a general picture of when OLSR performs well — and when it does not. For
comparison, we will use AODV (the protocol that has performed best in other simulations).
We will use simulations to test OLSR in a wide range of scenarios with variable mobility,
node density, and traffic characteristics.

2.3. Method

Our main method for verifying the theses and showing the effect of the various changes to
the protocol, is to simulate wireless networks with different scenario parameters. For each
thesis we generate various different scenarios with the same parameters for each possibility
that is to be tested. We simulate the scenarios in a network simulator and analyze the
results from the simulation using statistical tools.

Measurements

We use the following measurements for evaluating the protocols:

e Throughput: The number of data packets that reach their destination. That is the
number of received packets.

e Overhead: The amount of bandwidth occupied by control traffic. This may be mea-
sured in number of packets or bytes.

e Packet delay: The time between a packet is transmitted by an application and until
it is received. That is, the time from source to destination.

An elaboration of the concrete measurements can be found in section 5.3.

26 2. Methods and Structure

2.4. Overview of the Report

Chapter 3 describes the OLSR protocol in detail with emphasis on the functionality of the
protocol. It furthermore contains a description of AODV, the protocol used for comparison
in this project, and a discussion of the protocols. Chapter 4 describes the scenario generator
that we have built to automate the generation of scenarios. The scenario generator allows
us to generate a wide range of random scenarios with the same set of parameters and hence
avoid simulating only scenarios that give good, or bad results by chance.

The simulator and method of simulation is described in detail in chapter 5. We simulate
the wireless networks using Network Simulator 2 (NS2) [nsh|. This simulator is able to
simulate all network layers from the physical layer to the transport layer, and should
therefore provide a reasonable and realistic picture of the performance of the network.
Furthermore, the chapter contains a section about technical issues concerning NS2.

Chapter 6 describes statistical utilities. To analyze the results of the simulations, we
extract data such as throughput, delay, and control overhead and examine these using
statistical tools. We use both measures of central tendencies and dispersion. In some cases
we also use the chi-square test of independence to calculate the probability that results
may appear by chance. To lower this probability, we run at least 30 different scenarios
with the same set of scenario parameters for each test.

In chapters 7 and 8 we present the results of the simulations we have run to observe
the performance of OLSR and the comparison of OLSR and AODV, respectively. The
chapters contain the test configuration of the scenarios, and for each test set the following
will be described: the thesis that is to be tested, the parameters which are varied, and the
results. Each test set is concluded by an analysis of the results.

Chapter 9 concludes and summarizes the report. We have included appendices to give
an overview of the simulations we have run, and the data extracted from the results.

3. Study of Two Manet Routing
Protocols

In this chapter we will describe two MANET routing protocols. We have studied the
protocols to understand their functionality, to be able to perform exhaustive comparisons
between them. And furthermore, to be able to fully implement the Optimized Link State
Routing (OLSR) protocol in both a simulator (NS2) and for the Linux operating system.
The Optimized Link State Routing protocol [JMQ™01] is a proactive link-state routing
protocol and the Ad Hoc On-Demand Distance Vector (AODV) routing protocol [PRDO1]
is a reactive routing protocol. Currently, OLSR and AODV are Internet drafts in the
MANET working group [IET] and thus proposals for a MANET routing protocol standard.
They are as such to be considered as work in progress. OLSR is currently in the 4th version
and AODV in the 8th version. First we describe OLSR with emphasis on the functionality.
Next, we will give an overview of AODV. The chapter is concluded by a comparison of the
two protocols and the anticipations we have for their performance when conducting tests
and simulations.

3.1. Optimized Link State Routing Protocol

The Optimized Link State Routing protocol [JMQT01] (OLSR) is an optimization over the
pure link state protocol. OLSR is a proactive routing protocol which employs periodic mes-
sage exchange to update topology information in each node in the network. The protocol
uses control messages for neighbor sensing to discover the neighborhood and to establish
knowledge of the link status between the node and all of its neighbors. This knowledge is
then, through the use of Multi Point Relays (MPRs), flooded into the network, providing
each node with partial topology information, necessary to compute optimal routes to all
nodes in the network. Only nodes selected as MPRs flood topology information into the
network. The use of MPRs combined with local duplicate elimination is used to mini-
mize the number of retransmissions in the network and thereby reduce overhead. Likewise
optimal routes reduces overhead in the network as described in section 1.3.

27

28 3. Study of Two MANET Routing Protocols

3.1.1. Multi Point Relay

OLSR optimizes the process of flooding control messages by using Multi Point Relays
(MPRs). Each node selects a set of MPRs among its neighbors. The role of the MPRs is
to retransmit the selecting node’s control messages. The MPR set is selected so that all
two-hop neighbors can be reached through nodes in the MPR set. Only neighbors with
symmetric links' are considered when choosing MPRs. Computation of the MPR set is
triggered by changes in the neighborhood or two-hop neighborhood.

The collection of nodes that have selected a particular node as MPR is the node’s MPR
selector set.

A minimal MPR set exists, however the computation hereof is an NP-hard problem as
there is no known polynomial time solution. Therefore, an heuristic selection algorithm
is used. First, all the neighbors which provide the only path to one or more two-hop
neighbors are selected. Next, one of the neighbors that can reach most of the two-hop
neighbors, not yet covered by the MPR set, is selected and added to the MPR set. This
step is repeated until all two-hop neighbors can be reached. The last step in the algorithm
is an optimization of the MPR set: Each node in the MPR set is examined. If the MPR
set, without the particular node still covers the two-hop neighborhood, the node is removed
from the set.

If the minimal MPR set is found, fewer packets are retransmitted in the network. It is,
however, more important to cover the whole two-hop neighborhood than to have a small
MPR set. This is because it is necessary to construct a partial topology graph with a
subset of all links, yet with all nodes, to gain enough topology information to make routes
from all nodes to all nodes.

Only MPRs retransmit a control message and only if the message comes from a node
in its MPR selector set. Other nodes will process the packet, not retransmit it.

Using MPRs therefore results in a significant reduction in the number of retransmissions
in the network. Figure 3.1a illustrates transmission of a packet in a small MANET using
pure flooding, whereas figure 3.1b illustrates the same situation, but with the use of MPRs.
Each arrow represents a transmission.

The load of control traffic is minimized in part because only nodes selected as MPRs
transmits topology information, and in part because only MPRs retransmit control mes-
sages for other nodes. Furthermore, the topology information only consists of links to the
nodes that have selected the particular node as MPR. This means that the control packet
is smaller than if information about all links’ states were diffused into the network.

3.1.2. OLSR Messages

There is only one type of OLSR packet. All OLSR messages are sent as payloads in
this packet. The packet may contain one or more messages providing the possibility of
piggybacking control messages.

!Symmetric links are links between nodes, where it is confirmed that both nodes can receive packets from
each other.

3.1 Optimized Link State Routing Protocol 29

«__1 Two-hop Neighbour Node . Multi Point Relay

O Neighbour Node

. Sending Node

(a) Pure Flooding [HIJROO] (b) MPR Flooding [HJR00]

Figure 3.1.: A small network with full flooding and MPR flooding.

In the current version of OLSR there are two types of messages: hello messages and
topology control messages.

Hello Messages

Hello messages are broadcasted to the neighborhood at regular intervals. They contain
information about the node’s known neighbors and the link status between the originator
of the hello message and its neighbors. That is, the hello message contains the information
from the node’s neighbor-table. Each entry in the table is assigned a timeout value, the
neighbor hold time. OLSR operates with three kinds of neighbors: Asymmetric?, sym-
metric and MPR. Neighbors with the link type MPR are the nodes, to which there exists
symmetric links, and that the transmitting node has selected as MPRs.

Upon receiving a hello message, the receiving node updates its neighbor-table. If the
transmitting node is asymmetric in the receiving node’s neighbor-table and this node find
itself in the hello message, it upgrades the status of the link assigned to the neighbor to
symmetric. If the receiving node has MPR status in the message it upgrades its MPR
selector set accordingly.

2 A link between a pair of nodes is asymmetric if it is confirmed that data can be received in one direction,
but not in both.

30 3. Study of Two MANET Routing Protocols

Topology Control Messages

Nodes with a non-empty MPR selector set flood topology control (TC) messages into the
network within a minimum and maximum interval as defined by the draft [JMQT01]. The
purpose is to inform the other nodes of the status and changes in the topology so they
have enough information to construct routes to all other nodes. A TC message contains
the address of the originating node and a list of its MPR selector set.

Upon reception of a TC message, the node saves topology information in a topology
table, where each entry is assigned a timeout value, the topology hold time. Furthermore,
if it is the MPR of the node from which the message was received, the TC message is
retransmitted.

3.1.3. Routing

Based on the information in the topology table each node calculates the routes to all other
nodes using a shortest path algorithm, for example Dijkstra’s algorithm [Dij59], using
hop-to-hop routing.

OLSR maintains the routing tables, but leaves it up to the underlying operating system
to take care of packet forwarding. Thereby OLSR is not a part of the protocol stack, but
only calculates routes and changes the routing tables in the operating system.

3.2. Ad Hoc On-Demand Distance Vector Routing

This section describes the Ad Hoc On-Demand Distance Vector Routing protocol (AODV).
Currently, the AODV routing protocol is an Internet Draft in the 8th version in the
MANET charter and is to be considered as work in progress.

The presented description is of draft version 6 [PRD00a| as it is this version which is
used in the implementation of NS2 used in this project. First, the main functionality of
AODV version 6 will be described and followed by a description of the differences between
AODV version 6 and the current version 8 [PRDO1].

3.2.1. Functionality

The AODV routing protocol is a reactive routing protocol. A node, utilizing AODV,
acquires routes only when they are needed for data transmission, and caches them for a
predefined period before they time out and are removed. Because AODV is reactive, a
node does not maintain routes to all destinations as for example OLSR.

When a route is needed for transmitting a packet, the source node floods a Route
Request with information about the destination and a hop count which is initialized to 0.
Upon reception of a Route Request, a node examines whether it has a fresh route to the
destination in its route cache?® If not, it forwards the Route Request after incrementing the

3A fresh route is a route that has not timed out yet.

3.2 Ad Hoc On-Demand Distance Vector Routing 31

Node A Node B Node C Node D
Route Request Route Request Route Request
Route Reply Route Reply Route Reply
Route Error Route Error v
N

Figure 3.2.: AODV Messages.

hop count (See figure 3.2). Otherwise, if a node has a fresh route (or is the destination),
it unicasts a Route Reply to the source node with information about the new route.

To optimize the search, AODV uses an expanding ring search. A Route Request mes-
sage is first flooded with a time to live (TTL) of TTL START. If no Route Reply arrives
within a predefined amount of time, the Route Request is flooded again with a TTL that
is incremented with TTL INCRE. The last step is repeated until TTL reached the con-
stant NET DIAMETER, which is also predefined. This means that a Route Request may
be flooded several times. TTL START, TTL INCRE, and NET DIAMETER are all
defined in the draft [PRDO1].

In AODV, when a node receives a Route Reply, it saves the information in its routing
table before forwarding it in order to optimize future route requests.

The nodes may use neighbor sensing by transmitting periodic hello messages (Route
Reply with a time to live set to one hop) and that way detect broken links. It is also
possible to use link layer notification. If a node detects a broken link, it transmits a
Route Error message to the neighbor that has recently used the broken link illustrated in
figure 3.2. When the transmitting node receives a Route Error, it either stops transmitting
or transmits a new Route Request to “repair” the broken route.

3.2.2. AODV Updates

This section will describe the differences between AODV draft version 6 [PRD00a] and
AODV draft version 8 [PRDO1].

The difference between AODV draft version 6 and AODV draft version 7 [PRDOOb]
is the introduction of multiple interfaces. In version 7, handling of multiple interfaces is
added, for example if a node has both a wired and a wireless interface. However, in our
simulations all nodes have similar wireless interfaces and only one per node.

The difference between AODV draft version 7 and AODV draft version 8 is the intro-
duction of support for unidirectional links. However, in our simulations all links will be
bidirectional.

None of the updates affect the basic functionality of the protocol. Therefore it will not
have any influence on the performance of the protocol, and the results of our comparison

32 3. Study of Two MANET Routing Protocols

will valid even though the results are based on an earlier version of AODV.

3.3. Protocol Discussion

In this section we will discuss the differences between OLSR and AODV, and how we
anticipate that these differences will affect the protocols’ performance. In the following an
AODYV node is a node that utilizes AODV and, likewise, an OLSR node is a node utilizing
OLSR.

The basic difference between OLSR and AODV, that OLSR is proactive and AODV is
reactive, indicates that OLSR will perform better when traffic is sporadic and that AODV
will perform better when traffic is static. That is, when the traffic has long duration.

When talking about a protocol being better, we mean that the general evaluation of
throughput, packet delay, and control overhead in networks utilizing the particular protocol
is in favor of that protocol. The notions are described in section 2.3.

It is speculated in [JMQ"01] and [JV00] that OLSR will perform best under sporadic
traffic where the protocol can benefit from having found the routes proactively. Further-
more, it is anticipated that OLSR will perform better than reactive protocols such as
AODV when the network is rather dense because OLSR generates less control traffic due
to the use of MPRs.

Route Optimality

AODV bases its routes on the path the initial Route Request packet takes to reach the
destination node. This path may not be the shortest route, but it will be near optimal, as
it is the route that takes the shortest time. Due to randomness in the retransmission of
the flooding messages, this may not correspond to the route with fewest hops. OLSR, on
the other hand, will provide shortest routes given that the nodes providing the route have
sufficient topology information.

Using the routes with fewer hops may not always be an optimal strategy because the
route with the fewest hops may also be the route with longer distances between nodes and
hence risk being a route with more unstable links.

AODV will not adapt to newly created links that may provide a shorter route through
the network. It will only react on broken links. This means that if the network “bends”
such that a short route is created, AODV will continue to use the old route. OLSR will
adapt and use newly created links as soon as the new topology information is diffused.
AODV will detect broken links either using link layer notification or using hello messages
and send a notification to the source node, or repair the link locally. OLSR will also detect
the broken link (when enough hello message are not received or alternatively link layer
information can be used if accessible), and flood new topology information.

Route suboptimality may cause more overhead, because of the number of retransmis-
sions of data packets is higher than if routes are optimal, thereby ensuring the smallest
number of hops.

3.3 Protocol Discussion 33

Control traffic

AODYV nodes request routes when they are needed while OLSR nodes gather topology
information proactively. This means that the amount of control message traffic that an
OLSR node generates is constant (with a constant number of nodes), while the control
traffic that an AODV node generates depends on the traffic in the network. When there is
no traffic in the network, AODV nodes do not generate any control traffic, except if it uses
neighbor sensing and transmit hello messages, while an OLSR node generates the same
amount as when there is traffic. When there is a high number of active/new routes in the
network, the AODV nodes will transmit a lot of Route Request and Route Reply messages,
until it reaches the level where enough routes are cached. Meanwhile, OLSR nodes will
keep the amount of control traffic constant.

This indicates that when traffic is highly sporadic with bursts of activity, the AODV
protocol’s performance will suffer because the network will be highly loaded with control
traffic.

AODV uses full flooding when diffusing Route Requests into the network. This gener-
ates much more control traffic than using MPR flooding such as OLSR, as explained in
section 3.1.1. In a fixed size network, the “cost”, in terms of control traffic transmitted,
for performing a full flooding increases linearly with the number of nodes, as all nodes
retransmit the packet. With MPR flooding, the number of retransmissions with 100 nodes
are only 1/5 of the retransmissions with full flooding, and the number hardly increases
at all with the number of nodes when above 70 nodes [Qay00]. Furthermore it may take
longer time for the control messages to cross the network with full flooding than with MPR
flooding. If a control packet is transmitted with full looding to two nodes, which are each
other’s neighbors, they are not able to retransmit simultaneously because they use the
same medium. If the same situation occurred with MPR flooding, only one of the nodes
would have to retransmit it, unless they were both in the MPR set of the transmitting
node. The difference is that only when both nodes are MPRs to the transmitting node will
there be a problem of simultaneous attempts of retransmitting.

Furthermore, AODV floods Route Request packets using ezpanding ring flooding, where
the packets are flooding with an increasing Time-To-Live starting at 1 and increasing with
2 each time the request times out. The constants are defined in the AODV draft [PRDO1].
Hence, if two node at each side of the network tries to communicate, large parts of the
network will be flooded multiple times.

Latency

The latencies in the network are of high importance to the performance. The time it takes
for a packet to reach its destination from when it arrives in the IP stack of the source
node will have high effect on the end users experience of the network. With OLSR, the
latency will be near optimal because of the shortest-path-routing (given that the routes
can be found). With AODV, nodes will often have to request routes before packets can
be transmitted. This can take multiple seconds because of the expanding ring flooding

34 3. Study of Two MANET Routing Protocols

strategy.

Anticipations

To test the performance of OLSR and AODV, we will vary the test scenario parameters
concerning mobility, density, and traffic.

We expect that both AODV and OLSR will have a better performance with low mobility
than with high. However, scenarios with OLSR will have a constant amount of control
traffic, while scenarios with AODV will have an increasing amount of control traffic, because
of the need to transmit Route Error messages every time an active route breaks.

We expect OLSR to perform better than AODYV in dense networks, because the network
will be overloaded with AODV control traffic, whereas the use of MPRs in OLSR should
keep the control message overhead at an acceptable moderate level.

The performance of both protocols depend on the nature of the traffic. With lower
duration and a constant number of simultaneous streams, we anticipate that OLSR is
better because OLSR nodes have routes available when they are needed, while AODV
nodes will need to request them. With long duration we expect AODV to perform better.
We anticipate that the time used to make a bulk transfer of data from one node to another
will be higher for AODV nodes than OLSR nodes. This because an AODV node will
need to transmit a Route request and wait for the Route Reply before the data can be
transmitted, while OLSR will have the routes available beforehand.

4. Scenario Modeling and Generation

In this chapter, we will describe the scenario generator that we designed and implemented.
We have created the scenario generator to be able to generate a large number of scenarios
with the same set of scenario parameters. First, we motivate the creation of the scenario
generator. Next, we describe the requirements for such a scenario generator. Finally,
we describe our scenario generator with examples of use. The chapter is concluded by a
summary.

4.1. Motivation for Creating a Scenario Generator

As described in section 1.4, we found that simulations of MANETS in related work with
scenario based simulations have been very few, either random or specific, scenarios. We find
it problematic that only few, and in the case with specific scenarios only one, simulations
of each was run. This makes it possible to pick a scenario (intentionally or by chance)
which gives one protocol advantages over others. Furthermore, only few parameters are
varied, and none of the related work test TCP traffic.

We want to create a series of random scenarios that have certain characteristics, but
still are impartial to any particular protocol. We want to test the protocol under different
conditions and different behaviors.

Furthermore, we want to automate the creation of scenarios because we want to create
a large number of scenarios with the same set of scenario parameters in order to get more
valid, general, and representative results.

4.2. Requirements of Modeling

To create a scenario generator to fulfill our motivation, we set up the following requirements:

e First of all it is important to be able to specify different parameters for the nodes
and the area in the wireless network in order to model the conditions and behaviors.
That is, simulation area, number of nodes, movement, and traffic. It is important to
be able to specify different kinds of traffic, both streaming and bulk traffic.

e Furthermore, to create scenarios to model realistic situations, it is important to have
groups of nodes with their own set of parameters as it is possible that not all nodes

35

36 4. Scenario Modeling and Generation

have the same behavior. This could be the case at a conference where the speaker
has one behavior (stands at the same place) while the spectators may move around,
for example, when they enter the room.

e Finally, it is important that the scenarios are impartial to any specific protocols
and that it is possible to generate a number of different scenarios with the same
characteristics.

To fulfill these requirements, we build a scenario generator that takes a set of parameters
and generates a scenario from these. The parameter types are described in the following
section, including a semi-formal description. The scenario generator generates random
scenarios from the set of parameters by, for example, placing the nodes randomly within
the simulation area.

By generating random scenarios from a set of parameters, we are able to generate
series of random and different scenarios which still have the same characteristics. This
way we ensure that the resulting data, collected from the simulations, are not based on a
coincidence. Instead, the results can be averaged over all of the simulations in order to get
a representative result.

4.3. The Scenario Generator

The wireless scenario generator was introduced in [CEHO1] and has been extended and
completed during this project. The scenario generator was used to generate all of the
scenarios used in the simulations, presented in this report.

The scenario generator takes a set of scenario parameters as input. The parameters
include the number of nodes, the size of the simulation field (a flat ground rectangle of = by
z meters), the duration of the simulation, the movement of the nodes, and characteristics
of the traffic. The scenario generator then produces a scenario description that includes the
nodes, their position and movement, and the traffic in the network. The elements in the
scenario description are created randomly based on the scenario parameters. As an exam-
ple, the positions of the nodes are random, but within the limits of the scenario parameters
of the number of nodes, the field size, and the movement. The scenario description is finally
converted into a Tcl script, which can be given directly to NS2.

Movement

The movement model used by our scenario generator is a random movement model.
Each node selects a direction and a distance, moves, and rest at the waypoint where
it has arrived. When a node’s direction will cause it to move out of the simulation
field, it is reflected off the border, like a ball hitting the side of a pool table.

Traffic

Our scenario generator can generate two types of traffic; streaming and bulk data
transfer. The streaming traffic is simulated as a constant bit rate transfer of equally

4.3 The Scenario Generator 37

Figure 4.1.: Groups of nodes

sized UDP packets being transmitted with constant interval from one node to an-
other. Bulk transfers are simulated by sending a fixed amount of data over a TCP
connection.

Groups

The scenario generator can create scenarios with groups of nodes, called clusters,
characterized by their own set of parameters describing their field size, number,
movement, and traffic. Such groups of nodes can be created recursively. For example,
it is possible to have a group A of 20 nodes with a subgroup B with 10 nodes with a
subgroup C with 5 nodes. This is illustrated with sets in figure 4.1.

A semiformal description of the parameters that can be specified for a scenario is shown
in table 4.1. The parameters are listed in groupings that are needed, or may optionally be
included, to specify a scenario.

For explanatory reasons, this is a semiformal description and not the actual syntax
used. We create a simpler syntax in order to make the implementation of the parser easier.
Figure 4.2 shows an example of a parameter set specified with our syntax. This example
will create a scenario with 40 nodes moving randomly in a field of 1000 by 1000 meters
with a speed of between 5 and 10 m/s and no rest time. Of these 40 nodes, 10 generate
traffic in form of bulk transfers being sent to random nodes selected from all 40 nodes.

In the example, all parameter values are constant except speed which has range values.
We have made it possible to create more diverse scenarios by specifying constant set or
range values to parameters. A ‘constant set’ is a list of constants. The scenario generator
will then select one of these value each time a value is needed. For example, if the speed
parameter is specified as ‘1,4,5’, each time a node chooses a new direction and speed, it will
choose a speed of either 1, 4, or 5 at random. A ‘range’ argument to a value is specified as
a minimum and maximum value. For example, if the bulktransfer amount is specified as
‘4096-8192’, the bulk transfers will be from 4 to 8 kilobytes at random.

The following are the elements of the scenario generator that have been extended and
completed during this project. The use of groups has been implemented. Furthermore

38

4. Scenario Modeling and Generation

scenario-spec = {

};

simulation-time,
field-size,
group-spec,
[group-specx,]

To create a scenario, it is necessary to spec-
ify the time that should be simulated and the
groups of node that should be included in the
scenarios generated. At least one group of
nodes must be specified. Finally, the size of
the field must be specified. We only use rect-
angular fields, so the field-size parameters is
specified as the length and width of the field.

group-spec = {

number-of-nodes,
node-speed,
node-rest-time,
node-distance,
stream-spec, |
transfer-spec, 1
group-specx*,]
group-speed,]
group-rest-time,]
field-size,]

A specification of group of nodes consists of
a number of nodes, the speed with which
the nodes should travel, what distance they
should move at the time, and the time they
should rest at waypoints. Optionally, traffic
can be specified in form of streams or bulk
transfers. Also optionally, a number of sub-
groups can be specified. Each subgroup is
specified with the same parameters as group-
spec. The field-size parameters is used to set
the size of the field in which the nodes can
move around. Optionally, the group move-
ment can be bounded by specifying field-size,
and how the group should move, group-speed
and group-rest-time is stated.

stream-spec = {

};

destination-group,
number-of-streams,
packet-interval,
packet-size,
stream-duration,

A stream specification consists of a
destination-group which is the group of
nodes that the streams should flow to. The
number of streams, will be the average
number of streams that are active at any
point during the simulation. The duration
of each stream is also specified which gives

a total number of streaming sessions of
number —of —streams stmulatzonftzme) Flnally

stream—duration . ’
the packet size and the interval of packet

transmission are specified.

transfer-spec = {

};

destination-groups,
number-of-transfers,
transfer-amount,

A specification of bulk data transfers consist
of the destination group to which the data
should flow, the amount of data to transfer,
and the total number of transfers to perform
throughout the simulation.

Table 4.1.: The parameters that a scenario specification consists of.

4.4 Summary 39

field_size 1000 1000 # Simulation area of 1000 by 1000 meters
simulation_time 250 # Simulate 250 seconds

group A 40 # Create a group ‘A’ with 40 nodes

A.speed 5-10 # All nodes, move between 5 and 10 m/s
A.resttime O # Don’t stop and rest on waypoints

group B 10 A # Create a subgroup of A, B, with 10 nodes
B.bulktransfers_to A 100 # Let B create 100 bulktransfers to nodes in A

B.bulktransfer_amount 10000 # Send 10000 bytes in each bulk transfer

Figure 4.2.: Parameter Set Example

we have implemented the possibility to pick a range or a constant set for the value of the
parameters. Finally, we have changed the movement model of the scenario generator. In
|CEHO01| each node selected a waypoint to move to. Now the node selects a distance and a
direction, and moves accordingly. A node is reflected of the border, if it was to move out
of the simulation area. This is to give a better distribution of nodes in the simulation area.

4.4. Summary

We use a scenario generator to generate test scenarios. The scenarios have certain char-
acteristics obtained by a set of scenario parameters. The scenarios are random within the
constraints of the set of scenario parameters.

The scenario generator enables us to create a wide range of random scenarios, which
may, and often will, be different but yet conforming to the same scenario parameters.
Thereby we ensure the generality of the results and remove the possibility of obtaining a
good or bad result by chance.

40

4. Scenario Modeling and Generation

5. Simulator, Setup and Simulation
Procedures

In this chapter, we describe the simulator used (NS2) and the data extracted from the
simulations. We use NS2 to simulate the wireless networks defined in the scenarios gen-
erated by our scenario generator, and use the data for analyses. First, we motivate the
use of simulations and the choice of NS2. We describe the characteristics of the simulated
universe, how a simulation is created, and the output from the simulator. Following we
describe limitations concerning the way NS2 works. Finally, we describe how useful and
applicable data is extracted from the output of the simulator. The chapter is concluded
by a summary.

5.1. Motivation for using Network Simulator 2

We have used Network Simulator 2 [nsh| for simulating the wireless networks in this project.
NS2 is the simulator of choice of other performance comparison of MANET routing protocols
by simulations as described in section 1.4. One reason for using NS2 is that it performs
complete enough simulations of all network layers from the transport layer through all
layers to the physical layer. Furthermore, an implementation of AODV for NS2 already
exists and we have an implementation of the OLSR protocol for NS2, primarily done in
our previous project.
Finally, NS2 is free of charge and available for download.

5.2. Simulator

Network Simulator 2 is a discrete event network simulator, which is able to simulate many
different kinds of networks, including both wired and wireless networks. In this section,
we will only describe the parts of NS2 that we use to simulate wireless networks.

5.2.1. The Extent of the Universe

The physical layer simulated by NS2 is radio transmission. NS2 simulates the propagation
of radio signals. In our simulations we use a two-ray ground reflection model. In this model,

41

42 5. Simulator, Setup and Simulation Procedures

RTS CTS
OEEO)
[DATA] AcK

N\

//\ Radio range of B
Radio range of A

Figure 5.1.: Hidden node scenario.

the radio signals propagate directly between nodes and are also reflected off the ground.
Nodes are placed 1 meter above the ground.

The media is set to emulate the Lucent Wavelan cards operating on the 914Mhz band.
The preset values for transmitter power and receiving thresholds give a radio range of 200
meters when there are no obstacles to interfere with the transmission. The bandwidth is
set to 2 Mbits/second. This is equivalent to the IEEE 802.11 standard.

The Medium Access scheme is the IEEE 802.11’s distributed coordinated function
(DCF). This is basically a Carrier Sense Multiple Access / Collision Avoidance access
scheme (CSMA/CA). Collision avoidance is used, because collision detection is not pos-
sible in a radio network. This is because the node cannot “hear” anyone but itself when
it transmits data. The collision avoidance is implemented as a RTS/CTS scheme, where
the source node transmits a request-to-send signal which is answered with a clear-to-send
signal from the destination node. Then, data is transmitted and the session is concluded
with an acknowledgment from the destination node. This way, all nodes in radio range of
the communicating nodes know that they should not begin transmitting, even if the can
not hear the actual data, because transmitting would cause collision. This would occur for
a so called “hidden node” as illustrated by figure 5.1 where node C cannot hear the data
transmission but refrains from initiating a transmission because it hears the CTS from
node B.

For broadcasting, data packets are simply transmitted on the media unless the node is
waiting for other nodes to finish transmitting.

NS2 implements the Address Resolution Protocol (ARP) [Plu82] for IP to MAC address
resolution.

On top of this, NS2 implements an entire TCP/IP stack with a variety of protocols.
We use UDP for streaming traffic and TCP for bulk transfers.

We have implemented OLSR for NS2 and used an existing implementation of AODV.
Neither of the two implementations use link layer notification, though both AODV and

5.2 Simulator 43

OLSR can make use hereof, it does impose assumption and hence dependence on the link
layer, and we therefore choose not to use this information.

5.2.2. Setup

Each simulation is run from a Tcl script describing the simulation parameters (such as radio
propagation model and simulation area), the nodes that participates in the network and
the traffic they generate. Each node’s initial location and the time and type of movement
is specified. The time and type of traffic is also specified before the simulation is run.

5.2.3. Output

The output from a simulation is a trace file containing a line for each event that has
occurred during the simulation. The possible events are transmitting, receiving, dropping
and forwarding of a packet. Events are recorded for all layers in the networking stack of each
node. For example, the transmission of an UDP packet from one node to another, results in
lines for transmitting from agent layer (transport layer), network layer, and medium access
layer, and receiving on each of the layers in the destination node. Furthermore, receiving
on the MAC layer, forwarding on the network layer, and transmission on the MAC layer
again, is recorded for nodes that route the packet.

