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Abstract

In this project a virtual machine, gbvm, with ja
unique train algorithm garbage collector is imple-
mented for the programming language gbeta.
The main focus of this thesis is memory manage-
ment using the train algorithm and experiments wjth
the implementation.
Firstly, this thesis introduces relevant theories gnd
work including an introduction to gbeta, a overview
of virtual machine architectures, and descriptiong of
garbage collection concepts, properties, and algo-
rithms.
Secondly, the design and implementation details of
gbvm are presented
Thirdly, experiments investigating the performance

of both parameter but also algorithm changes of the
train algorithm are conducted and discussed. The
experimental framework implemented for this the-
sis allows for further experiments with gbvm.
Finally, it is concluded that it is difficult to find a
fixed general setting, which is both time and space
efficient with all the tested programs.







Resume

Dette afgangsprojekt dokumenterer udviklingen af gbvm -gleeta virtuel maskine med en unik train-

algoritme garbage collector. gbeta er en generaliserimgajrammingssproget BETA. gbeta tilbyder de
samme faciliteter som BETA, men derudover er mere udtryélsfabstraktionsmekanismer og stgrre run-
time fleksibilitet tilfgjet.

| den nuvaerende implementation af gbeta er den virtuell&kimasnkorporeret i kompileren, hvilket giver

et ineffektivt system, hvor det armuligt at kompilere en gang og derefter afvikle mange gange uden
genkompilering. Dette motiverer en seperat virtuel masksom ggar det muligt at afvikle et program uden
at gentage kompileringsfasen. | dette afgangsprojekth@kuieres designet og implementationen af sadan
en virtuel maskine kaldet gbvm.

Hovedfokus i dette afgangsprojekt er memory managementijaetp af train algoritmen. En memory
manager med en unik train algoritme garbage collector égdesog implementeret. Der er udfgrt eksperi-
menter med gbvm, og det framework der ligger bag ved disgeegksenter gar det muligt at fortsaette med
flere eksperimenter. Eksperimenterne fokuserer pa hvdsélde aendringer af forskellige implementations-
parametre, men ogsa selve algoritmen, kan pavirke plgdiiseffektiviteten. Derudover sammenlignes
gbvm med andre gbeta afviklingssystemer.

Indholdet af dette afgangsprojekt er opdelt i tre hoveddElen fgrste del dokumenterer vores studier i
materiale, som er relevant for dette afgangsprojekt. Heeoduceres gbeta med dets forskellige modelle-
ringsentiteter og byte kode format. Derefter preesenteesfotskellige arkitekturer for virtuelle maskiner
og til sidst forskellige aspekter af memory management.

Anden del dokumenterer design og implementation af vorgselle maskine modul og vores memory
management modul. | disse kapitler er der undervejs kngtt@iuerende kommentarer, hvor vi har fundet
det relevant.

| den tredje del dokumenteres en raekke eksperimenter med,gityvi kommer frem til hvilken indvirk-
ning introductory space og car starrelser i heapen og ftigkemprettelsesstrategier for nye trains har pa
tids- og pladsperformance.

Afsluttende beskrives relaterede virtuelle maskiner ognkwende arbejde. Vi konkluderer, at det at sveert
at finde en god kombination af introductory space og car ake#r og at den nyeste af de to foreslaede
oprettelsesstrategier for nye trains er den bedste.






Preface

This report is a master’s thesis in computer science, progriag systems. The report is directed towards
people with interests in object oriented programming laages, virtual machine design and implementa-
tion, and especially memory management using the trairrighgo.

A complete bibliography is located in the back of the repdReferences to the bibliography are made
with square brackets e.g., [Ern99, p42] which refers to thdPthesis “gbeta - a Language with Virtual
Attributes, Block Structures, and Propagating, Dynamigehitance” page 42. The references are not
allways annotated with page numbers.

References to figures are made as (see figure x.y), where eseqis the chapter and y is a consecutive
number in that chapter. The same applies to tables.

Some typography in the text is used to clarify the meaningelva new concept is introduced the word
is typesetnew conceptclass names are typesetassName , and methods, attributes, and other things
referring to code are typesatethod . When a variable is a pointer to a clagddssName ), its type is
abbreviatedlassNamePtr . Anindex in the back shows where in the report new conceptsménoduced
and explained.

We have included a CD-ROM with this thesis that containsstiwece code, the graphs of the experiments,
and the data which form the basis for these graphs. A file¢®EADMIBN the CD-ROM further describes
the contents of this CD-ROM.

We would like to thank Ricki Jensen, Christian Jgrgensed,Mithael Wojciechowski for letting us use
their benchmark programs and gbeta virtual machine for aispn.

Peer Mgller lisge Simon Hem Pedersen
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1. Introduction

This master’s thesis is devoted to three main areas: Thergmoging language gbeta, implementation
and design of virtual machines, and memory management. Memanagement and especially the train
algorithm is the main focus.

gbeta was developed by Erik Ernst, Assistant Professor bitotg University. It is a modern object ori-
ented programming language, which implements a superdfegbrogramming language BETA. gbeta
combines static type safety with dynamic inheritance, itecombines the design goals safety and flex-
ibility. gbeta has a higher level of run-time flexibility cqrared to BETA. For instance it is possible at
run-time to combine two methods into a new method, and onelgaamically change the class of an ob-
ject. The increased run-time flexibility combined with &taype safety in gbeta increases the complexity
and requirements for the compiler and the run-time system.

So far the work put into the gbeta project has concentratati®design and implementation of the front-
end of the language, i.e., the gbeta compiler. With respet¢hé back-end, i.e., the run-time system
including, e.g., a virtual machine, automatic memory mamagnt, etc., a large amount of research and
development still has to be done, but [JJWO01] and this thesia start.

Automatic memory management is a optional part of a run-system. If no automatic memory man-

agement system is present, the application programmerchaedrporate complicated and error-prone
memory management into each application developed — if wenas that he does not want to just use
memory until it depleted. Automatic memory managers sothesproblem by ensuring that objects no
longer needed are reclaimed.

Many different memory management strategies have beeropeap One of them is the train algorithm.
The main purpose of the train algorithm is to ensure low méae tisruptions while still eventually
reclaiming all unneeded objects.

In [IPO1] we implemented a memory management componentuted our first implementation of the
train algorithm. We also implemented the core of a virtuathiae which used the memory management
component, but they were not working well when joined.

The evaluation of the first virtual machine implementatiangus reason to change the design and end up
with a more functional virtual machine, which actually hadespoints between each instruction execution.

The evaluation of the first implemented memory managemempement also gave reason to a redesign
and reimplementation of a new and improved train algoritrarbgge collecting memory management
system.

1.1. Hypothesis

Other systems with a train algorithm garbage collector usee or even n-generation copy collector in
the generation before the generation with train algoritlsae(chapter 8). We would like to explore what
happens, if no such copy collector is present. A simpler @pgh could both be easier to maintain and
debug but most importantly, it could also yield better parfance. Our idea is that the train algorithm
extended with an extra special car (called introductorycspé enough to yield both good performance
and relatively low disruption times.
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1.2. Contributions

The main contribution is our investigation of the train aitfum and how it might be set up differently. This
includes the unique experiments conducted on our trainriéihge memory manager, and the framework
used to conduct these experiments. Since we have usedsdoripbnduct the experiments and create the
resulting graphs, it is possible to further experiment gshre framework developed as a part of this thesis.

Another contribution is the virtual machine component.haligh the virtual machine component has not
been the main focus in this thesis, we have implemented aetitiup virtual machine capable of executing
most gbeta programs without repetitions and concurrency.

1.3. Thesis Structure

Presenting relevant theory Design and Implementation
Introduction }7 ‘ Virtual Machine Arhitectures ‘ 1 ‘ Virtual Machine ‘ —{ Experiments H Related Work ‘
‘ Memory Management ‘ ‘ Memory Manager ‘

Conclusion

Figure 1.1.:The structure of this thesis

Our thesis structure is illustrated in figure 1.1. After tingroduction we present relevant theory about
the areas: gbeta, virtual machine architectures, and memanagement. We present both the gbeta
language and its byte code format. Then three differenti@irmachine architectures are presented and
briefly compared. The theory part ends with a presentationerhory management concepts, properties,
and a number of different garbage collection algorithmsudinig the train algorithm is presented with
their advantages and disadvantages.

We then present the design and implementation details ofitheal machine component (see chapter 5).
In this chapter we describe the architecture of the virtuathine, describe interfaces, and explain how we
have redesigned the virtual machine to allow for copy cditecduring both normal instruction execution
and attribute initialization. In the end of the chapter weda#e how the instructions were implemented,
especially the multi-line instructions and complex sinlihe instructions. Finally we conclude with a short
evaluation of the current implementation.

The design and implementation details of the memory managecomponent are then presented in chap-
ter 6. We present the unique heap layout, the architectutteeofomponent, the data structures, the most
important classes, and conclude with a description of orgige of the train algorithm and its write barrier.
Then we describe the interface of the component. At last veerid®e how we used different debugging
techniques and tools to make the tedious task of debuggingttble system (called gbvm) more endurable.

Experiments with gbvm, and in particular the memory manag@rsystem is presented in chapter 7. In
this chapter we investigate the interrelation betweeredsffit introductory space and car sizes in our heap,
and time and space performance. Then we experiment with iffi@eht new train creation policies and
compare their effects on performance. We have also condesigeriments that quantifies the time used in
our write barrier, and other experiments that compare gbvti ether gbeta executing systems and with
the Java HotSpot virtual machine. To give an idea of how mimad is spent in the different parts of gbvm,
we have also profiled it usingprof [GKM82].

The thesis ends with a chapter describing related work. i ¢hapter we focus on related run-time
systems that use the train algorithm. Before the conclusiea chapter 10) we present proposals for future
work (see chapter 9).
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You can read this thesis in several ways. The best way is abeda read it all, but if you are familiar with
the theory presented, i.e., the gbeta language, virtuahmaarchitectures, and memory management,
you may skip the chapters 2, 3, and 4. As the main focus in tasi$ is memory management using
the train algorithm, it is also possible to skip chapter 5/dfi are not interested in details of our virtual
machine component. We do not recommend skipping chapterolgth since an understanding of the
virtual machine component is important to fully understéimelmemory management component and the
experiments conducted in chapter 7.
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2. gbeta

gbeta is a generalization of the programming language Bi§b&ta generalizes BETA in two main areas
namely more expressive abstraction mechanisms, and awowerpent of the run-time flexibility without
compromising the type safety. That gbeta is a generalzai®ETA means that it implements a superset
of BETA so every BETA program is also a gbeta program but intglitds possible to write programs that
exploit the extra features in gbeta not supported in BETA.

One of the extra features of gbeta is the possibility to deabjnetamorphism i.e., it is possible at run-
time to take an existing object and modify its structurelihi$ an instance of a given class. Another extra
feature in gbeta is the possibility to define relations betwelasses and in this way define a constraint
graph of classes. The constraint graph ensures that thig®mme hold implying that one inheritance
operation may give rise to a propagation of type changesiarmadwork of classes.

Since gbeta is an ongoing research project some parts afhihjster may be obsolete. In this chapter we
introduce the language and the entities that a run-timessyssupporting execution of gbeta programs,
must handle. Then a second section describes the gbetadugdéarmat and the special way of addressing
using run-time paths.

2.1. gbeta Entities

Figure 2.1 is a class diagram of the entities of a gbeta enmiamnt. In this section they will be described
shortly in turn. For a more thorough explanation of gbetatiestand syntax see [Ern00] or [Ern99].

0..
Attributelnstance

value — ualification
PatternReference Pattern 1 g 1

1 qualification 2

*

mixin

mainpart1

i 1|
‘ MainPart‘ ‘PredefinedMixin ‘ ‘Partobject 0

dopart 1 attributes

origin

| 1

‘InstructionList‘ ‘ AttributeList ‘ ‘PredefinedPartObject ‘ ‘UserPartObject ‘
‘ Instruction ‘ ‘ Attribute ‘

Figure 2.1.A class diagram of the gbeta entities to be handled by theialirmachine.
Attributel nstance is super class for the classeghj ect, Obj ect -
Ref erence, Pat t er n, andPat t er nRef er ence
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2.1.1. Mixin

A gbeta pattern is divided into mixins. Auixin, in a pattern, describes how to create one of the part
object(s) in an object instance of the pattern.

A pattern consists of several mixins if specialization isdisThe patterm described in the syntax below
consists of three mixins because it is a specialisatiog which again is a specialisation pf So, one
mixin is the difference between a pattern and its supempatie long as only single inheritance is used.
Returning to the example, the substance described in the-paat after the in the definition ofg is the
mixin describing the difference between the patigrnd its superpattenm.

p:(##):
g: p(# a: @integer #);
rq# #);

2.1.2. Pattern

A gbetapattern handles every aspect of structure description. Every tioiestance (i.e., an object) is
created in gbeta it is created according to some gbeta patfegbeta pattern also specifies a run-time
context namely its enclosing part object(s). Two patterith the same syntax can therefore be different
because they have different originsi.e., enclosing pgeais).

Because different patterns can have a different number xihsyitheir size vary.

Syntactically a pattern is described as:

<Name> : <Merge>

Where <Name> is an identifier and<Merge> is a main-part, an identifier, ora & t & ... &
z-like expression. Hers & t is the pattern resulting frompattern mergef the to patterns andt . In
figure 2.2 the patterns andt are merged. The figure also illustrates the concept sulspattepatternu

is asubpatterrof a patterrs if and only if the mixin list ofs can be obtained by removing zero or more
mixins from the mixin list ofu. In the figure the pattera & t is a subpattern of both the pattesrand
the patternt . Correspondingly, a pattemnis asuperpatterrof a patterrs if and only if the mixin list ofs
can be obtained by adding zero or more mixins to the mixirolist.

more general
direction

mixin list

more specific
direction

Figure 2.2 1llustration of pattern mergingy & t ) between the patterrssandt

The merge algorithm can be described as the funetierge(s,t)  which takes two patterns and returns
a pattern merge of them if possible. In the pseudo codaearfje(s,t) in figure 2.3, thdowest(s)
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function returns the most specific mixin of the patternwhich has not yet been used in the merge op-
eration. u is the result of the pattern merge ®fandt . Moving adds in the general end of the resulting
pattern.
merge(s,t) {
while(s not empty or t not empty) {
if(lowest(s) == lowest(t) {
move lowest(s) to u
remove lowest(t)
else if(lowest(t) ¢ s move lowest(t) to u
else if(lowest(s) ¢ t move lowest(s) to u
else give up

}

return u

Figure 2.3..The merge algorithm

Below is an example of a specification of a pattprwith a nested patterméstedEmptyPattern  ):

p: (# nestedEmptyPattern: (# #)
#);

2.1.3. Object

Objectsare instances of patterns. They are described syntagtigah an @

<Names> : @ <Merge>

Where <Names> is a comma-separated list of one or more identifiers. If aginstance of the pattern
(see subsection 2.1.1) is wanted, it is written in gbeta as:

instanceOfPatternR : @r;

An object consists of a number of part objects, one for eactimi its pattern, so an instantiation of the
patternr results in an objeciiistanceOfPatternR ) with three part objects.

2.1.4. Part Object
Part objectsare instances of mixins. A part object consists of a numbattobutes, one for each attribute

in the main-part of its mixin. Because part objects can dardédferent numbers of attributes, different
part objects can have different sizes.

2.1.5. Main-Part

A main-partis the main piece of syntax used to construct gbeta progrimansists of the delimiterg# ,
#) and four optional parts:
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(# <attributes>
enter <evaluation>
do <imperatives>
exit <evaluation>
#)

where <attributes> is a list of attributes each syntactically described as:

<Name> : <Clarifiers> <AttributeDenotation>

The <Clarifiers> can be one or a combination of the reserved characters: ' [,"@d ##. The<Attribute-
Denotation> specifies the qualification of the attribute, i.e., it is agygonstraint on the attribute when one
of the clarifiers”™, T, or ## is used. It is more like an initialisation expressionion-variable attributes
expressed with the ’, @, and (@larifiers.

Theenter-partcan be compared to the initialization part of an object’satarctor in other object oriented
languages or the parameters of a method. It describes how paameters this main-part instantiated
into a method invocation takes when executed, and it alsaeethe semantics of value assignment to an
object instance of this main-part.

The do-part can be compared to the body of a method, i.e., the code amftiadtan of this main-part
executes.

Finally, theexit-partcan be compared to the specification of what is returned bythade It describes
what is returned when a method invocation instance this +parhis executed. The exit-part also defines
the semantics of value extraction from an object instapticassociated with this main-part.

The gbeta compiler compiles main-parts into a list of atid#s containing initialisation byte code instruc-
tions for each attribute and a list of byte code instructioagesponding to the do-part. The enter- and
exit-part are present as byte code instructions in plactibyte code of the program where the main-part
is used.

2.1.6. Pattern and Object References

To make an attribute in a main-part a reference to an objectdharacter is used and to make it a refer-
ence to a pattern, ## is used. For instaradgect _ref is an object reference to an integer object and
pattern _ref is a pattern reference to the pattgrim the following example:

object_ref : “integer;
pattern_ref : ##p;
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2.2. gbeta Byte Code

gbeta byte code differs from other types of byte code likeogec[Nel79], java bytecode [LY97], and
Smalltalk bytecode [GR89], in more than one way. First ofitak not reallybytecode in the sense that
each opcode is a byte. It is more like a high-level human reladascii assembly language. Secondly, it
has got multi-line instructions with block structures thah be nested instead of labels and jumps. Thirdly,
addressing is based on run-time paths.

2.2.1. Byte Code File Format

A gbeta byte code file is identified by its .gbc filename suffig #re contents are built from the following
grammar. We have omitted the actual instructions sincetagr too many to mention, and the point here is
the structure of the file rather than the instructions. Tistrirction will be discussed in the later subsections
2.2.3,2.2.4, and in chapter 5 several of them are descrilmed thoroughly. Line breaks are important for
parsing a gbeta byte code file, but are omitted in the gramoraridrity. <filepath> is a standard Unix
file path and it is only included when the source program has lokvided into more than one file.

<byteCodeFile> <mainPart> *

<mainPart> = 'MainPart(" ' <mainPartild> '"’ <attribute> *'|’ <doPart> ')’
<mainPartld> = '’ ( <filepath> ':’)? <int>
<attribute> = '"’ <nameAndindex> '": ( ' <instruction> *')’

<instruction> <singleLinelnstruction> [I<MultiLinelnstruction>

<doPart> = <instruction> *
<nameAndindex> = <name> '/’ <int>
<name> = [a-z A-Z][a-zA-Z0-9]*
<int> = [0-9]+

Bytecode File Example

An example of a gbeta byte code file (remotelnsertBug.gh fiftee nodist directory of the 0.81 distribu-
tion) is in figure 2.4. We will not explain what the programuetity does — the important thing here is the
structure of the code.
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MainPart("176"
"x/0": (
PUSH-ptn_"object"
ADD-mainpart ‘70 origin
NEW,_ ptn->obj
INSTALL-0bj
)

PUSH-ptn "x/0","p/0"
ADD-mainpart ‘148 origin
NEW, ptn->tmp 1

CALL tmp(1)

RESETFRAME
)
MainPart("70"
"p/0": (
PUSH-ptn_"object"
ADD-mainpart ‘44 origin
INSTALL-ptn
)
|
)

MainPart("44"
|

)
MainPart("148"

INNER O

PUSHI-string "Hello, world!"
stdio/out
RESETFRAME

Figure 2.4.Example of gbc byte code file (remotelnsertBug.ghc from@h@ia distribution)

A byte code file is executed by executing the first gbc-mairtipahe file which is the result of compiling
the outer most gbeta main-part. This involves creating aimmix pattern, and instantiating the pattern
before the do-part is executed.

2.2.2. Run-Time Paths

The gbeta byte code usam-time pathgo access patterns, objects, and part objects in the ghetime
system. Evaluation of a run-time path is always performezbimext of a current-part-object. The abstract
syntax definition for the run-time pathsrtp> , is given in the following:
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<rtp> = "{" <step> (', <step> )*'}
<step> = <out> O<up> O<down> [O<lookup> O<lookupindirect> [<temp>
<out> = '<-’ <int>
<up> = """ <mainPartld>
<down> = v’ <mainPartld>
<lookup> = "’ <nameAndindex> "’
<lookuplndirect> = "’ <nameAndindex> '’
<temp> = 'temp(’ <int> ')’
<mainPartld> = ' ( <filepath> ’:’)? <int>
<nameAndIndex> o= <name> '/’ <int>
<name> = [a-z A-Z][a-zA-Z0-9]*
<in> = [0-9]+

In the following two subsections we will clarify the semanstiof these run-time steps. There are two
fundamental kinds of run-time path traversals. The firstikimhich is used in the instructiohNNER and
ADD-mainpart , consists of steps which start with a step that returns agigect. The following steps
operate on a part object from the previous step and returmapgect either for the next step or the final
result. We call these stepsiut-object-stepand these will be discussed in the following subsubsection.

The other type, which is used by the other instructionsaitij run-time paths, varies slightly in that it
terminates its run-time path traversal with a special liuretstep evaluation. We call such stdpst-steps
and discuss them further in the subsubsection followingotime-object-steps. The steps prior to the last-
step are evaluated like the part-object-steps.

Part-object-steps

out-step (<- <int>) goes to the surrounding part objectint> number of times starting from
current-part-object.

up-step ( “<mainPartid>) searches for the part object witkmainPartid> in the “more general”
direction of the part object list, starting with the currgoart-object.

down-step (v <mainPartld>) is like the up-step but search for the part object is in thererspecific”
direction instead.

lookup-step (" <nameAndindex>") takes the current-part-object and selects the attribatespl at
the given index. This attribute is statically known to be &jeat. The most specific part object of
the that object is selected<fame> is debug info)

lookuplIndirect-step (' <nameAndindex>") chooses the attribute atint> which is statically
known to be an object reference. The most specific part objette referenced object is selected.
If the value of the object reference is NONE, a run-time eisarised and the currently executing
gbeta-thread is killed.

temp-step (temp( <int>)) takes the current frame on the temp stack and returns the spestfic
part object in the object atint> relative to the start of the frame (see figure 2.5).

Last-Steps

In addition to their part-object-step relatives, a lagpstnakes sure an object or a pattern is returned while
no part object is ever returned.

out-step, up-step, and down-step are all like their corresponding part-object-steps, buewh
the final part object has been found, its associated objpatked.
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temp stack

frame |
temp(3)
temp(2)
temp(1) growing direction
old-frame-index -

Figure 2.5..The temp-step picksenp( <int>) in the temp stack with the shown frame

lookup-step returns the value of the attribute. This is either an object pattern.
lookuplndirect-step returns the value of the object reference or pattern refaréound.

temp-step  returns the object akint> relative to the start of the frame (see figure 2.5).

To conclude our discussion about run time paths, we will gn@explained examples of these from a real
gbeta byte code file (useObserver.gbc from the nodist dirgctf the 0.81 distribution).

Run-Time Path Example 1

PUSH-ptn  {<-1, "textAndWindow.gb:280,"refresh/0" }
Some Object
1| via mixin -
|-»1 0] refresh mainPart
index O f 1| maximize id=textAndWindow.gh:280
T huw g
fo
surrounding
part object [Y~L via mixin
current
part object

Figure 2.6.Evaluation sequence of the run-time path in example 1. Theime steps are
shown with dashed arrows



2.2. gbeta Byte Code 13

The first step<-1 is an out-step from the current part object to the surroupgiart object. The next
step ‘textAndWindow.gb:280 is an up-step from the part object found in the previous sfHpe
part object with<mainPartld> , textAndWindow.gh:280  , is found in the more general direction. The
final step,"refresh/0" , is a lookup-step which identifies the attribute at index himpart object from
the previous step. Finally, the pattern is returned to t&rurction (which should push the pattern onto the
pattern-stack). The evaluation is shown in figure 2.6.

Run-Time Path Example 2

POP-objref ~ {tmp(1), "“useObserver.gh:332,'theSubject/0’ }

The first steptmp(1) , takes the object at position 1 on the temp-stack and takemtist specific part

object in that object. The second staséObserver.gh:332 , searches upwards from the part object
for a part object with <mainPartld> useObserver.gh:332 . In that part object index 0 contains
an object reference which is identified with the final rundistep,theSubject/0’ . The instruction

finally pops an object reference, type-checks it, and itsstiain the found location. In the future the type
check will be a separate instructioh.

2.2.3. Single-Line Instructions

The most common type of instruction is the single-line instion, which is characterized by only taking
one line divided into the name of the instruction and zero orevarguments. The complexity of single-line
instructions varies greatly from simpRUSHinstructions to the more compléAERGHEnstructions.

TheCALL <rtp > instructionis an example of a single-line instruction wathun-time path as argument.
It evaluates the run-time path and executes the objectradatdrom this evaluation.

2.2.4. Multi-Line Instructions

Multi-Line instructions are actually high level structsrehich eliminate the need for explicit jumps and
labels. They are used both alone and nested. To give an egariplmulti-line instruction we present the
generallf  instruction. The grammar for thgenerallf  instruction is as follows:

<genlf> = ’'generallf( ' <type> <evaluation> <alternative> * <elsePart> ')’
<alternative> ::=  (’|case ' <evaluation> )+’|then ' <imperatives>
<elsePart> = ’|else ' <imperatives>

<instruction> *
<imperatives> <instruction> *
<instruction> <singleLinelnstruction> [I<MultiLinelnstruction>
<type> = ’'bool ' Ochar ' Ointeger ' Oreal ' Oobject-reference g
'pattern-reference " ONONE

<evaluation>

Thegenerallf  instruction is evaluated by evaluating the firstvaluation> and obtaining a valu¥ as
a result. Then eackalternative> is considered in the order they appear by evaluating tkewaluation>
following ’|case ' and comparing their result witVv. If the result is equal t&/, the <imperatives>
following '|then ' are executed and the rest of thalternative> s are ignored. If no<alternative> is
chosen, the<imperatives> following '|else ' are executed. An example ofgenerallf  instruction,
taken from the file 026.gbc, again in the nodist directorghewn in figure 2.7.

1Since January 200CHKQUAOBJ and CHKQUAPTN have been added to the set of gbeta byte codes. These iitstsuate
inserted when the type safety of the assignment cannot bargead
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generallf(integer
PUSH-integer  {"N/0" }
RESETFRAME

|case
PUSHI-integer 2
RESETFRAME

[then

lelse

RESETFRAME

Figure 2.7.:An example of the general if multi-line instruction



3. Virtual Machine Architectures

A virtual machineis an abstract computer implemented in software [Ven96gxé#cutes a well-defined
byte code format consisting of byte code instructions tlaatlze compared to the machine instructions of
a hardware CPU.

The great advantage of a virtual machine and byte codes igdhiability achieved. Because byte codes
are machine independent, they can be compiled on one ptathod interpreted on another platform.
But if too many different byte code formats are used by défgrvirtual machines on the same system
intercommunication between these systems may be a probferther benefit of the virtual machine

approach is that it is easier to implement and debug a systémavweompiler that compiles to byte codes
executed by a virtual machine than a compiler compiling tiveacode.

