
I NSTITUTE OF COMPUTER SCIENCE
AALBORG UNIVERSITY d
Fredrik Bajersvej 7E 9220 Aalborg Ø, Tlf: +45 96 35 80 80 Fax: +45 98 15 98 89

Title:
Garbage Collection in a gbeta Virtual Ma-
chine with the Train Algorithm

Project Unit:
F10SE,
Feb. 1th 2000 – June. 18th 2001

Group:
E3211B

Group Members:
Peer Møller Ilsøe
Simon Hem Pedersen

Supervisor:
Erik Ernst

Copies: 4

Pages: 145

Abstract

In this project a virtual machine, gbvm, with a
unique train algorithm garbage collector is imple-
mented for the programming language gbeta.
The main focus of this thesis is memory manage-
ment using the train algorithm and experiments with
the implementation.
Firstly, this thesis introduces relevant theories and
work including an introduction to gbeta, a overview
of virtual machine architectures, and descriptions of
garbage collection concepts, properties, and algo-
rithms.
Secondly, the design and implementation details of
gbvm are presented
Thirdly, experiments investigating the performance
of both parameter but also algorithm changes of the
train algorithm are conducted and discussed. The
experimental framework implemented for this the-
sis allows for further experiments with gbvm.
Finally, it is concluded that it is difficult to find a
fixed general setting, which is both time and space
efficient with all the tested programs.

Resume

Dette afgangsprojekt dokumenterer udviklingen af gbvm – engbeta virtuel maskine med en unik train-
algoritme garbage collector. gbeta er en generalisering afprogrammingssproget BETA. gbeta tilbyder de
samme faciliteter som BETA, men derudover er mere udtryksfulde abstraktionsmekanismer og større run-
time fleksibilitet tilføjet.

I den nuværende implementation af gbeta er den virtuelle maskine inkorporeret i kompileren, hvilket giver
et ineffektivt system, hvor det erumuligt at kompilere en gang og derefter afvikle mange gange uden
genkompilering. Dette motiverer en seperat virtuel maskine, som gør det muligt at afvikle et program uden
at gentage kompileringsfasen. I dette afgangsprojekt dokumenteres designet og implementationen af sådan
en virtuel maskine kaldet gbvm.

Hovedfokus i dette afgangsprojekt er memory management vedhjælp af train algoritmen. En memory
manager med en unik train algoritme garbage collector er designet og implementeret. Der er udført eksperi-
menter med gbvm, og det framework der ligger bag ved disse eksperimenter gør det muligt at fortsætte med
flere eksperimenter. Eksperimenterne fokuserer på hvordan både ændringer af forskellige implementations-
parametre, men også selve algoritmen, kan påvirke plads og tidseffektiviteten. Derudover sammenlignes
gbvm med andre gbeta afviklingssystemer.

Indholdet af dette afgangsprojekt er opdelt i tre hoveddele. Den første del dokumenterer vores studier i
materiale, som er relevant for dette afgangsprojekt. Her introduceres gbeta med dets forskellige modelle-
ringsentiteter og byte kode format. Derefter præsenteres tre forskellige arkitekturer for virtuelle maskiner
og til sidst forskellige aspekter af memory management.

Anden del dokumenterer design og implementation af vores virtuelle maskine modul og vores memory
management modul. I disse kapitler er der undervejs knyttetevaluerende kommentarer, hvor vi har fundet
det relevant.

I den tredje del dokumenteres en række eksperimenter med gbvm, og vi kommer frem til hvilken indvirk-
ning introductory space og car størrelser i heapen og forskellige oprettelsesstrategier for nye trains har på
tids- og pladsperformance.

Afsluttende beskrives relaterede virtuelle maskiner og kommende arbejde. Vi konkluderer, at det at svært
at finde en god kombination af introductory space og car størrelse, og at den nyeste af de to foreslåede
oprettelsesstrategier for nye trains er den bedste.

III

Preface

This report is a master’s thesis in computer science, programming systems. The report is directed towards
people with interests in object oriented programming languages, virtual machine design and implementa-
tion, and especially memory management using the train algorithm.

A complete bibliography is located in the back of the report.References to the bibliography are made
with square brackets e.g., [Ern99, p42] which refers to the Ph.D. thesis “gbeta - a Language with Virtual
Attributes, Block Structures, and Propagating, Dynamic Inheritance” page 42. The references are not
allways annotated with page numbers.

References to figures are made as (see figure x.y), where x represents the chapter and y is a consecutive
number in that chapter. The same applies to tables.

Some typography in the text is used to clarify the meaning. When a new concept is introduced the word
is typesetnew concept, class names are typesetClassName , and methods, attributes, and other things
referring to code are typesetmethod . When a variable is a pointer to a class (ClassName), its type is
abbreviatedclassNamePtr . An index in the back shows where in the report new concepts are introduced
and explained.

We have included a CD-ROM with this thesis that contains: thesource code, the graphs of the experiments,
and the data which form the basis for these graphs. A file called READMEon the CD-ROM further describes
the contents of this CD-ROM.

We would like to thank Ricki Jensen, Christian Jørgensen, and Michael Wojciechowski for letting us use
their benchmark programs and gbeta virtual machine for comparison.

Peer Møller Ilsøe Simon Hem Pedersen

Trademark notice
JavaTM is a trademark of Sun Microsystems, Inc.
HotSpotTM is a trademark of Sun Microsystems, Inc.
Purify is a trademark of Rational Software Corporation

V

Contents

1. Introduction 1

1.1. Hypothesis 1

1.2. Contributions 2

1.3. Thesis Structure 2

2. gbeta 5

2.1. gbeta Entities 5

2.2. gbeta Byte Code 9

3. Virtual Machine Architectures 15

3.1. Interpreting Byte Codes 16

3.2. Just in Time Compilation 16

3.3. Dynamic Compilation 17

3.4. Architecture Comparison 18

4. Memory Management 19

4.1. Garbage Collection Algorithm Properties and Concepts. 19

4.2. Garbage Collection Algorithms 21

5. The Virtual Machine 27

5.1. Thread - Scheduler Interface 30

5.2. Obtaining Safe Points 31

5.3. New Special Instructions 34

5.4. Attribute Initialization 36

5.5. Multi-Line Instructions 41

5.6. Complex Single-Line Instructions 45

5.7. Virtual Machine Evaluation 46

6. The Memory Manager 49

6.1. Architecture 51

6.2. Stack Space 52

VII

VIII Contents

6.3. Introductory Space 52

6.4. Train Space 53

6.5. Remembered Sets 57

6.6. Object Descriptors 58

6.7. VMObject Layout 58

6.8. The Garbage Collection Algorithm 60

6.9. The Write Barrier 63

6.10. Interface 64

6.11. Debugging Memory Management Systems 66

7. Experiments 69

7.1. Performance Criteria 69

7.2. Possibilities for Analyzing Our System 70

7.3. Methodology 71

7.4. Space Utilization in Cars and Introductory Space 74

7.5. Time Performance 84

7.6. New Train Policy 88

7.7. Speed Comparison 92

7.8. Write Barrier 93

7.9. Profiling 95

7.10. GBVM vs. JVM 96

7.11. Discussion of the Results 98

8. Related Work 101

8.1. HotSpot 101

8.2. Intel’s Open Runtime Platform 102

8.3. The Incremental BETA collector 102

8.4. GBVM .. 103

9. Future Work 105

10.Conclusion 107

A. Test Programs 109

B. The Test Machine 121

C. Graphs 123

1. Introduction

This master’s thesis is devoted to three main areas: The programming language gbeta, implementation
and design of virtual machines, and memory management. Memory management and especially the train
algorithm is the main focus.

gbeta was developed by Erik Ernst, Assistant Professor at Aalborg University. It is a modern object ori-
ented programming language, which implements a superset ofthe programming language BETA. gbeta
combines static type safety with dynamic inheritance, i.e., it combines the design goals safety and flex-
ibility. gbeta has a higher level of run-time flexibility compared to BETA. For instance it is possible at
run-time to combine two methods into a new method, and one candynamically change the class of an ob-
ject. The increased run-time flexibility combined with static type safety in gbeta increases the complexity
and requirements for the compiler and the run-time system.

So far the work put into the gbeta project has concentrated onthe design and implementation of the front-
end of the language, i.e., the gbeta compiler. With respect to the back-end, i.e., the run-time system
including, e.g., a virtual machine, automatic memory management, etc., a large amount of research and
development still has to be done, but [JJW01] and this thesisare a start.

Automatic memory management is a optional part of a run-timesystem. If no automatic memory man-
agement system is present, the application programmer has to incorporate complicated and error-prone
memory management into each application developed – if we assume that he does not want to just use
memory until it depleted. Automatic memory managers solvesthe problem by ensuring that objects no
longer needed are reclaimed.

Many different memory management strategies have been proposed. One of them is the train algorithm.
The main purpose of the train algorithm is to ensure low mean time disruptions while still eventually
reclaiming all unneeded objects.

In [IP01] we implemented a memory management component thatused our first implementation of the
train algorithm. We also implemented the core of a virtual machine which used the memory management
component, but they were not working well when joined.

The evaluation of the first virtual machine implementation gave us reason to change the design and end up
with a more functional virtual machine, which actually had safe points between each instruction execution.

The evaluation of the first implemented memory management component also gave reason to a redesign
and reimplementation of a new and improved train algorithm garbage collecting memory management
system.

1.1. Hypothesis

Other systems with a train algorithm garbage collector use aone- or even n-generation copy collector in
the generation before the generation with train algorithm (see chapter 8). We would like to explore what
happens, if no such copy collector is present. A simpler approach could both be easier to maintain and
debug but most importantly, it could also yield better performance. Our idea is that the train algorithm
extended with an extra special car (called introductory space) is enough to yield both good performance
and relatively low disruption times.

1

2 Chapter 1. Introduction

1.2. Contributions

The main contribution is our investigation of the train algorithm and how it might be set up differently. This
includes the unique experiments conducted on our train algorithm memory manager, and the framework
used to conduct these experiments. Since we have used scripts to conduct the experiments and create the
resulting graphs, it is possible to further experiment using the framework developed as a part of this thesis.

Another contribution is the virtual machine component. Although the virtual machine component has not
been the main focus in this thesis, we have implemented a competitive virtual machine capable of executing
most gbeta programs without repetitions and concurrency.

1.3. Thesis Structure

Related Work

Future Work

Conclusion

Memory Management

Virtual Machine Arhitectures

gbeta

Presenting relevant theory

Introduction

Memory Manager

Virtual Machine Experiments

Design and Implementation

Figure 1.1.:The structure of this thesis

Our thesis structure is illustrated in figure 1.1. After thisintroduction we present relevant theory about
the areas: gbeta, virtual machine architectures, and memory management. We present both the gbeta
language and its byte code format. Then three different virtual machine architectures are presented and
briefly compared. The theory part ends with a presentation ofmemory management concepts, properties,
and a number of different garbage collection algorithms including the train algorithm is presented with
their advantages and disadvantages.

We then present the design and implementation details of thevirtual machine component (see chapter 5).
In this chapter we describe the architecture of the virtual machine, describe interfaces, and explain how we
have redesigned the virtual machine to allow for copy collection during both normal instruction execution
and attribute initialization. In the end of the chapter we describe how the instructions were implemented,
especially the multi-line instructions and complex single-line instructions. Finally we conclude with a short
evaluation of the current implementation.

The design and implementation details of the memory management component are then presented in chap-
ter 6. We present the unique heap layout, the architecture ofthe component, the data structures, the most
important classes, and conclude with a description of our version of the train algorithm and its write barrier.
Then we describe the interface of the component. At last we describe how we used different debugging
techniques and tools to make the tedious task of debugging the whole system (called gbvm) more endurable.

Experiments with gbvm, and in particular the memory management system is presented in chapter 7. In
this chapter we investigate the interrelation between different introductory space and car sizes in our heap,
and time and space performance. Then we experiment with two different new train creation policies and
compare their effects on performance. We have also conducted experiments that quantifies the time used in
our write barrier, and other experiments that compare gbvm with other gbeta executing systems and with
the Java HotSpot virtual machine. To give an idea of how much time is spent in the different parts of gbvm,
we have also profiled it usinggprof [GKM82].

The thesis ends with a chapter describing related work. In this chapter we focus on related run-time
systems that use the train algorithm. Before the conclusion(see chapter 10) we present proposals for future
work (see chapter 9).

1.3. Thesis Structure 3

You can read this thesis in several ways. The best way is of course to read it all, but if you are familiar with
the theory presented, i.e., the gbeta language, virtual machine architectures, and memory management,
you may skip the chapters 2, 3, and 4. As the main focus in this thesis is memory management using
the train algorithm, it is also possible to skip chapter 5, ifyou are not interested in details of our virtual
machine component. We do not recommend skipping chapter 5 though, since an understanding of the
virtual machine component is important to fully understandthe memory management component and the
experiments conducted in chapter 7.

4 Chapter 1. Introduction

2. gbeta

gbeta is a generalization of the programming language BETA.gbeta generalizes BETA in two main areas
namely more expressive abstraction mechanisms, and an improvement of the run-time flexibility without
compromising the type safety. That gbeta is a generalization of BETA means that it implements a superset
of BETA so every BETA program is also a gbeta program but in gbeta it is possible to write programs that
exploit the extra features in gbeta not supported in BETA.

One of the extra features of gbeta is the possibility to do object metamorphism i.e., it is possible at run-
time to take an existing object and modify its structure until it is an instance of a given class. Another extra
feature in gbeta is the possibility to define relations between classes and in this way define a constraint
graph of classes. The constraint graph ensures that these relations hold implying that one inheritance
operation may give rise to a propagation of type changes in a framework of classes.

Since gbeta is an ongoing research project some parts of thischapter may be obsolete. In this chapter we
introduce the language and the entities that a run-time system, supporting execution of gbeta programs,
must handle. Then a second section describes the gbeta byte code format and the special way of addressing
using run-time paths.

2.1. gbeta Entities

Figure 2.1 is a class diagram of the entities of a gbeta environment. In this section they will be described
shortly in turn. For a more thorough explanation of gbeta entities and syntax see [Ern00] or [Ern99].

Pattern

Object

PredefinedMixinMainPart

Mixin

Attribute

AttributeListInstructionList
11

1

11

1

1
1

0..*

2

attributesdopart

PatternReference
1 qualification

value qualification

1
ObjectReference

1

1

1
value

AttributeInstance
0..*

mixin

1 origin1mainpart

1

PartObject

PredefinedPartObject UserPartObject

0..*

1

0..*

Instruction
0..*

Figure 2.1.:A class diagram of the gbeta entities to be handled by the virtual machine.
AttributeInstance is super class for the classesObject, Object-
Reference, Pattern, andPatternReference

5

6 Chapter 2. gbeta

2.1.1. Mixin

A gbeta pattern is divided into mixins. Amixin, in a pattern, describes how to create one of the part
object(s) in an object instance of the pattern.

A pattern consists of several mixins if specialization is used. The patternr described in the syntax below
consists of three mixins because it is a specialisation ofq which again is a specialisation ofp. So, one
mixin is the difference between a pattern and its superpattern as long as only single inheritance is used.
Returning to the example, the substance described in the main-part after thep in the definition ofq is the
mixin describing the difference between the patternq and its superpatternp.

p : (# #);
q: p(# a: @integer #);
r: q(# #);

2.1.2. Pattern

A gbetapatternhandles every aspect of structure description. Every time substance (i.e., an object) is
created in gbeta it is created according to some gbeta pattern. A gbeta pattern also specifies a run-time
context namely its enclosing part object(s). Two patterns with the same syntax can therefore be different
because they have different origins i.e., enclosing part object(s).

Because different patterns can have a different number of mixins, their size vary.

Syntactically a pattern is described as:

<Name> : <Merge>

Where <Name> is an identifier and<Merge> is a main-part, an identifier, or as & t & ... &
z -like expression. Heres & t is the pattern resulting from apattern mergeof the to patternss andt . In
figure 2.2 the patternss andt are merged. The figure also illustrates the concept subpattern. A patternu
is asubpatternof a patterns if and only if the mixin list ofs can be obtained by removing zero or more
mixins from the mixin list ofu. In the figure the patterns & t is a subpattern of both the patterns and
the patternt . Correspondingly, a patternu is asuperpatternof a patterns if and only if the mixin list ofs
can be obtained by adding zero or more mixins to the mixin listof u.

&

α α

δ β

γφ

γ η η

γ

φ

δ

β

α

direction
more specific

direction
more general

mixin list

=

s t s & t

Figure 2.2.:Illustration of pattern merging (s & t) between the patternss andt

The merge algorithm can be described as the functionmerge(s,t) which takes two patterns and returns
a pattern merge of them if possible. In the pseudo code ofmerge(s,t) in figure 2.3, thelowest(s)

2.1. gbeta Entities 7

function returns the most specific mixin of the patterns , which has not yet been used in the merge op-
eration. u is the result of the pattern merge ofs andt . Moving adds in the general end of the resulting
pattern.

merge(s,t) f
while(s not empty or t not empty) f

if(lowest(s) == lowest(t) f
move lowest(s) to u
remove lowest(t)g

else if(lowest(t) =2 s move lowest(t) to u
else if(lowest(s) =2 t move lowest(s) to u
else give upg

return ug
Figure 2.3.:The merge algorithm

Below is an example of a specification of a patternp with a nested pattern (nestedEmptyPattern):

p: (# nestedEmptyPattern: (# #)
#);

2.1.3. Object

Objectsare instances of patterns. They are described syntactically with an@:

<Names> : @ <Merge>

Where <Names> is a comma-separated list of one or more identifiers. If e.g.,an instance of the patternr
(see subsection 2.1.1) is wanted, it is written in gbeta as:

instanceOfPatternR : @r;

An object consists of a number of part objects, one for each mixin in its pattern, so an instantiation of the
patternr results in an object (instanceOfPatternR) with three part objects.

2.1.4. Part Object

Part objectsare instances of mixins. A part object consists of a number ofattributes, one for each attribute
in the main-part of its mixin. Because part objects can contain different numbers of attributes, different
part objects can have different sizes.

2.1.5. Main-Part

A main-partis the main piece of syntax used to construct gbeta programs.It consists of the delimiters(# ,
#) and four optional parts:

8 Chapter 2. gbeta

(# <attributes>
enter <evaluation>
do <imperatives>
exit <evaluation>
#)

where <attributes> is a list of attributes each syntactically described as:

<Name> : <Clarifiers> <AttributeDenotation>

The <Clarifiers> can be one or a combination of the reserved characters: ’ ’, @,j,ˆand ##. The<Attribute-
Denotation> specifies the qualification of the attribute, i.e., it is a type constraint on the attribute when one
of the clarifiers ˆ , ĵ , or ## is used. It is more like an initialisation expression for non-variable attributes
expressed with the ’ ’, @, and @j clarifiers.

Theenter-partcan be compared to the initialization part of an object’s constructor in other object oriented
languages or the parameters of a method. It describes how many parameters this main-part instantiated
into a method invocation takes when executed, and it also defines the semantics of value assignment to an
object instance of this main-part.

The do-part can be compared to the body of a method, i.e., the code an instantiation of this main-part
executes.

Finally, theexit-part can be compared to the specification of what is returned by a method. It describes
what is returned when a method invocation instance this main-part is executed. The exit-part also defines
the semantics of value extraction from an object instantiation associated with this main-part.

The gbeta compiler compiles main-parts into a list of attributes containing initialisation byte code instruc-
tions for each attribute and a list of byte code instructionscorresponding to the do-part. The enter- and
exit-part are present as byte code instructions in places inthe byte code of the program where the main-part
is used.

2.1.6. Pattern and Object References

To make an attribute in a main-part a reference to an object the ˆcharacter is used and to make it a refer-
ence to a pattern, ## is used. For instance,object ref is an object reference to an integer object and
pattern ref is a pattern reference to the patternp in the following example:

object_ref : ˆinteger;
pattern_ref : ##p;

2.2. gbeta Byte Code 9

2.2. gbeta Byte Code

gbeta byte code differs from other types of byte code like p-code [Nel79], java bytecode [LY97], and
Smalltalk bytecode [GR89], in more than one way. First of allit is not reallybytecode in the sense that
each opcode is a byte. It is more like a high-level human readable ascii assembly language. Secondly, it
has got multi-line instructions with block structures thatcan be nested instead of labels and jumps. Thirdly,
addressing is based on run-time paths.

2.2.1. Byte Code File Format

A gbeta byte code file is identified by its .gbc filename suffix and the contents are built from the following
grammar. We have omitted the actual instructions since there are too many to mention, and the point here is
the structure of the file rather than the instructions. The instruction will be discussed in the later subsections
2.2.3, 2.2.4, and in chapter 5 several of them are described more thoroughly. Line breaks are important for
parsing a gbeta byte code file, but are omitted in the grammar for clarity. <filepath> is a standard Unix
file path and it is only included when the source program has been divided into more than one file.

<byteCodeFile> ::= <mainPart> *
<mainPart> ::= ’MainPart(" ’ <mainPartId> ’ " ’ <attribute> * ’ | ’ <doPart> ’) ’

<mainPartId> ::= ’ ‘ ’ (<filepath> ’ : ’)? <int>
<attribute> ::= ’" ’ <nameAndIndex> ’ ": (’ <instruction> * ’) ’

<instruction> ::= <singleLineInstruction>  <MultiLineInstruction>
<doPart> ::= <instruction> *

<nameAndIndex> ::= <name> ’ / ’ <int>
<name> ::= [a-z A-Z] [a-zA-Z0-9]*

<int> ::= [0-9]+

Bytecode File Example

An example of a gbeta byte code file (remoteInsertBug.gbc from the nodist directory of the 0.81 distribu-
tion) is in figure 2.4. We will not explain what the program actually does – the important thing here is the
structure of the code.

10 Chapter 2. gbeta

MainPart("‘176"
"x/0": (

PUSH-ptn_"object"
ADD-mainpart ‘70 origin
NEW,_ptn->obj
INSTALL-obj

)
|

PUSH-ptn "x/0","p/0"
ADD-mainpart ‘148 origin
NEW,_ptn->tmp 1
CALL tmp(1)
RESETFRAME

)
MainPart("‘70"

"p/0": (
PUSH-ptn_"object"
ADD-mainpart ‘44 origin
INSTALL-ptn

)
|
)
MainPart("‘44"
|

INNER 0
)
MainPart("‘148"
|

PUSHI-string "Hello, world!"
stdio/out
RESETFRAME

)

Figure 2.4.:Example of gbc byte code file (remoteInsertBug.gbc from 0.81gbeta distribution)

A byte code file is executed by executing the first gbc-main-part in the file which is the result of compiling
the outer most gbeta main-part. This involves creating a mixin, a pattern, and instantiating the pattern
before the do-part is executed.

2.2.2. Run-Time Paths

The gbeta byte code usesrun-time pathsto access patterns, objects, and part objects in the gbeta run-time
system. Evaluation of a run-time path is always performed incontext of a current-part-object. The abstract
syntax definition for the run-time path,<rtp> , is given in the following:

2.2. gbeta Byte Code 11

<rtp> ::= ’f’ <step> (’ , ’ <step>)* ’ g’
<step> ::= <out>  <up>  <down>  <lookup>  <lookupIndirect>  <temp>
<out> ::= ’<- ’ <int>
<up> ::= ’ ˆ ’ <mainPartId>

<down> ::= ’v ’ <mainPartId>
<lookup> ::= ’" ’ <nameAndIndex> ’ " ’

<lookupIndirect> ::= ’ ’ ’ <nameAndIndex> ’ ’ ’
<temp> ::= ’ temp(’ <int> ’) ’

<mainPartId> ::= ’ ‘ ’ (<filepath> ’ : ’)? <int>
<nameAndIndex> ::= <name> ’ / ’ <int>

<name> ::= [a-z A-Z] [a-zA-Z0-9]*
<int> ::= [0-9]+

In the following two subsections we will clarify the semantics of these run-time steps. There are two
fundamental kinds of run-time path traversals. The first kind, which is used in the instructionsINNERand
ADD-mainpart , consists of steps which start with a step that returns a partobject. The following steps
operate on a part object from the previous step and return a part object either for the next step or the final
result. We call these stepspart-object-stepsand these will be discussed in the following subsubsection.

The other type, which is used by the other instructions utilizing run-time paths, varies slightly in that it
terminates its run-time path traversal with a special run-time step evaluation. We call such stepslast-steps
and discuss them further in the subsubsection following thepart-object-steps. The steps prior to the last-
step are evaluated like the part-object-steps.

Part-object-steps

out-step (<- <int>) goes to the surrounding part object<int> number of times starting from
current-part-object.

up-step (ˆ <mainPartId>) searches for the part object with<mainPartId> in the “more general”
direction of the part object list, starting with the current-part-object.

down-step (v <mainPartId>) is like the up-step but search for the part object is in the “more specific”
direction instead.

lookup-step (" <nameAndIndex>") takes the current-part-object and selects the attribute placed at
the given index. This attribute is statically known to be an object. The most specific part object of
the that object is selected. (<name> is debug info)

lookupIndirect-step (’ <nameAndIndex>’) chooses the attribute at<int> which is statically
known to be an object reference. The most specific part objectof the referenced object is selected.
If the value of the object reference is NONE, a run-time erroris raised and the currently executing
gbeta-thread is killed.

temp-step (temp(<int>)) takes the current frame on the temp stack and returns the mostspecific
part object in the object at<int> relative to the start of the frame (see figure 2.5).

Last-Steps

In addition to their part-object-step relatives, a last-step makes sure an object or a pattern is returned while
no part object is ever returned.

out-step, up-step, and down-step are all like their corresponding part-object-steps, but when
the final part object has been found, its associated object ispicked.

12 Chapter 2. gbeta

old-frame-index

temp stack

...

...

...

...

...

frame

growing direction

temp(3)

temp(2)

temp(1)

Figure 2.5.:The temp-step pickstemp(<int>) in the temp stack with the shown frame

lookup-step returns the value of the attribute. This is either an object or a pattern.

lookupIndirect-step returns the value of the object reference or pattern reference found.

temp-step returns the object at<int> relative to the start of the frame (see figure 2.5).

To conclude our discussion about run time paths, we will givetwo explained examples of these from a real
gbeta byte code file (useObserver.gbc from the nodist directory of the 0.81 distribution).

Run-Time Path Example 1

PUSH-ptn f<-1, ‘̂textAndWindow.gb:280,"refresh/0" g
mainPart

id=textAndWindow.gb:280

current
part object

Some Object

refresh

maximize

0

1

up

index 0

up

via mixin

via mixin

part object
surrounding

Figure 2.6.:Evaluation sequence of the run-time path in example 1. The run-time steps are
shown with dashed arrows

2.2. gbeta Byte Code 13

The first step<-1 is an out-step from the current part object to the surrounding part object. The next
step ‘̂textAndWindow.gb:280 is an up-step from the part object found in the previous step.The
part object with<mainPartId> , textAndWindow.gb:280 , is found in the more general direction. The
final step,"refresh/0" , is a lookup-step which identifies the attribute at index 0 inthe part object from
the previous step. Finally, the pattern is returned to the instruction (which should push the pattern onto the
pattern-stack). The evaluation is shown in figure 2.6.

Run-Time Path Example 2

POP-objref ftmp(1), ‘̂useObserver.gb:332,’theSubject/0’ g
The first step,tmp(1) , takes the object at position 1 on the temp-stack and takes the most specific part
object in that object. The second step,ˆ‘useObserver.gb:332 , searches upwards from the part object
for a part object with <mainPartId> useObserver.gb:332 . In that part object index 0 contains
an object reference which is identified with the final run-time step,’theSubject/0’ . The instruction
finally pops an object reference, type-checks it, and installs it in the found location. In the future the type
check will be a separate instruction.1

2.2.3. Single-Line Instructions

The most common type of instruction is the single-line instruction, which is characterized by only taking
one line divided into the name of the instruction and zero or more arguments. The complexity of single-line
instructions varies greatly from simplePUSHinstructions to the more complexMERGEinstructions.

TheCALL <rtp > instruction is an example of a single-line instruction witha run-time path as argument.
It evaluates the run-time path and executes the object obtained from this evaluation.

2.2.4. Multi-Line Instructions

Multi-Line instructions are actually high level structures which eliminate the need for explicit jumps and
labels. They are used both alone and nested. To give an example of a multi-line instruction we present the
generalIf instruction. The grammar for thegeneralIf instruction is as follows:

<genIf> ::= ’generalIf(’ <type> <evaluation> <alternative> * <elsePart> ’) ’
<alternative> ::= (’ |case ’ <evaluation>)+ ’ |then ’ <imperatives>

<elsePart> ::= ’ |else ’ <imperatives>
<evaluation> ::= <instruction> *

<imperatives> ::= <instruction> *
<instruction> ::= <singleLineInstruction>  <MultiLineInstruction>

<type> ::= ’bool ’ ’char ’ ’ integer ’ ’ real ’ ’object-reference ’ 
’pattern-reference ’ ’NONE’

ThegeneralIf instruction is evaluated by evaluating the first<evaluation> and obtaining a valueV as
a result. Then each<alternative> is considered in the order they appear by evaluating their<evaluation>
following ’ |case ’ and comparing their result withV. If the result is equal toV, the <imperatives>
following ’ |then ’ are executed and the rest of the<alternative> s are ignored. If no<alternative> is
chosen, the<imperatives> following ’ |else ’ are executed. An example of ageneralIf instruction,
taken from the file 026.gbc, again in the nodist directory, isshown in figure 2.7.