Each packet generated within NS2 during a simulation is assigned a unique identifier
which allows the packet to be followed through the trace file. This allows us to measure
packet delay as the time it takes for the packet to reach its destination from its transmission
from the source node’s application layer.

Furthermore, each protocol is assigned a “type”, depending on which entity generated
the packet. In our simulation there will be agent packets for normal data traffic, OLSR or
AODYV packets for routing control traffic, ARP packets for address resolution, and MAC
packets for medium access control information.

An example of an extract from a trace file is shown in figure 5.2. The figure shows
the trace of a single packet (packet number 3774) as it is transmitted from node number
5, routed through node number 27 and received at node number 25. To the right, the
corresponding events in the network stack of each node is illustrated.

5.2.4. Limitations

The simulations performed by NS2 are completely deterministic. That is, for the same
scenario, the output trace is always the same. In a real world MANET, there would be a
lot of factors such as processor speed, memory latencies, cosmic ray etc. that would make
the events occur in a slightly random fashion. Building the scenario generator in order
to simulate many similar scenarios helps us avoid that the deterministic behavior of NS2
results in a unrepresentative data set.

The environment, simulated in NS2, is simplified. There are no physical obstacles for
nodes and/or radio signal nor are there any external interference with the radio signals.

44 5. Simulator, Setup and Simulation Procedures

Event Node-ID ID Size _ o
Timestamp Layer Type Physical MAC Network Agent/Applicatiol

\v/ \%/ \Vl \%/ \Vl \%/ \Yl
$12.610000000 _5 AGT —-— 3774 cbr 64 R REETTEEPRTR] SEPRRRS .
r 12.610000000 _5_ RTR —-—- 3774 cbr 64 D -
$12.610000000 5 RTR ——-3774 cbr 84 e B .| Nodeb
$12.616517623 _5_ MAC -—- 3774 cbr 136 e - -
r 12.617062235 _27_ MAC ——— 3774 cbr 84 e .
r 12.617087235 27 RTR ——-- 3774 cbr 84 e N | Node 27
f12.617087235 27 RTR ——— 3774 cbr 84 N - -
$12.640214153 _27_MAC -—-- 3774 cbr 136 e e— -
r 12.640758782 25 MAC ——— 3774 cbr 84 T e .
r12.640783782 25 RTR -—-3774 chr 84 T e | Node 25
r12.673728306 _25_ AGT —-— 3774 cbr 84 R EETEEEEERR] EERRRPRPRRY [ERRRPRPRRRS - |

Figure 5.2.: Example of an extract from a trace file.

This presumably makes the transmission of data more reliable in the simulation than in the
real world and causes all links to be bidirectional if both nodes have the same transmitter
power.

NS2’s scheduler does not time computation time used by the networking stack and
routing protocols. However, in most reasonable cases, the computation time is negligible
compared to the latencies in the transmission of packet over the wireless medium.

5.2.5. Technical Issues

During our work with the simulator, we found a bug in the routing queue code used in
AODYV when packets are queued during a route request. If the route request timed out the
simulation would loop endlessly due to the non-removal of the first element in the queue,
in a loop supposed to remove all timed-out packets. This occurred in approximately 2
out of 3 simulations. If the user of NS2 handled this situation by stopping and restarting
the simulation, hoping for a scenario that would not cause the lock, he would leave out
simulations where AODV performs badly, that is, when there are route timeouts.

Furthermore, we found bugs in AODV that would make the application crash under
certain conditions due to assertions about the existence of entries in the routing table when
a route breaks down. We fixed this by simply inserting routing entries with “down” status
and let the existing AODV implementation decide whether a route should be found or not.

We also fixed a smaller issue affecting only the implementation of OLSR in some of the
otherwise unused parts of the NS2 code.

Qur Evaluation

Our general evaluation of Network Simulator 2 is that it is a comprehensive tool that
simulates enough of a real network stack to provide a realistic picture of how a network

5.3 Measured Variables 45

would function in the real world.

However, there are some issues about NS2 that are important. The simulator package
lacks a test suite and the code is of very varying quality because of the many contributors.
This is confirmed by the number of bugs we have as described in section 5.2.5. On the
other hand, NS2 has a widely established user base that should have caught some of the
more grave model errors and general bugs in the code.

5.3. Measured Variables

In this section, we describe the data that we retrieve from the trace files from NS2. We
have used custom made utilities to extract this data from the trace files.

Packet delay

The packet delay is measured as the time from the packet leaves the source node’s agent
layer until it is received at the destination node’s agent layer. This includes time spent
in queues and the time for transmission over the medium. Computation time required to
process the packet is not included in the delay as NS2 does not take processing time into
account in its scheduler.

Throughput

The throughput is measured as the number of application layer packets, data packets, that
reach their destination as a fraction of the number of packet that are transmitted. Data
packets that do not reach their destination may be dropped for any reason whatsoever.

Drop reasons

We have also recorded the reasons for dropped data packets. The most interesting drop
reason is route unavailability, that is, a ‘no-route-drop’. When using OLSR, a packet will
be dropped if a route for the packet’s destination is not already available when the packet is
to be routed. When using AODV, a packet will be retained until the route request succeeds
or times out. If the route request times out, the recorded drop reason is no route-drop.

Bandwidth

We count both the packets and the bytes of all data and control packets transmitted on the
MAC layer, as these are data actually transmitted over the medium and hence consuming
bandwidth. This allows us to get data such as the amount of bandwidth used on control
traffic (control overhead) and how much application layer data is actually transmitted over
the medium.

46 5. Simulator, Setup and Simulation Procedures

Transfer delay

For some of the simulations, we have recorded the total transfer time of a TCP bulk
transfer. The time is measured from the initiation of the transfer, that is, when the node
wants to begin the transfer, and until the last acknowledgment is received at the source
node. Therefore, these measurements include the time used to set up the route (when
applicable). The transfer delay is more comparable to the user’s experience of delays than
the packet delay, because it will be almost equal to the delay that the user experiences from,
for example, when he clicks on a link in his browser and until the web page is completely
loaded.

5.4, Summary

We use a discrete event network simulator, NS2, for numerous simulations of MANETS.
Each simulation is run from a Tcl script and outputs a trace file from which results are
extracted.

We extract information about the packet delay, the throughput, the bandwidth, the
drop reasons, and in some cases the transfer delay, and evaluate upon these results.

6. Statistical Methods

In this chapter, we will describe the statistical methods we use to analyze the simulation
data. We use statistical methods to ensure the validity and generality of the results.
First, we motivate the use of statistics. We then describe the descriptive measures used to
analyze sets of sample data. Finally, we describe the chi-square test of independence used
to analyze the results’ dependencies of the various simulation parameters. This chapter is
concluded by a summary.

6.1. Motivation for using statistics

Our aim is to model scenarios with certain characteristics, but at the same time eliminate
the possibility of results appearing by chance through a favorable or unfavorable pick of
a specific scenario. We achieve this by running numerous simulations of random scenar-
ios with the same specific characteristics and using statistical tools to analyze the data
extracted from the simulations.

According to |[Mit97|, at least 30 scenarios of each situation should be performed to
have a good approximation of the population! and provide enough information for a set of
sample data. In our case the population is the total number of all possible scenarios with
the specific characteristics. That is, with the same scenario parameters.

We use descriptive measures? to describe each set of simulations with the same parame-
ter set, a test set. In some cases it is relevant to test the results of dependency of the varied
parameter to compare the results from different test sets, for example with and without
enforced jitter on the transmission of control packets. For this we use the chi-square test
of independence to calculate the possibility of results appearing by chance. Unless stated
otherwise the formulas are from [ASW96]. We developed custom made utilities to calculate
the descriptive measures and to perform the chi-square test.

6.2. Descriptive Measures

We perform a number of scenario simulations of each situation with particular character-
istics, for example different degree of mobility. From these simulations we obtain a set

! A population is the entire group of all possible situations from which the measures are taken.
2A descriptive measure is a single number that provides information about a set of data.

47

48 6. Statistical Methods

of sample data which is analyzed using descriptive measures. We use measures of central
tendencies and of diversion.

Measures of Central Tendency

The purpose of these measures is to determine the sample mean, T, which is the numeral
average of the data.

Measures of Diversion

The purpose of these measures is to show the dispersion in the results. That is, the
tendencies of data values to scatter about the mean. We determine the variation, s%, and
the standard deviation, s, as follows:

) o, Y(r—m)?
sample variance = s = ————
n—1
r—7T)2
sample standard deviation = s = M
n E—

Because we do not examine the entire population, (that would be all possible scenarios
that comply to a specific set of scenario parameters) but only samples (a random subset
of the population), we use the formula for the sample variance and standard deviation
and not the formula for population variance and standard deviation®. Because the data
sets may have different means, we also calculate the relative variation within each set, the
coefficient of variation, C'V. The coefficient of variation is determined as:

S
coeffiecient of variation = C'V = — x 100
T

We use the standard deviation and the coefficient of variation to describe the dispersion
in the results.

6.3. Chi-Square Test of Independence

When comparing different results it is important to be able to determine the probability
that the results appear by chance, that is, if there exists a dependency between the results
and the varied parameters or not. We use the chi-square test of independence for this
purpose in this project. To illustrate the use of the chi-square test of independence, we
will use a fictive example of simulations with and without the use of enforced jitter. When
testing the dependencies we always advance the following two general hypotheses:

e Hj: The results are independent

> (@—p)?

_ 2
3The formulas are 02 = Z(ZT“) and o = \/ ~~x——, where N is the number of the entire population
and y is the population mean.

6.3 Chi-Square Test of Independence 49

Noroute drop

Interval | 0-1000 | 1001-2000 | 2001-3000 | Row total
With jitter 60 (60) | 20 (30) | 40 (30) 120
Without jitter | 40 (40) | 30 (20) | 10 (20) 80

| Column total | 100 [50 | 50 [200
Chi-square 16.66
Degree of freedom 2
Q(x?|df) 0.9998

Table 6.1.: Contingency table and dependency calculation for a fictive jitter test.

e H,: The results are dependent

The results of the tests are summarized in a contingency table with the number of
occurrences, 0. Table 6.1 shows such a table with the number of packets dropped because of
route unavailability from our fictive example. The numbers in parenthesis are the expected

values, I/, with no dependencies.
(row total)(column total

First the expected value is calculated as £ = -) where the row total
and column total are those of the particular cell, and n is the total number of occurrences.
In the example the expected value of occurrences with jitter in the interval 0-1000 will be:
E — 120100 _ g0

200

Chi-square, x?2, is then calculated as x? = 3 %. In the example y? is 16.66. Next
we calculate the probability that H, is true — that is, the probability that the results
are independent. To do this we need the degree of freedom, df*. This is calculated as
(k — 1)(m — 1), k being the number of columns and m being the number of rows. In the

example df is 2. The probability integral is P(x?|df) and is calculated as follows?.

—1 1 2 1 1
PORIf) = 27T (dp)} ! [e 3wt tar [PHTG
0

The probability that the results are dependent and that H, is true, Q(x?|df), is
1 — P(x?|df), because the two hypotheses are mutually excluding. In the example this
probability is 0.9998, which means that there is a 0.02% chance that the results are inde-
pendent of the use of jitter.

We use this value to determine whether the results appear by chance or whether the
change in scenario parameters affect the results.

“The degree of freedom expresses the number of options available within a variable or space.
5The T function is ['(a) = [;° y* e vdy [BL96].

50 6. Statistical Methods

6.4. Summary

This chapter briefly describes the statistical methods we will use to analyze the results of
the simulations. For each set of sample data, we calculate descriptive measures: the mean,
T, the standard deviation, s, and the coefficient of variation, C'V. We will furthermore use
the chi-square test of independence to calculate the probability of results’ dependencies of
the parameters in some cases.

We use the descriptive measure to make the large amount of data produced by the
simulations comprehensible and to have a representative result to conclude upon. The
measures of central tendency are used to get an idea about the average performance of the
network /protocol. The measures of dispersion are used to get an idea about the stability of
the results from a particular type of scenario. We use the chi-square test of independence
to ensure that there is a low probability that our conclusions are invalidated because of
results that has appeared by chance.

7. OLSR Performance

In this chapter, we will present the results of the simulations which are designed to test
the impacts of the improvements to the OLSR protocol. Namely, the introduction of
jitter, piggybacking, link hysteresis, and adjustments of the control message intervals, as
described in section 2.2. First, we describe the default test configuration of the tests.
Next, we describe the tests with jitter, piggybacking, control message intervals, and link
state detection, respectively. Each test section will describe a test set with the following
elements: the thesis that is to be tested, explanation of the varied parameters, results
of the simulations, and finally, an analysis of the results. The chapter is concluded by a
summary of the results of the analyses.

7.1. Test Configuration

The theses tested in this chapter, are those stated in chapter 2 which exclusively concern
the performance of OLSR. To examine these theses, a test set of at least 30 scenarios (as
described in chapter 6) for each set of scenario parameters were generated and run in NS2.
The scenarios were generated by the scenario generator described in chapter 4 from the
default parameters stated in table 7.1, unless otherwise stated. The measures used in the
result sections are those stated in section 5.3, although we may leave our some measures in
tests when they are not relevant. For each test set we state the results used for analyzing
the particular set. For explanatory reasons, the results are shown as numerals, graphs, and
figures depending on the context. The complete set of the results in numerals, is included
in appendix B.

7.2. Jitter

When using fixed intervals between transmitting control messages, we observed in our
practical experiments that numerous packets were lost due to collisions. We anticipate
that introducing jitter in the transmission of control messages will have effects on the
performance of OLSR.

Jitter is enforced on both types of control message, that is on both the hello and the
TC messages. The jitter is implemented by adding a random amount of time, «a, to the
control message interval, I, and transmitting the control message after I + « seconds. Test
sets with jitter and without jitter were performed. In the simulations with jitter, o was

ol

52 7. OLSR Performance

Number of nodes 50 nodes

Field size 1000 x 1000 meters
Simulation time 250 seconds

Node speed 1-5 meters/second
Node resttime 0-6 seconds

Node distance 1000 meters
Number of streams 25 streams
Packet size 64 bytes

Packet interval 0.10 seconds
Stream Duration 250 seconds

Table 7.1.: Default parameters used in the simulations

70000
With jitter
Without Jitter
60000 b
50000 [~ -
|2}
kol
€ 40000 |-
a
5
& 30000 -
S
=1
z
20000 [~
- §
0

Sent Received No route drop

Figure 7.1.. Number of packets sent, received and dropped due to route unavailability with
and without jitter.

chosen from the interval [—0.5;0.5]. In the simulations without jitter, v was 0. The hello
message interval is 2 seconds and the T'C message interval is 5 seconds as recommended in
the OLSR draft [JMQ"01]. At the beginning of the simulation, the nodes are “turned on”
(and begin transmitting hello messages) randomly within the period of a hello interval.

Results

Figure 7.1 shows the average number of packets that were sent and received, as well as
those dropped because of route unavailability. Without jitter half as many packets reached
their destination as with jitter, while the amount of packets lost due to route unavailability
was more than four times the amount of the simulations with jitter.

Table 7.2 shows the descriptive measures of packets dropped because of route unavail-
ability and packets received, respectively. The standard deviation and the coefficient of
variance are consistently higher without jitter than with jitter, meaning that both the
regular dispersion and the relative dispersion is higher without jitter.

7.2 Jitter 53

Noroute drop Received
With jitter | Without jitter | With jitter | Without jitter
Mean 9,430 41,600 27,900 14,100
Standard deviation 2,630 14,100 3,810 6,780
Coefficient of variation 27.92 % 33.93 % 13.67 % 48.00 %

Table 7.2.: Descriptive measures from jitter tests.

| | Without jitter | With jitter |
TC flooding number 12.8 nodes 32.1 nodes
OLSR overhead 2560 bytes/second | 3850 bytes/second
Packet delay 0.174 seconds 0.596 seconds

Table 7.3.: Selected results from jitter tests.

Analysis

The higher throughput is consistent with the lower number of packets lost due to route
unavailability. The fact that the drop rate caused by route unavailability is significantly
lower with enforced jitter indicates that more nodes in the MANET have enough topology
information to have routes to all nodes, because that more TC messages arrive at the
nodes. In table 7.3 the average TC flooding number is shown. The TC flooding number
is the average number of nodes a TC message reaches in the network. It is clear that
the topology information is diffused to a greater part of the network and thereby nodes
will have knowledge of a larger number of nodes in the network. This also means that
the overhead OLSR produces will be higher with jitter than without. This overhead is,
however, a desired and necessary overhead, because we want the topology information to
be diffused as far out in the network as possible. The overhead with jitter is 50% higher,
as seen in table 7.3, but still relatively small.

The average packet delay without and with jitter is show in table 7.3. The larger delay
with jitter can be explained by the larger throughput of data packets. The packets that get
through without jitter are those with short routes, which are not as dependent on topology
information, as those with long routes. Not only do more packets get through with jitter,
but packets destined for nodes farther away get through (which they would not, otherwise).
Thereby, the average delay is larger than without jitter.

Figure 7.2 shows the number of simulations as a function of the number of packets
dropped due to route unavailability to visualize the dispersion of results without jitter
compared to that with jitter. The figure shows that without jitter, the dispersion is high,
that is, the simulations are scattered around in many intervals, while with jitter, the
simulations are concentrated in few intervals.

Likewise figure 7.3 shows the dispersion of number of packets received with and without

54 7. OLSR Performance

T T T T
Without jitter
With jitter m—

Number of tests

LT

= =
HOE OE N HOE | |

4-8 8-12 12-16 16-20 20-24 24-28 28-32 32-3636-40 41-44 44-48 48-5252-56 56-60
Number of packets lost due to route unavailability

Figure 7.2.: The number of tests as a function of number of packets lost due to route un-
availability. The number of packets is showed in intervals of thousands.

jitter. The figure shows that with this, the number of received packets is concentrated in
four intervals, while without jitter, they are dispersed in 7 intervals.

The figures and the measures in table 7.2 show that the dispersion of the results without
jitter was substantially larger than those with jitter. This means that the performance with
enforced jitter is not only better, but also more stable than without jitter.

The chi-square test of independence on both the number of received packets and the
number of packets lost due to route unavailability shows that the probability that the
results are dependent on the use off jitter 1.0000 (when rounded off due to calculation
imprecision). This indicates that there is a very high dependency between the throughput
and the use of jitter. See tables B.3 and B.4 for a calculation of the results.

The general conclusion is that jitter improves the throughput and lower the number of
packets dropped because of route unavailability. The cost of enforcing jitter only the effort
to implement it.

7.3. Piggybacking

The preliminary simulations indicated that piggybacking control messages had an im-
pact on the number of control packets dropped collisions, and thereby indirectly on the
throughput. We therefore anticipate that the simulations will show an improvement in the
performance of OLSR when piggybacking control messages. That is, higher throughput
and lower overhead.

Piggybacking of control messages is enforced by holding back incoming control messages
that are to be retransmitted for up to a predefined amount of time, holdback time, before

7.3 Piggybacking 55

12

T T
Without jitter
With jitter m—

100

A

Number of tests

8-12 12-16 16-20 20-24 24-28 28-32 32-¢
Number of received packets in thousands

Figure 7.3.: The number of tests as a function of number of packets received. The number
of packets are showed in intervals of thousands.

retransmitting them. If a locally generated control message is transmitted from the node
before the end of the holdback time, the incoming messages in the buffer are transmitted,
piggybacked with the outgoing message. Test sets with holdback time of 0.0, 0.2, 0.4,
0.6, 0.8 and 1.0 seconds were performed. A holdback time of 0.0 is equivalent to not
implementing piggybacking because incoming message are retransmitted as soon as they
arrive, if the node is MPR to the nodes, where the messages are sent from. To make sure
that the impact shown in the results were due to piggybacking, three test sets were run:
One with jitter and with piggybacking, one with only piggybacking, and one with jitter
and piggybacking and no mobility.

Results

Graph 7.1 shows the average number of packets that were sent, received, and dropped due to
route unavailability in the situation where the nodes enforced both jitter and piggybacking
with variable holdback time. The graph shows some fluctuation. The throughput is 8%
and 6% higher at holdback times of 0.2 and 0.8 seconds than with no holdback time. The
number of packets lost due to route unavailability are 22 and 16% lower than without
piggybacking.

Graph 7.2 shows the average number of packets that were sent, received, and dropped
due to route unavailability with variable holdback time, in the situation where the nodes
enforced only piggybacking and no jitter. The number of lost packets due to route unavail-
ability is high at all holdback times with peaks at holdback times of 0.2 and 0.8 seconds
and lows at no and maximum holdback times.

Graph 7.3 shows the average number of packets that were sent, received, and dropped
due to route unavailability with variable holdback time, in the situation where the nodes
enforced both jitter and piggybacking, and without mobility. The graph shows slight
fluctuation. However, there is a 5% higher throughput and 24% lower droprate due to
route unavailability than with no piggybacking.

56 7. OLSR Performance

T T T T
Recavall -+
- ecelVv LI
70000 Noroute drops - -3--
60000 — T
§ 50000 .
4
4
« 40000 .
o
g
E 30000~ . b e L U ’
Z +
20000 T
10000gg--________ B P T, Hem oo B 5
0 | | | |
0 0.2 0.4 0.6 0.8 1
Holdback time
Graph 7.1: The number of packets sent, received, and dropped due to route unavailability
with both jitter and piggybacking with variable holdback time.
T T T T
R Se&% +
n eceived -+ _
70000 Noroute drops - & --
60000 T
£ 50000 =
4
s B P RN B
o 400005 " -
g
€ 30000 - 7
>
z
20000 [~ 7
T R EEEEEEEE TR e TR
10000 .
0 | | | |
0 0.2 04 0.6 0.8 1
Holdback time
Graph 7.2: The number of packets sent, received, and dropped due to route unavailability

with only piggybacking with variable holdback time.

7.3 Piggybacking 57

Received
Holdback time 00] 02] 04] 06] 08] 1.0
Mean 26300 | 28400 | 26800 | 25300 | 27800 | 27000
Standard deviation 4480 | 4380 | 3970 | 4000 | 4660 | 4850

Coefficient of variation || 17.0 % | 15.4 % | 14.5 % | 15.8 % | 16.8 % | 17.9 %
Noroute drop

Holdback time 0.0 ‘ 0.2 ‘ 0.4 ‘ 0.6 ‘ 0.8 ‘ 1.0
Mean 8740 6610 8100 8560 7330 7650
Standard deviation 2840 2720 2250 3010 3090 2650

Coeflicient of variation || 32.5 % | 41.1 % | 27.8 % | 35.1 % | 42.1 % | 34.6 %

Table 7.4.: Descriptive measures from piggybacking tests with jitter.

Received
Holdback time 0.0] 02] 04] 06] 08] 1.0
Mean 14900 | 13000 | 13300 | 13000 | 13400 | 15500
Standard deviation 7790 | 6580 | 6360 | 8000 | 6180 | 8870

Coefficient of variation || 52.3 % | 50.5 % | 47.7 % | 61.6 % | 46.1 % | 27.0 %
Noroute drop

Holdback time 0.0 ‘ 0.2 ‘ 0.4 ‘ 0.6 ‘ 0.8 ‘ 1.0
Mean 40200 | 45900 | 44000 | 43300 | 45700 | 39400
Standard deviation 15600 11500 13500 16300 11600 17200

Coefficient of variation || 38.7 % | 25.1 % | 60.6 % | 37.6 % | 25.4 % | 43.8 %

Table 7.5.: Descriptive measures from piggybacking tests with no jitter.

Analysis

The simulations show that there is a small effect in throughput of piggybacking as seen in
tables 7.4, 7.6, and 7.6. This can be explained by the fact that fewer packets are lost due
to collisions, but each packet contains more messages, so the same amount of messages are
lost.

Graphs 7.4 and 7.6 show that the amount of control traffic becomes smaller, as ex-
pected, when the holdtime becomes longer in the scenarios where jitter is enforced. This is
expected, as there are more messages in each packet, making the overhead smaller, because
fewer packet headers are transmitted on the medium. As seen in graph 7.5 the amount of
control traffic without jitter becomes smaller when piggybacking is used, but shows little
fluctuation at different holdback times.

We have performed the chi-square test of independence on the number of received
packets and the number of packets dropped due to route unavailability, and the percentages
range from 60% to 96%, thus the numbers do not lead to any solid conclusions. In the test

58 7. OLSR Performance

I
Receivedl -+
L eceived -+
70000 Noroute drops - 3--
60000 [I
ﬁ 50000 4 ..o BARRRREREERTEE o T T T
g8
2 40000 '
o
x
£ 30000 I
>
Z
20000 [~ '
10000 o e T SV 0
0 | ‘ | ‘
0 0.2 0.4 0.6 0.8 1
Holdback time

Graph 7.3: The number of packets sent, received, and dropped due to route unavailability
with piggybacking and jitter in a network without mobility and with vartable holdback time.

Received
Holdback time 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0
Mean 48700 | 51100 | 49300 | 50200 | 51000 | 50400
Standard deviation 5560 6440 5780 5790 6520 7150

Coefficient of variation || 11.4 % | 12.6 % | 11.7 % | 11.5 % | 12.8 % | 14.2 %
Noroute drop

Holdback time 00] 02] 04] 06] 08] 1.0
Mean 8530 | 6480 | 7340 | 7800 | 6800 | 7432.6
Standard deviation 4500 | 4110 | 4120 | 5190 | 5010 | 6360

Coefficient of variation || 52.7 % | 63.5 % | 56.1 % | 66.5 % | 73.7 % | 85.6 %

Table 7.6.: Descriptive measures from piggybacking tests with jitter and no mobility.

7.3 Piggybacking

T
OLSR ——
10000 - .

8000

6000

bytes/second

4000

2000 - n

0 I I I I
0 0.2 0.4 0.6 0.8 1

Holdback time

Graph 7.4: The amount of control traffic with piggybacking and jitter.

4000 -

3500 7

3000 [~ T

2500 - N
2000

bytes/second

1500

1000

500 [~ n

0 I I I I
0 0.2 04 0.6 0.8 1

Holdback time

Graph 7.5: The amount of control traffic with piggybacking and without jitter.

60 7. OLSR Performance

70000
Plain
With Jitter mmm—

With Piggyback and Jitter E=2=2
60000 - gg%ith Piggypack N
50000 [~ -
j2]
g
§ 40000 S -
k]
£ 30000 |- i
IS
=1
P4

20000

10000 —

No route drop

Figure 7.4.: The average number of packets from test sets with jitter, with piggybacking,
with both piggybacking and jitter, and with no jitter or piggybacking.

with piggybacking and with jitter the dependency of the number of packets dropped due
to route unavailability on the use of different holdback times is 96%, meaning that when
applying piggybacking on a network, which already use jitter, an effect is very likely to
appear. See tables B.7, B.8, B.11, B.12, B.15 and B.16 for a calculation of the results. It
seems that the best effect of piggybacking is when it is enforced together with jitter and
with mobility.

Graph 7.7 shows that that the average packet delay increases slightly when applying
piggybacking in a setting with jitter. The increase from not using piggybacking to a
holdback time of 1.0 second is 9%. Graph 7.9 show a slight decrease in packet delay as the
holdback time get larger. This could be because the short routes are more stable, but the
long routes take longer time to be discovered, and as the packet delay is larger for packets
that are destined farther away, the average packet delay will be smaller if a smaller fraction
of packets with long routes reach their destination. However the fluctuation in the graph
makes it hard to conclude upon. Graph 7.8 shows great fluctuation in the average packet
delay, which just confirms the earlier result that jitter is very important to get a stable
result.

Figure 7.4 shows the average number of packets sent, received, and dropped due to
route unavailability from the test sets with plain OLSR, with enforced jitter, with jitter and
piggybacking (holdback time: 0.2 seconds), and finally without jitter but with piggybacking
(holdback time: 1.0 seconds). We have chosen to show the results with those holdback
times, because they gave the best results in the respective tests. The figures shows that
piggybacking works best in combination with jitter.

We recommend that piggybacking is applied. The positive effect on the throughput is
small, but there is no cost of enforcing piggybacking and the overhead becomes smaller.

7.3 Piggybacking 61

9000 [~ T T T T OLSR —o—
8000 [~ 7
7000
6000
5000

4000

bytes/second

3000

2000 - T

1000 [~ n

0 I I I I
0 0.2 0.4 0.6 0.8 1

Holdback time

Graph 7.6: The amount of control traffic with piggybacking and jitter and without mobility.

0.7 T

o6 .7 e]

05 4

04 T

Seconds

02 .

0 I I I I
0 0.2 0.4 0.6 0.8 1

Holdback time

Graph 7.7: The average packet delay with piggybacking and with jitter.

62 7. OLSR Performance

T
OLSR ——
02 7

0.15

Seconds

0.1

0.05 - 7

0 I I I I
0 0.2 0.4 0.6 0.8 1

Holdback time

Graph 7.8: The average packet delay with piggybacking and without jitter.

T
OLSR ——

04 n

Seconds

02 .

0 I I I I
0 0.2 04 0.6 0.8 1

Holdback time

Graph 7.9: The average packet delay with piggybacking and jitter and without mobility.

7.4 Control Message Intervals 63

7.4. Control Message Intervals

The constant values for hello and TC intervals specified in the OLSR draft [JMQ™01] are
chosen mainly on the analytical evaluation of the advantages and disadvantages of having
higher or lower intervals. We have tested the OLSR protocol with different settings for
these constants in order to check if more optimal values exists.

7.4.1. The Hello Interval

We performed simulations where the OLSR. protocol uses a variable hello interval. The
hello interval is the interval between two hello messages. Test sets with hello interval of
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 seconds were performed. The neighbor hold time was
kept at 3 times the hello interval, which is 6 seconds when the interval is as defined by
the OLSR draft [JMQ"01]. The test was made with jitter on the transmission of control
packets because of the results stated above. At a hello interval of 0.5 seconds the jitter
interval is +0.25s, and £0.5s at the other intervals. Piggybacking was not enabled for
hello messages in this test. That is, hello message are sent immediately when they are
generated.

Simulation Results

The number of sent and received packets per second is shown in graph 7.10. The graph
shows that the throughput is not affected much by changing the hello interval, except at
high hello intervals where it drops a little.

The average packet delay is shown in graph 7.11. It is hard to see any tendency in the
packet delay when the hello interval is changed.