Virtual machine architectures is a large research topicthntbugh investigation and presentation of the
numerous different kinds of virtual machines is out of thep of this thesis. Instead the purpose of
this chapter is to give an overview of the three most commamesyof architectures. Common for all
virtual machines is that they execute the byte codes prationgen compiler, but different approaches can
be taken. This chapter will describe three different arttiires, namely instruction interpretation, just in
time compilation, and dynamic compilation. Finally, th&elient architectures are compared with respect
to ease of implementation and efficiency.

15
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3.1. Interpreting Byte Codes

An interpreting virtual machinevorks the way depicted in figure 3.1. The source code is cadpd byte
codes by a separate compiler. This is given to the virtualhimacfor interpretation.

source
code

Compiler

Figure 3.1.The data flow in a virtual machine interpreting byte codes

In the virtual machine a stack and virtual registers can he der storage of method parameters, local
variables, intermediate results of calculations, andrretalues amongst other things. A heap can be used
to store objects, and another area in the addressable memotye used to store instruction byte codes —
in the Java virtual machine, the area with instruction bytées is called the method area and the next byte
code to execute is pointed to by a program counter [Eng99].

Besides interpreting the byte codes, a typical virtual nraelean also handle thread synchronization and
garbage collection.

A byte code typically consists of a one byte opcode identifythe operation to be performed, and zero or
more bytes of operands used in the operation. [Ven96, Nel79]

3.2. Justin Time Compilation

Instead of just interpreting the byte code, a virtual maehiith ajust in time compileJIT compiler)
compiles byte codes of a method to native code the first timesthad is called (see figure 3.2). The
native code is cached and each time a method is called itgenatide is executed on the target CPU
[YMP 199, Sag00].

The main goal of a JIT compiler is to generate efficient nativée quickly and one of the tasks connected
to this is to make efficient use of the registers of the targ®@CBut it is important to clarify here that the
code generation must first and foremost be quick and thaffibeacy goal therefore may be subordinated.

Constructing a JIT compiler is different, compared to thestauction of an ordinary compiler. Compilation

is done at run-time because aspects such as security cabehaken into account and especially because
the portability of byte-codes is then maintained [CF8F]. Because compilation is done at run-time, com-
pilation speed becomes crucial. Another aspect that has taken care of is interaction with the virtual
machine. The virtual machine should for instance be ableedbage collection even though the methods
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source
code

i

Compiler

byte
code

i

Byte code
compiler

! |
! |
| |
! l
! l
| |
! |
| |
| 1
| |
| native !
} code !
! |
! |
| |
! l
! l
| |
! |
|

|

Native code
cache

Figure 3.2..The data flow of a just in time compiling virtual machine

have been compiled to native code using real registersadsiévirtual registers and a stack. Thread syn-
chronization and exception handling is also performed ierirction with the virtual machine.[CFN87]

The performance benefit of virtual machines with JIT compit®mpared to interpreting virtual machines
depends on the type of application. When looking at Javaialinnachines, experiments show that on
average 68 % of the execution time in ordinary Java virtuathirees is used interpreting the Java byte
code [CFM"97, BGO0O0]. This means that it is only about two thirds of theaxtion time that is optimized
when using a JIT compiler. Benchmark tests modeling diffetgpes of Java applications show speedups
compared to interpretation of a factor between 2.1 and 9FM€97].

In rare cases a virtual machine with a JIT compiler can be stdivan an interpreting virtual machine. If
a method is only executed rarely, it may take longer to coeiptnd run the native code than interpreting
its byte code directly. This observation is the motivationdynamic compilation.

Instead of compiling byte codes to native code, it would bgsjile with gbeta byte code to compile it to
a lower level byte code format. This could eliminate muiiel instructions and optimize run-time paths
yielding faster execution.

3.3. Dynamic Compilation

A virtual machine with alynamic compilecombines the best of interpreters and JIT compilers. It hoogi
the interpreter’'s execution of byte codes and decides winiethods to compile into native code. Methods
are only compiled into native code if it looks like this woulthke the application run faster, so methods
are only compiled when it becomes evident that they are &ratiyused.

The architecture of a virtual machine with a dynamic compilan be seen in figure 3.3. The profiler
monitors the byte code interpreter and notifies the dynamiopiler if a method should be compiled to
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Figure 3.3..The components and data flow in a virtual machine with a dyna@ammpiler

native code. The dynamic compiler saves the native code adthad in the native code cache to ensure
that it can be used instead of the byte codes. The control lnbddundles control of execution between the
other modules.

One of the things that makes a virtual machine with a dynamiogiler smart is the following. Because

the interpreter is always able to execute the byte code, yhardic compiler can optimize the compiled

code to only include a normal execution case [Arm98]. Thathisgs like exception handling may not be
included in the native code. If an exception or other raraghioccur, the virtual machine can always go
back to interpreting the byte code.

The performance of dynamic compiler is generally bettenthath an interpreting virtual machine and a
virtual machine with a JIT compiler [Arm98].

3.4. Architecture Comparison

When comparing the three architectures with respect toémphtation complexity, it is obvious that in-
struction interpretation seems to be the easiest archite¢d implement. Both just in time compilation
and dynamic compilation seem somewhat more complex to imgié because a compiler must be imple-
mented, but with the profiler added to the dynamic compifaticchitecture, it must be the most complex
to implement.

As mentioned in the previous section the dynamic compifedichitecture is the most efficient closely fol-
lowed by the just in time compilation architecture. Althdupe interpretation architecture is the simplest
to implement, it is also the architecture that in generddgé¢he least efficient execution.

It is possible to find articles that both agree and disagrek thie above performance postulate. In the
JIT community they find dynamic compilation slower than edfit JITs [YMPr99] and in the HotSpot-
dynamic compilation community they say the opposite [Arin98



4. Memory Management

The purpose of automatic memory management is to make gadmigction possible. This means that
the programmer does not have the burden of explicit memaajla=ation, which can cause problems like
memory leaks and dangling pointers to deallocated memolso,/explicit deallocation is complex and
error prone e.g., with complex data structures it may bediiffito place the responsibility of deallocation
or to determine when an object is no longer in use.

An automatic memory management system takes care of daiiganemory which is not in use by the

program any more. The problem of freeing these memory setmariomatically is known as garbage
collection, and several algorithms have been proposedhiertask, each with its own advantages and
disadvantages.

In section 4.1 we establish some terminology and discussipertant properties of garbage collection
algorithms, and in section 4.2 we take a look at the most contynesed algorithms and put them in
relation to these properties where appropriate.

4.1. Garbage Collection Algorithm Properties and Concepts

Common to most garbage collection algorithms (except egfeg-counting) is that they need to know the
objects in theroot set The root set is the set of variables in processor registarghe stack(s), and in
global variables, all of which contain references to the mgnmarea managed by the memory manager.
This memory area is also known as theap-spacer just theheap

When memory, previously consumed by one or more objects aidenavailable for future allocations or
freed, we say that it iszclaimedor garbage collected

The set osemantically live objectare the objects which will be used in future execution. Big @dompu-
tationally undecidable to determine this set and in theexdrif garbage collection, the setlofe objects

is the set of objects that have been allocated which the érgcprogram may potentially access again.
This set can be found as the transitive referential clostitbeoroot set [App98]. Intuitively this is the set
of objects that can be reached by following references fitoaroot set.

Correspondingly, the set @emantically dead objectse objects that will not be used in future execution
and this set is of course undecidable too. Therefore in gbonfeyarbage collection, the set déad objects
contains objects which have been allocated but that are ne tive, i.e., not reachable by following
references from the root set. The really important propisrthhat the set of dead objects is a subset of the
set of semantically dead objects, because this means tham@afely reclaim the set of dead objects.

When a garbage collectscavengethe heap-space, it identifies live objects and makes suse thigjects
are not reclaimed while everything that was not live is rewkd.

The execution of a program typically involves changes todghaph of live objects. When discussing
garbage collection, we say that these changes are perfdiyntbeémutator.
A correct garbage collector satisfies the following projestt

Never collects live objectsNo live objects will ever be collected.

19
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Collects dead objectsAll dead objects will be garbage collected eventually.

Maintains object graph If there is a reference in objeof to objecto;, the mutator must always perceive
the reference as such (unless it changes it itself). Thisldhwold for all references in the object
graph. That is, the work of the garbage collector should arsparent to the mutator even if they
run concurrently.

The rest of this section contains some important propediggmrbage collection algorithms, and advan-
tages/disadvantages to keep in mind when studying gartmdigetion algorithms. It is primarily based on

a talk given by Lars Bak, who is a co-inventor of the HotSptdl machine at Sun Microsystems, Inc.
[BGOO].

4.1.1. Accurate vs. Conservative

An accurate garbage collectdtnows where in memory it has references and knows the roaifsée
program, so it has accurate knowledge of the object graphebbjects. An advantage of accurate garbage
collection is that the garbage collector knows what vagaldre references, so non-pointer data like e.g.,
an integer cannot disguise itself as a pointer and thus keeybject artificially alive creating a memory
leak. Another advantage of knowing the references is thggictdcan be moved. This allows compaction
of the heap so heap fragmentation can be avoided. The comsegjof no fragmentation is that memory
allocation can usually be performed in constant time.

A conservative garbage collectawn the other hand, is a garbage collector that does a catserguess

at what objects are live. The reason for taking a consemafiress can be that the language in which the
program is written has a liberal memory-access/type-syst@licy like C/C++. Another reason could be,
that the garbage collection algorithm is trying to be smgrtibing approximations in determining the live
objects.

Because the conservative garbage collector must not taligclive objects, conservative garbage collec-
tion is sometimes forced to leave objects in memory that at@atually live. The reason is that conserva-
tive garbage collectors cannot tell if a word in memory segglyi pointing to an object is in fact a pointer
or an integer instead and therefore the object along withyélviag it can reach is considered live.

Furthermore, in the case where not all references are knohbjacts cannot be moved, at least not when
direct pointers are used, and therefore the heap cannotbpatded so the heap may suffer from fragmen-
tation. For this reason, the memory manager will have to mairsome data structure indicating where
in the heap new objects can be allocated. Allocation of mgrfarnew objects by searching this data
structure is typically slower than constant time and in #ddithere will in time be more small memory
blocks that are useless and hard to keep track of.

In general, the conservative garbage collection approachld be avoided if the programming language
allows it because of these serious disadvantages.

4.1.2. Handle Based vs. Handleless

In handle based garbage collectasbjects must be accessed through an object handle. The édhéadb
handles is that when moving objects only one pointer has tthbaged because other objects point to the
handle instead of the object directly. Thus, heap compaa#m be used, but handles use extra memory
and the indirection leads to lower performance. Anotheaidsntage of handles is that if the data-structure
containing the object handles has a fixed size, it limits i@ humber of objects in the heap. This was a
problem with the first generations of Smalltalk implemeiatas [CWB86].

In handleless garbage collectoreferences point directly to objects. This leads to highefggmance
but it is harder to move objects because all objects reféngre moved object must have their pointers
updated.
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4.1.3. Partial vs. Full

A partial garbage collectoonly scavenges a fragment of the heap at each garbage moile€he reason
for only doing partial garbage collection is that pause snrgroduced by the garbage collector can be
reduced this way. This is very important in applicationshwigal time constraints or human interaction.
There are other penalties to be paid with partial garbadedadn, however. Often a change to a reference
induces additional overhead, because the partial garbaitgcior has to have some extra information
on which objects are referenced from where, in order to age@hning the entire heap during garbage
collection. In addition [SaCLOQ] points out that generatibgarbage collection often has lower efficiency
when the number of generations increase due to smallerctedierea and write-barrier overhead.

Full garbage collectorscavenge the entire heap at each garbage collection. Thisacese long pauses in
program execution. The pauses are proportional to the heapisthe number of live objects depending on
the chosen garbage collection algorithm. Due to their efficy in collecting all garbage and low mutator
overhead during execution, full garbage collectors mayreéepred in non-interactive applications.

4.1.4. Cooperative vs. Concurrent

The execution of the program (the mutator) is stoppeddn@perative garbage collectamplementation.
The advantage of this approach is that the object graph zfrauring garbage collection but since the
program execution is stopped, pauses in the execution edliio

A concurrent garbage collectorollects garbage without stopping the program executiolne dbvious
advantage of this approach is that no pauses due to garb#igetiom occur. But making the garbage
collector and the mutator run concurrently is complex beeatie object graph is mutated during garbage
collection and furthermore expensive synchronizatioreisded.

4.1.5. Single Threaded vs. Multi Threaded

A single threaded garbage collectoollects garbage using only one thread. It is the most simppEoach
since no synchronization is needed between garbage ¢otidbreads. The problem with single threaded
garbage collectors is that they do not scale to multi pramessshitectures. The reason is that the garbage
collector thread can only use one processor so especidlig i€ooperative approach is chosen resources
are wasted. Therefore the more comptelti threaded garbage collecticapproach can be used on larger
systems where the garbage collection is handled by sevaspkcating threads.

4.2. Garbage Collection Algorithms

This section will give an overview of common types of garbagkection algorithms.

4.2.1. Reference Count

A reference counting garbage collectstores a reference count in each object indicating how mefy r
erences are pointing to the object. If the reference couminobbject is zero, the object can be garbage
collected, and the objects referenced from it will, as a egngnce, have their reference count decremented.
To ensure that this algorithm works, the reference count ineisipdated each time a reference is made to
or removed from an object.

An advantage of this algorithm is that it is simple. Anothdvantage is that it can be made incremental
since this requires a check for a reference count value oftér decrementing. This also means that
garbage can be reclaimed early i.e., there is no need to wathé next scavenge before garbage will
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be reclaimed. In more real-time oriented applications éarecqueue has to handle memory reclamation
when the reference count of one object reaches zero sinariltl cesult in a lot other objects getting
their reference count decremented to zero too. It may stilalproblem if an object, which has a lot of
references, is to be reclaimed, though, because handimgittgle object may take too long in a response
time critical application.

A disadvantage of the algorithm is that it cannot reclaimlicygarbage because reference counts are only
a conservative approximation of liveliness. If for instare dead objeab; has a reference to a dead
objectop ando, has a reference back ta their reference counts will never reach zero. For this reaso
cyclic structures will have to be broken explicitly if theyeato be reclaimed. Another disadvantage of this
algorithm is the overhead associated with maintaining ¢fierence counts. Finally, the interface between
the mutator and the collector is complicated by the need tmtaia updated reference count values —
especially in parallel environments.

In practice the disadvantages of the reference count appmmaweighs the advantages and therefore it is
rarely used [App98, JL96, Wil92].

4.2.2. Mark and Sweep

Marking an objectneans setting a bit somewhere in its header, so that it iDabwo the garbage collector
that this object has been processed. The idea of a basik and sweep garbage collectisrthat after
marking objects reachable from the root set, all unmarkédat® must be dead. The algorithm is divided
into two phases the mark phase and the sweep phase. mnahephasall reachable objects are marked
using for instance a depth-first traversal from the root $besweep phastihnen scans the heap-space from
one end to the other reclaiming all unmarked objects and dkingaall marked objects in order to make
the heap ready for the next garbage collection. In the basisian this algorithm needs to interrupt the
execution during the mark and sweep phases.

Advantages of this algorithm are that it is simple and easypnflement, it is capable of reclaiming cyclic
structures, and there is no extra overhead associated wiithep operations during execution. Also, it can
be implemented as a conservative collector which expasdséa of application.

Disadvantages are that, like all non-incremental garbatieation algorithms, it can cause long pauses in
the program execution, because the sweeping phase hag tdl\dbjects in the heap, dead or live. Finally,
it must manage free space in a fragmented heap, causing lugéhead for allocation, at least if handles
are to be avoided. [App98, JL96]

Themark and compact algorithinies to overcome the fragmented heap problem by compaittanigeap in
the sweep/compact phase by moving live objects to a contmbimck at the beginning of the heap. Since
objects are now moved, this algorithm needs to have poimewledge i.e., be accurate. In addition extra
passes are needed to calculate the new positions of objetispaate the pointers in objects accordingly,
which may add significant overhead [Wil92].

4.2.3. Copy Collection

Thecopy collector algorithnworks by dividing the heap into two semi spaces, ftben-spaceand theto-
space Allocation of new objects is done in a stack based manndrarfrom-space. When the from-space
is depleted, the garbage collection takes place. The gartatgction process begins with the root set and
copies all the live objects in a breadth-first traversal etthspace. All the live objects are then copied to
the to-space, and pointers in the objects, on the stacksnahd registers are updated accordingly. When
all live objects have been copied, the rest is garbage. Shoftén referred to as @heney scanAlthough
the original Cheney scan algorithm uses a breadth-firsgiogmlgorithm [App98] it is also possible to do
a depth-first-copying instead yielding better locality efarence.

As this algorithm copies all live objects, it works most &ffiatly when the garbage/live objects ratio is
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high because the copy collector only spends time on liveatdjend with a high garbage/live object ratio
a large heap can be collected with a low effort. One way toeaghthis is not to garbage collect very
often because many objects die young [LH83]. The probler thits approach is that it requires a lot of
memory. Another problem with the copying algorithm is thaiwimg large objects around in memory is
expensive. A separate non-copying object space for largeetsbcan be used for reducing this overhead.
[Wil92, UJ8s8, App9s]

4.2.4. Generational Collection

Generational garbage collectors exploit the empiricaleoketion that in most programs there tends to
be a high frequency of short lived objects [LH83]; after aggiwobject has survived a number of garbage
collections, it tends to survive for a long time. In other @sthe probability of death for an object decreases
with its age.

The aim of generational collectors is to concentrate thiectibn effort on the objects that are most likely
to be garbage, which, according to the above observatiertharyoung objects.

A generational garbage collectadivides the heap into generatio@®@, Gi,...Gn. Gp contains objects
younger tharG;, which contains objects younger thé&n etc. G, is sometimes referred to as theature
object spaceThe age of an object is typically measured in how many time®bject has been scavenged.
Garbage collection is done more often the younger the géaerss, i.e., more often irGg than inGy
than inG, etc. The younger generations are typically smaller tharotder ones and can be scavenged
without scavenging the older generations. This means #ramtional garbage collectors do not need to
scavenge the whole heap each time and pause times can thedulsed, which is an important property in
interactive systems.

The actual garbage collection algorithm in each generationvary, but complexity increases if different
algorithms are used. It is common to use a copy collectorénytiung generation since this algorithm is
efficient when the garbage/live object ratio is high [App98]

A disadvantage of generational collection is that handijegerations and especially moving objects be-
tween generations increases implementation complexiyp98].

Intergenerational References

A problem with having more than one generation is that okj&cim one generation can have a reference
to objects in other generations implying that when garbadiecting a specific generation, it is necessary
to know which objects from other generations are referepncihjects in the generation to be garbage
collected. One solution to this is to scan all generatiomh ¢ime a specific generation is to be scavenged
but this is a great overhead and it also somewhat defeatatipege of a generational garbage collector.

A common solution, to this problem, is to somehow remembieremces in other generations to the spe-
cific generation. Awrite barrier can be used to trap pointer modifications and use these poiasea
pseudo root set when the generation is collected.

Furthermore, itis common practice to only remember refeesrirom older to younger generations in order
to save memory and time. The effect of this is that a generaiimnot be scavenged without scavenging
all younger generations at the same time. The positive sadéfss are that it is possible to scavenge more
effectively when a larger chunk of the heap is collected @egand older generations are scavenged much
less frequently. The negative side is that when such a sgavisrperformed it is very likely that it will
take more time than just scavenging the younger genergpieri@ps causing a noticeable interruption in
an interactive system.

At least two ways of tracking intergenerational referentage been proposed: card marking and remem-
bered sets [Wil92, HH93]Card markingdivides the heap into cards of fixed size. For each such card
there is a bit or byte (depending on implementation) in a caacking table that will be set unconditionally
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each time a reference is modified in the card. When e.g., theaggeneration is scavenged, all marked
cards will have to be scanned for references. If scanningd reareals no intergenerational references,
the card mark can be cleared. It is important to find the riganglarity for the cards; if the cards are
too large, a single reference can cause significant ovenvedd too small cards will require too much
memory for the card-marking array. Hardware pages have baggested for implementation and rejected
because stock hardware typically uses too large pages andrthal memory system has to be modified
since operating systems typically do not provide factitier examining the dirty bits of pages [Wil94]. A
study by [HMS92] concludes that the best card size on aveasa2fet bytes.

Remembered sets the other hand use a more exact representation for renmgrghehich object an
object is referenced from. The advantage of this is that aflescanning is eliminated because either the
referencing pointer is remembered directly or only the mexfiging object has to be scanned. The major
drawback to this approach is that it can consume a lot of mgraod uses more time during execution.
The actual scavenge is typically faster than a scavengg uaid marking which is desirable if eliminating
pauses is of primary concern. Popular objects generate rargembered sets and may require special
handling such as keeping the object in a place where it is wotoh

Hybrid approaches have been implemented in [HH93, Hud0&jtebine the precision of remembered sets
with the run-time efficiency of card marking. At run-time damarking is used but before each scavenge
the marked cards are summarized into remembered sets ugadiador the scavenge. A more dynamic

hybrid able to switch between pure card marking and card mgrombined with remembered sets is also

suggested in [HH93] to yield better performance.

4.2.5. The Train Algorithm

The train algorithmis an example of an incremental garbage collection algoritincremental garbage
collectors try to minimize the pauses introduced by garlzadjlection. The idea is to only garbage collect
a bounded part of the heap each time the garbage collectan.iS his makes the garbage collection algo-
rithms more complex but systems with incremental garbafiea@mn provide more usable applications in
many cases.

The basic idea of the train algorithm is to cluster relatfénencing objects into the same cars or trains
(see figure 4.1) and check if there are any references to dfispear or train. If there are not, the objects
in the car or train can be garbage collected, and the wholerdaain can be reclaimed.

From train
‘F‘rom car
Train 0 | caro1| | car02]
Train1 || car10| | car11]
Train2 || car20]| | car21| | car22] | car23]

Figure 4.1.The organization of the heap using the train algorithm

To maintain a total ordering of cars each train and car isrgv@umber (see figure 4.1). The oldest of the
trains i.e., the train with the lowest number is called ftoen train. Thefrom caris the oldest car in the
from train i.e., the car with the lowest number in the fromrira

The train algorithm, as defined as a mature generation ¢otlet[GS93], is presented below:

1. First, check to see whether there are external referentethe from train. (This is done by inspect-
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ing the train roots and the remembered set associated vettnaim being collected.) If this is not the
case, then free the entire from train.

2. Otherwise, start cleaning up the from car as follows:

a) Move objects referenced from other trains (as found irfribra car’s remembered set) to those
trains, and move objects referenced from outside maturecblBpace to any train except the
from train, perhaps an entirely new one.

b) Also, move objects being promoted from younger genematio mature object space into any
train, except the from train.

3. Then evacuate the followers (i.e., objects referenceztty or indirectly by the moved objects) in
the from car by scanning over the objects moved in the prevétep and evacuating, in typical copy
collector style, all reachable objects to the trains fromchtihey are now referenced.

4. At this point, the from car may still contain objects refieced from the outside (namely those that
are only reachable from other cars of the from train). Mowsthobjects into the last car of the from
train, appending a new car should the train run full. Thee fiee space used for holding the from
car.

In [GS93] certain points are further clarified. The most imtpat is that to increase locality of reference
when moving objects referenced from other trains and tledlimdvers the algorithm must try to move them

to the car from where they were referenced or else the traim fivhere they were referenced. It is also
proposed that to increase locality of reference, the phdsravobjects referenced from other trains (2.a)
are moved could be intertwined with evacuating the follav@). The reason is that the probability of the
destination car being able to hold the followers of an objected in phase (2.a) is increased.

How the Train Algorithm Works

To explain the train algorithm in more detail a little exam|d presented. To make the example simple,
cars can only contain three objects.

Root

Car 0 Carl

olJ‘oz 03 04 | 05 | 06

Figure 4.2.The initial situation

Train 0

The initial situation can be seen in figure 4.2. There aregtlive objects, namely the objeats, 0,, and
07. The rest of the objects are dead and therefore the traimitiigogarbage collector will collect them.

During the first garbage collection both the from train arahircar are referenced from outside and there-
fore the from car is scavenged. First, objects from othensrare moved to the car from where they are
referenced, in this case objamtis moved to car 0 in train 1. Then followers of objegtare evacuated and
therefore objecb, is moved to car 0 in train 1. Finally, objects referenced fiithin the from train are
moved to the end of the from train allocating a new car if tre Gar in from train is full. This results in
the addition of a new car (car 2) to the from train and the maemiof objecios to this car. The resulting
heap can be seen in figure 4.3.
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Carl Car 2

Train 0 04 | 05 | 06 OE ‘ ‘
|
]

Train 1

Figure 4.3..The heap after the first garbage collection

Root

Car0

Train 1 o7 | 01 | o2

Figure 4.4..The heap after the second garbage collection

The second garbage collection results in the from traindeailected because it has no external references
(see figure 4.4).

The example gives insight into how the algorithm works, lmre argumentation is needed to clarify that
the algorithm will collect large cyclic garbage structurtiss easy to see that if a large garbage structure is
contained entirely within a train it will be collected. Asgtlirain is processed, all objects referenced from
other trains or from the root will be evacuated. Garbage ®itler be directly collected or moved to the
end of the train and eventually all externally referencejctis and their followers will have been moved
out of the train leading to the whole train being collected.ifSt is the case that large garbage structures
always end up entirely within one train they will be garbagbected. This is the case since we only move
objects to trains holding references to them and eventaajigrbage structure spanning several trains will
end up in the highest numbered train of which it was initizlfyrt.

The advantages of the train algorithm are that it is incremlere., non-disruptive, it generates a high
locality of reference i.e., objects referencing each otlrerplaced physically close. A disadvantage of the
algorithm is that it seems more complex to implement tharother mentioned algorithms.
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In [IPO1] we documented the design and implementation obéopype virtual machine able to execute a
limited number of gbeta byte code instructions. The mainexa@ment of this work was an implementation
of the gbeta entities, such as patterns, mixins and parctshjerhich were necessary to execute gbeta
programs. In the evaluation of this implementation we it a number of weak points which prevented
this virtual machine from using our memory management camept

The main problem with this implementation was that our etiecunodel prevented us from having well
defined safe points. 8afe poinis a point during the execution of the program where itis $af#o copying
collection, i.e., after copying garbage collection at a&gadint, the virtual machine will be able to continue
executing without problems. The used execution modeleddle.execute -model, usedxecute()
methods orDbjects , PartObjects  andInstructions . A garbage collection during execution
using this model could imply that tHé++ run-time system got invalid this-pointers on its execustack
because for instance invoked part objects could have begradrthue to garbage collection. We previously
referred to this problem as thkis-problem

In [IPO1] we proposed that using a more flat execution modelccsolve the problem. In thigat execution
modela loop continues to execute instructions (one at a time)gusiswitch statement to decode the next
instruction to be executed. In essence this model ensua¢sithfragile data, e.g., this-pointers, are left
on theC++ execution stack between the execution of instructions. ifibéa behind this model is further
explained in section 5.2.