1Since January 2001CHKQUAOBJ andCHKQUAPTNhave been added to the set of gbeta byte codes. These instructions are
inserted when the type safety of the assignment cannot be guaranteed

14 Chapter 2. gbeta

generalIf(integer
PUSH-integer f"N/0" g
RESETFRAME

|case
PUSHI-integer 2
RESETFRAME

|then
|else

...
RESETFRAME

)

Figure 2.7.:An example of the general if multi-line instruction

3. Virtual Machine Architectures

A virtual machineis an abstract computer implemented in software [Ven96]. Itexecutes a well-defined
byte code format consisting of byte code instructions that can be compared to the machine instructions of
a hardware CPU.

The great advantage of a virtual machine and byte codes is theportability achieved. Because byte codes
are machine independent, they can be compiled on one platform and interpreted on another platform.
But if too many different byte code formats are used by different virtual machines on the same system
intercommunication between these systems may be a problem.Another benefit of the virtual machine
approach is that it is easier to implement and debug a system with a compiler that compiles to byte codes
executed by a virtual machine than a compiler compiling to native code.

Virtual machine architectures is a large research topic andthorough investigation and presentation of the
numerous different kinds of virtual machines is out of the scope of this thesis. Instead the purpose of
this chapter is to give an overview of the three most common types of architectures. Common for all
virtual machines is that they execute the byte codes produced by a compiler, but different approaches can
be taken. This chapter will describe three different architectures, namely instruction interpretation, just in
time compilation, and dynamic compilation. Finally, the different architectures are compared with respect
to ease of implementation and efficiency.

15

16 Chapter 3. Virtual Machine Architectures

3.1. Interpreting Byte Codes

An interpreting virtual machineworks the way depicted in figure 3.1. The source code is compiled to byte
codes by a separate compiler. This is given to the virtual machine for interpretation.

code
source

Compiler

code
byte

Virtual Machine

Interpreter

Figure 3.1.:The data flow in a virtual machine interpreting byte codes

In the virtual machine a stack and virtual registers can be used for storage of method parameters, local
variables, intermediate results of calculations, and return values amongst other things. A heap can be used
to store objects, and another area in the addressable memorycan be used to store instruction byte codes –
in the Java virtual machine, the area with instruction byte codes is called the method area and the next byte
code to execute is pointed to by a program counter [Eng99].

Besides interpreting the byte codes, a typical virtual machine can also handle thread synchronization and
garbage collection.

A byte code typically consists of a one byte opcode identifying the operation to be performed, and zero or
more bytes of operands used in the operation. [Ven96, Nel79]

3.2. Just in Time Compilation

Instead of just interpreting the byte code, a virtual machine with a just in time compiler(JIT compiler)
compiles byte codes of a method to native code the first time a method is called (see figure 3.2). The
native code is cached and each time a method is called its native code is executed on the target CPU
[YMP+99, Sag00].

The main goal of a JIT compiler is to generate efficient nativecode quickly and one of the tasks connected
to this is to make efficient use of the registers of the target CPU. But it is important to clarify here that the
code generation must first and foremost be quick and that the efficiency goal therefore may be subordinated.

Constructing a JIT compiler is different, compared to the construction of an ordinary compiler. Compilation
is done at run-time because aspects such as security can thenbe taken into account and especially because
the portability of byte-codes is then maintained [CFM+97]. Because compilation is done at run-time, com-
pilation speed becomes crucial. Another aspect that has to be taken care of is interaction with the virtual
machine. The virtual machine should for instance be able to do garbage collection even though the methods

3.3. Dynamic Compilation 17

code
source

Compiler

code
byte

code

compiler

native

Byte code

Native code
cache

Vitual Machine

Figure 3.2.:The data flow of a just in time compiling virtual machine

have been compiled to native code using real registers instead of virtual registers and a stack. Thread syn-
chronization and exception handling is also performed in interaction with the virtual machine.[CFM+97]

The performance benefit of virtual machines with JIT compilers compared to interpreting virtual machines
depends on the type of application. When looking at Java virtual machines, experiments show that on
average 68 % of the execution time in ordinary Java virtual machines is used interpreting the Java byte
code [CFM+97, BG00]. This means that it is only about two thirds of the execution time that is optimized
when using a JIT compiler. Benchmark tests modeling different types of Java applications show speedups
compared to interpretation of a factor between 2.1 and 9.0 [CFM+97].

In rare cases a virtual machine with a JIT compiler can be slower than an interpreting virtual machine. If
a method is only executed rarely, it may take longer to compile it and run the native code than interpreting
its byte code directly. This observation is the motivation for dynamic compilation.

Instead of compiling byte codes to native code, it would be possible with gbeta byte code to compile it to
a lower level byte code format. This could eliminate multi-line instructions and optimize run-time paths
yielding faster execution.

3.3. Dynamic Compilation

A virtual machine with adynamic compilercombines the best of interpreters and JIT compilers. It monitors
the interpreter’s execution of byte codes and decides whichmethods to compile into native code. Methods
are only compiled into native code if it looks like this wouldmake the application run faster, so methods
are only compiled when it becomes evident that they are frequently used.

The architecture of a virtual machine with a dynamic compiler can be seen in figure 3.3. The profiler
monitors the byte code interpreter and notifies the dynamic compiler if a method should be compiled to

18 Chapter 3. Virtual Machine Architectures

code
native

compiler
Byte code

Native code
cache

code
source

Compiler

code
byte

Byte code
interpreter

Profiler

Control

Virtual Machine

Figure 3.3.:The components and data flow in a virtual machine with a dynamic compiler

native code. The dynamic compiler saves the native code of a method in the native code cache to ensure
that it can be used instead of the byte codes. The control module handles control of execution between the
other modules.

One of the things that makes a virtual machine with a dynamic compiler smart is the following. Because
the interpreter is always able to execute the byte code, the dynamic compiler can optimize the compiled
code to only include a normal execution case [Arm98]. That is, things like exception handling may not be
included in the native code. If an exception or other rare things occur, the virtual machine can always go
back to interpreting the byte code.

The performance of dynamic compiler is generally better than both an interpreting virtual machine and a
virtual machine with a JIT compiler [Arm98].

3.4. Architecture Comparison

When comparing the three architectures with respect to implementation complexity, it is obvious that in-
struction interpretation seems to be the easiest architecture to implement. Both just in time compilation
and dynamic compilation seem somewhat more complex to implement because a compiler must be imple-
mented, but with the profiler added to the dynamic compilation architecture, it must be the most complex
to implement.

As mentioned in the previous section the dynamic compilation architecture is the most efficient closely fol-
lowed by the just in time compilation architecture. Although the interpretation architecture is the simplest
to implement, it is also the architecture that in general yields the least efficient execution.

It is possible to find articles that both agree and disagree with the above performance postulate. In the
JIT community they find dynamic compilation slower than efficient JITs [YMP+99] and in the HotSpot-
dynamic compilation community they say the opposite [Arm98].

4. Memory Management

The purpose of automatic memory management is to make garbage collection possible. This means that
the programmer does not have the burden of explicit memory deallocation, which can cause problems like
memory leaks and dangling pointers to deallocated memory. Also, explicit deallocation is complex and
error prone e.g., with complex data structures it may be difficult to place the responsibility of deallocation
or to determine when an object is no longer in use.

An automatic memory management system takes care of deallocating memory which is not in use by the
program any more. The problem of freeing these memory segments automatically is known as garbage
collection, and several algorithms have been proposed for this task, each with its own advantages and
disadvantages.

In section 4.1 we establish some terminology and discuss theimportant properties of garbage collection
algorithms, and in section 4.2 we take a look at the most commonly used algorithms and put them in
relation to these properties where appropriate.

4.1. Garbage Collection Algorithm Properties and Concepts

Common to most garbage collection algorithms (except reference-counting) is that they need to know the
objects in theroot set. The root set is the set of variables in processor registers,on the stack(s), and in
global variables, all of which contain references to the memory area managed by the memory manager.
This memory area is also known as theheap-spaceor just theheap.

When memory, previously consumed by one or more objects, is made available for future allocations or
freed, we say that it isreclaimedor garbage collected.

The set ofsemantically live objectsare the objects which will be used in future execution. But itis compu-
tationally undecidable to determine this set and in the context of garbage collection, the set oflive objects
is the set of objects that have been allocated which the executing program may potentially access again.
This set can be found as the transitive referential closure of the root set [App98]. Intuitively this is the set
of objects that can be reached by following references from the root set.

Correspondingly, the set ofsemantically dead objectsare objects that will not be used in future execution
and this set is of course undecidable too. Therefore in context of garbage collection, the set ofdead objects
contains objects which have been allocated but that are no more live, i.e., not reachable by following
references from the root set. The really important propertyis that the set of dead objects is a subset of the
set of semantically dead objects, because this means that wecan safely reclaim the set of dead objects.

When a garbage collectorscavengesthe heap-space, it identifies live objects and makes sure these objects
are not reclaimed while everything that was not live is reclaimed.

The execution of a program typically involves changes to thegraph of live objects. When discussing
garbage collection, we say that these changes are performedby themutator.

A correct garbage collector satisfies the following properties:

Never collects live objectsNo live objects will ever be collected.

19

20 Chapter 4. Memory Management

Collects dead objectsAll dead objects will be garbage collected eventually.

Maintains object graph If there is a reference in objectoi to objecto j , the mutator must always perceive
the reference as such (unless it changes it itself). This should hold for all references in the object
graph. That is, the work of the garbage collector should be transparent to the mutator even if they
run concurrently.

The rest of this section contains some important propertiesof garbage collection algorithms, and advan-
tages/disadvantages to keep in mind when studying garbage collection algorithms. It is primarily based on
a talk given by Lars Bak, who is a co-inventor of the HotSpotvirtual machine at Sun Microsystems, Inc.
[BG00].

4.1.1. Accurate vs. Conservative

An accurate garbage collectorknows where in memory it has references and knows the root setof the
program, so it has accurate knowledge of the object graph of live objects. An advantage of accurate garbage
collection is that the garbage collector knows what variables are references, so non-pointer data like e.g.,
an integer cannot disguise itself as a pointer and thus keep an object artificially alive creating a memory
leak. Another advantage of knowing the references is that objects can be moved. This allows compaction
of the heap so heap fragmentation can be avoided. The consequence of no fragmentation is that memory
allocation can usually be performed in constant time.

A conservative garbage collector, on the other hand, is a garbage collector that does a conservative guess
at what objects are live. The reason for taking a conservative guess can be that the language in which the
program is written has a liberal memory-access/type-system policy like C/C++ . Another reason could be,
that the garbage collection algorithm is trying to be smart by doing approximations in determining the live
objects.

Because the conservative garbage collector must not collect any live objects, conservative garbage collec-
tion is sometimes forced to leave objects in memory that are not actually live. The reason is that conserva-
tive garbage collectors cannot tell if a word in memory seemingly pointing to an object is in fact a pointer
or an integer instead and therefore the object along with everything it can reach is considered live.

Furthermore, in the case where not all references are known,objects cannot be moved, at least not when
direct pointers are used, and therefore the heap cannot be compacted so the heap may suffer from fragmen-
tation. For this reason, the memory manager will have to maintain some data structure indicating where
in the heap new objects can be allocated. Allocation of memory for new objects by searching this data
structure is typically slower than constant time and in addition there will in time be more small memory
blocks that are useless and hard to keep track of.

In general, the conservative garbage collection approach should be avoided if the programming language
allows it because of these serious disadvantages.

4.1.2. Handle Based vs. Handleless

In handle based garbage collectorsobjects must be accessed through an object handle. The idea behind
handles is that when moving objects only one pointer has to bechanged because other objects point to the
handle instead of the object directly. Thus, heap compaction can be used, but handles use extra memory
and the indirection leads to lower performance. Another disadvantage of handles is that if the data-structure
containing the object handles has a fixed size, it limits the total number of objects in the heap. This was a
problem with the first generations of Smalltalk implementations [CWB86].

In handleless garbage collectorsreferences point directly to objects. This leads to higher performance
but it is harder to move objects because all objects referencing a moved object must have their pointers
updated.

4.2. Garbage Collection Algorithms 21

4.1.3. Partial vs. Full

A partial garbage collectoronly scavenges a fragment of the heap at each garbage collection. The reason
for only doing partial garbage collection is that pause times introduced by the garbage collector can be
reduced this way. This is very important in applications with real time constraints or human interaction.
There are other penalties to be paid with partial garbage collection, however. Often a change to a reference
induces additional overhead, because the partial garbage collector has to have some extra information
on which objects are referenced from where, in order to avoidscanning the entire heap during garbage
collection. In addition [SaCL00] points out that generational garbage collection often has lower efficiency
when the number of generations increase due to smaller collected area and write-barrier overhead.

Full garbage collectorsscavenge the entire heap at each garbage collection. This can cause long pauses in
program execution. The pauses are proportional to the heap size or the number of live objects depending on
the chosen garbage collection algorithm. Due to their efficiency in collecting all garbage and low mutator
overhead during execution, full garbage collectors may be preferred in non-interactive applications.

4.1.4. Cooperative vs. Concurrent

The execution of the program (the mutator) is stopped in acooperative garbage collectorimplementation.
The advantage of this approach is that the object graph is frozen during garbage collection but since the
program execution is stopped, pauses in the execution will occur.

A concurrent garbage collectorcollects garbage without stopping the program execution. The obvious
advantage of this approach is that no pauses due to garbage collection occur. But making the garbage
collector and the mutator run concurrently is complex because the object graph is mutated during garbage
collection and furthermore expensive synchronization is needed.

4.1.5. Single Threaded vs. Multi Threaded

A single threaded garbage collectorcollects garbage using only one thread. It is the most simpleapproach
since no synchronization is needed between garbage collection threads. The problem with single threaded
garbage collectors is that they do not scale to multi processor architectures. The reason is that the garbage
collector thread can only use one processor so especially ifthe cooperative approach is chosen resources
are wasted. Therefore the more complexmulti threaded garbage collectionapproach can be used on larger
systems where the garbage collection is handled by several cooperating threads.

4.2. Garbage Collection Algorithms

This section will give an overview of common types of garbagecollection algorithms.

4.2.1. Reference Count

A reference counting garbage collectorstores a reference count in each object indicating how many ref-
erences are pointing to the object. If the reference count ofan object is zero, the object can be garbage
collected, and the objects referenced from it will, as a consequence, have their reference count decremented.
To ensure that this algorithm works, the reference count must be updated each time a reference is made to
or removed from an object.

An advantage of this algorithm is that it is simple. Another advantage is that it can be made incremental
since this requires a check for a reference count value of 0 after decrementing. This also means that
garbage can be reclaimed early i.e., there is no need to wait for the next scavenge before garbage will

22 Chapter 4. Memory Management

be reclaimed. In more real-time oriented applications a reclaim queue has to handle memory reclamation
when the reference count of one object reaches zero since it could result in a lot other objects getting
their reference count decremented to zero too. It may still be a problem if an object, which has a lot of
references, is to be reclaimed, though, because handling this single object may take too long in a response
time critical application.

A disadvantage of the algorithm is that it cannot reclaim cyclic garbage because reference counts are only
a conservative approximation of liveliness. If for instance a dead objecto1 has a reference to a dead
objecto2 ando2 has a reference back too1 their reference counts will never reach zero. For this reason
cyclic structures will have to be broken explicitly if they are to be reclaimed. Another disadvantage of this
algorithm is the overhead associated with maintaining the reference counts. Finally, the interface between
the mutator and the collector is complicated by the need to maintain updated reference count values –
especially in parallel environments.

In practice the disadvantages of the reference count approach outweighs the advantages and therefore it is
rarely used [App98, JL96, Wil92].

4.2.2. Mark and Sweep

Marking an objectmeans setting a bit somewhere in its header, so that it is obvious to the garbage collector
that this object has been processed. The idea of a basicmark and sweep garbage collectoris that after
marking objects reachable from the root set, all unmarked objects must be dead. The algorithm is divided
into two phases the mark phase and the sweep phase. In themark phaseall reachable objects are marked
using for instance a depth-first traversal from the root set.Thesweep phasethen scans the heap-space from
one end to the other reclaiming all unmarked objects and unmarking all marked objects in order to make
the heap ready for the next garbage collection. In the basic version this algorithm needs to interrupt the
execution during the mark and sweep phases.

Advantages of this algorithm are that it is simple and easy toimplement, it is capable of reclaiming cyclic
structures, and there is no extra overhead associated with pointer operations during execution. Also, it can
be implemented as a conservative collector which expands its area of application.

Disadvantages are that, like all non-incremental garbage collection algorithms, it can cause long pauses in
the program execution, because the sweeping phase has to visit all objects in the heap, dead or live. Finally,
it must manage free space in a fragmented heap, causing higher overhead for allocation, at least if handles
are to be avoided. [App98, JL96]

Themark and compact algorithmtries to overcome the fragmented heap problem by compactingthe heap in
the sweep/compact phase by moving live objects to a continuous block at the beginning of the heap. Since
objects are now moved, this algorithm needs to have pointer knowledge i.e., be accurate. In addition extra
passes are needed to calculate the new positions of objects and update the pointers in objects accordingly,
which may add significant overhead [Wil92].

4.2.3. Copy Collection

Thecopy collector algorithmworks by dividing the heap into two semi spaces, thefrom-spaceand theto-
space. Allocation of new objects is done in a stack based manner in the from-space. When the from-space
is depleted, the garbage collection takes place. The garbage collection process begins with the root set and
copies all the live objects in a breadth-first traversal to the to-space. All the live objects are then copied to
the to-space, and pointers in the objects, on the stacks, andin the registers are updated accordingly. When
all live objects have been copied, the rest is garbage. This is often referred to as aCheney scan. Although
the original Cheney scan algorithm uses a breadth-first-copying algorithm [App98] it is also possible to do
a depth-first-copying instead yielding better locality of reference.

As this algorithm copies all live objects, it works most efficiently when the garbage/live objects ratio is

4.2. Garbage Collection Algorithms 23

high because the copy collector only spends time on live objects and with a high garbage/live object ratio
a large heap can be collected with a low effort. One way to achieve this is not to garbage collect very
often because many objects die young [LH83]. The problem with this approach is that it requires a lot of
memory. Another problem with the copying algorithm is that moving large objects around in memory is
expensive. A separate non-copying object space for large objects can be used for reducing this overhead.
[Wil92, UJ88, App98]

4.2.4. Generational Collection

Generational garbage collectors exploit the empirical observation that in most programs there tends to
be a high frequency of short lived objects [LH83]; after a given object has survived a number of garbage
collections, it tends to survive for a long time. In other words the probability of death for an object decreases
with its age.

The aim of generational collectors is to concentrate the collection effort on the objects that are most likely
to be garbage, which, according to the above observation, are the young objects.

A generational garbage collectordivides the heap into generationsG0, G1,...,Gn. G0 contains objects
younger thanG1, which contains objects younger thanG2 etc. Gn is sometimes referred to as themature
object space. The age of an object is typically measured in how many times the object has been scavenged.
Garbage collection is done more often the younger the generation is, i.e., more often inG0 than inG1

than inG2 etc. The younger generations are typically smaller than theolder ones and can be scavenged
without scavenging the older generations. This means that generational garbage collectors do not need to
scavenge the whole heap each time and pause times can thus be reduced, which is an important property in
interactive systems.

The actual garbage collection algorithm in each generationcan vary, but complexity increases if different
algorithms are used. It is common to use a copy collector in the young generation since this algorithm is
efficient when the garbage/live object ratio is high [App98].

A disadvantage of generational collection is that handlinggenerations and especially moving objects be-
tween generations increases implementation complexity [App98].

Intergenerational References

A problem with having more than one generation is that objects from one generation can have a reference
to objects in other generations implying that when garbage collecting a specific generation, it is necessary
to know which objects from other generations are referencing objects in the generation to be garbage
collected. One solution to this is to scan all generations each time a specific generation is to be scavenged
but this is a great overhead and it also somewhat defeats the purpose of a generational garbage collector.

A common solution, to this problem, is to somehow remember references in other generations to the spe-
cific generation. Awrite barrier can be used to trap pointer modifications and use these pointers as a
pseudo root set when the generation is collected.

Furthermore, it is common practice to only remember references from older to younger generations in order
to save memory and time. The effect of this is that a generation cannot be scavenged without scavenging
all younger generations at the same time. The positive sidesto this are that it is possible to scavenge more
effectively when a larger chunk of the heap is collected at once, and older generations are scavenged much
less frequently. The negative side is that when such a scavenge is performed it is very likely that it will
take more time than just scavenging the younger generationsperhaps causing a noticeable interruption in
an interactive system.

At least two ways of tracking intergenerational referenceshave been proposed: card marking and remem-
bered sets [Wil92, HH93].Card markingdivides the heap into cards of fixed size. For each such card
there is a bit or byte (depending on implementation) in a cardmarking table that will be set unconditionally

24 Chapter 4. Memory Management

each time a reference is modified in the card. When e.g., the young generation is scavenged, all marked
cards will have to be scanned for references. If scanning a card reveals no intergenerational references,
the card mark can be cleared. It is important to find the right granularity for the cards; if the cards are
too large, a single reference can cause significant overheadwhile too small cards will require too much
memory for the card-marking array. Hardware pages have beensuggested for implementation and rejected
because stock hardware typically uses too large pages and the virtual memory system has to be modified
since operating systems typically do not provide facilities for examining the dirty bits of pages [Wil94]. A
study by [HMS92] concludes that the best card size on averageis 256 bytes.

Remembered setson the other hand use a more exact representation for remembering which object an
object is referenced from. The advantage of this is that a lotof scanning is eliminated because either the
referencing pointer is remembered directly or only the referencing object has to be scanned. The major
drawback to this approach is that it can consume a lot of memory and uses more time during execution.
The actual scavenge is typically faster than a scavenge using card marking which is desirable if eliminating
pauses is of primary concern. Popular objects generate hugeremembered sets and may require special
handling such as keeping the object in a place where it is not moved.

Hybrid approaches have been implemented in [HH93, Hud00] tocombine the precision of remembered sets
with the run-time efficiency of card marking. At run-time card marking is used but before each scavenge
the marked cards are summarized into remembered sets used asbasis for the scavenge. A more dynamic
hybrid able to switch between pure card marking and card marking combined with remembered sets is also
suggested in [HH93] to yield better performance.

4.2.5. The Train Algorithm

The train algorithm is an example of an incremental garbage collection algorithm. Incremental garbage
collectors try to minimize the pauses introduced by garbagecollection. The idea is to only garbage collect
a bounded part of the heap each time the garbage collector is run. This makes the garbage collection algo-
rithms more complex but systems with incremental garbage collection provide more usable applications in
many cases.

The basic idea of the train algorithm is to cluster related referencing objects into the same cars or trains
(see figure 4.1) and check if there are any references to a specific car or train. If there are not, the objects
in the car or train can be garbage collected, and the whole caror train can be reclaimed.

From train

From car

Car 0,0 Car 0,1 Car 0,2

Car 1,0 Car 1,1

Car 2,0 Car 2,1 Car 2,2 Car 2,3

Train 0

Train 1

Train 2

Figure 4.1.:The organization of the heap using the train algorithm

To maintain a total ordering of cars each train and car is given a number (see figure 4.1). The oldest of the
trains i.e., the train with the lowest number is called thefrom train. The from car is the oldest car in the
from train i.e., the car with the lowest number in the from train.

The train algorithm, as defined as a mature generation collector in [GS93], is presented below:

1. First, check to see whether there are external referencesinto the from train. (This is done by inspect-

4.2. Garbage Collection Algorithms 25

ing the train roots and the remembered set associated with the train being collected.) If this is not the
case, then free the entire from train.

2. Otherwise, start cleaning up the from car as follows:

a) Move objects referenced from other trains (as found in thefrom car’s remembered set) to those
trains, and move objects referenced from outside mature object space to any train except the
from train, perhaps an entirely new one.

b) Also, move objects being promoted from younger generations to mature object space into any
train, except the from train.

3. Then evacuate the followers (i.e., objects referenced directly or indirectly by the moved objects) in
the from car by scanning over the objects moved in the previous step and evacuating, in typical copy
collector style, all reachable objects to the trains from which they are now referenced.

4. At this point, the from car may still contain objects referenced from the outside (namely those that
are only reachable from other cars of the from train). Move these objects into the last car of the from
train, appending a new car should the train run full. Then free the space used for holding the from
car.

In [GS93] certain points are further clarified. The most important is that to increase locality of reference
when moving objects referenced from other trains and their followers the algorithm must try to move them
to the car from where they were referenced or else the train from where they were referenced. It is also
proposed that to increase locality of reference, the phase where objects referenced from other trains (2.a)
are moved could be intertwined with evacuating the followers (3). The reason is that the probability of the
destination car being able to hold the followers of an objectmoved in phase (2.a) is increased.

How the Train Algorithm Works

To explain the train algorithm in more detail a little example is presented. To make the example simple,
cars can only contain three objects.

o7

o1 o2Train 0

Train 1

Car 0

o3 o4 o5 o6

Car 1

Root

Figure 4.2.:The initial situation

The initial situation can be seen in figure 4.2. There are three live objects, namely the objectso1, o2, and
o7. The rest of the objects are dead and therefore the train algorithm garbage collector will collect them.

During the first garbage collection both the from train and from car are referenced from outside and there-
fore the from car is scavenged. First, objects from other trains are moved to the car from where they are
referenced, in this case objecto1 is moved to car 0 in train 1. Then followers of objecto1 are evacuated and
therefore objecto2 is moved to car 0 in train 1. Finally, objects referenced fromwithin the from train are
moved to the end of the from train allocating a new car if the last car in from train is full. This results in
the addition of a new car (car 2) to the from train and the movement of objecto3 to this car. The resulting
heap can be seen in figure 4.3.

26 Chapter 4. Memory Management

o7

Train 0

Train 1

Car 0

o4 o5 o6

Car 1

o3

Car 2

o1 o2

Root

Figure 4.3.:The heap after the first garbage collection

o7Train 1 o1 o2

Car 0

Root

Figure 4.4.:The heap after the second garbage collection

The second garbage collection results in the from train being collected because it has no external references
(see figure 4.4).

The example gives insight into how the algorithm works, but some argumentation is needed to clarify that
the algorithm will collect large cyclic garbage structures. It is easy to see that if a large garbage structure is
contained entirely within a train it will be collected. As the train is processed, all objects referenced from
other trains or from the root will be evacuated. Garbage willeither be directly collected or moved to the
end of the train and eventually all externally referenced objects and their followers will have been moved
out of the train leading to the whole train being collected. So if it is the case that large garbage structures
always end up entirely within one train they will be garbage collected. This is the case since we only move
objects to trains holding references to them and eventuallya garbage structure spanning several trains will
end up in the highest numbered train of which it was initiallypart.

The advantages of the train algorithm are that it is incremental i.e., non-disruptive, it generates a high
locality of reference i.e., objects referencing each otherare placed physically close. A disadvantage of the
algorithm is that it seems more complex to implement than theother mentioned algorithms.

5. The Virtual Machine

In [IP01] we documented the design and implementation of a prototype virtual machine able to execute a
limited number of gbeta byte code instructions. The main achievement of this work was an implementation
of the gbeta entities, such as patterns, mixins and part objects, which were necessary to execute gbeta
programs. In the evaluation of this implementation we identified a number of weak points which prevented
this virtual machine from using our memory management component.

The main problem with this implementation was that our execution model prevented us from having well
defined safe points. Asafe pointis a point during the execution of the program where it is safeto do copying
collection, i.e., after copying garbage collection at a safe point, the virtual machine will be able to continue
executing without problems. The used execution model, called the.execute -model, usedexecute()
methods onObjects , PartObjects and Instructions . A garbage collection during execution
using this model could imply that theC++ run-time system got invalid this-pointers on its executionstack
because for instance invoked part objects could have been moved due to garbage collection. We previously
referred to this problem as thethis-problem.

In [IP01] we proposed that using a more flat execution model could solve the problem. In theflat execution
modela loop continues to execute instructions (one at a time) using a switch statement to decode the next
instruction to be executed. In essence this model ensures that no fragile data, e.g., this-pointers, are left
on theC++ execution stack between the execution of instructions. Theidea behind this model is further
explained in section 5.2.

This chapter documents the design and implementation of a gbeta virtual machine using a flat execution
model able to execute a majority of the existing gbeta byte code instructions. But first we recapitulate the
architecture of this virtual machine by reviewing some slightly changed versions of the class diagrams in
[IP01] (a detailed design document, describing the design of the first virtual machine, is present in chapter
6 of [IP01]). As can be seen in figure 5.1, the main class diagram has not changed much. The main change
is that theThread class has got two new stacks and a program counter (programCounter) attribute.
This attribute points to the next instruction to be executedor, if the Thread is currently executing an
instruction, it points to the instruction being executed. It is the responsibility of the instruction to change
the program counter, which makes it easy to make jumps (and infinite loops if one forgets to update the
program counter).

Also, the relations between the gbeta entities, used by the virtual machine, has not changed much as can be
seen in figure 2.1. The main change in these classes is that theexecute() andinitAttributes()
methods ofObject andPartObject have been removed, and methods to get the first instruction, used
when executing or initializing, have been added instead.

The purpose of this virtual machine is to enable experimentation with our memory management component.
Therefore we have decided to implement enough instructionsto allow execution of simple gbeta programs.
This implied that we omitted instructions supporting repetitions and concurrency. Besides that the rather
complexPOP-ptn, SPECIALIZE-obj , which includes an operation similar to thebecome: message
in Smalltalk [SUH86], is not supported; it may easily be avoided by not using certain pattern reference
assignments likex1##->x2## in the gbeta programs being executed.

The source of the virtual machine component is placed in thevm directory of the CD-ROM. A few dis-
crepancies exists between the this documentation and the actual source code. One of them is that the
ByteCodeLoader class is calledInstructionParser in the source code.