Analysis

The graphs shows that the throughput and average packet delay is not affected much
by changing the interval. At a higher hello interval, the throughput drops a little. This
is because the protocol adapts slower to topology changes. At a lower interval than 2.0
seconds, the throughput neither increases nor decreases. This may be because the increased
ability to adapt to topology changes is outweighed by the additional load in control traffic
put on the network. The control traffic in number of bytes per second is shown in graph
7.12. At a hello interval of 0.5 seconds, the amount of control traffic is around 14 kilobytes
which is a little more than 1/20 of the available bandwidth.

7.4.2. The TC Interval

We have performed simulations with variable TC message intervals to test whether perfor-
mance can be improved by using other values than the 5 seconds specified by the OLSR
draft [JMQ7T01]. Test sets with TC message intervals of 1 to 12 seconds in intervals of
1 second were performed. In all cases, a random jitter of at maximum 25% of the TC

64 7. OLSR Performance

T T f I I —o—
300 £ OL SR sent B
OLSR received -~ +--
250
2 200 i
5
g 150 |
[2)
o]
s R
B oot T P o]
50 - i
0 : ' I | I
05 1 15 2 25 3 5

Hello message interval (seconds)

Graph 7.10: Number of sent and received packets with variable hello message interval.

05 4

04 n

Seconds

03 .

02 7

01 7

0 I I I I I
05 1 15 2 25 3 35

Hello message interval (seconds)

Graph 7.11: Average packet delay with variable hello message interval.

7.5 Link Stability 65

message interval was used. Locally generated T'C messages were never piggybacked in this
test, while incoming TC message from other nodes could be held back in an attempt to
piggyback for up to 0.2 seconds. The topology hold time was set to 3.2 times the TC
message interval in all settings. This corresponds to the settings defined by the OLSR
draft of 5 seconds TC message interval and 16 seconds topology hold time.

Results

The throughput for the simulated networks is plotted for each tested TC message interval
in graph 7.13. The throughput is not affected much by changing the TC message intervals,
except when the interval is high and the throughput drops a little.

The average packet delay is plotted in graph 7.14. The graph shows that the average
packet delay increases slightly when the TC message interval is increased.

The amount of control traffic sent on the medium is shown in graph 7.15.

Analysis

The throughput is mostly unchanged when adjusting the TC message interval. At high TC
intervals, the throughput drops only a little. The reason that the throughput drops with
longer TC message intervals is because the topology information in each node is updated
less frequently and hence is more likely to be outdated.

The average packet delay is also very little affected by changing the TC message interval,
but it does get a little lower value when the topology information is updated more often
and a little higher when the information is updated less frequently. This is expectable: The
optimality of the routes depend on how correct topology nodes has. When this topology
get updates less frequently, the routes gets less optimal and hence the transmission delays
get longer.

The gain from lowering the TC interval could be expected to be more significant when
there is a more dynamic topology in the network because then it is more important to get
correct topology information faster. We ran the same test with TC intervals from 1 to 7
seconds with mobility 12.5 meters per second. The throughput is shown in graph 7.16.
Not even in this situation is the throughput affected by lowering the TC message interval.

7.5. Link Stability

Because the links in a wireless network are relatively unstable and can be very sporadic if
the distance between the two nodes is near the radio range of the antennas, it is important
to investigate routing methods that take the quality of link into account. A method,
suggested to us by one of the designers of the OLSR protocol, is to use a simple link
hysteresis where it is required to receive more than 1 hello message in order to qualify the
link as usable (after which the usual asymmetric/symmetric negotiation is done). With
the current OLSR draft, only 1 hello message must be received in order to qualify the link
as asymetric or symmetric. If instead we require that at least 2 hello messages within 3

06

7. OLSR Performance

T
OLSR —— |

16000

14000

12000

10000

8000

Bytes per second

6000

4000

2000 - 7

0 | | | | |
0.5 1 15 2 25 3 35
Hello message interval (seconds)

Graph 7.12: Amount of control traffic with variable hello message interval.

T
300 - OLSRsent —¢— 7
OLSR received -~ +--

250 -

200

Packets per second
(=Y
(o)
o
T
|

b o R Fo
100 i T g 3
50 -]
0 : ; I I I
0 2 4 6 8 10 ?

TC message interval (seconds)

Graph 7.13: Number of sent and received packets with variable T'C message interval.

7.5 Link Stability

08 OLSR —o— -

0.7 - n

05 4

Seconds
o
D
T
|

03 4

02 .

0 I I I I I
0 2 4 6 8 10 12

TC message interval (seconds)

Graph 7.14: Awverage packet delay with variable TC message interval.

T
OLSR ——
30000 7

25000 -
20000 -

15000 -

Bytes per second

10000

5000 -

TC message interval (seconds)

Graph 7.15: Amount of control traffic with variable TC message interval.

68 7. OLSR Performance

Received Noroute Drops
Hysteresis 1/1 | 2/3 1/1 | 2/3
Packets per second mean | 101.5 | 97.4 53.9 02.8
Standard deviation 9.87 7.33 12.18 11.29
Coefficient of variation 9.73% | 7.53% | 22.58% | 21.37%

Table 7.7.: Descriptive measures for scenarios with and without the simple 2/3 link hys-
teresis.

hello message intervals must be received, we might be able to avoid using links that are
only sporadicly available. If a single hello message arrives, we simply ignore it.
The simulations done here were performed with a stream duration of 50 seconds.

Results

The measures of tendency and dispersion for the number of packets per second that are
received or dropped due to route unavailability are shown in table 7.7. 4.2% fewer packets
get through the network with the 2/3 hysteresis and 2% fewer packets are dropped due to
route unavailability.

Analysis

The simple link hysteresis tested here does not seem to make much of a different for the
throughput in the network. However, note that the coefficient of variation for received
packets is a little lower with the hysteresis than without. This means that the networks
using the link hysteresis are a little more stable than networks using the plain OLSR
protocol, even though a little fewer packets get through the network.

7.6. Summary

These tests have shown that the use of enforced jitter on the transmission of control packets
in OLSR is of very high importance to the performance and stability of the network. The
effects of piggybacking control messages with each other are not significant, although the
network tends to be a little more stable when using piggybacking.

There is little effect of changing the control message intervals. Even with a highly
dynamic topology, lowering the TC message interval does give a readable effect.

The simple link hysteresis of requiring 2 out of 3 hello messages before qualify a link
as usable does not give a significant performance improvement.

7.6 Summary 69

T
300 - OLSR sent —— |
OLSR received -~ +--

250

200 N

Packets per second
(=Y
a1
o
T
|

100 - 7
R R e dee R B R RaRR T
50 -]
0 1 1 1 1 1
1 2 3 4 5 6 7

TC message interval (seconds)

Graph 7.16: Number of sent and received packets with variable TC message interval and
high mobility.

70

7. OLSR Performance

8. Comparison of OLSR and AODV

In this chapter, we will present the results of the simulations comparing the performance
of OLSR with that of AODV. First, we describe the default test configuration of the
simulations. Next, we present the thesis that is to be testes and the assumptions we have
made about the results. Then, we describe the test with varied mobility, density, and
traffic, respectively. The chapter is concluded by a summary that summarized the results
of the analyses.

8.1. Test Configuration

The thesis tested in this chapter, is the one stated in chapter 2 which concern the per-
formance of OLSR compared to that of AODV. To examine this thesis, a test set of at
least 30 scenarios for each set of scenario parameters were generated and run in NS2. The
scenarios were generated by the scenario generator described in chapter 4 from the same
default parameters stated in table 8.1, unless otherwise stated. The measures used in the
result sections are selected from those stated in section 5.3. For each test set we state the
results used for analyzing the particular set. For explanatory reasons the results are shown
as numerals, graphs, and figures depending on the context. The complete set of the results
in numerals, is included in appendix B.

Number of nodes 50 nodes

Field size 1000 x 1000 meters
Simulation Time 250 seconds

Node Speed 1 to 5 meters/second
Node Rest Time 0 to 5 seconds
Streams 25 streams
Packet Size 64 bytes

Packet Interval 0.10 seconds
Stream Duration 10 seconds

Table 8.1.: Default parameters used in the simulations.

71

72 8. Comparison of OLSR and AODV

8.2. Thesis and Assumptions

To our knowledge, there has been no comprehensive, simulation based comparison of OLSR
and other MANET routing protocols. |Qay00| performs various comparisons of OLSR with
the DSR protocol, but he uses a custom build simulator with several issues as described in
section 1.4. We will compare it to AODV because this is the MANET protocol that have
consistently shown the best performance in related works (for elaboration, see section 1.4).
In section 3.3 we have described our assumptions on how we expect OLSR and AODV to
perform in different types of scenarios.

We have performed a number of simulations to show how well OLSR performs when
compared to AODV. We have varied the mobility in order to test how well the protocols
perform when the topology changes frequently. We have varied the density of the network
to see how well each protocol performs in large and dense network, and small and sparse
networks. We have varied the traffic to see how the protocols perform under sporadic

traffic and under more static traffic patterns. In other words, our work aims at uncovering
when OLSR and AODV, respectively, excel.

8.3. Performance with Variable Mobility

In order to determine how OLSR and AODV perform under variable mobility, 7 test
sets with node mobility from 0 to 15 m/s were performed. 0 m/s is no mobility and 15
m/s corresponds to a slow moving car (54 km/h). Higher mobility is impractical for this
particular type of medium (IEEE 802.11). With a speed of 15 m/s, a node moving through
the radio range of another stationary node would only have radio contact for less than half
a minute.

Results

The number of sent and received packets for the simulation is shown in graph 8.1. The
throughput for each protocol is nearly equal in both scenarios with little or no mobility
and with high mobility. With little mobility, OLSR seems to perform slightly better than
AODV, with 5% more packets received at no mobility. In networks with high mobility,
AODV seems to have a little advantage over OLSR with 21% more packets received at an
average speed of 15 meters per second.

The average packet delays are plotted in graph 8.2. The graph shows that the average
packet delay always is higher in networks using AODV than in networks using OLSR.
However, in networks with medium speed (2 to 8 meters/second), the average packet delay
in AODV networks is not significantly higher than that of OLSR networks.

The amount of bandwidth used for control traffic for each protocol are plotted in graph
8.3. The graph shows that the control traffic of OLSR is the same at all levels of mobility,
while that of AODV increases with increasing mobility. At no mobility, the control traffic
of AODV is significantly lower than with mobility, but it is still higher than that of OLSR.

8.3 Performance with Variable Mobility

T T f I I I I
OLS%LSR.Segé 7
_ recelved ~- -
70000 AQDV sent -5~
i & & AODVE!’eceNed ®
60000 - _
$ 50000 _
~ 4
R oo
5 40000 [~ _
3
E 30000 - _
Z o
20000 - B S _
_______ - * R
IR S §
10000 |- _
o | | I | | 1 1
0 2 4 6 8 10 o * ’

Average speed in meters/second

Graph 8.1: Number of sent and recewved packets with variable mobility.

T
14k AODV —o— |
: OLSR =+

Seconds

04 n

02 7

0 I I I I I I I
0 2 4 6 8 10 12 14 16

Average speed in meters/second

Graph 8.2: Packet delay with variable mobility.

74 8. Comparison of OLSR and AODV

Analysis

AODV manages to get more packets through the network than OLSR when there is a high
mobility (links break and are created more frequently). This is expectable — the AODV
protocol reacts faster than OLSR to changes in network topology. In networks using
OLSR, the new or newly broken links will have to be detected (two-way negotiation),
MPRs selected, and new topology information diffused into the network before the routing
can utilize the changes to the topology. AODV will only have to detect that the link has
broken before performing a local route repair. In case AODV chooses to send a Route
Error packet back to the source node, the route will have to be requested, which will take
substantially more time than performing a local route repair.

The average packet delay is higher with AODV than with OLSR. This can be explained
by the sub-optimal routes that AODV provides (as described in section 3.3). Another
possible explanation is the that the first packets sent in a stream are delayed while AODV
requests the route and waits for the route reply. It is interesting to see that the packet
delay with AODV is lower with a moderate mobility than with no mobility. It may be
explained by that the extra packets that does at no mobility (according to graph 8.1 are
those that have to take the longest routes through the network.

The big difference in control traffic with AODV between no and some mobility can
be explained by the introduction of link breakage and creation with mobility. With no
mobility, links are static and a route will only have to be requested once, while with some
mobility, a route may have to be repaired or re-requested during the session, hence the
extra control traffic. OLSR’s control traffic is constant as it is not affected by the creation
or breakage of links.

8.4. Performance with Variable Density

This test was designed to show how each protocol operates in networks with different node
density. In a simulation area of 1000 by 1000 meters, test sets with the following number
of nodes were performed: 10, 20, 50, 75, 100, and 125.

8.4.1. Variable Amount of Traffic

The number of streams in this test is dependent on the number of nodes, namely 50 streams
per 100 nodes. We have done this, because in most real networks, we assume that each
node would, on average, generate the same amount of traffic. Hence, the total amount of
traffic in the network would increase linearly with the number of nodes.

Results

Graph 8.4 shows the number of sent and received packets, with variable density. The graph
shows that the number of sent packets climbs linearly with the number of nodes, as we have
defined. The number of received packet with AODV and OLSR is almost equal in networks

8.4 Performance with Variable Density

75

30000 T T T T T T T
AODV —o—
OLSR --+--

25000

20000 [~ 7

15000 - 4

Bytes/second

10000 n

5000 - n

0 2 4 6 8 10 12 14 16
Average speed in meters/second

Graph 8.3: Amount of control traffic with variable mobility.

T T T T T T

OLSR sent ——
700 OLSRreceived -+
AODV sent - -§-~

600 —
500
400 -

300 -

Number of packets

200 -

100 -

14C

Graph 8.4: Number of sent and recewved packets with variable density.

76 8. Comparison of OLSR and AODV

with less than 50 nodes. In networks with more than 50 nodes, AODV throughput drops
while OLSR throughput remains nearly the same.

Graph 8.5 shows the packet delay with each protocol and with variable density. The
graph shows that the average packet delay increases with the number of nodes in the
network for both protocols. With OLSR, the average packet delay climbs faster than that
of AODV.

Analysis

The main reason that the throughput with AODV drops significantly is because of the
control traffic that the protocol generates. The control traffic is plotted in graph 8.6. OLSR
control traffic increase with the number of nodes in the network, which is expectable since
each node generates extra hello and TC message. At 125 nodes, OLSR control traffic is
around 26000 bytes per second. AODV’s control traffic increases much more than that
of OLSR. At 100 and 125 nodes, the AODV control traffic is 5 times that of OLSR. The
amount of control traffic that AODV generates is mainly determined by the traffic in the
network, and since we have increased the amount of traffic linearly with the number of
nodes, we would expect the control traffic to increase.

The average packet delay with OLSR is lower than with AODV in networks with low
density. The can be explained by that AODV queues packets while requesting routes and
may choose inoptimal routes as explained in section 3.3. In high density networks, networks
using OLSR has a higher packet delay than networks using AODV. This can be explained
by AODV’s lower throughput in these networks. The packets that does get through the
network are most likely the packet following shorter routes, while in OLSR networks, the
throughput is higher and hence more packets travel longer routes and hence the average
packet delay is higher.

8.4.2. Constant Amount of Traffic

In order to test whether the difference in throughput is caused only by the extra traffic
in the network performed the simulations again, but this time with the same amount of
traffic in all scenarios (25 streams).

Results

Graph 8.7 shows the throughput with variable density and constant amount of traffic. The
graph shows that the protocols compare up to about 50 nodes. In networks with more
than 50 nodes OLSR is able to get more packets through the network than AODV. At 100
nodes, AODV gets 26% less packets through the network, and at 125 nodes 34% less.

Graph 8.8 shows that the average packet delay for AODV and OLSR. The graph shows
that when the protocols compare in throughput, AODV has a higher packet delay than
OLSR. In high density network, where OLSR has a higher throughput, AODV has a lower
average packet delay than OLSR.

8.4 Performance with Variable Density 77

T
AODV —o—
OLSR =+

15 L .

Seconds

05

0 ' 20 40 60 80 100 120 140
Nodes

Graph 8.5: Packet delay with variable density.

160000

T
o
=
3
+
I

140000

120000

100000

80000

Bytes/second

60000

40000

20000

0 et
0 20 40 60 80 100 120 14¢

Graph 8.6: Amount of control traffic with a variable number of nodes

78 8. Comparison of OLSR and AODV

T T T T T T
300 - OLSR sent —¢— |
OLSR received --+--
o IﬁAVODV sent - E
250 B—=% o & A received 1
$ 200 _
X
8
o
S 150 - -
o]
o]
=
Z 100 w . B I A o + _
sofF X _
0 | | | | | |
0 20 40 60 80 100 120 14C

Nodes

Graph 8.7: Number of sent and received packets with variable density and constant amount

of traffic.

T
AODV —o—
OLSR =+

08 -

06 [

Seconds

0 20 40 60 80 100 120 140
Nodes

Graph 8.8: Average packet delay with variable density and constant amount of traffic.

8.5 Performance with Various Types of Traffic 79

Graph 8.9 shows the amount of control traffic transmitted with each protocol. The
control traffic in networks using AODV is approximately 100 Kb/s. That is 2.5 times
higher than in networks using OLSR which is around 40 Kbps.

Analysis

The throughput of AODV drops in high density networks, even in this test where the
amount of traffic is constant. This, we think, is mainly caused by the extra control overhead
of AODV. When there are more nodes, the flooding of route request packets consumes much
more bandwidth. This is also true for OLSR, but the amount control traffic increases at a
much lower rate than that of AODV because of the use of MPRs in OLSR.

The cause of AODV'’s lower packet delay is, most likely, the fact that the throughput
is also lower and that the packets that do get through the network are packets which have
only a short route to travel. This is consistent with the results when there is variable traffic
(graph 8.5), but the difference here is smaller because there is less traffic.

8.5. Performance with Various Types of Traffic

In order to test how OLSR and AODV perform under various types of traffic, we have
run simulations with sporadic and static streaming traffic (section 8.5.1). We have also
run traffic with TCP sessions in order to test how well the protocols handle bulk data
transfers (section 8.5.2). In this test we have measured both the common performance
parameters such as throughput and delay, but also the transfer time, that is the time it
takes to perform an entire TCP transfer.

8.5.1. Variable Duration

We anticipate that OLSR performs better with sporadic traffic and AODV better with
static traffic. Therefore, we created scenarios with variable duration of the stream in the
network. Test sets with a variable stream duration with values of 10, 20, 40, 80, 120 and
240 seconds were performed. The average number of simultaneous streams in these tests
is 25. That means that with a stream duration ¢, there will be a total of 25% streaming
sessions (250 seconds is simulated).

Results

Graph 8.10 shows the throughput as the number of packets received per second in the
simulated networks. The throughput using OLSR and AODYV is equal, except in the
boundary cases. At very low duration, that is, when the number of streaming sessions is
high, the AODV throughput drops while the OLSR throughput remains the same. At high
duration, that is, when the is only a few streaming session in the entire simulation, the
AODV throughput increases a little more than the OLSR throughput.

80 8. Comparison of OLSR and AODV

T
AODV —o—
OLSR =+

120000

100000

80000

60000

Bytes/second

40000

20000

0 20 40 60 80 100 120 14C
Nodes

Graph 8.9: Amount of control traffic with variable density and constant amount of traffic.

T T T T
OLSR sent —o—
300 - OLSR received --+-- |
AN Teteial % -
receiv R
2 ?\@a—m
£ 250 o & N —- .
g 200 - |
%]
T
4
8 150 - s
S X
oo} b X . . PR
£ 100 R R STTRIVISRPRP S LS i
=]
zZ
50 - -
O | | | |
0 50 100 150 200 25C

Stream duration (seconds)

Graph 8.10: Number of sent and received packets with variable stream duration

8.5 Performance with Various Types of Traffic 81

The average packet delay is shown in graph 8.11. The graph shows that the average
packet delay of AODV is a little higher than that of OLSR (10-15%), except with very
short duration where the packet delay is equal.

The amount of control traffic sent by each protocol is shown in graph 8.12. At low
duration, the control traffic of AODV increases significantly while the control traffic of
OLSR remain constant. Also, note that the control message overhead when using AODV
is at least twice the overhead of OLSR control traffic, in all scenarios.

Analysis

At low duration, when the number of streaming sessions is high, the performance of AODV
drops significantly. This may be explained by that AODV’s activity depends on the traffic.
When the number of sessions increases, AODV must request routes much more often and
hence overloads the network with control traffic.

In cases where OLSR and AODV do not exhibit the same throughput it is hard to
compare the average packet delay, because the lower throughput may be caused mainly
by lost packets in long paths (many hops), while short paths (few hops) may give the
same throughput. If the average packet distance, that is, the number of hops a packet
uses to travel from its source to its destination, is lower, the average packet delay will also
be lower. But, when the throughput is equal for AODV and OLSR, that is between a
duration of approximately 20 and 150, we can assume that the average number of hops a
packet uses is the same for both protocols. It is interesting that the average packet delay
is a little higher with AODV than with OLSR. We anticipate that this is because OLSR
uses optimal routes, provided that enough topology information is available, while AODV
uses the route over which the Route Request first reaches its destination, which may be
suboptimal.

8.5.2. Bulk Transfer Test

To test each of the protocols under various loads and using bulk transfers over TCP instead
of streaming traffic, test sets with 6, 8, 10, 12, 14, 16, and 18 TCP transfers per second
were performed, each transferring 16 Kb of data. The packet size used in each TCP session
was set to 1024 bytes. Therefore, the number of queued packets per second is on average
16 x t, where t is the number of transfers per second. The traffic in these scenarios is
very sporadic because the transfers are very short. Hence, the traffic is similar to that of
streaming with low duration.

Results

The throughput as number of packets sent and received is shown in graph 8.13. The graph
also shows the number of queued packets in the TCP flows (16 per transfer in this scenario).
The number of sent packets is the number of packets that leave the nodes. Hence, packets
that are not send due to TCP congestion handling are not included in the graph.

82

8. Comparison of OLSR and AODV

Seconds

Bytes/second

1R ' ' ' AODV —o— |
OLSR -+
+‘+-\ + _________ B o
o6 * R T R
04 - .
02 i
0 1 1 1 1
0 50 100 150 200 250

Stream duration (seconds)

Graph 8.11: Awerage packet delay with variable stream duration

T
AODV —o—
OLSR =+

60000

50000 7

40000 n

30000 - n

20000 - 4

10000 7

0 50 100 150 200 25C
Stream duration (seconds)

Graph 8.12: Amount of control traffic with variable duration

8.5 Performance with Various Types of Traffic 83

The control traffic overhead is shown in graph 8.14. This graph shows that the control
message overhead of AODV is 4 to 6 times that of OLSR. The AODV maximum overhead
reaches 50 Kb/s. The OLSR control message overhead is around 10 Kb/s.

Analysis

Graph 8.13 shows that the networks using OLSR both manage to send more packets and
get more packets through than AODV. The reason that the number of sent packets does
not follow the number of queued packet is retransmission and congestion handling in TCP.
The number of received packets is higher that the number of queued packet, in some cases,
because of retransmissions that result in duplicate reception at the destination node. The
number of received packets as a fraction of the number of queued packets is shown in graph
8.15. The graph shows that OLSR manages to get significantly more packets through than
the AODV protocol. The major reason for this is the amount of control traffic that AODV
sends on the network.

The reason that the OLSR bandwidth drops and higher loads is that the graph only
includes control messages actually transmitted over the medium, and at higher loads, the
interface queues get more congested and more control traffic is dropped.

Generally, the TCP transport layer protocol performs badly over wireless network be-
cause of the relatively high drop rates due to collisions and interference. TCP assumes
that the reason for drops is congestion and therefore lowers the data rate, hoping to get
more data through by avoiding congestion. However, with a fixed probability for packet
drop of for example 20%, 80 Kb/s will get through if the source sends 100 Kb/s, and only
40 Kb/s if the rate is lowered to 50 Kb/s.

TCP’s adaptive behavior make this test a bad measure of how the protocols perform
under various load, while it is still a good measure of how it performs under this particular
type of traffic.

8.5.3. Transfer Time

In order to test the actual transfer time used to perform a bulk TCP transfer, we have run
simulations of networks with TCP transfers of 16 kilobytes of data transferred between
random nodes. We measured the transfer time as the time from the initiation of the TCP
transfer, when the first packet is sent from the application layer, and until the final packet
is received at the destination nodes application layer. In each scenario, 100 bulk transfers
were performed within the 250 simulated seconds.

Results

The measures of tendency and dispersion for the bulk TCP transfer time are shown in
table 8.2. The average time for a TCP transfer is approximately 10% higher with AODV
than with OLSR.

84 8. Comparison of OLSR and AODV

350 - ' f I T T -
OLSR sent ——
OLSR received --+--
AODV sent --3--
300 AODV received - % -
T Packets queued — & A
c
g; 250
g
o 200
T
-
8
= 150
o
g B AV
[S 100£¥/ »»»»» NI N Moo N >
z2
50 - _
0 ! | | | |

Number of bulk transfers per second

Graph 8.13: Number of sent and received packets with a variable number of bulk transfers
per second

T T T f !
AODV —o—
OLSR -+
60000 |
50000]
§ 40000]
8 30000 F]
>
om
20000]
10000 - |
------- L e I
0 : ' ' | |
6 8 10 12 14 16 18

Number of bulk transfers per second

Graph 8.14: Amount of control traffic with variable load

8.5 Performance with Various Types of Traffic 85

I
14 AODV —— 7|
OLSR -+
12 - n
)
°©
=
]
=3
B
o)
>
T
B
o=
=)
8
T
02 -
0 I I I I I
6 8 10 12 14 16 18

Number of bulk transfers per second

Graph 8.15: Number of received packets as a fraction of the number of queued packets with
variable number of transfers per second.

| T OLSR | AODV |
Average bulk transfer time | 3.25 seconds | 3.56 seconds
Standard deviation 0.66 1.16
Variance coefficient 20.44% 32.67%

Table 8.2.: Descriptive measures for bulk TCP transfer times.

86 8. Comparison of OLSR and AODV

Analysis

The higher bulk transfer time is most likely caused by AODV queuing packets while re-
questing routes and possibly because it uses suboptimal routes. The variance coefficient is
a little higher for AODV than for OLSR. This means that the networks using OLSR are
also more stable than AODV, that is, with AODV there is a higher risk of a bad case.

8.6. Performance with Variable Load

In order to test how each protocol performs under variable load we have run a series of
simulations with variable number of streams with UDP traffic. We have simulated networks
with 0, 5, 10, 15, 20, 25, 50, and 100 simultaneous streams. We have used 512 byte packets
in this test. At 5 streams, the nodes try to send 25 Kb/s. When the number of stream is
over 100, the load is quite extreme. At 100 streams the nodes tries to transmit 512 Kb/s,
that is, twice the expected bandwidth in a local region. Because the network spans more
than the radio range of a single node, a higher total throughput than the 2 Mbit total can
be expected, but it should be taken into consideration that packets transmitted in this
test take multiple hops to reach their destination and, hence, will use the medium multiple
times.

Results

The number of packets sent and received for networks with less than 100 streams are
shown in graph 8.16. The line plotting the number of sent packets has been cut to show
the difference in number of received packets for the protocols. The number of sent packets
increases linearly with the number of streams. The graph shows that both protocols only
get a small fraction of the number of sent packets through the network. At more than 25
streams, the two protocols differ more and more in number of received packets. At 100
streams, the number of received packets with OLSR is 119% higher than with AODV.

The average packet delay is plotted in graph 8.17. The graph shows that the average
packet delay when using AODV is consistently slightly higher than with OLSR. At medium
load (25 streams), the delay with AODV is around 25% higher than with OLSR. At higher
load (50-100 streams), the difference is smaller, namely only 10% higher than with OLSR.

The amount of control traffic with each protocol is shown in graph 8.18. The graph
shows that the control traffic with AODV is significantly higher than with OLSR in most
situations. Only in networks with very little traffic (5 or less simultaneous streams), the
control traffic with AODV is lower.

Analysis

The difference in throughput in this test is very significant in networks with high loads.
OLSR manages to get more than twice the packets through when compared to AODV, in
networks with 100 simultaneous streams.

8.6 Performance with Variable Load 87

300 T T T
OLSR sent ——
OLSR received --+--
AODV sent -3--
250 AODV received - X -
o]
c
g 200 _
o}
o
[2)
T 150 i
8
o
5 ot
g 100 e -
IS
>
z 50 X oo Xoome e X oo K
0 1 | | |
40 60 80 100

Number of simultaneous streams

Graph 8.16: Number of sent and received packets with variable number of simultaneous
streams.

18

16

14

12

08 [~

Seconds

0.6

04

0.2

0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Number of simultaneous streams

Graph 8.17: Awverage packet delay with variable number of simultaneous streams.

38 8. Comparison of OLSR and AODV
Big group Small group
Number of nodes 30-50 nodes 3-7 nodes

Node speed

0-1 meters/sec

0-10 meters/sec

Stream to other group

5-15 stream

15-30 stream

Packet size

64 bytes

64 bytes

Bulk transfers to other group

15-25 transfers

80-120 transfers

Bulk transfer amount

8-24 kilobytes

8-24 kilobytes

Simulated time

250 seconds

Field size

10001000

Table 8.3.: Stmulation parameters for the cluster test.

The packet delay with AODYV is higher than with OLSR. This has already been dis-
cussed in previous sections and the same explanations apply here.

The control traffic with AODV increases with the number of streams, which is ex-
pectable because there are more active routes in the network, and hence AODV nodes
have to request and maintain more routes. The amount of OLSR control traffic in the
networks drops with increasing number of streams. This is caused by the medium get-
ting saturated and hence more OLSR packets are dropped in the interface queues (the
control traffic is measured as the actual number of bytes transmitted on the medium, not
the amount generated by the protocol implementations, described in section 5.3). At low
traffic rate, the overhead with OLSR is high because it make the same effort to detect
neighbors and diffuse topology information as with traffic. The overhead with AODV is
low here because there is no traffic in the network and no routes are requested. The control
traffic that AODV nodes transmit when there is no data traffic is the hello messages used
to detect broken links.

8.7. Clusters

All of the networks we have simulated so far have been homogeneous in terms of node
placement, mobility and traffic. In the real world, it is likely that the traffic in the network
will be focused on a subset of the nodes, providing special services. That is, there will be
a small group of nodes communicating with a larger group of nodes. This model applies
to many realistic scenarios such as those simulated by [JLH*99|. An example of such a
network is an office environment where people tend to mostly use the network to access
file or print servers, or gateways to other networks (for example the Internet).