This chapter documents the design and implementation oetaghrtual machine using a flat execution
model able to execute a majority of the existing gbeta bytedostructions. But first we recapitulate the
architecture of this virtual machine by reviewing somelsiig changed versions of the class diagrams in
[IPO1] (a detailed design document, describing the desigiedfirst virtual machine, is presentin chapter
6 of [IPO1]). As can be seen in figure 5.1, the main class dradras not changed much. The main change
is that theThread class has got two new stacks and a program couptegfamCounter ) attribute.
This attribute points to the next instruction to be execuiedf the Thread is currently executing an
instruction, it points to the instruction being executets Ithe responsibility of the instruction to change
the program counter, which makes it easy to make jumps (dimdtenloops if one forgets to update the
program counter).

Also, the relations between the gbeta entities, used byitheamachine, has not changed much as can be
seen in figure 2.1. The main change in these classes is thakéleaite()  andinitAttributes()

methods ofObject andPartObject have been removed, and methods to get the first instructsza u
when executing or initializing, have been added instead.

The purpose of this virtual machine is to enable experimantavith our memory management component.
Therefore we have decided to implement enough instructmaliow execution of simple gbeta programs.

This implied that we omitted instructions supporting réfi@is and concurrency. Besides that the rather
complexPOP-ptn, _SPECIALIZE-obj ,whichincludes an operation similar to thecome: message

in Smalltalk [SUH86], is not supported; it may easily be alea by not using certain pattern reference
assignments likal##->x2## in the gbeta programs being executed.

The source of the virtual machine component is placed invthelirectory of the CD-ROM. A few dis-
crepancies exists between the this documentation and thalaource code. One of them is that the
ByteCodeLoader class is callednstructionParser in the source code.

27
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Scheduler ByteCodeLoader

threadList
predefPtr
mainPartList

start() parse()
addNewThread() 1
getMainPart()

T BT L
Thread

intStack MainPart Attribute
boolStack

charStack

realStack

stringStack
objectStack
patternStack

tmpStack
currentPartObjectStack
executionStack
programCounter

state

signal

mainObject
myScheduler

Object L| Instruction

PartObject

run()
sendSignal()
getState()

Figure 5.1..The main class diagram of the virtual machine. The cladddsnPart, Ob-
j ect, Part Obj ect, I nstruction,andAttri but e is included to show
the connections between the main class diagram and the gin¢itst class dia-
gram (see figure 2.1)
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*

0
Attributelnstance

qualification

PatternReference

Pattern

1 qualification 2

mixin

mainpart:L
1 1|
‘ MainPart‘ ‘PredefinedMixin ‘ ‘Partobject o

dopart 1 attributes
1 | | 1
‘InstructionList‘ ‘ AttributeList ‘ ‘PredefinedPartObjeCt ‘ ‘UserPartObject ‘

origin

0.*
‘ Attribute ‘ 1 RunTimeStepList‘ % UpStep ‘
0.* 1 4 DownStep ‘
| withType | [ Instruction | | wRTP 0 1 ousep |
1 RuntimeStep
4 TempStep ‘
‘ AddOpPlus ‘ ‘ ChkNone ‘ ‘ Call ‘ 4 LookupStep ‘
|

4 IndirectLookupStep

Figure 5.2..The class diagram of the gbeta entities used by the virtughina. Three exam-
ples of instruction classes are presented in the lower l&fter. Instruction sub-
classes can inherit from zero or more of the super cla¥$8& andW t hType
which holds run time paths and type information functiotyakespectively. “..”
indicates that there are several instructions of the giwgret
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5.1. Thread - Scheduler Interface

TheScheduler - Thread interface is "two-sided”, i.e., thBcheduler invokes methods ofhread
andThread invokes a method oScheduler . This is because we have made the claskeduler
have two purposes:

1. Schedule and sign@hread(s) to obtain safe points.

2. SupporfThread(s) in:

e Getting a mainpart given a mainpart id.

e Holding a pointer to the outer-most part object (called pfegart object to ensure that it will
not get garbage collected.

In figure 5.4 a sequence diagram explains how3hkeduler schedules and signalhread(s) , and
figure 5.3 illustrates howhread usesScheduler to lookupMainPart instances.

Scheduler

getMainPart(mainPart|D)

An addMainPart Searches the array of mainparts
instruction must and returns MainPart object with
get the MainPart mainPartID if possible, otherwise null

from Scheduler

Figure 5.3.Thr ead - Schedul er interaction

In figure 5.3 theThread is executing arAddMainPart instruction with a main-part id as one of its
arguments. To add a mixin, referring to the wanted main;garthe pattern on top of the pattern stack,

theThread invokesgetMainPart(mainPartld) on itsScheduler to get a reference to the this
main-part.
—

Scheduler is signalled
when the memory prepareForGC() sendSignal(GC_STOP)

manager wants to
do garbage collection
To prepare for GC ~
Scheduler signals The signal of Thread is set to
the Thread to stop GC_STOP and after the current
intruction has finished Thread
will get the state GC_STOPPED

Figure 5.4..Schedul er - Thr ead interaction. The memory management component is
added to illustrate that th&chedul er must be signaled, when a garbage col-
lection is necessary when introductory space is filled

When a safe-pointis needed the memory management compigieals theScheduler  usingprepare-
ForGC() . When this method is invoked on tiszheduler it sends &5CSTOPsignal to all its threads
(in our case only one) usirgendSignal(signal) . Between each instruction tfidnread processes
signals. It reacts to &CSTOPsignal by changing its state ®@CSTOPPEDBesidegprepareForGC()

the Scheduler invokesrun() to start theThread , and restart it after a garbage collection. To restart
theThread theScheduler also sends RESUMEignal, usingsendSignal() ,totheThread .
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5.2. Obtaining Safe Points

A set of well defined safe points is required during executiomake copying garbage collection possible.
It is only safe to do copying garbage collection in our cohtgken it can be guaranteed that Ge+
run-time systems has no pointers to objects which might getanh during garbage collection.

An i-fetch loopis the classic loop used in an interpreter or CPU to executeuiations. The i-fetch loop
fetches the next instruction to be executed, decodes thiigigtion, and finally it executes the instruction
before it continues to fetch the next instruction. The thregn components used to obtain safe points are
the execution stack, the current part object stack, andibteh loop.

5.2.1. The Execution Stack

Execution happens in context of a part obj&2ALL instructionsJNNER instructions, and similar instruc-
tions will cause execution to happen in context of a diffepart object. We refer to this aspart object
switch Moreover, execution can be divided into ordinary exeauéind initialization execution. Part object
switches can also occur during initialization execution.

The execution stack contains pointers to instructions.staek elements each point to the first instructions
to be executed after returning from a part object switch {fstance due to the execution ofGALL
instruction).

5.2.2. The Current Part Object Stack

The current part object stack contains pointer®#tObject  instances. These pointers point to part
objects which were previously the current part object, ehen an instruction switches part object, it
pushes the new current part object to the current part obfack.

5.2.3. The I-fetch Loop

Instead of usingxecute() methods to execu®bjects with PartObjects , we have implemented
methods (calledyetFirstinstruction() ) on these classes which return a pointer to the first in-
struction to be executed in a part object. An i-fetch loophi@Thread class uses these 'getinstruction’
methods to switch context when for instanc€ALL instruction is executed. The i-fetch loopTiread
works as sketched in figure 5.5:
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while(state == RUNNING) {

switch(programCounter->id) {
case ADD-MAINPART-ID:
/lcode for 'ADD-mainpart gbeta’ byte code instruction
case ADDOP-PLUS-ID:
/lcode for 'ADD(_+_)’ gbeta byte code instruction

case WHILE-ID:

/lcode for 'while’ gbeta byte code multi-line instruction
default:

print "could not decode instruction - exiting"

exit

}

check signals

Figure 5.5.The I-fetch loop inThr ead

The first thing the thread does, in the i-fetch loop, is to diecthe instruction pointed at by the program
counter. Then the code for this instruction is executed tviidl set the program counter to the next

instruction to be executed. Finally, the thread checks ¢dfdéhas received any signals. If this is the case
it changes its state to a state corresponding to the signal.

TheThread is signaled by th&cheduler when for instance all threads must be stopped due to garbage
collection. TheThread - Scheduler interface is described in 5.1.

To illustrate how we avoid using thexecute()  methods on objects and part objects, we present an
example of what is done whenGALL instruction is executed and also when execution returngnttle
returning from part object switching instructions we make ByteCodelLoader add speciaRETURN
instructions to instruction lists (see subsection 5.3)isExample is illustrated in figure 5.6. In figure 5.7
the pseudo code for@ALL instruction is presented.

case CALL-ID:
evaluate run-time path to get object o to execute
get first instruction inst to execute on o
get first part object p to be executed in o
push p to current part object stack
add new frame to temp stack
push next instruction to execution stack
set program counter to inst

Figure 5.7.Pseudo code for €ALL instruction

First, theCALL instruction uses its run-time path to find the object to execlt uses this object to get
the first instruction to be executed in this object. This s filst instruction in the do-part of the main-part
of the most general part object in this object. This part obje then pushed to the current part object
stack and a new frame is added to the temp stack (for infoamatbout the frames and the temp stack see
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Execution stack Current part object stack
programCounter = CALL
(a) Before CALL

NOT p

Execution stack Current part object stack
programCounter = PUSH-ptn (first instruction in p)

(b) After CALL

Execution stack Current part object stack

programCounter = NOT

(c) After RETURN

Figure 5.6.1llustration of what happens when@ALL instruction is executed and its corre-
spondingRETURNInstruction is executed. In the example the instructioarafte
CALL instruction is aNOT instruction and the first instruction in part object to
be executed is RUSH- pt n instruction. (a) State of the thread before the CALL
instruction. (b) State of the thread immediately after @_L instruction. (c)
State of the thread after tHRETURN instruction
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[IPO1, page 37]). Finally, the instruction after tBALL instruction is saved by pushing it to the execution
stack. To handle that the most general part-object in ancobfn be @redefinedPartObject , all
PredefinedPartObjects of a given type have a shared main-part with a do-part haviRgEaURN
instruction as the only instruction.

To return from execution in the called object tRETURNRNstruction pops an instruction pointer from the
execution stack. If this instruction is not null tRRETURNnNstruction deletes the current frame on the
frame stack, pops the current part object of the currentgigjeict stack, and sets the program counter to
point to this instruction. If the instruction popped fronetexecution stack is null, the state of the thread
is set to finished. Adding a spectdALT instruction to the end of the do-part of the outer most mairt;p
would mean that the time used by the check for nuRETURNould be avoided.

Part object switches do not only occur when a new part objestit be executed, it also occurs when the
attributes of a part object must be initialized. Attributétialization is explained in section 5.4, but before
that we introduce a number of special instructions used mement the flat execution model.

5.3. New Special Instructions

To allow safe points within multi-line instructions and, Wwave defined some simple control flow instruc-
tions to which the multi-line instructions are translated.

Return Pops the current part object, sets the previous frame orethp stack as the current frame, and
sets the program counter to whatever is popped from the érecstack. If program counter is null
after this, the instruction sets the state of the thredeRdSHED .

ReturnNPPO Sets the program counter to whatever is popped from the érecstack. No check is
made to ensure this is not null. Both the temp stack and threrupart object stack are unaffected
by this instruction. PPGs shorthand for Nd?op Part Object)

ReturnMPAttrinit A specialized instruction used when initializing the diiies of an object. The
instruction first deletes the current frame on the temp staekpops the current part object of the
part object stack.

If there is a more specific part object than the current pgeeitin the object, this part object will be
pushed on the current part object stack, a new frame will bleddb the temp stack, and the program
counter will be set to point to the first instruction of therisaiite initialization instruction list of the
new current part object.

If, on the other hand, there were no more-specific part opjketinstruction will return by popping
the execution stack to the program counter.

Again, this instruction makes no check to ensure the prograumter is not null. This is safe, since
the ByteCodelLoader ensures that there always will be at leadRBETURNnNSstruction after an
attribute initialization.

ContGatherVirt This is also a very specialized instruction. Its purposeoisriake it possible to
initialize virtual attributes correctly without having tio it in one step. In order to make this possible,
this instruction contains information about the attribntene and index of the introducing binding
as well as the main-part id.

When executed, this instruction will search the more spepé#it objects for a part object that has a
virtual attribute matching the introducing binding’s #itrte name, index, and main-part id.

If such a part object is found, the current part object stagkdpped and the part object is pushed,
the temp stack gets its frame deleted and a new one addedpalig fine program counter is set to
the first instruction of the gather virtual instruction list
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If no part object could be found, this marks the end of a gartirtinstruction in the byte code. The
only thing needed is to pop the current part object stacletdehe frame on the temp stack and set
the program counter to the instruction after the gatheriwgtruction by assigning the value popped
from the execution stack to the program counter.

For further explanation of this instruction see subsechagh?2.

JumpNPPOQOThis instruction contains a pointer to an instruction thak e executed after this one. (Note
that in this cas&lPPQis shorthand for Nd®ushPart Object).

JumpTrueNPPO is a conditional jump instruction. It pops the boolean statkthe value is true, it
jumps to the instruction pointed to in its instruction peinattribute, otherwise the next instruction
is executed. (AgaimMPPQs shorthand for Né®ushPart Object).

JumpSubNPPOQis an unconditional jump to a sub routine. This means thatdh@wing instruction will
be pushed onto the execution stack and the program courtdrenget to the instruction pointed to
by instruction pointer attribute. (AgaihNPPQs shorthand for Nd®ushPart Object).

CopyTop Copies the element on the top of a stack. The actual staclefigal as an attribute of this
instruction.

CopyTop2 Like the CopyTop instruction except that it operates on two elements instféazhe. For
instance if the top of the integer stack{ik,2} before aCopyTop2 instruction, the top of the integer
stack after the&CopyTop2 instruction will be{1,2,1,2.
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5.4. Attribute Initialization

When aNEW, ptn->0bj  instruction is executed, tHeattern  on top of the pattern stack is popped and
instantiated to a®bject . But besides that the attributes of all part objects in thigct must be initial-
ized. The first implementation of this virtual machine signgélled ainitPartObjects() method on
the instantiated object and this could result in numerousgigect switches and therefore no safe points
could be defined during attribute initialization [IPO1].n8& it is possible to write a gbeta program where
a large part or even the whole program execution takes praatribute initialization, safe points must be
present during attribute initialization.

MainPart Attribute-init Instructions
JunpSubNPPO <Attribute-init Instructions> ——

rTJumpSubNPPO <Attribute-init Instructions>
ReturnMPAttrlInit

! Attribute-init Instructions ~ 1

1 ReturnNPPO ‘

ﬂFAttribute-init Instructions ‘

‘ ReturnNPPO ‘

Figure 5.8.How the attribute initialization list of a main-part works

To make it possible to do garbage collection during attabnitialization we made thByteCodeLoader
generate a special list of attribute initialization insttions connected with each main-part. Figure 5.8 illus-
trates how these main-part attribute initialization listsrk. When an object must be initialized two things
are done. First the part object to be initialized is identifend pushed to the current part object stack. This
is the most general part object of the object to be initializBecondly the initialization instruction to be
executed is identified and the program counter is set tortlstsliction. This is the first instruction in the at-
tribute initialization list of the main-part of the idengfil part object. If the part object has any attributes the
identified instruction is dumpSubNPPQOotherwise it is EReturnMPALtrInit . TheJumpSubNPPO
instruction’s duty is to push the next instruction and to m#éke program counter point to the first initial-
ization instruction of one of the attributes of the main peBb, after alumpSubNPPOQinstruction one

of the attributes in the part object will be initialized. TBeAttribute-init Instructions lists

are terminated with &eturnNPPO instruction, which sets the program counter to point to tsdriic-
tion on top of the execution stack, e.g., the n&xtnpSubNPPGnN theMainPart Attribute-init

Instructions list. The last instruction in a main-part attribute initzgltion list is aReturnMPALttr-

Init . The purpose of this instruction is to make the thread switchitialization of the next most general
part object if present and otherwise return. This way alldttebutes in all the part objects of the object
are initialized while creating a safe point between eacticion.

So the job of theNEW, ptn->0bj instruction is only to instantiate the pattern to an objeend make
a context switch to the first instruction in tainPart Attribute-init Instructions list (as
described above) of the most general part object in

This form of attribute initialization is characterized ager initialization but running gbeta programs also
requires lazy initialization [BC95].
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5.4.1. Lazy Attribute Initialization

The gbeta code in figure 5.9 illustrates why lazy attributidlization is required. The value ab is only
known at run-time and its value determines which of the ds@andb in g that must be initialized first. If
_b is true the initialization order must keefirst thenb but the opposite initialization order is required lif

is false. So, sometimes it is necessary to stop the exeaftimminstruction because a required attribute is
uninitialized and initialize the attribute and restart tiieen instruction. But this requires that instructions
which could result in lazy attribute initialization must béle to be restarted without side effects. This
is quite simple to ensure since the evaluation of run-timthg& the only thing that can result in lazy
initialization and these evaluations have no side effects.

So, if the evaluation of run-time paths is placed in the beigig of the execution code connected with these
instructions and subsequently a check that initializeg laitialization if necessary is placed, then we can
stop these instructions, initialize the attributes, arsdend them.

-- betaenv:descriptor --

#
b : @boolean;
X: @(# self: @this(object) #);
. (# o: "x do INNER exit this()[] #);
q # a @((# do (if _b then x[]->0[] else b[]->0[] if#)).o;
b: @((# do (if _b then a[]->0[] else x[]->0[] if)#)).0
#)
do
g; true->_b; q
#)

Figure 5.9..Example of gbeta program requiring lazy initialization

In figure 5.10 is a piece of pseudo code that illustrates whatre done after evaluation of a run-time
path if lazy initialization is required.

if(resultOfRuntimeEvaluation == NULL) {
push current instruction to execution stack
push RETURN instruction to execution stack
push part object to be initialized to current part object sta ck
set programCounter to first initialization instruction of attribute
add frame to temp stack
skip actual execution of this instruction

Figure 5.10.What must be done if lazy initialization is required

The reason why RETURNnNstruction is also pushed to the execution stack is théeaénd of the attribute
initialization instruction list is &ReturnNPPO (see figure 5.8) but a “reaReturn is required to restart
the stopped instruction. This is because the current pggtband current frame must be restored after the
lazy initialization has finished.
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5.4.2. Virtual Attributes and Gather-virt

(# p: (# v:i< object #);
g: p(# vi< integer #);
r: q(# v:: integer #);
do r;

#)

Figure 5.11.Code example of virtual chain

In gbeta it is possible to specialize some pattern attribofea pattern in a subpattern. This is done using
virtual declarations and virtual chains. The concaptial declarationcovers a virtual pattern declaration,
a virtual further-binding, and a virtual final-binding. ¥irtual pattern declarationintroduces a pattern
attribute that can be specialized in subpatterns and istdémvith the syntax< . A virtual further-binding
specializes the introducing binding or the previous furthi@ding of the pattern attribute in a subpattern.
Zero or more further-bindings can be present and they aretddrby the syntax< . Thevirtual final-
bindingspecializes the pattern attribute as the further-bindintgttalso specifies that this attribute cannot
be further specialized. A virtual final-binding is denotedthe syntax: . So a virtual chain consists of
exactly one virtual pattern declaration, zero or more atfurther-bindings and finally an optional virtual
final-binding. Figure 5.12 along with the gbeta code in figbu®l illustrates an example of the pattgrn
with the virtual pattern attribute which is the virtual pattern declaration. The pattgris specialized by
the patterrg which has a virtual further-binding of. The patterrr specializes the pattepand makes a
virtual final-binding of the attribute.

Figure 5.12.Example of a virtual chain

With respect to types a virtual pattern declaration, a airfurther-binding and a virtual final binding only
gives an upper bound to the type.

Having virtual attributes makes attribute initializatiomore complicated. The initialization of a virtual
attribute requires that all part objects in an object hawagtributions to this attribute is used to initialize
the virtual attribute.

The above program compiled to gbeta byte code is shown beldvis byte code has been annotated
with numbers indicating in which order the instructions executed. ThHENDOF.GATHERVIRTCODE
delimiter can be thought of as a special instruction.
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MainPart("216"
"p/l0™: (

PUSH-ptn_"object" 1
ADD-mainpart ‘42 origin {} 2
INSTALL-ptn O 3
)
"g/1": (
PUSH-ptn {"p/0" } 4
ADD-mainpart ‘108 origin {} 5
INSTALL-ptn 1 6
)
"rf2" (
PUSH-ptn {"g/1" } 7
ADD-mainpart ‘172 origin {} 8
INSTALL-ptn 2 9
)
I
PUSH-ptn {"r/2" } 10
NEW, ptn->tmp 1 11
CALL {tmp(1) } 26
RESETFRAME 27
)
MainPart("42"
"v/0": (virtual
PUSH-ptn {<-2,"object/0" } 13
END_OF_GATHERVIRT_CODE 14
GATHER-virt "v/0" in ™42" 12
INSTALL-ptn 0 21
)
I
)
MainPart("108"
"v/0": (virtual "v/0" in 42"
PUSH-ptn {<-2,"integer/3" } 15
MERGE-ptn 16
END_OF_GATHERVIRT_CODE 17
PUSH-ptn {™42,"v/0" 22
INSTALL-ptn 0 23
)
I
)
MainPart("172"
"v/0": (virtual "v/0" in 42"
PUSH-ptn {<-2,"integer/3" } 18
MERGE-ptn 19
END_OF_GATHERVIRT_CODE 20
PUSH-ptn {™42,"v/0" 24
INSTALL-ptn 0 25

Figure 5.13.Example 5.11 compiled to byte codes. The byte codes havabretated with

numbers indicating the order of execution
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Figure 5.13 explains holBATHER-virt and virtual attribute initialization works in general. Whea
virtual pattern declaration attribute must be instantatee GATHER-virt instruction belonging to the
main-part of the most general mixin will construct a corneattern.

‘ Gather-virt code <—F

Init code of virtual
attribute of the

virtual pattern ContGatherVirt
declaration Semeqe-

—*rVirtual Attribute-init instructions
GatherVirt <attribute> <main-part>  ——
InstallPtn <index>

I
start of initialization

‘ Gather-virt code 4—‘7

ContGatherVirt

Virtual Attribute-init instructions
PushPtn <run-time path>
InstallPtn <index>

Init code of virtual
attribute of the
virtual further .
Pr—
‘ Gather-virt code

binding(s)
ContGatherVirt

Virtual Attribute-init instructions
PushPtn <run-time path>
InstallPtn <index>

Optional

‘ Gather-virt code 4—‘7
Init code of virtual

attribute of the .
ContGatherVirt X

virtual final - - — - Optional

binding Virtual Attribute-init instructions

PushPtn <run-time path>
InstallPtn <index>

= Specialization of virtual attributes

Figure 5.14.GATHER- vi rt and virtual attribute initialization. Depending on the stiture
of the virtual chain, a hierarchy of one virtual attributeadsfor the virtual pat-
tern declaration, zero or more virtual attributes used fathfer bindings, and
zero or one virtual attributes used for the final binding iepent

The initialization code of a virtual attribute is divideddntwo parts, the&sather-virt Code part and
the Virtual Attribute-init instructions part. If the virtual attribute belongs to a virtual
pattern declaration, i.e., the introducing binding, Yigual Attribute-init instructions

part begins with &SATHER-virt  instruction. The functionality of this instruction is toeoute the 'gath-
ervirt’ instructions and thereby create a correct pattemthe virtual pattern declaration attribute. So,
if the current virtual chain consists of an introducing bingl a futher binding and a final binding, the
GATHER-virt instruction must merge all the virtual pattern attributégwhe same id starting from the
most general part object.

To make virtual attribute initialization work with the flakecution model, we had to add a special instruc-
tion to theGather-virt Code lists - namely theContGatherVirt instruction. The purpose of this
instruction is to jump to the initialization of the virtuattabute with the correct id of a more specific part
object if present. This instruction is further explainethsection 5.3.
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5.5. Multi-Line Instructions

This section explains the implemented multi-line instimgs. To refresh your understanding of the special
instructions used to allow safe points within multi-lineiructions see section 5.3.

5.5.1. Named For

A named for loop in gbeta is executed with an index variable value ragfiiom 1 to N. The instructions of
anamed for are divided into two parts; the evaluation instructionsmggvthe N and the body instructions.
When parsing, these instructions are inserted into tworsgpéists and when the parsing of thamed

for instruction is finished, several instructions are appertdetie two lists as shown in figure 5.15. The
instructions added to the evaluation instructions can Ioéhéu logically divided into initialization- and
cleanup-instructions. The instructions added to the bodseiment the counter and checks for whether the
body instructions should be executed again or the cleande sleould be executed.

! Eval Instructions ‘

CopyTop <integer>
Pushint "{}"

RelOpLT <integer>
JumpTrueNPPO <cleanupStartinstr> ——
L rTJumpNPPO <Body Instructions>

Init

Discard <integer> =

Cleanup Return

#Body Instructions

CopyTop <integer>
Pushint "{}"
PushilntLit 1
Increment AddOpPlus <integer>
and CopyTop <integer>
check Popint "{}"
RelOpLT <integer>
JumpTrueNPPO <cleanupStartinstr> ——
—JumpNPPO <Body Instructions>

Apoq 0109
Goto cleanup

Figure 5.15.The instructions used for makingxamed for instruction

Thenamed for instruction itself sets up BrededfinedPartObject of integer type for keeping the

index variable and assigns it the value 1. This po is pushéde@urrent part object stack, a new frame
is added to the temp stack, the instruction following tlaened for instruction is pushed to the execution
stack, and finally the program counter is set to point to th iiirstruction in the evaluation instruction list.

The original evaluation instructions are supposed to l¢hgesalue N on the integer stack indicating how
many times the body instructions are to be executed. Thisevial kept on the stack while the loop is
active, and removed in the cleanup instructions. SinceRBIOpPLT instruction uses a destructive read,
theCopyTop instruction is needed to preserve the old value. Phshint ~ {} instruction simply copies
the value from the current (integer) part object to the ietegack.
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5.5.2. Simple For

Thesimple for instruction works much like theamed for version except that no part object is needed to
store the index variable, and the index variable is inadbkssfom the body code. The index variable is
in our implementation stored on the integer stack like N mrthmed for instruction. The only problem
this gives us is, that we need yet another instruction to e tabaccess both of these variables without
deleting them. Th€opyTop2 instruction was invented for this purpose. The instrudiorserted during
the parsing can be seen in figure 5.16.

1 Eval Instructions

PushilntLit 0

. CopyTop2 <integer>
Init RelOpEQ <integer>
JumpTrueNPPO <cleanupStartinstr> —
rTJumpNPPO <Body Instructions>

Discard <integer>
Discard <integer>
ReturnNPPO

Cleanup

Goto cleanup

48‘ ody Instructions

PushilntLit 1
AddOpPlus <integer>
Increment CopyTop2
and RelOpEQ <integer>
check JumpTrueNPPO <cleanupStartinstr> ——'
—JumpNPPO <Body Instructions>

dnueajo 0109

Figure 5.16.The instructions used for makingsample for instruction

The instruction itself only pushes the instruction follagithe program counter onto the execution stack
and sets the program counter to the first instruction in tladuation instructions.