27

28 Chapter 5. The Virtual Machine

sendSignal()
run()

getState()

Attribute

Instruction

1

1..*

intStack
boolStack
charStack
realStack
stringStack
objectStack
patternStack
tmpStack

 Scheduler

threadList

mainPartList

start()
addNewThread()
getMainPart()

currentPartObjectStack
executionStack
programCounter
state
signal
mainObject
myScheduler

 Thread

MainPart
1..*

parse()

 ByteCodeLoader

PartObject

Object

1

gbeta entities

predefPtr

Figure 5.1.:The main class diagram of the virtual machine. The classesMainPart, Ob-
ject, PartObject, Instruction, andAttribute is included to show
the connections between the main class diagram and the gbetaentity class dia-
gram (see figure 2.1)

29

Pattern

Object

PredefinedMixin

RunTimeStepList

MainPart

Mixin

Attribute

AttributeListInstructionList
11

1

11

0..*

1

1
1

0..*

2

attributesdopart

PatternReference
1 qualification

value qualification

1
ObjectReference

1

1

1
value

AttributeInstance
0..*

mixin

1 origin1mainpart

1

0..*

AddOpPlus ChkNone Call

RuntimeStep

IndirectLookupStep

LookupStep

TempStep

OutStep

DownStep

UpStep

Instruction

PartObject

WRTPWithType

PredefinedPartObject UserPartObject

0..*

1

...

1

0..*
1

1

Figure 5.2.:The class diagram of the gbeta entities used by the virtual machine. Three exam-
ples of instruction classes are presented in the lower left corner. Instruction sub-
classes can inherit from zero or more of the super classesWRTP andWithType
which holds run time paths and type information functionality respectively. “...”
indicates that there are several instructions of the given type

30 Chapter 5. The Virtual Machine

5.1. Thread - Scheduler Interface

TheScheduler - Thread interface is ”two-sided”, i.e., theScheduler invokes methods onThread
andThread invokes a method onScheduler . This is because we have made the classScheduler
have two purposes:

1. Schedule and signalThread(s) to obtain safe points.

2. SupportThread(s) in:� Getting a mainpart given a mainpart id.� Holding a pointer to the outer-most part object (called predef) part object to ensure that it will
not get garbage collected.

In figure 5.4 a sequence diagram explains how theScheduler schedules and signalsThread(s) , and
figure 5.3 illustrates howThread usesScheduler to lookupMainPart instances.

Thread Scheduler

An addMainPart

get the MainPart
from Scheduler

Searches the array of mainparts
and returns MainPart object with

getMainPart(mainPartID)

instruction must
mainPartID if possible, otherwise null

Figure 5.3.:Thread - Scheduler interaction

In figure 5.3 theThread is executing anAddMainPart instruction with a main-part id as one of its
arguments. To add a mixin, referring to the wanted main-part, to the pattern on top of the pattern stack,
theThread invokesgetMainPart(mainPartId) on itsScheduler to get a reference to the this
main-part.

Memory
Management

Scheduler signals
the Thread to stop

To prepare for GC

Scheduler is signalled
when the memory
manager wants to
do garbage collection

The signal of Thread is set to
GC_STOP and after the current

will get the state GC_STOPPED
intruction has finished Thread

ThreadScheduler

prepareForGC() sendSignal(GC_STOP)

Figure 5.4.:Scheduler - Thread interaction. The memory management component is
added to illustrate that theScheduler must be signaled, when a garbage col-
lection is necessary when introductory space is filled

When a safe-point is needed the memory management componentsignals theScheduler usingprepare-
ForGC() . When this method is invoked on theScheduler it sends aGCSTOPsignal to all its threads
(in our case only one) usingsendSignal(signal) . Between each instruction theThread processes
signals. It reacts to aGCSTOPsignal by changing its state toGCSTOPPED. BesidesprepareForGC()
theScheduler invokesrun() to start theThread , and restart it after a garbage collection. To restart
theThread theScheduler also sends aRESUMEsignal, usingsendSignal() , to theThread .

5.2. Obtaining Safe Points 31

5.2. Obtaining Safe Points

A set of well defined safe points is required during executionto make copying garbage collection possible.
It is only safe to do copying garbage collection in our context when it can be guaranteed that theC++
run-time systems has no pointers to objects which might get moved during garbage collection.

An i-fetch loopis the classic loop used in an interpreter or CPU to execute instructions. The i-fetch loop
fetches the next instruction to be executed, decodes this instruction, and finally it executes the instruction
before it continues to fetch the next instruction. The threemain components used to obtain safe points are
the execution stack, the current part object stack, and the i-fetch loop.

5.2.1. The Execution Stack

Execution happens in context of a part object.CALL instructions,INNER instructions, and similar instruc-
tions will cause execution to happen in context of a different part object. We refer to this as apart object
switch. Moreover, execution can be divided into ordinary execution and initialization execution. Part object
switches can also occur during initialization execution.

The execution stack contains pointers to instructions. Thestack elements each point to the first instructions
to be executed after returning from a part object switch (forinstance due to the execution of aCALL
instruction).

5.2.2. The Current Part Object Stack

The current part object stack contains pointers toPartObject instances. These pointers point to part
objects which were previously the current part object, i.e., when an instruction switches part object, it
pushes the new current part object to the current part objectstack.

5.2.3. The I-fetch Loop

Instead of usingexecute() methods to executeObjects with PartObjects , we have implemented
methods (calledgetFirstInstruction()) on these classes which return a pointer to the first in-
struction to be executed in a part object. An i-fetch loop in theThread class uses these ’getInstruction’
methods to switch context when for instance aCALL instruction is executed. The i-fetch loop inThread
works as sketched in figure 5.5:

32 Chapter 5. The Virtual Machine

while(state == RUNNING) f
switch(programCounter->id) f

case ADD-MAINPART-ID:
//code for ’ADD-mainpart gbeta’ byte code instruction

case ADDOP-PLUS-ID:
//code for ’ADD(_+_)’ gbeta byte code instruction

.

.

.
case WHILE-ID:

//code for ’while’ gbeta byte code multi-line instruction
default:

print "could not decode instruction - exiting"
exitg

check signalsg
Figure 5.5.:The I-fetch loop inThread

The first thing the thread does, in the i-fetch loop, is to decode the instruction pointed at by the program
counter. Then the code for this instruction is executed which will set the program counter to the next
instruction to be executed. Finally, the thread checks to see if it has received any signals. If this is the case
it changes its state to a state corresponding to the signal.

TheThread is signaled by theScheduler when for instance all threads must be stopped due to garbage
collection. TheThread - Scheduler interface is described in 5.1.

To illustrate how we avoid using theexecute() methods on objects and part objects, we present an
example of what is done when aCALL instruction is executed and also when execution returns. Toenable
returning from part object switching instructions we made theByteCodeLoader add specialRETURN
instructions to instruction lists (see subsection 5.3). This example is illustrated in figure 5.6. In figure 5.7
the pseudo code for aCALL instruction is presented.

case CALL-ID:
evaluate run-time path to get object o to execute
get first instruction inst to execute on o
get first part object p to be executed in o
push p to current part object stack
add new frame to temp stack
push next instruction to execution stack
set program counter to inst

Figure 5.7.:Pseudo code for aCALL instruction

First, theCALL instruction uses its run-time path to find the object to execute. It uses this object to get
the first instruction to be executed in this object. This is the first instruction in the do-part of the main-part
of the most general part object in this object. This part object is then pushed to the current part object
stack and a new frame is added to the temp stack (for information about the frames and the temp stack see

5.2. Obtaining Safe Points 33

. .
 .

. .
 .

. .
 .

Execution stack Current part object stack

programCounter = CALL

(a) Before CALL

p

Execution stack Current part object stack

programCounter = PUSH-ptn (first instruction in p)

Execution stack Current part object stack

programCounter = NOT

(c) After RETURN

. .
 .

. .
 .

. .
 .

NOT

(b) After CALL

Figure 5.6.:Illustration of what happens when aCALL instruction is executed and its corre-
spondingRETURN instruction is executed. In the example the instruction after the
CALL instruction is aNOT instruction and the first instruction in part object to
be executed is aPUSH-ptn instruction. (a) State of the thread before the CALL
instruction. (b) State of the thread immediately after theCALL instruction. (c)
State of the thread after theRETURN instruction

34 Chapter 5. The Virtual Machine

[IP01, page 37]). Finally, the instruction after theCALL instruction is saved by pushing it to the execution
stack. To handle that the most general part-object in an object can be aPredefinedPartObject , all
PredefinedPartObjects of a given type have a shared main-part with a do-part having aRETURN
instruction as the only instruction.

To return from execution in the called object theRETURNinstruction pops an instruction pointer from the
execution stack. If this instruction is not null theRETURNinstruction deletes the current frame on the
frame stack, pops the current part object of the current partobject stack, and sets the program counter to
point to this instruction. If the instruction popped from the execution stack is null, the state of the thread
is set to finished. Adding a specialHALT instruction to the end of the do-part of the outer most main-part,
would mean that the time used by the check for null inRETURNcould be avoided.

Part object switches do not only occur when a new part object has to be executed, it also occurs when the
attributes of a part object must be initialized. Attribute initialization is explained in section 5.4, but before
that we introduce a number of special instructions used to implement the flat execution model.

5.3. New Special Instructions

To allow safe points within multi-line instructions and, wehave defined some simple control flow instruc-
tions to which the multi-line instructions are translated.

Return Pops the current part object, sets the previous frame on the temp stack as the current frame, and
sets the program counter to whatever is popped from the execution stack. If program counter is null
after this, the instruction sets the state of the thread toFINISHED .

ReturnNPPO Sets the program counter to whatever is popped from the execution stack. No check is
made to ensure this is not null. Both the temp stack and the current part object stack are unaffected
by this instruction. (NPPOis shorthand for NoPopPart Object)

ReturnMPAttrInit A specialized instruction used when initializing the attributes of an object. The
instruction first deletes the current frame on the temp stackand pops the current part object of the
part object stack.

If there is a more specific part object than the current part object in the object, this part object will be
pushed on the current part object stack, a new frame will be added to the temp stack, and the program
counter will be set to point to the first instruction of the attribute initialization instruction list of the
new current part object.

If, on the other hand, there were no more-specific part object, the instruction will return by popping
the execution stack to the program counter.

Again, this instruction makes no check to ensure the programcounter is not null. This is safe, since
the ByteCodeLoader ensures that there always will be at least aRETURNinstruction after an
attribute initialization.

ContGatherVirt This is also a very specialized instruction. Its purpose is to make it possible to
initialize virtual attributes correctly without having todo it in one step. In order to make this possible,
this instruction contains information about the attributename and index of the introducing binding
as well as the main-part id.

When executed, this instruction will search the more specific part objects for a part object that has a
virtual attribute matching the introducing binding’s attribute name, index, and main-part id.

If such a part object is found, the current part object stack is popped and the part object is pushed,
the temp stack gets its frame deleted and a new one added, and finally the program counter is set to
the first instruction of the gather virtual instruction list.

5.3. New Special Instructions 35

If no part object could be found, this marks the end of a garther-virt instruction in the byte code. The
only thing needed is to pop the current part object stack, delete the frame on the temp stack and set
the program counter to the instruction after the gather-virt instruction by assigning the value popped
from the execution stack to the program counter.

For further explanation of this instruction see subsection5.4.2.

JumpNPPOThis instruction contains a pointer to an instruction that will be executed after this one. (Note
that in this caseNPPOis shorthand for NoPushPart Object).

JumpTrueNPPO is a conditional jump instruction. It pops the boolean stack. If the value is true, it
jumps to the instruction pointed to in its instruction pointer attribute, otherwise the next instruction
is executed. (Again,NPPOis shorthand for NoPushPart Object).

JumpSubNPPOis an unconditional jump to a sub routine. This means that thefollowing instruction will
be pushed onto the execution stack and the program counter will be set to the instruction pointed to
by instruction pointer attribute. (Again,NPPOis shorthand for NoPushPart Object).

CopyTop Copies the element on the top of a stack. The actual stack is specified as an attribute of this
instruction.

CopyTop2 Like the CopyTop instruction except that it operates on two elements insteadof one. For
instance if the top of the integer stack isf1,2g before aCopyTop2 instruction, the top of the integer
stack after theCopyTop2 instruction will bef1,2,1,2g.

36 Chapter 5. The Virtual Machine

5.4. Attribute Initialization

When aNEW, ptn->obj instruction is executed, thePattern on top of the pattern stack is popped and
instantiated to anObject . But besides that the attributes of all part objects in this object must be initial-
ized. The first implementation of this virtual machine simply called ainitPartObjects() method on
the instantiated object and this could result in numerous part object switches and therefore no safe points
could be defined during attribute initialization [IP01]. Since it is possible to write a gbeta program where
a large part or even the whole program execution takes place in attribute initialization, safe points must be
present during attribute initialization.

MainPart Attribute-init Instructions

ReturnNPPO

ReturnNPPO

JumpSubNPPO <Attribute-init Instructions>

Attribute-init Instructions

Attribute-init Instructions

JunpSubNPPO <Attribute-init Instructions>

ReturnMPAttrInit

Figure 5.8.:How the attribute initialization list of a main-part works

To make it possible to do garbage collection during attribute initialization we made theByteCodeLoader
generate a special list of attribute initialization instructions connected with each main-part. Figure 5.8 illus-
trates how these main-part attribute initialization listswork. When an object must be initialized two things
are done. First the part object to be initialized is identified and pushed to the current part object stack. This
is the most general part object of the object to be initialized. Secondly the initialization instruction to be
executed is identified and the program counter is set to this instruction. This is the first instruction in the at-
tribute initialization list of the main-part of the identified part object. If the part object has any attributes the
identified instruction is aJumpSubNPPOotherwise it is aReturnMPAttrInit . TheJumpSubNPPO
instruction’s duty is to push the next instruction and to make the program counter point to the first initial-
ization instruction of one of the attributes of the main part. So, after aJumpSubNPPOinstruction one
of the attributes in the part object will be initialized. TheseAttribute-init Instructions lists
are terminated with aReturnNPPO instruction, which sets the program counter to point to the instruc-
tion on top of the execution stack, e.g., the nextJumpSubNPPOin theMainPart Attribute-init
Instructions list. The last instruction in a main-part attribute initialization list is aReturnMPAttr-
Init . The purpose of this instruction is to make the thread switchto initialization of the next most general
part object if present and otherwise return. This way all theattributes in all the part objects of the object
are initialized while creating a safe point between each instruction.

So the job of theNEW, ptn->obj instruction is only to instantiate the pattern to an objecto and make
a context switch to the first instruction in theMainPart Attribute-init Instructions list (as
described above) of the most general part object ino.

This form of attribute initialization is characterized as eager initialization but running gbeta programs also
requires lazy initialization [BC95].

5.4. Attribute Initialization 37

5.4.1. Lazy Attribute Initialization

The gbeta code in figure 5.9 illustrates why lazy attribute initialization is required. The value ofb is only
known at run-time and its value determines which of the objectsa andb in q that must be initialized first. If
b is true the initialization order must bea first thenb but the opposite initialization order is required ifb

is false. So, sometimes it is necessary to stop the executionof an instruction because a required attribute is
uninitialized and initialize the attribute and restart thegiven instruction. But this requires that instructions
which could result in lazy attribute initialization must beable to be restarted without side effects. This
is quite simple to ensure since the evaluation of run-time paths is the only thing that can result in lazy
initialization and these evaluations have no side effects.

So, if the evaluation of run-time paths is placed in the beginning of the execution code connected with these
instructions and subsequently a check that initializes lazy initialization if necessary is placed, then we can
stop these instructions, initialize the attributes, and restart them.

-- betaenv:descriptor --
(#

_b : @boolean;
x: @(# self: @this(object) #);
: (# o: ˆx do INNER exit this()[] #);
q: (# a: @(_(# do (if _b then x[]->o[] else b[]->o[] if)#)).o;

b: @(_(# do (if _b then a[]->o[] else x[]->o[] if)#)).o
#)

do
q; true->_b; q

#)

Figure 5.9.:Example of gbeta program requiring lazy initialization

In figure 5.10 is a piece of pseudo code that illustrates what must be done after evaluation of a run-time
path if lazy initialization is required.

if(resultOfRuntimeEvaluation == NULL) f
push current instruction to execution stack
push RETURN instruction to execution stack
push part object to be initialized to current part object sta ck
set programCounter to first initialization instruction of attribute
add frame to temp stack
skip actual execution of this instructiong

Figure 5.10.:What must be done if lazy initialization is required

The reason why aRETURNinstruction is also pushed to the execution stack is that at the end of the attribute
initialization instruction list is aReturnNPPO (see figure 5.8) but a “real”Return is required to restart
the stopped instruction. This is because the current part object and current frame must be restored after the
lazy initialization has finished.

38 Chapter 5. The Virtual Machine

5.4.2. Virtual Attributes and Gather-virt

(# p: (# v:< object #);
q: p(# v::< integer #);
r: q(# v:: integer #);
do r;

#)

Figure 5.11.:Code example of virtual chain

In gbeta it is possible to specialize some pattern attributes of a pattern in a subpattern. This is done using
virtual declarations and virtual chains. The conceptvirtual declarationcovers a virtual pattern declaration,
a virtual further-binding, and a virtual final-binding. Avirtual pattern declarationintroduces a pattern
attribute that can be specialized in subpatterns and is denoted with the syntax:< . A virtual further-binding
specializes the introducing binding or the previous further-binding of the pattern attribute in a subpattern.
Zero or more further-bindings can be present and they are denoted by the syntax::< . Thevirtual final-
bindingspecializes the pattern attribute as the further-binding but it also specifies that this attribute cannot
be further specialized. A virtual final-binding is denoted by the syntax:: . So a virtual chain consists of
exactly one virtual pattern declaration, zero or more virtual further-bindings and finally an optional virtual
final-binding. Figure 5.12 along with the gbeta code in figure5.11 illustrates an example of the patternp
with the virtual pattern attributev which is the virtual pattern declaration. The patternp is specialized by
the patternq which has a virtual further-binding ofv. The patternr specializes the patternq and makes a
virtual final-binding of the attributev.

v

v

 p

v

 q

 r

Figure 5.12.:Example of a virtual chain

With respect to types a virtual pattern declaration, a virtual further-binding and a virtual final binding only
gives an upper bound to the type.

Having virtual attributes makes attribute initializationmore complicated. The initialization of a virtual
attribute requires that all part objects in an object havingcontributions to this attribute is used to initialize
the virtual attribute.

The above program compiled to gbeta byte code is shown below.This byte code has been annotated
with numbers indicating in which order the instructions areexecuted. TheENDOF GATHERVIRTCODE
delimiter can be thought of as a special instruction.

5.4. Attribute Initialization 39

MainPart("‘216"
"p/0": (

PUSH-ptn_"object" 1
ADD-mainpart ‘42 origin fg 2
INSTALL-ptn 0 3

)
"q/1": (

PUSH-ptn f"p/0" g 4
ADD-mainpart ‘108 origin fg 5
INSTALL-ptn 1 6

)
"r/2": (

PUSH-ptn f"q/1" g 7
ADD-mainpart ‘172 origin fg 8
INSTALL-ptn 2 9

)
|

PUSH-ptn f"r/2" g 10
NEW,_ptn->tmp 1 11
CALL ftmp(1) g 26
RESETFRAME 27

)
MainPart("‘42"

"v/0": (virtual
PUSH-ptn f<-2,"object/0" g 13
END_OF_GATHERVIRT_CODE 14
GATHER-virt "v/0" in "‘42" 12
INSTALL-ptn 0 21

)
|
)
MainPart("‘108"

"v/0": (virtual "v/0" in "‘42"
PUSH-ptn f<-2,"integer/3" g 15
MERGE-ptn 16
END_OF_GATHERVIRT_CODE 17
PUSH-ptn fˆ‘42,"v/0" g 22
INSTALL-ptn 0 23

)
|
)
MainPart("‘172"

"v/0": (virtual "v/0" in "‘42"
PUSH-ptn f<-2,"integer/3" g 18
MERGE-ptn 19
END_OF_GATHERVIRT_CODE 20
PUSH-ptn fˆ‘42,"v/0" g 24
INSTALL-ptn 0 25

)
|
)

Figure 5.13.:Example 5.11 compiled to byte codes. The byte codes have beenannotated with
numbers indicating the order of execution

40 Chapter 5. The Virtual Machine

Figure 5.13 explains howGATHER-virt and virtual attribute initialization works in general. When a
virtual pattern declaration attribute must be instantiated theGATHER-virt instruction belonging to the
main-part of the most general mixin will construct a correctpattern.

Init code of virtual
attribute of the
virtual pattern
declaration

ContGatherVirt

InstallPtn <index>

Virtual Attribute-init instructions

Gather-virt code

ContGatherVirt

InstallPtn <index>

Virtual Attribute-init instructions

Gather-virt code

ContGatherVirt

InstallPtn <index>

Virtual Attribute-init instructions

Gather-virt code

PushPtn <run-time path>

PushPtn <run-time path>

PushPtn <run-time path>

ContGatherVirt

InstallPtn <index>

Virtual Attribute-init instructions

Gather-virt code

GatherVirt <attribute> <main-part>

Init code of virtual
attribute of the

Init code of virtual
attribute of the

virtual further

virtual final
binding

binding(s)

Optional

Optional

= Specialization of virtual attributes

start of initialization

Figure 5.14.:GATHER-virt and virtual attribute initialization. Depending on the structure
of the virtual chain, a hierarchy of one virtual attribute used for the virtual pat-
tern declaration, zero or more virtual attributes used for futher bindings, and
zero or one virtual attributes used for the final binding is present

The initialization code of a virtual attribute is divided into two parts, theGather-virt Code part and
the Virtual Attribute-init instructions part. If the virtual attribute belongs to a virtual
pattern declaration, i.e., the introducing binding, theVirtual Attribute-init instructions
part begins with aGATHER-virt instruction. The functionality of this instruction is to execute the ’gath-
ervirt’ instructions and thereby create a correct pattern for the virtual pattern declaration attribute. So,
if the current virtual chain consists of an introducing binding, a futher binding and a final binding, the
GATHER-virt instruction must merge all the virtual pattern attributes with the same id starting from the
most general part object.

To make virtual attribute initialization work with the flat execution model, we had to add a special instruc-
tion to theGather-virt Code lists - namely theContGatherVirt instruction. The purpose of this
instruction is to jump to the initialization of the virtual attribute with the correct id of a more specific part
object if present. This instruction is further explained subsection 5.3.

5.5. Multi-Line Instructions 41

5.5. Multi-Line Instructions

This section explains the implemented multi-line instructions. To refresh your understanding of the special
instructions used to allow safe points within multi-line instructions see section 5.3.

5.5.1. Named For

A named for loop in gbeta is executed with an index variable value ranging from 1 to N. The instructions of
a named for are divided into two parts; the evaluation instructions giving the N and the body instructions.
When parsing, these instructions are inserted into two separate lists and when the parsing of thenamed
for instruction is finished, several instructions are appendedto the two lists as shown in figure 5.15. The
instructions added to the evaluation instructions can be further logically divided into initialization- and
cleanup-instructions. The instructions added to the body increment the counter and checks for whether the
body instructions should be executed again or the cleanup code should be executed.

CopyTop <integer>
PushInt "{}"
PushiIntLit 1
AddOpPlus <integer>
CopyTop <integer>
PopInt "{}"
RelOpLT <integer>
JumpTrueNPPO <cleanupStartInstr>
JumpNPPO <Body Instructions>

Increment
and

check

PushInt "{}"
RelOpLT <integer>
JumpTrueNPPO <cleanupStartInstr>
JumpNPPO <Body Instructions>

Discard <integer>
Return

CopyTop <integer>

Eval Instructions

Body Instructions

Cleanup

Init

G
ot

o
cl

ea
nu

pG
oto body

Figure 5.15.:The instructions used for making anamed for instruction

Thenamed for instruction itself sets up aPrededfinedPartObject of integer type for keeping the
index variable and assigns it the value 1. This po is pushed tothe current part object stack, a new frame
is added to the temp stack, the instruction following thenamed for instruction is pushed to the execution
stack, and finally the program counter is set to point to the first instruction in the evaluation instruction list.

The original evaluation instructions are supposed to leavethe value N on the integer stack indicating how
many times the body instructions are to be executed. This value is kept on the stack while the loop is
active, and removed in the cleanup instructions. Since theRelOpLT instruction uses a destructive read,
theCopyTop instruction is needed to preserve the old value. ThePushInt fg instruction simply copies
the value from the current (integer) part object to the integer stack.

42 Chapter 5. The Virtual Machine

5.5.2. Simple For

Thesimple for instruction works much like thenamed for version except that no part object is needed to
store the index variable, and the index variable is inaccessible from the body code. The index variable is
in our implementation stored on the integer stack like N in the named for instruction. The only problem
this gives us is, that we need yet another instruction to be able to access both of these variables without
deleting them. TheCopyTop2 instruction was invented for this purpose. The instructions inserted during
the parsing can be seen in figure 5.16.

Increment
and

check

JumpTrueNPPO <cleanupStartInstr>
JumpNPPO <Body Instructions>

Discard <integer>

PushiIntLit 0
CopyTop2 <integer>
RelOpEQ <integer>

Discard <integer>
ReturnNPPO

PushiIntLit 1
AddOpPlus <integer>
CopyTop2
RelOpEQ <integer>
JumpTrueNPPO <cleanupStartInstr>
JumpNPPO <Body Instructions>

Eval Instructions

Body Instructions

Init

Cleanup

G
oto cleanup

G
ot

o
cl

ea
nu

p

Figure 5.16.:The instructions used for making asimple for instruction

The instruction itself only pushes the instruction following the program counter onto the execution stack
and sets the program counter to the first instruction in the evaluation instructions.

5.5.3. Simple If

A simple if instruction contains three lists of instructions: an evaluation list, a then list, and an else list.
When the evaluation list of instructions has been evaluateda boolean value will be left on top of the
boolean stack. If this value is true, the then list of instructions must be executed, otherwise the else list of
instructions must be executed.

When thesimple if instruction has been parsed, the instructions are added to the list as shown in figure
5.17.

Thesimple if instruction itself only transfers control to the evaluation list, i.e., it conducts a jump and saves
the next execution to be executed after thesimple if instruction on the execution stack.

5.5.4. General If

Because ageneral if construct is more complicated than the other multi-line instructions (in terms of syntax
at least), we present the syntax below.

5.5. Multi-Line Instructions 43

Eval Instructions

JumpTrueNPPO <Then Instructions>
JumpNPPO <Else Instructions>

ReturnNPPO

ReturnNPPO

Then Instructions

Else Instructions

Figure 5.17.:The instructions used for making asimple if instruction

<genIf> ::= ’generalIf(’ <type> <evaluation> <alternative> * <elsePart> ’) ’
<alternative> ::= <selection> + ’ |then ’ <imperatives>

<selection> ::= ’ |case ’ <evaluation>
<elsePart> ::= ’ |else ’ <imperatives>

<evaluation> ::= <instruction> *
<imperatives> ::= <instruction> *
<instruction> ::= <singleLineInstruction>  <MultiLineInstruction>

<type> ::= ’boolean ’ ’char ’ ’ integer ’ ’ real ’
’string ’ ’object ’ ’pattern ’

An code fragment usinggeneral if is shown in figure 5.18.

generalIf(integer
PUSH-integer f"N/0" g
RESETFRAME

|case
PUSHI-integer 1
RESETFRAME

|then
...

|case
PUSHI-integer 2
RESETFRAME

|case
PUSHI-integer 3
RESETFRAME

|then
...

|else
...
RESETFRAME

)

Figure 5.18.:Gbeta byte code fragment usinggeneral if

44 Chapter 5. The Virtual Machine

There is no limit to how many alternatives that can be inserted in a general if instruction so there is no
predetermined number of instruction lists in ageneral if instruction. There will, however, be an instruction
list for each <genIf>, <selection>, <alternative>, and <elsePart>, some of which may be empty.

The execution of<evaluation> in <genIf> returns a value of type indicated by<type>. The selections are
then evaluated from the top comparing their results to this value. If a match is found the instructions in the
associated<imperatives> are executed next and the rest of the<selections> will not be considered. If no
match is found the instructions in<elsePart>’s <imperatives> are executed; if no<elsePart> is present, the
effect is as if an empty<elsePart> had been present.

Our translation of the example in figure 5.18 is shown in figure5.19.

Selection Instructions
CopyTop <integer>

RelOpEq <integer>

JumpNPPO <next selection>
JumpTrueNPPO <Then Instructions>

ReturnNPPO

Then Instructions

Selection Instructions
CopyTop <integer>

RelOpEq <integer>

JumpNPPO <next selection>
JumpTrueNPPO <Then Instructions>

Selection Instructions
CopyTop <integer>

RelOpEq <integer>

JumpNPPO <next selection>
JumpTrueNPPO <Then Instructions>

ReturnNPPO

Then Instructions

ReturnNPPO

Else Instructions

Eval Instructions

Discard <integer>
ReturnNPPO

JumpSubNPPO <First Selection>

cleanup

alternative

alternative

elsePart

Figure 5.19.:The instructions used for translating thegeneral if instruction in figure 5.18

Thegeneral if instruction itself only pushes the next instruction onto the execution stack and changes the
program counter to point to the first instruction in the evaluation instruction list.

5.6. Complex Single-Line Instructions 45

5.5.5. While

Thewhile instruction contains two lists of instructions: an evaluation list and a body list. The evaluation
list is executed first. This leaves a value on the boolean stack. If this value is true, the body instructions will
be executed and thewhile loop is restarted from the evaluation. If the value is false,thewhile instruction
is terminated. Our instructions added to the instruction lists are shown in figure 5.20.