In order to test the two protocols’ performance in such networks, we have simulated
networks with one large group (30 to 50 nodes) and one small group (3 to 7 nodes). The
actual parameters are shown in table 8.3.

8.8 Summary 89

| | OLSR | AODV |
Received packets per second (mean) 139.42 134.46
Received packets per second, standard deviation 24.39 17.63
Received packets per second, coefficient of variation 17.50% 13.11%
Packet delay, mean 0.39 0.77
Packet delay, Standard deviation 0.15 0.20
Packet delay, Coefficient of variation 38.78% 26.35%

‘ Control traffic, mean ‘ 3199 bytes ‘ 10856 bytes ‘

Table 8.4.: Descriptive measures for each protocol in the cluster test.

Results

The descriptive measures for the results of these simulations are shown in table 8.4. The
numbers show that the protocols achieve similar throughput, but that the average packet
delay with OLSR is near the half of that with AODV. The control traffic produced in
AODV networks is 2.5 times that in OLSR networks.

Analysis

In the average case, the two protocols have the almost the same throughput. The packet
delay with OLSR is, however, significantly lower than in networks using AODV. This is
caused by the already discussed reasons of packet queuing during route requests and route
suboptimality. The coefficient of variance is lower for the number of received packets and
the packet delay is lower with AODV than with OLSR. This means that networks using
AODV tend to be slightly more stable than networks using OLSR.

The control overhead in AODV networks is substantially higher in than in OLSR net-
works, but still not critically high because amount of traffic in the simulation networks is
relatively low.

8.8. Summary

These test have shown that the two protocols, Optimized Link State Routing protocol
and the Ad-Hoc On-Demand Distance Vector protocol perform very equal in terms of
throughput, except in boundary cases. In a highly mobile network with frequent topology
changes AODV has a slight advantage over OLSR. In networks with little or no mobility,
that is, with a static topology, OLSR has a slight advantage over AODV. In high density
networks, OLSR has a big advantage over AODV because AODV loads the network with
control traffic. In low and medium density network, the protocol compare in throughput.
Under very sporadic and short lived traffic sessions, streaming or bulk, OLSR has a big
advantage over AODV because it has the routes available beforehand. With very static

90 8. Comparison of OLSR and AODV

streaming traffic,c AODV has a slight advantage over OLSR.

In almost all types of scenarios, OLSR gives a slightly lower packet delay than AODV.
The time to transfer a 16Kb data load using TCP is slightly higher with AODV than with
OLSR.

In almost all cases, the control message overhead of AODV is substantially higher than
that of OLSR. Especially, the AODV overhead increases an order of magnitude faster with
parameters such as number of nodes and number of traffic sessions in the network.

8.8 Summary

91

T
AODV —o—
45000 OLSR -+

40000
35000
30000
25000
20000

Bytes/second

15000
10000 +~ -

5000

Number of simultaneous streams

Graph 8.18: Amount of control traffic with variable number of simultaneous streams.

92

8. Comparison of OLSR and AODV

9. Conclusion

In this project, and our major (hovedfag), we have performed an empirical study of MANET
routing protocols and simulation methods. We have performed scenario based simulations
to gain results about the performance of the MANET routing protocols. In this chapter,
we will summarize the products of our work, the methods we have applied and the results
that we have arrived at. Finally, we will mention possible future works.

Products

We have implemented the Optimized Link State Routing protocol for NS2. This is one
of at least seven implementations of the protocol (although our implementation does not
have the interfaces required to work in a real network).

We have designed and implemented a scenario generator which is able to generate
completely random scenarios under the constraints of a given set of scenario parameters.
The use of this scenario generator allows us to simulate a wide range of scenarios with
identical parameters in order to get a general picture of the MANET routing protocols’
performance in particular types of scenarios.

We have developed a framework for running simulations of wireless protocols. This
framework consist of the simulator, NS2, the scenario generator and a set of utilities to
set up simulations, gather results from the trace files, and calculate descriptive measures
such as mean, deviation, and coefficient of variation, and perform the chi square test of
independence. This framework allows the user to provide the scenario parameters and
ask for a certain number of simulations to be run, and then, nearly automatically, the
descriptive measures will be delivered. Without this framework, the execution of all the
individual simulations in this project (more than 5000) would have been a tedious work.

In addition, we are co-authors of a paper to appear in the Fourth International Sympo-
sium on Wireless Personal Multimedia Communications, namely [BCCHO1|. Our contri-
bution to the paper is a description of the OLSR protocol and an analysis of the effects of
enforcing jitter and using piggybacking. Furthermore, the paper includes a documentation
of practical experiments with OLSR. The paper is included with this report.

93

94 9. Conclusion

Methods

We have used the scenario generator to generate an exhaustive set of simulations on various
types of scenarios. A list of all the scenarios we have simulated, and included in the results
chapters, is included in appendix A. We have performed simulations of at least 30 scenarios
with each set of parameters. For example, when varying parameters such as density, we
have simulated at least 30 scenarios with each number of nodes that we have selected for
the test. These exhaustive simulations ensure that the results are representative for the
particular type of scenario. If exhaustive simulations are not performed, the result risks
being based on a particular lucky or unlucky configuration of nodes, movement and traffic.

We have tested how the protocols perform with TCP bulk transfers. This has not
been done in any of the related simulations of MANET routing protocols (described in
section 1.4). Testing the protocols’ performance with bulk transfers using TCP is important
because such traffic is very common in real networks. According to [TMW97], 90% of the
traffic on the Internet is TCP, and hence bulk transfers. Although TCP has performance
problems in wireless networks due to congestion handling mechanisms, it is likely that it
will be used in the real world, for example, to transfer files, and to access gateways to the
Internet.

Even though the universe modeled by the simulator is quite comprehensive and includes
a complete networking stack and a model of the physical layer, the simulation model is still
a simplification of the real world. The simulations do not include any external entities that
may interfere with the radio communication in the real world, such as physical obstacles
and radio interference from other devices. The actual throughput may be overestimated (or
even underestimated) because of a too perfect or imperfect model and we have therefore not
drawn conclusion about the individual performance of a protocol in a particular scenario,
but only the relative performance.

Simulation Results

OLSR Performance

We have shown that the use of enforced jitter in OLSR on the transmission of control
packets is of utmost importance to the performance and stability of the routing protocol.
There is no direct cost of enforcing jitter. In general, we strongly recommend that im-
plementations of the OLSR protocol implement enforced jitter on all transmitted control
packets.

We have tested the effect of piggybacking control messages in OLSR and shown that
the effect is minimal. [t may make the network perform better, and slightly more stable.
However, the gain is small. We recommend that piggybacking is included in implementa-
tions of the OLSR protocol, because of the possibility of improvement, and because it is
without cost. Under any circumstance, the overhead will be slightly reduced because fewer
packets is sent on the medium.

95

We have tested OLSR with variable hello and TC message intervals in order to see
whether the performance could be improved by adjusting them. We have shown that
nothing can be gained by lowering the intervals, and that only a degradation of performance
can be achieved by increasing them.

We have tested the simple, conservative link hystereses of requiring 2 out of 3 hello
packets to be received in order to qualify a link as asymmetric or symmetric. The test
showed little improvement. We have not had the time to further investigate in other
methods of handling poor link quality, in particular other hystereses such as requiring 3
out of 4 hello messages to be received.

Comparison of OLSR and AODV

We have tested the OLSR and AODYV protocols in various types of scenarios in order to
determine how well they perform in comparison to each other. The main result of the
simulations is that the two protocols perform very similar in many types of scenarios.
However, in some particular types of scenarios they differ in performance.

In a highly mobile network with frequent topology changes AODV has a slight advan-
tage over OLSR protocol. In networks with little or no mobility, that is, with a static
topology, OLSR has a slight advantage over AODV.

In high density networks, OLSR has a substantially higher throughput than AODV
because AODV loads the network with control traffic. In low and medium density networks,
the protocols compare in throughput. Under very sporadic and short lived traffic sessions,
streaming or bulk, OLSR has a big advantage over AODV because it has the routes available
beforehand. In networks with very static streaming traffic, AODV has a slight advantage
over OLSR. When the traffic in a network is mostly bulk transfers (TCP traffic), the
throughput when using OLSR is substantially higher than when using AODV.

In most types of scenarios, OLSR gives a slightly lower packet delay than the AODV
protocol. The time to transfer a 16 Kb data load using TCP is slightly higher with AODV
than with OLSR.

In most cases, the control message overhead of AODV is substantially higher than that
of OLSR. Especially, the AODV overhead increases an order of magnitude faster with
parameters such as number of nodes and number of traffic sessions in the network.

In environments where sporadic bulk transfer traffic is typical such as an office envi-
ronment where people surf the web, transfer files or print on network printers, OLSR has
a big advantage over AODV.

Our general conclusion is that the Optimized Link State Routing protocol performs
just as good as AODV in a wide range of scenarios, but has important and substantial
advantages in particular scenarios such as networks with highly sporadic traffic and high
density networks. This is consistent with the claims in [JMQ101], [Qay00], and [JV0O].
Only in networks with very static traffic, AODV performs better than OLSR. This is
contrary to the conclusions in [JLH'99] that say that proactive protocols generally perform
worse than reactive ones, albeit OLSR is not included in the tests.

96 9. Conclusion

Generally, we find that OLSR is more applicable than AODV in the widest range of
scenarios. It generally generates less control traffic, gets equal or higher throughput and
has lower packet delays. Only in networks with extremely static traffic, for example, two
nodes far away in the network streams traffic without interruption, AODV has a higher
throughput, but still gets a longer packet delay.

Future Work

It would be a logical step to perform large scale tests of MANET routing protocols, including
OLSR and AODV, in real networks in order to get quantitative results about the real life
performance. This may reveal new features and problems with the protocols because of
real world properties that are not simulated in NS2 or other simulators.

It would be interesting to further investigate in methods for handling the potentially
low and differentiating link qualities in MANETS. We anticipate that it will be possible to
improve the performance of the protocols by avoiding the use of low quality links, either
by requiring a certain level of quality in order to accept a link into the topology, or by
taking some measure of link quality into account when calculating routes.

Both protocol draft allow the use of link layer notification. We anticipate that it can
improve the performance of OLSR and AODV, but it would be interesting to investigate
the improvement quantitatively and relatively between the protocols.

Vocabulary

This vocabulary states the terms, definitions, and abbreviations used in this report.
AODV: Ad hoc On-Demand Distance Vector (Routing Protocol).

AODV node: A node utilizing AODV.

Broadcast: To transmit packets to all nodes within radio range.

CBR Traffic: Stream traffic with a constant bit rate.

Control Overhead: The amount of bandwidth occupied by control traffic. This may be
measured in number of packets or bytes.

Control Packet: Packet with control information for use in routing protocols.
Data Packet: Packet with application data.

Flooding: Technique for transmitting packets to all parts of the network, where every
incoming packet is retransmitted.

Full Flooding: Flooding of a network where all nodes retransmit packets as long as
the time to live (TTL) value is larger than 0. Usually accompanied by local duplicate
retransmission to avoid transmitting packet until they time out.

MANET: Mobile Ad hoc NETwork — self organizing network connected by wireless links.
See section 1.3

MPR: Multi Point Relay - a node which is selected to forward control packets on behalf
of other nodes.

MPR Flooding: Flooding of a network, where only MPRs retransmit packets meant for
flooding.

97

98 9. Conclusion

MPR selector set: The set of neighbors which has selected a node as MPR.
MPR set: The set of neighbors which a node has chosen as MPRs.

Neighbor: A node with direct radio contact to the node in question.
Neighborhood: The total set of neighbors (of a node).

Neighbor sensing: The act of discovering which nodes are in the neighborhood.
Node: A host or router in a MANET.

NS2: Network Simulator 2.

OLSR: Optimized Link State Routing (Protocol).

OLSR node: A node utilizing OLSR.

Packet Delay: The time from a packet is transmitted by an application and until it is
received.

Performance: The combined evaluation of quantitative parameter such as throughput,
packet delay and control overhead.

Proactive Routing: Routing method which maintain routing tables up-to-date for every
node in a network at all times.

Reactive Routing: Routing method which find routes in a network, only when needed.

Scenario: A specific setup of nodes, a specification of how they move, and what traffic
they generate.

Scenario parameters: The parameters used for characterizing the settings of a scenario.
In particular the parameters feed to the scenario generator.

TC: Topology Control.

Test set: The set of scenarios generated from the same scenario parameters.

99

Throughput: The number of data packets that reach their destination. Also named the
number of received packets.

Two-hop neighbor: A node reachable through a neighbor.

Two-hop neighborhood: The set of all one- and two-hop neighbors.

100 9. Conclusion

Bibliography

[ASWO6|

David R. Anderson, Dennis J. Sweeney, and Thomas A. Williams. Statistics

for Business and Economics. West Publishing Company, 6 edition, 1996. ISBN

0-314-06378-1.

[BCCHO1| Gerd Behrman, Thomas Clausen, Lars Christensen, and Gitte Hansen. The

[BHJ*00]

[BL96|

[Blu01]

[BMJ*98|

|CEHO1]

[Dij59)

[ETS95]

Optimized Link State Routing Protocol - Evaluation through experiments and
Simulation. In Proceeding of Wireless Personal Multimedia Communications,
September 2001. To appear in the Fourth International Symposium on Wireless
Personal Multimedia Communications.

Elena Tgrnaes Beck, Gitte Hansen, Peter Jensen, Sgren Enemaerke Jespersen,
Klaus Torst Rasmussen, and Uffe Refsgaard. Design and Implementation of
the Optimized Link State Routing Protocol. Technical report, Department of
Computer Science, Aalborg University, Denmark, May 2000.

Donald A. Berry and Bernard W. Lindgren. Statistics: Theory and Methods.
Wadsworth Publishing Company, 2 edition, 1996. ISBN 0-534-50479-5.

Bluetooth SIG. Specification of the Bluetooth System, February 2001. Version
1.1.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta
Jetcheva. A Performance Comparison of Multi-hop Wireless Ad Hoc Network
Routing Protocols. In Proceedings of the Fourth Annual ACM/IEEFE Interna-
tional Conference on Mobile Computing and Networking (Mobicom ’98), Dallas,
Tezxas, USA, October 1998.

Lars Christensen, Morten Ernstsen, and Gitte Hansen. Preliminary Performance
Evaluation of the Optimized Link-state Routing Protocol. Technical report,
Department of Computer Science, Aalborg University, Denmark, 2001.

E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1959.

ETSI STC-RES10 Committee. Radio Equipment and Systems: High Perfor-
mance Radio local Area Network (HIPERLAN), Type 1, December 1995. Func-
tional Specification.

101

102

Bibliography

[HJRO0]

[IET]

[Jaigl]

[JLH*99]

[IMQ*o1]

JT87]

[JVO0]

[LAN99a

[LAN99b|

[LAN99C|

[MBJ99]

Gitte Hansen, Peter Jensen, and Klaus Torst Rasmussen. Performance Test of
the Optimized Link State Routing Protocol. Technical report, Department of
Computer Science, Aalborg University, Denmark, May 2000.

[ETF. Mobile Ad-hoc Networks (manet) charter. Available at
http://www.ietf.org/html.charters/manet-charter.html.

Raj Jain. The Art of Computer Systems Performance Analysis - Techniques for
Ezxperimental Design, measurement, Simulation and Modeling. John Wiley &
Sons, Inc., 1991. ISBN 0-471-50336-3.

Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, and Mikael
Degermark. Scenario-based Performance Analysis of Routing Protocols for Mo-
bile Ad-hoc Networks. Technical report, ACM, 1999. Mobicom 99, Seattle
Washington USA.

Philippe Jacquet, Paul Muhlethaler, Amir Qayyum, Anis Laoiti, Laurent Vien-
not, and Thomas Clausen. Optimized Link State Routing Protocol, March
2001. Internet-Draft version 04. Available at http://www.ietf.org/internet-
drafts/draft-ietf-manet-olsr-04.txt, work in progress.

John Jubin and Janet D. Tornow. The DARPA Packet Radio Network Proto-
cols. In Proceedings of the IEEE, volume 75, pages 21-32, January 1987.

Philippe Jacquet and Laurent Viennot. Overhead in Mobile Ad-hoc Network
Protocols. Technical report, INRIA, Rocquencourt, June 2000. Research report
RR-3965.

LAN/MAN Standards Committee of the IEEE Computer Society. Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications, 1999. ANSI/IEEE std 802.11.

LAN/MAN Standards Committee of the IEEE Computer Society. Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications - High-speed Physical Layer in the 5GHz Band, 1999. ANSI/IEEE std
802.11a.

LAN/MAN Standards Committee of the IEEE Computer Society. Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications - Higher-Speed Physical Layer Extension in the 2.4 Ghz Band, 1999.
ANSI/IEEE std 802.11b.

David A. Maltz, Josh Broch, and David B. Johnson. Experience Designing
and Building a Multi-Hop Wireless Ad-hoc Network Testbed. Technical report,
School of Computer Science, Carnegie Mellon University, USA, March 1999.

Bibliography 103

[Mit97]

[nsh|

[PH76]

[P1u82)

[PRD00a]

[PRDOOD]

[PRDO1]

|Qay00]

IRBP0O)

[SamO00|

[SM99]

[TMW97]

Tom M. Mitchell. Machine Learning- International Edition. McGraw-Hill, 1997.
ISBN 0-07-042807-7.

The Network Simulator - ns-2. Available at http://www.isi.edu/nsnam/ns/.

E. S. Pearson and H. O. Hartley, editors. Biometrika tables for statisticians,
volume 2. London: Biometrika Trust, 1976. ISBN 0-904653-11-0.

David C. Plummer. An Fthernet Address Resolution Protocol, 1982. RFC826.

Charles E. Perkins, Elizabeth M. Royer, and Samir R. Das. Ad hoc On-Demand
Distance Vector (AODV) Routing, July 2000. Internet-Draft version 6, obsoleted
by [PRDO0b|.

Charles E. Perkins, Elizabeth M. Royer, and Samir R. Das. Ad hoc On-Demand
Distance Vector (AODV) Routing, November 2000. Internet-Draft version 7,
obsoleted by |[PRDO1].

Charles E. Perkins, Elizabeth M. Royer, and Samir R. Das. Ad hoc On-Demand
Distance Vector (AODV) Routing, March 2001. Internet-Draft version 8. Avail-
able at http://www.ietf.org/internet-drafts /draft-ietf-manet-aodv-08.txt. Work
in progress.

Amir Qayyum. Analysis and Evaluation of Channel Access Schemes and Routing
Protocols in Wireless LANs. PhD thesis, University of Paris-Sud, Orsay, France,
November 2000. Host Laboratory: INRIA - Rocquencourt.

Elizabeth M. Royer, Santa Barbara, and Charles E. Perkins. IP Address Auto-
configuration for Ad Hoc Networks, July 2000. Internet-Draft version 00.

Samir R. Das and Charles E. Perkins and Elizabeth M. Royer. Performance
Comparison of Two On-demand Routing Protocols for Ad Hoc Networks. In Pro-
ceedings of the IEEE Conference on Computer Communications (INFOCOM),
Tel Aviv, Israel, pages 3—12, March 2000.

S.Corson and J. Macker. Mobile Ad hoc Networking (MANET): Routing Proto-
col Performance Issues and Evaluation Considerations. Technical report, IETF,
January 1999. RFC 2501, Available at http://www.ietf.org/rfc/rfc2501.txt.

K. Thompson, G. Miller, and R. Wilder. Wide-Area Internet Traffic Patterns
and Characteristics. IEEE Network, 11(6), November/December 1997.

104 Bibliography

A. Simulation Overview

Jitter test

With jitter 30 tests
Without jitter 30 tests
Piggyback test with jitter
Holdback time in seconds

0.0 30 tests

0.2 30 tests

0.4 30 tests

0.6 30 tests

0.8 30 tests

1.0 30 tests

Piggyback test without jitter

Holdback time in seconds

0.0 32 tests
0.2 32 tests
0.4 32 tests
0.6 34 tests
0.8 31 tests
1.0 32 tests

Piggyback test with jitter without mobility

Holdback time in seconds
0.0 33 tests
0.2 32 tests
0.4 32 tests
0.6 32 tests
0.8 32 tests
1.0 32 tests

105

106

A. Simulation Overview

Constant test - hello interval
Hello interval in seconds
0.5 30 tests
1.0 30 tests
1.5 30 tests
2.0 30 tests
2.5 30 tests
3.0 30 tests
3.9 30 tests
Constant test - TC interval
TC interval in seconds
1.0 32 tests
2.0 32 tests
3.0 33 tests
4.0 32 tests
5.0 35 tests
6.0 32 tests
7.0 32 tests
8.0 35 tests
9.0 32 tests
10.0 32 tests
11.0 32 tests
12.0 32 tests
Link status test
Link rate
1:1 32 tests
2:3 32 tests
Mobility test

Node speed in m/s OLSR | AODV
0.0 32 tests | 32 tests

2.5 32 tests | 32 tests

0.0 32 tests | 32 tests

7.5 36 tests | 32 tests

10.0 32 tests | 32 tests
12.5 31 tests | 32 tests
15.0 35 tests | 32 tests

107

Density test - variable traffic

Number of nodes OLSR | AODV
10 31 tests | 31 tests
20 30 tests | 30 tests
o0 32 tests | 32 tests
75 35 tests | 32 tests
100 32 tests | 36 tests
125 32 tests | 32 tests

Density test - constant traffic

Number of nodes OLSR | AODV
10 30 tests | 31 tests
20 35 tests | 34 tests
o0 32 tests | 32 tests
75 32 tests | 32 tests
100 32 tests | 32 tests
125 32 tests | 32 tests

Variable duration test

Stream Duration in seconds OLSR | AODV
1.0 32 tests | 32 tests

5.0 32 tests | 32 tests

10.0 32 tests | 32 tests

20.0 32 tests | 32 tests

40.0 32 tests | 32 tests

80.0 32 tests | 34 tests

120.0 32 tests | 36 tests

190.0 32 tests | 32 tests

240.0 32 tests | 32 tests

Bulk transfer test

TCP transfer pr second OLSR | AODV
6.0 32 tests | 32 tests
8.0 35 tests | 32 tests
10.0 36 tests | 32 tests
12.0 32 tests | 32 tests
14.0 32 tests | 32 tests
16.0 33 tests | 32 tests
18.0 32 tests | 32 tests

108

A. Simulation Overview

Transfer time test
OLSR | AODV
31 tests | 30 tests

Variable load test
Number of streams OLSR | AODV
0 31 tests | 30 tests
) 32 tests | 30 tests
10 32 tests | 32 tests
15 32 tests | 33 tests
20 32 tests | 32 tests
25 32 tests | 32 tests
o0 32 tests | 32 tests
75 32 tests | 32 tests
100 32 tests | 32 tests

Cluster test

OLSR | AODV
31 tests | 32 tests

B. Simulation Data

This appendix states the results from the simulations — all numbers are stated with three
significant digits. For each test set there is a table with mean values and a table with
deviations.

The measured variables are listed in the leftmost columns. Measures of the form
count-* are total counts for the entire simulation (250 seconds). Measures of the form
rate-* are measures of bytes or packets per seconds. time-avgpacketdelay is the av-
erage packet delay of application layer data packets. rate-bandwidth-* is measures of
bandwidth usage. rate-{MAC,RTR,IFQ}-* are measures of the drop reasons. The words
after rate are, respectively, the layer that dropped the packet, the reason for the drop,
and the type of packet that was dropped.

If the chi-square test of independence has been performed for a particular set of numbers
it is also stated in this chapter.

109

SUDIPY - 159, O T d OTAR

Jitter Test - Means

OLSR

0.0 1.0
Number of simulations 30.0 30.0
count-noroutedrop 141600. 9430.
count-olsr hello 6250. 6250.
count-olsr tc 1670. 1750.
count-olsr total 7920. 8000
count-received 14100. 27900
count-sent 162300. 62300.
rate-IFQ — ARP 2.11 3.51
rate-IFQ — OLSR 1.36 3.65
rate-IFQ — cbr 29.2 60.2
rate-IFQ ARP cbr 3.94 8.15
rate-IFQ END cbr .0248| .0352
rate-MAC — ARP 1.49 3.23
rate-MAC — OLSR 19.6 47.9
rate-MAC — cbr 11.1 37.6
rate-MAC BSY MAC .179 .480
rate-MAC COL MAC 27.9 121.
rate-MAC RET MAC 9.17 28.1
rate-RTR LOOP cbr .916 1.64
rate-RTR NRTE cbr 166. 37.6
rate-RTR TTL cbr 1.13 1.92
rate-bandwidth byterate ARP 197. 642.
rate-bandwidth byterate MAC [27000. 92800.
rate-bandwidth byterate OLSR 2560. 3850.
rate-bandwidth byterate cbr [22000. [72700.
rate-bandwidth packetrate ARP 2.46 8.02
rate-bandwidth packetrate MAC 659. 2250.
rate-bandwidth packetrate OLSR| 35.5 53.5
rate-bandwidth packetrate cbr | 162. 535.
time-avgpacketdelay [174 .596

SUODIA(] PLDPUDIS - 15T LI T P[ARL

Jitter Test - Standard Deviations

OLSR

0.0 1.0
Number of simulations 30.0 30.0
count-noroutedrop 14100. 2630.
count-olsr hello .000 12.1
count-olsr tc 70.5 57.2
count-olsr total 70.5 59.0
count-received 6780. 3810.
count-sent .000 .000
rate-IFQ — ARP .925 1.02
rate-IFQ — OLSR 734 531
rate-IFQ — cbr 14.1 7.86
rate-IFQ ARP cbr 2.79 1.87
rate-IFQ END cbr .0158| .0131
rate-MAC — ARP 1.07 .819
rate-MAC — OLSR 12.0 4.48
rate-MAC — cbr 11.9 3.05
rate-MAC BSY MAC .0966] .0821
rate-MAC COL MAC 33.0 22.6
rate-MAC RET MAC 9.47 2.31
rate-RTR LOOP cbr .523 522
rate-RTR NRTE cbr 56.6 10.5
rate-RTR TTL cbr .591 .370
rate-bandwidth byterate ARP 228. 92.3
rate-bandwidth byterate MAC [27800. 5440.
rate-bandwidth byterate OLSR 359. 127.
rate-bandwidth byterate cbr [21400. 4650.
rate-bandwidth packetrate ARP 2.85 1.15
rate-bandwidth packetrate MAC 674. 132.
rate-bandwidth packetrate OLSR| 4.98 1.76
rate-bandwidth packetrate cbr | 158. 34.2
time-avgpacketdelay [212 .115

01T

ele(uonejnwig ‘g

111

Received

Interval H Without jitter ‘ With jitter H Sum
4001-8000 6 0 6
8001-12000 8 0 8
12001-16000 5 0 5
16001-20000 4 0 4
20001-24000 4 4 8
24001-28000 2 12 14
28001-32000 1 8 9
32001-36000 0 6 6

| Sum | 30 | 30 [60|

Chi-square 41.5873
Degree of freedom 7
Q(x?|df) 1.0000

Table B.3.: The calculation of the dependency probability of packets received caused by jitter
with an interval of 4000.

112 B. Simulation Data

Noroute drop

Interval H Without jitter ‘ With jitter H Sum
4001-8000 0 10 10
8001-12000 0 15 15
12001-16000 2 5 7
16001-20000 1 0 1
20001-24000 1 0 1
24001-28000 2 0 2
28001-32000 3 0 3
32001-36000 1 0 1
36001-40000 2 0 2
40001-44000 1 0 1
44001-48000 1 0 1
48001-52000 7 0 7
52001-56000 7 0 7
56001-60000 2 0 2

| Sum | 30 30 60]

Chi-square 54.2857
Degree of freedom 13
Q(x?|df) 1.0000

Table B.4.: The calculation of the dependency probability of packets dropped due to route
unavailability caused by jitter with an interval of 4000.