5.5.3. Simple If

A simple if instruction contains three lists of instructions: an easilbn list, a then list, and an else list.
When the evaluation list of instructions has been evaluatédolean value will be left on top of the
boolean stack. If this value is true, the then list of instiares must be executed, otherwise the else list of
instructions must be executed.

When thesimple if instruction has been parsed, the instructions are adddtkttist as shown in figure
5.17.

Thesimple if instruction itself only transfers control to the evaluatlist, i.e., it conducts a jump and saves
the next execution to be executed after siraple if instruction on the execution stack.

5.5.4. General If

Because general if construct is more complicated than the other multi-linéringtions (in terms of syntax
at least), we present the syntax below.
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! Eval Instructions

JumpTrueNPPO <Then Instructions>
JumpNPPO <Else Instructions>

! Then Instructions -

‘ ReturnNPPO ‘

ﬂFEIse Instructions

‘ ReturnNPPO ‘

Figure 5.17.The instructions used for makingsample if instruction

<genlf> == ’generallf( ' <type> <evaluation> <alternative> * <elsePart> ")’
<alternative> ::= <selection> +’'|then ' <imperatives>
<selection> = ’|case ' <evaluation>
<elsePart> = ’|else ' <imperatives>
<evaluation> = <instruction> *
<imperatives> = <instruction> *
<instruction> = <singleLinelnstruction> [I<MultiLinelnstruction>
<type> = ’'boolean 'Ochar ' Ointeger ' Oreal ’

Ostring ' Oobject ' Opattern

An code fragment usingeneral if is shown in figure 5.18.

generallf(integer
PUSH-integer  {"N/0" }
RESETFRAME

|case
PUSHI-integer 1
RESETFRAME

[then

|case
PUSHI-integer 2
RESETFRAME
|case
PUSHI-integer 3
RESETFRAME
[then

lelse

RESETFRAME

Figure 5.18.Gbeta byte code fragment usiggneral if
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There is no limit to how many alternatives that can be inskitea general if instruction so there is no
predetermined number of instruction lists igeneral if instruction. There will, however, be an instruction
list for each <genlf>, <selection>, <alternative>, and <elsePart>, some of which may be empty.

The execution of<evaluation>in <genlf>returns a value of type indicated bstype>. The selections are
then evaluated from the top comparing their results to thise. If a match is found the instructions in the
associated<imperatives> are executed next and the rest of thselections> will not be considered. If no
match is found the instructions ikelsePart>s <imperatives>are executed; if naelsePart>is present, the
effect is as if an emptyzelsePart>had been present.

Our translation of the example in figure 5.18 is shown in figade.

! Eval Instructions ‘

JumpSubNPPO <First Selection>

Discard <integer> =

cleanu
P ReturnNPPO

CopyTop <integer>
Selection Instructions

RelOpEq <integer>

JumpTrueNPPO <Then Instructions> —l

alternative JumpNPPO <next selection>

1 Then Instructions ‘

1 ReturnNPPO +—

CopyTop <integer>
Selection Instructions

RelOpEq <integer>
JumpTrueNPPO <Then Instructions>
JumpNPPO <next selection>

CopyTop <integer>
alternative Selection Instructions

RelOpEq <integer>
JumpTrueNPPO <Then Instructions>
JumpNPPO <next selection>

! Then Instructions

|
1 ReturnNPPO +>

1 Else Instructions ‘

— ‘ ReturnNPPO #7

Figure 5.19.The instructions used for translating tkeneral if instruction in figure 5.18

elsePart

Thegeneral if instruction itself only pushes the next instruction onte #xecution stack and changes the
program counter to point to the first instruction in the ewadion instruction list.
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5.5.5. While

Thewhile instruction contains two lists of instructions: an evaioatist and a body list. The evaluation
list is executed first. This leaves a value on the booleaksththis value is true, the body instructions will
be executed and thehile loop is restarted from the evaluation. If the value is fateewhile instruction
is terminated. Our instructions added to the instructistslare shown in figure 5.20.

*‘ Eval Instructions ‘

JumpTrueNPPO <Body Instructions>
ReturnNPPO

1 Body Instructions ‘

ﬂLJumpNPPO <Eval Instructions> ‘

Figure 5.20.The instructions used for makingvehile instruction (for obvious reasons, this
was our first multi-line instruction)

The while instruction itself only pushes the next instruction onte #xecution stack and changes the
program counter to point to the first instruction in the ewdion instruction list.

5.6. Complex Single-Line Instructions

During the implementation of instructions we were condienreiminded of the great variety in the complex-
ity of different single-line gbeta byte code instructioirsthis section we will present some implementation
details of the most complex and interesting instructioras tere implemented. A description of all gbeta
byte code instructions can be seen [Ern99, appendix D].

5.6.1. Add Main-Part

The purpose of thADD-mainpart instruction is to construct new patterns using old pattemisins, part
objects, and main-parts. The instruction pops a pattem ffe pattern stack, creates a new pattern with a
mixin list with room for one more mixin than the popped pattefhen it copies the mixins of the popped
pattern to the new pattern and adds one mixin to the end of tkie fist of the new pattern. Therigin
attribute of this mixin must point to the part object specifiey the run-time path and itmainpart
attribute must point to MainPart having the main-part id given as argument to Al@D-mainpart
instruction. To support finding this main-part we have inmpémted agetMainPart(mainPartld)

method on th&cheduler class. This method just searches its list of main-parts etulns the main-part
having main-part idnainPartld  if found. This rather expensive iteration could have beearidad with

a two pass parser which could add pointers to Al¥D-mainpart instructions pointing to the correct
main-part. If we had placed the main-parts in a hash-mapgtatature we could have achieved constant
average lookup time instead of linear (in the number of ngrts) lookup time.

5.6.2. Merge

The MERGEHnSstructions use an implementation of theerge() function described in subsection 2.1.2
to pop two patterns from the pattern stack, merge them ifiplessand push the resulting pattern to
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the pattern stack. The pattern merging is one of main coscaggiarating gbeta from BETA. To imple-
ment the merge operation soundly two special handling cases introduced. In figure 5.21 the im-
plementednerge() function is presented. The help functiolember(mixinListl, iterator,

mixinList2, mixinList2Length) returns true if the element #erator in mixinListl is

a member ofnixinList2

SETUP Gets the mixinlists and length of the patterns and creageatirs for the patterns and the result
pattern

SPECC. Handles the special case that one or both of the patterns Entipty pattern. 1p1 is the empty
patternp2 is returned and vice versa. If both patterns are the emptenap?2 is returned.

THE MERGE ALGORITHM Resembles the merge algorithm described in subsectiob.2.1.

RESULT When a merge of the patterns succeeds a new resulting pa&tereated and pushed to the
pattern stack. To get a corre@bjectDescriptor we have a global pattern objects-descriptor
array which is lazy initialized, i.e., a®bjectDescriptor supporting a pattern with the length
e.g., 7 is created the first time it is needed.

5.7. Virtual Machine Evaluation

Since the focus of this projectis memory management a nuaflperssible optimizations and extensions to
the virtual machine component have been omitted. In thissewe evaluate the current implementation
and propose a number of improvements.

5.7.1. Static and Dynamic Strings

In this implementation strings is placed in the non-traaest space, so if a string becomes dead we waste
the space it uses. Instead of putting all strings into naned root space we could have had two types
of PredefinedStringPartObjects : dynamic strings and static strings. The dynamic stringdato
have been allocated in train space and garbage collectezhif.dDynamic strings would be allocated
because of th&tdio/in  instruction. We would still have to allocate the stringsgeat from the gbeta
byte code in the non-traced space, since they should be likeptiatil program termination (it is impossible

to know when an instruction will not be executed again aciogrdo the halting theorem and its siblings
[Sip97]).

This extension to the virtual machine would be very easyesthe only thing it requires is two types of
PredefinedStringPartObject object descriptors: one for the dynamic strings indicatirgpinter
to theVMObiject containing the string, and one indicating no pointer fordtetic strings.

5.7.2. Multi-threaded

To make our virtual machine multi-threaded a number a thstgsild be changed to both the virtual ma-
chine component and the memory management component. &mcerrent threads allocate different
gbeta entities concurrently, it is vital that some sort afowrce sharing is present in the memory man-
agement system. Also, tigcheduler should have some sort of signaling queue to allow for diffiere
signals to be queued and eventually processed. This woubshgsh other things allow safe points with
concurrent threads. | would be possible to use native tisregtth few modifications of the virtual machine
component, but the memory manager requires larger modditat
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merge(Pattern_t *pl, Pattern_t *p2)
S Mixin_t *pilMixinList = pl->getMixins(), **p2MixinList = p2->getMixins();
E int plLength = pl->getLength(), p2Length = p2->getLength( );
T int pll = plLength-1; //iterator for pl
U int p2I = p2Length-1; /literator for p2
P int resl = 0; /Iresult iterator
/lcheck for EmptyPattern
S if('pAMixinList[0]) {
P return p2;
E }
C if(lp2MixinList[0]) {
C return pl;
/l/merge pl & p2
T  bool notP1Finished = 1, notP2Finished = 1,
H while(notP1Finished || notP2Finished)
E if((pAMixinList[p1l]->origin == p2MixinList[p2l]->ori gin) &&
(p1MixinList[p1l]->getMainPart() ==
M p2MixinList[p2l]->getMainPart())) {
E mergeScratch[resl++] = p1MixinList[p1l];
R if(pll) |
G pll--;
E } else {
notP1Finished = O;
A }
L if(p2l)  {
G p21--;
) } else {
R notP2Finished = 0;
! }
T } else if(!{(member(p2MixinList, p2l, plMixinList, plLengt h)) &&
H notP2Finished)  {
M mergeScratch[resl++] = p2MixinList[p2l];
if(p2l)  {
p2l--;
} else {
notP2Finished = 0;
}
} else if(/(member(p1MixinList, pll, p2MixinList, p2Lengt h)) &&
notP1Finished) {
mergeScratch[resl++] = p1MixinList[p1l];
if(p1l)  {
pll--;
} else {
notP1Finished = 0;
}
} else {
return NULL,;
break;
}
/lcreate new pattern for result
R ObjectDescriptor_t *ptnDesc = getPtnObjectDescriptor(r esl);
E Pattern_t *result = new(allocateVM(ptnDesc)) Pattern_t( ptnDesc);
S Mixin_t **resultMixinList = result->getMixins();
U /lcopy result from scratch to new pattern
L for(int i =resl, j = 0;i > 0; i-,j++)
T setVMReference(result, (void**)&resultMixinList[jl, m ergeScratch[i-1]);
. re}:[um result;
}

Figure 5.21.The implementeder ge() function. SPECC. abbreviates special case han-
dling
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5.7.3. Two-Pass Parsing of the Byte Code

If we had made th®yteCodelLoader a two-pass parser a number of optimizations could have been
obtained:

Cached Main-Parts AddMainPart instruction could have main-part pointers cached yieldiagstant
lookup time.

Real Byte Code Format The instruction lists in main-parts could be parsed to a byt code format,
i.e. with one-byte opcodes and zero or more argument bytes Would make the byte-code lists
smaller, but the real benefit would be the possibility toriptet the byte codes faster.

5.7.4. Statically Known Patterns and Objects

Recent versions of the gheta compiler includes informadioout statically known patterns and objects in
the gbeta byte code files. The structure static patternand astatic objectis known at compile time, but
these entities cannot be constructed before run-time.descahere a method is not invoked a great number
of times, it can save space and initialization time to ustcspatterns, as they do in [JJWO01], instead of
only creating them dynamically.



6. The Memory Manager

In [IPO1] we made an almost fully working memory manager whised the train algorithm to garbage
collect but did not have other generations. We proposed abeumf changes to our first design and
implementation. In essence the main goal of our proposaddeumove the focus from 'easy to understand’
to efficient [IPO1]. We will now present the subjects consadifor the new version of the memory manager.

Efficient Write Barrier The implemented write barrier had a worst case time comglefiO(n+ m),
wheren was the maximum number of objects in a car amevas the number of objects referenc-
ing another object. Also, the space complexity v@®) wheren was the number of pointers in
VMObjects .

Using a more efficient remembered set data structure (e.@sh $et) and aligning cars at-Byte
boundaries will induce a write barrier typically at condttime except in rare cases where the hash
map needs resizing or collisions occur.

No Car-Internal Remember-ReferencesCar-internal remember-references made our garbageetiolte
algorithm easy to understand since the precise knowledg#l afteresting pointers made Cheney
scans unnecessary. But these car-internal remembeenefes both increased the space used by the
remembered sets and made the write barrier more expensinetitessary.

Instead of having car-internal remember-references, wédaevacuate followers from the from car
using scan pointers. These scan pointers should point irgaars where externally referenced
objects have been moved.

ReduceVMbj ect Space OverheadAligning cars at #-byte boundaries also makes it possible to re-
move the car pointer iWMObjects , since the address of the car can be obtained by clearing the
k-least significant bits 0¥MObject s address. The only two attributes needed/MObjects is
an object descriptor pointer and a forward pointer.

Introduction of New Objects In the old memory manager, new objects were born in the car thié
highest train and car number except the root objects whiale Wwern in a special train. Since young
objects are most likely to die, this is not the optimal stggtéor a garbage collector.

A special object space, called the introductory space,ffimoducing new objects could reduce the
collection overhead because less garbage would be draggadyh the whole system. Some kind

of write barrier is required to track pointers from the traimanaged heap to the introductory space.
This means that whenever a car has to be scavenged, theuotooglarea has to be scavenged too
because it potentially holds references from live objeats the first car. This scheme is in fact be a
small generational garbage collector.

Popular Objects As it is expensive to move objects which are referenced astmfie way of handling
popular objects would be a good optimization. One way of gdinis is to avoid moving the popular
object by keeping the car after the scavenge and reassigratheeference and car number [GS93].

Large Object Handling The maximum size of objects is bounded by a fixed fraction efdtze of a
car. Since cars also have a fixed size, objects cannot grotvaailly large. A large object space
could solve this problem [GS93]. Using a large object spaseatso reduce the garbage collection
overhead because moving large objects is expensive.

49
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Concurrency Multi cpu architectures support would be a great benefitHentirtual machine. If this has
to be added to the virtual machine, a couple of time criticalctions, such as the write barrier and
allocation function, have to be able to handle multiple élaie This requires either synchronization
of these routines or a very clever design to avoid that. Coratigarbage collection is also desirable
but probably even harder to implement efficiently.

Adaptiveness It would be interesting to make an adaptive garbage coltedbich adapted its garbage col-
lection frequency to the amount garbage on the heap. Thifeisdback system problem [FPEN94].
In feedback systems it is vital that you control the procésgood example is a pot of almost boiling
water. If one continuously controls the amount of energggfarred to the pot one can control the
temperature of the water and thereby also avoid that therwaiks. The same goes for controlling
the garbage collection frequency. If one garbage colleciriach one wastes time, but if one garbage
collects too little one wastes space. Using feedback thEd?£N94] we end up with a situation as
depicted in figure 6.1. But this is not the whole truth! Sinlee initiations of our garbage collector
is event-based, we need an discrete event-based feed-bairklsystem [PB98] to control it. To
simulate discrete event-based feed-back control systeragant of Petri net models must be used
and a so-called Lyaponov framework can be used to model.tidse is far off the subject of this
report but the idea might be worth pursuing, and it could Hgestt to future work.

New objects Dead objects
Mutator Memory Manager
Objects
a)
New objects
Reference sensor | + Actuator Control input Plant Output
Mutator > Object Counter Memory Manager
Output sensor
Profiler

b)

Figure 6.1.:a) Our system without profiler, b) Our system as a simple meg&edback loop
block diagram - Texts in italic shows new components needlethke it adaptive

We have decided to implement a new memory manager with theegibyprovement proposals except the
last four (popular object handling, large object handlicgpcurrency, and adaptiveness). It will still be an
accurate, handleless, partial, cooperative, and singtatted garbage collector.

The purpose of this new implementation is to make a reasgreffitient train algorithm garbage col-
lector that allows us to experiment with different aspedtshe train algorithm such as strategies to the
introduction of new objects and the performance effect ofiva the car and the introductory space sizes.

Besides the above proposals we have decided to make a sgtaclabpace to circumvent the write barrier
when writing to reference stacks. This was inspired by [Mgs8

This chapter will document the design and implementatiothefnew version of the memory manager.
The first section will give an overview of the architecturéaelfollowing three sections will give a more in-
depth explanation of the three spaces present in the heameit three sections describe the remembered
set implementation, the object descriptors, and the rgdesi the object headers used for objects in the
virtual machine. Then a section describes how the garbatgrtion algorithm has been implemented in
the system. Next, the write barrier is explained, and fintllyinterface is described.
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6.1. Architecture

‘ GarbageCollector ‘
1

L Trainspace [O;

‘ TrainOrderingTable ‘ ‘ DirtyCars ‘ ‘ TrainTable ‘ ‘ MemoryBlock
1 1 1 1

1 1 1 1.

n

ﬂ IntroductorySpace K

1

0..n

11 StackSpace 7 VMObject

Figure 6.2.Class diagram of the memory manager

Figure 6.2 shows the class diagram of the memory manageth&se interested in the source code included
on the disc, we will mention a few diversions from this classgdam. TheTrainOrderingTable is

not a class in its own right but included in theainSpace class which by the way is calletrain-
Generation in the source. Also, the clagsainCar was unfortunately calle@arTrain . The code

is placed in the directoriegbvm/src/gc  _new andgbvm/src/gc _common Most of these classes will
be described more in-depth in the later sections. We will noave on to present the heap layout used.

0x10000 0x20000
Stack Introductory
Space Space

0x40000

12 | 22 1,3 1,4
free car

0x90000

used car - t: train number
21 c: car number

Train
Space

2,3 31 4,1 51

6,1 6,2 71

2,4

Figure 6.3.The heap layout. The two blocks of cars in the train spacessgrtdvenor y-
Bl ocks.

The heap is divided into three spaces: the stack space, tiwaluctory space, and the train space as
illustrated in figure 6.3.

Thestack spacés where all the stacks carrying references are allocatdd#rer objects which will have
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to be scanned during garbage collection for determiningdloéset. The space is not scavenged because
only one thread is supported. If the stacks of the thread aeegje the thread is garbage. and the program
execution has terminated. Stacks cannot be resized requailiocation of new memory and freeing of old
memory.

Theintroductory spacés the place where the majority of new objects start thed. liff they are still live
when the next scavenge occurs, they will be moved to the Bpace.

The train spaceis where dynamically allocated objects live after they hauevived the first garbage
collection.

In addition to these spaces untraced root objects are édldemsing the standardalloc()  function.

6.2. Stack Space

The main motivation for having a stack space, compared tmbatacks floating around in the train space,
is that when writing to stacks containing references, thigevirarrier can be circumvented, which yields
lower mutator overhead related to memory management.ddsteusing the write barrier for remembering
references from the stack space, the stack space is scaneachegarbage collection. This identifies live
objects in the introductory space or the from car (if both ithteoductory space and from car is being
garbage collected).

Another advantage of the stack space is that the large shiekts do not need to be moved making garbage
collection faster.

The stack space is an optimization that is particularly twettile with mutators that use many reference
stack operations such as our gbeta virtual machine (seeeatigp

The reason for storing the stacks in the same place is thatame i be able to scan them for references
easily. This also means that the stacks, which do not coatairreferences, should not be placed in this
space since that would only incur extra scanning overheadh Sference free stacks are allocated using
the standardnalloc()  function outside any of the three spaces. Actually, the abjieft in the stack
space constitute the root set of the live object graph.

6.3. Introductory Space

The purpose of the introductory space is to host new objettere are two advantages gained when
allocating new objects in a separate space.

Firstly, since many objects die young, it is beneficial far #fficiency of the garbage collection to be able
to concentrate its effort on the introductory space.

Secondly, if the introductory space is garbage collectetth wie train space, the write barrier overhead
of stores in introductory space objects can be reduced tp idehtifying the case of a store in the in-

troductory space; no remembered set update is hecessaig.isT¢onsistent with common generational
garbage collectors that only remember references fronr éddgounger generations. To ensure this in the
implementation the introductory space is always logicaligered lower than anything in the train space,
effectively making the introductory space a special traithwnly one car that is always collected with the
first “real” train.

To keep track of interesting pointers into the introductspace, a remembered set contains the slot of a
pointer from train space into introductory space. This rarhered set is identical to the remembered sets
of a car. Remembered sets will be discussed in section 6.5.

In order to have a fast membership test for this space, theaneis allocated on a*2aligned address
where ¥ is the size of the memory allocated for the introductory gpathis way it is possible, with a
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bitwise ANDoperation to remove the lowérbits of a given address and compare this to the base address
of the introductory space memory.

6.4. Train Space

The purpose of train space is to host mature objects and suap@fficient and non-disruptive garbage
collection of these objects using the train algorithm.

6.4.1. Memory Blocks

Memory blocks manage the raw memory allocated from the diperaystem. A memory block contains
a number of car sized blocks that can be reserved for carh &fabese sub blocks (or cars) are aligned
on an address divisible by the size of a car. The space witmeraory block is managed by a free pointer
and a free list. The free list contains the recycled cars|enthie free pointer is used for allocating space
for a new car within a memory block (see figure 6.4).

MemoryBlock

freePtr -

freeList T

next ,Tf Car 1.3 Car 1,2
MemoryBlock

freePtr -

freeList T

next e Carl1.2 |

Figure 6.4.The memory blocks managing the allocation of car space

When one memory block is filled a new one is allocated, buttthie a constant factdt larger than the
previously largest block. This way the sizes of memory biogfow exponentially. The factduis typically

in the range 2 to 4. When several memory blocks are activagatilon of a car will first be attempted in the
smallest memory block and last in the largest. Although itkelihood of finding an available car this way
is smaller than if the largest was searched first, it will begible to free the largest block at some time,
should the memory requirements decrease later.

6.4.2. Cars

The clas<Car is shown in figure 6.5. Cars host mature objects. Each car hast€ar pointer pointing

to the car nextin the train,faeePtr  pointer pointing to the first free slot in the car, anscanPtr used

for Cheney scanning. Besides that we have a pointer to aitrtemal remembered set, and a train-external
remembered set. Finally the cars have a data array whicheiintplementation (irC++) is declared to
have the size of one void pointer which, like M Objects , is actually a lot larger and is the place where
theVMObijects are stored.

The car has both a train internal and a train external remesdkst, since it is vital for the efficiency of the
train algorithm to be able to quickly determine whether éhare any train-external remember references or
not. That is, to ensure that a train can be deleted it mustfimestf to check if there are any pointers into
the train from outside the train. If the remembered sets wegeged, it would be much more expensive
to handle large garbage structures filling several carserfritm train since every train internal remember
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Car

nextCar
freePtr
scanPtr
data[1]

allocateVMO
moveExtObjects
movelntObjects
moveObj
copyObj
moveObjHere
doGCScan

Figure 6.5.TheCar class

reference would have to be checked before it was possiblertolede that the train only contained dead
objects.

The Car class offers methods to allocate new objects, move objeathods to access the remembered
sets, and a method to do a Cheney scan of the car. Slaces one of the very important classes in the
memory manager, we will give a brief overview of its most imgaat methods in the following paragraphs.

The methodillocateVMO()  makes it possible to allocate new objects in a car. This ig dahe rarely,
namely when the introductory space is filled up.

There are several methods for moving objects inGlae class. The two firstnoveExtObjects() and
movelntObjects() , are only used when a car has the role of from car. The methradsrse their
respective remembered set moving objects being refereioci@ place where they are referenced from.
For this task the methoshoveObj() is used. The main task afioveObj() is to determine the exact
place to copy an object. Using tkepyObj() method, first the referencing car is tried, then the last car
in that train, and finally a new car in that train. If all thislé& the object is too large to fit inside a car and
the program execution is halted.

copyObj() is the main interface for moving objects to a car. It takeg adrthings such as checking for
a forward pointer, checking if there is enough space for thjea, setting the forward pointer, updating the
car’s free pointer, and dirtying the car (see subsectiom$.4

The functionmoveObjHere() is another interface to moving objects to a car. It is usedndreobject
should only be put in a specific car and only if that car is néadilabove a fixedill-threshold If that is

not possible, the method fails. This method is only used whexing objects that are only referenced
from the stacks, and only with our new train creation polisg& subsection 6.8.2 and section 7.6). The
implementation is very much like thmpyObj() method.

The final method we will mention idoGCScan() which is the method performing the Cheney scan
on a car. This method traverses all references in the obfettseenscanPtr andfreePtr . If the
reference points to an object inside the introductory spadhe from carmoveObj() is invoked for
moving the object to this car or retrieving the forward pemtandsetVMReference() is used for
setting the reference and updating the remembered set éseany. If the reference refers to an object
outside introductory space and from car, the object is natedpbut the remembered set is still updated if
necessary.

6.4.3. Trains

Instead of having trains as a class, like we did in our eavigsions of the garbage collector, we manage
trains using a car-ordering table, a train-table, and bkitig the cars in a singly-linked list.
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Train Table

last car

13 [ ™ 14 - 18
first car
.,
21 [™ 22 ™ 25
(0]
1
31 ™ 3.2 —= 34
first=0 2
last=5
41 [™ 42 ™ 45
4
5
51 [ ™ 52 —*™ 57
.
.

Figure 6.6..The train-table. First denotes the first train (the from traand last denotes the
first free cell in the circular buffer

The train-table is used during garbage collecting to gefiteeor last car of a train given a train number.
It has been implemented as a circular buffer, which has eohsookup time and little book-keeping.
However, this data structure limits the number of concurtezins. To circumvent this, dynamic resizing
of the buffer would be necessary or a circular buffer with e of the number of possible trains could
be allocated. The implemented train-table is illustratedigure 6.6. To return the last car given a train
numbert, the TrainTable  class use$t - 1) modulusbufferSizeas index into the circular buffer. This
means that when train numbers exceed the highest possibiibarwith the given buffer size, they will
begin at the start again. This works in the train algorithroaaese the lowest order train is continuously

removed making space for new trains, but only as long as thebeuof trains does not exceed the size of
the buffer.

Car Ordering Table

The task of the car-ordering table is to keep the total ordedf cars in the train algorithm. In addition
everything outside the train space (in particular the ithtxctory space) is put into this ordering as the lowest
order element. This is beneficial as it simplifies the teseded when updating remembered sets in the
write barrier, as we will show in section 6.9.

When given an address, the car-ordering table returns atbbpntaining a 32-bit integer where the 16
most significant bits are the train number and the 16 leasifgignt bits are the car number - we refer to
these objects atsain-car elements This way we can compare the ordering of two cars efficienilge
car-ordering table is illustrated in figure 6.7. To returrrari-car element given an address, the memory
manager simply shifts the address 16 bits right and usevdhig as index in the car-ordering table. This
resembles the card marking scheme [WM89]. By initializilggalues of this table to 0, everything outside

the train space is automatically placed in train 0, car O eddtvest legal train number in the train space is
therefore 1.