Body Instructions

JumpNPPO <Eval Instructions>

Eval Instructions

JumpTrueNPPO <Body Instructions>
ReturnNPPO

Figure 5.20.:The instructions used for making awhile instruction (for obvious reasons, this
was our first multi-line instruction)

The while instruction itself only pushes the next instruction onto the execution stack and changes the
program counter to point to the first instruction in the evaluation instruction list.

5.6. Complex Single-Line Instructions

During the implementation of instructions we were constantly reminded of the great variety in the complex-
ity of different single-line gbeta byte code instructions.In this section we will present some implementation
details of the most complex and interesting instructions that were implemented. A description of all gbeta
byte code instructions can be seen [Ern99, appendix D].

5.6.1. Add Main-Part

The purpose of theADD-mainpart instruction is to construct new patterns using old patterns, mixins, part
objects, and main-parts. The instruction pops a pattern from the pattern stack, creates a new pattern with a
mixin list with room for one more mixin than the popped pattern. Then it copies the mixins of the popped
pattern to the new pattern and adds one mixin to the end of the mixin list of the new pattern. Theorigin
attribute of this mixin must point to the part object specified by the run-time path and itsmainpart
attribute must point to aMainPart having the main-part id given as argument to theADD-mainpart
instruction. To support finding this main-part we have implemented agetMainPart(mainPartId)
method on theScheduler class. This method just searches its list of main-parts and returns the main-part
having main-part idmainPartId if found. This rather expensive iteration could have been avoided with
a two pass parser which could add pointers to theADD-mainpart instructions pointing to the correct
main-part. If we had placed the main-parts in a hash-map datastructure we could have achieved constant
average lookup time instead of linear (in the number of main-parts) lookup time.

5.6.2. Merge

The MERGEinstructions use an implementation of themerge() function described in subsection 2.1.2
to pop two patterns from the pattern stack, merge them if possible, and push the resulting pattern to

46 Chapter 5. The Virtual Machine

the pattern stack. The pattern merging is one of main concepts separating gbeta from BETA. To imple-
ment the merge operation soundly two special handling caseswere introduced. In figure 5.21 the im-
plementedmerge() function is presented. The help functionmember(mixinList1, iterator,
mixinList2, mixinList2Length) returns true if the element atiterator in mixinList1 is
a member ofmixinList2 .

SETUP Gets the mixinlists and length of the patterns and creates iterators for the patterns and the result
pattern

SPECC. Handles the special case that one or both of the patterns is the empty pattern. Ifp1 is the empty
pattern,p2 is returned and vice versa. If both patterns are the empty pattern,p2 is returned.

THE MERGE ALGORITHM Resembles the merge algorithm described in subsection 2.1.2.

RESULT When a merge of the patterns succeeds a new resulting patternis created and pushed to the
pattern stack. To get a correctObjectDescriptor we have a global pattern objects-descriptor
array which is lazy initialized, i.e., anObjectDescriptor supporting a pattern with the length
e.g., 7 is created the first time it is needed.

5.7. Virtual Machine Evaluation

Since the focus of this project is memory management a numberof possible optimizations and extensions to
the virtual machine component have been omitted. In this section we evaluate the current implementation
and propose a number of improvements.

5.7.1. Static and Dynamic Strings

In this implementation strings is placed in the non-traced root space, so if a string becomes dead we waste
the space it uses. Instead of putting all strings into non-traced root space we could have had two types
of PredefinedStringPartObjects : dynamic strings and static strings. The dynamic strings could
have been allocated in train space and garbage collected if dead. Dynamic strings would be allocated
because of theStdio/in instruction. We would still have to allocate the strings parsed from the gbeta
byte code in the non-traced space, since they should be kept alive until program termination (it is impossible
to know when an instruction will not be executed again according to the halting theorem and its siblings
[Sip97]).

This extension to the virtual machine would be very easy since the only thing it requires is two types of
PredefinedStringPartObject object descriptors: one for the dynamic strings indicatinga pointer
to theVMObject containing the string, and one indicating no pointer for thestatic strings.

5.7.2. Multi-threaded

To make our virtual machine multi-threaded a number a thingsshould be changed to both the virtual ma-
chine component and the memory management component. Sinceconcurrent threads allocate different
gbeta entities concurrently, it is vital that some sort of resource sharing is present in the memory man-
agement system. Also, theScheduler should have some sort of signaling queue to allow for different
signals to be queued and eventually processed. This would amongst other things allow safe points with
concurrent threads. I would be possible to use native threads with few modifications of the virtual machine
component, but the memory manager requires larger modifications.

5.7. Virtual Machine Evaluation 47

merge(Pattern_t *p1, Pattern_t *p2) f
S Mixin_t **p1MixinList = p1->getMixins(), **p2MixinList = p2->getMixins();
E int p1Length = p1->getLength(), p2Length = p2->getLength();
T int p1I = p1Length-1; //iterator for p1
U int p2I = p2Length-1; //iterator for p2
P int resI = 0; //result iterator

//check for EmptyPattern
S if(!p1MixinList[0]) f
P return p2;
E g
C if(!p2MixinList[0]) f
C return p1;
. g

//merge p1 & p2
T bool notP1Finished = 1, notP2Finished = 1;
H while(notP1Finished || notP2Finished) f
E if((p1MixinList[p1I]->origin == p2MixinList[p2I]->ori gin) &&

(p1MixinList[p1I]->getMainPart() ==
M p2MixinList[p2I]->getMainPart())) f
E mergeScratch[resI++] = p1MixinList[p1I];
R if(p1I) f
G p1I--;
E g else f

notP1Finished = 0;
A g
L if(p2I) f
G p2I--;
O g else f
R notP2Finished = 0;
I g
T g else if(!(member(p2MixinList, p2I, p1MixinList, p1Lengt h)) &&
H notP2Finished) f
M mergeScratch[resI++] = p2MixinList[p2I];
. if(p2I) f
. p2I--;
. g else f
. notP2Finished = 0;
. g
. g else if(!(member(p1MixinList, p1I, p2MixinList, p2Lengt h)) &&
. notP1Finished) f
. mergeScratch[resI++] = p1MixinList[p1I];
. if(p1I) f
. p1I--;
. g else f
. notP1Finished = 0;
. g
. g else f
. return NULL;
. break;
. g
. g

//create new pattern for result
R ObjectDescriptor_t *ptnDesc = getPtnObjectDescriptor(r esI);
E Pattern_t *result = new(allocateVM(ptnDesc)) Pattern_t(ptnDesc);
S Mixin_t **resultMixinList = result->getMixins();
U //copy result from scratch to new pattern
L for(int i = resI, j = 0; i > 0; i--,j++) f
T setVMReference(result, (void**)&resultMixinList[j], m ergeScratch[i-1]);
. g
. return result;g

Figure 5.21.:The implementedmerge() function. SPECC. abbreviates special case han-
dling

48 Chapter 5. The Virtual Machine

5.7.3. Two-Pass Parsing of the Byte Code

If we had made theByteCodeLoader a two-pass parser a number of optimizations could have been
obtained:

Cached Main-Parts AddMainPart instruction could have main-part pointers cached yieldingconstant
lookup time.

Real Byte Code Format The instruction lists in main-parts could be parsed to a realbyte code format,
i.e. with one-byte opcodes and zero or more argument bytes. This would make the byte-code lists
smaller, but the real benefit would be the possibility to interpret the byte codes faster.

5.7.4. Statically Known Patterns and Objects

Recent versions of the gbeta compiler includes informationabout statically known patterns and objects in
the gbeta byte code files. The structure of astatic patternand astatic objectis known at compile time, but
these entities cannot be constructed before run-time. In cases where a method is not invoked a great number
of times, it can save space and initialization time to use static patterns, as they do in [JJW01], instead of
only creating them dynamically.

6. The Memory Manager

In [IP01] we made an almost fully working memory manager which used the train algorithm to garbage
collect but did not have other generations. We proposed a number of changes to our first design and
implementation. In essence the main goal of our proposals was to move the focus from ’easy to understand’
to efficient [IP01]. We will now present the subjects considered for the new version of the memory manager.

Efficient Write Barrier The implemented write barrier had a worst case time complexity of O(n+m),
wheren was the maximum number of objects in a car andm was the number of objects referenc-
ing another object. Also, the space complexity wasO(n) wheren was the number of pointers in
VMObjects .

Using a more efficient remembered set data structure (e.g. a hash set) and aligning cars at 2k-byte
boundaries will induce a write barrier typically at constant time except in rare cases where the hash
map needs resizing or collisions occur.

No Car-Internal Remember-ReferencesCar-internal remember-references made our garbage-collection
algorithm easy to understand since the precise knowledge ofall interesting pointers made Cheney
scans unnecessary. But these car-internal remember-references both increased the space used by the
remembered sets and made the write barrier more expensive than necessary.

Instead of having car-internal remember-references, we could evacuate followers from the from car
using scan pointers. These scan pointers should point into the cars where externally referenced
objects have been moved.

ReduceVMObjectSpace OverheadAligning cars at 2k-byte boundaries also makes it possible to re-
move the car pointer inVMObjects , since the address of the car can be obtained by clearing the
k-least significant bits ofVMObject ’s address. The only two attributes needed inVMObjects is
an object descriptor pointer and a forward pointer.

Introduction of New Objects In the old memory manager, new objects were born in the car with the
highest train and car number except the root objects which were born in a special train. Since young
objects are most likely to die, this is not the optimal strategy for a garbage collector.

A special object space, called the introductory space, for introducing new objects could reduce the
collection overhead because less garbage would be dragged through the whole system. Some kind
of write barrier is required to track pointers from the train-managed heap to the introductory space.
This means that whenever a car has to be scavenged, the introductory area has to be scavenged too
because it potentially holds references from live objects into the first car. This scheme is in fact be a
small generational garbage collector.

Popular Objects As it is expensive to move objects which are referenced a lot,some way of handling
popular objects would be a good optimization. One way of doing this is to avoid moving the popular
object by keeping the car after the scavenge and reassign thetrain reference and car number [GS93].

Large Object Handling The maximum size of objects is bounded by a fixed fraction of the size of a
car. Since cars also have a fixed size, objects cannot grow arbitrarily large. A large object space
could solve this problem [GS93]. Using a large object space can also reduce the garbage collection
overhead because moving large objects is expensive.

49

50 Chapter 6. The Memory Manager

Concurrency Multi cpu architectures support would be a great benefit for the virtual machine. If this has
to be added to the virtual machine, a couple of time critical functions, such as the write barrier and
allocation function, have to be able to handle multiple threads. This requires either synchronization
of these routines or a very clever design to avoid that. Concurrent garbage collection is also desirable
but probably even harder to implement efficiently.

Adaptiveness It would be interesting to make an adaptive garbage collector which adapted its garbage col-
lection frequency to the amount garbage on the heap. This is afeedback system problem [FPEN94].
In feedback systems it is vital that you control the process.A good example is a pot of almost boiling
water. If one continuously controls the amount of energy transferred to the pot one can control the
temperature of the water and thereby also avoid that the water boils. The same goes for controlling
the garbage collection frequency. If one garbage collect too much one wastes time, but if one garbage
collects too little one wastes space. Using feedback theory[FPEN94] we end up with a situation as
depicted in figure 6.1. But this is not the whole truth! Since the initiations of our garbage collector
is event-based, we need an discrete event-based feed-back control system [PB98] to control it. To
simulate discrete event-based feed-back control systems avariant of Petri net models must be used
and a so-called Lyaponov framework can be used to model these. This is far off the subject of this
report but the idea might be worth pursuing, and it could be subject to future work.

Mutator

Objects

Memory Manager
Dead objectsNew objects

a)

−
.Control input

Output sensor

Memory Manager
PlantΣ

Profiler

Reference sensor
Mutator

+ Actuator
Object Counter

Output
New objects

b)

Figure 6.1.:a) Our system without profiler, b) Our system as a simple negative feedback loop
block diagram - Texts in italic shows new components needed to make it adaptive

We have decided to implement a new memory manager with the above improvement proposals except the
last four (popular object handling, large object handling,concurrency, and adaptiveness). It will still be an
accurate, handleless, partial, cooperative, and single threaded garbage collector.

The purpose of this new implementation is to make a reasonably efficient train algorithm garbage col-
lector that allows us to experiment with different aspects of the train algorithm such as strategies to the
introduction of new objects and the performance effect of varying the car and the introductory space sizes.

Besides the above proposals we have decided to make a specialstack space to circumvent the write barrier
when writing to reference stacks. This was inspired by [Mos87].

This chapter will document the design and implementation ofthe new version of the memory manager.
The first section will give an overview of the architecture. The following three sections will give a more in-
depth explanation of the three spaces present in the heap. The next three sections describe the remembered
set implementation, the object descriptors, and the redesign of the object headers used for objects in the
virtual machine. Then a section describes how the garbage collection algorithm has been implemented in
the system. Next, the write barrier is explained, and finallythe interface is described.

6.1. Architecture 51

6.1. Architecture

StackSpace

MemoryBlock

TrainSpace

Car

VMObject

TrainTableDirtyCarsTrainOrderingTable

IntroductorySpace RememberedSet

GarbageCollector

TrainCar

1

1 1 1 1..*

1

1 1 1

0..n

1

0..n

0..n

1

1
1

1

1 1 2 1

11

n

Figure 6.2.:Class diagram of the memory manager

Figure 6.2 shows the class diagram of the memory manager. Forthose interested in the source code included
on the disc, we will mention a few diversions from this class diagram. TheTrainOrderingTable is
not a class in its own right but included in theTrainSpace class which by the way is calledTrain-
Generation in the source. Also, the classTrainCar was unfortunately calledCarTrain . The code
is placed in the directoriesgbvm/src/gc new andgbvm/src/gc common. Most of these classes will
be described more in-depth in the later sections. We will nowmove on to present the heap layout used.

Introductory

Space

Train
Space

t,c

free car

used car - t: train number
 c: car number

1,3 1,42,2

Stack
Space

2,1

2,3 3,1 4,1 5,1

6,1 6,2 7,1

2,4

1,2

0x10000 0x20000

0x40000

0x90000

Figure 6.3.:The heap layout. The two blocks of cars in the train space representsMemory-
Blocks.

The heap is divided into three spaces: the stack space, the introductory space, and the train space as
illustrated in figure 6.3.

Thestack spaceis where all the stacks carrying references are allocated and other objects which will have

52 Chapter 6. The Memory Manager

to be scanned during garbage collection for determining theroot set. The space is not scavenged because
only one thread is supported. If the stacks of the thread are garbage the thread is garbage. and the program
execution has terminated. Stacks cannot be resized requiring allocation of new memory and freeing of old
memory.

The introductory spaceis the place where the majority of new objects start their life. If they are still live
when the next scavenge occurs, they will be moved to the TrainSpace.

The train spaceis where dynamically allocated objects live after they havesurvived the first garbage
collection.

In addition to these spaces untraced root objects are allocated using the standardmalloc() function.

6.2. Stack Space

The main motivation for having a stack space, compared to having stacks floating around in the train space,
is that when writing to stacks containing references, the write barrier can be circumvented, which yields
lower mutator overhead related to memory management. Instead of using the write barrier for remembering
references from the stack space, the stack space is scanned at each garbage collection. This identifies live
objects in the introductory space or the from car (if both theintroductory space and from car is being
garbage collected).

Another advantage of the stack space is that the large stack objects do not need to be moved making garbage
collection faster.

The stack space is an optimization that is particularly worthwhile with mutators that use many reference
stack operations such as our gbeta virtual machine (see chapter 5).

The reason for storing the stacks in the same place is that we want to be able to scan them for references
easily. This also means that the stacks, which do not containany references, should not be placed in this
space since that would only incur extra scanning overhead. Such reference free stacks are allocated using
the standardmalloc() function outside any of the three spaces. Actually, the objects left in the stack
space constitute the root set of the live object graph.

6.3. Introductory Space

The purpose of the introductory space is to host new objects.There are two advantages gained when
allocating new objects in a separate space.

Firstly, since many objects die young, it is beneficial for the efficiency of the garbage collection to be able
to concentrate its effort on the introductory space.

Secondly, if the introductory space is garbage collected with the train space, the write barrier overhead
of stores in introductory space objects can be reduced to only identifying the case of a store in the in-
troductory space; no remembered set update is necessary. This is consistent with common generational
garbage collectors that only remember references from older to younger generations. To ensure this in the
implementation the introductory space is always logicallyordered lower than anything in the train space,
effectively making the introductory space a special train with only one car that is always collected with the
first “real” train.

To keep track of interesting pointers into the introductoryspace, a remembered set contains the slot of a
pointer from train space into introductory space. This remembered set is identical to the remembered sets
of a car. Remembered sets will be discussed in section 6.5.

In order to have a fast membership test for this space, the memory is allocated on a 2k aligned address
where 2k is the size of the memory allocated for the introductory space. This way it is possible, with a

6.4. Train Space 53

bitwiseANDoperation to remove the lowerk bits of a given address and compare this to the base address
of the introductory space memory.

6.4. Train Space

The purpose of train space is to host mature objects and support an efficient and non-disruptive garbage
collection of these objects using the train algorithm.

6.4.1. Memory Blocks

Memory blocks manage the raw memory allocated from the operating system. A memory block contains
a number of car sized blocks that can be reserved for cars. Each of these sub blocks (or cars) are aligned
on an address divisible by the size of a car. The space within amemory block is managed by a free pointer
and a free list. The free list contains the recycled cars, while the free pointer is used for allocating space
for a new car within a memory block (see figure 6.4).

MemoryBlock

freePtr
freeList
next

MemoryBlock

freePtr
freeList
next Car 1,2

Car 1,2Car 1.3

Figure 6.4.:The memory blocks managing the allocation of car space

When one memory block is filled a new one is allocated, but thistime a constant factork larger than the
previously largest block. This way the sizes of memory blocks grow exponentially. The factork is typically
in the range 2 to 4. When several memory blocks are active, allocation of a car will first be attempted in the
smallest memory block and last in the largest. Although the likelihood of finding an available car this way
is smaller than if the largest was searched first, it will be possible to free the largest block at some time,
should the memory requirements decrease later.

6.4.2. Cars

The classCar is shown in figure 6.5. Cars host mature objects. Each car has anextCar pointer pointing
to the car next in the train, afreePtr pointer pointing to the first free slot in the car, and ascanPtr used
for Cheney scanning. Besides that we have a pointer to a train-internal remembered set, and a train-external
remembered set. Finally the cars have a data array which in the implementation (inC++) is declared to
have the size of one void pointer which, like theVMObjects , is actually a lot larger and is the place where
theVMObjects are stored.

The car has both a train internal and a train external remembered set, since it is vital for the efficiency of the
train algorithm to be able to quickly determine whether there are any train-external remember references or
not. That is, to ensure that a train can be deleted it must be efficient to check if there are any pointers into
the train from outside the train. If the remembered sets weremerged, it would be much more expensive
to handle large garbage structures filling several cars in the from train since every train internal remember

54 Chapter 6. The Memory Manager

nextCar
freePtr
scanPtr
data[1]

allocateVMO
moveExtObjects
moveIntObjects
moveObj
copyObj
moveObjHere
doGCScan

Car

Figure 6.5.:TheCar class

reference would have to be checked before it was possible to conclude that the train only contained dead
objects.

TheCar class offers methods to allocate new objects, move objects,methods to access the remembered
sets, and a method to do a Cheney scan of the car. SinceCar is one of the very important classes in the
memory manager, we will give a brief overview of its most important methods in the following paragraphs.

The methodallocateVMO() makes it possible to allocate new objects in a car. This is only done rarely,
namely when the introductory space is filled up.

There are several methods for moving objects in theCar class. The two first,moveExtObjects() and
moveIntObjects() , are only used when a car has the role of from car. The methods traverse their
respective remembered set moving objects being referencedto the place where they are referenced from.
For this task the methodmoveObj() is used. The main task ofmoveObj() is to determine the exact
place to copy an object. Using thecopyObj() method, first the referencing car is tried, then the last car
in that train, and finally a new car in that train. If all this fails, the object is too large to fit inside a car and
the program execution is halted.

copyObj() is the main interface for moving objects to a car. It takes care of things such as checking for
a forward pointer, checking if there is enough space for the object, setting the forward pointer, updating the
car’s free pointer, and dirtying the car (see subsection 6.4.4).

The functionmoveObjHere() is another interface to moving objects to a car. It is used when an object
should only be put in a specific car and only if that car is not filled above a fixedfill-threshold. If that is
not possible, the method fails. This method is only used whenmoving objects that are only referenced
from the stacks, and only with our new train creation policy (see subsection 6.8.2 and section 7.6). The
implementation is very much like thecopyObj() method.

The final method we will mention isdoGCScan() which is the method performing the Cheney scan
on a car. This method traverses all references in the objectsbetweenscanPtr and freePtr . If the
reference points to an object inside the introductory spaceor the from car,moveObj() is invoked for
moving the object to this car or retrieving the forward pointer, andsetVMReference() is used for
setting the reference and updating the remembered set if necessary. If the reference refers to an object
outside introductory space and from car, the object is not moved, but the remembered set is still updated if
necessary.

6.4.3. Trains

Instead of having trains as a class, like we did in our earlierversions of the garbage collector, we manage
trains using a car-ordering table, a train-table, and by linking the cars in a singly-linked list.

6.4. Train Space 55

Train Table

...

...

...

...

...

first = 0

last = 5

2,1

1,3 1,4 1,8

2,2 2,5

3,4

4,5

3,2

4,2

5,2

3,1

4,1

5,1

...

...

last car

first car

 1

 2

 3

 4

 5

 0

5,7

Figure 6.6.:The train-table. First denotes the first train (the from train) and last denotes the
first free cell in the circular buffer

The train-table is used during garbage collecting to get thefirst or last car of a train given a train number.
It has been implemented as a circular buffer, which has constant lookup time and little book-keeping.
However, this data structure limits the number of concurrent trains. To circumvent this, dynamic resizing
of the buffer would be necessary or a circular buffer with thesize of the number of possible trains could
be allocated. The implemented train-table is illustrated in figure 6.6. To return the last car given a train
numbert, theTrainTable class uses(t - 1) modulusbufferSizeas index into the circular buffer. This
means that when train numbers exceed the highest possible number with the given buffer size, they will
begin at the start again. This works in the train algorithm because the lowest order train is continuously
removed making space for new trains, but only as long as the number of trains does not exceed the size of
the buffer.

Car Ordering Table

The task of the car-ordering table is to keep the total ordering of cars in the train algorithm. In addition
everything outside the train space (in particular the introductory space) is put into this ordering as the lowest
order element. This is beneficial as it simplifies the tests needed when updating remembered sets in the
write barrier, as we will show in section 6.9.

When given an address, the car-ordering table returns an object containing a 32-bit integer where the 16
most significant bits are the train number and the 16 least significant bits are the car number - we refer to
these objects astrain-car elements. This way we can compare the ordering of two cars efficiently.The
car-ordering table is illustrated in figure 6.7. To return a train-car element given an address, the memory
manager simply shifts the address 16 bits right and uses thisvalue as index in the car-ordering table. This
resembles the card marking scheme [WM89]. By initializing all values of this table to 0, everything outside
the train space is automatically placed in train 0, car 0 so the lowest legal train number in the train space is
therefore 1.

The size of the car-ordering table is fixed to a size so it is able to cover the whole address space. With a car
size of 64KB this results in a 256KB table. The train-car elements do not adapt to this increased number of
cars, only 65536 cars (in each train) and 65535 trains are possible. This does not seem to be a restriction
in any of the tests we have run but with smaller car sizes and more memory available it could be. With a

56 Chapter 6. The Memory Manager

Introductory

Space

Train
Space

162 -1

5
6
7
8
9

10
11
12
11
12
13
14
15
16
17
18
19
20
21
22
23

4
3
2
1 0x00000000

0x00000000

0x00010002
0x00020002
0x00010003
0x00010004

0x00020001

0x00020003
0x00030001
0x00040001
0x00050001
0x00060001
0x00060002

0x00070001

0x00020004

####
####

####

####

####
####

####

####

####
####
####

. . .

####

0

1,3 1,42,2

Stack
Space

2,1

2,3 3,1 4,1 5,1

6,1 6,2 7,1

2,4

t,c

free car

used car - t: train number

1,2

 c: car number

empty or old value

0x10000 0x20000

0x40000

0x90000

Car-ordering table

Figure 6.7.:The car-ordering table. #### means that the value of this entry is either empty or
old and not interesting

very low car size of 1KB the approximate theoretical maximumof bytes in a train would be 65MB, and
with the lowest size we have tried, 4KB, it is 256MB. Using some of the bits currently used for the train
number could solve this for some time.

As the train number continually grows, it is sometimes necessary to renumber the trains which means that
a new lowest train number must be established and every train-car element of the cars in the current trains
must be updated. This can probably be quite expensive with large heaps, but it happens very rarely in
practice. To avoid a reordering of the trains in the train-table, the new train number of the lowest train is
chosen as the lowest that will result in the same index in the train-table.

6.4.4. Dirty Cars

When garbage collecting, it is necessary to know to which cars unscanned objects have been moved. Un-
scanned objects resemble the objects between the scan and the next pointer in a copy collector using a
Cheney scan. These are commonly referred to as grey objects in tricolor marking schemes [Wil94]. In
the train algorithm unscanned objects are the objects movedfrom the introductory space or the from car
because of external references, i.e., references from other cars, the stacks, or other root objects. We refer
to dirty carsas cars with unscanned objects.

A hash set named dirty cars always contains references to thecurrent set of dirty cars. Using a hash
set, duplicate references are avoided and insertion is a cheap operation. This is necessary during garbage
collection where many objects are moved. As long as this set is not empty, the garbage collection is not
finished.

6.5. Remembered Sets 57

6.5. Remembered Sets

In [IP01, p81-83] we found that remembered sets were more suitable than card marking for the write barrier
within the train algorithm. Some other virtual machines using the train algorithm [SM01, Hud00] combine
card marking with remembered sets (see chapter 8), but sincethe write barrier implementation is not the
main focus in this project, we have chosen only to use remembered sets.

A write barrier in the form of remembered sets is used to keep track of interesting pointers, i.e., pointers
from a higher ordered car to a lower ordered car, and pointersfrom train space into introductory space. We
have chosen to remember slots instead of objects [HMS92] because this frees us from the task of searching
the objects for the pointer, and there is not much use for the object header either. That is, we remember the
address where an interesting pointer is situated on the heapdirectly. This is illustrated in figure 6.8

Stack
Space

Introductory
Space

Train
Space

External
remembered
set

Internal

set
remembered

Pointer

Rem. Ref.

Object with
slot

Object

Car train,car

Stack

(from train)
Train 1

Train n
n,0 n,1 n,2

1,21,11,0

Figure 6.8.:Remembered sets in the heap

It is interesting to note the remember reference from car (1,1) to the slot in car (n, 1). The pointer in this
slot does not point back at an object in car (1, 1), but this is just a fact of life with this implementation of
remembered sets, one cannot be sure that the remembered slotstill refers to the object it did when it was
created, this must be checked when using the remembered set entries. Removal of these dangling entries
would cause extra overhead in the write barrier, and the remembered set implementation would have to be
able to handle deletions.

The remembered sets were first implemented using a hash set from the Standard Template Library, STL,
available with most standardC++ compilers, and it is still possible to use this implementation. In order
to be sure about what actually happens when the remembered sets are used, we made our own hash set
implementation. The implementation is not that interesting so we will only present a few details. The
primes for the array sizes are identical to the ones STL implementation uses. Growing (to about the double
size) happens when the fill fraction reaches a fixed threshold(currently 0.75). Shrinking never happens
because deletions from the set is not possible. When inserting and a collision happens, the array is linearly
searched until a free entry is found, possibly wrapping around if the end is reached.

58 Chapter 6. The Memory Manager

6.6. Object Descriptors

0 0 0 0 0 0 0 0 0 01

Data[0]
Data[1]
Data[2]
...

Data[13] O
bj

ec
t u

se
d

in
 m

ut
at

or

1 10 x x

(pointer)
(pointer)

(pointer)

ObjectDescriptor

objectLength=14 x pointerlength

referenceMask

objectDescriptor

VMObject

Figure 6.9.:The relation between object descriptors and an object. For simplicity, the figure
shows a reference mask with only one 16-bit integer (the x means that their value
is unimportant since these are excess reference indicators)

The purpose of object descriptors is to hold information about the objects used by the mutator which
is needed when garbage collecting. Object descriptors are unrelated to the syntactic category<Object-
Descriptor> in the gbeta grammar [Ern99]. The object descriptor holds length and reference placement in-
formation aboutVMObject instances (see figure 6.9) which is enough information for anaccurate garbage
collector.

Objects are indexed as an array of pointers, so with current 32 bit architectures, pointers would typically
have to be four byte aligned. Data fields smaller than the sizeof a pointer are still possible in the mutator
as long as four byte pointer alignment is preserved. The object descriptors represent each 32 bit field in an
object with a bit in a reference mask indicating whether the field holds a reference or not.

The reference mask structure for representing references is space efficient when there is a high density
of references in objects but less space efficient if objects are generally large with few references. Since
our object descriptors use space proportional to the lengthof the object, it might be appropriate to choose
another design in that case. This could e.g., be a zero terminated array ofVMObject base offsets indicating
where the references are in the object, since this design would use space proportional to the number of
references instead. However, this is probably not a real issue now as pointers are very common, objects are
small in average, and object descriptors are highly shared structures.