SUDIPY - figrqogy puv 429900 YR 1S3 YI0hibblg ¢ g dqRL

Piggyback Test With Jitter and Mobility - Means

OLSR

0.0 0.2 0.4 0.6 0.8 1.0
Number of simulations 30.0 30.0 30.0 30.0 30.0 30.0
count-noroutedrop 8740. 6610. 8100. 8560. 7330. 7650.
count-olsr hello 8370. 8360. 8380. 8370. 8370. 8370.
count-olsr tc 1920. 1940. 1920. 1920. 1930. 1940.
count-olsr total 10300. 10300. 10300. 10300. 10300. 10300.
count-received [26300. [28400. [26800. 25300. [27800. 27000.
count-sent 162300. 162300. 162300. 62300. 162300. 62300.
rate-IFQ — .00 .0066 .000 .00667| .000 .000
rate-IFQ — ARP 4.18 4.29 4.27 4.33 4.42 4.53
rate-IFQ — OLSR 12.8 6.36 4.75 4.14 3.70 3.53
rate-IFQ — cbr 67.4 69.2 67.4 71.7 68.0 69.4
rate-IFQ ARP cbr 9.78 9.46 9.88 10.0 10.2 10.4
rate-IFQ END cbr .05 .0553 .0622 .0622 .057 .056
rate-MAC — ARP 3.74 3.48 3.37 3.63 3.58 3.71
rate-MAC — OLSR 69.9 70.2 48.7 40.8 38.4 34.7
rate-MAC — cbr 38.4 37.7 38.5 38.6 37.3 37.2
rate-MAC BSY MAC 42 .406 423 .420 .430 440
rate-MAC COL MAC 120. 117. 106. 112. 117. 116.
rate-MAC RET MAC 28.8 27.9 29.8 29.2 27.8 27.7
rate-RTR LOOP cbr 1.43 1.14 1.35 1.33 1.25 1.49
rate-RTR NRTE cbr 349 26.3 323 34.1 29.2 30.5
rate-RTR TTL cbr 1.64 1.32 1.38 1.55 1.31 1.47
rate-bandwidth byterate ARP 745. 704. 731. 761. 743. 766.
rate-bandwidth byterate MAC [91400. [89900. 189500. 190800. [89300. 91400.
rate-bandwidth byterate OLSR 8720. 5440. 4410. 3950. 3730. 3560.
rate-bandwidth byterate cbr 169800. 168600. 167500. 68700. 168000. 70600.
rate-bandwidth packetrate ARP 9.31 8.79 9.13 9.51 9.29 9.57
rate-bandwidth packetrate MAC | 2220. 2180. 2170. 2200. 2170. 2220.
rate-bandwidth packetrate OLSR| 121. 75.5 61.2 54.8 51.8 49.4
rate-bandwidth packetrate cbr | 513. 505. 496. 505. 500. 519.
time-avgpacketdelay | .57 .587 .618 .620 .603 .624

€Tl

"SUOUDINI(] PLDPUDIS - f311QOJT pUD 42931 YR 159 Yoqfibbig 9 g 91qe],

Piggyback Test With Jitter and Mobility - Standard Deviations

OLSR

0.0 0.2 0.4 0.6 0.8 1.0
Number of simulations 30.0 30.0 30.0 30.0 30.0 30.0
count-noroutedrop [2840. [2720. [2250. 3010. 3090. [2650.
count-olsr hello 25.2 25.4 21.1 24.3 21.3 26.2
count-olsr tc 85.7 94.5 111. 87.7 100. 94.4
count-olsr total 80.2 96.3 113. 91.8 104. 99.9
count-received 14480. 14380. 13870. 4000. 14660. 14850.
count-sent 23.0 17.3 15.3 21.5 21.8 26.1
rate-IFQ — .000 .000 .000 .000 .00 .000
rate-IFQ — ARP 1.54 1.82 1.54 1.25 1.54 1.28
rate-IFQ — OLSR 2.97 1.22 1.05 .675 792 .599
rate-IFQ — cbr 12.0 12.7 11.6 9.58 12.0 11.4
rate-IFQ ARP cbr 2.95 2.96 2.60 2.17 2.78 2.16
rate-IFQ END cbr .0233 .0201 .0179 .0222 .02 .024
rate-MAC — ARP 1.31 1.19 .920 1.08 .885| 1.18
rate-MAC — OLSR 13.2 7.70 5.31 6.18 4.53 4.44
rate-MAC — cbr 4.77 3.70 5.62 3.91 5.45 4.55
rate-MAC BSY MAC .0906| .104 112 .0983 .13 .0954
rate-MAC COL MAC 24.9 30.3 26.1 24.9 28.4 28.1
rate-MAC RET MAC 3.18 2.60 4.06 3.62 4.03 3.38
rate-RTR LOOP cbr .462 513 .788 .693 .545 .684
rate-RTR NRTE cbr 11.4 10.8 8.99 12.0 12.3 10.6
rate-RTR TTL cbr .478 .468 .465 .508 .325 .559
rate-bandwidth byterate ARP 145. 137. 150. 117. 133. 119.
rate-bandwidth byterate MAC [6710. 18150. 18030. 5590. [7740. [7860.
rate-bandwidth byterate OLSR 742. 301. 190. 121. 112, 118.
rate-bandwidth byterate cbr 15400. 16880. 5940. 5540. 6600. 16880.
rate-bandwidth packetrate ARP 1.82 1.71 1.88 1.46 1.66 1.49
rate-bandwidth packetrate MAC | 162. 199. 193. 137. 188. 191.
rate-bandwidth packetrate OLSR| 10.3 4.18 2.63 1.68 1.55 1.64
rate-bandwidth packetrate cbr | 39.7 50.6 43.7 40.7 48.5 50.6
time-avgpacketdelay | 142 172 178 1123 .17 134

149!

ele(uonejnwig ‘g

115

Received
Holdback time

Interval 0.0]/02]04]06]0.8]1.0] Sum
16001-20000 31 0] 0| 2 1 1 7
20001-24000 5/ 6] 6| 9] 4] 5 35
24001-28000 || 10| 6| 13| 11| 12| 13 65
28001-32000 8| 13| 8| 7] 6] 6 48
32001-36000 41 5| 3 1 7 3 23
36001-40000 oL 0 0O O] O] 2 2
| Sum [30]30[30] 30] 30] 30 180
Chi-square 31.3002
Degree of freedom 25
Q(x?|df) 0.8207

Table B.7.: The calculation of the dependency probability of packets received caused by pig-
gybacking and jitter with an interval of 4000.

Noroute drop

Holdback time

Interval |/ 0.0 [0.2][0.4[0.6[0.8]1.0] Sum
0-4000 0] 5[1] 3] 1] 1 1
4001-8000 || 13| 20| 15| 11| 21| 16| 96
8001-12000 || 14| 4] 13| 11| 5[10| 57
12001-16000 | 3] 1] 1| 5] 2] 3] 15
16001-20000 | 0] 0] o] O] 1] 0 1
| Sum [30]30[30] 30| 30] 30 180
Chi-square 32.5318
Degree of freedom 20
QUdf) 0.9620

Table B.8.: The calculation of the dependency probability of packets dropped due to route

unavailability caused by piggybacking and jitter with an interval of 4000.

SUDIPY - QO YNAL puv 429900 IOYNM 159L Yovqfibbrg 6 g 1qeL

Piggyback Test Without Jitter and With Mobility - Means

OLSR

0.0 0.2 0.4 0.6 0.8 1.0
Number of simulations 32.0 32.0 32.0 34.0 31.0 32.0
count-noroutedrop 140200. 45900. 144000. 143300. 45700. 140000.
count-olsr hello 6250. 6250. 6250. 6250. 6250. 6170.
count-olsr tc 1620. 1620. 1630. 1630. 1620. 1620.
count-olsr total 7870. 7870. 7880. 7880. 7870. 7700.
count-received 14900. 13000. 13300. 13000. 13400. 15400.
count-sent 162300. 62300. 162300. 62300. 62300. 62300.
rate-IFQ — ARP 2.11 1.71 1.84 2.45 1.36 2.02
rate-lIFQ — OLSR 4.25 1.05 1.51 1.68 .888 1.20
rate-IFQ — cbr 31.6 18.8 31.0 34.0 17.5 29.0
rate-IFQ ARP cbr 4.07 2.78 3.69 3.84 2.93 4.48
rate-IFQ END cbr .0273 .023' .0233 .027 .0259 .0362
rate-MAC — ARP 1.93 1.05 1.39 2.46 1.29 2.16
rate-MAC — OLSR 24.9 16.5 17.4 17.9 14.5 18.3
rate-MAC — cbr 11.7 6.58 8.48 10.2 6.59 11.5
rate-MAC BSY MAC .223 .192 .189 .238 .164 .231
rate-MAC COL MAC 40.6 13.9 30.0 34.5 15.9 37.4
rate-MAC RET MAC 9.38 5.74 6.79 8.09 5.55 9.01
rate-RTR LOOP cbr .944 .932 .829 .969 523 1.07
rate-RTR NRTE cbr 161. 184. 176. 173. 183. 160.
rate-RTR TTL cbr 1.35 .886 .976 1.35 .933 1.43
rate-bandwidth byterate ARP 217. 120. 145. 196. 121. 222.
rate-bandwidth byterate MAC [29800. 16900. [22200. 25100. 17100. 29700.
rate-bandwidth byterate OLSR 3470. 2440. 2480. 2470. 2370. 2440.
rate-bandwidth byterate cbr [24300. 14500. 18500. 20400. 14600. 24500.
rate-bandwidth packetrate ARP 2.71 1.50 1.82 2.45 1.51 2.78
rate-bandwidth packetrate MAC 727. 414, 542, 611. 417. 724,
rate-bandwidth packetrate OLSR| 48.1 33.9 34.5 34.2 32.9 33.9
rate-bandwidth packetrate cbr | 179. 107. 136. 150. 108. 180.
time-avgpacketdelay [.181 .081 .140 .163 .0744 .169

o911

ele(uonejnwig ‘g

SUOUDINA(T PADPUDIS - figrtqOT YR pup 4aggi mmoyn| 153 o0qfibbrg 0T g O1qRL

Piggyback Test Without Jitter and With Mobility - Standard Deviations

OLSR

0.0 0.2 0.4 0.6 0.8 1.0
Number of simulations 32.0 32.0 32.0 34.0 31.0 32.0
count-noroutedrop 15600. 11500. 13500. 16300. 11600. 16900.
count-olsr hello .000 .000| .000 .000 .000 442.
count-olsr tc 78.8 66.9 84.6 94.0 82.1 136.
count-olsr total 78.8 66.9 84.6 94.0 82.1 755.
count-received 7790. 6580. 6360. 7980. 6180. 8790.
count-sent 27.9 25.8 25.1 24.7 26.9 25.2
rate-IFQ — ARP 1.03 1.07 1.27 1.18 1.02 1.17
rate-IFQ — OLSR 2.60 .921 .946 779 .811 .831
rate-IFQ — cbr 17.5 15.2 19.8 19.9 17.3 19.5
rate-IFQ ARP cbr 2.79 2.88 3.00 3.61 2.70 3.18
rate-IFQ END cbr .0146| .021 .016 .0191 .017' .0239
rate-MAC — ARP .931 1.20 1.21 1.54 1.11 1.29
rate-MAC — OLSR 18.6 11.1 11.6 11.5 7.43 10.2
rate-MAC — cbr 12.6 8.46 11.4 12.9 9.99 12.9
rate-MAC BSY MAC .140 .147| .160 .162 173 .142
rate-MAC COL MAC 42.6 25.5 43.8 44.7 31.2 44 .4
rate-MAC RET MAC 9.74 6.86 8.53 9.65 7.81 9.72
rate-RTR LOOP cbr .637 714 .653 .606 .506 .611
rate-RTR NRTE cbr 62.3 46.2 53.9 65.1 46.4 66.7
rate-RTR TTL cbr .763 .735| .628 .790 .896 .669
rate-bandwidth byterate ARP 243, 201. 217. 276. 197. 269.
rate-bandwidth byterate MAC 130100. 21300. 28300. 131300. 22900. 131900.
rate-bandwidth byterate OLSR 1460. 332. 374. 319. 196. 221.
rate-bandwidth byterate cbr [23200. 16900. 21900. [24300. 17600. [24800.
rate-bandwidth packetrate ARP 3.04 2.51 2.71 3.45 2.47 3.37
rate-bandwidth packetrate MAC 730. 519. 688. 761. 556. 774.
rate-bandwidth packetrate OLSR| 20.3 4.61 5.19 4.42 2.72 3.07
rate-bandwidth _packetrate _cbr [170. 124, 161. 179. 130. 183.
time-avgpacketdelay | .226 .162| .236 .241 .156 224

.11

118

B. Simulation Data

Received
Holdback time

Interval |/ 0.0 [0.2][0.4[0.6[0.8]1.0] Sum

0-4000 30 1] 0 0] O 1 5
4001-8000 41 7| 8| 12| 4| 5 40
8001-12000 7T 8] 9| 10] 12| 9 55
12001-16000 2| 8] 6| 3] 8| 4 31
16001-20000 8| 3| 4| 2| 2| 2 21
20001-24000 51 2 2| 2| 2| 2 15
24001-28000 2 1y 20 3] 2| 3 13
28001-32000 0 2 1 1 1] 4 9
32001-36000 1y 0f 0] 1| 0] O 2

| Sum [32]32[32] 34| 31 30[190]

Chi-square 45.3530
Degree of freedom 40
Q(X?|df) 0.7414

Table B.11.: The calculation of the dependency probability of packets
piggybacking and without jitter with an interval of 4000.

recewved caused by

119

Noroute drop
Holdback time
Interval [0.0 [0.2]0.4]0.6[0.8]1.0 | Sum
0-4000 1 0| 0 1 0| O 2
8001-12000 1 0 1 21 0 1 5
12001-16000 1 0 1 2 2| 4 10
16001-20000 1 31 2 1 1 2 10
20001-24000 20 0] 0O O] O 1 3
24001-28000 1 1 1 1 0| 2 6
28001-32000 3 1 0 1 1 0 6
32001-36000 3 1 2 1 1 0 8
36001-40000 20 0] 3 1 1 1 8
40001-44000 21 21 0] 0 1 2 7
44001-48000 0| 5| 4 1 4| 2 16
48001-52000 41 8| 6| 9| 14| 3 44
52001-56000 7| 6] 11| 11 41 9 48
56001-60000 41 5 1 31 2] 3 18
| Sum [32] 32]32] 34| 31| 30[191]
Chi-square 68.9838
Degree of freedom 65
Q(x?|df) 0.6557

Table B.12.: The calculation of the dependency probability of packets dropped due to route
unavailability caused by piggybacking and without jitter with an interval of

4000.

"SUDIPY - gIQOI IOYRM puv Laggif ynA 153 4avqfibhrg €1 g olqelL

Piggyback Test With Jitter and Without Mobility - Means

OLSR

0.0 0.2 0.4 0.6 0.8 1.0
Number of simulations 33.0 32.0 32.0 32.0 32.0 32.0
count-noroutedrop 8530. 6480. 7340. 7800. 6800. 7430.
count-olsr hello 5010. 5000. 5000. 5010. 5000. 5000.
count-olsr tc 1460. 1490. 1500. 1450. 1490. 1450.
count-olsr total 6470. 6490. 6500. 6460. 6490. 6460.
count-received 48700. 51100. 49300. 50200. 51000. 50400.
count-sent 62300. 62300. 62300. 62300. 62300. 62300.
rate-IFQ — ARP .044. .0815 .0536| .0426| .10 .0664
rate-IFQ — OLSR 1.96 5652 .420 244 .29 .254
rate-IFQ — cbr 15.5 13.6 16.4 119 12.8 13.8
rate-IFQ ARP cbr .352 .283 .363 .254 .316 .317
rate-IFQ END cbr .004 .004 .004 .004 .004] .004
rate-MAC — ARP 1490 .462 631 442 .535| .489
rate-MAC — OLSR 85.7 75.5 56.2 45.7 42.9 36.7
rate-MAC — cbr 23.1 22.9 25.7 25.0 23.5 22.7
rate-MAC BSY MAC .909 .924 .957 .947 .90 917
rate-MAC COL MAC 264. 277. 290. 280. 270. 256.
rate-MAC RET MAC 3.99 4.17 4.27 4.03 4.07 3.85
rate-RTR LOOP cbr 1.16 .815 .887 .708 .80 .838
rate-RTR NRTE cbr 34.0 25.9 29.3 31.2 271 29.7
rate-RTR TTL cbr .640 574 .617 .622 .695| 573
rate-bandwidth byterate ARP 89.8 82.8 96.4 81.6 87.6 81.6
rate-bandwidth byterate MAC 109000. 111000. 114000. 113000. 109000. 107000.
rate-bandwidth byterate OLSR 7270. 4670. 3680. 3160. 2960. 2710.
rate-bandwidth byterate cbr 100000. 101000. 104000. 103000. 100000. 98300.
rate-bandwidth packetrate ARP 1.12 1.03 1.21 1.02 1.10 1.02
rate-bandwidth packetrate MAC 2680. 2730. 2800. 2760. 2690. 2620.
rate-bandwidth packetrate OLSR| 101. 64.8 51.0 43.9 41.2 37.6
rate-bandwidth packetrate _cbr [736. 745. 764. 757. 738. 723.
time-avgpacketdelay | 423 .401 .443 .353 .36 .333

0ct

ele(uonejnwig ‘g

“SUOUDNI(] PAOPUDIS - I11QOJT INOYLA PUD L2328 YA 1S9 4o09fibbL] = FT1 ¢ 919RL,

Piggyback Test With Jitter and Without Mobility - Standard Deviations

OLSR

0.0 0.2 0.4 0.6 0.8 1.0
Number of simulations 33.0 32.0 32.0 32.0 32.0 32.0
count-noroutedrop 4500. 4110. 4120. 5190. 5010. 6360.
count-olsr hello 9.54 7.96 7.29 8.62 7.25 6.67
count-olsr tc 169. 177. 108. 172. 138. 147.
count-olsr total 169. 178. 108. 172. 137. 145.
count-received 5570. 6440. 5780. 5790. 6520. 7150.
count-sent .000 .000 .000| .000 .000 .000
rate-IFQ — ARP .0535| .0652 .045| .048 .118 .0628
rate-IFQ — OLSR 1.47 .648 .340 .182 .251 272
rate-IFQ — cbr 12.9 15.4 13.1 9.71 11.5 15.3
rate-IFQ ARP cbr 274 273 .260 .200 .292 .251
rate-IFQ END cbr .000 .000 .000| .000 .000 .000
rate-MAC — ARP .358 .257 .261 .205 .343 .325
rate-MAC — OLSR 30.3 14.7 9.97 8.75 9.35 8.74
rate-MAC — cbr 11.4 10.3 9.40 10.9 10.7 11.4
rate-MAC BSY MAC .320 .344 .252 .325 .30 .314
rate-MAC COL MAC 115. 107. 82.2 103. 102. 111.
rate-MAC RET MAC 3.10 2.78 2.14 2.39 2.41 2.27
rate-RTR LOOP cbr 1.07 .650 .729| .601 .65 .737
rate-RTR NRTE cbr 18.0 16.4 16.5 20.7 20.0 25.5
rate-RTR TTL cbr .493 246 .287| .409 .36 429
rate-bandwidth byterate ARP 34.3 30.4 29.8 23.5 29.5 28.3
rate-bandwidth byterate MAC 20600. 18400. 13200. 17100. 18100. [23200.
rate-bandwidth byterate OLSR 981. 634. 297. 326. 200. 203.
rate-bandwidth byterate cbr 14300. 12000. 9350. 11300. 12300. 17700.
rate-bandwidth packetrate ARP 429 .380 .373] .293 .36 .354
rate-bandwidth packetrate MAC | 496. 442, 316. 410. 434, 562.
rate-bandwidth packetrate OLS 13.6 8.80 4.12 4.52 2.78 2.83
rate-bandwidth packetrate cbr | 105. 87.9 68.7 83.2 90.7 130.
time-avgpacketdelay [.337 .358 .309 .246 .291 .317

11

122

B. Simulation Data

Received
Holdback time
Interval |/ 0.0 [0.2][0.4[0.6[0.8]1.0] Sum
24001-28000 of 0 0 0] O 1 1
32001-36000 1 0 1 1 0 O 3
36001-40000 0 2| O 1 31 0 6
40001-44000 50 4] 8| 3] 4| 4 28
44001-48000 || 10| 3| 3| 4| 0| 7 27
48001-52000 T, 7] 6| 9] 8| 5 42
52001-56000 7T 6112 9] 9| 5 48
56001-60000 30 9] 2| 5 71 10 36
60001-64000 0 1 0 0 1 0 2
| Sum [33]32[32]32] 32] 32[193]
Chi-square 50.9722
Degree of freedom 40
Q(X?|df) 0.8855

Table B.15.: The calculation of the dependency probability of packets
piggybacking and jitter with an interval of 4000 and with no mobility.

recewved caused by

123

Noroute drop
Holdback time
Interval 0.0]/02]04]06]0.8]1.0] Sum
0-4000 3 11 50 91 13| 9 50
4001-8000 17112 16| 10| 9] 13 7
8001-12000 6| 6| 7| 8| 7| 5 39
12001-16000 4 1 3| 4 1 4 17
16001-20000 21 21 0] O 1 0 5
20001-24000 1 0 1 0o 0] O 2
24001-28000 0o 0] 0] O 1 0 1
28001-32000 o 0] O 1 0 O 1
32001-36000 of 0 0O O] O 1 1
| Sum || 33] 32] 32] 32 32| 32| 193]
Chi-square 41.6762
Degree of freedom 40
Q(X*|df) 0.6023

Table B.16.: The calculation of the dependency probability of packets dropped due to route
unavailability caused by piggybacking and jitter with an interval of 4000 and
with no mobility.

"SUDIPY - [DALIIUT O]]2F] “IS9L 1uDIsu0,) 11 9qRI,

Constant Test, Hello Interval - Means

OLSR

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Number of simulations 30.0 30.0 30.0 33.0 30.0 30.0 30.0
count-noroutedrop 5470. 7590. 9290. 11400. 13200. 13300. 13500.
count-olsr hello 24800. 12500. 8310. 6250. 5000. 4180. 3590.
count-olsr tc 1920. 1910. 1880. 1570. 1590. 1610. 1630.
count-olsr total 26800. 14400. 10200. 7820. 6590. 5790. 5210.
count-received 25900. [26100. 27100. 26000. 123800. 23000. 121400.
count-sent 62300. 162300. 62300. 62300. 62300. 62300. 62300.
rate-IFQ — ARP 5.26 4.62 4.33 3.65 3.73 3.94 4.32
rate-IFQ — OLSR 22.6 15.9 12.3 8.73 8.70 8.96 8.98
rate-IFQ — cbr 82.9 73.7 63.4 60.7 59.8 60.4 62.0
rate-IFQ ARP cbr 11.0 10.1 9.76 8.55 8.96 9.73 11.2
rate-IFQ END cbr .062 .0582 .0571] .0523 .056 .0627 .0822
rate-MAC — ARP 3.57 3.65 3.36 3.67 3.10 3.04 3.26
rate-MAC — OLSR 116. 83.2 67.1 56.8 48.0 43.2 38.2
rate-MAC — cbr 38.0 37.7 36.9 36.1 37.6 38.7 40.4
rate-MAC BSY MAC .355 .412 .418 .459 .394 .322 274
rate-MAC COL MAC 109. 115. 114. 120. 102. 83.3 71.4
rate-MAC RET MAC 28.0 28.2 27.8 26.9 29.5 31.8 34.4
rate-RTR LOOP cbr .798 1.15 1.16 1.66 1.24 .887 .616
rate-RTR NRTE cbr 21.9 30.3 37.0 45.3 52.6 53.0 53.9
rate-RTR TTL cbr 770 1.23 1.40 1.96 1.89 1.26 1.19
rate-bandwidth byterate ARP 708. 718. 728. 681. 663. 703. 752.
rate-bandwidth byterate MAC [86500. [89200. 89300. 90400. 85400. [79700. [76700.
rate-bandwidth byterate OLSR [13900. 10100. 8690. 6730. 6280. 6110. 5750.
rate-bandwidth byterate cbr 62900. 167100. 68700. 71100. 65100. 58600. 54600.
rate-bandwidth packetrate ARP 8.85 8.98 9.10 8.51 8.29 8.79 9.41
rate-bandwidth packetrate MAC | 2090. 2160. 2170. 2200. 2070. 1930. 1850.
rate-bandwidth packetrate OLS 193. 141. 121. 93.4 87.2 84.8 79.8
rate-bandwidth packetrate _cbr [463. 493. 505. 523. 479. 431. 401.
time-avgpacketdelay | .559 .560 531 .599 .561 .528 .552

1£4!

ele(uonejnwig ‘g

‘SUOWDINI(] pLOPUDIS - |DALIJUT O]]12 F ‘;lS’QLL uvisuoy) QT °[qel,

Constant Test, Hello Interval - Standard Deviations

OLSR

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Number of simulations 30.0 30.0 30.0 33.0 30.0 30.0 30.0
count-noroutedrop [2290. [2700. 13430. 13320. 13420. 3820. 13810.
count-olsr hello 61.9 19.0 12.7 12.0 9.55 7.00 5.08
count-olsr tc 94.6 113. 134. 56.6 66.6 78.3 60.3
count-olsr total 122. 120. 131. 59.3 65.2 78.4 60.5
count-received 14020. 14130. 14100. 4570. 2750. 4100. 14460.
count-sent 28.8 17.4 22.4 24.1 24.8 23.7 26.1
rate-IFQ — ARP 1.29 1.42 1.61 1.11 1.06 1.60 1.54
rate-IFQ — OLSR 4.68 3.08 3.09 1.88 1.65 1.98 1.87
rate-IFQ — cbr 12.1 13.8 12.2 11.7 9.05 11.8 11.4
rate-IFQ ARP cbr 2.21 2.48 2.89 2.08 1.66 2.65 2.51
rate-IFQ END cbr .0234 .0178 .0203] .0213 .0219 .01 .0263
rate-MAC — ARP .932 1.37 1.26 1.24 .943 .68 .940
rate-MAC — OLSR 20.2 13.9 14.6 11.3 10.1 11.0 8.10
rate-MAC — cbr 4.14 4.38 4.46 4.65 4.14 4.36 3.93
rate-MAC BSY MAC .0964| .0895| .0846| .0905| .0951 .10 .0586
rate-MAC COL MAC 22.7 23.6 28.9 22.7 24.2 21.3 15.3
rate-MAC RET MAC 3.33 3.39 3.32 3.69 3.19 4.30 3.15
rate-RTR LOOP cbr 471 .512 .601 .715 .516 .46 .330
rate-RTR NRTE cbr 9.15 10.7 13.7 13.3 13.7 15.3 15.2
rate-RTR TTL cbr 277 .435 497 .566 .482 .52 .505
rate-bandwidth byterate ARP 93.4 145. 143. 112. 87.2 120. 99.4
rate-bandwidth byterate MAC [5460. 16160. 16510. 6130. 5780. 6110. 14650.
rate-bandwidth byterate OLSR 869. 976. 949. 564. 568. 726. 529,
rate-bandwidth byterate cbr 15100. 14950. 5140. 5140. 4630. 6100. 14240.
rate-bandwidth packetrate ARP 1.17 1.81 1.79 1.40 1.09 1.50 1.24
rate-bandwidth packetrate MAC | 133. 149. 157. 149. 140. 150. 113.
rate-bandwidth packetrate OLSR| 12.1 13.6 13.2 7.83 7.88 10.1 7.35
rate-bandwidth packetrate cbr [37.5 36.4 37.8 37.8 34.0 44.8 31.2
time-avgpacketdelay | .110 .120 .134 .139 .100 .13 .149

GCl

SUDIPY - [DALIIUT)], ‘1S3 1unisuoy) 61 o[qRL

Constant Test, TC Interval - Means

OLSR

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Number of simulations 32.0 32.0 33.0 32.0 35.0 32.0 32.0 35.0 32.0 32.0 32.0 32.0
count-noroutedrop 7850. 8170. 9040. 10000. 11000. 11700. 11200. 13800. 12200. 12400. 13000. 13700.
count-olsr hello 6250. 6250. 6250. 6250. 6250. 6250. 6250. 6250. 6250. 6250. 6250. 6250.
count-olsr tc 8730. 4350. 2860. 2190. 1730. 1460. 1240. 1080. 954. 854. 769. 693.
count-olsr total 15000. 10600. 9100. 8430. 7980. 7710. 7490. 7330. 7200. 7100. 7020. 6940.
count-received [26700. 27300. 27200. [26000. 26900. 25800. [26000. 26100. [24800. 24400. 23400 [23200.
count-sent 162300. 62300. 62300. 162300. 62300. 62300. 162300. 62300. 162300. 62300. 62300. 162300.
rate-IFQ — ARP 3.54 3.44 3.59 3.83 3.32 3.44 3.47 2.77 3.68 3.89 3.93 3.63
rate-lIFQ — OLSR 51.8 25.1 15.9 12.5 9.39 8.45 7.10 5.78 5.54 5.04 4.64 4.31
rate-IFQ — cbr 76.0 69.5 65.7 65.2 59.0 58.6 59.5 52.6 60.2 60.2 60.7 59.7
rate-IFQ ARP cbr 7.74 7.82 8.26 8.44 7.82 8.28 8.32 6.87 8.91 9.13 9.30 8.80
rate-IFQ END cbr .0346| .033| .0402 .0375| .039 .0421) .0409 .038 .0376| .043 .04 .0396
rate-MAC — ARP 3.45 3.24 3.43 3.33 3.02 3.42 3.43 2.81 3.71 4.02 3.93 3.91
rate-MAC — OLSR 260. 129. 89.4 73.9 59.2 56.0 49.7 44.5 43.2 39.1 37.8 36.3
rate-MAC — cbr 37.0 37.8 37.6 38.4 36.3 38.3 37.5 35.3 37.2 36.3 36.8 35.7
rate-MAC BSY MAC .496 .476| .468 474 .476| .444 .510 .426 .505 .5632 .56 .547
rate-MAC COL MAC 151. 129. 128. 131. 120. 124. 127. 119. 136. 139. 146. 146.
rate-MAC RET MAC 25.3 27.5 27.6 28.0 27.2 28.7 27.9 26.3 26.8 26.2 26.3 25.4
rate-RTR LOOP cbr 1.30 1.25 1.51 1.67 1.75 1.65 2.24 1.77 2.68 3.23 3.58 3.87
rate-RTR NRTE cbr 31.3 32.6 36.1 39.9 43.9 46.5 44.7 54.9 48.4 49.1 51.5 54.2
rate-RTR TTL cbr .847 1.23 1.56 1.83 2.05 2.08 2.66 2.30 3.13 3.62 4.03 4.21
rate-bandwidth byterate ARP 590. 615. 645, 636. 628. 660. 651. 576. 691. 674. 687. 664.
rate-bandwidth byterate MAC 193300. 92100. 192000. 194200. 191600. 191800. 194300. 88900. 195700. 197300. 199100. 198100.
rate-bandwidth byterate OLSR [26700. 14600. 10200. 8500. 7260. 6610. 5660. 5450. 4770. 4330. 4070. 3870.
rate-bandwidth byterate cbr [71800. 70700. 71400. [73400. 72300. 71400. [74600. 70800. [77000. 78600. 80400. [80400.
rate-bandwidth packetrate ARP 7.37 7.69 8.07 7.96 7.85 8.26 8.14 7.20 8.64 8.42 8.58 8.30
rate-bandwidth packetrate MAC | 2270. 2230. 2230. 2290. 2230. 2230. 2290. 2160. 2330. 2370. 2410. 2390.
rate-bandwidth packetrate OLSR| 370. 203. 142. 118. 101. 91.8 78.7 75.7 66.2 60.1 56.6 53.7
rate-bandwidth packetrate cbr [528. 520. 525. 540. 532. 525. 549. 521. 566. 578. 591. 591.
time-avgpacketdelay | .530 .537| .565 .601 .559 .587 .601 .562 .625 .643 .66 .660