The size of the car-ordering table is fixed to a size so it is &docover the whole address space. With a car
size of 64KB this results in a 256KB table. The train-car edats do not adapt to this increased number of
cars, only 65536 cars (in each train) and 65535 trains arsilples This does not seem to be a restriction
in any of the tests we have run but with smaller car sizes ang: m&mory available it could be. With a
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0x10000 0x20000 Car-ordering table
0 Fisisiaid
Stack Introductory 1 | 0x00000000
Space Space 2 | 0x00000000
3 fiziaiaid
4 | 0x00010002
5 | 0x00020002
6 | 0x00010003
0x40000 7 | 0x00010004
8 HitH#
1,2 2,2 1,3 14 9 A
10 fiziaiaid
11 Fidisiaid
0x90000 12 fiziziiid
[11] 0x00020001
h 2,1 12 HtHH
ST rZ?e 13| 0x00020003
P 14 0x00030001
2,3 3,1 41 51 15 | 0x00040001
16| 0x00050001
17 | 0x00060001
6.1 6.2 71 18| 0x00060002
19 Fidisiaid
24 20| 0x00070001
21 idisiaid
22 fizisiaia
23| 0x00020004
free car "
te used car - t: train number 215-1| st
' c: car number
####  empty or old value

Figure 6.7..The car-ordering table. #### means that the value of thisyaateither empty or
old and not interesting

very low car size of 1KB the approximate theoretical maximofnytes in a train would be 65MB, and
with the lowest size we have tried, 4KB, it is 256MB. Using oaf the bits currently used for the train
number could solve this for some time.

As the train number continually grows, it is sometimes nsagsto renumber the trains which means that
a new lowest train number must be established and everydeairlement of the cars in the current trains
must be updated. This can probably be quite expensive witfe lneaps, but it happens very rarely in
practice. To avoid a reordering of the trains in the traibleathe new train number of the lowest train is
chosen as the lowest that will result in the same index inrdia-table.

6.4.4. Dirty Cars

When garbage collecting, it is necessary to know to whick oascanned objects have been moved. Un-
scanned objects resemble the objects between the scanenéxhpointer in a copy collector using a
Cheney scan. These are commonly referred to as grey objettisdlor marking schemes [Wil94]. In
the train algorithm unscanned objects are the objects mfyveedthe introductory space or the from car
because of external references, i.e., references fronm o#lns, the stacks, or other root objects. We refer
to dirty carsas cars with unscanned objects.

A hash set named dirty cars always contains references toufrent set of dirty cars. Using a hash
set, duplicate references are avoided and insertion is apcberation. This is necessary during garbage
collection where many objects are moved. As long as thisssebi empty, the garbage collection is not
finished.
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6.5. Remembered Sets

In[IPO1, p81-83] we found that remembered sets were motatseithan card marking for the write barrier
within the train algorithm. Some other virtual machineswsthe train algorithm [SM01, Hud00] combine
card marking with remembered sets (see chapter 8), but #icerite barrier implementation is not the
main focus in this project, we have chosen only to use remesalsets.

A write barrier in the form of remembered sets is used to keagktof interesting pointers, i.e., pointers
from a higher ordered car to a lower ordered car, and poiriitens train space into introductory space. We
have chosen to remember slots instead of objects [HMS92|usecthis frees us from the task of searching
the objects for the pointer, and there is not much use for tijecb header either. That is, we remember the
address where an interesting pointer is situated on the dieagily. This is illustrated in figure 6.8

Introductory Stack
Space Space

Pointer —
Rem. Ref.

Car train,car

(ITTRTTTTTT]

Internal

remembered
Train 1 1,01 11| | 1.2 ot

(from train) 1

External

remembered [T [ T T 1]
ENEIEEEREEEEENEREEEEEEE set

\ Object |:|

. n,0 l. n,1 n,2
Train n = Object with
slot

(TIIIT1] (I (O] Stack E

Train
Space

Figure 6.8.Remembered sets in the heap

It is interesting to note the remember reference from call] 19 the slot in car (n, 1). The pointer in this
slot does not point back at an object in car (1, 1), but thisi$s § fact of life with this implementation of
remembered sets, one cannot be sure that the remembersdistefers to the object it did when it was
created, this must be checked when using the rememberedtdese Removal of these dangling entries
would cause extra overhead in the write barrier, and the nelbeeed set implementation would have to be
able to handle deletions.

The remembered sets were first implemented using a haslosetlie Standard Template Library, STL,
available with most standa@++ compilers, and it is still possible to use this implememtati In order

to be sure about what actually happens when the remembeedrseused, we made our own hash set
implementation. The implementation is not that interestio we will only present a few details. The
primes for the array sizes are identical to the ones STL implatation uses. Growing (to about the double
size) happens when the fill fraction reaches a fixed thresfmidently 0.75). Shrinking never happens
because deletions from the set is not possible. When ingaatid a collision happens, the array is linearly
searched until a free entry is found, possibly wrapping adoifithe end is reached.
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6.6. Object Descriptors

ObjectDescriptor

objectLength=14 x pointerlength
referenceMask

VMObject
[11000000000001xx | objectDescriptor
‘ i Data[0] (pointer) ]
Data[l] (pointer)

Data[2]

Object used in mutator

— Data[13] (pointer)

Figure 6.9.The relation between object descriptors and an object. KopHcity, the figure
shows a reference mask with only one 16-bit integer (the st their value
is unimportant since these are excess reference indidators

The purpose of object descriptors is to hold informationwdhibe objects used by the mutator which
is needed when garbage collecting. Object descriptors arglated to the syntactic categorObiject-
Descriptor> in the gbeta grammar [Ern99]. The object descriptor holdgtle and reference placement in-
formation abouv¥MObiject instances (see figure 6.9) which is enough information fa@mrate garbage
collector.

Objects are indexed as an array of pointers, so with curr2ii3architectures, pointers would typically

have to be four byte aligned. Data fields smaller than thedizepointer are still possible in the mutator

as long as four byte pointer alignment is preserved. Theobbescriptors represent each 32 bit field in an
object with a bit in a reference mask indicating whether thkelfnolds a reference or not.

The reference mask structure for representing refererscepace efficient when there is a high density
of references in objects but less space efficient if objesganerally large with few references. Since
our object descriptors use space proportional to the leofjthe object, it might be appropriate to choose
another design in that case. This could e.g., be a zero tatedrarray of/MObject base offsets indicating
where the references are in the object, since this desighdwme space proportional to the number of
references instead. However, this is probably not a reakis®w as pointers are very common, objects are
small in average, and object descriptors are highly sharadtares.

Alignment of our data is another issue t@bjectDescriptor is involved with. Since an incorrectly
aligned pointer can cause a bus error, @igiectDescriptor makes sure that whatever size is re-
guested, the actual size stored in tBbjectDescriptor is always divisible by four, rounding up if

necessary. This way the allocation system can always adsd siiginating fronDbjectDescriptors
without the concern of creating an incorrectly aligned peinThis ensures tha¥MObjects will always
be four byte aligned as well as the 32 bit fields insideMODbjects .

6.7. VMODbject Layout

The object layout has been changed a lot in the new memorygeaiteorder to reduce the space overhead.
This has only affected the header information stored iriObject class used by the garbage collector;
the object used by the mutator is still placed in the datayamaking the change practically invisible to the
mutator. In the old implementation, where no effort had béene to reduce the header, the header used
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28 bytes on an 32-bit machine, whereas the new implementatity needs 4 bytes or 8 bytes if the object
has been moved (see figure 6.10). The reason, we have donarsefflort to reduce this space overhead,
is that early experiments with space waste showed that ameuthird of the space used f/dMODbjects

was consumed by headers with an implementation where a hiéisete12 bytes. Below we will explain
the transition from the old to the new object layout, field jdi

Old VMObject New VMObject
objectDescriptrorPtr . ( objectDescriptrorPtr |*
Header info
nextVMOPtr : data[1] / forwardPtr
flags Mutator’s object

Header info id

generation
forwardPtr * = Forwarding Flag

carPtr
data[1]

Mutator’s object

Figure 6.10.The old and the new vmobject

objectDescriptorPtr is still necessary because the garbage collector still ieednow informa-
tion about the object such as its length and where it haseeéess. This information is of variable
length and can be shared among similar objects. For thisngtis practical to separate it from the
actual object.

The least significant bit of the pointer is used for a forwagdilag, so this bit is always cleared when
the objectDescriptorPtr is requested. A more thorough description of the forwardiag is
found in theforwardPtr  attribute discussion.

nextVMOPtr is unnecessary because it can be calculated from the lenfgthmation available in the
object descriptor and the fixed size of the header. The lgsicbin aCar can be identified by
comparing the calculatatextVMOPtr against the free-pointer of itSar .

flags was a leftover from the distant past. It was forgotten forrsgltime and unused in the old proto-
type.

id is only used during debugging. It was mainly useful when tadogge collector was tested alone as it
enabled us to identify objects by a number. In the currergtivarit can be enabled, but it is disabled
by default.

generation  was never used since we did not implement a generationahgartollector.

forwardPtr is only used during garbage collection after an object ha&nlmoved. When an object
has been moved, the contents in the old location will neveadoessed again so we choose to use
the first field of the object for a forward pointer. We still me® know when to interpret this field
as object data and when to interpret it as a forward poirtterygh. Since the pointer to the object
descriptor always has its two least significant bits set to because of alignment, we used the least
significant bit as a flag indicating whether the first data fadlthe object is data or a forward pointer.

carPtr  BecauseCar instances are now aligned ok &ddresses wheleis an integer, it is possible to
convert a pointer to anything insideGar, into a pointer to a&Car simply by setting thek least
significant bits to zero. The old implementation did not halignedCars so this was not as easy
at that time.
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data array Thisis where the actual object data is stored. Althoughitteis set to 1 in the class decla-
ration, our allocation scheme makes sure a number of bythsated by thé@bjectDescriptor
following theVMObject are reserved for an object startingdata[0]  of that length.

As mentioned in théorwardPtr  attribute discussion, the first field of the data array is aised
for a forwarding pointer when scavenging in the new impletaton.

6.8. The Garbage Collection Algorithm

In this section we will show how we have incorporated thenti@gorithm in our garbage collector. First
the pseudo code is shown and then a detailed explanatiowll

evacuate train-externally referenced objects from from-c ar
Cheney scan all dirty cars
evacuate externally referenced objects from the introduct ory space

evacuate all objects in introductory space or from car
referenced from the stack space,
checking if other objects in cars in the from train are refere nced
Cheney scan all dirty cars
if( other cars in from train were not referenced from stacks
AND all other cars in from train have empty remembered sets) {
reclaim from train
} else {
evacuate train-internally referenced objects from from-c ar
to the car holding the referencing object or last car
Cheney scan all dirty cars
reclaim from-car

}

reclaim used introductory space

Figure 6.11.The train algorithm in our context

First of all, it is important to note the order objects are@uated from the different spaces. The stack space
references do not give any clue to where an object should hedadn contrast to this the remembered
sets contain information about what object slot and thus wéiathe object is referenced from. This means
that whenever an object can be moved using a rememberethiseshbuld be preferred over moving an
object because of a stack reference; it is best to use thembered sets before the stacks and other root
objects.

6.8.1. Introductory Space and From Car Scavenging Order

Another much more subtle issue is selecting the order in lvtlie remembered set of the from car or the
introductory space should be used. One might think this da¢snatter. However, there are situations
where it does. Consider the scheme shown in figure 6.12.

If the introductory space is scavenged first, the referenme fobject 2 to object 1 would indicate that
object 1 should be moved to train 1, the from train, but thabispermitted according to the train algorithm.
Actually, the train algorithm does not specify wherslitouldbe moved, only where ghould not So as
designers, we are left with the choice of where to put theabjéne idea would be to put the objectin the
last car of the last train, and another to put it as close asilplesto the object we know that has a reference
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Introductory 1
space

remset [ [\ [\ [ ]]

From Car

Train 1

Ext. Rem. Set

(61)

Train 6 3

Figure 6.12.A snapshot of a hypothetical heap before garbage collection

to the object. A few quick experiments revealed no obviousathge of either of these strategies. When
the remembered set of the from car is used next, object 2 withbved into car (6, 1) or at least into train
6. Given a high number of cars and trains, it is unlikely theg tbjects 1 and 2 end up in the same car or
even train, given our strategies for moving objects likeegbjl.

If, on the other hand, the from car is scavenged first, a Cheoay is performed, and finally the introduc-
tory space is scavenged, all the objects could potentialiyg in car (6, 1), and they will certainly end up
in train 6. There is still a drawback of having to scan the rethered set of the introductory space after the
remembered set of the from car has been scanned; some ofttles é@mthe remembered set may refer to
objects that have already been moveainbie objectsThis is never the case when the introductory space
remembered set is scanned before the from car rememberbdcsise a reference from the introductory
space to the train space is not remembered in any remembatred s

When the remembered set of the introductory space is scabo#dobjects 1 and 2 have been moved, and
one of two things can happen.

Introductory Forward Pointer

space -

Rem. Set D%Djjj
(1.0
2

Zombie Objects

From Car

Train 1

Ext. Rem. Set .
Forward Pointer
\ (6.2)
Train 6 ’T

Ext. Rem. Set

Figure 6.13.The hypothetical heap after scavenging car (1,0), Chenagrsng, and scav-
enging the introductory space



62 Chapter 6. The Memory Manager

First, if the reference from zombie object 2 to zombie objebtis been overwritten by a forward poiriter
it cannot point into the introductory space anymore singeaib are never moved there, and the implemen-
tation will just proceed with the next remembered set iteee (Bgure 6.13).

Second, if the pointer in zombie object 2 still points at zéendbject 1, the algorithm will try to move
zombie object 1 somewhere, but since zombie object 1 haadyreeen moved, it contains a forward
pointer, and this will be written to the slot in zombie objé@dsee figure 6.14). Note that it is not trivial to
see that zombie object 2 is in fact a zombie object since tmemgbered set only contains a pointer to the
reference slot, not the object base, but writing this fodvaointer from zombie object 1 into the slot of
zombie object 2 is not an expensive operation. Also notettieateal object 2 already has the correct value
of this pointer as this was set during the Cheney scan thanadsed object 1.

Introductory 1 Forward Pointer Forward Pointer
space ]
= |
Zombie Objects Zombie Objects

From Car 1.0) 1.0

2
Train 1 ‘_‘

—

Ext. Rem. Set
Forward Pointer Forward Pointer
(6,1) (6,2 (6,1) (6,2
2 2 —
Train 6 - 1 - ’T
]

Ext. Rem. Set ‘

Figure 6.14.a) before scavenging the introductory space b) after scgeefithe introductory
space; the pointer in zombie object 2 has unnecessarily bpdated.

A modification of the write barrier could also filter out themember references from the from car to the
introductory space causing the above situation. This mtiesvrite barrier slower for all the stores in

the train space to the introductory space except for thogleeiirom car where it would be faster. In our
opinion none of the above two situations justify such a cleaasthey seem to be harmless.

Some practical experiments show a minor speed increase thibdist car is scavenged before the intro-
ductory space when compared to the opposite order.

The major part of the problem of finding a suitable locatiorgfo introductory space object referenced from
the from train still remains, though. The from car is only asial case of any given car from the from train,

and it is impossible to do the same thing when an introductpace object is referenced from another car
in the from train, at least without scavenging the wholetrd possible solution could be to remember the
objects referenced from the from train and postpone theiceations until every remembered set item has
been checked and then reconsider the set of postponed sbfgdthat time some other remembered set
items may have caused some of the postponed objects to belmoveewhere sensible. Cheney scanning

the moved objects may lead to even more objects of the postiset being evacuated to places where they
are referenced from.

1The first data slot of ¥ MObject is reused for the forward pointer (see section 6.7).
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6.8.2. Stack Scanning

As discussed above, the stack scanning is done after théopsephases because references from the
stack to either the introductory space or the from car do eally give us a good clue as to where to put
the objects referenced (we cannot put them in the stack sggmseme early prototype attempted). Our
interpretation of this is that it must be the closest we gedriddeal situation for creating new trains as
objects that seem to be referenced only from the stacksdedhe objects that are “close to root objects”.
It is still an unsolved mystery how often a new train shouldcbeated. We have experimented with two
different schemes. The first one had a maximum limit of one tnaim for each scavenge, but the train was
created immediately if there was just one object refererficad a stack that needed to be moved. As we
shall see later in the experiments, this has the drawbackoafading a lot of trains with one car that is not
very full. This motivated reuse of these new trains, so amaextnstraint was set demanding that the car
was filled above some threshold before a new train can be.build

An idea for future improvementis to do a Cheney scan befojeatbare evacuated from the stacks. This
could potentially eliminate some evacuations of objedsremced from the stacks.

While the stacks are being scanned, the references aretasead for a reference to an object in any of
the other cars within the from train. Unfortunately this ogtéon is not cheap as each pointer needs to
be checked for membership in every car in the train until oa® Iheen identified. In particular with long
garbage trains and high stacks this operation is expensistaekltems< (fromTrainCars— 1) member-
ship checks are required to conclude that the rest of theicéng train are not referenced from the stacks.
This information is saved for later when reclaiming takescgl.

After the stacks have been scanned, another Cheney scarfasped to update the moved objects and
move and update their referenced objects.

6.8.3. Reclaiming Memory

In some cases it will now be possible to reclaim the entirenftrain. This is only possible when there are
no external references to it. It has already been checkethehthere are references from the stacks. If the
external remembered sets are also empty, it can be conclhdethe from train is reclaimable, otherwise
only the from car is. In the latter case internally referahobjects should still be rescued to the from train
using a scan of the internal remembered set on the from damfet by yet another Cheney scan. After
the space in question has been reclaimed, the introdugbagesis reclaimed too, and the scavenge cycle
is over.

6.9. The Write Barrier

The job of the write barrier is to do the actual pointer writelaupdate the appropriate remembered set if
necessary. In figure 6.15 the write barrier is shown wipldateVMReference()  inlined. We will now
explain the interesting lines of this code.
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void setVMReference(void **refAdr, void *target) {

/Iset reference
*refAdr = target;

/lupdate remembered sets
CarTrain_t crTrSrc = trainGeneration.getCarTrain(refAd r;
CarTrain_t crTrTrg = trainGeneration.getCarTrain(targe t);

if(crTrSrc > crTrTrg) { 10
if(crTrSrc.getTrain() == crTrTrg.getTrain()) {
/linternal reference
(Car_t::getCar(target))->addintRememberReference(re fAdr);
} else {
llexternal reference 15
if(introSpace.member(target)) {
introSpace.addRememberReference(refAdr);
} else {
(Car_t::getCar(target))->addExtRememberReference(re fAdr);
} 20
}
}
}

Figure 6.15.The write barrier implementation

The parameterefAdr is the address of the reference that will be updated to poitarget . The
updating of the remembered sets and the tests involvedsrathithe most interesting aspect of this piece
of code. In lines 7-8 the ordering of the reference and thgetais retrieved and in line 10 these are
compared. Only if the target is of higher order than the ifiee is it necessary to update remembered
sets, and reference updates all inside either the introduspace or the same car are also filtered out
here since their cars and trains would be equal. Line 11 iienteference updates that are internal to a
train usinggetTrain() . In line 16 we distinguish between external references whtee target is in the
introductory space and the train space, and update the pyigremembered set. It is important to note
that we can omit checks for references to root space bechase aire not permitted as object descriptor
marked references, otherwise line 19 would have to includeegk for target not being a member of root
space.

It is important to note that according to [HMS92] many pointgites seem to occur during initialization.
If this is the case, most of these objects would be situateddnntroductory space, and the write barrier
will then already return in line 10.

With this implementation only the remember reference upsliatre not constant time. Remembered set
updates have a worst case insertion tim®©@h) wheren is the number of elements of the hash set when
the hash set is resized, but in most cases the rememberdthsetan insertion time @(1).

6.10. Interface

The memory management component should be as loosely chioplee rest of the system as possible as
it is of great advantage not having to know the details of #mgge collector when implementing the code
executing part. For this reason we define functions thatalegendent of the specific collection algorithm

and header information in objects used in the garbage ¢tolleln this section we present the classes and
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methods the mutator needs to know and use in order for the myemanagement to work as intended.

6.10.1. Initiating Garbage Collection

Garbage collection is initiated by invokimygrbageCollect() on the globalinstance of th&arbage-
Collector  class. Itisimportant to determine when this method shoalohioked, whose responsibility
it is, and how often it should be invoked.

One way to go is to create a “magitioc() " that always allocates memory but sometimes also invokes
garbageCollect() . This is nice because the allocation call is required anywaagl no extra calls are
needed for doing the garbage collection. We have choseglatlglidifferent strategy where the memory
manager is passed a function pointer to register the mutdtoe memory manager calls this function to
signal when it would like to garbage collect at the next safi@p It is up to the mutator to determine when
this safe point has been reached. The garbage collectasigilhl the mutator when the introductory space
has been filled up so the garbage collection frequency is@ihsdetermined by the size of the introductory
space. New objects are allocated in the train space unblggrcollection has been performed.

The reason for our unusual strategy in this respect is thgivé¢s more freedom to the mutator. During
our implementation in the last semester we discovered wieatalled the this-problem; when an object
referred from theC++ stack was moved, itdis  pointer would no longer be valid when the object was
reentered (see chapter 5). The this-problem can be germtatio garbage collecting while not having
the complete root set which is bound to cause trouble. Thigvated our current scheme where garbage
collection can only occur at specific places controlled g tutator. If garbage collection could occur
every place where memory was allocated directly or indiyedbtiring instruction interpretations, we were
afraid that we would not be in a consistent state sometinges ey allocating two or more objects and
afterwards setting up pointers between them and finallyngedt pointer to keep them alive.

6.10.2. Reference Placement in Objects

Before memory can be allocated for an objectpaject descriptomust be created or found (they can be
shared if they are not modified during execution). Objectdptors are placed outside the heap memory
managed by the garbage collector and can be allocated dsmndefaultnew operator. The constructor
takes dength parameter in bytes andmask-value which can be used for initializing the descriptor
to having references at certain points. The purpose ofrtagk-value is to allow easy setup of objects
which have no references in which case it should be set todhjects which only have references in which
case it should be set to the number which is all ones in birgpyesentation. In the last case the excess
reference indicators (see figure 6.16) can safely be ignasatb reference beyomehgth (converted to
references) are considered by the garbage collector.

Object descriptors can be further customized after indi@dion by using the methods in tl@bject-
Descriptor  class:setReferenceAt(position) andclearReferenceAt(position) , but
care must be taken if the object descriptor is shared betoigjects, as changes to the object descriptor will
affect all objects sharing the object descriptor. Thisdeabf altering an object descriptor while executing
is not exploited by our current mutator.

6.10.3. Memory Allocation

Memory allocation is performed using a number of macrikcateVM() for allocating normal col-
lected objectsallocateRootVM  _NT() for allocating non-traced root objects like integer stacksd
finally allocateRootVM  _T() for allocating traced root objects. Each one of these matakss an
object descriptor reference and returns a pointer to tleeated memory.
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Figure 6.16.1llustration of the reference mask of the object descritban object used by
the mutator with a size of four references. The object dptarindicates using
four bits that all the fields in the object are references, #ralrest of its bits are
excess reference indicators

6.10.4. Setting and Changing References

In order to implement some garbage collection algorithnauiting ours, it is necessary to be able to trap
pointer updates (see section 4.2). To handle this the waiteds function:setVMReference(object,
reference-location, new-reference-value) should be usedbject is the object embed-
ded in aVMObject that the pointer should be modified in. This is no longer usgthle new garbage
collector and is only there for compatibility with the old rtgage collector. This has no influence on
performance whesetVMReference()  is implemented as a macreeference-location is the
absolute location of the reference in that object, asa-reference-value is the new value that
should be placed into the reference-location.

It is vital to understand that this function should only bedisvhen handling references from objects
embedded in/MObject instances to other objects embeddeMObject instances — in other words
references which should be handled by the garbage collentist be modified with this function, and
others must not. A notable exception to this is reference®td objects. These must not be set with
setVMReference()  and there is no need to since these objects are never moved.

6.11. Debugging Memory Management Systems

As stated in [Hud00], debugging memory management systemslifficult task, and we could not agree
more. We have approached this task in multiple ways. TheMiest to print a lot of ad hoc debugging

information during garbage collection. The amount of infiation produced this way quickly increases
and becomes difficult to comprehend so spotting problemisdnmplementation gets even more difficult.
A part of this debugging information is only relevant in ormntext, while other parts are only relevant in
other contexts, while even other contexts may require sdrtieeanformation from both of the former two.

Commenting out printing of debug information is one way topithe output to the problem in question,
but as the size of the code increases this gets impracticial.also a tedious task to comment out all the
print statements when code is “ready for release” and rdamgtnem when a new bug is introduced later.
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6.11.1. Control of Debug Printing

To solve these issues a small print control system was dedignd implemented. This system is based on
macros in theC++ preprocessor, enabling us to redefine them to do nothing aleslease” is build and
thus causing no performance overhead in such versions.

When development versions are built, the first thing one rdass to set up what categories of debugging
information should be printed and which should not. Thisae@using th©B ENABLE(<category>) ,
DBENABLEALL, andDB.DISABLE(<category>)  macros. An example of such a category could be
“gc_remset” to indicate that it has something to do with the ggelllector and the remembered set. Each
category is assigned a unique forth running number useddex iin a global table. This table remembers
whether message categories should be printed or not antbtive aacros only modifies it.

Whenever something is to be printed in this system, one massthe macrdB OUT(<category>,
<what-to-print>) . Only one<category> can be specified, so one will have to choose carefully,
but this has not proven to be a severe restriction. More itaodly <what-to-print> is not restricted
this way; strings can be composed with the standatet << operator. The macro basically wraps the
print statement in an if-construct where the condition eggion consults the category-table with the given
category index.

In addition to this control of the output, indentation of i&put also proved to increase its readability.

Another thing that makes it easier to realize where in thelzytde the virtual machine is executing is the
possibility to pretty print the instruction lists of gbc-ingparts. This includes nice indented printing of
multi-line instructions and attribute initialization &

6.11.2. Heap Consistency

After having worked with the implementation of the memorymagement system for awhile, we discov-
ered that a common bug symptom was an illegal pointer sommwhehe heap. Our first reaction to this
was to implement methods for printing out the entire heapthrdassociated remembered sets. This was
very powerful as long as the heap was small and populatditiity (no real interpretation was going on).

When our virtual machine component was attached instebdcame impractical to trace bugs this way so
we implemented methods for doing the work for us. The firssigar collected all valid reference values
by scanning the entire heap. This was followed by an additisoan which checked every reference
in every object of the heap against the valid referencess Véision had the flaw that it did not detect
inconsistencies in the remembered sets, which impliedahadrror in the remembered set update would
only be discovered when the piece of memory with the cordiptéenembered set was scavenged. Only
when checks of the remembered set for each reference weeglatlte heap consistency tests became
really good at stopping at the right moment in execution. \&kfied the remembered sets by checking the
existence of remember-references, i.e., some rememfeFenees must be present while others must not
according to the ordering of trains and cars. Both the irgtbrand external remembered sets are checked
this way.