Alignment of our data is another issue theObjectDescriptor is involved with. Since an incorrectly
aligned pointer can cause a bus error, theObjectDescriptor makes sure that whatever size is re-
quested, the actual size stored in theObjectDescriptor is always divisible by four, rounding up if
necessary. This way the allocation system can always add sizes originating fromObjectDescriptors
without the concern of creating an incorrectly aligned pointer. This ensures thatVMObjects will always
be four byte aligned as well as the 32 bit fields inside theVMObjects .

6.7. VMObject Layout

The object layout has been changed a lot in the new memory manager in order to reduce the space overhead.
This has only affected the header information stored in theVMObject class used by the garbage collector;
the object used by the mutator is still placed in the data array, making the change practically invisible to the
mutator. In the old implementation, where no effort had beendone to reduce the header, the header used

6.7. VMObject Layout 59

28 bytes on an 32-bit machine, whereas the new implementation only needs 4 bytes or 8 bytes if the object
has been moved (see figure 6.10). The reason, we have done suchan effort to reduce this space overhead,
is that early experiments with space waste showed that aboutone third of the space used forVMObjects
was consumed by headers with an implementation where a header filled 12 bytes. Below we will explain
the transition from the old to the new object layout, field by field.

Old VMObject New VMObject

*

...

...

* = Forwarding Flag

Header info

Mutator’s object

Header info

Mutator’s object

objectDescriptrorPtr

nextVMOPtr

flags

generation

forwardPtr

carPtr

data[1]

objectDescriptrorPtr

data[1] / forwardPtr

id

Figure 6.10.:The old and the new vmobject

objectDescriptorPtr is still necessary because the garbage collector still needs to know informa-
tion about the object such as its length and where it has references. This information is of variable
length and can be shared among similar objects. For this reason it is practical to separate it from the
actual object.

The least significant bit of the pointer is used for a forwarding flag, so this bit is always cleared when
theobjectDescriptorPtr is requested. A more thorough description of the forwardingflag is
found in theforwardPtr attribute discussion.

nextVMOPtr is unnecessary because it can be calculated from the length information available in the
object descriptor and the fixed size of the header. The last object in aCar can be identified by
comparing the calculatednextVMOPtr against the free-pointer of itsCar .

flags was a leftover from the distant past. It was forgotten for a long time and unused in the old proto-
type.

id is only used during debugging. It was mainly useful when the garbage collector was tested alone as it
enabled us to identify objects by a number. In the current version it can be enabled, but it is disabled
by default.

generation was never used since we did not implement a generational garbage collector.

forwardPtr is only used during garbage collection after an object has been moved. When an object
has been moved, the contents in the old location will never beaccessed again so we choose to use
the first field of the object for a forward pointer. We still need to know when to interpret this field
as object data and when to interpret it as a forward pointer, though. Since the pointer to the object
descriptor always has its two least significant bits set to zero because of alignment, we used the least
significant bit as a flag indicating whether the first data fieldof the object is data or a forward pointer.

carPtr BecauseCar instances are now aligned on 2k addresses wherek is an integer, it is possible to
convert a pointer to anything inside aCar , into a pointer to aCar simply by setting thek least
significant bits to zero. The old implementation did not havealignedCars so this was not as easy
at that time.

60 Chapter 6. The Memory Manager

data array This is where the actual object data is stored. Although the size is set to 1 in the class decla-
ration, our allocation scheme makes sure a number of bytes indicated by theObjectDescriptor
following theVMObject are reserved for an object starting indata[0] of that length.

As mentioned in theforwardPtr attribute discussion, the first field of the data array is alsoused
for a forwarding pointer when scavenging in the new implementation.

6.8. The Garbage Collection Algorithm

In this section we will show how we have incorporated the train algorithm in our garbage collector. First
the pseudo code is shown and then a detailed explanation follows.

evacuate train-externally referenced objects from from-c ar
Cheney scan all dirty cars
evacuate externally referenced objects from the introduct ory space
evacuate all objects in introductory space or from car

referenced from the stack space,
checking if other objects in cars in the from train are refere nced

Cheney scan all dirty cars
if(other cars in from train were not referenced from stacks

AND all other cars in from train have empty remembered sets) f
reclaim from traing else f
evacuate train-internally referenced objects from from-c ar

to the car holding the referencing object or last car
Cheney scan all dirty cars
reclaim from-carg

reclaim used introductory space

Figure 6.11.:The train algorithm in our context

First of all, it is important to note the order objects are evacuated from the different spaces. The stack space
references do not give any clue to where an object should be moved. In contrast to this the remembered
sets contain information about what object slot and thus what car the object is referenced from. This means
that whenever an object can be moved using a remembered set, this should be preferred over moving an
object because of a stack reference; it is best to use the remembered sets before the stacks and other root
objects.

6.8.1. Introductory Space and From Car Scavenging Order

Another much more subtle issue is selecting the order in which the remembered set of the from car or the
introductory space should be used. One might think this doesnot matter. However, there are situations
where it does. Consider the scheme shown in figure 6.12.

If the introductory space is scavenged first, the reference from object 2 to object 1 would indicate that
object 1 should be moved to train 1, the from train, but that isnot permitted according to the train algorithm.
Actually, the train algorithm does not specify where itshouldbe moved, only where itshould not. So as
designers, we are left with the choice of where to put the object. One idea would be to put the object in the
last car of the last train, and another to put it as close as possible to the object we know that has a reference

6.8. The Garbage Collection Algorithm 61

Introductory
space

Rem. Set

Ext. Rem. Set

Ext. Rem. Set

(6,0) (6,1)

1

2

3

(1,0)

...

From Car

Train 1

Train 6

Figure 6.12.:A snapshot of a hypothetical heap before garbage collection

to the object. A few quick experiments revealed no obvious advantage of either of these strategies. When
the remembered set of the from car is used next, object 2 will be moved into car (6, 1) or at least into train
6. Given a high number of cars and trains, it is unlikely that the objects 1 and 2 end up in the same car or
even train, given our strategies for moving objects like object 1.

If, on the other hand, the from car is scavenged first, a Cheneyscan is performed, and finally the introduc-
tory space is scavenged, all the objects could potentially end up in car (6, 1), and they will certainly end up
in train 6. There is still a drawback of having to scan the remembered set of the introductory space after the
remembered set of the from car has been scanned; some of the entries in the remembered set may refer to
objects that have already been moved,zombie objects. This is never the case when the introductory space
remembered set is scanned before the from car remembered setbecause a reference from the introductory
space to the train space is not remembered in any remembered set.

When the remembered set of the introductory space is scanned, both objects 1 and 2 have been moved, and
one of two things can happen.

Introductory
space

Rem. Set

Ext. Rem. Set

Ext. Rem. Set

(6,0) (6,1)

1

2

3

(1,0)

...

From Car

Train 1

Train 6
2

(6,2)

1

Forward Pointer

Zombie Objects

Forward Pointer

Figure 6.13.:The hypothetical heap after scavenging car (1,0), Cheney scanning, and scav-
enging the introductory space

62 Chapter 6. The Memory Manager

First, if the reference from zombie object 2 to zombie object1 has been overwritten by a forward pointer1,
it cannot point into the introductory space anymore since objects are never moved there, and the implemen-
tation will just proceed with the next remembered set item (see figure 6.13).

Second, if the pointer in zombie object 2 still points at zombie object 1, the algorithm will try to move
zombie object 1 somewhere, but since zombie object 1 has already been moved, it contains a forward
pointer, and this will be written to the slot in zombie object2 (see figure 6.14). Note that it is not trivial to
see that zombie object 2 is in fact a zombie object since the remembered set only contains a pointer to the
reference slot, not the object base, but writing this forward pointer from zombie object 1 into the slot of
zombie object 2 is not an expensive operation. Also note thatthe real object 2 already has the correct value
of this pointer as this was set during the Cheney scan that also moved object 1.

Introductory
space

Rem. Set

Ext. Rem. Set

Ext. Rem. Set

From Car

Train 1

Train 6

a) b)

(6,0) (6,1)

1

2

3

(1,0)

...

2
(6,2)

1

Forward Pointer

Zombie Objects

Forward Pointer

(6,0) (6,1)

1

2

3

(1,0)

...

2
(6,2)

1

Forward Pointer

Zombie Objects

Forward Pointer

Figure 6.14.:a) before scavenging the introductory space b) after scavenge of the introductory
space; the pointer in zombie object 2 has unnecessarily beenupdated.

A modification of the write barrier could also filter out the remember references from the from car to the
introductory space causing the above situation. This makesthe write barrier slower for all the stores in
the train space to the introductory space except for those inthe from car where it would be faster. In our
opinion none of the above two situations justify such a change as they seem to be harmless.

Some practical experiments show a minor speed increase whenthe first car is scavenged before the intro-
ductory space when compared to the opposite order.

The major part of the problem of finding a suitable location for an introductory space object referenced from
the from train still remains, though. The from car is only a special case of any given car from the from train,
and it is impossible to do the same thing when an introductoryspace object is referenced from another car
in the from train, at least without scavenging the whole train. A possible solution could be to remember the
objects referenced from the from train and postpone their evacuations until every remembered set item has
been checked and then reconsider the set of postponed objects. At that time some other remembered set
items may have caused some of the postponed objects to be moved somewhere sensible. Cheney scanning
the moved objects may lead to even more objects of the postponed set being evacuated to places where they
are referenced from.

1The first data slot of aVMObject is reused for the forward pointer (see section 6.7).

6.9. The Write Barrier 63

6.8.2. Stack Scanning

As discussed above, the stack scanning is done after the previous phases because references from the
stack to either the introductory space or the from car do not really give us a good clue as to where to put
the objects referenced (we cannot put them in the stack spaceas some early prototype attempted). Our
interpretation of this is that it must be the closest we get toan ideal situation for creating new trains as
objects that seem to be referenced only from the stacks include the objects that are “close to root objects”.
It is still an unsolved mystery how often a new train should becreated. We have experimented with two
different schemes. The first one had a maximum limit of one newtrain for each scavenge, but the train was
created immediately if there was just one object referencedfrom a stack that needed to be moved. As we
shall see later in the experiments, this has the drawback of allocating a lot of trains with one car that is not
very full. This motivated reuse of these new trains, so an extra constraint was set demanding that the car
was filled above some threshold before a new train can be build.

An idea for future improvement is to do a Cheney scan before objects are evacuated from the stacks. This
could potentially eliminate some evacuations of objects referenced from the stacks.

While the stacks are being scanned, the references are also checked for a reference to an object in any of
the other cars within the from train. Unfortunately this operation is not cheap as each pointer needs to
be checked for membership in every car in the train until one has been identified. In particular with long
garbage trains and high stacks this operation is expensive as stackItems� (f romTrainCars�1) member-
ship checks are required to conclude that the rest of the carsin the train are not referenced from the stacks.
This information is saved for later when reclaiming takes place.

After the stacks have been scanned, another Cheney scan is performed to update the moved objects and
move and update their referenced objects.

6.8.3. Reclaiming Memory

In some cases it will now be possible to reclaim the entire from train. This is only possible when there are
no external references to it. It has already been checked whether there are references from the stacks. If the
external remembered sets are also empty, it can be concludedthat the from train is reclaimable, otherwise
only the from car is. In the latter case internally referenced objects should still be rescued to the from train
using a scan of the internal remembered set on the from car followed by yet another Cheney scan. After
the space in question has been reclaimed, the introductory space is reclaimed too, and the scavenge cycle
is over.

6.9. The Write Barrier

The job of the write barrier is to do the actual pointer write and update the appropriate remembered set if
necessary. In figure 6.15 the write barrier is shown withupdateVMReference() inlined. We will now
explain the interesting lines of this code.

64 Chapter 6. The Memory Manager

void setVMReference(void **refAdr, void *target) f
//set reference
*refAdr = target;

5
//update remembered sets
CarTrain_t crTrSrc = trainGeneration.getCarTrain(refAd r);
CarTrain_t crTrTrg = trainGeneration.getCarTrain(targe t);

if(crTrSrc > crTrTrg) f 10
if(crTrSrc.getTrain() == crTrTrg.getTrain()) f

//internal reference
(Car_t::getCar(target))->addIntRememberReference(re fAdr);g else f
//external reference 15
if(introSpace.member(target)) f

introSpace.addRememberReference(refAdr);g else f
(Car_t::getCar(target))->addExtRememberReference(re fAdr);g 20ggg

Figure 6.15.:The write barrier implementation

The parameterrefAdr is the address of the reference that will be updated to point to target . The
updating of the remembered sets and the tests involved in this are the most interesting aspect of this piece
of code. In lines 7-8 the ordering of the reference and the target is retrieved and in line 10 these are
compared. Only if the target is of higher order than the reference is it necessary to update remembered
sets, and reference updates all inside either the introductory space or the same car are also filtered out
here since their cars and trains would be equal. Line 11 identifies reference updates that are internal to a
train usinggetTrain() . In line 16 we distinguish between external references where the target is in the
introductory space and the train space, and update the appropriate remembered set. It is important to note
that we can omit checks for references to root space because these are not permitted as object descriptor
marked references, otherwise line 19 would have to include acheck for target not being a member of root
space.

It is important to note that according to [HMS92] many pointer writes seem to occur during initialization.
If this is the case, most of these objects would be situated inthe introductory space, and the write barrier
will then already return in line 10.

With this implementation only the remember reference updates are not constant time. Remembered set
updates have a worst case insertion time ofO(n) wheren is the number of elements of the hash set when
the hash set is resized, but in most cases the remembered setshave an insertion time ofO(1).
6.10. Interface

The memory management component should be as loosely coupled to the rest of the system as possible as
it is of great advantage not having to know the details of the garbage collector when implementing the code
executing part. For this reason we define functions that are independent of the specific collection algorithm
and header information in objects used in the garbage collector. In this section we present the classes and

6.10. Interface 65

methods the mutator needs to know and use in order for the memory management to work as intended.

6.10.1. Initiating Garbage Collection

Garbage collection is initiated by invokinggarbageCollect() on the global instance of theGarbage-
Collector class. It is important to determine when this method should be invoked, whose responsibility
it is, and how often it should be invoked.

One way to go is to create a “magicalloc() ” that always allocates memory but sometimes also invokes
garbageCollect() . This is nice because the allocation call is required anyway, and no extra calls are
needed for doing the garbage collection. We have chosen a slightly different strategy where the memory
manager is passed a function pointer to register the mutator. The memory manager calls this function to
signal when it would like to garbage collect at the next safe point. It is up to the mutator to determine when
this safe point has been reached. The garbage collector willsignal the mutator when the introductory space
has been filled up so the garbage collection frequency is basically determined by the size of the introductory
space. New objects are allocated in the train space until garbage collection has been performed.

The reason for our unusual strategy in this respect is that itgives more freedom to the mutator. During
our implementation in the last semester we discovered what we called the this-problem; when an object
referred from theC++ stack was moved, itsthis pointer would no longer be valid when the object was
reentered (see chapter 5). The this-problem can be generalized to garbage collecting while not having
the complete root set which is bound to cause trouble. This motivated our current scheme where garbage
collection can only occur at specific places controlled by the mutator. If garbage collection could occur
every place where memory was allocated directly or indirectly during instruction interpretations, we were
afraid that we would not be in a consistent state sometimes e.g., by allocating two or more objects and
afterwards setting up pointers between them and finally setting a pointer to keep them alive.

6.10.2. Reference Placement in Objects

Before memory can be allocated for an object, anobject descriptormust be created or found (they can be
shared if they are not modified during execution). Object descriptors are placed outside the heap memory
managed by the garbage collector and can be allocated using the defaultnew operator. The constructor
takes alength parameter in bytes and amask-value which can be used for initializing the descriptor
to having references at certain points. The purpose of themask-value is to allow easy setup of objects
which have no references in which case it should be set to 0, orobjects which only have references in which
case it should be set to the number which is all ones in binary representation. In the last case the excess
reference indicators (see figure 6.16) can safely be ignoredas no reference beyondlength (converted to
references) are considered by the garbage collector.

Object descriptors can be further customized after initialization by using the methods in theObject-
Descriptor class:setReferenceAt(position) andclearReferenceAt(position) , but
care must be taken if the object descriptor is shared betweenobjects, as changes to the object descriptor will
affect all objects sharing the object descriptor. This feature of altering an object descriptor while executing
is not exploited by our current mutator.

6.10.3. Memory Allocation

Memory allocation is performed using a number of macros:allocateVM() for allocating normal col-
lected objects,allocateRootVM NT() for allocating non-traced root objects like integer stacks, and
finally allocateRootVM T() for allocating traced root objects. Each one of these macrostakes an
object descriptor reference and returns a pointer to the allocated memory.

66 Chapter 6. The Memory Manager

Excess reference indicators

data[0]

data[3]

data[2]

data[1]

VMObject

Object used in mutator

1

Reference mask of object descriptor

Figure 6.16.:Illustration of the reference mask of the object descriptorof an object used by
the mutator with a size of four references. The object descriptor indicates using
four bits that all the fields in the object are references, andthe rest of its bits are
excess reference indicators

6.10.4. Setting and Changing References

In order to implement some garbage collection algorithms including ours, it is necessary to be able to trap
pointer updates (see section 4.2). To handle this the write barrier function:setVMReference(object,
reference-location, new-reference-value) should be used.object is the object embed-
ded in aVMObject that the pointer should be modified in. This is no longer used by the new garbage
collector and is only there for compatibility with the old garbage collector. This has no influence on
performance whensetVMReference() is implemented as a macro.reference-location is the
absolute location of the reference in that object, andnew-reference-value is the new value that
should be placed into the reference-location.

It is vital to understand that this function should only be used when handling references from objects
embedded inVMObject instances to other objects embedded inVMObject instances – in other words
references which should be handled by the garbage collectormust be modified with this function, and
others must not. A notable exception to this is references toroot objects. These must not be set with
setVMReference() and there is no need to since these objects are never moved.

6.11. Debugging Memory Management Systems

As stated in [Hud00], debugging memory management systems is a difficult task, and we could not agree
more. We have approached this task in multiple ways. The firstwas to print a lot of ad hoc debugging
information during garbage collection. The amount of information produced this way quickly increases
and becomes difficult to comprehend so spotting problems in the implementation gets even more difficult.
A part of this debugging information is only relevant in one context, while other parts are only relevant in
other contexts, while even other contexts may require some of the information from both of the former two.
Commenting out printing of debug information is one way to adopt the output to the problem in question,
but as the size of the code increases this gets impractical. It is also a tedious task to comment out all the
print statements when code is “ready for release” and reenabling them when a new bug is introduced later.

6.11. Debugging Memory Management Systems 67

6.11.1. Control of Debug Printing

To solve these issues a small print control system was designed and implemented. This system is based on
macros in theC++ preprocessor, enabling us to redefine them to do nothing whena “release” is build and
thus causing no performance overhead in such versions.

When development versions are built, the first thing one mustdo is to set up what categories of debugging
information should be printed and which should not. This is done using theDB ENABLE(<category>) ,
DB ENABLEALL, andDB DISABLE(<category>) macros. An example of such a category could be
“gc remset” to indicate that it has something to do with the garbage collector and the remembered set. Each
category is assigned a unique forth running number used as index in a global table. This table remembers
whether message categories should be printed or not and the above macros only modifies it.

Whenever something is to be printed in this system, one must use the macroDB OUT(<category>,
<what-to-print>) . Only one<category> can be specified, so one will have to choose carefully,
but this has not proven to be a severe restriction. More importantly<what-to-print> is not restricted
this way; strings can be composed with the standardC++ << operator. The macro basically wraps the
print statement in an if-construct where the condition expression consults the category-table with the given
category index.

In addition to this control of the output, indentation of theoutput also proved to increase its readability.

Another thing that makes it easier to realize where in the byte-code the virtual machine is executing is the
possibility to pretty print the instruction lists of gbc-main-parts. This includes nice indented printing of
multi-line instructions and attribute initialization lists.

6.11.2. Heap Consistency

After having worked with the implementation of the memory management system for awhile, we discov-
ered that a common bug symptom was an illegal pointer somewhere in the heap. Our first reaction to this
was to implement methods for printing out the entire heap andthe associated remembered sets. This was
very powerful as long as the heap was small and populated artificially (no real interpretation was going on).

When our virtual machine component was attached instead, itbecame impractical to trace bugs this way so
we implemented methods for doing the work for us. The first version collected all valid reference values
by scanning the entire heap. This was followed by an additional scan which checked every reference
in every object of the heap against the valid references. This version had the flaw that it did not detect
inconsistencies in the remembered sets, which implied thatan error in the remembered set update would
only be discovered when the piece of memory with the corrupted remembered set was scavenged. Only
when checks of the remembered set for each reference were added, the heap consistency tests became
really good at stopping at the right moment in execution. We verified the remembered sets by checking the
existence of remember-references, i.e., some remember-references must be present while others must not
according to the ordering of trains and cars. Both the internal- and external remembered sets are checked
this way.

This check of the heap consistency is quite expensive but certainly much quicker than doing the work
manually. An unpredicted advantage of heap consistency checks is that they can also be used in the virtual
machine component for debugging instruction implementations. Errors like setting references without
using the write barrier and wrong values in references were easily tracked this way. Since the check is
quite expensive, it cannot be run between each instruction at reasonable speed. Counting the instructions
and doing a check each, say, every 1000th instruction, givesa rough idea of the place in execution where
something is failing. gbvm can then be instrumented to do checks between every instruction after e.g.,
the 151000th instruction. This typically identifies the exact instruction that is failing. However, there are
instruction bugs that cannot be identified this way either because they are an interrelation between two or
more instructions or because the error is of a semantic nature.

68 Chapter 6. The Memory Manager

Running the check each time the virtual machine switches between interpreting byte code and garbage
collecting and the other way around, also places the responsibility of a bug quickly.

6.11.3. Data Display Debugger

To debug our system we also used the GNU Project application:Data Display Debugger /v 3.x (ddd)
[Pro01]. ddd is a graphical front-end for command-line debuggers such asThe GNU Debugger (gdb).
When debugging the virtual machine we used the debug prints to trace bug even when they resulted in
segmentation faults (what they usually did). This was hard work but it also resulted in a very thorough
code walk-through. When later we became aware of the qualities ofddd , it was used to back-trace from
segmentation faults. This made debugging much easier as long as the bug was not placed in a macro,
sincegdb and thereforeddd cannot back-trace into macros. In both the virtual machine and memory
management component we use macros often and this somewhat decreases the application ofddd since it
is not capable of expanding macros (as far as we know).

6.11.4. Rational Purify

Rational Purify [Cor01] is a commercial but very efficient application debugger. It excels in detection of
memory leaks and memory accesses outside allocated ranges.We used a 14-days evaluation copy of this
product to identify a number of bugs in our system. Purify made us e.g., realize that a problem with an
unstable version of our system was caused by main-part id char-arrays being allocated one byte too short.
The source of this problem would have been difficult to identify without a tool like this. Commonly nothing
seems to happen immediately after a byte just outside an allocated range is written and sometime, perhaps
much later, the program fails in a place where it never did before for no apparent reason, and when trying
to identify the problem, it suddenly vanishes because the debugging code needs memory allocations too.
This tool is capable of pinpointing both the location of the allocation and the illegal read/write.

The only drawback to this tool that we are aware of is its inability to do bounds checking inside the blocks
allocated with e.g.,malloc() or memalign() since it is not aware of types. It only considers allocated
versus not allocated. As we allocate large blocks for our heap and manage these ourselves, the bounds
checking is not operational in the majority of the memory manager. It does e.g., not seem to have any
problem with the way we put new objects in the end of and outside cars, although the array size of one
might indicate this was a terrible mistake. In this case thisis fortunate since this is intentional, but it also
means that it cannot detect ifVMObjects have too little memory allocated for them.

6.11.5. Discussion

Our experience is that when one starts to rely on that the debugging system will report newly introduced
bugs, one gets the courage to experiment with the system. Itslike when a circus acrobat has a safety net
he tends to have the courage to try more crazy stunts than without the safety net. In particular when the
system approaches a stable state, and one starts to experiment with minor changes, it is beneficial to be
able to render probable that new changes do not break the system or otherwise quickly identify problems
introduced.

The debug printing system of gbvm is one of the generic parts that will probably be worth using in future
projects. The heap consistency check is more specific for memory management systems and thus not as
widely applicable, but it has been a very powerful tool in tracking bugs. Theddd/gdb combination and
Purify are general debugging tools that are useful in most application development.

7. Experiments

In this chapter we present some performance criteria that a memory management system should meet. Then
we analyze how these criteria relate to our memory management system and how they can be measured.
Before presenting our experiments we outline the general methodology used. The chapter ends with a
section that discusses the results and conclusions drawn from the experiments.

7.1. Performance Criteria

A garbage collector must be a compromise between the below criteria.

7.1.1. Garbage Collector Time Efficiency

How time efficient a garbage collector is can be measured as the time it uses to garbage collect. This can
be measured as the total, mean, and maximum disruption time.

But how do one conclude that a garbage collector is nondisruptive? Disruptiveness is hard to quantify,
since it depends on the requirements to the program being executed. It relates to the real time demands for
a system. A real time system can be a hard real time system or a soft real time system. The difference lies
in the type of deadlines the system must obey. Whereas a hard deadline must be met, a soft deadline can
be missed from time to time [Sta97]. If hard deadlines shouldbe met, it must be ensured that a garbage
collector has a well defined worst case maximum garbage collection time and frequency.

With typical train algorithm garbage collectors it is impossible to meet hard real time demands because
there is no special handling of popular objects. Still, low mean time disruptiveness is an important perfor-
mance criteria in applications where responsiveness is important, e.g., interactive applications.

7.1.2. Mutator Time Overhead Related to Garbage Collection

It is vital that the memory management component has little effect on the time used by the mutator at
run-time. A memory management systemcanaffect the time used at run-time in at least two ways. The
overhead of the write barrier to track interesting pointers, and the overhead introduced when new objects
are allocated.

7.1.3. Garbage Collector Space Efficiency

It is important that the garbage collector is space efficient, i.e., it utilizes its allocated memory well. A
garbage collector can waste space in several ways. It can allocate blocks without using them at all. It can
also waste space inside used blocks as both space allocated by dead objects and space not allocated by
objects.

There are also other sources of space waste in garbage collectors. In our case, we waste space used by
VMObject headers,Car headers, the train table, the car-ordering table, and the remembered sets, to

69

70 Chapter 7. Experiments

mention some. The most interesting, in our opinion, is the space unused in used memory blocks (cars or
introductory space) and the amount of dead objects in the heap.

7.2. Possibilities for Analyzing Our System

In this section we analyze the possibilities for analyzing our system.

7.2.1. Introductory Space Size vs. Car Size

The sizes of the introductory space and the cars are believedto have a significant impact on the performance
of the virtual machine both with regard to time and space consumption. The size of the introductory space
effectively determines the garbage collection frequency since garbage collection is started shortly after the
introductory space has been filled. This is important since ahigher frequency makes the garbage collector
better at keeping up with the mutator creating garbage if thesize of the cars is kept constant.

Since the majority of objects are assumed to have a short life, increasing the size of the introductory space
should improve performance as a smaller part of the introductory space will have to be copied. This is
expected to reduce the overall time used for garbage collection, but it is difficult to observe this alone.
When you increase the introductory space size, the number ofcars scavenged will be reduced too, thus
further reducing the garbage collection time used. When theassumption of a short average lifetime of a new
objects does not hold, a large introductory space may impactthe disruptiveness during garbage collection
since a lot of objects will have to be copied. With gbeta it is common that many objects do die young since
method calls are also objects. If these activation-record like objects were placed on a stack instead, the
garbage collection overhead due to method calls would be decreased. A large introductory space and/or car
size should reduce the write barrier overhead since it is cheaper to create references between objects inside
the same block1. It should also increase the probability of objects referencing each other being placed in
the same block. The reason is that there is a greater chance that a sub object graph fits inside the block when
the train algorithm evacuates objects. Another reason is that there are more objects inside the block so they
coincidentally happen to be in the same block. The better locality makes the garbage collector better at
reclaiming garbage structures quickly [SaCL00]. Better locality also makes the CPU execute faster since
the number of page faults is decreased and the caching behaviour of the CPU is improved too.

7.2.2. Write Barrier Performance

The performance of the write barrier is also expected to havea significant impact on the overall performance
of the system. It would be interesting to know if the write barrier consumes so much time that a redesign
is required for acceptable performance.

7.2.3. Allocation Performance

Since gbeta is very allocation intensive, we suspect the performance of the allocation routine is important.
As with the write barrier performance it would also be interesting to know if our allocation routine is
unacceptably slow.

7.2.4. Altering The Algorithms

The train algorithm allows some freedom in various aspects,especially with regard to the destination when
objects have to be moved, and the policy for creating new trains and cars. These policies are based on

1by blockwe meanCar or IntrodoctorySpace , notMemoryBlock

7.3. Methodology 71

somewhat qualified guesses, but we would like to change that with systematic experiments. Depending on
how thoroughly the effect of changes to the algorithm is measured, it quickly becomes tiresome to conduct
the experiments and evaluate the results since each new independent change doubles the number of test
runs required when all combinations are tried. This exponential growth discourages us from doing a lot of
these experiments although they are very interesting. Onlywhen we suspect the presence of a problem will
such experiments be justified.

The experimentation framework developed with this thesis is relatively user-friendly, so it is possible for
memory management researchers or others to continue at the point where we are now. It is possible to
experiment with parameters such as car and introductory space size, and with some source code knowledge,
it would also be possible to experiment with algorithm changes such as changing the write barrier algorithm
or changing the policy used to create new trains.