9ct

ele(uonejnwig ‘g

"SUOUDINI(] PADPUDIG - [DALIIUT DL “ISAL 1UDISU0) 07 <] OIqRL,

Constant Test, TC Interval - Standard Deviations

OLSR

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Number of simulations 32.0 32.0 33.0 32.0 35.0 32.0 32.0 35.0 32.0 32.0 32.0 32.0
count-noroutedrop [2170. 1990. [2180. 2400. 2960. 2530. 2960. 3330. 2690. 2810. 2440. 2870.
count-olsr hello 11.6 12.2 11.5 10.6 11.8 15.1 10.2 10.6 10.2 13.2 8.65 10.4
count-olsr tc 304. 139. 123. 70.5 57.4 46.6 40.0 44.9 31.2 33.9 27.6 26.4
count-olsr total 307. 143, 123, 68.8 58.0 42.0 41.2 47.8 33.8 35.8 27.1 27.6
count-received [2770. [2930. 13280. 13030. 13950. 2860. 3580. 3040. 4130. 2290. 2980. 2810.
count-sent 54.2 .000 59.3 .000 54.2 .000 59.1 .000 55.6 .000 .000 .000
rate-IFQ — ARP 1.04 .924 1.06 .988 774 .892 1.10 .680 .967 1.03 1.23 1.21
rate-l[FQ — OLSR 8.39 3.88 2.60 1.90 1.60 1.50 1.26 1.11 .960 1.03 .857 .930
rate-IFQ — cbr 7.97 9.93 9.21 5.45 8.58 7.67 8.79 7.55 9.43 8.25 7.70 9.59
rate-IFQ ARP cbr 1.71 1.57 1.83 1.68 1.34 1.64 1.99 1.10 1.78 1.86 2.25 2.16
rate-IFQ END cbr .0114 .0132 .0132 .0137 .0147| .0148 .0135| .0132 .012 .014 .015 .013
rate-MAC — ARP .852 .704 .907 1.07 .624 .858 .920 .615 .785 1.16 1.05 .981
rate-MAC — OLSR 50.8 20.4 18.2 12.2 9.94 7.70 7.44 7.89 6.77 7.74 4.76 5.32
rate-MAC — cbr 2.67 2.84 3.87 3.01 3.09 3.55 3.56 291 4.05 3.33 3.22 3.59
rate-MAC BSY MAC .0891 .0739 .064 .0765| .0932 .084 .0931 .073 .090¢ .082 .094 .0775
rate-MAC COL MAC 17.5 19.4 22.7 19.1 19.0 18.8 23.8 23.8 24.3 23.4 21.9 21.2
rate-MAC RET MAC 2.15 2.40 3.02 2.41 2.74 2.53 2.41 2.31 2.55 2.28 2.32 2.45
rate-RTR LOOP cbr .383 .457 567 .457 510 413 744 .630 .824 .894 1.06 1.14
rate-RTR NRTE cbr 8.67 7.94 8.72 9.54 11.7 10.1 11.8 13.3 10.8 11.2 9.70 11.5
rate-RTR TTL cbr 271 .406 241 .359 .495 .457 .636 .496 .769 .589 .793 .834
rate-bandwidth byterate ARP 75.6 745 93.8 100. 78.2 92.8 103. 66.1 95.1 98.7 119. 112.
rate-bandwidth byterate MAC 15080. 15140. 15620. 5020. 5320. 5300. 5900. 5440. 6880. 6000. 5610. 5010.
rate-bandwidth byterate OLSR [3060. 1400. 946. 696. 580. 420. 372. 409. 294, 269. 231. 218.
rate-bandwidth byterate cbr 14400. 14450. 14080. 4210. 4620. 4320. 5120. 4710. 5880. 5100. 4650. 4170.
rate-bandwidth packetrate ARP .945 931 1.17 1.26 977 1.16 1.29 .827 1.19 1.23 1.48 1.40
rate-bandwidth packetrate MAC | 124, 125. 135. 122, 130. 129. 144, 133. 168. 146. 136. 121.
rate-bandwidth packetrate OLSR| 425 19.5 13.1 9.67 8.05 5.83 5.17 5.68 4.09 3.73 3.21 3.02
rate-bandwidth packetrate cbr | 32.3 32.7 30.0 31.0 33.9 31.8 37.6 34.6 43.3 37.5 34.2 30.7
time-avgpacketdelay | .0857| .0999 .107 .0781 .106 .115 .125 122 131 .139 .146 .153

LCT

"SUOWDINI(] PADPUDIG - 1SIL S152499SAIT yurT °Zg € 9IqRL

Link Hysteresis Test - Standard Deviations

OLSR

1.1 2.3
Number of simulations 32.0 32.0
count-noroutedrop 3050. [2820.
count-olsr hello 10.9 9.25
count-olsr tc 69.3 70.5
count-olsr total 70.6 70.3
count-received 2470. 1830.
count-sent 3.28 3.98
rate-IFQ — ARP 1.09 782
rate-IFQ — OLSR 1.72 1.52
rate-IFQ — cbr 8.48 7.77
rate-IFQ ARP cbr 1.84 1.46
rate-IFQ END cbr .00979 .013
rate-MAC — ARP .851 .850
rate-MAC — OLSR 9.49 10.1
rate-MAC — cbr 2.40 2.63
rate-MAC BSY MAC .076 .0769
rate-MAC COL MAC 18.7 20.4
rate-MAC RET MAC 1.98 2.11
rate-RTR LOOP cbr 479 .529
rate-RTR NRTE cbr 12.1 11.3
rate-RTR TTL cbr .373 428
rate-bandwidth byterate ARP 90.6 84.1
rate-bandwidth byterate MAC [4320. 5220.
rate-bandwidth byterate OLSR 570. 609.
rate-bandwidth byterate cbr 3820. 14480.
rate-bandwidth packetrate ARP 1.13 1.05
rate-bandwidth packetrate MAC | 105. 127.
rate-bandwidth packetrate OLS 791 8.45
rate-bandwidth packetrate _cbr [28.1 33.0
time-avgpacketdelay | 111 .098

"SUDIPY - 1S9 S1S94SAET yurT 17 ¢ 91qel,

Link Hysteresis Test - Means

OLSR

1.1 2.3
Number of simulations 32.0 32.0
count-noroutedrop 13500. 13200.
count-olsr hello 6250. 6250.
count-olsr tc 1710. 1740.
count-olsr total 7960. 7990.
count-received [25400. 24300.
count-sent 162600. 62600.
rate-IFQ — ARP 3.12 3.68
rate-IFQ — OLSR 8.16 8.97
rate-IFQ — cbr 58.5 62.4
rate-IFQ ARP cbr 7.62 8.34
rate-IFQ END cbr .0297| .0358
rate-MAC — ARP 3.37 3.66
rate-MAC — OLSR 55.3 55.3
rate-MAC — cbr 35.6 35.4
rate-MAC BSY MAC .453 .431
rate-MAC COL MAC 126. 120.
rate-MAC RET MAC 25.9 26.3
rate-RTR LOOP cbr 1.62 1.76
rate-RTR NRTE cbr 53.6 52.6
rate-RTR TTL cbr 1.68 1.69
rate-bandwidth byterate ARP 613. 631.
rate-bandwidth byterate MAC [86600. [84800.
rate-bandwidth byterate OLSR 7360. 7360.
rate-bandwidth byterate cbr 168100. 65700.
rate-bandwidth packetrate ARP 7.67 7.89
rate-bandwidth packetrate MAC | 2100. 2060.
rate-bandwidth packetrate OLSR| 102. 102.
rate-bandwidth packetrate cbr [501 483.
time-avgpacketdelay | .590 .634

8¢l

ele(uonejnwig ‘g

Supapy - 3saL ippqopy €z d S1qeL

Mobility Test - Means

OLSR AODV

0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Number of simulations 32.0 32.0 32.0 36.0 32.0 31.0 35.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
count-noroutedrop 7870. 12700. 13100. 14000. 14600. 16000 15900 1830. 8250. 9510. 10100. 10500. 10900. 11300.
count-olsr hello 6250. 6250. 6250. 6250. 6250. 6250. 6250. n/a
count-olsr tc 1560. 1690. 1800. 1880. 1940. 1990. 2040. n/a
count-olsr total 7800. 7940. 8050. 8130. 8190. 8240 8290. n/a
count-received 45500. 26200. 21200. 18000. 16000. 13900 12600 43100. 27000. 21500. 19400. 16800. 15300. 14700.
count-sent 62600. 62600. 62600. 62600. 62600. 62600 62600 62600. 62600. 62600. 62600. 62600. 62600. 62600.
rate-IFQ — AODV n/a .000 6.78 8.02 6.54 5.94 5.36 4.77
rate-IFQ — ARP .176| 3.04 5.10 5.64 5.67 5.26 5.37 .119 2.82 6.26 6.33 7.44 7.41 7.07
rate-IFQ — OLSR 3.43 8.29 9.30 8.84 8.57 7.56 7.10 n/a
rate-IFQ — cbr 31.1 61.7 62.1 56.7 52.8 45.6 43.1 59.2 87.0 92.4 91.3 92.4 91.6 89.4
rate-IFQ ARP AODV n/a .133 2.49 4.45 4.61 5.49 5.49 5.57
rate-IFQ_ARP _cbr 819 689 | 121 | 151 | 171 | 193 | 211 250 2.33 4.86 5.05 5.79 6.02 5.75
rate-IFQ END AODV n/a .004 .0169 .0389 .0641 .104 122 .129
rate-IFQ_END _cbr -004] 0224 0645 109 154 193] 235 -000 -0045, -00661] -0076) 0117 0132 0137
rate-MAC — AODV n/a 87.4 139. 139. 134. 135. 138. 140.
rate-MAC — ARP 1.07 3.26 4.63 5.05 5.44 5.90 6.28 1.11 7.04 11.5 11.0 12.3 12.6 11.9
rate-MAC — OLSR 87.8 58.4 48.8 43.3 39.9 37.7 35.9 n/a
rate-MAC — cbr 27.4 33.9 43.2 52.6 59.1 65.7 72.1 28.8 24.3 26.2 30.9 35.5 38.7 42.4
rate-MAC BSY MAC .848| .506 .340 .257| .217| 174 .145| 1.01 .690 .561 .461 .408 .375 .349
rate-MAC COL MAC 287. 142. 89.4 63.3 49.1 39.2 32.0 356. 240. 182. 149. 130. 118. 109.
rate-MAC RET MAC 5.10 22.8 36.2 47.5 55.1 62.8 69.8 4.93 12.6 21.2 30.7 38.8 45.1 51.6
rate-RTR CBK cbr n/a 5.13 11.5 19.5 26.4 32.8 37.1 41.2
rate-RTR IFQ AODV n/a .000 .0194) .0083: .0126) .0085 .008 .0224
rate-RTR IFQ cbr n/a 6.32 5.91 6.74 6.40 6.77 7.64 6.89
rate-RTR_LOOP cbr T06] 188 | 161 | 182] 160] 18] 172 557 2.96 333 3.79 3.61 3.82 3.89
rate-RTR NRTE AODV n/a .0243 1.29 1.53 1.44 1.60 1.69 1.77
rate-RTR_NRTE cbr 314 | 506 | 522 | 558 | 581 | 63.8 | 632 7.29 317 36.5 38.9 40.5 421 43.5
rate-RTR TOUT AODV n/a .000 .004 .000 .000 .0053, .010 .000
rate-RTR TOUT cbr n/a 1.72 371 .190 .131 124 .116 .125
rate-RTR TTL AODV n/a 7.68 13.2 14.1 14.4 15.5 15.9 16.2
rate-RTR_TTL cbr 289 173 | 166 | 150] 148] 153] 1.26 310 990 1.23 1.01 1.29 1.07 1.05
rate-bandwidth byterate AODV n/a 8800. 21000. 22400. 22500. 22900. 23300. 24000.
rate-bandwidth byterate ARP 135. 535. 886. 1130. 1260. 1440. 1550. 126. 661. 1150. 1280. 1430. 1500. 1480.
rate-bandwidth byterate MAC 101000. 89200. 81400. [76700. 73500. 71400. 69600. 114000. 113000. 108000. 104000. 103000. 102000. 101000.
rate-bandwidth byterate OLSR 7600. 7230. 7190. 7210. 7180. 7110. 7120. n/a
rate-bandwidth byterate cbr 89500. 71400. 58400. 49700. 44100. 40000. 36000. 96100. 80600. 71900. 64800. 60900. 56400. 53700.
rate-bandwidth packetrate AOD! n/a 89.5 212, 226. 227. 231. 235. 241.
rate-bandwidth packetrate ARP 1.68 6.69 11.1 14.1 15.7 17.9 19.3 1.57 8.27 14.4 15.9 17.9 18.7 18.5
rate-bandwidth packetrate MAC 2480. 2170. 1970. 1840. 1760. 1700. 1660. 2800. 2750. 2620. 2530. 2500. 2450. 2440.
rate-bandwidth packetrate OLSR 106. 100. 99.9 100. 99.7 98.8 99.0 n/a
rate-bandwidth _packetrate cbr 658. 525. 429, 366. 324. 294. 264. 707. [593. [528 [av6. 448, [415, 305,
time-avgpacketdelay .654] .640 .642 .600] .608| 566 559 1.20 | 724 | .669 | 714 | 780 | .840 | .829

6¢1

SUOUDINI(T PADPUDIS - 153, Ao FE e O1qRL

Mobility Test - Standard Deviations

OLSR AODV

0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Number of simulations 32.0 32.0 32.0 36.0 32.0 31.0 35.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
count-noroutedrop 6060. 2470. 2110. 1630. 1870. 1740. 1710. 760. 921. 833. 635. 597. 712, 780.
count-olsr hello 13.5 12.4 13.7 10.5 11.1 11.3 12.0 n/a
count-olsr tc 159. 79.6 46.0 32.1 32.6 28.4 27.3 n/a
count-olsr total 158. 77.7 47.9 35.8 32.8 29.0 30.0 n/a
count-received 4700. 2710. 1800. 1740. 1460. 1370. 1250. 4030. 2720. 2570. 2410. 1660. 1860. 1310.
count-sent 2.90 4.23 3.04 3.31 3.60 2.93 3.65 3.50 3.73 3.02 3.46 3.81 3.20 3.32
rate-IFQ — AODV n/a .000 2.61 2.48 1.57 1.65 1.86 1.52
rate-IFQ — ARP .18 .716 1.14 1.10 1.29 .966 .885 .193 1.29 2.45 1.89 2.16 2.36 1.85
rate-IFQ — OLSR 1.63 1.65 1.16 1.08 1.16 .922 .869 n/a
rate-IFQ — cbr 12.4 9.48 6.74 6.01 6.57 5.61 4.83 18.7 9.17 8.92 6.55 7.71 6.21 5.72
rate-IFQ ARP AODV n/a .066 .935 1.69 1.04 1.13 1.46 1.23
rate-IFQ_ARP _cbr 563 1.34 | 180 | 186 | 271 | 225 | 224 187 914 1.60 1.25 1.50 141 1.10
rate-IFQ END AODV n/a .000 .00973 .0167 .0213 .0243 .0283 .0359
rate-IFQ END cbr .OOq .00848| .0128| .01881 .02481 .0324| .033 .000 .00141 .0035. 00365 .00565 .0066 .00651
rate-MAC — AODV n/a 16.7 24.3 18.7 14.3 12.4 12.5 11.1
rate-MAC — ARP .59 .891 1.01 .801 1.06 .866 .942 .451 2.47 3.28 2.26 2.30 2.46 2.01
rate-MAC — OLSR 28.3 10.8 4.61 4.35 4.23 3.64 3.22 n/a
rate-MAC — cbr 7.68 2.84 3.35 2.81 3.34 2.61 3.35 4.46 1.84 2.23 2.37 2.42 2.89 2.76
rate-MAC BSY MAC .24 .0714 .050 .0385 .041 .0272 .027 .182 .0844 .0628 .0664 .0637 .0445 .0423
rate-MAC COL MAC 77.3 19.5 12.4 7.33 6.82 4.73 3.59 42.2 19.4 15.5 9.68 8.79 9.52 8.00
rate-MAC RET MAC 2.03 1.90 3.00 2.69 3.17 2.61 3.31 2.29 1.21 1.66 2.14 2.64 3.18 2.87
rate-RTR CBK cbr n/a 2.30 1.29 2.07 2.40 2.75 2.83 2.87
rate-RTR IFQ AODV n/a .000 .0196 .0045. .0154 .00542) .00566 .0285
rate-RTR IFQ cbr n/a 11.7 4.33 3.25 3.09 2.08 3.06 2.08
rate-RTR_LOOP cbr 707 557 | 462 420 471 572 365 965 | 162 1.50 1.46 112 1.35 964
rate-RTR NRTE AODV n/a .0262) .595 .644 .438 .396 471 .540
rate RTR_NRTE_cbr 242 | 983 | 839 | 652 | 744 | 701 | 681 3.03 3.40 3.37 2.53 2.46 2.83 3.12
rate-RTR TOUT AODV n/a .000 .000 .000 .000 .00231] .00849 .000
rate-RTR TOUT cbr n/a 1.39 .286 .0899 .0466 .135 .067 .0402
rate-RTR TTL AODV n/a .902 2.32 1.84 1.19 1.42 1.31 1.39
rate-RTR_TTL cbr 287 204 | 375] 315 379] 349 298 302 808 710 553 832 574 588
rate-bandwidth byterate AODV n/a 735. 2490. 1930. 1160. 1130. 1380. 1410.
rate-bandwidth byterate ARP 48.9 81.2 83.4 96.2 139. 133. 124. 28.5 134. 218. 159. 179. 169. 125.
rate-bandwidth byterate MAC 16900. 14150. 3780. 2400. 3140. 2590. 2570. 9470. 15610. 5780. 4230. 3660. 4470. 13360.
rate-bandwidth byterate OLSR 1260. 572. 343. 305. 325. 292. 275. n/a
rate-bandwidth byterate cbr 13100. 3710. 3130. 2120. 2440. 2460. 1890. [7640. 16100. 5490. 4240. 4020. 3200. [2890.
rate-bandwidth packetrate AOD! n/a 7.17 25.3 19.6 11.8 11.4 13.9 14.3
rate-bandwidth packetrate ARP 611 1.02 1.04 1.20 1.73 1.66 1.55 .356 1.67 2.72 1.99 2.23 2.12 1.57
rate-bandwidth packetrate MAC 410. 101. 91.3 58.2 75.5 63.2 61.5 230. 138. 141. 104. 90.2 108. 81.8
rate-bandwidth packetrate OLSR 17.5 7.94 4.77 4.24 4.51 4.06 3.83 n/a
rate-bandwidth packetrate cbr 96.7 27.3 23.0 15.6 17.9 18.1 13.9 56.2 | 44.9 | 40.4 | 31.2 | 29.6 | 23.6 | 21.2
time-avgpacketdelay .301] .135 .0929 .084 113 .096 .091 297 | 119 | .0878 | .0867 | 1104 | .0846 | .0615

0T

ele(uonejnwig ‘g

e d Pl9RL

SUDIPY - U], 9)QVIIDA 959 fiprsua (]

Density Test, Variable

Traffic - Means

OLSR AODV

10.0 20.0 50.0 75.0 100.0 125.0 10.0 20.0 50.0 75.0 100.0 125.0
Number of simulations 31.0 30.0 32.0 35.0 32.0 32.0 31.0 30.0 32.0 32.0 36.0 32.0
count-noroutedrop 9050. 13800. 12400. 19600 31800. 45700. 59.2 706. 8740. 14000. 16600. 17500.
count-olsr hello 1250. 2500. 6250. 9380. 12500. 15600. n/a
count-olsr tc 117. 489. 1910. 3100. 4220. 5350. n/a
count-olsr total 1370. 2990. 8160. 12500 16700. 21000. n/a
count-received 3140. 8940. 25200. 29200 31300. 32000. 3400. 10900. 25100. 20100. 14400. 11900.
count-sent 12500. [25000. 62600. 92700 125000. 155000. 12500. 25000. 62600. 92700. 125000. 155000.
rate-IFQ — AODV n/a .000 179 7.58 58.8 224. 453.
rate-IFQ — ARP .000 .146 3.44 8.20 13.3 18.5 .100 .100 4.26 28.0 96.9 171.
rate-IFQ — OLSR .004 .149 9.24 26.9 49.7 79.4 n/a
rate-IFQ — cbr .0988 2.31 62.7 117. 169. 212, .175 2.37 88.3 195. 299. 384.
rate-IFQ ARP AODV n/a .0086 .0341 3.15 27.1 97.2 171.
rate-IFQ_ARP _cbr 0597 | 241 804 | 188 [300 | 429 102 182 3.33 128 29.1 426
rate-IFQ END AODV n/a .0053. .00622) .0221 .128 .930 2.58
rate-IFQ END cbr .004 | .00681 .0353| .0882| .173| .285| .004 .004 .00545 .0096 .029 .0527
rate-MAC — AODV n/a .0726 2.27 141. 653. 1850. 3710.
rate-MAC — ARP .000 .038 3.81 17.1 43.9 86.1 .016 .0865 8.41 60.5 177. 297.
rate-MAC — OLSR .0154 .540 60.3 244, 569. 1130. n/a
rate-MAC — cbr 1.37 6.57 36.5 55.3 70.2 81.7 1.19 5.96 24.8 24.8 21.0 17.8
rate-MAC BSY MAC .000 .020 479 .789 .923| 1.00 .000 .0419 .674 727 .634 .579
rate-MAC COL MAC 117 2.95 131. 250. 334, 402, .184 8.08 220. 380. 521. 616.
rate-MAC RET MAC 1.37 6.36 26.2 36.3 45.7 52.8 1.19 5.62 15.0 20.7 25.5 28.6
rate-RTR CBK cbr n/a 1.24 5.62 14.1 21.4 35.7 48.2
rate-RTR IFQ AODV n/a .000 .000 .0088' .0516 .185 .327
rate-RTR IFQ cbr n/a 32.1 41.3 6.33 9.65 27.4 47.8
rate-RTR_LOOP_cbr 000 | 209 184 | 216 | 2.18 | 2.00 1.46 1.35 3.11 3.33 3.52 2.95
rate-RTR NRTE AODV n/a .000 .008 1.40 9.21 18.5 23.8
rate-RTR_NRTE cbr 36.2 [552 [494] 782 [127. [182, .408 2.82 33.6 46.8 47.8 46.1
rate-RTR TOUT AODV n/a .000 .000 .052 .00737| .0315 .0795
rate-RTR TOUT cbr n/a 1.34 1.96 .246 172 .378 .870
rate-RTR TTL AODV n/a .123 711 13.3 44.9 99.3 168.
rate-RTR_TTL cbr 032_] 198 1.63 | 1.44 | 111 91 119 1.19 1.25 856 407 215
rate-bandwidth byterate AODV n/a 1280. 3300. 21500. 59000. 103000. 140000.
rate-bandwidth byterate ARP 8.38 57.6 625. 1350. 2110. 2820. 20.1 69.8 823. 2710. 4970. 6300.
rate-bandwidth byterate MAC 2840. 14900. 88500. 120000. 139000. 154000. 4190. 22200. 111000. 152000. 179000. 191000.
rate-bandwidth byterate OLSR 433. 1390. 7800. 14200. 20300. 27000. n/a
rate-bandwidth byterate cbr 2640. 13000. 69300. 88200. 97100. 105000. 4190. 21000. 78000. 75900. 64000. 54100.
rate-bandwidth packetrate AOD n/a 13.1 33.4 217. 594. 1030. 1400.
rate-bandwidth packetrate ARP .105 720 7.81 16.9 26.4 35.3 .252 .873 10.3 33.8 62.1 78.8
rate-bandwidth packetrate MAC 69.9 365. 2150. 2910. 3360. 3710. 104. 547. 2710. 3680. 4310. 4600.
rate-bandwidth packetrate OLSR 6.02 19.4 108. 197. 282. 375. n/a
rate-bandwidth _packetrate cbr 19.4 95.8 509. 648. 714, 769. 30.8 [155. [574, [558 [a7l 397.
time-avgpacketdelay .00542] .063 .616 1.12 153 1.95 375 | 529 | 693 | 916 | 1.03 | 1.15

T€T

"SUOYDINI(T PIDPUDIG - IUDLL 2)qD1UDA ‘953 fiprsua(] 97 9IqRL,

Density Test, Variable Traffic - Standard Deviations

OLSR AODV

10.0 20.0 50.0 75.0 100.0 125.0 10.0 20.0 50.0 75.0 100.0 125.0
Number of simulations 31.0 30.0 32.0 35.0 32.0 32.0 31.0 30.0 32.0 32.0 36.0 32.0
count-noroutedrop 1450. [2840. 2260. 2150. 2150. 2740. 143. 459. 753. 1090. 1110. 1070.
count-olsr hello 4.91 6.47 9.95 14.5 16.1 14.2 n/a
count-olsr tc 37.8 64.6 72.5 60.2 75.8 88.4 n/a
count-olsr total 38.7 62.4 73.3 62.2 80.3 92.1 n/a
count-received 1320. [2010. 2640. 2200. 2020. 3000. 1730. [2450. 2360. [2750. 1470. 2110.
count-sent 1.65 2.32 2.69 4.39 5.13 4.70 1.43 2.45 3.31 3.69 4.51 4.85
rate-IFQ — AODV n/a .000 .231 1.96 13.9 26.4 47.8
rate-IFQ — ARP .000 .127 911 1.32 1.21 2.22 .000 .183 1.27 6.92 16.2 23.0
rate-IFQ — OLSR .000 .121 1.63 2.99 4.37 5.79 n/a
rate-IFQ — cbr .134 1.78 7.40 5.73 7.91 8.08 .225 1.43 8.20 9.70 11.0 14.5
rate-IFQ ARP AODV n/a .00817 .028 .953 7.11 16.0 23.7
rate-IFQ_ARP _cbr 032] 355 | 180 | 252 | 202 | 423 078 162 945 2.59 4.40 471
rate-IFQ END AODV n/a .00231] .00211] .00985 .0394 .262 .581
rate IFQ_END _cbr 000 00369 0133 _ 0241 0289 _ 0382 __ .000 -000 0027 10044 013 0176
rate-MAC — AODV n/a .060 913 19.7 75.6 139. 268.
rate-MAC — ARP .000 .0536 1.13 3.17 5.25 10.9 .0191 .0666 2.34 13.6 24.0 29.6
rate-MAC — OLSR .013 .328 11.5 28.6 57.3 84.9 n/a
rate-MAC — cbr 728 2.81 2.70 2.85 2.45 3.45 .758 1.67 2.07 2.57 1.58 1.81
rate-MAC BSY MAC .000 .0169 .0705| .091 .093: .076 .000 .0318 .0968 .0712 .062 .0638
rate-MAC COL MAC .324 2.85 18.6 17.6 17.4 22.4 .343 5.22 21.3 17.6 17.4 14.3
rate-MAC RET MAC .725 2.69 2.31 2.17 2.35 2.37 751 1.59 1.51 1.24 1.16 1.35
rate-RTR CBK cbr n/a .735 1.56 1.70 2.87 4.60 4.91
rate-RTR IFQ AODV n/a .000 .000 .00558] .0294 .0522 .0832
rate-RTR IFQ cbr n/a 7.39 11.5 3.50 3.30 5.54 7.26
rate RTR_LOOP _cbr 000 214 | 462 523] 544 434 186 1.05 172 1.10 137 1.03
rate-RTR NRTE AODV n/a .000 .000 .5658 1.44 1.59 1.53
rate RTR_NRTE _cbr 578 | 11.4 | 008 | 852 | 850 | 109 708 184 2.08 .89 .00 321
rate-RTR TOUT AODV n/a .000 .000 .000 .0040 .019 .0304
rate-RTR TOUT cbr n/a .617 .997 .314 116 .289 477
rate-RTR TTL AODV n/a .0454 .116 1.85 4.14 5.13 8.54
rate RTR_TTL cbr 000 172 | ®52] 351 288 250 | 122 1.29 889 684 310 272
rate-bandwidth byterate AODV n/a 58.0 210. 1780. 13510. 2850. 2980.
rate-bandwidth byterate ARP 4.85 26.4 125. 144. 120. 203. 15.7 27.1 148. 358. 407. 420.
rate-bandwidth byterate MAC 1660. 15580. 4900. 5450. 4430. 4680. 3200. 16490. 6120. 6670. 6260. 5390.
rate-bandwidth byterate OLSR 44.7 210. 564. 681. 1030. 1190. n/a
rate-bandwidth byterate cbr 1580. 14640. 4290. 4840. 4040. 4580. 3340. 16170. 6290. [7200. 4530. 4490.
rate-bandwidth packetrate AOD n/a .561 2.04 18.1 35.6 29.2 29.9
rate-bandwidth packetrate ARP .060 .329 1.56 1.80 1.50 2.54 .196 .339 1.85 4.48 5.09 5.26
rate-bandwidth packetrate MAC 41.0 136. 120. 133. 108. 115. 79.4 160. 151. 164. 153. 132.
rate-bandwidth packetrate OLSR .620 2.92 7.83 9.45 14.3 16.5 n/a
rate-bandwidth packetrate cbr 11.7 34.1 31.5 35.6 29.7 33.7 24.5 [45.4 [46.2 [53.0 [333 [33.0
time-avgpacketdelay .010 .0423 .101 .146 177 .238 .358 | .228 | 124 | .130 | 128 | 175

cel

ele(uonejnwig ‘g

"SUDIPY - UYL qupISu0y) ‘983 fpsua()7 d dqel,

Density Test, Constant Traffic - Means

OLSR AODV

10.0 20.0 50.0 75.0 100.0 125.0 10.0 20.0 50.0 75.0 100.0 125.0
Number of simulations 30.0 35.0 32.0 32.0 32.0 32.0 31.0 34.0 32.0 32.0 32.0 32.0
count-noroutedrop 45800. 35500. 12000. 5730. 4130. 4160. 483. 2570. 8780. 10100. 11100. 11600.
count-olsr hello 1250. 2500. 6250. 9380. 12500. 15600. n/a
count-olsr tc 123. 508. 1940. 3120. 4290. 5500. n/a
count-olsr total 1370. 3010. 8190. 12500. 16800. 21100. n/a
count-received 14800. 20100. [25300. 25800. 26000. 25900. 13700. 22500. 24900. 23600. 20000. 15900.
count-sent 62600. 62600. 162600. 62600. 62600. 62600. 62600. 62600. 62600. 62600. 62600. 62600.
rate-IFQ — AODV n/a 440 1.44 7.60 21.5 81.1 230.
rate-IFQ — ARP .060 .298 3.49 5.60 6.57 6.88 .120 776 3.84 9.79 34.4 81.6
rate-IFQ — OLSR .0836 .641 9.97 24.4 43.2 62.3 n/a
rate-IFQ — cbr 3.69 15.3 63.1 74.8 74.6 70.5 5.50 30.9 87.6 93.9 106. 115.
rate-IFQ ARP AODV n/a .016 .130 2.89 11.7 47.2 110.
rate-IFQ_ARP _cbr 104 | 764 812 | 135 | 167 | 191 239 767 3.10 4.0 7.74 108
rate-IFQ END AODV n/a .000 .00667| .0229 .064 .433 1.80
rate-IFQ_END _cbr 004_] -005¢] 0335 087 137 19 -000 004 -00444 -00659 0102 0144
rate-MAC — AODV n/a 442 7.92 138. 463. 1230. 2620.
rate-MAC — ARP .0085 .0909 3.55 11.0 21.2 36.9 .0263) .327 8.01 30.5 102. 214,
rate-MAC — OLSR .0488 1.31 63.9 246. 644. 1370. n/a
rate-MAC — cbr 4.72 12.7 37.3 47.0 51.9 55.6 3.48 11.4 24.9 24.3 20.4 17.1
rate-MAC BSY MAC .0275 .0745| .488 .54 .525| .46 .0337 .270 .665 .661 .593 .541
rate-MAC COL MAC 1.52 15.0 137. 175. 198. 218. 5.70 57.9 221. 288. 388. 484.
rate-MAC RET MAC 4.59 11.5 26.6 33.6 36.7 39.3 3.13 7.48 14.4 19.3 24.0 28.0
rate-RTR CBK cbr n/a 3.32 7.85 13.5 15.4 16.4 17.9
rate-RTR IFQ AODV n/a .004 .008 .0145 .0143 .0324) .0919
rate-RTR IFQ cbr n/a 177. 100. 7.14 3.62 6.67 13.7
rate RTR_LOOP _cbr 346 472 174 | 1022] 621 511 4.45 4.87 3.89 1.96 1.26 115
rate-RTR NRTE AODV n/a .000 .0333 1.20 4.90 12.3 18.9
rate-RTR_NRTE_cbr 183. [142. [4r7 [228 | 165 | 166 1.93 103 33.9 35.6 32.0 27.6
rate-RTR TOUT AODV n/a .000 .004 .004 .0048 .013 .0536
rate-RTR _TOUT cbr n/a .753 2.22 .343 .064 .145 439
rate-RTR TTL AODV n/a .279 1.30 13.2 35.9 76.0 133.
rate-RTR_TTL cbr 124 | 314 170 | 132] 1.05] 74 2.19 3.14 1.37 488 212 111
rate-bandwidth byterate AODV n/a 1990. 5100. 21300. 42600. 75000. 109000.
rate-bandwidth byterate ARP 15.4 85.8 633. 1070. 1400. 1700. 59.8 163. 780. 1580. 3130. 4620.
rate-bandwidth byterate MAC 13600. 34600. [89700. 98000. 99000. 96500. 21400. 58200. 113000. 127000. 145000. 158000.
rate-bandwidth byterate OLSR 433. 1320. 8090. 17200. 29000. 43300. n/a
rate-bandwidth byterate cbr 12500. 29600. 169900. 71600. 69600. 65500. 21900. 53600. 80300. 72400. 60000. 48600.
rate-bandwidth packetrate AOD! n/a 19.9 51.1 214. 430. 755. 1090.
rate-bandwidth packetrate ARP .193 1.07 7.91 13.4 17.5 21.2 748 2.03 9.75 19.8 39.1 57.7
rate-bandwidth packetrate MAC 334. 845. 2180. 2370. 2390. 2320. 530. 1430. 2740. 3070. 3510. 3820.
rate-bandwidth packetrate OLSR 6.01 18.3 112. 239. 403. 601. n/a
rate-bandwidth packetrate cbr 91.6 218. 514, 527. 512. 482. 161. 394, 591. | 532. 441, | 358.
time-avgpacketdelay .0401 1138 1643 .885] 1.02 1.13 1131 | 443] .684 | .806 | .933 | .945