This check of the heap consistency is quite expensive btingr much quicker than doing the work
manually. An unpredicted advantage of heap consistenaykstis that they can also be used in the virtual
machine component for debugging instruction implemeoteti Errors like setting references without
using the write barrier and wrong values in references wasgl\etracked this way. Since the check is
quite expensive, it cannot be run between each instructiomasonable speed. Counting the instructions
and doing a check each, say, every 1000th instruction, givesigh idea of the place in execution where
something is failing. gbvm can then be instrumented to dakfid&etween every instruction after e.g.,
the 151000th instruction. This typically identifies the exiastruction that is failing. However, there are
instruction bugs that cannot be identified this way eithe@bse they are an interrelation between two or
more instructions or because the error is of a semantic @atur
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Running the check each time the virtual machine switchewdst interpreting byte code and garbage
collecting and the other way around, also places the redpibtysof a bug quickly.

6.11.3. Data Display Debugger

To debug our system we also used the GNU Project applicafiata Display Debugger /v 3.d¢d)
[Pro01]. ddd is a graphical front-end for command-line debuggers suchresGNU Debuggerddb).
When debugging the virtual machine we used the debug pntsite bug even when they resulted in
segmentation faults (what they usually did). This was haodkvibut it also resulted in a very thorough
code walk-through. When later we became aware of the geslitfddd, it was used to back-trace from
segmentation faults. This made debugging much easier gsdsrihe bug was not placed in a macro,
sincegdb and thereforeddd cannot back-trace into macros. In both the virtual machime memory
management component we use macros often and this somesdnaades the applicationdfld since it

is not capable of expanding macros (as far as we know).

6.11.4. Rational Purify

Rational Purify [Cor01] is a commercial but very efficientpdipation debugger. It excels in detection of
memory leaks and memory accesses outside allocated raWgessed a 14-days evaluation copy of this
product to identify a number of bugs in our system. Purify mag e.g., realize that a problem with an
unstable version of our system was caused by main-part idarinays being allocated one byte too short.
The source of this problem would have been difficult to idgmiithout a tool like this. Commonly nothing
seems to happen immediately after a byte just outside acaatld range is written and sometime, perhaps
much later, the program fails in a place where it never digbkeefor no apparent reason, and when trying
to identify the problem, it suddenly vanishes because theglging code needs memory allocations too.
This tool is capable of pinpointing both the location of thle@ation and the illegal read/write.

The only drawback to this tool that we are aware of is its itightio do bounds checking inside the blocks
allocated with e.gmalloc() ormemalign() since itis not aware of types. It only considers allocated
versus not allocated. As we allocate large blocks for oupread manage these ourselves, the bounds
checking is not operational in the majority of the memory ager. It does e.g., not seem to have any
problem with the way we put new objects in the end of and oatsits, although the array size of one
might indicate this was a terrible mistake. In this case ithf®rtunate since this is intentional, but it also
means that it cannot detectMObjects have too little memory allocated for them.

6.11.5. Discussion

Our experience is that when one starts to rely on that thegtgbg system will report newly introduced
bugs, one gets the courage to experiment with the systertikdteshen a circus acrobat has a safety net
he tends to have the courage to try more crazy stunts thamutithe safety net. In particular when the
system approaches a stable state, and one starts to expeviitte minor changes, it is beneficial to be
able to render probable that new changes do not break thensystotherwise quickly identify problems
introduced.

The debug printing system of gbvm is one of the generic phaswill probably be worth using in future
projects. The heap consistency check is more specific foranemanagement systems and thus not as
widely applicable, but it has been a very powerful tool irckiag bugs. Thaldd/gdb combination and
Purifyd are general debugging tools that are useful in most apjitdevelopment.



7. Experiments

In this chapter we present some performance criteria tharaony management system should meet. Then
we analyze how these criteria relate to our memory managesystem and how they can be measured.
Before presenting our experiments we outline the generdhoa®logy used. The chapter ends with a

section that discusses the results and conclusions drawntfre experiments.

7.1. Performance Criteria

A garbage collector must be a compromise between the beltaviar

7.1.1. Garbage Collector Time Efficiency

How time efficient a garbage collector is can be measuredeasrtte it uses to garbage collect. This can
be measured as the total, mean, and maximum disruption time.

But how do one conclude that a garbage collector is nondise® Disruptiveness is hard to quantify,
since it depends on the requirements to the program beirgutedt It relates to the real time demands for
a system. A real time system can be a hard real time systemafdt @eal time system. The difference lies
in the type of deadlines the system must obey. Whereas a kadlide must be met, a soft deadline can
be missed from time to time [Sta97]. If hard deadlines shdagldnet, it must be ensured that a garbage
collector has a well defined worst case maximum garbageatitetime and frequency.

With typical train algorithm garbage collectors it is imgdse to meet hard real time demands because
there is no special handling of popular objects. Still, lowan time disruptiveness is an important perfor-
mance criteria in applications where responsiveness isitapt, e.g., interactive applications.

7.1.2. Mutator Time Overhead Related to Garbage Collection

It is vital that the memory management component has liffieceon the time used by the mutator at
run-time. A memory management systean affect the time used at run-time in at least two ways. The
overhead of the write barrier to track interesting pointarsd the overhead introduced when new objects
are allocated.

7.1.3. Garbage Collector Space Efficiency

It is important that the garbage collector is space efficieat, it utilizes its allocated memory well. A
garbage collector can waste space in several ways. It cacasdl blocks without using them at all. It can
also waste space inside used blocks as both space allocat#®hl objects and space not allocated by
objects.

There are also other sources of space waste in garbagetoddle¢n our case, we waste space used by
VMObject headersCar headers, the train table, the car-ordering table, and thremgbered sets, to

69



70 Chapter 7. Experiments

mention some. The most interesting, in our opinion, is trecepunused in used memory blocks (cars or
introductory space) and the amount of dead objects in thp.hea

7.2. Possibilities for Analyzing Our System

In this section we analyze the possibilities for analyzing system.

7.2.1. Introductory Space Size vs. Car Size

The sizes of the introductory space and the cars are beltevee a significantimpact on the performance
of the virtual machine both with regard to time and space eomion. The size of the introductory space

effectively determines the garbage collection frequemmgesgarbage collection is started shortly after the
introductory space has been filled. This is important sinb@her frequency makes the garbage collector
better at keeping up with the mutator creating garbage ithe of the cars is kept constant.

Since the majority of objects are assumed to have a shoririfeeasing the size of the introductory space
should improve performance as a smaller part of the intramyicspace will have to be copied. This is
expected to reduce the overall time used for garbage cmlecdbut it is difficult to observe this alone.
When you increase the introductory space size, the numbearsfscavenged will be reduced too, thus
further reducing the garbage collection time used. Whea#isemption of a short average lifetime of a new
objects does not hold, a large introductory space may impaatisruptiveness during garbage collection
since a lot of objects will have to be copied. With gbeta itasnenon that many objects do die young since
method calls are also objects. If these activation-recéeddbjects were placed on a stack instead, the
garbage collection overhead due to method calls would beeelsed. A large introductory space and/or car
size should reduce the write barrier overhead since it ispleto create references between objects inside
the same block It should also increase the probability of objects refeieg each other being placed in
the same block. The reason is that there is a greater chaatc@ghb object graph fits inside the block when
the train algorithm evacuates objects. Another reasoraisttiere are more objects inside the block so they
coincidentally happen to be in the same block. The bettalitycmakes the garbage collector better at
reclaiming garbage structures quickly [SaCLO0O0]. Bettemldy also makes the CPU execute faster since
the number of page faults is decreased and the caching lein@afithe CPU is improved too.

7.2.2. Write Barrier Performance
The performance of the write barrier is also expected to laaignificantimpact on the overall performance

of the system. It would be interesting to know if the write ti@rconsumes so much time that a redesign
is required for acceptable performance.

7.2.3. Allocation Performance
Since gbeta is very allocation intensive, we suspect thipaance of the allocation routine is important.

As with the write barrier performance it would also be intgieg to know if our allocation routine is
unacceptably slow.

7.2.4. Altering The Algorithms

The train algorithm allows some freedom in various asp@&sgecially with regard to the destination when
objects have to be moved, and the policy for creating newsrand cars. These policies are based on

by blockwe mearCar or IntrodoctorySpace , hotMemoryBlock
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somewhat qualified guesses, but we would like to change titlatsystematic experiments. Depending on
how thoroughly the effect of changes to the algorithm is ez, it quickly becomes tiresome to conduct
the experiments and evaluate the results since each newendent change doubles the number of test
runs required when all combinations are tried. This exptinkgrowth discourages us from doing a lot of
these experiments although they are very interesting. @hBn we suspect the presence of a problem will
such experiments be justified.

The experimentation framework developed with this thesielatively user-friendly, so it is possible for
memory management researchers or others to continue abthewghere we are now. It is possible to
experiment with parameters such as car and introductogesgiae, and with some source code knowledge,
it would also be possible to experiment with algorithm chesguch as changing the write barrier algorithm
or changing the policy used to create new trains.

7.2.5. Profiling

Profiling of a running executable is a way to reveal which padnsume large fractions of the total exe-
cution time. The compiler we used++, has builtin support for profiling when given an extra argume
This profiling is based on function call-counters and pad@dmpling of where in the code the processor
is executing. The sample period is 0.01 second and not ufieatle. When a program only runs a short
period of time, this gives a high uncertainty because ongvagamples will be taken. For this reason it is
possible to combine the output of many runs to get a bettéaiogy. For more information on the profiler
we have usedyprof , see [GKM82].

7.2.6. Overall Time Efficiency

Our virtual machine must be fast overall since this is vitaldny virtual machine. An efficient gbeta virtual
machine could also spread out the use of gbeta. Althoughigimiot the focus of this thesis it is interesting
to see how competitive gbvm is.

7.2.7. Choice of Analyses

As our hypothesis states, we focus on memory managementspedielly what happens if some of the
parameters and policies in the train algorithm are modif\&. have therefore chosen to do the follow-
ing experiments: measuring space performance when atéhi@ car and introductory space size (see
section 7.4), time performance when altering the car anddiuictory space size (see section 7.5), experi-
ments with the policy used to add new trains (see section M&surements of the time used in the write
barrier (see section 7.8), profiling the system to identifyetfraction used by different parts of gbvm (see
section 7.9), a speed comparison of the existing gbeta &rgcsystems (see section 7.7), and finally a
little experiment where we compare gbvm with the Java vimoachine (see section 7.10).

7.3. Methodology

In this section we present the general methodology usectifollowing experiments. That is, we present
the hardware used, the test programs used, and the genesahgptions and uncertainty connected with
the experiments.
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7.3.1. Hardware and Software Used

The experiments that involved time measurement were albruthe following hardware (see appendix B
for more details):

CPU Pentium 133 MHz (with fOQbug) — 53.04 bogomips.

Memory 64MB (60ns EDO-ram)

PCl-devices 10/100Mbit Ethernet controller, ATI Mach64 VT VGA-conttet
Operating System Linux 2.2.14-5.0 (Redhat 6.2)

Compiler GNU g++ 2.95.3 with i586 target CPU

7.3.2. Test Programs

Since gbeta is neither a very well known nor a widely used lagg, and since we do not support con-
currency and repititions, we only have two sources of tesgmms: The programs used to test gbeta
(implemented by Erik Ernst) and programs we have implenteateself. This is a problem since [ZG92]
has pointed out that the only way to really test the perforreanf a garbage collector is to use real-life
programs as test programs [ZG92]. Even though this is a probit is common to use self-implemented
programs to evaluate memory managers [HMS92]. This getsi@matic when one implements test pro-
grams to demonstrate the advantage of specific features ivea gnplementation instead of checking
whether it really is an advantage in real programs. Moredhertest programs, we implemented, tend to
be a lot shorter and have the same behaviour repeated fogditoa which is probably not representative
for the majority of real programs. In effect this means thatiteliability of the results is not as great, as we
would like because a new set of test programs could changeshiés considerably.

We have implemented the majority of the following test prangs. In appendix A all bust-norep-
3.gbc andtst-norep3BO.gbc are listed.

tst-norep3.gbc A test program originating from the development of BETA. Wavé modified it to
remove or recode parts using repetitions, concurrencytlmrainsupported instructions. We have
added a loop to the main do-part to make the program run the sawhe ten times and removed a
section where big object handling was tested.

The purpose of this program is to bound test a given gbetauioecsystem. It consists of fifteen
test methods that test everything from relational openstio virtual attributes.

tst-norep3BO.gbc The same atst-norep3.gbc butincluding the test where big object handling
is tested. The big object test proved to have a significanaghpn the behaviour of the memory
manager, so we included both the version with and withosttdst.

allocator.gbc The purpose of the program is to allocate several small tdbpred invoke them, and
thereby create a lot of short lived objects.

cruncher3.gbc This program is both allocation and computational reldyiveeavy. It constructs a
tree breadth-first, and after the tree has been construcitedates the entire tree three times using
depth-first search.

constAlloc.gbc Does the same aguncher3.gbc  but during the depth-first search, a sub tree is
created and a specific node in the original tree is repeateglgced by this sub tree. This results in
a program that constantly allocates the space used by tiiesub

dfstree.gbc Does the same asuncher3.gbc  except that the tree is constructed depth-first. This
is expected to infer better locality of reference than a ttiedirst creation.
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cruncher3JAVA.gbc A simplified version ofcruncher3.gbc =~ made to enable a more even com-
parison between the Java virtual machine and gbvm.

cruncher3.java A program that does almost the sameeasmcher3JAVA.gbc |, but implemented
in Java.

derive.gbc  This computationally heavy, but allocation and garbagdetligogram computes a number
of product sums 50000 times.

simple.gbc  Calculates 1 + 1 a thousand times. This program was conettactincrease the number
of speed comparisons between gbetai [JJWO01] and gbvm.

In the following tests we have tried to select the source fifieg gave the most distinct and interesting
results. Especiallgruncher3.gbc  anddfstree.gbc yielded very similar results in some of the
tests, so only thdfstree.gbc was used. Alsoderive.gbc  andsimple.gbc  were excluded from
the garbage collection tests because the jobs were notisnfficallocation intensive and the results were
very similar.

7.3.3. Presumptions and Uncertainty

We are not aware of any comparable setup and have not imptethether garbage collection algorithms
to compare with this one e.g., one with a copy collector inithieductory space. This is not a problem
since the purpose of these experiments is to try out some seasiand see what happens. Besides that,
our virtual machine is executing gbeta — a not so widespraaguage — so we only have any one gbeta
executing garbage collecting environment to compare widéimely gbetai [JJWO01].

Test Program Uncertainty

As discussed in section 7.3.2, the choice of test programs isiportant source of uncertainty.

Hardware and Setup Uncertainty

To reduce the uncertainty originating from external fast@hile executing tests involving time measuring,
our test machine was running in single user mode with onlgresa other processes running. Also the
networking and swap space was disabled.

Since the resolution of thtme command is only 0.01 second, it is important that the pramessthe
test hardware is not too fast because this gives bettestitatimeasuring certainty with the same number
of observations.

Size Ranges of Introductory Space and Cars

In some of the following tests, we have chosen to use a rangie@s for the cars and introductory space:

Car sizes 4KB, 8KB, 16KB, ... , 256KB
Introductory space sizes4KB, 8KB, 16KB, ..., 1024KB

We make no claim that interesting sizes cannot exist outbielse ranges, but it was impractical to include
more sizes as the total execution time of the tests wold be lerger, and some setups would use more
memory than available on our test machine. The reason fdotier bound is that the lower of these sets
the limit of the maximum object size. We found it unacceptatit to be able to handle objects bigger than
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4KB. The larger bound was found by looking at the setup in [§§$®2] and doubling this twice. The
reason why the introductory space is doubled four times8)linstead of two is that we suspect that the
introductory space would have to be larger than a car beazfitke common short lifetime of objects.

Test runs with large introductory spaces suffer from very feeasurements for some of the test runs and
thus have a high uncertainty. Increasing the certainty @$¢hwould require us to increase the size of the
test programs (e.g., in number of iterations), but this haerg high time cost with some combination
of the smaller introductory spaces and large car sizes. iEhédso a major reason why larger cars and
introductory spaces have not been included.

The choice of the introductory space and car size somewlpgtidis on the present hardware performance.
The chosen ranges might be too small if similar experimert®wlone in the future, and correspondingly
too large, if the experiments had been done e.g., ten years Sice our test hardware is both slower
and have smaller main memory than todays common hardwareiglet have chosen too small ranges.
Again, our generic experimentation framework makes it idsdo easily conduct the same experiments
on more up-to-date hardware with other ranges and largeptegrams. Our hope is that the results will
be independent of the actual sizes used and show a tendemesatieable to larger sizes.

7.3.4. Structure of Experiments

In each of the experiments in the subsequent sections waiexpke purpose of the experiment, present
the method used and which subset of the test programs is pigsent the results and finally evaluate the
experiment.

7.4. Space Utilization in Cars and Introductory Space

The space waste on the heap relates to the size of cars angliatribductory space. The purpose of this
experiment is to find an optimal car size and introductorycspsze with respect to space waste.

Space wastis the amount of memory allocated by gbvm ¥8viObjects which is not used. Space waste
can be divided into two kinds: Space occupied by dead ob@@utspace which is not allocated at the end
of a car or the introductory space, i.anused spaceThese two kinds of space waste are not equally bad.
The dead objects are more difficult to remove from the system tinused bytes because dead objects can
reference each other across car/introductory space boesdad thus keep each other alive for a while
causing collecting overhead. Unused bytes on the other dambt cause additional processor overhead
and even reduce the disruption time as less heap is scavenged

We have decided against including the memory used by themdraed sets and stack space in the mea-
surements; only the train space heap and introductory dpeae are being observed. If the other sources
of memory consumption were included, it would have been nddfigult to say anything about the cause
of a given problem. The stack space is currently unintergstis the memory consumption is constant.
Also, the remembered sets is a science in its own right anelhdes a more thorough investigation.

7.4.1. Method

To measure the amount of live, dead, and unused space inttbduntory space and the train space, the
memory manager is instrumented to mark all the live objakésthe mark phase of the mark and sweep
algorithm. Instead of the sweeping phase, the bytes in tiee ttategories are counted and the objects are
unmarked. Extra per-object overhead is avoided by usinddivweard flag for the object marking. This
data collection is run before and after each garbage calecand the numbers are output separately for
the introductory space and the train space. This allows irsviEstigate the train space and introductory
space separately and combined.
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Since the result of this test is not dependent on hardwaredsjtéhas been conducted on faster Linux
hardware.

Behaviour over Allocation-time

To get an intuitive understanding of the behaviour of thé pesgrams and the handling from the garbage
collector, the live, dead, and unused bytes are shown in 2phgrwith 4KB introductory space and 4KB

car size, and the new train creation policy is used (whichéssubject of section 7.6). The choice of 4KB

introductory space size gives the finest granularity in trepgs. With other introductory space and car
sizes, the graphs changes. The live graph is only dependethieantroductory space size, and the two
other graphs generally vary with both introductory space sind car size.

The free variable in these graphs is what we would alidication-time— two samples are taken each time
the introductory space is filled; the first sample just befbeegarbage collection and the second just after.
The unit on the first axis contains two such samples withithéacrement of one, thus the unit shown is
the number of allocations of about the introductory spaze.si

Only the train generation is used the in dead and unused phtiese graphs because the introductory
space introduces a lot of “noise”. Before garbage collectiw introductory space is filled with live and
dead objects, hardly any space is unused, but after thectiole all of the introductory space is unused.
This does not affect the number of live bytes since these angethto the train space, but the dead and
unused graphs jump a lot because of this, particularly vaithd introductory spaces with few live objects.

Effect of Introductory Space Size and Car Sizes

For the introductory space alone, the train space alonethatdvo spaces combined, we (for each) generate
three 3D graphs showing the average amount of live, deadjraused space against the two free variables:
introductory space size and car size. This produces a tbtahe 3D graphs for each test file. As the live,
dead, and unused graphs show fractions of the whole spaa¥ invéstigation, adding the three graphs
point by point would thus yield a plane with the value 1 evelmgre. It also means that the graphs affect
each other as a growth in a region of e.g., the unused fraetitbrinduce a smaller fraction in the two
other graphs in that region if these are unaltered. Thisg@shmakes the graphs harder to read as it is
more difficult to observe in which of the fractions that is ireihg the change. The absolute amount of live
objects is, however, somewhat constant (see section 7sb.2)drop in this graph usually indicates a rise
in one of the two others.

The complete set of 3D graphs can be seen in appendix C. Iilshemoted that the first garbage collection
is not included in the calculations since the system had adtany chance of stabilizing itself; the train
space is always wasting a large fraction of its space befdrasihad a chance to be filled.

7.4.2. Uncertainty

It is interesting to note that some virtual memory systerhs (ine in Linux at least) will not allocate the
memory pages a process has requested before the pagesnezherr actually accessed. This means that
the unused space, which we calculate as the memory fromakepfinter of a car to the end of the car,
may not actually be allocated. This again means that our uneaments may not be accurate when new
cars are allocated, but after the car has been reused a arfujpress all memory will be allocated for it.

There is also a uncertainty related to how often we measerarount of live, dead, and unused bytes. If
we measured this between each executed instruction, atheasurements would be directly comparable
since we would then be sure that the number of bytes measweltlwe accurate. As this requires too

much processor time to do this, we do the sampling before #iademach garbage collection. This means
we get fewer measurements with larger introductory spacséstais our numbers are more uncertain as the
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size of this space rises. This is particularly bad since tivalver of garbage collections (and thus samples)
is halved each time the introductory space size is doubleldat\his all means is that the measurements
with the same introductory space size are directly comparéiut not necessarily accurate) since the
samples have been taken at the same time. These rows witlrtieeistroductory space size are only
approximatively comparable with other rows having the arofixed introductory space size. If we had to
redo this experiment in the future, we would consider elitiimg the uneven sampling of the experiments
with small and large introductory space sizes.

7.4.3. Results

All the 3D graphs presented in this subsection can be foursgpendix C with both the old and the new
train creation policy. Here we only use results from the nelicy, though.

Source: tst-norep3.gbc, Introductory Space: 4KB, Car: 4KB, Train Creation Policy: new
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0 | | |
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Allocations of about 4KB
Figure 7.1.Memory behaviour of est - nor ep3. gbc with 4KB car and introductory
space sizes.
The figure 7.1 shows the allocation graphsthorep3.gbc . Although this program executes a lot of

differentinstructions during the tests it is performirichas very low memory requirements. Even with the
smallest car size of 4KB all live data can almost be storeidiéna single car.

The allocation profile foallocator.gbc shown in figure 7.2 displays low and very constant memory
requirements. Adding the graphs gives a value very clos&® <o this test typically only needs one car
in the train space.

Figure 7.3 shows the allocation graph fmnstAlloc.gbc . This program initially allocates a large
amount of memory of which some is later released. Towardstigethe memory requirements for the live
data stabilize on about one third of the peak value. Thistysigows the garbage collector having trouble
collecting the dead objects.

The prograndfstree.gbc in figure 7.4 shows an allocation curve constantly rising.e Titie bytes
allocated peaks at about 1.9MB and relatively few dead bgxést in the system. This is actually the
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Source: dfstree.gbc, Introductory Space: 4KB, Car: 4KB, Train Creation Policy: new
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Figure 7.4.Memory behaviour aif st r ee. gbc with 4KB car and introductory space sizes.

example from the set affstree.gbc runs with different introductory space size and car sizechihias
the highest dead bytes fraction.

In figure 7.5 the testst-norep3B0O.ghc includes the big object test in addition to the testssbf
norep3.gbc . This additional part of the test periodically allocatesmye chunk of memory which is
quickly unreferenced. This allocation of more than 300KBaiger than the largest car size used in the
tests (256KB) but smaller than the largest introductorcs@MB).

To show the effect of varying the introductory space and @ass we now show the results of taking each
of them to their extreme as well as setting them both to 32KB esmpromise. This is all done with the
testtst-norep3B0O.ghc as this has a very visible effect on the execution of this sefife.

First, increasing the introductory space to 1MB resultshia graph shown in figure 7.6. The large intro-
ductory space filters out many of the allocation peaks initleegraph as well as a large part of the garbage.
Compared to the situation in figure 7.5 the amount of deadstigitthe end has been decreased from about
1.9MB to about 1.1MB. It is unlikely that this system will beaf at reclaiming the dead bytes in the train
space, since the introductory space size dictates a lovesgawate, and a structure of 300KB takes up at
least 75 cars. If these cars are not lined up in the from trach“anpolluted” by live objects, it may take
quite a few garbage collections before this structure valtéclaimed.

Increasing the car size instead of the introductory spame shanges this situation (see figure 7.7). Here
the garbage collection rate is high and a larger part of tia space is scavenged which makes the garbage
collector much better at keeping up. It is clear from the grtyat the train space only contains between
one and three cars.

Setting both the introductory space size and the car siz&€kB3gives the result shown in figure 7.8.
Compared to figure 7.5 this graph looks somewhat similarjthsita little better at reclaiming dead bytes.
This is probably the effect of the larger car size; the trgiace is divided into fewer cars and can thus be
scavenged more effectively.

Looking at the 3D space utilization graphs for the train gpanly, the programsst-norep3.gbc
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Figure 7.9.Average unused fraction in the train space executiag- nor ep3. gbc

andallocator.ghc seem very similar. When considering their allocation pesfiln figures 7.1 and
7.2 this is not surprising. An interesting part of these g3 the way the unused space is taking up an
increasingly high fraction of the total amount of space &sdilze of the car rises while they are virtually
independent of the size of the introductory space (see figi®e The reason for the independence of the
introductory space size is that very few live objects areoiiticed (see figure 7.10). The reason for the
high amount of unused space with larger cars is that the zartmcomes larger than the total number of
live bytes and thus forces the unused fraction up.
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Figure 7.10.Average live fraction in the introductory space executirsg - nor ep3. ghc
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The live fraction oftst-norep3BO.gbc in figure 7.11 is one of the most peculiar graphs in the whole
set. It shows that the live fraction is highest when the ca & larger than the introductory space size, but
not too much larger! The drop towards the corner where theizaris large and the introductory space is
small can be understood by looking at the two other graphthiertest series (figures 7.12 and 7.13). As
discussed when the allocation profilegstfnorep3BO.gbc were presented earlier in this subsection,
the dead fraction clearly demonstrates the potential prabdf garbage collecting too slowly when the
introductory space is larger than the car size (see e.grefigis). This problem is vanishing as the corner
in question is approached thus making room for a higher Inaply in this corner. The drop in the live
fraction towards the corner is caused by the rise of the uhfraetion which again has to do with the large
car size wasting space.
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Figure 7.11.Average live fraction in the train space executingt - nor ep3BO. ghc
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Figure 7.12.Average dead fraction in the train space executisg - nor ep3BO. gbc

Looking at the live graph fodfstree.gbc (see figure 7.14, most of its train heap is live, hardly any is
dead, and the unused fraction grows as the size of the caisgfbis is not unexpected since most of the
bytes allocated in this program are kept liveanstAlloc.gbc places itself betweedfstree.gbc
andtst-norep3B0O.gbc with a higher fraction of dead objects thdfstree.gbc
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Figure 7.13.Average unused fraction in the train space executiag- nor ep3BO. gbc

Source: dfstree.ghc

Avg Live Fraction

1
0.8
0.6
0.4

0.2

O9
18
17
16 21
15 19
Car Size (2"x)/bytes 14 17
16
13 15

12 13 1 Introductory Space Size (2"x)/bytes

11 12

Figure 7.14.Average live fraction in the train space executiffgst r ee. gbc



84 Chapter 7. Experiments

Including the introductory space with the train genera@ids different results. The introductory space
is filled with dead and live objects just before garbage ctibe and unused right after. This gives a
time average of 50% unused while the live and dead share bes 60%. The effect of this is that the

unused fraction is pulled towards 50% when combined withtthie space, especially as the size of the
introductory space grows (see figure 7.15). This effectds alsible in most of the test files with the dead
fraction. The two test programs with low memory requirensesgem to be punished in their live fraction
by a larger introductory space; these programs do not redarige introductory spaces.
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Figure 7.15.Unused fraction in the introductory and train spaces exgutt st -
nor ep3. gbc

7.5. Time Performance

In this experiment the time-performance impact of variagion the car and introductory space sizes is
measured. This includes the average disruption time, tharman disruption time, the total garbage
collection time, and the total garbage collection time fiiat of the total execution time.