7.2.5. Profiling

Profiling of a running executable is a way to reveal which parts consume large fractions of the total exe-
cution time. The compiler we used,g++, has builtin support for profiling when given an extra argument.
This profiling is based on function call-counters and periodic sampling of where in the code the processor
is executing. The sample period is 0.01 second and not user definable. When a program only runs a short
period of time, this gives a high uncertainty because only a few samples will be taken. For this reason it is
possible to combine the output of many runs to get a better certainty. For more information on the profiler
we have used,gprof , see [GKM82].

7.2.6. Overall Time Efficiency

Our virtual machine must be fast overall since this is vital for any virtual machine. An efficient gbeta virtual
machine could also spread out the use of gbeta. Although, this is not the focus of this thesis it is interesting
to see how competitive gbvm is.

7.2.7. Choice of Analyses

As our hypothesis states, we focus on memory management and especially what happens if some of the
parameters and policies in the train algorithm are modified.We have therefore chosen to do the follow-
ing experiments: measuring space performance when altering the car and introductory space size (see
section 7.4), time performance when altering the car and introductory space size (see section 7.5), experi-
ments with the policy used to add new trains (see section 7.6), measurements of the time used in the write
barrier (see section 7.8), profiling the system to identify time fraction used by different parts of gbvm (see
section 7.9), a speed comparison of the existing gbeta executing systems (see section 7.7), and finally a
little experiment where we compare gbvm with the Java virtual machine (see section 7.10).

7.3. Methodology

In this section we present the general methodology used in the following experiments. That is, we present
the hardware used, the test programs used, and the general presumptions and uncertainty connected with
the experiments.

72 Chapter 7. Experiments

7.3.1. Hardware and Software Used

The experiments that involved time measurement were all runon the following hardware (see appendix B
for more details):

CPU Pentium 133 MHz (with f00fbug) – 53.04 bogomips.

Memory 64MB (60ns EDO-ram)

PCI-devices 10/100Mbit Ethernet controller, ATI Mach64 VT VGA-controller

Operating System Linux 2.2.14-5.0 (Redhat 6.2)

Compiler GNU g++ 2.95.3 with i586 target CPU

7.3.2. Test Programs

Since gbeta is neither a very well known nor a widely used language, and since we do not support con-
currency and repititions, we only have two sources of test programs: The programs used to test gbeta
(implemented by Erik Ernst) and programs we have implemented ourself. This is a problem since [ZG92]
has pointed out that the only way to really test the performance of a garbage collector is to use real-life
programs as test programs [ZG92]. Even though this is a problem, it is common to use self-implemented
programs to evaluate memory managers [HMS92]. This gets problematic when one implements test pro-
grams to demonstrate the advantage of specific features in a given implementation instead of checking
whether it really is an advantage in real programs. Moreover, the test programs, we implemented, tend to
be a lot shorter and have the same behaviour repeated for a long time which is probably not representative
for the majority of real programs. In effect this means that the reliability of the results is not as great, as we
would like because a new set of test programs could change theresults considerably.

We have implemented the majority of the following test programs. In appendix A all buttst-norep-
3.gbc andtst-norep3BO.gbc are listed.

tst-norep3.gbc A test program originating from the development of BETA. We have modified it to
remove or recode parts using repetitions, concurrency, or other unsupported instructions. We have
added a loop to the main do-part to make the program run the same code ten times and removed a
section where big object handling was tested.

The purpose of this program is to bound test a given gbeta execution system. It consists of fifteen
test methods that test everything from relational operations to virtual attributes.

tst-norep3BO.gbc The same astst-norep3.gbc but including the test where big object handling
is tested. The big object test proved to have a significant impact on the behaviour of the memory
manager, so we included both the version with and without this test.

allocator.gbc The purpose of the program is to allocate several small objects and invoke them, and
thereby create a lot of short lived objects.

cruncher3.gbc This program is both allocation and computational relatively heavy. It constructs a
tree breadth-first, and after the tree has been constructed it iterates the entire tree three times using
depth-first search.

constAlloc.gbc Does the same ascruncher3.gbc but during the depth-first search, a sub tree is
created and a specific node in the original tree is repeatedlyreplaced by this sub tree. This results in
a program that constantly allocates the space used by the subtree.

dfstree.gbc Does the same ascruncher3.gbc except that the tree is constructed depth-first. This
is expected to infer better locality of reference than a breadth-first creation.

7.3. Methodology 73

cruncher3JAVA.gbc A simplified version ofcruncher3.gbc made to enable a more even com-
parison between the Java virtual machine and gbvm.

cruncher3.java A program that does almost the same ascruncher3JAVA.gbc , but implemented
in Java.

derive.gbc This computationally heavy, but allocation and garbage light program computes a number
of product sums 50000 times.

simple.gbc Calculates 1 + 1 a thousand times. This program was constructed to increase the number
of speed comparisons between gbetai [JJW01] and gbvm.

In the following tests we have tried to select the source filesthat gave the most distinct and interesting
results. Especiallycruncher3.gbc anddfstree.gbc yielded very similar results in some of the
tests, so only thedfstree.gbc was used. Also,derive.gbc andsimple.gbc were excluded from
the garbage collection tests because the jobs were not sufficiently allocation intensive and the results were
very similar.

7.3.3. Presumptions and Uncertainty

We are not aware of any comparable setup and have not implemented other garbage collection algorithms
to compare with this one e.g., one with a copy collector in theintroductory space. This is not a problem
since the purpose of these experiments is to try out some new ideas and see what happens. Besides that,
our virtual machine is executing gbeta – a not so widespread language – so we only have any one gbeta
executing garbage collecting environment to compare with,namely gbetai [JJW01].

Test Program Uncertainty

As discussed in section 7.3.2, the choice of test programs isan important source of uncertainty.

Hardware and Setup Uncertainty

To reduce the uncertainty originating from external factors while executing tests involving time measuring,
our test machine was running in single user mode with only essential other processes running. Also the
networking and swap space was disabled.

Since the resolution of thetime command is only 0.01 second, it is important that the processor of the
test hardware is not too fast because this gives better statistical measuring certainty with the same number
of observations.

Size Ranges of Introductory Space and Cars

In some of the following tests, we have chosen to use a range ofsizes for the cars and introductory space:

Car sizes 4KB, 8KB, 16KB, ... , 256KB

Introductory space sizes4KB, 8KB, 16KB, ... , 1024KB

We make no claim that interesting sizes cannot exist outsidethese ranges, but it was impractical to include
more sizes as the total execution time of the tests wold be even longer, and some setups would use more
memory than available on our test machine. The reason for thelower bound is that the lower of these sets
the limit of the maximum object size. We found it unacceptable not to be able to handle objects bigger than

74 Chapter 7. Experiments

4KB. The larger bound was found by looking at the setup in [GS93, p92] and doubling this twice. The
reason why the introductory space is doubled four times (to 1MB) instead of two is that we suspect that the
introductory space would have to be larger than a car becauseof the common short lifetime of objects.

Test runs with large introductory spaces suffer from very few measurements for some of the test runs and
thus have a high uncertainty. Increasing the certainty of these would require us to increase the size of the
test programs (e.g., in number of iterations), but this has avery high time cost with some combination
of the smaller introductory spaces and large car sizes. Thisis also a major reason why larger cars and
introductory spaces have not been included.

The choice of the introductory space and car size somewhat depends on the present hardware performance.
The chosen ranges might be too small if similar experiments were done in the future, and correspondingly
too large, if the experiments had been done e.g., ten years ago. Since our test hardware is both slower
and have smaller main memory than todays common hardware, wemight have chosen too small ranges.
Again, our generic experimentation framework makes it possible to easily conduct the same experiments
on more up-to-date hardware with other ranges and larger test programs. Our hope is that the results will
be independent of the actual sizes used and show a tendency generalizable to larger sizes.

7.3.4. Structure of Experiments

In each of the experiments in the subsequent sections we explain the purpose of the experiment, present
the method used and which subset of the test programs is used,present the results and finally evaluate the
experiment.

7.4. Space Utilization in Cars and Introductory Space

The space waste on the heap relates to the size of cars and of the introductory space. The purpose of this
experiment is to find an optimal car size and introductory space size with respect to space waste.

Space wasteis the amount of memory allocated by gbvm forVMObjects which is not used. Space waste
can be divided into two kinds: Space occupied by dead objectsand space which is not allocated at the end
of a car or the introductory space, i.e.,unused space. These two kinds of space waste are not equally bad.
The dead objects are more difficult to remove from the system than unused bytes because dead objects can
reference each other across car/introductory space boundaries and thus keep each other alive for a while
causing collecting overhead. Unused bytes on the other handdo not cause additional processor overhead
and even reduce the disruption time as less heap is scavenged.

We have decided against including the memory used by the remembered sets and stack space in the mea-
surements; only the train space heap and introductory spaceheap are being observed. If the other sources
of memory consumption were included, it would have been moredifficult to say anything about the cause
of a given problem. The stack space is currently uninteresting as the memory consumption is constant.
Also, the remembered sets is a science in its own right and deserves a more thorough investigation.

7.4.1. Method

To measure the amount of live, dead, and unused space in the introductory space and the train space, the
memory manager is instrumented to mark all the live objects like the mark phase of the mark and sweep
algorithm. Instead of the sweeping phase, the bytes in the three categories are counted and the objects are
unmarked. Extra per-object overhead is avoided by using theforward flag for the object marking. This
data collection is run before and after each garbage collection, and the numbers are output separately for
the introductory space and the train space. This allows us toinvestigate the train space and introductory
space separately and combined.

7.4. Space Utilization in Cars and Introductory Space 75

Since the result of this test is not dependent on hardware speed it has been conducted on faster Linux
hardware.

Behaviour over Allocation-time

To get an intuitive understanding of the behaviour of the test programs and the handling from the garbage
collector, the live, dead, and unused bytes are shown in 2D graphs with 4KB introductory space and 4KB
car size, and the new train creation policy is used (which is the subject of section 7.6). The choice of 4KB
introductory space size gives the finest granularity in the graphs. With other introductory space and car
sizes, the graphs changes. The live graph is only dependent on the introductory space size, and the two
other graphs generally vary with both introductory space size and car size.

The free variable in these graphs is what we would callallocation-time– two samples are taken each time
the introductory space is filled; the first sample just beforethe garbage collection and the second just after.
The unit on the first axis contains two such samples within each increment of one, thus the unit shown is
the number of allocations of about the introductory space size.

Only the train generation is used the in dead and unused partsof these graphs because the introductory
space introduces a lot of “noise”. Before garbage collection the introductory space is filled with live and
dead objects, hardly any space is unused, but after the collection, all of the introductory space is unused.
This does not affect the number of live bytes since these are moved to the train space, but the dead and
unused graphs jump a lot because of this, particularly with large introductory spaces with few live objects.

Effect of Introductory Space Size and Car Sizes

For the introductory space alone, the train space alone, andthe two spaces combined, we (for each) generate
three 3D graphs showing the average amount of live, dead, andunused space against the two free variables:
introductory space size and car size. This produces a total of nine 3D graphs for each test file. As the live,
dead, and unused graphs show fractions of the whole space under investigation, adding the three graphs
point by point would thus yield a plane with the value 1 everywhere. It also means that the graphs affect
each other as a growth in a region of e.g., the unused fractionwill induce a smaller fraction in the two
other graphs in that region if these are unaltered. This perhaps makes the graphs harder to read as it is
more difficult to observe in which of the fractions that is inducing the change. The absolute amount of live
objects is, however, somewhat constant (see section 7.4.2), so a drop in this graph usually indicates a rise
in one of the two others.

The complete set of 3D graphs can be seen in appendix C. It should be noted that the first garbage collection
is not included in the calculations since the system had not had any chance of stabilizing itself; the train
space is always wasting a large fraction of its space before it has had a chance to be filled.

7.4.2. Uncertainty

It is interesting to note that some virtual memory systems (the one in Linux at least) will not allocate the
memory pages a process has requested before the pages concerned are actually accessed. This means that
the unused space, which we calculate as the memory from the free pointer of a car to the end of the car,
may not actually be allocated. This again means that our measurements may not be accurate when new
cars are allocated, but after the car has been reused a coupleof times all memory will be allocated for it.

There is also a uncertainty related to how often we measure the amount of live, dead, and unused bytes. If
we measured this between each executed instruction, all ourmeasurements would be directly comparable
since we would then be sure that the number of bytes measured would be accurate. As this requires too
much processor time to do this, we do the sampling before and after each garbage collection. This means
we get fewer measurements with larger introductory spaces and thus our numbers are more uncertain as the

76 Chapter 7. Experiments

size of this space rises. This is particularly bad since the number of garbage collections (and thus samples)
is halved each time the introductory space size is doubled. What this all means is that the measurements
with the same introductory space size are directly comparable (but not necessarily accurate) since the
samples have been taken at the same time. These rows with the same introductory space size are only
approximatively comparable with other rows having the another fixed introductory space size. If we had to
redo this experiment in the future, we would consider eliminating the uneven sampling of the experiments
with small and large introductory space sizes.

7.4.3. Results

All the 3D graphs presented in this subsection can be found inappendix C with both the old and the new
train creation policy. Here we only use results from the new policy, though.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

B
yt

es

Allocations of about 4KB

Source: tst-norep3.gbc, Introductory Space: 4KB, Car: 4KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.1.:Memory behaviour oftest-norep3.gbc with 4KB car and introductory
space sizes.

The figure 7.1 shows the allocation graph oftstnorep3.gbc . Although this program executes a lot of
different instructions during the tests it is performing, it has very low memory requirements. Even with the
smallest car size of 4KB all live data can almost be stored inside a single car.

The allocation profile forallocator.gbc shown in figure 7.2 displays low and very constant memory
requirements. Adding the graphs gives a value very close to 4KB so this test typically only needs one car
in the train space.

Figure 7.3 shows the allocation graph forconstAlloc.gbc . This program initially allocates a large
amount of memory of which some is later released. Towards theend, the memory requirements for the live
data stabilize on about one third of the peak value. This graph shows the garbage collector having trouble
collecting the dead objects.

The programdfstree.gbc in figure 7.4 shows an allocation curve constantly rising. The live bytes
allocated peaks at about 1.9MB and relatively few dead bytesexist in the system. This is actually the

7.4. Space Utilization in Cars and Introductory Space 77

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800

B
yt

es

Allocations of about 4KB

Source: allocator.gbc, Introductory Space: 4KB, Car: 4KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.2.:Memory behaviour ofallocator.gbc with 4KB car and introductory space
sizes.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 200 400 600 800 1000 1200

B
yt

es

Allocations of about 4KB

Source: constAlloc.gbc, Introductory Space: 4KB, Car: 4KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.3.:Memory behaviour ofconstAlloc.gbcwith 4KB car and introductory space
sizes.

78 Chapter 7. Experiments

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

0 100 200 300 400 500 600 700

B
yt

es

Allocations of about 4KB

Source: dfstree.gbc, Introductory Space: 4KB, Car: 4KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.4.:Memory behaviour ofdfstree.gbcwith 4KB car and introductory space sizes.

example from the set ofdfstree.gbc runs with different introductory space size and car size which has
the highest dead bytes fraction.

In figure 7.5 the testtst-norep3BO.gbc includes the big object test in addition to the tests oftst-
norep3.gbc . This additional part of the test periodically allocates a large chunk of memory which is
quickly unreferenced. This allocation of more than 300KB islarger than the largest car size used in the
tests (256KB) but smaller than the largest introductory space (1MB).

To show the effect of varying the introductory space and car sizes, we now show the results of taking each
of them to their extreme as well as setting them both to 32KB asa compromise. This is all done with the
testtst-norep3BO.gbc as this has a very visible effect on the execution of this source file.

First, increasing the introductory space to 1MB results in the graph shown in figure 7.6. The large intro-
ductory space filters out many of the allocation peaks in the live graph as well as a large part of the garbage.
Compared to the situation in figure 7.5 the amount of dead bytes in the end has been decreased from about
1.9MB to about 1.1MB. It is unlikely that this system will be good at reclaiming the dead bytes in the train
space, since the introductory space size dictates a low scavenge rate, and a structure of 300KB takes up at
least 75 cars. If these cars are not lined up in the from train and “unpolluted” by live objects, it may take
quite a few garbage collections before this structure will be reclaimed.

Increasing the car size instead of the introductory space size, changes this situation (see figure 7.7). Here
the garbage collection rate is high and a larger part of the train space is scavenged which makes the garbage
collector much better at keeping up. It is clear from the graph that the train space only contains between
one and three cars.

Setting both the introductory space size and the car size to 32KB gives the result shown in figure 7.8.
Compared to figure 7.5 this graph looks somewhat similar, butit is a little better at reclaiming dead bytes.
This is probably the effect of the larger car size; the train space is divided into fewer cars and can thus be
scavenged more effectively.

Looking at the 3D space utilization graphs for the train space only, the programstst-norep3.gbc

7.4. Space Utilization in Cars and Introductory Space 79

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

0 200 400 600 800 1000 1200 1400 1600

B
yt

es

Allocations of about 4KB

Source: tst-norep3BO.gbc, Introductory Space: 4KB, Car: 4KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.5.:Memory behaviour oftst-norep3BO.gbc with 4KB car and introductory
space sizes.

0

200000

400000

600000

800000

1e+06

1.2e+06

0 1 2 3 4 5

B
yt

es

Allocations of about 1024KB

Source: tst-norep3BO.gbc, Introductory Space: 1024KB, Car: 4KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.6.:Memory behaviour oftst-norep3BO.gbcwith large introductory space and
small car size.

80 Chapter 7. Experiments

0

100000

200000

300000

400000

500000

600000

0 200 400 600 800 1000 1200 1400 1600

B
yt

es

Allocations of about 4KB

Source: tst-norep3BO.gbc, Introductory Space: 4KB, Car: 256KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.7.:Memory behaviour oftst-norep3BO.gbcwith small introductory space size
and large car size.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 20 40 60 80 100 120 140 160 180 200

B
yt

es

Allocations of about 32KB

Source: tst-norep3BO.gbc, Introductory Space: 32KB, Car: 32KB, Train Creation Policy: new

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.8.:Memory behaviour oftst-norep3BO.gbcwith 32KB introductory space size
and 32KB car size.

7.4. Space Utilization in Cars and Introductory Space 81

Source: tst-norep3.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Unused Fraction

Source: tst-norep3.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Unused Fraction

Figure 7.9.:Average unused fraction in the train space executingtst-norep3.gbc

andallocator.gbc seem very similar. When considering their allocation profiles in figures 7.1 and
7.2 this is not surprising. An interesting part of these graphs is the way the unused space is taking up an
increasingly high fraction of the total amount of space as the size of the car rises while they are virtually
independent of the size of the introductory space (see figure7.9). The reason for the independence of the
introductory space size is that very few live objects are introduced (see figure 7.10). The reason for the
high amount of unused space with larger cars is that the car size becomes larger than the total number of
live bytes and thus forces the unused fraction up.

Source: tst-norep3.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Source: tst-norep3.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Figure 7.10.:Average live fraction in the introductory space executingtst-norep3.gbc

82 Chapter 7. Experiments

The live fraction oftst-norep3BO.gbc in figure 7.11 is one of the most peculiar graphs in the whole
set. It shows that the live fraction is highest when the car size is larger than the introductory space size, but
not too much larger! The drop towards the corner where the carsize is large and the introductory space is
small can be understood by looking at the two other graphs forthis test series (figures 7.12 and 7.13). As
discussed when the allocation profiles oftst-norep3BO.gbc were presented earlier in this subsection,
the dead fraction clearly demonstrates the potential problem of garbage collecting too slowly when the
introductory space is larger than the car size (see e.g., figure 7.6). This problem is vanishing as the corner
in question is approached thus making room for a higher live graph in this corner. The drop in the live
fraction towards the corner is caused by the rise of the unused fraction which again has to do with the large
car size wasting space.

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Figure 7.11.:Average live fraction in the train space executingtst-norep3BO.gbc

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Dead Fraction

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Dead Fraction

Figure 7.12.:Average dead fraction in the train space executingtst-norep3BO.gbc

Looking at the live graph fordfstree.gbc (see figure 7.14, most of its train heap is live, hardly any is
dead, and the unused fraction grows as the size of the car grows. This is not unexpected since most of the
bytes allocated in this program are kept live.constAlloc.gbc places itself betweendfstree.gbc
andtst-norep3BO.gbc with a higher fraction of dead objects thandfstree.gbc .

7.4. Space Utilization in Cars and Introductory Space 83

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Unused Fraction

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Unused Fraction

Figure 7.13.:Average unused fraction in the train space executingtst-norep3BO.gbc

Source: dfstree.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Source: dfstree.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Figure 7.14.:Average live fraction in the train space executingdfstree.gbc

84 Chapter 7. Experiments

Including the introductory space with the train generationyields different results. The introductory space
is filled with dead and live objects just before garbage collection and unused right after. This gives a
time average of 50% unused while the live and dead share the other 50%. The effect of this is that the
unused fraction is pulled towards 50% when combined with thetrain space, especially as the size of the
introductory space grows (see figure 7.15). This effect is also visible in most of the test files with the dead
fraction. The two test programs with low memory requirements seem to be punished in their live fraction
by a larger introductory space; these programs do not require large introductory spaces.

Source: tst-norep3.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Unused Fraction

Source: tst-norep3.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Unused Fraction

Figure 7.15.:Unused fraction in the introductory and train spaces executing tst-
norep3.gbc

7.5. Time Performance

In this experiment the time-performance impact of variations in the car and introductory space sizes is
measured. This includes the average disruption time, the maximum disruption time, the total garbage
collection time, and the total garbage collection time fraction of the total execution time.

7.5.1. Method

We try all size combinations in the selected ranges or car andintroductory space sizes and measure the
max disruption time, mean disruption time, total garbage collection time, and total garbage collection time
fraction of the total execution time in each test. Each of thetests is run 3 times with the same car size,
introductory space, and test file. The average of the resultsis used for a single point in one of the graphs.

Executables were compiled with optimization set to-O2 , a fairly high level of optimization, though not
the highest possible.

The five source filestest-norep3.gbc , test-norep3BO.gbc , allocator.gbc , constAl-
loc.gbc , anddfstree.gbc were all run through this test with both the old and the new train creation
policy.

The results are obtained by instrumenting the virtual machine to print the user time used for each garbage
collection obtained with thetimes() system call. The total execution time is obtained using the Unix
commandtime , subtracting an approximation of the time used for measuring time for the garbage collec-
tions (described in 7.5.2). Of the three times reported: real, user, and system; the user time was used for all

7.5. Time Performance 85

our measurements.

Finally, the results are plotted into four 3D graphs with theexponents of the introductory space size and
the car size as the two independent variables.

7.5.2. Uncertainty

To reduce the uncertainty related to time measurement, eachtest was run three times, and the average of
the results was used.

To reduce the effect of the time report printouts affecting the user time of the Unixtime command, we
approximated this time by running a tight loop that did the same calculations as the time measurement.
Dividing this by the number of printouts gave us an approximation of the time cost of one printout. This is
important because this reduces the extra measurement cost placed in particular on the test runs with a high
scavenging frequency.

7.5.3. Results

The test were run with both the new and the old algorithm, but here we focus on the results of the new
algorithm. All graph can be seen in appendix C.

Looking at the average disruption times they range from about zero to about half a second in all tests. Both
tst-norep3.gbc andallocator.gbc have a average disruption time near to zero seconds.

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Avg Disruption Time/s

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Avg Disruption Time/s

Figure 7.16.:The average disruption time ofconstAlloc.gbc

In figure 7.16 the average disruption time ofconstAlloc.gbc is increasing when the car and/or the
introductory space size is increased. The same correlationbetween car/introductory space size and the aver-
age disruption time can be seen in the average disruption time graphs ofdfstree.gbc andtst-norep-
3BO.gbc , although the trend is not so pronounced withtst-norep3BO.gbc .

The maximum disruption time graphs show almost the same characteristics as the average disruption time
graphs. Bothtst-norep3.gbc andallocator.gbc have a maximum disruption time below 0.05
seconds.

In figure 7.17 the maximum disruption time ofconstAlloc.gbc is increasing when the car and/or the
introductory space size is increased. The same correlationbetween car/introductory space size can be seen
in the maximum disruption time graph ofdfstree.gbc .

86 Chapter 7. Experiments

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Avg max Disruption Time/s

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Avg max Disruption Time/s

Figure 7.17.:The maximum disruption time with the source fileconstAlloc.gbc

The maximum disruption time graph oftst-norep3BO.gbc (see figure 7.18) is more indistinct. It
seems that the lowest maximum disruption time is present in the introductory space and car size combina-
tions: (4KB, 8KB), (4KB, 16KB), (8KB, 16KB). Another characteristic of the graph oftst-norep3-
BO.gbc is that the introductory space and car size pairs (65KB, 16KB), (128KB, 32KB), (256KB, 64KB),
(512KB, 128KB) have a larger maximum disruption time than their direct neighbors, i.e., the pairs in the
graph directly adjacent two these pairs. The mentioned pairs follow a diagonal in the graph. At other
diagonals, e.g., the one starting from (4KB, 8KB) and endingwith (128KB, 256KB), the garbage collector
has lower maximum disruption times than the direct neighbors. We do not have any explanation of this but
we suspect that with some introductory space and car size combinations the object structures fits better into
the blocks whereas other combinations scatters the object structures over more blocks. When the objects
are scattered over more blocks, it will yield lower maximum disruption times since less objects have to be
copied at each garbage collection.

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Avg max Disruption Time/s

Source: tst-norep3BO.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Avg max Disruption Time/s

Figure 7.18.:The maximum disruption time with the source filetst-norep3BO.gbc

The general trend that both maximum and average disruption times are increased with car and/or introduc-
tory space size makes perfect sense. An increase in the blocksizes implies that the average amount of data
that has be processed is increased, i.e., more objects will have to be copied from the introductory space and
from car in average.

In general the largest total disruption times is present with a small introductory space size combined with

7.5. Time Performance 87

a large car size. This trend is most evident in the graphs oftst-norep3BO.gbc , constAlloc.gbc ,
anddfstree.gbc (see figure 7.19).

Source: dfstree.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

2

4

6

8

10

Total Disruption Time/s

Source: dfstree.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

2

4

6

8

10

Total Disruption Time/s

Figure 7.19.:The total disruption time with the source filedfstree.gbc

This is reasonable since a smaller introductory space size the increases the garbage collection frequency.
With a high garbage collection frequency and a large car sizethe probability of moving a lot of live objects
is high. In essence if car size is much bigger than introductory space size, the total garbage collection time
will be high.

It should be noted that it seems as if the total disruption time only increases with a decrease in the intro-
ductory space size in the graphs ofallocator.gbc (see 7.20) andtst-norep3.gbc , i.e. the total
disruption time has little correlation with the car size in these test program executions. This trend is not
that pronounced though, but the reason for it most probably is that these test programs keep very few bytes
alive. This implies that very little object copying has to bedone during these test program executions.

Source: allocator.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

1.2

Total Disruption Time/s

Source: allocator.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

1.2

Total Disruption Time/s

Figure 7.20.:The total disruption time with the source fileallocator.gbc

The garbage collection time fraction graphs oftst-norep3.gbc andallocator.gbc confirms that
little live object copying has to be done when gbvm executes these test programs, and again, the garbage
collection time fraction is independent of the car size.

When gbvm executes the other test programs, the total garbage collection fraction is increased with an
increased size of the car and introductory space size. This is most pronounced in the execution ofdfs-

88 Chapter 7. Experiments

tree.gbc (see figure 7.21) but the same tendency is evident in the execution of tst-norep3BO.gbc
andconstAlloc.gbc .

Source: dfstree.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

GC Fraction of Tot. Time

Source: dfstree.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

GC Fraction of Tot. Time

Figure 7.21.:The garbage collection time fraction of the total executiontime with the source
file dfstree.gbc

Looking at the graphs it is obvious that something happens inmany cases when crossing the diagonal where
the sizes of the introductory space and cars are equal. If thetest program keeps many objects alive, both
the total disruption time and the garbage collection time fraction are high in the left triangle (where the
car size is equal to or larger than introductory space size) and low in the right triangle (where the car size
is equal to or smaller than introductory space size). This can be explained with the following postulate:
When one decreases the garbage collection frequency by doubling the introductory space size, one can
double the car size too and still end up with the same garbage collection time fraction. The reason is that
approximately the same amount of heap space is scavenged in total; the scavenged heap size is doubled,
but so is the expected time before the next scavenge. In the figure this explains the almost equal height of
the lines parallel to the mentioned diagonal. That these lines are generally higher towards smaller sizes is
reasonable since using smaller sizes will typically induceextra write barrier overhead and there is probably
also a base cost of conducting a garbage collection no matterwhat size. One should remember, though,
that traveling along these lines affects the disruption times.

7.6. New Train Policy

The creation of a new train is considered in our system when a non-moved object referenced from the stack
space is found, but creating a new train for each such object would lead to too many new trains for the
garbage collector to keep up with.

With our initial method one new train is created each garbagecollection if such an object is found. Un-
moved objects found later are moved to the last car of the lasttrain. We initially believed this was a good
way to introduce new trains as these could later grow larger if they referenced other objects. As this can
sometimes lead to cars that are not filled sufficiently, this method induces higher memory requirements
than necessary.

This problem leads us to restrict the policy for creating a new train. The constraint of only creating one
new train per scavenge was kept, but this is only done if either the last train contains more than one car or
the first car in the last train would be filled more than a fixed fill threshold if an object is added. In this
section we will investigate the significance of this change to the train algorithm implementation.

7.6. New Train Policy 89

7.6.1. Method

The space and time tests discussed in sections 7.4 and 7.5 areall performed with the new and the old train
creation policy. This gives us a large set of data to evaluatethe effect of the train creation policies both
with regard to space and time consumption. The methods for performing the tests are identical to those
previously described.