€ET

"SUOUDINI(] PADPUDIS - IUIDAT, JuDIsSuU0y) ‘459, figasua(] g € 919®RL,

Density Test, Constant Traffic - Standard Deviations

OLSR AODV

10.0 20.0 50.0 75.0 100.0 125.0 10.0 20.0 50.0 75.0 100.0 125.0
Number of simulations 30.0 35.0 32.0 32.0 32.0 32.0 31.0 34.0 32.0 32.0 32.0 32.0
count-noroutedrop 5160. 5660. 2510. 1200. 791. 732. 493, 1310. 1000. 973. 904. 1080.
count-olsr hello 3.90 7.99 11.0 11.4 13.7 18.4 n/a
count-olsr tc 33.9 49.7 67.0 75.4 88.4 83.9 n/a
count-olsr total 33.2 51.9 69.1 74.3 91.0 86.4 n/a
count-received 4070. 3650. 2280. 1990. 1900. 1900. 4650. 3610. 2190. 3670. 5150. 4270.
count-sent 3.27 3.53 4.11 3.47 3.89 3.72 4.00 4.14 3.60 3.65 3.46 4.08
rate-IFQ — AODV n/a .264 1.15 2.99 13.5 36.3 52.9
rate-IFQ — ARP .000 .389 794 1.26 1.12 .662 .221 .738 1.83 5.77 16.1 22.1
rate-IFQ — OLSR .0792 .337 1.52 2.97 4.21 4.91 n/a
rate-IFQ — cbr 4.18 8.41 6.41 4.36 5.37 4.67 8.42 18.8 8.93 11.7 18.6 12.5
rate-IFQ ARP AODV n/a .022 .0928 1.24 6.17 20.8 27.7
rate-IFQ_ARP _cbr 0047 | 696 | 1.47 | 210 | 208 | 1.1 147 585 1.24 2.11 2.49 2.01
rate-IFQ END AODV n/a .000 .00462 .0135 .023 .252 .451
rate-IFQ_END _cbr 000 | 00204 013 0197 _ 0292 0309 -000 -000 0013 0037 :00607] 010
rate-MAC — AODV n/a .393 2.99 23.2 80.3 186. 281.
rate-MAC — ARP .00877 .102 918 1.98 3.13 5.66 .0286| .282 3.02 12.0 31.0 43.8
rate-MAC — OLSR .0355 .668 10.7 37.7 66.4 174. n/a
rate-MAC — cbr 2.07 2.71 2.76 2.91 2.68 2.92 1.43 3.00 2.01 1.71 3.01 2.84
rate-MAC BSY MAC .0536 .0492 .0785 .0771) .071 .0572 .0362 .116 .0738 .0811 .0737 .0687
rate-MAC COL MAC 1.84 9.93 18.1 25.0 19.9 17.1 8.64 28.3 25.4 24.9 35.7 39.1
rate-MAC RET MAC 2.01 2.30 2.37 2.76 1.92 1.92 1.07 1.43 1.01 1.24 2.30 1.89
rate-RTR CBK cbr n/a 1.08 1.53 1.52 1.74 2.55 2.28
rate-RTR IFQ AODV n/a .000 .00566 .0172 .0139 .032 .0381
rate-RTR IFQ cbr n/a 27.9 32.3 5.22 1.47 2.16 3.67
rate-RTR_LOOP cbr 0456 | 349 | 4r1] 319 235] 175 3.49 2.37 1.97 1.01 592 770
rate-RTR NRTE AODV n/a .000 .0273 .494 2.01 3.85 3.43
rate RTR_NRTE_cbr 207 | 227 | 999 | 479 | 315 | 2093 1.97 524 3.82 3.70 3.44 2.98
rate-RTR TOUT AODV n/a .000 .000 .000 .00179 .00768 .0371
rate-RTR TOUT cbr n/a .363 1.25 .180 .032 .148 .297
rate-RTR TTL AODV n/a .0764 .178 2.35 4.61 9.22 12.1
rate RTR_TTL cbr 0978 | 194 | 316] 372 249 213 1.92 1.39 1.08 333 203 0997
rate-bandwidth byterate AODV n/a 127. 391. 2140. 5700. 11500. 11900.
rate-bandwidth byterate ARP 6.53 39.1 87.0 81.6 120. 95.7 26.0 73.2 176. 394, 665. 742,
rate-bandwidth byterate MAC 5420. 8750. 4220. 4770. 14860. 13330. 12100. 14500. 6540. 6000. 7790. 8560.
rate-bandwidth byterate OLSR 28.7 119. 629. 1030. 1540. 1890. n/a
rate-bandwidth byterate cbr 4850. [7620. 3640. 3990. 14080. 2590. 12700. 12500. 6540. [7650. 8070. 7220.
rate-bandwidth packetrate AOD n/a 1.25 4.00 21.6 57.7 116. 120.
rate-bandwidth packetrate ARP .0816 .489 1.09 1.02 1.51 1.20 .325 915 2.20 4.92 8.31 9.27
rate-bandwidth packetrate MAC [133. 214. 103. 116. 118. 80.4 301. 354. 160. 146. 186. 204.
rate-bandwidth packetrate OLSR .399 1.66 8.73 14.3 21.3 26.3 n/a
rate-bandwidth packetrate cbr 35.6 56.0 26.7 29.4 30.0 19.1 93.7 | 91.7 | 48.1 | 56.3 | 59.4 | 53.1
time-avgpacketdelay .0351 .0592 .091 .130 .146 .125 .0966] 166 | 120 | 106 | 169 | 161

12!

ele(uonejnwig ‘g

Duration Test - Means

OLSR AODV
1.0 5.0 10.0 20.0 40.0 80.0 120.0 190.0 240.0 1.0 5.0 10.0 20.0 40.0 80.0 120.0 190.0 240.0
simulations 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 34.0 36.0 32.0 32.0
itedrop 12300. [10500. [10400. [11500. 11900. 13700. 15800. 12500. 10300. 11300. 9780. 9270. 8780. 8980. 8510. 8240. 8430. 8380.
hello 6250. 6250. 6250. 6250. 6250. 6250. 6250. 6250. 6250. n/a
tc 1750. 1740. 1750. 1720. 1740. 1730. 1720. 1740. 1740. n/a
total 8000. 7990. 8000. 7960. 7990. 7980. 7960. 8000. 7990. n/a
jed 27100. 26600. [26400. [25600. [25500. [24800. [23400. [24000. [27500. 18200. 23100. 25100. 26800. 25300. 24000. 23800. 24900. 30600.
67500. [63500. [63000. [62600. 62500. 62500. 62500. 60800. 62400. 67500. 63500. 63000. 62600. 62500. 62500. 62500. 60800. 62400.
— _AODV n/a 40.3 14.5 9.77 6.89 6.96 8.03 8.71 5.61 3.91
— _ARP 2.54 3.28 3.67 3.55 3.49 3.39 2.90 3.18 3.24 16.0 6.22 4.36 3.22 3.56 453 471 321 1.57
—_ OLSR 10.7 9.37 9.45 8.84 8.90 811 7.43 8.74 9.55 n/a
— cbr 69.6 64.6 64.0 62.5 62.2 59.2 58.4 59.5 60.2 121. 99.5 92.7 85.9 87.5 91.3 90.5 80.5 67.8
\RP_AODV n/a 15.5 6.19 421 2.94 2.90 314 311 2.20 1.41
\RP_cbr 644 781 856] 820 | 827 | 787 | 705 | 763 | 7.83 7.79 4.07 3.17 2.63 2.83 3.46 3.67 281 1.53
ND_AODV n/a .045 .0199 .0195 .0195 .0218 .0229 .024 .0213 .0195
ND_cbr .03 .03 033 0314 .0345] .033¢] 10303 .0303] 037 011 .00612 100467 .00489) .0044 .0053 100492 100567 .0044
— AODV n/a 287. 204. 176. 152, 138. 125, 123, 119. 117.
— ARP 3.78 3.75 3.84 359 3.71 3.46 331 3.50 3.32 218 117 8.02 7.25 7.61 8.35 8.79 7.07 4.55
— OLSR 63.5 59.0 60.7 57.3 57.9 53.2 51.0 55.9 61.5 n/a
— cbr 435 39.7 389 382 36.5 35.0 34.2 363 37.0 26.4 26.7 26.5 25.6 25.2 24.1 238 24.5 25.9
BSY MAC .52 .482) 461 490 .450 443 442 .435 481 736 738 723 .700 .686 .622 582 662 .756
COL_MAC 141. 130. 131 130. 126. 122. 123. 121. 127. 320. 278. 253. 231. 223, 208. 109. 209. 218.
RET _MAC 32.3 29.5 28.8 27.9 26.9 25.5 24.5 26.9 27.2 20.6 17.7 17.0 15.5 15.2 14.6 14.4 14.6 14.7
CBK _cbr n/a 18.0 143 13.9 13.3 13.7 14.2 14.6 13.7 13.0
IFQ_AODV n/a .004 .008 .00667] .0105 .0071 .009 0167 0164 .006
IFQ_cbr n/a 1.42 219 2.23 3.99 6.07 731 8.70 7.86 7.07
LOOP _cbr 193] 166] 173] 194 | 169 | 182 | 180 | 162 | 1.73 3.97 2.61 2.40 2.45 2.90 3.89 4.27 454 3.44
NRTE_AODV n/a 4.30 273 191 1.31 1.25 1.43 135 867 .462
NRTE cbr 491 [420 | 414 | 456 | 473 | 547 [628 | 499 [41.0 40.8 36.4 35.2 33.8 34.7 32.6 31.6 32.8 33.1
TOUT _AODV n/a .004 .000 .004 .000 .004 .004 .005 .000 .000
TOUT _cbr n/a 264 444 359 308 264 215 215 236 .000
TTL_AODV n/a 25.6 23.2 20.6 17.0 14.2 1.9 10.9 10.0 9.70
TTL cbr 194 1.85] 1.82] 187 | 174 | 171 | 1.48 | 164 | 1.86 331 2.05 1.66 1.34 1.22 1.26 1.08 131 1.13
dth_byterate_ AODV n/a 50600. 34200. 28900. 24000. 21700. 20000 19200. 18400. 17400.
dth_byterate ARP 645. 669. 683. 642. 645. 604. 571 619. 629. 1760. 1120. 928. 782. 775. 798. 806. 724. 568.
dth_byterate MAC _ |07800. _ 03700. _ [92300. _ [91300. [88000. [83900. [81400. [85300. 91800. 148000. 131000. 125000. 120000. 114000. 107000. 103000. 109000. 117000.
dth_byterate OLSR | 6820. 7100. 7350. 7160. 7300. 7490. 7560. 7540. 7300. n/a
dth_byterate _cbr [73700. [72300. [71300. [71000. 68600. 65800, 63700. 66400, [72000. 80300. 82200. 82800. 83900, 80300, 76400, 73900 79000 88000,
dth packetrate AOD n/a 510. 344, 291. 242. 219. 202. 194. 186. 175.
dth_packetrate ARP 8.06 8.36 8.54 8.03 8.06 7.55 7.14 7.73 7.86 22.0 14.0 11.6 9.78 9.69 9.07 10.1 9.05 7.11
dth_packetrate_ MAC | 2370, 2270. 2240. 2220. 2140. 2040. 1980. 2070. 2230. 3590. 3180. 3040. 2920. 2770. 2610. 2510. 2650. 2850.
dth_packetrate_ OLSR| 947 98.6 102, 99.4 101. 104. 105. 105. 101. n/a
dth_packetrate__cbr 542, 532, 525, 522, 504. 484, 468. 488. 530. 501. 604. 609. [_617. [_590. [562. [543. 581. [_647.
-ketdelay .812] .64 .63 614 .644 .607 624 .633 .585 815 | 785 | 719 | 691 | .698 | .669 | 676 | 722 | .680

GET

SUOWDINI(] pLOPUDIS - 1S9, UOLIDIN(] 0¢ H 9[qBL

Duration Test - Standard Deviations

OLSR AODV

1.0 5.0 10.0 20.0 40.0 80.0 120.0 190.0 240.0 1.0 5.0 10.0 20.0 40.0 80.0 120.0 190.0 240.0
Number of simulations 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 34.0 36.0 32.0 32.0
count-noroutedrop 2060. 1940. 1960. [2120. [2130. 2610. 2560. 3660. 2780. 700. 442, 589. 822. 906. 994, 1020. 1400. 1760.
count-olsr hello 10.1 8.96 8.76 11.5 12.2 11.2 11.1 9.58 12.4 n/a
count-olsr tc 73.0 53.8 58.8 65.7 50.3 50.2 47.5 44.9 84.9 n/a
count-olsr total 76.0 52.9 59.7 66.7 50.4 52.8 49.5 45.8 87.3 n/a
count-received 1110. 1270. 1650. 1870. [2330. 2700. 3240. 3640. 3290. 1790. 1570. 2270. 1790. 1920. 2380. 3550. 3550. 5190.
count-sent 26.7 14.3 11.8 6.70 3.61 .000 .000 .000 .000 32.4 16.8 9.56 5.96 4.73 .000 .000 .000 .000
rate-IFQ — AODV n/a 115 4.03 2.80 1.58 2.11 2.31 2.77 2.08 2.04
rate-IFQ — ARP .605 .861 .812 1.15 .672 .857 .845 .892 .938 3.93 2.20 1.46 1.08 1.35 1.38 1.42 1.42 .907
rate-IFQ — OLSR 1.94 1.38 1.37 1.72 1.65 1.21 1.20 1.17 1.81 n/a
rate-IFQ — cbr 6.50 6.07 5.34 7.38 6.64 7.12 6.59 6.43 9.14 6.93 5.34 6.29 5.74 6.74 7.73 11.6 9.99 14.1
rate-IFQ ARP AODV n/a 3.94 1.66 .940 .645 .786 1.01 .905 .904 .625
rate IFQ_ARP cbr 126 | 150 | 132 | 203 | 129 | 154 | 149 | 153 | 162 156 1.26 998 802 963 960 1.01 1.09 713
rate-IFQ END AODV n/a .0203 .0122 .0112 .00791 .0112 .00976| .0111 .0115 .00818
rate-IFQ_END _cbr 0132 0127 _ 0145 _ 010§ _ 0157 _ 0151 _ 0111 _ 0114 _ 0141 _ 00662 _ .0028 00153 00176 __.0012 00289 0024 0026 00126
rate-MAC — AODV n/a 40.3 25.1 19.6 13.9 21.9 16.7 19.2 22.6 25.9
rate-MAC — ARP .959 1.02 .907 1.05 777 .921 .986 .814 .866 5.41 3.27 2.24 1.60 2.43 2.34 2.55 2.80 1.64
rate-MAC — OLSR 10.9 9.42 10.2 9.65 11.1 8.81 8.88 8.26 11.8 n/a
rate-MAC — cbr 1.89 2.30 1.68 2.34 2.93 2.38 2.95 3.00 3.92 1.38 1.61 1.77 1.62 1.83 2.03 2.49 2.43 3.63
rate-MAC BSY MAC .088 .0735 .0695| .0527 .0671 .0833 .0762 .0631 .097 .0678 .0572 .0657 .0882 .0888 .0898 .0944) .0765 .103
rate-MAC COL MAC 15.6 14.3 19.1 16.5 22.0 18.8 19.7 18.4 26.3 14.0 17.6 15.7 19.4 16.5 22.0 20.7 24.4 40.4
rate-MAC RET MAC 1.68 2.44 1.67 2.37 2.21 1.95 2.46 2.21 2.51 1.28 1.51 1.27 1.20 1.35 1.19 1.30 1.28 1.69
rate-RTR CBK cbr n/a 1.50 1.62 1.60 1.11 1.62 1.63 1.80 1.36 1.54
rate-RTR IFQ AODV n/a .000 .0052 .00413 .00601 .0039 .00516 .0274 .0177 .00219
rate-RTR IFQ cbr n/a 1.47 2.09 1.21 2.81 3.95 4.59 5.38 4.47 4.14
rate-RTR_LOOP cbr 503 | 406 | 423] 684] 499] 496] 608] 527 | 649 765 644 783 719 172 1.60 2.40 3.04 2.61
rate-RTR NRTE AODV n/a .943 .701 428 .341 .379 .492 .498 .410 .335
rate RTR_NRTE cbr 821 | 777 | 788 | 844 | 852 | 104 [102 | 146 | 111 3.23 1.79 2.18 3.20 3.60 3.03 4.02 5.51 6.82
rate-RTR TOUT AODV n/a .000 .000 .000 .000 .000 .000 .002 .000 .000
rate-RTR TOUT cbr n/a .443 .485 .380 .195 127 .0922 .0768 .000 .000
rate-RTR TTL AODV n/a 2.25 1.69 1.63 1.43 1.61 1.90 1.87 2.40 2.39
rate RTR_TTL cbr 365 323 357] 407 425 452 442 461 468 | 1.01 684 785 768 655 897 1.02 1.03 1.18
rate-bandwidth byterate AODV n/a 540. 1910. 1560. 1310. 1270. 1580. 1740. 2080. 3030.
rate-bandwidth byterate ARP 85.5 105. 76.3 110. 81.5 76.4 78.8 89.5 74.8 259. 199. 149. 116. 140. 114. 125. 166. 141.
rate-bandwidth byterate MAC 4290. 13780. 14520. 13480. 14470. 4410. 4640. 4380. 6760. 6160. 14100. 4050. 16360. 5880. 7360. [7450. 6790. 8690.
rate-bandwidth byterate OLSR 540. 461. 452. 516. 479. 417. 517. 440. 641. n/a
rate-bandwidth byterate cbr 3960. 13510. 14080. 13350. 13860. 3920. 3770. 3560. 5330. 8350. 5570. 3990. 16340. 5790. 6540. 6960. 6690. 5810.
rate-bandwidth packetrate AOD! n/a 25.0 19.4 15.8 13.4 12.8 16.0 17.6 20.9 30.4
rate-bandwidth packetrate ARP 1.07 1.31 .953 1.38 1.02 .955 .985 1.12 .935 3.23 2.49 1.87 1.45 1.75 1.43 1.56 2.08 1.76
rate-bandwidth packetrate MAC | 105. 92.5 111. 85.2 109. 108. 112. 106. 164. 153. 102. 99.4 157. 145. 180. 183. 166. 210.
rate-bandwidth packetrate OLSR 7.50 6.40 6.27 7.16 6.65 5.79 7.19 6.11 8.90 n/a
rate-bandwidth _packetrate cbr 29.1 5.8 30.0 24.6 8.4 8.9 27.7 26.2 39.2 614 | 410 | 204 [466 | 426 | 481 [512 | 492 | 428
time-avgpacketdelay 110 084 0971 111 132 102 0977 0986 117 do1 | 117 | 0783 | 0899 | 0842 | 112 | 120 | 127 | 156

O¢tT

ele(uonejnwig ‘g

SUDIP - 159 afsupi] yng 18 9IqRL

Bulk Transfer Test - Means

OLSR AODV

6.0 8.0 10.0 12.0 14.0 16.0 18.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
Number of simulations 32.0 35.0 36.0 32.0 32.0 33.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
count-noroutedrop 1180. 2050. 3440. 4420. 6700. 7400. 9910. 2430. 3330. 3870. 4370. 4800. 5190. 5490.
count-olsr _hello 6250. 6250. 6250. 6170. 6240. 6250. 6250. n/a
count-olsr tc 1750. 1740. 1780. 1730. 1770. 1750. 1780. n/a
count-olsr total 8000. 7990. 8030. 7900. 8020. 8000. 8030. n/a
count-received 27800. 30700. 34400. 36200. 40600. 41800. 44400. 21400. 23300. 24300. 25100. 25700. 26200. 26600.
count-sent 33900. 38500. 44900. 47900. 55300. 57700. 63700. 27500. 31700. 34900. 38000. 40900. 43800. 46400.
rate-IFQ — AODV n/a 16.3 25.0 40.1 47.4 58.4 67.2 75.8
rate-IFQ — ARP 127 277 .360 .355 .465 .625 .657 5.17 7.43 11.1 14.7 17.4 19.9 22.4
rate-IFQ — OLSR 3.11 4.85 5.62 4.95 6.16 6.93 7.53 n/a
rate-IFQ — ack .751 1.21 1.61 1.67 2.04 2.33 2.77 1.60 2.40 3.08 3.63 4.12 4.73 5.02
rate-IFQ — tcp 2.04 3.72 5.44 5.77 7.51 9.19 10.4 5.60 9.78 15.4 20.4 26.2 31.9 37.9
rate-IFQ ARP AODV n/a 10.5 14.0 19.1 23.5 26.0 28.4 31.0
rate-IFQ _ARP ack 348 | 431] 503 501 | .543 .580 | .607 .115 .141 .152 .169 177 .193 .188
rate-IFQ _ARP tcp 791 | 1.16 | 1.48 | 1.47 | 1.74 | 2.07 | 2.20 .615 1.01 1.62 2.27 2.93 3.65 4.33
rate-IFQ END AODV n/a .0494 .0569 .0706] .0831 .0898 .0946 .103
rate-IFQ END ack 0114 .0082]] 0127 0133 L0117 011] .0103] 100431 .0046 .004 .0061 .0044 .00444 .00533
rate-IFQ END tcp .0331] .0368 | .0412 .0421] .0538 .0616] .0594] .0128 .0165 .0216] .0251 .0314 .0388 .0384
rate-MAC — AODV n/a 245. 269. 313. 329. 350. 364. 377.
rate-MAC — ARP 2.51 3.09 3.55 3.25 3.80 4.15 4.55 12.0 14.8 19.5 22.0 23.1 24.6 26.7
rate-MAC — OLSR 114. 113. 110. 96.2 96.5 94.7 95.0 n/a
rate-MAC — ack 5.24 5.68 5.70 5.65 5.70 5.76 5.81 2.90 2.69 2.32 2.17 1.96 1.90 1.73
rate-MAC — tcp 21.0 24.6 26.0 27.1 27.4 28.7 29.1 18.0 20.5 21.0 22.4 23.0 24.0 24.3
rate-MAC BSY MAC .525 672 .809 .835 913 929 977 .632 747 .750 791 .801 .878 .880
rate-MAC COL MAC 144. 163. 178. 184. 187. 193. 199. 219. 243. 259. 267. 281. 292. 296.
rate-MAC RET MAC 14.6 17.2 18.2 18.4 19.1 20.1 20.4 18.3 19.2 19.2 20.1 19.7 19.6 19.8
rate-RTR CBK ack n/a 2.00 1.79 1.56 1.46 1.32 1.26 1.16
rate-RTR CBK tcp n/a 6.43 7.33 8.02 9.05 9.73 10.6 11.4
rate-RTR_IFQ tcp n/a .000 .000 .000 .000 .000 .068 .161
rate-RTR LOOP ack 0733 .0996 | 129 129 131 | 1146 | 163 .0791 .0766 .066 .0639 .050 .0451 .0404
rate-RTR_LOOP _tcp 179 | 305_| 426 | 454 | 508 | 560 | 611 479 720 869 111 1.29 153 1.67
rate-RTR NRTE AODV n/a 2.86 3.76 4.77 5.17 5.53 5.59 5.84
rate-RTR_NRTE ack 813 | 128 | 1.70] 2.32] 2.47] 2.67 | 3.00 1.32 1.51 1.36 1.31 1.24 1.31 1.17
rate-RTR_NRTE tcp 391 | 723 | 121 | 185 | 243 | 297 | 367 553 8.07 9.35 11.0 124 139 15.0
rate-RTR _TOUT AODV n/a .006 .0053 .0109 00862 .0085 .010 .00988
rate-RTR TOUT ack n/a .004 .0045 .004 .004 .005 .004 .00533
rate-RTR TOUT tcp n/a .0924 .0785 .108 141 .143 .139 .335
rate-RTR TTL AODV n/a 21.3 221 24.2 24.9 25.3 25.5 26.5
rate-RTR_TTL ack .0546] .0484 | .0482] .0384 .0353] .0293] .030 .0519 .046 .0314] .0254 .0211 .0188 .0155
rate-RTR_TTL tcp 1392 | 524 | 1623 | 1625 | .647 | .667 | .662 .345 .524 .609 .748 .793 .863 934
rate-bandwidth byterate AODV n/a 39700. 43800. 47700. 50300. 52500 54100. 55600.
rate-bandwidth byterate ARP 374. 406. 433. 426. 444. 469. 483. 985. 1160. 1390. 1550. 1610 1710. 1820.
rate-bandwidth byterate MAC 51600. 56300. 60000. 63900. 65400. 66700. 67900. 82100. 89600 92700. 96600. 99200 102000. 103000.
rate-bandwidth byterate OLSR 8120. 7450. 6910. 6340. 6080. 5750. 5570. n/a
rate-bandwidth byterate ack 14600. 14800. 15400. 16500. 16700. 16700 16800. 12000. 11700 10900. 10500. 10100 9820. 9550.
rate-bandwidth byterate tcp 193000. 209000. [222000. 239000. [244000. 248000 252000. 185000. 205000. 208000. 220000. 226000. 236000. [242000.
rate-bandwidth packetrate AOD! n/a 401. 441. 480. 507. 528. 544, 558.
rate-bandwidth packetrate ARP 4.68 5.07 5.42 5.33 5.55 5.87 6.03 12.3 14.5 17.3 19.4 20.1 21.4 22.8
rate-bandwidth packetrate MAC 1260. 1370. 1460. 1550. 1590. 1620. 1650. 2000. 2180. 2250. 2340. 2410. 2470. 2500.
rate-bandwidth packetrate OLSR 113. 104. 95.9 88.1 84.4 79.8 77.3 n/a
rate-bandwidth packetrate ack 130. 133. 137. 148. 149. 149. 150. 107. 105. 97.3 93.4 90.3 87.7 85.3
rate-bandwidth packetrate tcp 180. 195. 207. 223. 228. 231. 235. 172. 191. 194. 205. 211. 220. 226.
time-avgpacketdelay .493 .640 719 .685 .751 791 .863 .392 418 419 419 421 438 432