7.5.1. Method

We try all size combinations in the selected ranges or cariatndductory space sizes and measure the
max disruption time, mean disruption time, total garbadkection time, and total garbage collection time
fraction of the total execution time in each test. Each oftds is run 3 times with the same car size,
introductory space, and test file. The average of the remultsed for a single point in one of the graphs.

Executables were compiled with optimization set@®, a fairly high level of optimization, though not
the highest possible.

The five source filesest-norep3.gbc , test-norep3B0O.gbc , allocator.gbc , constAl-
loc.gbc , anddfstree.gbc were all run through this test with both the old and the newntcaeation

policy.
The results are obtained by instrumenting the virtual maeld print the user time used for each garbage
collection obtained with théimes()  system call. The total execution time is obtained using th&U

commandime , subtracting an approximation of the time used for meastiie for the garbage collec-
tions (described in 7.5.2). Of the three times reported; teser, and system; the user time was used for all
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our measurements.

Finally, the results are plotted into four 3D graphs with thgonents of the introductory space size and
the car size as the two independent variables.

7.5.2. Uncertainty

To reduce the uncertainty related to time measurement, tegthvas run three times, and the average of
the results was used.

To reduce the effect of the time report printouts affecting tiser time of the UniXime command, we
approximated this time by running a tight loop that did thensecalculations as the time measurement.
Dividing this by the number of printouts gave us an approxiareof the time cost of one printout. This is
important because this reduces the extra measurementlaostipn particular on the test runs with a high
scavenging frequency.

7.5.3. Results

The test were run with both the new and the old algorithm, lasetwe focus on the results of the new
algorithm. All graph can be seen in appendix C.

Looking at the average disruption times they range from &ibero to about half a second in all tests. Both
tst-norep3.gbc andallocator.gbc have a average disruption time near to zero seconds.

Source: constAlloc.ghc
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Figure 7.16.The average disruption time obnst Al | oc. gbc

In figure 7.16 the average disruption time azfnstAlloc.gbc is increasing when the car and/or the
introductory space size is increased. The same correlbdtween car/introductory space size and the aver-
age disruption time can be seenin the average disrupti@gnaphs oflfstree.gbc andtst-norep-
3B0O.gbc , although the trend is not so pronounced vigtinorep3BO.ghc

The maximum disruption time graphs show almost the samectexistics as the average disruption time

graphs. Bothst-norep3.gbhc andallocator.ghc have a maximum disruption time below 0.05
seconds.
In figure 7.17 the maximum disruption time cdnstAlloc.gbc is increasing when the car and/or the

introductory space size is increased. The same correlagbtmeen car/introductory space size can be seen
in the maximum disruption time graph dfstree.gbc
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Source: constAlloc.gbc

Avg max Disruption Time/s

Figure 7.17.The maximum disruption time with the source ¢itenst Al | oc. gbc

The maximum disruption time graph tdt-norep3BO.gbc (see figure 7.18) is more indistinct. It
seems that the lowest maximum disruption time is presefhtanrttroductory space and car size combina-
tions: (4KB, 8KB), (4KB, 16KB), (8KB, 16KB). Another chafaeistic of the graph ofst-norep3-
BO.ghc is that the introductory space and car size pairs (65KB, 16KIR28KB, 32KB), (256KB, 64KB),
(512KB, 128KB) have a larger maximum disruption time thagirtidirect neighbors, i.e., the pairs in the
graph directly adjacent two these pairs. The mentionedsgdaltow a diagonal in the graph. At other
diagonals, e.g., the one starting from (4KB, 8KB) and endlitg (128KB, 256KB), the garbage collector
has lower maximum disruption times than the direct neighbdfe do not have any explanation of this but
we suspect that with some introductory space and car sizbioations the object structures fits better into
the blocks whereas other combinations scatters the oljectsres over more blocks. When the objects
are scattered over more blocks, it will yield lower maximuisrdption times since less objects have to be
copied at each garbage collection.

Source: tst-norep3BO.ghc

Avg max Disruption Time/s

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15

Figure 7.18.The maximum disruption time with the sourceffitg - nor ep3BO. gbhc

The general trend that both maximum and average disruptiwastare increased with car and/or introduc-

tory space size makes perfect sense. An increase in the &iloekimplies that the average amount of data
that has be processed is increased, i.e., more objectsawil to be copied from the introductory space and
from car in average.

In general the largest total disruption times is presenthawismall introductory space size combined with
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a large car size. This trend is most evident in the graplistaiorep3BO.gbc  , constAlloc.gbc ,
anddfstree.gbc (see figure 7.19).

Source: dfstree.gbc

Total Disruption Time/s

Figure 7.19.The total disruption time with the source fié st r ee. gbc

This is reasonable since a smaller introductory space bzéntreases the garbage collection frequency.
With a high garbage collection frequency and a large carthigg@robability of moving a lot of live objects

is high. In essence if car size is much bigger than introdycapace size, the total garbage collection time
will be high.

It should be noted that it seems as if the total disruptioretonly increases with a decrease in the intro-
ductory space size in the graphsailocator.gbc (see 7.20) antkt-norep3.gbc , il.e. the total
disruption time has little correlation with the car size mese test program executions. This trend is not
that pronounced though, but the reason for it most probattlyat these test programs keep very few bytes
alive. This implies that very little object copying has todmne during these test program executions.
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Figure 7.20.The total disruption time with the source faé | ocat or . gbc

The garbage collection time fraction graphdstfnorep3.gbc andallocator.gbc confirms that
little live object copying has to be done when ghvm execuiesé test programs, and again, the garbage
collection time fraction is independent of the car size.

When gbvm executes the other test programs, the total garbalfection fraction is increased with an
increased size of the car and introductory space size. $hisost pronounced in the executiondfé-
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tree.gbc  (see figure 7.21) but the same tendency is evident in the #maaf tst-norep3BO.gbhc
andconstAlloc.gbc
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Figure 7.21.The garbage collection time fraction of the total executiome with the source
filedf stree. gbc

Looking at the graphs it is obvious that something happensiny cases when crossing the diagonal where
the sizes of the introductory space and cars are equal. testgrogram keeps many objects alive, both
the total disruption time and the garbage collection tinaetion are high in the left triangle (where the
car size is equal to or larger than introductory space siad)law in the right triangle (where the car size
is equal to or smaller than introductory space size). Thisloaexplained with the following postulate:
When one decreases the garbage collection frequency bylidgube introductory space size, one can
double the car size too and still end up with the same garbaltertion time fraction. The reason is that
approximately the same amount of heap space is scavengethinthe scavenged heap size is doubled,
but so is the expected time before the next scavenge. In theefigis explains the almost equal height of
the lines parallel to the mentioned diagonal. That thessslare generally higher towards smaller sizes is
reasonable since using smaller sizes will typically indextea write barrier overhead and there is probably
also a base cost of conducting a garbage collection no maltar size. One should remember, though,
that traveling along these lines affects the disruptioreim

7.6. New Train Policy

The creation of a new train is considered in our system whesmamoved object referenced from the stack
space is found, but creating a new train for each such objeatdMead to too many new trains for the
garbage collector to keep up with.

With our initial method one new train is created each garbaglection if such an object is found. Un-
moved objects found later are moved to the last car of thetdaist. We initially believed this was a good
way to introduce new trains as these could later grow langémely referenced other objects. As this can
sometimes lead to cars that are not filled sufficiently, thethrad induces higher memory requirements
than necessary.

This problem leads us to restrict the policy for creating & mi&in. The constraint of only creating one
new train per scavenge was kept, but this is only done if eitielast train contains more than one car or
the first car in the last train would be filled more than a fixetfiteshold if an object is added. In this
section we will investigate the significance of this charmthe train algorithm implementation.
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7.6.1. Method

The space and time tests discussed in sections 7.4 and %Ab peeformed with the new and the old train
creation policy. This gives us a large set of data to evaltreeeffect of the train creation policies both
with regard to space and time consumption. The methods fdogpeing the tests are identical to those
previously described.

The fill threshold has been set to 80% in all the experimentis thie new train creation policy. It would
also be interesting to optimize this threshold in furthepemments, but this has not been done since we
had to stop somewhere, and this would require a lot of worksgraate on our test hardware.

7.6.2. Uncertainty

We are not aware of any uncertainties introduced in addttidhose mentioned in sections 7.4 and 7.5.

7.6.3. Results

Source: tst-norep3BO.gbc, Introductory Space: 32KB, Car: 32KB, Train Creation Policy: old
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Figure 7.22.Allocation with the old method, introductory space and daes 32KB.

The new train creation policy has a profound effect on somtheftests while others are virtually un-
changed. An example of a significant (but not the greateftyetan be seen in figures 7.22 and 7.8.

In this experiment a large chunk of data is allocated ten giraed the garbage collector is trying to
keep up. Particularly the unused space is improved a lot énnw version, but also the amount of
space consumed by dead objects is reduced notably. An stitegething about this particular test file,
tstnorep3BO.ghc , is that it allocates a lot of objects that are kept live dgrihe “big object test”.
These are suddenly all released and a series of garbagetmoiewith a low number of live bytes follows.

It would seem from the graphs that these chunks are alwajected together. This makes it easy to see
how many large garbage structures the garbage collectoehasved; the old one reclaims four out of nine
while the new one reclaims six of nine, two of which are retlad in one scavenge.
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Figure 7.23.The fraction of live data in the train space with thenst Al | oc. gbc using
the old train creation policy.
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Figure 7.24.The fraction of live data in the train space with thenst Al | oc. gbc using
the new train creation policy.
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The graphs 7.23 and 7.24 show one of the examples of sigrifiliiéerences between the amount of live
objects in the train space caused by the new train creatiboypdt is interesting to note that the region
where the old version has the worst space performance (@&ithlarger than the introductory space) the
new version has its best space performance. The reasonedretiaviour of the old version is a lot of
unused space in newly created cars; because the introgiwgace is smaller than the car size, new cars
are never filled. The new version is particularly good at reimg dead objects in this region because it
does not scatter its objects over as many cars and becaugartiege collection frequency is high there.

Source: constAlloc.gbc

Total Disruption Time/s

Figure 7.25.The total garbage collection time wittonst Al | oc. gbc using the old train
creation policy.

Source: constAlloc.gbc

Total Disruption Time/s

Figure 7.26.The total garbage collection time wittonst Al | oc. gbc using the new train
creation policy.

Primarily the experiments with lots of live objects are imfhced by the time overhead caused by the new
algorithm variation see figures 7.25 and 7.26. The changgsfisant in the region where the car size is
larger than the introductory space size.

Where the new train policy saves space, it seems to costa@ tiVe believe the reason for this is that more
live objects are present in each car and these have to be ndovied) garbage collection. However, one

could argue that the old train creation policy does not destirae amount of work as the new one since it
is slower at reclaiming the dead objects. To do the same vito#quires more scavenge iterations, adding
an (undetermined) time penalty to the old train creatioriggolHaving the same number of objects in a
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heap divided into more segments is not an advantage withidegauickly reclaiming garbage structures.
For these reasons we believe the new train policy is an inggn@ant over the old policy.

7.7. Speed Comparison

Although we have used a lot of energy to hide this fact, thépagpose of this project was to make the
fastest (garbage collecting) gbeta virtual machine. Tkjgedament will reveal if this purpose has been
fulfilled.

7.7.1. Method

Using the test programs listed in 7.1, we compare the time bsethe three gbeta executing systems
known to exist: gbeta-0.81 [Ern99], gbetai [JJWO01], and oun system (gbvm). To make the results
more reliable we ran each source file a hundred times and latdcuthe mean time used. gbvm was
compiled with full optimization, an introductory spaceesiaf 64KB, and a car size of 32KB. The choices
of car and introductory space sizes were made as they areaith the middle values in our ranges, and
they seem like reasonable compromises too.

To measure how much time gbvm used we used the Unix comrigned. As shown in the previous
experiments the performance of gbvm varies with the sealeictiroductory space size and car size. So, if
we had selected different sizes gbvm could have perforniéetently.

gbeta-0.81 has a special optien ( to make it generate code eagerly and do run time measursmiént
we used the output from titamne command instead of , the time used to compile the gbeta source file
would be included in the running time. In addition to thise thption-I was added which makes gbeta
perform static analysis lazily.

To measure the time used by gbetai, we also had to excludegpngiling time. In gbetai they compiled
the gbeta byte code into Java source files. These sourceearedmpile using a standard Java compiler
(javac ), and the resulting Java byte code can be run using a Jawembirtachine. So, to be fair we
measured the time used by a Java virtual machine to exeautlatta byte code resulting from gbeta byte
code compilation as this is the time a user would experience.

Our usual test-programs were not supported by gbetai, sad&make a special prograsiiple.gbc )

to compare gbvm with gbetai. Besides this program we usedvetof benchmark programs used in
gbetai [JJWO01] to compare their virtual machine with BETAeBe benchmarks are small gbeta programs
that test one specific thing repeatedly such as assignnpetifis steps in run-time path traversals, and
usage of virtual attributes:

assignment  Assignment of value to integer object.

objRefAndins  Assignment of one object reference to another and an inateomt of an object.

object Instantiation of an object.

runtimePath0  Traversal of empty runtime path.

runtimePathl  Traversal of run-time path with one lookup step.

runtimePath2  Traversal of run-time path with one indirect lookup step.

runtimePath3  Traversal of run-time path with one up step and one lookup. ste

runtimePath4  Traversal of run-time path with two up steps and one lookap.st

runtimePath5  Traversal of run-time path with one out step.

virtual Invocation of a virtual attribute.
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7.7.2. Uncertainty

We are unaware of any uncertainties in addition to those@bther speed measurement experiments.

7.7.3. Results

| || gbvm/s | gbeta-0.81/s | Speedindex | gbetai/s | Speedindex |
tst-norep3 4.777 39.020 8.169 - -
cruncher3 3.749 33.031 8.810 - -
allocator 7.766 109.639 14.118 - -
constAlloc 6.218 64.758 10.415 - -
dfstree 3.153 27.652 8.772 - -
derive 5.089 194.840 38.287 - -
simple 0.063 -(® - 3.180 50.232
assigment 6.480 95.356 14.715 3.628 0.560
objRefAndIns 1.897 23.716 12.502 2.824 1.489
object 3.784 106.460 28.133 3.172 0.838
runtimePathO 4.785 85.530 17.874 3.250 0.679
runtimePath1 6.402 102.728 16.046 3.332 0.520
runtimePath2 6.522 102.294 15.684 3.635 0.557
runtimePath3 7.509 115.910 15.436 3.761 0.501
runtimePath4 8.020 117.244 14.619 4,168 0.520
runtimePath5 6.807 113.276 16.642 1.468 0.216
virtual 50.033 419.866 8.392 | 42.394 0.847

Table 7.1.: Speedindex is the time used by gbeta or gbetai divided byusee by gbvm. So
a speedindex of 0.5 means twice as fast as gbvm while spezdintheans half
as fast as gbvm. (*) gbeta failed to execute this programesgfally on the test
machine.

Looking at the results it seems that our gbvm are competititte the other gbeta executing systems. With
gbvm having index one the index of gbeta-0.81 varies frond81tb 38.287. This were expected since the
main purpose of gbeta-0.81 is to prove that the gbeta larggoaig be implemented not that it can execute
fast. One must also take into account that gbeta-0.81 stgpib@ compilation and execution of any given
gbeta program, whereas we do only support a subset of alagivegrams. For instance, oihread
class should be modified to fully support concurrency anteimesynchronization which could incur some
run-time overhead.

The comparison between ghvm and gbetai is interesting. Wiitiple andobjRefAndins  gbvm
are faster than gbetai, but in all other cases gbvm is sloaeging from speedindex 0.216 to 0.847.
Three things can be concluded from these results. Firsiyngis competitive overall even though the
virtual machine component has not been optimized. Secptidyexperiment shows that it is possible to
optimize a gbeta virtual machine. Without knowing the detaf gbetai, it seems that gbetai is fastest in
the benchmarks where an optimization effort was made. Hhivage did not succeed making the fastest
gbeta virtual machine.

7.8. \Write Barrier

The purpose of this experiment is quantify the amount of tireed in our write barrier.
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7.8.1. Method

One way to quantify the time used in the write barrier is pno§il gprof [GKM82] could be used, but it
will not work if inlining is used. Since we do want to inlinedhwrite barrier code, we cannot ugprof
to quantify the time used in the write barrier.

Another way to do the write barrier time quantification is tongpare two runs of the same program.
The first run with a normal write barrier and the second withritenbarrier that does exactly the same,
semantically, but executes each instruction twice (seedigL27).

wb(){ wb(){
if(foo()){ if(foo()){
bar(); if(foo()){
} bar();
} bar();
}

}

}
First run Second run

TI=EE+WB | T2=EE+2WB
WB=T2-T1

Figure 7.27.0ne way to quantify the write barrief.1 = time used by the first rurf;2 = time
used by the second rukyB = time used by write barriefeE = time used by
everything else

To quantify the write barrier we wrote a version of the writirtier macro that did everything twice without
changing the effect of the write barrier. We then measureduer times of an executable running with a
single write barrier executing the listed source files (sé#et 7.2), and the user times of an executable using
the double write barrier macro. The estimate of the time aored by the write barrier is the difference
between these execution times. The executables were aahipihave an introductory space size of 64KB
and a car size of 32KB. Again, these sizes were chosen siegeaife the middle values of our tested
introductory space size and car size ranges.

7.8.2. Uncertainty

As with the speed comparison there is an uncertainty corderith the fixed car and introductory space
size. It may very well give another result if different cadantroductory space sizes had been chosen.

Another uncertainty is the characteristics of the sourcg@ms. Some of them like e.glerive.gbc

do not use the write barrier much whereas others use it hedilis is only a problem if the write barrier
light programs run for a short period of time inferring a dgremcertainty in the measured user time.
The difference, in user time, of the two executions coulchthe caused by normal time measurement
uncertainties instead of the double write barrier.

The hash set used for the remembered sets has a resize falityichat may and may not be invoked
during the tests. If a resize happens in the single writeidracase it will also happen in the double write
barrier case but only once in each cases. This means thaishefaesizing the hash map is notincluded in
the measured time difference. If the resizing was insteafbpred twice in the double write barrier case,
the results of this experiments would have been more aegubat this is difficult to do without altering
the implementation in ways that affect the performance repotvays.



7.9. Profiling 95

Another problem with the remembered set hash sets is thagttend time the same value is inserted, no
write operation is performed. This is an advantage for thebflowrite barrier macro and it may therefore
be faster in its second execution.

Caching effects will also increase the speed of the secoacligion of the write barrier.

To sum up it seems that we should expect to get too small tinesarements by using this method.

7.8.3. Results

| || Single write barrier/s | Double write barrier/s | Write barrier time ]
tst-norep3 4.765 5.013 5.198%
cruncher3 3.700 4.046 9.357%
allocator 7.752 8.536 10.115%
constAlloc 6.144 6.621 7.760%
dfstree 3.110 3.397 9.205%
derive 5.090 5.443 6.940%
simple 0.062 0.074 19.548%
Mean: - - 9.732%

Table 7.2.: Results of running the the different source files with antheuit a double write
barrier. Write barrier time is(T2—T1)/T1 in percents

Our write barrier seems to be acceptable overall. Betweerab&:20% of the time is used in our write
barrier, with a mean of about 9%. The rather diverting restitimple.gbc  could be due to the before
mentioned uncertainty related to the short execution time.

The validity of this experiment is a bit questionable thou@he quantified write barrier time should have
had the total time used by resizing added. This is only a pralif a lot of remembered set resize operations
is present.

The virtual machine component has not been optimized aked ladtving parsed the input file it interprets

instructions. This means that the small percentage of tiseel in the write barrier could be due to a slow
virtual machine component. Profiling the system will reviédlhis is the case. We present the results of
profiling gbvm in the next section.

7.9. Profiling

The purpose of this experiment is to measure the fractiorinoé used by the two components in our
system, namely the virtual machine component and the memanagement component. This will set the
write barrier experiment into perspective since the lowcpatage of time used in the write barrier could
be due to a slow virtual machine component.

7.9.1. Method

Using the in table 7.3 listed source files we used instrunteater executables and usggrof . gbvm
were executed a hundred number of times witinof  and the result were summed up gprof .
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7.9.2. Uncertainty

The results ofyprof are subject to statistical uncertainty but this has beeredsed by makingprof
sum up the results of hundred executions of each source file.

7.9.3. Results

| | ByteCodeLoader.parse() | Thread.run() | GarbageCollector.gc() |
tst-norep3 7.6% 69.0% 1.3%
tst-norep3BO 3.3% 53.8% 30.5%
cruncher3 0.2% 52.4% 38.2%
allocator 0.0% 81.6% 0.7%
constAlloc 0.2% 56.9% 31.7%
dfstree 0.4% 53.7% 36.0%
derive 0.0% 77.5% gc() not invoked
simple 0.6% 73.1% gc() not invoked

Table 7.3.: The parsing, instruction execution and garleafiection time fractions agprof
reports it after 100 runs of each source file

In table 7.3 we list the time fractions used by: parsiBgt¢ CodeLoader.parse()), executing instructions
(Thread.run()), and garbage collectio®arbageCollector.gc(). If one adds up the three numbers one does
not get 100%, since the execution time is also used for ottieg$ such as initialization, but these take
only a small fraction of the total execution time.

Looking overall at the profiling results it seems that outwdd machine component takes a large fraction
of the total execution time, and a general optimization daotrease the write barrier fraction of total
execution time. To optimize this component it is necessadpok at the time used in different parts of
the virtual machine. Looking further at the output frgprof we identified a number of time consuming
operations. Among these were:

Dynamic Casts Used amongst other things after run-time path traversekling more secure but less
time efficient code.

Run-time Path Traversals Especially up and down steps are expensive, since theyredinear
search in the number of part objects in the current object.

Pattern Instantiation When a pattern is instantiated all its mixin must be insttatl into part
objects put into an object.

MainPart Lookup  As noted in the evaluation of the virtual machine (see sacbor) when a specific
main-part is wanted all the main-parts are searched lipearl

If a more efficient virtual machine is wanted these operatighould be considered for optimization.

7.10. GBVM vs. JVM

The purpose of this experiment is to compare the efficiengbei with Sun’s Java HotSpotVirtual Ma-
chine (jvm) version 1.3.1.
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7.10.1. Method

To compare the two virtual machines we rewrcteincher3.gb  to a less gbeta exploiting version
(cruncher3JAVA.gb - see appendix A). We then tried to write a semantically ejeivt program
in Java ¢runcher3.java - see appendix A). Finally we measured the time used by gbvex¢gute
cruncher3JAVA.gb  and compared it to the time used by jvm to exeautencher3.java

To make a representative result we ran each subexperimemichéd times and calculated the mean value.
gbvm were compiled to have an introductory space of 64 KB arat size of 32 KB.

7.10.2. Uncertainty

We are aware that it is difficult to compare different prograimg languages and do them all justice. One
of the problems in this experiment is that gbeta has a moregfiamed way of storing objects, i.e., in gbeta
an object is divided into one or more part objects which meassdéarched during run-time path traversals.
The more fine-grained object representation yields bothennon-time flexibility but it also a run-time
overhead.

Another problem is that we have not in any way proven thatweegrograms are semantically equivalent.

The overhead of the jym must be taken into account. Althoumghtayis perhaps richer than Java the support
for, amongst other things, concurrency and synchroninatigvm must be a disadvantage compared to our
single threaded virtual machine.

Another discrepancy is the type of the virtual machines. @aual machine is an interpreter whereas the
jvm is a dynamic compiler.

7.10.3. Results

| | Time/s | Speedindex |

java cruncher3 1.831s 4.732
gbvm cruncher3JAVA.gbc | 0.387s 1.000

Table 7.4.: Comparison between jvm and gbvm

As shown in table 7.4, jym is almost five times slower than gliwthe given case. This may be because of
the startup time of jvm and also synchronization and comay support could incur a run-time overhead
in jvm.

To give jvm the opportunity to benefit from dynamic compitetive made a new longer running version of
bothcruncher3.java andcruncher3JAVA.gbc . The results of this new experiment are presented
in table 7.5.

| | Time/s | Speedindex |

java cruncher3Long 1.8086s 0.546
gbvm cruncher3LongJAVA.gbc | 3.3029s 1.000

Table 7.5.: New comparison between jym and gbvm, with mane tlemanding versions of
the test programs.
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The new comparison gives a rather different result. Now jwrddenly outperforms gbvm. Since jvm
is a dynamic compiler it benefits from compiling often invdkeethods. The characteristics of the test
program fits perfect to dynamic compilation, since the sarethods are executed numerous times.

Another interesting detail is that jym uses less time on aiverof the same program that executes more
iterations. This could be because its profiler decides tarop¢ more when the number of iterations in
loops are increased which is the case here.

7.11. Discussion of the Results

In this section we will summarize and discuss the intergstsults from the previous sections with the pur-
pose of trying to find a good general purpose compromise latilee settings tried, as well as suggesting
possible improvements.

To comment the speed comparisons with the other systemgfingh is faster than gbeta and competitive
with gbetai which is about twice as fast as gbvm. The writgibatests show an average consumption of
less than 10% of the total execution time. These resultswte gatisfying to us.
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Figure 7.28.Summary of the results from the space utilization experisnen

In figure 7.28 we have summarized the results from the spdcsatibn experiments when focusing on the
train space. The live fraction is highest when the introdacspace is smaller or equal to the car size. The
dead fraction is lowest when this heuristics is tightenethsocar size must be at least 8 times larger than
the introductory space. Finally, the unused fraction ig kdth the smallest car size. In addition to this the
lowest of the car size and the introductory space size lithi#éssize of objects that can be handled in the
system.

Figure 7.29 summarizes the results from the time evaluagkgeriments. The average and maximum
disruption times are lowest as long as the combined sizeso$thvenged space is not too large while the
total disruption time is lowest when the introductory spackarger than the car size.

With regard to train creation policy, the new train creatfwolicy seems to be the best overall of the two
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Figure 7.29.Summary of the results from the time performance experanent

proposed possibilities since it does not waste as much spmdtke old train creation policy, and it is
guestionable whether the old policy is faster anywherethiversions have to reclaim the same amount of
garbage.