The fill threshold has been set to 80% in all the experiments with the new train creation policy. It would
also be interesting to optimize this threshold in further experiments, but this has not been done since we
had to stop somewhere, and this would require a lot of work andspace on our test hardware.

7.6.2. Uncertainty

We are not aware of any uncertainties introduced in additionto those mentioned in sections 7.4 and 7.5.

7.6.3. Results

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 20 40 60 80 100 120 140 160 180 200

B
yt

es

Allocations of about 32KB

Source: tst-norep3BO.gbc, Introductory Space: 32KB, Car: 32KB, Train Creation Policy: old

Unused Bytes
Dead Bytes

Live Bytes

Figure 7.22.:Allocation with the old method, introductory space and car sizes 32KB.

The new train creation policy has a profound effect on some ofthe tests while others are virtually un-
changed. An example of a significant (but not the greatest) effect can be seen in figures 7.22 and 7.8.

In this experiment a large chunk of data is allocated ten times and the garbage collector is trying to
keep up. Particularly the unused space is improved a lot in the new version, but also the amount of
space consumed by dead objects is reduced notably. An interesting thing about this particular test file,
tstnorep3BO.gbc , is that it allocates a lot of objects that are kept live during the “big object test”.
These are suddenly all released and a series of garbage collections with a low number of live bytes follows.
It would seem from the graphs that these chunks are always collected together. This makes it easy to see
how many large garbage structures the garbage collector hasremoved; the old one reclaims four out of nine
while the new one reclaims six of nine, two of which are reclaimed in one scavenge.

90 Chapter 7. Experiments

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Figure 7.23.:The fraction of live data in the train space with theconstAlloc.gbc using
the old train creation policy.

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

0.2

0.4

0.6

0.8

1

Avg Live Fraction

Figure 7.24.:The fraction of live data in the train space with theconstAlloc.gbc using
the new train creation policy.

7.6. New Train Policy 91

The graphs 7.23 and 7.24 show one of the examples of significant differences between the amount of live
objects in the train space caused by the new train creation policy. It is interesting to note that the region
where the old version has the worst space performance (with cars larger than the introductory space) the
new version has its best space performance. The reason for the behaviour of the old version is a lot of
unused space in newly created cars; because the introductory space is smaller than the car size, new cars
are never filled. The new version is particularly good at removing dead objects in this region because it
does not scatter its objects over as many cars and because thegarbage collection frequency is high there.

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

5

10

15

20

Total Disruption Time/s

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

5

10

15

20

Total Disruption Time/s

Figure 7.25.:The total garbage collection time withconstAlloc.gbc using the old train
creation policy.

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

5

10

15

20

Total Disruption Time/s

Source: constAlloc.gbc

12
13

14
15

16
17

18
19

20
21

Introductory Space Size (2^x)/bytes
11

12
13

14
15

16
17

18
19

Car Size (2^x)/bytes

0

5

10

15

20

Total Disruption Time/s

Figure 7.26.:The total garbage collection time withconstAlloc.gbc using the new train
creation policy.

Primarily the experiments with lots of live objects are influenced by the time overhead caused by the new
algorithm variation see figures 7.25 and 7.26. The change is significant in the region where the car size is
larger than the introductory space size.

Where the new train policy saves space, it seems to costs in time. We believe the reason for this is that more
live objects are present in each car and these have to be movedduring garbage collection. However, one
could argue that the old train creation policy does not do thesame amount of work as the new one since it
is slower at reclaiming the dead objects. To do the same work,it requires more scavenge iterations, adding
an (undetermined) time penalty to the old train creation policy. Having the same number of objects in a

92 Chapter 7. Experiments

heap divided into more segments is not an advantage with regard to quickly reclaiming garbage structures.
For these reasons we believe the new train policy is an improvement over the old policy.

7.7. Speed Comparison

Although we have used a lot of energy to hide this fact, the real purpose of this project was to make the
fastest (garbage collecting) gbeta virtual machine. This experiment will reveal if this purpose has been
fulfilled.

7.7.1. Method

Using the test programs listed in 7.1, we compare the time used by the three gbeta executing systems
known to exist: gbeta-0.81 [Ern99], gbetai [JJW01], and ourown system (gbvm). To make the results
more reliable we ran each source file a hundred times and calculated the mean time used. gbvm was
compiled with full optimization, an introductory space size of 64KB, and a car size of 32KB. The choices
of car and introductory space sizes were made as they are as they are the middle values in our ranges, and
they seem like reasonable compromises too.

To measure how much time gbvm used we used the Unix commandtime . As shown in the previous
experiments the performance of gbvm varies with the selected introductory space size and car size. So, if
we had selected different sizes gbvm could have performed differently.

gbeta-0.81 has a special option (-r) to make it generate code eagerly and do run time measurements. If
we used the output from thetime command instead of-r , the time used to compile the gbeta source file
would be included in the running time. In addition to this, the option-l was added which makes gbeta
perform static analysis lazily.

To measure the time used by gbetai, we also had to exclude pre-compiling time. In gbetai they compiled
the gbeta byte code into Java source files. These source are then compile using a standard Java compiler
(javac), and the resulting Java byte code can be run using a Java virtual machine. So, to be fair we
measured the time used by a Java virtual machine to execute the Java byte code resulting from gbeta byte
code compilation as this is the time a user would experience.

Our usual test-programs were not supported by gbetai, so we had to make a special program (simple.gbc)
to compare gbvm with gbetai. Besides this program we used a number of benchmark programs used in
gbetai [JJW01] to compare their virtual machine with BETA. These benchmarks are small gbeta programs
that test one specific thing repeatedly such as assignment, specific steps in run-time path traversals, and
usage of virtual attributes:

assignment Assignment of value to integer object.

objRefAndIns Assignment of one object reference to another and an instantiation of an object.

object Instantiation of an object.

runtimePath0 Traversal of empty runtime path.

runtimePath1 Traversal of run-time path with one lookup step.

runtimePath2 Traversal of run-time path with one indirect lookup step.

runtimePath3 Traversal of run-time path with one up step and one lookup step.

runtimePath4 Traversal of run-time path with two up steps and one lookup step.

runtimePath5 Traversal of run-time path with one out step.

virtual Invocation of a virtual attribute.

7.8. Write Barrier 93

7.7.2. Uncertainty

We are unaware of any uncertainties in addition to those of the other speed measurement experiments.

7.7.3. Results

gbvm/s gbeta-0.81/s Speedindex gbetai/s Speedindex

tst-norep3 4.777 39.020 8.169 - -
cruncher3 3.749 33.031 8.810 - -
allocator 7.766 109.639 14.118 - -
constAlloc 6.218 64.758 10.415 - -
dfstree 3.153 27.652 8.772 - -
derive 5.089 194.840 38.287 - -
simple 0.063 -(*) - 3.180 50.232
assigment 6.480 95.356 14.715 3.628 0.560
objRefAndIns 1.897 23.716 12.502 2.824 1.489
object 3.784 106.460 28.133 3.172 0.838
runtimePath0 4.785 85.530 17.874 3.250 0.679
runtimePath1 6.402 102.728 16.046 3.332 0.520
runtimePath2 6.522 102.294 15.684 3.635 0.557
runtimePath3 7.509 115.910 15.436 3.761 0.501
runtimePath4 8.020 117.244 14.619 4.168 0.520
runtimePath5 6.807 113.276 16.642 1.468 0.216
virtual 50.033 419.866 8.392 42.394 0.847

Table 7.1.:Speedindex is the time used by gbeta or gbetai divided by timeused by gbvm. So
a speedindex of 0.5 means twice as fast as gbvm while speedindex 2 means half
as fast as gbvm. (*) gbeta failed to execute this program successfully on the test
machine.

Looking at the results it seems that our gbvm are competitivewith the other gbeta executing systems. With
gbvm having index one the index of gbeta-0.81 varies from 8.169 to 38.287. This were expected since the
main purpose of gbeta-0.81 is to prove that the gbeta language can be implemented not that it can execute
fast. One must also take into account that gbeta-0.81 supports the compilation and execution of any given
gbeta program, whereas we do only support a subset of all gbeta programs. For instance, ourThread
class should be modified to fully support concurrency and thereby synchronization which could incur some
run-time overhead.

The comparison between gbvm and gbetai is interesting. Withsimple and objRefAndIns gbvm
are faster than gbetai, but in all other cases gbvm is slower ranging from speedindex 0.216 to 0.847.
Three things can be concluded from these results. Firstly, gbvm is competitive overall even though the
virtual machine component has not been optimized. Secondly, the experiment shows that it is possible to
optimize a gbeta virtual machine. Without knowing the details of gbetai, it seems that gbetai is fastest in
the benchmarks where an optimization effort was made. Thirdly, we did not succeed making the fastest
gbeta virtual machine.

7.8. Write Barrier

The purpose of this experiment is quantify the amount of timeused in our write barrier.

94 Chapter 7. Experiments

7.8.1. Method

One way to quantify the time used in the write barrier is profiling. gprof [GKM82] could be used, but it
will not work if inlining is used. Since we do want to inline the write barrier code, we cannot usegprof
to quantify the time used in the write barrier.

Another way to do the write barrier time quantification is to compare two runs of the same program.
The first run with a normal write barrier and the second with a write barrier that does exactly the same,
semantically, but executes each instruction twice (see figure 7.27).

wb(){
 if(foo()){
 bar();
 }
}

wb(){
 if(foo()){
 if(foo()){
 bar();
 bar();
 }
 }
}

Second runFirst run

T1 = EE + WB T2 = EE + 2WB

WB = T2 - T1

Figure 7.27.:One way to quantify the write barrier.T1 = time used by the first run,T2 = time
used by the second run,WB = time used by write barrier,EE = time used by
everything else

To quantify the write barrier we wrote a version of the write barrier macro that did everything twice without
changing the effect of the write barrier. We then measured the user times of an executable running with a
single write barrier executing the listed source files (see table 7.2), and the user times of an executable using
the double write barrier macro. The estimate of the time consumed by the write barrier is the difference
between these execution times. The executables were compiled to have an introductory space size of 64KB
and a car size of 32KB. Again, these sizes were chosen since they are the middle values of our tested
introductory space size and car size ranges.

7.8.2. Uncertainty

As with the speed comparison there is an uncertainty connected with the fixed car and introductory space
size. It may very well give another result if different car and introductory space sizes had been chosen.

Another uncertainty is the characteristics of the source programs. Some of them like e.g.,derive.gbc
do not use the write barrier much whereas others use it heavily. This is only a problem if the write barrier
light programs run for a short period of time inferring a great uncertainty in the measured user time.
The difference, in user time, of the two executions could then be caused by normal time measurement
uncertainties instead of the double write barrier.

The hash set used for the remembered sets has a resize functionality that may and may not be invoked
during the tests. If a resize happens in the single write barrier case it will also happen in the double write
barrier case but only once in each cases. This means that the cost of resizing the hash map is not included in
the measured time difference. If the resizing was instead performed twice in the double write barrier case,
the results of this experiments would have been more accurate, but this is difficult to do without altering
the implementation in ways that affect the performance in other ways.

7.9. Profiling 95

Another problem with the remembered set hash sets is that thesecond time the same value is inserted, no
write operation is performed. This is an advantage for the double write barrier macro and it may therefore
be faster in its second execution.

Caching effects will also increase the speed of the second execution of the write barrier.

To sum up it seems that we should expect to get too small time measurements by using this method.

7.8.3. Results

Single write barrier/s Double write barrier/s Write barrier time

tst-norep3 4.765 5.013 5.198%
cruncher3 3.700 4.046 9.357%
allocator 7.752 8.536 10.115%
constAlloc 6.144 6.621 7.760%
dfstree 3.110 3.397 9.205%
derive 5.090 5.443 6.940%
simple 0.062 0.074 19.548%
Mean: - - 9.732%

Table 7.2.: Results of running the the different source files with and without a double write
barrier. Write barrier time is(T2�T1)=T1 in percents

Our write barrier seems to be acceptable overall. Between 5%and 20% of the time is used in our write
barrier, with a mean of about 9%. The rather diverting resultof simple.gbc could be due to the before
mentioned uncertainty related to the short execution time.

The validity of this experiment is a bit questionable though. The quantified write barrier time should have
had the total time used by resizing added. This is only a problem if a lot of remembered set resize operations
is present.

The virtual machine component has not been optimized and after having parsed the input file it interprets
instructions. This means that the small percentage of time used in the write barrier could be due to a slow
virtual machine component. Profiling the system will revealif this is the case. We present the results of
profiling gbvm in the next section.

7.9. Profiling

The purpose of this experiment is to measure the fraction of time used by the two components in our
system, namely the virtual machine component and the memorymanagement component. This will set the
write barrier experiment into perspective since the low percentage of time used in the write barrier could
be due to a slow virtual machine component.

7.9.1. Method

Using the in table 7.3 listed source files we used instrumented our executables and usedgprof . gbvm
were executed a hundred number of times withgprof and the result were summed up bygprof .

96 Chapter 7. Experiments

7.9.2. Uncertainty

The results ofgprof are subject to statistical uncertainty but this has been decreased by makinggprof
sum up the results of hundred executions of each source file.

7.9.3. Results

ByteCodeLoader.parse() Thread.run() GarbageCollector.gc()

tst-norep3 7.6% 69.0% 1.3%
tst-norep3BO 3.3% 53.8% 30.5%
cruncher3 0.2% 52.4% 38.2%
allocator 0.0% 81.6% 0.7%
constAlloc 0.2% 56.9% 31.7%
dfstree 0.4% 53.7% 36.0%
derive 0.0% 77.5% gc() not invoked
simple 0.6% 73.1% gc() not invoked

Table 7.3.: The parsing, instruction execution and garbagecollection time fractions asgprof
reports it after 100 runs of each source file

In table 7.3 we list the time fractions used by: parsing (ByteCodeLoader.parse()), executing instructions
(Thread.run()), and garbage collectionGarbageCollector.gc(). If one adds up the three numbers one does
not get 100%, since the execution time is also used for other things such as initialization, but these take
only a small fraction of the total execution time.

Looking overall at the profiling results it seems that our virtual machine component takes a large fraction
of the total execution time, and a general optimization could increase the write barrier fraction of total
execution time. To optimize this component it is necessary to look at the time used in different parts of
the virtual machine. Looking further at the output fromgprof we identified a number of time consuming
operations. Among these were:

Dynamic Casts Used amongst other things after run-time path traversals, yielding more secure but less
time efficient code.

Run-time Path Traversals Especially up and down steps are expensive, since they require linear
search in the number of part objects in the current object.

Pattern Instantiation When a pattern is instantiated all its mixin must be instantiated into part
objects put into an object.

MainPart Lookup As noted in the evaluation of the virtual machine (see section 5.7) when a specific
main-part is wanted all the main-parts are searched linearly.

If a more efficient virtual machine is wanted these operations should be considered for optimization.

7.10. GBVM vs. JVM

The purpose of this experiment is to compare the efficiency ofgbvm with Sun’s Java HotSpotVirtual Ma-
chine (jvm) version 1.3.1.

7.10. GBVM vs. JVM 97

7.10.1. Method

To compare the two virtual machines we rewrotecruncher3.gb to a less gbeta exploiting version
(cruncher3JAVA.gb - see appendix A). We then tried to write a semantically equivalent program
in Java (cruncher3.java - see appendix A). Finally we measured the time used by gbvm toexecute
cruncher3JAVA.gb and compared it to the time used by jvm to executecruncher3.java .

To make a representative result we ran each subexperiment a hundred times and calculated the mean value.
gbvm were compiled to have an introductory space of 64 KB and acar size of 32 KB.

7.10.2. Uncertainty

We are aware that it is difficult to compare different programming languages and do them all justice. One
of the problems in this experiment is that gbeta has a more fine-grained way of storing objects, i.e., in gbeta
an object is divided into one or more part objects which must be searched during run-time path traversals.
The more fine-grained object representation yields both more run-time flexibility but it also a run-time
overhead.

Another problem is that we have not in any way proven that the two programs are semantically equivalent.

The overhead of the jvm must be taken into account. Although gbeta is perhaps richer than Java the support
for, amongst other things, concurrency and synchronization in jvm must be a disadvantage compared to our
single threaded virtual machine.

Another discrepancy is the type of the virtual machines. Ourvirtual machine is an interpreter whereas the
jvm is a dynamic compiler.

7.10.3. Results

Time/s Speedindex

java cruncher3 1.831s 4.732
gbvm cruncher3JAVA.gbc 0.387s 1.000

Table 7.4.: Comparison between jvm and gbvm

As shown in table 7.4, jvm is almost five times slower than gbvmin the given case. This may be because of
the startup time of jvm and also synchronization and concurrency support could incur a run-time overhead
in jvm.

To give jvm the opportunity to benefit from dynamic compilation we made a new longer running version of
bothcruncher3.java andcruncher3JAVA.gbc . The results of this new experiment are presented
in table 7.5.

Time/s Speedindex

java cruncher3Long 1.8086s 0.546
gbvm cruncher3LongJAVA.gbc 3.3029s 1.000

Table 7.5.: New comparison between jvm and gbvm, with more time demanding versions of
the test programs.

98 Chapter 7. Experiments

The new comparison gives a rather different result. Now jvm suddenly outperforms gbvm. Since jvm
is a dynamic compiler it benefits from compiling often invoked methods. The characteristics of the test
program fits perfect to dynamic compilation, since the same methods are executed numerous times.

Another interesting detail is that jvm uses less time on a version of the same program that executes more
iterations. This could be because its profiler decides to optimize more when the number of iterations in
loops are increased which is the case here.

7.11. Discussion of the Results

In this section we will summarize and discuss the interesting results from the previous sections with the pur-
pose of trying to find a good general purpose compromise between the settings tried, as well as suggesting
possible improvements.

To comment the speed comparisons with the other systems first, gbvm is faster than gbeta and competitive
with gbetai which is about twice as fast as gbvm. The write barrier tests show an average consumption of
less than 10% of the total execution time. These results are quite satisfying to us.

17

16

15

13

12

17

18

14

19

14

20

1516 121318 2 2

Unused fraction best (lowest)

Dead fraction best (lowest)

Live fraction best (highest)

In
tr

od
uc

to
ry

 S
pa

ce
 S

iz
e/

by
te

s

Car Size/bytes

2

2

2

2

2 2 2 2 2

2

2

2

2

2

Figure 7.28.:Summary of the results from the space utilization experiments

In figure 7.28 we have summarized the results from the space utilization experiments when focusing on the
train space. The live fraction is highest when the introductory space is smaller or equal to the car size. The
dead fraction is lowest when this heuristics is tightened sothe car size must be at least 8 times larger than
the introductory space. Finally, the unused fraction is best with the smallest car size. In addition to this the
lowest of the car size and the introductory space size limitsthe size of objects that can be handled in the
system.

Figure 7.29 summarizes the results from the time evaluationexperiments. The average and maximum
disruption times are lowest as long as the combined size of the scavenged space is not too large while the
total disruption time is lowest when the introductory spaceis larger than the car size.

With regard to train creation policy, the new train creationpolicy seems to be the best overall of the two

7.11. Discussion of the Results 99

Total disruption time and

disruption time best
Average and maximum

In
tr

od
uc

to
ry

 S
pa

ce
 S

iz
e/

by
te

s

Car Size/bytes

2

2

2

2

2

2

2

2

2

222222218 121314151617

20

14

19

18

17

16

15

13

12

garbage collection fraction best

Figure 7.29.:Summary of the results from the time performance experiments

proposed possibilities since it does not waste as much spaceas the old train creation policy, and it is
questionable whether the old policy is faster anywhere if both versions have to reclaim the same amount of
garbage.

Combining the space utilization and time performance experiments for a good compromise is not easy. If
one has to make such a choice we would recommend approximately equal introductory space size and car
size with a value that allows a reasonable size of objects e.g., 32KB. It is possible to set the sizes so most
large garbage structures are reclaimed quickly, but then one will pay for it with high garbage collection
overhead and wasted space. It will probably always be possible to put so large structures into the system
that performance will suffer. It is also possible to get low overhead from garbage collection by keeping
the car size small and adjusting the disruption time with theintroductory space size, but still keeping it
reasonably large. Such a system will not be good at reclaiming large garbage structures at a reasonable
pace, but it willeventuallyreclaim each structure (if a zero progress situation [GS93]or out of memory
fault occur).

For the best performance it is necessary to adjust the virtual machine parameters to values that fits the
application. This is the best way in our framework to avoid doing defensive garbage collectionthat is,
doing more garbage collection than seemingly necessary in order to reclaim large garbage structures rapidly
when they are created.

The biggest problem as we see it in the context of finding a goodcompromise of the parameters is that
it is not generally possible, as we believed, to combine a large introductory space with a smaller car size
without risking inefficient memory usage. A large introductory space is supposed to filter out many short
lived objects before they even reach the train space, but it also causes a low scavenging frequency which
makes the system less responsive. When the assumption of many short lived objects does not hold, our
collector in this configuration easily gets in trouble when large chunks of objects die. The total garbage
collection time fraction is still low in the large introductory space and small car size areas of the graphs, so
it may still be possible to construct a better performing garbage collector if a different strategy was chosen
for selecting not only the scavengingfrequencybut also the scavengingmoment.

Examples of unexplored (by us at least) strategies for a better heuristic of the moment for garbage collec-

100 Chapter 7. Experiments

tion could include the number of pointer updates which are not initializing stores since this could be an
indication of possibly new dead objects. This would probably cost in the write barrier, but finding very
good times for doing garbage collection might even this out,and it may be possible to find a cheap approx-
imation such as a simple count of pointer stores outside the introductory space. Another estimate for the
number of dead bytes in the system could be inferred from the number of bytes rescued last time. With
such dead byte indicators, alone or combined, one could try to control the rate of scavenging using this
number in an adaptive scheme.

In this adaptive scheme the memory manager needs to be able toadjust the amount of scavenged data in
order to control the responsiveness of the garbage collection in the train space. Continuing with our current
setup, one can vary the number of cars being scavenged together with the introductory space from zero to
many. This would approximate the effect of being able to change the size of cars and thus enable us to
move in one dimension in the 3D graphs. Moving in the other dimension can be attained by allocating a
rather large introductory space and setting a dynamic fill limit.

One could consider if a filled up introductory space really means that one can expect to find a lot of dead
objects in the system? Perhaps in the introductory space, but in the train space this is not necessarily the
case. While a large garbage structure is being built, the garbage collector is busy trying to reclaim objects,
but after the intensive allocation ceases, the effort of thegarbage collector ceases too. Why not try to do the
garbage collection after the intensive allocation has evened out? A simple timer could check periodically
if a garbage collection has occurred during the last period and trigger a garbage collection if a number of
instructions have been executed or some other sign of activity in the system is showing.

One could also ask if a high fraction of live objects really isa good sign?. It could indicate that too much
emphasis has been put on garbage collection perhaps doing too defensive garbage collection. We see that
the total amount of garbage collection time increases a lot if we try hard to keep the train space clean of
dead objects. One could also take a more relaxed attitude to the memory consumption, hope that programs
will not allocate memory like crazy just to forget about it a moment later and start all over (like some of
our test programs). After all there is a concept called programming guidelines which could dictate that this
is bad programming style and should be avoided.

8. Related Work

This chapter will give a short overview of research related to this thesis. We compare four memory man-
agers all using a train algorithm. The two topics compared are: Memory layout and pointer tracking
scheme. Figure 8.1 gives an overview of the four memory managers in focus.

Young
Object
Space

Mature
Object
Space

"Misc"
Spaces

From Space To Space From Space To Space

Train Train

HotSpot Beta Collector GBVM

Memory
Layout

(New generation) (Young Object Space) (Infant Object Area)

Train
(train generation)(Mature Object Space)

 Stack Space Intro Space

(intro/root space)

Pointer
Tracking
Scheme

Nursery

(Adult Object Area)

Remembered Sets
AOA, IOA distributed on cars

Train / Mark and Compact
(Train generation/)
Tenured generation)

(Permanent Generation)

TM

Card-marking withFuzzy card-marking
remembered sets

Open Runtime Platform

(Large Value Repetition Area)

g1

gn

...

g2

... step-l step-m

step-k

step-jstep-2step-1

step-j+1

Remembered Sets

Figure 8.1.:Overview of memory layout and pointer tracking scheme. Textin italic describes
the names used in the different memory managers

8.1. HotSpot

HotSpotis the well known Java virtual machine developed by Sun Microsystems, Inc.. Some of the people
behind the memory management in HotSpotare the people behind the incremental train garbage collector
for BETA [GS93]. The principles behind HotSpotis further described in subsection 3.3.

8.1.1. Memory Layout

As figure 8.1 illustrates HotSpothas two subspaces in Young Object Space (New Generation) according to
Lars Bak. A nursery used to allocate new objects and a copy collector space with a ’to’ and ’from’ space.
Objects are allocated into the nursery space and promoted tothe copy-collector space. If they survive long
enough they get promoted to the Train / Tenured generation depending on how HotSpothas been configured.
HotSpotcan be configured to use a mark-compact collector or atrain algorithm collector in mature object
space (MOS). HotSpothas a Permanent Generation where reflective data (classes, methods, symbols, etc.)
are stored. [SM01].

101

102 Chapter 8. Related Work

8.1.2. Pointer Tracking Scheme

According to Lars Bak they use a software write barrier with fuzzy card marking. This scheme corresponds
to the scheme described in [Höl93].

8.2. Intel’s Open Runtime Platform

Intel’s Open Runtime Platform (ORP) is an open source platform for experimenting with dynamic compi-
lation and garbage collection technologies [Hud00]. It contains three separate modules: Virtual Machine
(VM), Just-In-Time compiler (JIT), and Garbage Collector (GC). The main advantage of the separation be-
tween JIT/VM and GC/VM is the possibility to experiment withe.g., garbage collection without learning
the entire system. [Hud00]

8.2.1. Memory Layout

Conceptually they divide the memory into three areas: collected, traced, and untraced. The collected
area contains all objects (live or dead) which have been allocated by the garbage collector. The traced
area may contain objects with pointers referring to the collected area this area may include the run-time
stacks, statically allocated data and hardware registers.The untraced area includes data which is ignored
by memory management.

The collected area, also called the heap is divided into two spaces. “Young Object Space” (YOS) holding
recently allocated objects and “Mature Object Space” (MOS)containing objects that have survived a num-
ber of scavenges. They use a generational copy collector in YOS and a train algorithm garbage collector in
MOS. Steps are used in the generations to separate differently aged objects.

8.2.2. Pointer Tracking Scheme

In ORP they use a combination of card-marking and rememberedsets. They use card-marking to record
interesting memory areas (cards) at run-time and summarizethe interesting pointers into remembered set
at garbage collection time. This scheme was invented by [HH93], who noted that a combination of remem-
bered sets and card marking is more efficient than either remembered sets or cards alone.

ORP uses a card marking algorithm corresponding to the one described in [Höl93]. The following code
briefly explains the algorithm:

card_table_base[(object_ref->heap_base)>>bits_to_sh ift]:=MARK;

Figure 8.2.:Write barrier in ORP

In the card marking table they mark the entry corresponding to the card where the object having the pointer
being updated starts (see figure 8.2).

8.3. The Incremental BETA collector

Connected with their master’s thesis work at Aarhus University, Steffen Grarup and Jacob Seligman were
among the first to implement a train algorithm garbage collector. They implemented an incremental garbage
collector for the mature object space in BETA [GS93]. Their main inspiration came from [HM92].

8.4. GBVM 103

8.3.1. Memory Layout

As illustrated they have an Infant Object Area (IOA) used forallocating new objects. This space is copy
collected. Objects surviving a configurable number of timesin IOA are promoted to adult object area
(AOA). In AOA the train algorithm collector is used. Finallythey have a Large Value Repetition Area
(LVRA) where non-pointer arrays of integer, char, etc. above a configurable size are allocated and resident.

8.3.2. Pointer Tracking Scheme

Each car/area has a remembered set. A specialty with this implementation is that the remembered set of
IOA is distributed out to the cars in AOA. This makes it easy toupdate the remembered set of IOA when a
pointer in a specific car is altered, but it must have a seriousdrawback, when one has to gather the entire
remembered set of IOA. This is only done once each garbage collection of IOA.

The software write barrier uses from 11 to 18 SPARC-instructions for stores in AOA and less in IOA.

8.4. GBVM

Our own gbeta virtual machine with a simple heap layout trainalgorithm garbage collector, does not need
much presentation, since this thesis mainly deals with it.

8.4.1. Pointer Tracking Scheme

We use pr. space remembered sets to record interesting pointers. We have a software write barrier. The
algorithm is described in section 6.9.

104 Chapter 8. Related Work

9. Future Work

If we added a large object space (LOS) to our memory management component it might increase perfor-
mance. The LOS could store objects with no references (e.g.,repetitions) and of course large objects. This
would add more freedom to the choice of introductory space size and car size, since objects larger than the
smallest of the two could be allocated in LOS.

An adaptive scavenging scheme as discussed in section 7.11 would possibly make the garbage collector
better at adjusting its effort to the current demands of the application.

Compared to other related systems, gbvm is the only system which does not have a copy collector in the
young object space (our introductory space). It would be interesting to implement a copy collector in
introductory space to see how it would perform compared the current setup.

Another working area is extending the virtual machine to make it fully working, i.e., able to execute any
given gbeta program. The most important lacks of the currentvirtual machine are the missing repetitions
and concurrency. To make our system multi-threaded a numberof things must be changed. Amongst the
things are a signaling queue, synchronization of the write barrier, and it would also be necessary to garbage
collect the stack space in some way since threads can die before the whole program terminates.