LET

e d Pl9RL

“SUOUDINI(] PADPUDIS - 1S9, LIJSUDL], YN

Bulk Transfer Test - Standard Deviations

OLSR AODV

6.0 8.0 10.0 12.0 14.0 16.0 18.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
Number of simulations 32.0 35.0 36.0 32.0 32.0 33.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
count-noroutedrop 322. 387. 451. 941. 527. 1020. 598. 165. 207. 198. 278. 259. 400. 399.
count-olsr _hello 9.41 12.7 8.80 442. 12.3 17.5 11.7 n/a
count-olsr tc 74.3 90.5 71.3 148. 50.7 69.6 59.0 n/a
count-olsr total 77.4 90.3 72.1 577. 53.3 74.0 58.9 n/a
count-received 919. 1030. 1500. 3190. 1970. 3330. 2770. 1500. 1420. 1330. 1640. 1670. 2200. 1870.
count-sent 881. 1300. 1300. 4170. 1730. 3560. 2410. 1390. 1340. 1260. 1570. 1620. 2080. 1690.
rate-IFQ — AODV n/a 6.54 6.54 8.90 12.1 12.0 14.4 15.5
rate-IFQ — ARP .0642 .138 .148 .181 .155 211 .236 1.76 2.05 291 3.52 4.17 4.40 4.78
rate-IFQ — OLSR 1.19 1.43 1.56 1.28 1.46 1.78 1.84 n/a
rate-IFQ — ack .246 .273 .384 .344 429 .515 .537 312 .303 .374 .325 .334 .453 475
rate-IFQ — tcp .621 .708 1.18 1.20 1.46 2.16 2.12 1.11 1.21 1.51 1.58 1.83 2.05 2.29
rate-IFQ ARP AODV n/a 2.91 3.18 4.44 4.82 5.65 5.74 6.21
rate-IFQ ARP ack .0961 | .125 .003] 123] .0925] .0888 | .097 .0327 .028 .0353 .0262 .0303 .0537 .035
rate-IFQ_ARP _tcp 168 | 261 251 | 327 | 326 | 383 | 442 151 172 257 -406 462 631 618
rate-IFQ END AODV n/a .0182 .0183 .0254 .0316 .0346 .024 .0372
rate-IFQ END ack .00547] .00339| 00581 .00629| .0056| .00628| .006 .00111 .00156 9.06e-19 .00275 .0013, .00133 .00462
rate-IFQ END tcp .00997 .0163 | 0151] L0191 | .0189 .0224 | .019 .00616) .00616) .00793 .00875 .0103 .018 .0116
rate-MAC — AODV n/a 32.0 26.1 29.2 37.7 28.7 37.7 46.7
rate-MAC — ARP 496 .607 .624 .705 .644 .885 .967 3.19 3.38 4.42 5.11 4.58 5.32 5.37
rate-MAC — OLSR 17.6 18.7 14.2 12.1 11.6 10.6 12.4 n/a
rate-MAC — ack .458 .502 .367 .344 .355 .255 .344 .294 .321 .258 .251 .208 .178 .175
rate-MAC — tcp 1.95 1.88 2.41 2.26 1.82 2.09 1.64 1.30 1.43 2.08 2.18 1.93 1.71 2.02
rate-MAC BSY MAC .100 1130 .106 .0903 .115 .0983 .095 .108 .101 .105 .0711 .138 .160 127
rate-MAC COL MAC 14.6 10.7 14.2 10.1 15.6 9.87 13.0 12.8 11.9 13.6 12.7 12.1 14.2 14.9
rate-MAC RET MAC 1.07 1.11 1.27 1.04 1.01 973 1.19 .891 1.22 1.19 1.33 .987 1.11 1.19
rate-RTR CBK ack n/a 223 .220 .158 .167 .139 .136 111
rate-RTR CBK tcp n/a .423 .420 .552 .598 .577 .698 .781
rate-RTR IFQ tcp n/a .000 .000 .000 .000 .000 .000 .0999
rate-RTR_LOOP _ack 0223 | 0338 | 20427 0445 | 0419 0431 | 0461 0262 0231 0226 023 0174 0209 0167
rate RTR_LOOP _tcp 0487 | 0712 | 0843 117 _| 121 | 126 | 112 .0889 120 185 191 218 259 374
rate-RTR NRTE AODV n/a .746 .755 1.03 782 .935 .836 1.03
rate-RTR_NRTE ack 178] .248 .276 | 285 | 372] 278 | .388 .257 .309 1252 .301 277 .346 243
rate RTR_NRTE _tcp 119 | 123 171 | 169 | 207 | 254 | 230 479 643 930 1.04 1.26 1.53 1.57
rate-RTR TOUT AODV n/a .00231 .002 .00944 -0074 .0045 00676| .00723
rate-RTR TOUT ack n/a .000 .00141] .000 .000 .0028 .000 .00207
rate-RTR TOUT tcp n/a .132 .0887 .151 .135 .162 .195 .508
rate-RTR TTL AODV n/a 1.58 1.47 1.61 1.89 1.61 1.88 2.20
rate-RTR TTL ack .0221 | .0185 | L0206 0174 | .0189] L0176 | .018 .0254 .0166 .0139 .0102 .0128 .0118 .0117
rate-RTR_TTL tcp 096 | 111 125 | 164 | 147 | 181 | 133 113 153 227 264 233 203 335
rate-bandwidth byterate AODV n/a 1990. 1500. 1350. 1230. 1060. 1360. 1620.
rate-bandwidth byterate ARP 36.5 39.7 26.0 31.5 32.5 31.1 46.0 155. 155. 191. 179. 191. 213. 204.
rate-bandwidth byterate MAC 2990. 2370. 2850. 2200. 3780. 3650. 2910. 3660. 3190. 3260. 3500. 3310. 4130. 3620.
rate-bandwidth byterate OLSR 660. 561. 483. 387. 317. 213. 245. n/a
rate-bandwidth byterate ack 834. 749. 1020. 1060. 1410. 1650. 1340. 1510. 1160. 944. 1030. 777. 1060. 933.
rate-bandwidth byterate tcp 11400. 10700. 12000. 10200. 15800. 16300. 14300. 20100. 16900. 16800. 18300. 19100. 22200. 23800.
rate-bandwidth packetrate AOD n/a 20.2 15.2 13.6 12.2 10.7 13.3 15.8
rate-bandwidth packetrate ARP .456 497 .325 .394 406 .389 575 1.94 1.93 2.39 2.23 2.38 2.67 2.55
rate-bandwidth packetrate MAC 72.3 58.0 69.6 54.2 92.8 90.6 72.4 89.7 77.6 78.8 85.0 80.9 101. 88.0
rate-bandwidth packetrate OLSR 9.17 7.79 6.70 5.38 4.40 2.96 3.41 n/a
rate-bandwidth packetrate ack 7.45 6.69 9.11 9.43 12.6 14.7 12.0 13.5 10.4 8.43 9.23 6.93 9.49 8.33
rate-bandwidth packetrate tcp 10.6 9.99 11.2 9.51 14.8 15.2 13.3 18.7 15.8 15.7 17.1 17.8 20.7 22.2
time-avgpacketdelay .0969 .101 .131 119 1131 .148 153 .0359 .0424 .0412 .0405 .0337 .0495 .0378

8ET

ele(uonejnwig ‘g

SUOUDINA(] PADPUDIG - 153, D], JafsunA], JO.I FEd SIqRL,

TCP Transfer Time Test - Standard Deviations

OLSR AODV
Number of simulations 31.0 30.0
count-noroutedrop 12.6 5.30
count-olsr hello 11.5 n/a
count-olsr tc 62.8 n/a
count-olsr total 64.5 n/a
count-received 191. 137.
count-sent 196. 137.
rate-IFQ — AODV n/a .000
rate-IFQ_— OLSR .0493 n/a
rate-IFQ — ack .00231 .00566
rate-IFQ — tcp .00829 .0169
rate-IFQ ARP AODV n/a .0564
rate-IFQ ARP ack .0308 .00597
rate-IFQ ARP tcp .0253 .00767
rate-IFQ END AODV n/a .014
rate-IFQ END ack .00706| .00231
rate-IFQ END tcp .0128 .002
rate-MAC — AODV n/a 3.50
rate-MAC — ARP .0703 .334
rate-MAC — OLSR 4.22 n/a
rate-MAC — ack .126 111
rate-MAC — tcp .353 312
rate-MAC BSY MAC .00879 .0215
rate-MAC COL MAC 2.64 3.58
rate-MAC RET MAC .178 .264
rate-RTR CBK ack n/a .0858
rate-RTR CBK tcp n/a .0954
rate-RTR LOOP ack .00207 .000
rate-RTR LOOP tcp .00555| .00912
rate-RTR NRTE AODV n/a .00697
rate-RTR NRTE ack .00829 .00774
rate-RTR NRTE tcp .0475 .0154
rate-RTR TOUT tcp n/a .00342
rate-RTR TTL AODV n/a 542
rate-RTR TTL ack .00532] n/a
rate-RTR TTL tcp .00896| .0134
rate-bandwidth byterate AODV n/a 302.
rate-bandwidth byterate ARP 11.7 16.7
rate-bandwidth byterate MAC 816. 1300.
rate-bandwidth byterate OLSR 764. n/a
rate-bandwidth byterate ack 274. 417.
rate-bandwidth byterate tcp 3170. 4520.
rate-bandwidth packetrate AOD n/a 2.97
rate-bandwidth packetrate ARP .146 .208
rate-bandwidth packetrate MAC 20.0 31.8
rate-bandwidth packetrate OLSR| 10.6 n/a
rate-bandwidth packetrate ack 2.45 3.73
rate-bandwidth packetrate tcp 2.96 4.21
time-avgpacketdelay .0163 .0117
time-tcptransfertime 1.29 1.16

SUDIPY - IS W] 4ofSuDL] JHJ EE € 9lqRl,

TCP Transfer Time Test - Means

OLSR AODV
Number of simulations 31.0 30.0
count-noroutedrop 17.5 13.6
count-olsr hello 6250. n/a
count-olsr tc 1640. n/a
count-olsr total 7890. n/a
count-received 5850. 6180.
count-sent 6120. 6370.
rate-IFQ — AODV n/a .004
rate-IFQ — OLSR .0424 n/a
rate-IFQ — ack .006 .012
rate-IFQ — tcp .0096 .022
rate-IFQ ARP AODV n/a .135
rate-IFQ ARP ack .0424 .00817
rate-IFQ ARP tcp .0467 .0173
rate-IFQ END AODV n/a .0301
rate-IFQ END ack .0132 .00533
rate-IFQ END tcp .032 .00533
rate-MAC — AODV n/a 29.9
rate-MAC — ARP .204 1.07
rate-MAC — OLSR 28.6 n/a
rate-MAC — ack .515 .491
rate-MAC — tcp 1.61 1.71
rate-MAC BSY MAC .0178 .0352
rate-MAC COL MAC 14.8 19.3
rate-MAC RET MAC .854 1.12
rate-RTR CBK ack n/a .278
rate-RTR CBK tcp n/a .395
rate-RTR LOOP ack .0053 .004
rate-RTR LOOP tcp .0064! .0128
rate-RTR NRTE AODV n/a .0123
rate-RTR NRTE ack .0133 .0105
rate-RTR NRTE tcp .0578 .0371
rate-RTR TOUT tcp n/a .00775
rate-RTR TTL AODV n/a 7.50
rate-RTR TTL ack .00655 n/a
rate-RTR TTL tcp .0134 .0136
rate-bandwidth byterate AODV n/a 7190.
rate-bandwidth byterate ARP 147. 180.
rate-bandwidth byterate MAC 10500. 13000.
rate-bandwidth byterate OLSR 9730. n/a
rate-bandwidth byterate ack 4120. 4810.
rate-bandwidth byterate tcp 42900. 49600.
rate-bandwidth packetrate AOD n/a 73.4
rate-bandwidth packetrate ARP 1.84 2.26
rate-bandwidth packetrate MAC 260. 320.
rate-bandwidth packetrate OLSR| 135. n/a
rate-bandwidth packetrate ack 36.8 42.9
rate-bandwidth packetrate tcp 40.0 46.3
time-avgpacketdelay .0859 116
time-tcptransfertime 3.38 3.56

6€T

Load Test - Means
OLSR AODV

0.0 5.0 10.0 15.0 20.0 25.0 50.0 75.0 100.0 0.0 | 5.0 10.0 15.0 20.0 25.0 50.0 75.0 100.0
simulations 31.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30.0 | 30.0 32.0 33.0 32.0 32.0 32.0 32.0 32.0
itedrop .000] 652. 3410. 8770. 15800. 23500. 69600. 121000. 174000. .000| 1030. 3410. 6230. 8810. 9910. 14200. 16100. 16400.
hello 6250. 6250. 6250. 6250. 6250. 6240. 6250. 6250. 6250. n/a
tc 1630. 1650. 1720. 1740. 1750. 1750. 1730. 1710. 1680. n/a
total 7880. 7900. 7960. 7990. 7990. 7990. 7980. 7950. 7930. n/a
red -000] 8170. 12400. 14400. 16100. 18000. 23200. 29300. 34600. -000| 8950. 14300. 14300. 13700. 13900. 14800. 13800. 15000.

.000]12500. 25000. 37600. 50100. 62600. 125000. 188000. 250000. .000112500. 25000. 37600. 50100. 62600. 125000. 188000. [250000.
— AODV n/a -000| .0777| .526 2.48 7.95 11.8 34.1 53.1 71.9
— ARP -000] .233 1.23 2.41 2.78 3.74 6.05 7.44 8.17 -000| .0302 .355 2.13 6.04 9.86 31.3 58.1 84.7
— OLSR .012 .906 4.17 6.51 7.23 7.90 9.34 9.36 9.23 n/a
— _cbr .000) 2.69 15.2 28.7 40.1 48.7 85.2 103. 121. .000y 1.18 15.2 45.5 82.6 116. 290. 466. 657.
\RP AODV n/a -000| .154 .5657 2.30 5.54 7.82 15.7 21.8 27.7
RP_cbr 000 147 | 4.07 | 6.79] 7.96] 9901 | 147 | 173 | 182 -000 10563 580 2.02 4.36 6.60 20.0 36.9 52.8
ND AODV n/a .000y .0284 .0308] .0274 .0333 .0388 .0771 114 .131
ND_cbr -000] 0218 032 0369 0443 0439 059 0576 0573000 004 -0044) 00514 -0045 -0054 00944 016 0218
— AODV n/a .582| 31.2 75.4 124. 165. 195. 278. 326. 365.
— ARP .000] .651 2.06 3.98 4.91 6.15 9.87 11.2 11.3 .000y 1.01 2.58 6.93 13.2 17.9 35.3 49.8 58.1
— OLSR 3.42 35.0 64.6 72.9 75.5 75.3 69.1 63.0 57.0 n/a
— cbr -000] 12.6 26.1 35.1 39.2 42.2 48.3 49.5 48.3 -000| 10.8 20.0 26.9 29.1 31.1 34.2 34.8 34.7
BSY MAC -000] .087 .382 .651 .823 .944 1.27 1.48 1.63 -000| 144 .597 .970 1.15 1.25 1.48 1.63 1.65
COL MAC .000) 19.0 78.4 123. 148. 170. 214. 228. 233. .000y 26.6 118. 194. 235, 265. 326. 351. 364.
RET MAC .000) 10.3 16.4 20.5 22.6 23.9 27.7 28.7 27.9 .000y 8.32 10.6 13.2 14.1 14.8 15.1 15.3 15.0
CBK cbr n/a -000| 7.92 9.93 12.4 14.3 16.7 29.6 46.6 62.0
IFQ AODV n/a .000 .000 .000 .0085 .0186 .0327 .154 .343 .562
IFQ cbr n/a .000y 1.06 2.39 6.11 7.96 13.8 40.9 74.9 97.5
LOOP_cbr ~000] 150 | 620] 110 | 141] 1.73 | 2.17 | 255 | 2.69 2000 169 893 2.09 2.85 4.41 7.91 10.7 113
NRTE AODV n/a -000| .0117| .105 790 2.22 2.89 4.77 5.04 5.79
NRTE cbr 000 260 | 136 | 349 | 631 | 934 | 278. | 482 | 693 000 4.10 135 24.1 33.0 36.8 52.2 59.3 59.9
TOUT AODV n/a .000y .000 .012 .004 .006 .00691) .0115 .00983 .0107
TOUT cbr n/a -000| .291 .187 .276 .216 .245 .360 .334 .338
TTL AODV n/a .000 3.07 6.36 10.1 13.2 14.7 18.3 20.1 22.8
TTL cbr .000] 193 | .38 .366 | .306 | 334 | .244] .199 | .176 .00q] .155 317 .484 .454 .504 1629 516 .337
dth byterate AODV n/a 4810. 6690. 10000. 15600. 21300. 24300. 32700. 36300. 39200.
dth byterate ARP .000] 216. 416. 583. 670. 756. 975. 1090. 1080. .00 162. 329. 655. 1040. 1300. 2300. 3060. 3600.
dth byterate MAC .00021100. 40600. 50900. 57600. 61600. 73100. 79200. 83000. .00024900. 48900. 66300. 79400. 86100. 107000. 115000. 120000.
dth byterate OLSR |9800. 9460. 8750. 7530. 6900. 6450. 5020. 4360. 3970. n/a
dth byterate cbr .000[72900. 131000. 158000. 178000. 189000. [221000. 242000. 257000. .000[90200. 159000. 193000. 214000. 224000. 273000. [293000. [298000.
dth packetrate AOD n/a 50.1 68.6 102. 157. 215. 245, 328. 364. 392.
dth packetrate ARP .000) 2.70 5.20 7.29 8.37 9.45 12.2 13.6 13.5 .00 2.03 4.11 8.19 13.0 16.2 28.8 38.3 44.9
dth packetrate MAC .000] 514. 983. 1230. 1390. 1490. 1760. 1910. 2000. .00 610. 1190. 1610. 1920. 2090. 2600. 2790. 2900.
dth packetrate OLSR | 136. 131. 122. 105. 95.8 89.6 69.7 60.5 55.1 n/a
dth_packetrate cbr 000 _125. 224, 270. 305. 324, 378. 414, 440, 000 154. | 273. | 33L [366. [384 [468 502. [511
ketdelay -000 -200 600 931 1.07 1.19 1.39 1.34 1.35 | 200 | 797 | 127 | 139 | 137 | 148 | 151 | 1.48

vt

ele(uonejnwig ‘g

Load Test - Standard Deviations

OLSR AODV

0.0 5.0 10.0 15.0 20.0 25.0 50.0 75.0 100.0 0.0 5.0 10.0 15.0 20.0 25.0 50.0 75.0 100.0
Number of simulations 31.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30.0 30.0 32.0 33.0 32.0 32.0 32.0 32.0 32.0
count-noroutedrop .000 473, 1120. 1700. 1490. 1680. 2120. 2290. 2520. .000 | 550. 643. 611. 938. 804. 1530. 1530. 1150.
count-olsr hello 9.65 13.1 10.7 9.05 8.25 9.25 11.7 12.8 10.2 n/a
count-olsr tc 73.5 56.4 65.0 61.7 60.9 64.8 58.4 53.6 42.8 n/a
count-olsr total 74.6 60.6 69.7 63.3 60.7 67.2 61.6 55.5 41.5 n/a
count-received .000 887. 1410. 1400. 1930. 1900. 2280. 2120. 2970. .000 | 784. 1850. 1730. 2040. 2310. 2240. 2300. 1900.
count-sent .000 1.52 2.14 2.88 3.22 3.59 5.90 6.82 6.04 .000 1.74 2.86 3.08 2.26 3.26 5.39 6.41 8.55
rate-IFQ — AODV n/a -000 .0625 .326 1.04 3.95 3.73 6.62 11.0 9.89
rate-IFQ — ARP .000 .223 .461 .567 .866 911 1.44 1.62 1.81 .000 .0391 .247 .937 2.65 2.33 6.21 15.1 12.7
rate-IFQ — OLSR .0056 .451 .899 1.31 1.32 1.42 1.39 1.05 .931 n/a
rate-IFQ — cbr .000 1.68 2.75 3.91 5.28 6.45 10.2 9.15 11.0 .000 1.02 4.02 5.76 8.60 10.3 19.2 19.8 30.6
rate-IFQ ARP AODV n/a .000 .0761 217 .876 2.40 2.27 3.82 5.94 5.31
rate-IFQ_ARP _cbr 000 | 618 | 994 [105 | 177 | 1901 | 271 | 277 | 292 | .000 10523 293 666 143 141 3.54 8.36 7.23
rate-IFQ END AODV n/a .000 .015 .0114 .0114 .0129 .0159 .0216 .0491 .042
rate-IFQ_END_cbr 000 | 00844 00053 ___.012]] 0114 0175 0179 0179 0163000 -000 -00126 -00199 00147 -0023 -00502 .0082 0127
rate-MAC — AODV n/a .105 5.13 9.22 17.9 28.2 28.9 34.5 42.0 32.4
rate-MAC — ARP .000 .349 .621 974 1.38 1.84 2.18 2.10 1.97 .000 .350 .804 1.69 4.40 4.75 7.48 13.2 8.40
rate-MAC — OLSR .822 4.95 11.3 10.6 10.7 11.4 7.95 6.14 3.83 n/a
rate-MAC — cbr .000 2.18 3.78 4.08 4.41 4.10 3.78 2.79 3.82 .000 1.54 3.05 3.21 2.95 3.13 3.24 2.87 3.41
rate-MAC BSY MAC .000 .0436 .0936 117 .155 113 .136 .224 .180 .000 .105 .135 .124 .156 .203 .189 .206 221
rate-MAC COL MAC .000 6.75 15.6 15.9 15.6 21.0 16.3 15.7 19.9 .000 9.14 17.3 17.6 15.1 15.8 19.7 15.2 19.2
rate-MAC RET MAC .000 1.71 1.80 1.99 1.98 2.27 2.48 1.34 2.00 .000 1.27 1.31 1.32 .896 1.35 1.09 1.17 1.29
rate-RTR CBK cbr n/a .000 1.19 1.26 1.44 1.27 1.82 3.51 8.61 7.53
rate-RTR IFQ AODV n/a .000 .000 .000 .00542) .0201 .0209 .0562 .106 .150
rate-RTR IFQ cbr n/a .000 1.06 2.24 3.33 3.44 5.16 15.7 15.3 21.5
rate-RTR_LOOP cbr 000 | 127 | 279 | 452 | 447 | 589] 501 | 644 | 625 | 000 361 873 167 1.42 2.32 2.23 2.73 2.60
rate-RTR NRTE AODV n/a .000 .0061 .0732 .458 .940 .913 1.14 719 .905
rate RTR_NRTE_cbr 000 | 189 [447 | 677 | 602 | 673 | 854 | 934 | 998 | .000 | 2.20 2.55 2.45 3.81 3.44 6.48 6.29 4.59
rate-RTR TOUT AODV n/a .000 .000 .000 .000 .00231 .0040. .0117 .0062. .00842
rate-RTR TOUT cbr n/a .000 .107 .0462 212 123 .199 .300 .210 .230
rate-RTR TTL AODV n/a .000 .396 .851 1.75 2.25 2.07 1.84 1.90 1.78
rate RTR_TTL cbr 000 [119 | 120 | 154 0945 127] 103] 104 | .0685__.000 227 427 446 384 469 478 340 235
rate-bandwidth byterate AODV n/a 4.27 | 430. 1020. 1590. 2600. 2360. 2110. 1040. 1300.
rate-bandwidth byterate ARP .000 46.3 67.0 67.4 103. 111. 136. 120. 127. .000 26.2 58.5 107. 235. 217. 340. 447. 419.
rate-bandwidth byterate MAC .000 [2300. 3110. 3110. 3240. 3280. 2430. 4010. 4250. .000 [2730. 3940. 3520. 3500. 4220. 4760. 4650. 3970.
rate-bandwidth byterate OLSR [784. 770. 718. 498. 365. 413. 275. 234. 169. n/a
rate-bandwidth byterate cbr .000 [7200. 10100. 9940. 10900. 10800. 9680. 14400. 16500. .000 {8050. 12400. 15000. 15300. 19400. 21800. 20200. 19100.
rate-bandwidth packetrate AOD n/a .0445(4.28 10.2 16.0 26.3 23.9 21.7 10.5 13.4
rate-bandwidth packetrate ARP .000 .579 .838 .842 1.29 1.39 1.70 1.50 1.59 .000 .327 731 1.33 2.94 2.71 4.25 5.59 5.24
rate-bandwidth packetrate MAC .000 55.4 75.0 74.6 78.1 78.9 58.8 97.6 104. .000 65.9 95.5 85.9 84.3 103. 116. 114. 96.8
rate-bandwidth packetrate OLSR| 10.9 10.7 9.98 6.91 5.07 5.74 3.82 3.25 2.35 n/a
rate-bandwidth _packetrate cbr 000 | 123 173 17.0 8.7 18.6 16.6 24.6 28.3 000 138 | 212 258 | 261 | 332 | 374 | 345 | 326
time-avgpacketdelay -000 101 171 167 224 230 268 202 180 | 000 | 107 | 218 187 | 231 | 180 | 188 | 71| 185

4!

SUOUDIA(] PIDPUDIS - 1S9T, 429N € €l OIqRT,

Cluster Test - Standard Deviations

OLSR AODV
Number of simulations 31.0 32.0
count-noroutedrop 9310. 1650.
count-olsr hello 7.58 n/a
count-olsr tc 112. n/a
count-olsr total 113. n/a
count-received 6100. 4410.
count-sent 440. 310.
rate-IFQ — AODV n/a 1.32
rate-IFQ — ARP 571 523
rate-IFQ — OLSR 792 n/a
rate-IFQ — ack .0457 .0681
rate-IFQ — cbr 23.5 40.9
rate-IFQ — tcp .204 .282
rate-IFQ ARP AODV n/a .149
rate-IFQ ARP ack .00828| .00669
rate-IFQ ARP cbr 1.01 465
rate-IFQ ARP tcp .00685| .0075
rate-IFQ END AODV n/a .00261
rate-IFQ END ack .00283| .000
rate-IFQ END cbr .00566| .00283
rate-IFQ END tcp .000 .000
rate-MAC — AODV n/a 9.48
rate-MAC — ARP .217 779
rate-MAC — OLSR 6.23 n/a
rate-MAC — ack .080 .0853
rate-MAC — cbr 3.76 4.53
rate-MAC — tcp .496 430
rate-MAC BSY MAC 211 .226
rate-MAC COL MAC 48.6 52.7
rate-MAC RET MAC 1.72 1.79
rate-RTR CBK ack n/a .0423
rate-RTR CBK cbr n/a 1.95
rate-RTR CBK tcp n/a .0652
rate-RTR IFQ AODV n/a .0107
rate-RTR IFQ ack n/a .00833
rate-RTR IFQ cbr n/a 37.1
rate-RTR IFQ tcp n/a .202
rate-RTR LOOP ack .00564 .00295
rate-RTR LOOP cbr -809 2.90
rate-RTR LOOP tcp .0114 .0135
rate-RTR NRTE AODV n/a .0755
rate-RTR NRTE ack .0514 .0123
rate-RTR NRTE cbr 37.1 6.53
rate-RTR NRTE tcp .344 .0564
rate-RTR TOUT AODV n/a .000
rate-RTR TOUT cbr n/a .628
rate-RTR TOUT tcp n/a .0306
rate-RTR TTL AODV n/a 1.06
rate-RTR TTL ack .00905| .00298
rate-RTR TTL cbr .328 1.09
rate-RTR TTL tcp 734 .0136
rate-bandwidth byterate AODV n/a 976.
rate-bandwidth byterate ARP 46.0 62.5
rate-bandwidth byterate MAC 15300. 12000.
rate-bandwidth byterate OLSR 545. n/a
rate-bandwidth byterate ack 292. 270.
rate-bandwidth byterate cbr 13000. 9360.
rate-bandwidth byterate tcp 3160. 2850.
rate-bandwidth packetrate AOD n/a 9.90
rate-bandwidth packetrate ARP 575 781
rate-bandwidth packetrate MAC 375. 292,
rate-bandwidth packetrate OLSR 7.56 n/a
rate-bandwidth packetrate ack 2.60 2.41
rate-bandwidth packetrate cbr 95.7 68.8
rate-bandwidth packetrate tcp 2.94 2.66
time-avgpacketdelay 151 .203

"SUDIPY - 1S9 493Sn)) T Le ¢ 9IqRL,

Cluster Test - Means

OLSR AODV
Number of simulations 31.0 32.0
count-noroutedrop 138000. 4300.
count-olsr hello 4130. n/a
count-olsr tc 910. n/a
count-olsr total 5040. n/a
count-received 134900. 33600.
count-sent [90500. 90300.
rate-IFQ — AODV n/a 2.37
rate-IFQ — ARP 747 678
rate-IFQ — OLSR 1.88 n/a
rate-IFQ — ack .083 .195
rate-IFQ — cbr 56.9 135.
rate-IFQ — tcp 417 922
rate-IFQ ARP AODV n/a .293
rate-IFQ ARP ack .012 .0102
rate-IFQ ARP cbr 1.60 758
rate-IFQ ARP tcp .0135 .0106
rate-IFQ END AODV n/a .00533
rate-IFQ END ack .006 .004
rate-IFQ END cbr .006 .006
rate-IFQ END tcp .004 .004
rate-MAC — AODV n/a 50.7
rate-MAC — ARP .421 1.06
rate-MAC — OLSR 16.7 n/a
rate-MAC — ack .218 .259
rate-MAC — cbr 17.7 20.4
rate-MAC — tcp 1.16 1.43
rate-MAC BSY MAC 470 793
rate-MAC COL MAC 120. 229.
rate-MAC RET MAC 9.63 6.60
rate-RTR CBK ack n/a .092
rate-RTR CBK cbr n/a 6.61
rate-RTR CBK tcp n/a .188
rate-RTR IFQ AODV n/a .0185
rate-RTR IFQ ack n/a .0128
rate-RTR IFQ cbr n/a 59.4
rate-RTR IFQ tcp n/a .337
rate-RTR LOOP ack .0075 .0076
rate-RTR LOOP cbr 1.16 3.76
rate-RTR LOOP tcp .00975 .024
rate-RTR NRTE AODV n/a .0983
rate-RTR NRTE ack 115 .0268
rate-RTR NRTE cbr 151. 16.9
rate-RTR NRTE tcp 1.13 151
rate-RTR TOUT AODV n/a .004
rate-RTR TOUT cbr n/a 794
rate-RTR TOUT tcp n/a .0274
rate-RTR TTL AODV n/a 5.13
rate-RTR TTL ack .0144 .0055
rate-RTR TTL cbr .692 1.41
rate-RTR TTL tcp .929 .0173
rate-bandwidth byterate AODV n/a 10900.
rate-bandwidth byterate ARP 135. 180.
rate-bandwidth byterate MAC [75700. 104000.
rate-bandwidth byterate OLSR 3200. n/a
rate-bandwidth byterate ack 1410. 1410.
rate-bandwidth byterate cbr 165600. 85200.
rate-bandwidth byterate tcp 16000. 18000.
rate-bandwidth packetrate AOD! n/a 109.
rate-bandwidth packetrate ARP 1.69 2.25
rate-bandwidth packetrate MAC [1860. 2550.
rate-bandwidth packetrate OLSR 44.4 n/a
rate-bandwidth packetrate ack 12.6 12.6
rate-bandwidth packetrate cbr 482. 626.
rate-bandwidth packetrate tcp 14.9 16.7
time-avgpacketdelay .390 770

44!

ele(uonejnwig ‘g