Optimization of the virtual machine component has almost been non-present in this implementation, so
there is hope for performance improvements. For instance ifthe ByteCodeLoader made a two pass
parse of the input file, we would be able to do a number of optimizations. These would include: caching
main-parts in theAddMainPart instructions, use a real byte code format.

After having optimized the virtual machine component it would be interesting to compare it with BETA to
see how much the added generality costs in time performance.

105

106 Chapter 9. Future Work

10. Conclusion

In this project a working gbeta virtual machine (gbvm) has been implemented from the ground up inC++
with support for a major part of the gbeta byte code instructions. In this implementation automatic memory
management has been our primary focus. For this purpose the train algorithm has been deployed in a
previously unseen heap layout accompanied only by an introductory space.

The virtual machine component has been redesigned to allow garbage collection safe points even while
initializing attributes and executing multi-line instructions.

The memory management component has been almost completelyredesigned and reimplemented with
more efficient data organization and structures. A powerfulmemory manager debugging system possibly
adaptable to similar systems is presented too.

gbvm has been subjected to an extensive series of experiments evaluating its performance both with regard
to time and space performance. Two alternative policies fornew train creation in the train algorithm have
been investigated and our new train creation policy has beendecided upon. A general purpose configuration
has been vaguely suggested as a result of these experiments,but the important result is actually the difficulty
in finding a suitable general compromise.

The speed of the write barrier has been quantified to lie below10% of the total execution time on average.
Compared to gbeta, gbvm is about 15 times faster, while gbetai is about twice as fast as gbvm with the set
of benchmarks run.

Finally, suggestions for improving the performance of boththe virtual machine component and the memory
manager have been presented. The virtual machine could use atwo-pass parser which would allow for
a number of simple optimizations. The memory manager could be made adaptive in its moment and
frequency of scavenging using various strategies for approximating the amount of dead bytes in the train
space.

107

108 Chapter 10. Conclusion

A. Test Programs

allocator.gb

-- betaenv:descriptor --
(#
t: @integer;
x: (# do 1+1->t; #);
y: ˆx;
do

(for 800 repeat
&x[]->y[];

(for 200 repeat
y[];
x;

for);
for);

#)

derive.gb

-- betaenv:descriptor --
(#

derive: (#
result: @real;
do
(for i:50000 repeat
1*2+2*3+4*3+4*5+6*7+8*9+10*11->result;
result+1.3*2.2+2.1*3.0+4.9*3.8+4.7*5.6+
6.5*7.4+8.3*9.2+10.1*11.0->result;
result+21.3*32.2+52.1*43.0+64.9*3.8+74.7*85.6+
96.5*107.114+128.3*139.2+1410.1*1511.0+
21.3*32.2+52.1*43.0+64.9*3.8+74.7*85.6+
96.5*107.114+128.3*139.2+1410.1*1511.0+
1.3*2.2+2.1*3.0+4.9*3.8+4.7*5.6+
6.5*7.4+8.3*9.2+10.1*11.0->result;

for);
#);
do
derive;

#)

109

110 Appendix A. Test Programs

cruncher3.gb

-- betaenv:descriptor --
(#

list:
(# element:< object;

scan:
(# current: ˆelement; c: ˆcell
do head->c[];

(while c[]<>NONE do
c.elm[]->current[]; INNER; c.next[]->c[];

while)
#);

add:
(# c: ˆcell enter (&c).elm[]
do (if elements=0 then

c->head[]->tail[]; 1->elements
else

c->tail.next[]->tail[]; (elements+1)->elements
if)

#);
add3: (# enter (add,add,add) #);
makeEmpty: (# do 0->elements; tail[]->head[] #);
isEmpty: (# exit (elements=0) #);
cell: (# elm: ˆelement; next: ˆcell exit this(cell)[] #);
head,tail: ˆcell;
elements: @integer

exit this(list)[]
#);

node:
(# child1,child2,child3: ˆnode; id: @string; myMark: @boo lean;

init: (# enter id exit this(node)[] #);
childMethod:

(# on1:< object; on2:< object; on3:< object;
n: ˆnode; i: @integer

enter i do (if i //1 then on1 //2 then on2 //3 then on3 if)
#);

changeChildN: childMethod
(# on1::(# do n->child1[] #);

on2::(# do n->child2[] #);
on3::(# do n->child3[] #)

enter n[] exit n
#);

getChild: childMethod
(# on1::(# do child1->n[] #);

on2::(# do child2->n[] #);
on3::(# do child3->n[] #)

exit n
#);

setId: (# enter id #);
printMe:

(# pr: (# n: ˆnode enter n[] do (if n[]<>NONE then n.printMe if)#)
do id->stdio; child1[]->pr; child2[]->pr; child3[]->pr
#);

mark: (# do true->myMark #);
unmark: (# do false->myMark #);
isMarked:

(# n: ˆnode; result: @boolean
enter getChild->n[]
do true->result;

(if n<>NONE then n.myMark->result if)
exit result
#);

makeChildren:
(#
do ’a’->node.init->child1[];

111

’b’->node.init->child2[];
’c’->node.init->child3[]

exit (child1[],child2[],child3[])
#)

do (*id->stdio;*)
INNER

exit this(node)[]
#);

dfs:
(# n: ˆnode enter n[]
do n.mark;

(* n.id->stdio;*)
(* n.printMe;*)

(for i:3 repeat (if i->n.isMarked then i->n.getChild->dfs if)for)
#);

makeTree:
(# nodeList: list(# element::node #);

depth: @integer;
listOld,listNew: ˆnodeList

enter depth
do ’root ’->node.init->root[]->(&listOld).add;

(for i:depth repeat
&listNew;
listOld.scan(# do current.makeChildren->listNew.add3 #);
listOld.makeEmpty;
listNew->listOld[]

for)
exit root[]
#);

root,n1,n2,n3: ˆnode
do

7->makeTree->root[];
(* root.printMe;*)

(for i:3 repeat root->dfs; (*’
n’->stdio*) for)
#)

112 Appendix A. Test Programs

constAlloc.gb

constAlloc.gb
-- betaenv:descriptor --
(#

list:
(# element:< object;

scan:
(# current: ˆelement; c: ˆcell
do head->c[];

(while c[]<>NONE do
c.elm[]->current[]; INNER; c.next[]->c[];

while)
#);

add:
(# c: ˆcell enter (&c).elm[]
do (if elements=0 then

c->head[]->tail[]; 1->elements
else

c->tail.next[]->tail[]; (elements+1)->elements
if)

#);
add3: (# enter (add,add,add) #);
makeEmpty: (# do 0->elements; tail[]->head[] #);
isEmpty: (# exit (elements=0) #);
cell: (# elm: ˆelement; next: ˆcell exit this(cell)[] #);
head,tail: ˆcell;
elements: @integer

exit this(list)[]
#);

node:
(# child1,child2,child3: ˆnode; id: @string; myMark: @boo lean;

init: (# enter id exit this(node)[] #);
childMethod:

(# on1:< object; on2:< object; on3:< object;
n: ˆnode; i: @integer

enter i do (if i //1 then on1 //2 then on2 //3 then on3 if)
#);

changeChildN: childMethod
(# on1::(# do n->child1[] #);

on2::(# do n->child2[] #);
on3::(# do n->child3[] #)

enter n[] exit n
#);

getChild: childMethod
(# on1::(# do child1->n[] #);

on2::(# do child2->n[] #);
on3::(# do child3->n[] #)

exit n
#);

setId: (# enter id #);
printMe:

(# pr: (# n: ˆnode enter n[] do (if n[]<>NONE then n.printMe if)#)
do (*id->stdio;*) child1[]->pr; child2[]->pr; child3[]- >pr
#);

mark: (# do true->myMark #);
unmark: (# do false->myMark #);
isMarked:

(# n: ˆnode; result: @boolean
enter getChild->n[]
do true->result;

(if n<>NONE then n.myMark->result if)
exit result
#);

makeChildren:
(#

113

do ’a’->node.init->child1[];
’b’->node.init->child2[];
’c’->node.init->child3[]

exit (child1[],child2[],child3[])
#)

do (*id->stdio;*)
INNER

exit this(node)[]
#);

dfs:
(# n: ˆnode enter n[]
do n.mark;

n.printMe;
(for i:3 repeat (if i->n.isMarked then i->n.getChild->dfs if)for)

#);

makeTree:
(# nodeList: list(# element::node #);

depth: @integer;
listOld,listNew: ˆnodeList

enter depth
do ’root ’->node.init->root[]->(&listOld).add;

(for i:depth repeat
&listNew;
listOld.scan(# do current.makeChildren->listNew.add3 #);
listOld.makeEmpty;
listNew->listOld[]

for)
exit root[]
#);

root,n1,n2,n3: ˆnode
do

7->makeTree->root[];
3->root.getChild->n3[];
3->n3.getChild->n1[];
(for i:10 repeat root->dfs;

4->makeTree->n2[];
(2,n2[])->n1.changeChildN;
(*’
n’->stdio*)
for)
#)

114 Appendix A. Test Programs

dfstree.gb

-- betaenv:descriptor --
(#

list:
(# element:< object;

scan:
(# current: ˆelement; c: ˆcell
do head->c[];

(while c[]<>NONE do
c.elm[]->current[]; INNER; c.next[]->c[];

while)
#);

add:
(# c: ˆcell enter (&c).elm[]
do (if elements=0 then

c->head[]->tail[]; 1->elements
else

c->tail.next[]->tail[]; (elements+1)->elements
if)

#);
add3: (# enter (add,add,add) #);
makeEmpty: (# do 0->elements; tail[]->head[] #);
isEmpty: (# exit (elements=0) #);
cell: (# elm: ˆelement; next: ˆcell exit this(cell)[] #);
head,tail: ˆcell;
elements: @integer

exit this(list)[]
#);

node:
(# child1,child2,child3: ˆnode; id: @string; myMark: @boo lean;

init: (# enter id exit this(node)[] #);
childMethod:

(# on1:< object; on2:< object; on3:< object;
n: ˆnode; i: @integer

enter i do (if i //1 then on1 //2 then on2 //3 then on3 if)
#);

changeChildN: childMethod
(# on1::(# do n->child1[] #);

on2::(# do n->child2[] #);
on3::(# do n->child3[] #)

enter n[] exit n
#);

getChild: childMethod
(# on1::(# do child1->n[] #);

on2::(# do child2->n[] #);
on3::(# do child3->n[] #)

exit n
#);

setId: (# enter id #);
printMe:

(# pr: (# n: ˆnode enter n[] do (if n[]<>NONE then n.printMe if)#)
do id->stdio; child1[]->pr; child2[]->pr; child3[]->pr
#);

mark: (# do true->myMark #);
unmark: (# do false->myMark #);
isMarked:

(# n: ˆnode; result: @boolean
enter getChild->n[]
do true->result;

(if n[]<>NONE then n.myMark->result else ’isMarked.n[] is NONE’->stdio if)
exit result
#);

makeChildren:
(#
do ’a’->node.init->child1[];

115

’b’->node.init->child2[];
’c’->node.init->child3[]

exit (child1[],child2[],child3[])
#)

do (*id->stdio;*)
INNER

exit this(node)[]
#);

dfs:
(# n: ˆnode enter n[]
do n.mark;

(*n.id->stdio;*)
(*n.printMe;*)
(for i:3 repeat (if i->n.isMarked then i->n.getChild->dfs if)for)

#);

wantedDepth: @integer;
rememberRoot: ˆnode;

makeTreedfs:
(# depth: @integer;

id : @string;
n: ˆnode
enter (depth,id)
do

id->node.init->n[];
(if (depth <> 0) then

((depth-1),’a’)->makeTreedfs->n.child1[];
((depth-1),’b’)->makeTreedfs->n.child2[];
((depth-1),’c’)->makeTreedfs->n.child3[];

if)
exit n[]

#);

makeTree:
(# nodeList: list(# element::node #);

depth: @integer;
listOld,listNew: ˆnodeList

enter depth
do ’root ’->node.init->root[]->(&listOld).add;

(for i:depth repeat
&listNew;
listOld.scan(# do current.makeChildren->listNew.add3 #);
listOld.makeEmpty;
listNew->listOld[]

for)
exit root[]
#);

root,n1,n2,n3: ˆnode
do

’root ’->node.init->root[];
(* 5->wantedDepth;*)

(7,’root’)->makeTreedfs->root[];
(* 3->makeTree->root[]; *)

(for i:3 repeat root->dfs; (*’
n’->stdio*) for);
(* root.printMe;*)
#)

116 Appendix A. Test Programs

cruncher3JAVA.gb

-- betaenv:descriptor --
(#

list:
(# element: node;

scan:
(# current: ˆelement; c: ˆcell; listNew: ˆlist;

enter listNew[]
do head->c[];

(while c[]<>NONE do
c.elm[]->current[];

current.makeChildren->listNew.add3;
c.next[]->c[];

while)
#);

add:
(# c: ˆcell enter (&c).elm[]
do (if elements=0 then

c->head[]->tail[]; 1->elements
else

c->tail.next[]->tail[]; (elements+1)->elements
if)

#);
add3: (# enter (add,add,add) #);
makeEmpty: (# do 0->elements; tail[]->head[] #);
isEmpty: (# exit (elements=0) #);
cell: (# elm: ˆelement; next: ˆcell exit this(cell)[] #);
head,tail: ˆcell;
elements: @integer

exit this(list)[]
#);

node:
(# child1,child2,child3: ˆnode; id: @string; myMark: @boo lean;

init: (# enter id exit this(node)[] #);
childMethod:

(# on1:< object; on2:< object; on3:< object;
n: ˆnode; i: @integer

#);
changeChildN: (# n: ˆnode; i: @integer;

enter (i, n[])
do (if i //1 then n->child1[] //2 then n->child2[] //3 then n- >child3[] if)

exit n
#);

getChild: (# n: ˆnode; i: @integer;
enter (i, n[])

do (if i //1 then child1->n[] //2 then child2->n[] //3 then ch ild3->n[] if)
exit n
#);

setId: (# enter id #);
printMe:

(# pr: (# n: ˆnode enter n[] do (if n[]<>NONE then n.printMe if)#)
do (*id->stdio;*) child1[]->pr; child2[]->pr; child3[]- >pr
#);

mark: (# do true->myMark #);
unmark: (# do false->myMark #);
isMarked:

(# n: ˆnode; result: @boolean
enter getChild->n[]
do true->result;

(if n<>NONE then n.myMark->result if)
exit result
#);

makeChildren:
(#

117

do ’a’->node.init->child1[];
’b’->node.init->child2[];
’c’->node.init->child3[]

exit (child1[],child2[],child3[])
#)

do (*id->stdio;*)
INNER

exit this(node)[]
#);

dfs:
(# n: ˆnode enter n[]
do n.mark;

(* n.printMe; *)
(for i:3 repeat (if (i,n[])->n.isMarked then (i,n[])->n.g etChild->dfs if)for)

#);

makeTree:
(# depth: @integer;

listOld,listNew: ˆlist
enter depth
do ’root ’->node.init->root[]->(&listOld).add;

(for i:depth repeat
&listNew;
listNew[]->listOld.scan;
listOld.makeEmpty;
listNew->listOld[]

for)
exit root[]
#);

root,n1,n2,n3: ˆnode
do

5->makeTree->root[];
(for i:3 repeat root->dfs; (*’

n’->stdio*) for)
#)

118 Appendix A. Test Programs

cruncher3.java

class List f
class Cell f

public Node elm;
public Cell next;

public Cell() fgg
Cell head = null;
Cell tail = null;
int elements = 0;

Cell c = null;
Node current = null;

public void scan(List listNew) f
c = head;

while(c != null) f
current = c.elm;
current.makeChildren();
listNew.add3(current.child1, current.child2, current. child3);
c = c.next;gg

public void add(Node elm) f
Cell c = new Cell();
c.elm = elm;
if(elements == 0) f

head = c;
tail = c;
elements = 1;g else f
tail.next = c;
tail = tail.next;
elements++;gg

public void add3(Node elm1, Node elm2, Node elm3) f
add(elm1);
add(elm2);
add(elm3);g

public void makeEmpty() f
elements = 0;
tail = head;g

public boolean isEmpty() f
if(elements==0) f

return true;g else f
return false;ggg

class Node f
Node child1,child2,child3;
String id;
boolean myMark;

119

public Node(String str) f
id = str;g

public Node changeChildN(int i, Node n) f
if (i == 1) f

child1 = n;g else if(i == 2) f
child2 = n;g else if(i == 3) f
child3 = n;g

return n;g
public Node getChild(int i) f

if (i == 1) f
return child1;g else if(i == 2) f
return child2;g else if(i == 3) f
return child3;g

return null;g
public void setId(String _id) f

id = _id;g
public void printMe(Node n) f

if(n != null) f
if(child1 != null) f

child1.printMe(child1);g
if(child2 != null) f

child2.printMe(child2);g
if(child3 != null) f

child3.printMe(child3);ggg
public void mark() f

myMark = true;g
public void unMark() f

myMark = false;g
public boolean isMarked(int i) f

Node n = getChild(i);
boolean result;
result = true;
if(n != null) f

result = n.myMark;g
return result;g

public Node makeChildren() f
child1 = new Node("a");
child2 = new Node("b");
child3 = new Node("c");

120 Appendix A. Test Programs

return this;gg
class Main f

Node root, n1, n2, n3;

public void dfs(Node n) f
n.mark();
for(int i = 1; i < 4; i++) f

if(n.isMarked(i)) f
dfs(n.getChild(i));ggg

public Node makeTree(int depth) f
List listOld = new List();
List listNew;
Node root = new Node("root ");
listOld.add(root);
for(int i = 1; i < depth ; i++) f

listNew = new List();
listOld.scan(listNew);
listOld.makeEmpty();
listOld = listNew;g

return root;g
public void start() f

root = makeTree(5);
for(int i = 1; i<4; i++) f

dfs(root);gg
public static void main(String args[]) f

Main m = new Main();
m.start();gg

simple.gb

-- betaenv:descriptor --
(#
t: @integer;
x: (# do 1+1->t; #);
do

(for 1000 repeat
x;

for);
#)

B. The Test Machine

CPU

processor : 0
vendor_id : GenuineIntel
cpu family : 5
model : 2
model name : Pentium 75 - 200
stepping : 12
cpu MHz : 133.270677
fdiv_bug : no
hlt_bug : no
sep_bug : no
f00f_bug : yes
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes
flags : fpu vme de pse tsc msr mce cx8
bogomips : 53.04

Memory

64MB

Operating System

Linux version 2.2.14-5.0 (root@porky.devel.redhat.com)
(gcc version egcs-2.91.66 19990314/Linux (egcs-1.1.2 rel ease))
#1 Tue Mar 7 20:53:41 EST 2000

Compiler

GNU c++ version 2.95.3 with i586-pc-linux-gnu target machi ne

121

122 Appendix B. The Test Machine

PCI-devices

PCI devices found:
Bus 0, device 0, function 0:

Host bridge: Intel 82439HX Triton II (rev 3).
Medium devsel. Master Capable. Latency=32.

Bus 0, device 7, function 0:
ISA bridge: Intel 82371SB PIIX3 ISA (rev 1).

Medium devsel. Fast back-to-back capable. Master Capable. No bursts.
Bus 0, device 7, function 1:

IDE interface: Intel 82371SB PIIX3 IDE (rev 0).
Medium devsel. Fast back-to-back capable. Master Capable. Latency=32.
I/O at 0xe800 [0xe801].

Bus 0, device 11, function 0:
Ethernet controller: 3Com 3C905 100bTX (rev 0).

Medium devsel. IRQ 11. Master Capable. Latency=32. Min Gnt= 3.Max Lat=8.
I/O at 0xe000 [0xe001].

Bus 0, device 12, function 0:
VGA compatible controller: ATI Mach64 VT (rev 64).

Medium devsel. Fast back-to-back capable.
Non-prefetchable 32 bit memory at 0xfa000000 [0xfa000000] .
I/O at 0xd800 [0xd801].

C. Graphs

123

124 Appendix C. Graphs

125

126 Appendix C. Graphs

127

128 Appendix C. Graphs

129

130 Appendix C. Graphs

131

132 Appendix C. Graphs

Bibliography

[App98] Andrew W. Appel. Modern Compiler Implemetation. Cambridge University Press, 1998.
ISBN 0-521-58388-8.

[Arm98] Eric Armstrong. Hotspot: A new breed of virtual machine. JavaWorld, March 1998.http:
//www.javaworld.com/javaworld/jw-03-1998/jw-03-hots pot.html .

[BC95] Lee Braine and Chris Clack. The importance of being lazy. June 1995.

[BG00] Lars Bak and Steffen Grarup. Automatic memory management in the javaTM programming
language, 2000.http://www.daimi.aau.dk/˜larsbak/12-9/slides.pdf .

[CFM+97] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert Wilson, and
Maio Wolczko. Compiling java just in time.IEEE Micro, 17(3):36–43, May-June 1997.

[Cor01] Rational Software Corporation. Rational purify for unix v2001a. http://www.
rational.com/products/purify_unix/index.jsp , 2001.

[CWB86] P. J. Caudill and A. Wirfs-Brock. A third generationSmalltalk-80 implementation.ACM
SIGPLAN Notices, 21(11):119–130, November 1986.

[Eng99] Joshua Engel.Programming for the Java Virtual Machine, chapter 1. Addison-Wesley, Read-
ing, MA, USA, 1999.

[Ern99] Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Propagating,
Dynamic Inheritance. PhD thesis, Department of Computer Science, University ofAarhus,
Århus, Denmark, 1999.

[Ern00] Erik Ernst. gbeta tutorial.http://www.daimi.au.dk/˜eernst/gbeta/index_
tutorial.html , February 2000.

[FPEN94] Gene F Franklin, J. David Powell, and Abbas Emani-Naeini. Feedback Control Of Dynamic
Systems. Addison Wesley Publishing Company, third edition, 1994.

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof : A call graph execu-
tion profiler.SIGPLAN Notices, 17(6):120–126, June 1982.Proceedings of the ACM SIGPLAN
’82 Symposium on Compiler Construction.

[GR89] Adele Goldberg and David Robson.Smalltalk-80 – The Language, chapter 21. Addison-
Wesley, Reading (MA), 1989.

[GS93] Steffen Grarup and Jacob Seligmann. Incremental mature garbage collection. Master’s thesis,
Aarhus University, Computer Science Department, August 1993.

[HH93] Antony L. Hosking and Richard L. Hudson. Remembered sets can also play cards.OOPSLA-
gc, 1993.

[HM92] ”Richard L. Hudson and J. Eliot B. Moss”. ”incremental garbage collection for mature ob-
jects”. In ”Yves Bekkers and Jacques Cohen”, editors,”Proceedings of International Work-
shop on Memory Management”, volume ”637” of”Lecture Notes in Computer Science”, ”St
Malo, France”, ”16–18 ” sep ”1992”. ”Springer-Verlag”. ”University of Massachusetts, USA”.

133

134 Bibliography

[HMS92] Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanovic. A comparative performance
evaluation of write barrier implementations.ACM SIGPLAN Notices, 27(10):92–109, October
1992.

[Höl93] Urs Hölzle. A fast write barrier for generationalgarbage collectors. In Eliot Moss, Paul R. Wil-
son, and Benjamin Zorn, editors,OOPSLA/ECOOP ’93 Workshop on Garbage Collection in
Object-Oriented Systems, October 1993.ftp://self.stanford.edu/pub/papers/
write-barrier.ps.Z .

[Hud00] Rick Hudson. Gc writer’s guide for open runtime environment. http://www.intel.
com/mrl/orp/orp_tgz.tgz , September 2000.

[IP01] Peer Møller Ilsøe and Simon Hem Pedersen.GBVM - a gbeta Virtual Machine. Department
of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, DK - 9220 Aalborg Øst, 1.
edition, January 2001.

[JJW01] Ricki Jensen, Christian Jørgensen, and Michael Wojciechowski. gVM - a Stand-alone gbeta
Virtual Machine. Masters thesis, Department of Computer Science, Institute for Electronic
Systems, Aalborg University, Fredrik Bajers vej 7a1 9220 Aalborg Øst, Denmark, 2001.

[JL96] Richard Jones and Rafael Lins.Garbage Collection - Algorithms for Automatic Dynamic
Memory Management. Wiley, 1996. ISBN 0-471-94148-4.

[LH83] Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based on the lifetimes
of objects. Communications of the ACM, 26(6):419–429, 1983.http://lieber.www.
media.mit.edu/people/lieber/Liebary/GC/Realtime/Rea lt%ime.html .

[LY97] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification, chapter 3, pages xvi
+ 475. The Java Series. Addison-Wesley, Reading, MA, USA, January 1997.

[Mos87] J. Eliot B. Moss. Managing stack frames in Smalltalk. ACM SIGPLAN Notices, 22(7):229–
240, July 1987.

[Nel79] P. A. Nelson. A comparison of PASCAL intermediate languages.ACM SIGPLAN Notices,
14(8):208–213, August 1979.

[PB98] Kevin M. Passino and Kevin L. Burgess.Stability Analysis of Discrete Event Systems. Number
ISBN 0-471-24185-7. John Wiley & Sons, Inc., 1998.

[Pro01] The GNU Project. Data display debugger v3.3.http://www.gnu.org/software/
ddd/ , 2001.

[SaCL00] Witawas Srisa-an, J. Morris Chang, and Chia-Tien Dan Lo. Do generational schemes improve
the garbage collection efficiency?IEEE, pages 58–63, 2000. 0-7803-6418-X/00.

[Sag00] Ajit Sagar. Java code compilation - the ”write once,compile anywhere” solution.Java Devel-
opers Journal, 2000.http://www.sys-con.com/java/archives/0401/sagar/
index_c.html .

[Sip97] Michael Sipser.Introduction to the Theory of Computation. Number 0-534-94728-X. PWS
Publishing Company, 1997.

[SM01] Inc. Sun Microsystems.hotspot2_0-src-win/src/share/vm/memory/*.hpp .
webpage: http://java.sun.com/products/hotspot/ or http://www.sun.
com/software/communitysource/hotspot/download.html , May 2001.

[Sta97] William Stallings.Operating Systems - Internals and Design Principles. Prentice Hall, third
edition, 1997.

Bibliography 135

[SUH86] A. D. Samples, D. Ungar, and P. Hilfinger. SOAR: Smalltalk without bytecodes.ACM SIG-
PLAN Notices, 21(11):107–118, November 1986.

[UJ88] David Ungar and Frank Jackson. Tenuring policies forgeneration-based storage reclamation.
ACM SIGPLAN Notices, 23(11):1–17, November 1988.

[Ven96] Bill Venners. Under the hood: The lean, mean, virtual machine. Javaworld, 1996. http:
//www.javaworld.com/javaworld/jw-06-1996/jw-06-vm.h tml .

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques.Bekkers and Cohen IWMM92,
1992.ftp://ftp.cs.utexas.edu/pub/garbage/gcsurv.ps .

[Wil94] Paul R. Wilson. Uniprocessor garbage collection techniques. Technical report, University of
Texas, January 1994.ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps .

[WM89] Paul R. Wilson and Thomas G. Moher. A “card-marking” scheme for controlling intergener-
ational references in generation-based garbage collection on stock hardware.ACM SIGPLAN
Notices, 24(5):87–92, May 1989.

[YMP+99] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeungIl Lee, Jinpyo Park,
Yoo C. Chung, Suhyun Kim, Kemal Ebcioglu, and Erik Altman. Latte: a java vm just-in-
time compiler with fast and efficient register allocation.Internation Conference on Parallel
Architectures and Compilation Techniques, Proceedings, pages 128–138, May-June 1999.

[ZG92] Benjamin Zorn and Dirk Grunwald. Empirical measurements of six allocation-intensive C
programs.SIGPLAN Notices, 27(12):71–80, December 1992.

Index

accurate garbage collector, 20
allocation-time, 75

card marking, 23
Cheney scan, 22
concurrent garbage collector, 21
conservative garbage collector, 20
cooperative garbage collector, 21
copying garbage collector, 22

dead objects, 19
defensive garbage collection, 99
dirty car, 56
do-part, 8
dynamic compiling virtual machine, 17

enter-part, 8
exit-part, 8

fill-threshold, 54
flat execution model, 27
from car, 24
from train, 24
from-space, 22
full garbage collector, 21

garbage collected, 19
generational garbage collector, 23

handle based garbage collectors, 20
handleless garbage collectors, 20
heap, 19
heap-space, 19

i-fetch loop, 31
intergenerational references, 23
interpreting virtual machine, 16
introductory space, 52

just in time compiler, 16

last-step, 11
live objects, 19

main-part, 7
mark and compact algorithm, 22
mark and sweep garbage collector, 22
mark phase, 22

marking an object, 22
mature object space, 23
mixin, 6
multi threaded garbage collector, 21
mutator, 19

new concept, V

object, 7
object descriptor, 65

part object, 7
part object switch, 31
part-object-step, 11
partial garbage collector, 21
pattern, 6
pattern merge, 6

reclaimed, 19
reference counting garbage collector, 21
remembered set, 24
root set, 19
run-time paths, 10

safe point, 27
scavenges, 19
semantically dead objects, 19
semantically live objects, 19
single threaded garbage collector, 21
space waste, 74
stack space, 51
static object, 48
static pattern, 48
subpattern, 6
superpattern, 6
sweep phase, 22

this-problem, 27
to-space, 22
train algorithm, 24
train space, 52
train-car element, 55

unused space, 74

virtual declaration, 38
virtual final-binding, 38
virtual further-binding, 38

136

Index 137

virtual machine, 15
virtual pattern declaration, 38

write barrier, 23

zombie objects, 61