Combining the space utilization and time performance erpanmts for a good compromise is not easy. If
one has to make such a choice we would recommend approxineafedl introductory space size and car
size with a value that allows a reasonable size of objects22i(B. It is possible to set the sizes so most
large garbage structures are reclaimed quickly, but thenwaiti pay for it with high garbage collection
overhead and wasted space. It will probably always be plestitput so large structures into the system
that performance will suffer. It is also possible to get lowerthead from garbage collection by keeping
the car size small and adjusting the disruption time withitieductory space size, but still keeping it
reasonably large. Such a system will not be good at reclgji@irge garbage structures at a reasonable
pace, but it willeventuallyreclaim each structure (if a zero progress situation [G$83jut of memory
fault occur).

For the best performance it is necessary to adjust the Vinhaghine parameters to values that fits the
application. This is the best way in our framework to avoidndodefensive garbage collectighat is,
doing more garbage collection than seemingly necessargar to reclaim large garbage structures rapidly
when they are created.

The biggest problem as we see it in the context of finding a gmwdpromise of the parameters is that

it is not generally possible, as we believed, to combine gelamtroductory space with a smaller car size
without risking inefficient memory usage. A large introdogt space is supposed to filter out many short
lived objects before they even reach the train space, blgat@auses a low scavenging frequency which
makes the system less responsive. When the assumption gfshart lived objects does not hold, our
collector in this configuration easily gets in trouble whargke chunks of objects die. The total garbage
collection time fraction is still low in the large introdwty space and small car size areas of the graphs, so
it may still be possible to construct a better performindogae collector if a different strategy was chosen
for selecting not only the scavengifrgquencybut also the scavengimgoment

Examples of unexplored (by us at least) strategies for @bké#uristic of the moment for garbage collec-
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tion could include the number of pointer updates which areimtalizing stores since this could be an
indication of possibly new dead objects. This would propatust in the write barrier, but finding very
good times for doing garbage collection might even this anti it may be possible to find a cheap approx-
imation such as a simple count of pointer stores outsidertfieductory space. Another estimate for the
number of dead bytes in the system could be inferred from threlrer of bytes rescued last time. With
such dead byte indicators, alone or combined, one couldtgontrol the rate of scavenging using this
number in an adaptive scheme.

In this adaptive scheme the memory manager needs to be atdgust the amount of scavenged data in
order to control the responsiveness of the garbage callestithe train space. Continuing with our current
setup, one can vary the number of cars being scavenged &vgeth the introductory space from zero to
many. This would approximate the effect of being able to d¢aathe size of cars and thus enable us to
move in one dimension in the 3D graphs. Moving in the otheretigion can be attained by allocating a
rather large introductory space and setting a dynamic filitli

One could consider if a filled up introductory space reallyam®that one can expect to find a lot of dead
objects in the system? Perhaps in the introductory spadén e train space this is not necessarily the
case. While a large garbage structure is being built, thbagge collector is busy trying to reclaim objects,
but after the intensive allocation ceases, the effort ofjmdage collector ceases too. Why not try to do the
garbage collection after the intensive allocation has edaut? A simple timer could check periodically
if a garbage collection has occurred during the last periwditagger a garbage collection if a number of
instructions have been executed or some other sign of gciivihe system is showing.

One could also ask if a high fraction of live objects reallpigood sign?. It could indicate that too much

emphasis has been put on garbage collection perhaps daimgfensive garbage collection. We see that
the total amount of garbage collection time increases & lokitry hard to keep the train space clean of
dead objects. One could also take a more relaxed attitudieetmémory consumption, hope that programs
will not allocate memory like crazy just to forget about it @ment later and start all over (like some of

our test programs). After all there is a concept called progming guidelines which could dictate that this

is bad programming style and should be avoided.



8. Related Work

This chapter will give a short overview of research relawthis thesis. We compare four memory man-
agers all using a train algorithm. The two topics compared dlemory layout and pointer tracking
scheme. Figure 8.1 gives an overview of the four memory marsag focus.

HotSpotTM Open Runtime Platform Beta Collector GBVM
Young (New generation) (Young Object Space) (Infant Object Area) (intro/root space)
Object ‘ Nursery ‘ 1] step-1 [step-2 [ [step- |
Memory | Space 92[ step+1] [step-k]
Layout ‘ From Space ‘ To Space ‘ gn‘ step| ‘ \step-m\ ‘ From Space ‘ To Space ‘ ‘Stack Space ‘ ‘Intro Space ‘
Mature Train / Mark and Compact Train Train Train
Object (Train generation/) (Mature Object Space) (Adult Object Area) (train generation)
Space Tenured generation)
"Misc" - —
Spaces ‘ (Permanent Generation) ‘ ‘ (Large Value Repetition Area) ‘
Pointer Fuzzy card-marking Card-marking with Remembered Sets Remembered Sets
-Srre:k'"g remembered sets AOA, IOA distributed on cars
cheme

Figure 8.1..Overview of memory layout and pointer tracking scheme. ilatdlic describes
the names used in the different memory managers

8.1. HotSpot

HotSpotis the well known Java virtual machine developed tny BRicrosystems, Inc.. Some of the people
behind the memory management in HotSpotare the peopledérénincremental train garbage collector
for BETA [GS93]. The principles behind HotSpotis furthessdgbed in subsection 3.3.

8.1.1. Memory Layout

As figure 8.1 illustrates HotSpothas two subspaces in Younjg@ SpaceNew Generatiopaccording to
Lars Bak. A nursery used to allocate new objects and a copgatot space with a 'to’ and 'from’ space.
Objects are allocated into the nursery space and promotbe twopy-collector space. If they survive long
enough they get promoted to the Train / Tenured generatipartding on how HotSpothas been configured.
HotSpotcan be configured to use a mark-compact collectotm@irmalgorithm collector in mature object
space (MOS). HotSpothas a Permanent Generation wheretixefldata (classes, methods, symbols, etc.)
are stored. [SMO1].

101
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8.1.2. Pointer Tracking Scheme

According to Lars Bak they use a software write barrier withAy card marking. This scheme corresponds
to the scheme described in [H6193].

8.2. Intel's Open Runtime Platform

Intel's Open Runtime Platform (ORP) is an open source platfimr experimenting with dynamic compi-
lation and garbage collection technologies [HudO0Q]. Ittagrs three separate modules: Virtual Machine
(VM), Just-In-Time compiler (JIT), and Garbage CollectX). The main advantage of the separation be-
tween JIT/VM and GC/VM is the possibility to experiment witty., garbage collection without learning
the entire system. [Hud0O]

8.2.1. Memory Layout

Conceptually they divide the memory into three areas: ctidld, traced, and untraced. The collected
area contains all objects (live or dead) which have beercaia by the garbage collector. The traced
area may contain objects with pointers referring to theeméld area this area may include the run-time
stacks, statically allocated data and hardware registérs.untraced area includes data which is ignored
by memory management.

The collected area, also called the heap is divided into pe@as. “Young Object Space” (YOS) holding
recently allocated objects and “Mature Object Space” (M@itaining objects that have survived a num-
ber of scavenges. They use a generational copy collectoDi &nd a train algorithm garbage collector in
MOS. Steps are used in the generations to separate diffieegyetd objects.

8.2.2. Pointer Tracking Scheme

In ORP they use a combination of card-marking and rememlbsstsd They use card-marking to record

interesting memory areas (cards) at run-time and summ#raeeteresting pointers into remembered set
at garbage collection time. This scheme was invented by BJHgho noted that a combination of remem-

bered sets and card marking is more efficient than eitherm#reeed sets or cards alone.

ORP uses a card marking algorithm corresponding to the oseritbed in [H6I93]. The following code
briefly explains the algorithm:

card_table_base[(object_ref->heap_base)>>bits_to_sh ift;:=MARK;

Figure 8.2.Write barrier in ORP

In the card marking table they mark the entry correspondirtbe card where the object having the pointer
being updated starts (see figure 8.2).

8.3. The Incremental BETA collector

Connected with their master’s thesis work at Aarhus UnitgrSteffen Grarup and Jacob Seligman were
among the first to implement a train algorithm garbage ctdled hey implemented an incremental garbage
collector for the mature object space in BETA [GS93]. Theaiminspiration came from [HM92].
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8.3.1. Memory Layout

As illustrated they have an Infant Object Area (IOA) useddtiocating new objects. This space is copy
collected. Objects surviving a configurable number of tirre$OA are promoted to adult object area
(AOA). In AOA the train algorithm collector is used. Finalthey have a Large Value Repetition Area
(LVRA) where non-pointer arrays of integer, char, etc. abaconfigurable size are allocated and resident.

8.3.2. Pointer Tracking Scheme

Each car/area has a remembered set. A specialty with thiemantation is that the remembered set of
IOA is distributed out to the cars in AOA. This makes it easypalate the remembered set of IOA when a
pointer in a specific car is altered, but it must have a sertvag/back, when one has to gather the entire
remembered set of IOA. This is only done once each garbaggrtioh of IOA.

The software write barrier uses from 11 to 18 SPARC-instanst for stores in AOA and less in IOA.

8.4. GBVM

Our own gbeta virtual machine with a simple heap layout tedgorithm garbage collector, does not need
much presentation, since this thesis mainly deals with it.

8.4.1. Pointer Tracking Scheme

We use pr. space remembered sets to record interestingepmind/e have a software write barrier. The
algorithm is described in section 6.9.
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9. Future Work

If we added a large object space (LOS) to our memory managernerponent it might increase perfor-
mance. The LOS could store objects with no references fepgtitions) and of course large objects. This
would add more freedom to the choice of introductory spape and car size, since objects larger than the
smallest of the two could be allocated in LOS.

An adaptive scavenging scheme as discussed in section bdld wossibly make the garbage collector
better at adjusting its effort to the current demands of thdieation.

Compared to other related systems, gbvm is the only systeichvdmes not have a copy collector in the
young object space (our introductory space). It would berggting to implement a copy collector in
introductory space to see how it would perform compared thieeat setup.

Another working area is extending the virtual machine to enaully working, i.e., able to execute any
given gbeta program. The most important lacks of the cuwghtal machine are the missing repetitions
and concurrency. To make our system multi-threaded a nuoflibings must be changed. Amongst the
things are a signaling queue, synchronization of the waieier, and it would also be necessary to garbage
collect the stack space in some way since threads can diegtte®whole program terminates.

Optimization of the virtual machine component has almosinbeon-present in this implementation, so
there is hope for performance improvements. For instantieeiByteCodeLoader made a two pass
parse of the input file, we would be able to do a number of ogitions. These would include: caching
main-parts in thé&ddMainPart instructions, use a real byte code format.

After having optimized the virtual machine component it Webioe interesting to compare it with BETA to
see how much the added generality costs in time performance.
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10. Conclusion

In this project a working gbeta virtual machine (gbvm) hasrbenplemented from the ground up @+
with support for a major part of the gbeta byte code instardi In this implementation automatic memory
management has been our primary focus. For this purposedhmeagorithm has been deployed in a
previously unseen heap layout accompanied only by an inttody space.

The virtual machine component has been redesigned to adowbage collection safe points even while
initializing attributes and executing multi-line insttians.

The memory management component has been almost completielgigned and reimplemented with
more efficient data organization and structures. A powerfeinory manager debugging system possibly
adaptable to similar systems is presented too.

gbvm has been subjected to an extensive series of expesmeltiating its performance both with regard
to time and space performance. Two alternative policiesiwv train creation in the train algorithm have
been investigated and our new train creation policy has teeided upon. A general purpose configuration
has been vaguely suggested as a result of these experilmgritse important result is actually the difficulty
in finding a suitable general compromise.

The speed of the write barrier has been quantified to lie b&l@¥ of the total execution time on average.
Compared to gbeta, gbvm is about 15 times faster, while glsetdout twice as fast as gbvm with the set
of benchmarks run.

Finally, suggestions for improving the performance of kibavirtual machine component and the memory
manager have been presented. The virtual machine could tvge-pass parser which would allow for
a number of simple optimizations. The memory manager coeldnade adaptive in its moment and
frequency of scavenging using various strategies for apprating the amount of dead bytes in the train
space.
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A. Test Programs

al |l ocator.gb

-- betaenv:descriptor --

#
t. @integer;
X: (# do 1+1->t; #);
y: X
do
(for 800 repeat
&x[l->y[l;
(for 200 repeat
yll;
X;
for);
for);
#)
derive. gb
-- betaenv:descriptor --
#
derive: (#
result: @real;
do
(for i:50000 repeat
1*2+2*3+4*3+4*5+6*7+8*9+10*11->result;
result+1.3*2.2+2.1*3.0+4.9*3.8+4.7*5.6+
6.5*7.4+8.3*9.2+10.1*11.0->result;
result+21.3*32.2+52.1*43.0+64.9*3.8+74.7*85.6+
96.5*107.114+128.3*139.2+1410.1*1511.0+
21.3*32.2+52.1*43.0+64.9*3.8+74.7*85.6+
96.5*107.114+128.3*139.2+1410.1*1511.0+
1.3*2.2+2.1*3.0+4.9*3.8+4.7*5.6+
6.5%7.4+8.3%*9.2+10.1*11.0->result;
for);
#);
do
derive;
#)
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Appendix A

. Test Programs

cruncher 3. gb

-- betaenv:descriptor --

(#

(# element:< object;

scan:
(# current: “element; c: “cell
do head->c[];
(while c[]J<>NONE do
c.elm[]->current[]; INNER; c.next[]->c[];
while)
#),
add:
(# c: “cell enter (&c).elm[]
do (if elements=0 then
c->head[]->tail[]; 1->elements
else
c->tail.next[]->tail[]; (elements+1)->elements
if)
#);
add3: (# enter (add,add,add) #);
makeEmpty: (# do O->elements; tail[]->head[] #);
isSEmpty: (# exit (elements=0) #);
cell: (# elm: “element; next: “cell exit this(cell)[] #);
head,tail: “cell;
elements: @integer

exit this(list)[]
#);

(# child1,child2,child3: "node; id: @string; myMark: @boo

init: (# enter id exit this(node)[] #);
childMethod:
(# onl:i< object; on2:< object; on3:< object;
n: “node; i: @integer
enter i do (if i /1 then onl //2 then on2 //3 then on3 if)
#),
changeChildN: childMethod
(# onl:(# do n->childl]] #);
on2:(# do n->child2[] #);
on3:(# do n->child3[] #)
enter n[] exit n
#);
getChild: childMethod
(# onl:(# do childl->n[] #);
on2:(# do child2->n[] #);
on3:(# do child3->n[] #)
exit n
#);
setld: (# enter id #);
printMe:
(# pr: (# n: "node enter n[] do (if n[J<>NONE then n.printMe if
do id->stdio; child1[]->pr; child2[]->pr; child3[]->pr
#);
mark: (# do true->myMark #);
unmark: (# do false->myMark #);
isMarked:
(# n: “node; result: @boolean
enter getChild->n[]
do true->result;
(if n<>NONE then n.myMark->result if)
exit result
#);
makeChildren:
#
do 'a’->node.init->child1[];

lean;

#)



111

'b’->node.init->child2[];
'c’->node.init->child3[]
exit (child1[],child2[],child3[])
#)
do (*id->stdio;*)
INNER
exit this(node)(]
#);

dfs:
(# n: “node enter n[]
do n.mark;
(* n.id->stdio;*)
(* n.printMe;*)
(for i:3 repeat (if i->n.isMarked then i->n.getChild->dfs
#),

makeTree:
(# nodelList: list(# element::node #);
depth: @integer;
listOld,listNew: “nodeList
enter depth
do ’'root ’->node.init->root[]->(&listOld).add;
(for i:depth repeat
&listNew;
listOld.scan(# do current.makeChildren->listNew.add3 #
listOld.makeEmpty;
listNew->listOld[]
for)
exit root]]
#);

root,n1,n2,n3: “node
do
7->makeTree->root[];
(* root.printMe;*)
(for i:3 repeat root->dfs; (*'
n’->stdio*) for)
#)

iffor)
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Appendix A

. Test Programs

const Al'l oc. gb

constAlloc.gb
-- betaenv:descriptor --

#

(# element:< object;

scan:
(# current: "element; c: “cell
do head->c[];
(while c[]J<>NONE do
c.elm[]->current[]; INNER; c.next[]->c[];
while)
#);
add:
(# c: “cell enter (&c).elm[]
do (if elements=0 then
c->head[]->tail[]; 1->elements
else
c->tail.next[]->tail[]; (elements+1)->elements
if)
#),
add3: (# enter (add,add,add) #);
makeEmpty: (# do O->elements; tail[]->head[] #);
iISEmpty: (# exit (elements=0) #);
cell: (# elm: “element; next: “cell exit this(cell)[] #);
head,tail: “cell;
elements: @integer

exit this(list)[]

(# child1,child2,child3: “node; id: @string; myMark: @boo

init: (# enter id exit this(node)[] #);
childMethod:
(# onl:i< object; on2:< object; on3:< object;
n: "node; i: @integer
enter i do (if i //1 then onl //2 then on2 //3 then on3 if)
#);
changeChildN: childMethod
(# onl:(# do n->childl[] #);
on2:(# do n->child2[] #);
on3::(# do n->child3[] #)
enter n[] exit n
#),
getChild: childMethod
(# onl:(# do childl->n[] #);
on2:(# do child2->n[] #);
on3::(# do child3->n[] #)
exit n
#);
setld: (# enter id #);
printMe:
(# pr: (# n: "node enter n[] do (if n[]J<>NONE then n.printMe if
do (*id->stdio;*) child1[]->pr; child2[]->pr; child3[]-
#),
mark: (# do true->myMark #);
unmark: (# do false->myMark #);
isMarked:
(# n: “node; result: @boolean
enter getChild->n[]
do true->result;
(if n<>NONE then n.myMark->result if)
exit result
#);
makeChildren:
#

lean;

>pr

)#)
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do 'a’->node.init->child1[];
'b’->node.init->child2[];
'c’->node.init->child3[]
exit (child1[],child2[],child3[])
#)
do (*id->stdio;*)
INNER
exit this(node)[]
#),

dfs:
(# n: “node enter n[]
do n.mark;
n.printMe;
(for i:3 repeat (if i->n.isMarked then i->n.getChild->dfs
#),

makeTree:
(# nodelList: list(# element::node #);
depth: @integer;
listOld,listNew: “nodeList
enter depth
do ’'root ’->node.init->root[]->(&listOld).add;
(for i:depth repeat
&listNew;
listOld.scan(# do current.makeChildren->listNew.add3 #
listOld.makeEmpty;
listNew->listOld[]
for)
exit root]]
#);

root,n1,n2,n3: “node
do
7->makeTree->root[];
3->root.getChild->n3[];
3->n3.getChild->n1[];
(for i:10 repeat root->dfs;
4->makeTree->n2[];
(2,n2[])->n1.changeChildN;
*
n’->stdio*)
for)
#)

iffor)
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df stree. gb

-- betaenv:descriptor --
#
list:
(# element:< object;
scan:
(# current: “element; c: “cell
do head->c[];
(while c[]J<>NONE do
c.elm[]->current[]; INNER; c.next[]->c[];
while)
#),
add:
(# c: “cell enter (&c).elm[]
do (if elements=0 then
c->head[]->tail[]; 1->elements
else
c->tail.next[]->tail[]; (elements+1)->elements
if)
#);
add3: (# enter (add,add,add) #);
makeEmpty: (# do O->elements; tail[]->head[] #);
isSEmpty: (# exit (elements=0) #);
cell: (# elm: “element; next: “cell exit this(cell)[] #);
head,tail: “cell;
elements: @integer
exit this(list)[]
#);

node:
(# child1,child2,child3: "node; id: @string; myMark: @boo lean;
init: (# enter id exit this(node)[] #);
childMethod:
(# onl:i< object; on2:< object; on3:< object;
n: “node; i: @integer
enter i do (if i /1 then onl //2 then on2 //3 then on3 if)
#),
changeChildN: childMethod
(# onl:(# do n->childl]] #);
on2:(# do n->child2[] #);
on3:(# do n->child3[] #)
enter n[] exit n
#);
getChild: childMethod
(# onl:(# do childl->n[] #);
on2:(# do child2->n[] #);
on3:(# do child3->n[] #)
exit n
#);
setld: (# enter id #);
printMe:
(# pr: (# n: "node enter n[] do (if n[J<>NONE then n.printMe if )#)
do id->stdio; child1[]->pr; child2[]->pr; child3[]->pr
#);
mark: (# do true->myMark #);
unmark: (# do false->myMark #);
isMarked:
(# n: “node; result: @boolean
enter getChild->n[]
do true->result;
(if nJ<>NONE then n.myMark->result else 'isMarked.n[] is NONE’->stdio if)
exit result
#);
makeChildren:
#
do 'a’->node.init->child1[];
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'b’->node.init->child2[];
'c’->node.init->child3[]
exit (child1[],child2[],child3[])
#)
do (*id->stdio;*)
INNER
exit this(node)(]
#);

dfs:
(# n: “node enter n[]
do n.mark;
(*n.id->stdio;*)
(*n.printMe;*)
(for i:3 repeat (if i->n.isMarked then i->n.getChild->dfs
#),

wantedDepth: @integer;
rememberRoot: "node;

makeTreedfs:
(# depth: @integer;
id : @string;
n: “node
enter (depth,id)
do

id->node.init->n[];

(if (depth <> 0) then
((depth-1),’a’)->makeTreedfs->n.child1[];
((depth-1),’b’)->makeTreedfs->n.child2[];
((depth-1),’c’)->makeTreedfs->n.child3[];

if)

exit n[]
#),

makeTree:
(# nodelList: list(# element::node #);
depth: @integer;
listOld,listNew: “nodeList
enter depth
do ’root ’->node.init->root[]->(&listOld).add;
(for i:depth repeat
&listNew;
listOld.scan(# do current.makeChildren->listNew.add3 #
listOld.makeEmpty;
listNew->listOld[]
for)
exit root]]
#),

root,n1,n2,n3: “node
do
‘root ’->node.init->root(];
(*  5->wantedDepth;*)
(7,’root’)->makeTreedfs->root[];
(*  3->makeTree->root[]; *)
(for i:3 repeat root->dfs; (*
n’->stdio*) for);
(* root.printMe;*)
#)

iffor)
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. Test Programs

cruncher 3JAVA. gb

-- betaenv:descriptor --
#
list:
(# element: node;
scan:
(# current: “element; c: “cell; listNew: “list;
enter listNew(]
do head->c[];
(while c[]J<>NONE do
c.elm[]->current][];
current.makeChildren->listNew.add3;
c.next[]->c[];
while)
#);
add:
(# c: “cell enter (&c).elm[]
do (if elements=0 then
c->head[]->tail[]; 1->elements
else
c->tail.next[]->tail[]; (elements+1)->elements
if)
#),
add3: (# enter (add,add,add) #);
makeEmpty: (# do O->elements; tail[]->head[] #);
iSEmpty: (# exit (elements=0) #);
cell: (# elm: “element; next: “cell exit this(cell)[] #);
head,tail: “cell;
elements: @integer
exit this(list)[]
#);

node:
(# child1,child2,child3: "node; id: @string; myMark: @boo
init: (# enter id exit this(node)[] #);
childMethod:
(# onl:i< object; on2:< object; on3:< object;
n: "node; i: @integer

#);

changeChildN: (# n: “node; i: @integer;
enter (i, n[])

do (if i /1 then n->childl[] //2 then n->child2[] //3 then n-

exit n
#);

getChild: (# n: "node; i: @integer;
enter (i, n[])

do (if i //1 then child1->n[] //2 then child2->n[] //3 then ch

exit n
#);

setld: (# enter id #);

printMe:
(# pr: (# n: "node enter n[] do (if n[][<>NONE then n.printMe if
do (*id->stdio;*) child1[]->pr; child2[]->pr; child3[]-
#);

mark: (# do true->myMark #);

unmark: (# do false->myMark #);

isMarked:
(# n: “node; result: @boolean
enter getChild->n[]
do true->result;

(if n<>NONE then n.myMark->result if)

exit result
#);

makeChildren:
#

lean;

>child3[] if)

ild3->n[] if)

>pr

#)
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do 'a’->node.init->child1[];
'b’->node.init->child2[];
'c’->node.init->child3[]
exit (child1[],child2[],child3[])
#)
do (*id->stdio;*)
INNER
exit this(node)[]
#),

dfs:
(# n: “node enter n[]
do n.mark;
(* n.printMe; *)
(for i:3 repeat (if (i,n[])->n.isMarked then (i,n[])->n.g
#);

makeTree:
(# depth: @integer;
listOld, listNew: “list
enter depth
do ’root ’->node.init->root[]->(&listOld).add;
(for i:depth repeat
&listNew;
listNew([]->listOld.scan;
listOld.makeEmpty;
listNew->listOld[]
for)
exit root[]
#),

root,n1,n2,n3: "node
do

5->makeTree->root[];

(for i:3 repeat root->dfs; (*
n’->stdio*) for)
#)

etChild->dfs if)for)
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cruncher 3. j ava

class List {

class Cell {
public Node elm;
public Cell next;

public Cell() {

}

Cell head = null;
Cell tail = null;
int elements = O;

Cell ¢ = null;
Node current = null;

public void scan(List listNew) {
¢ = head,;
while(c != null) {

current = c.elm;

current.makeChildren();
listNew.add3(current.child1, current.child2, current.
c = c.next;

}

public void add(Node elm) {
Cell ¢ = new Cell();
c.elm = elm;
if(elements == 0) {
head = c;
tail = c;
elements = 1;
} else {
tail.next = c;
tail = tail.next;
elements++;

}

public void add3(Node elml, Node elm2, Node elm3) {
add(elm1l);
add(elm2);
add(elm3);

}

public void makeEmpty() {
elements = 0;

tail = head;
}
public boolean isEmpty() {
if(elements==0) {
return true;
} else {
return false;
}
}

}

class Node {
Node child1,child2,child3;
String id;
boolean myMark;

child3);
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public Node(String str) {
id = str;
}
public Node changeChildN(int i, Node n)
if ( ==1) {
childl = n;
} else if(i == 2) {
child2 = n;
} else if(i == 3) {
child3 = n;
}
return n;
}
public Node getChild(int i) {
if ( ==1) {

return childl;

} else if(i == 2) {
return child2;

} else if(i == 3) {
return child3;

return null;
}
public void setld(String _id) {
id = _id;
}
public void printMe(Node n) {
if(n != null) {
if(childl !'= null)
child1.printMe(childl);
}
if(child2 = null) {
child2.printMe(child2);
}
if(child3 != null) {
child3.printMe(child3);
}
}
}

public void mark() {
myMark = true;
}

public void unMark() {
myMark = false;
}

public boolean isMarked(int i) {
Node n = getChild(i);
boolean result;
result = true;
if(n != null) {
result = n.myMark;

return result;

}

public Node makeChildren() {
childl = new Node("a");
child2 = new Node("b");
child3 = new Node("c");
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return this;

}

class Main {
Node root, nl, n2, n3;

public void dfs(Node n) {
n.mark();
for(int i = 1; i < 4; i++) {
if(n.isMarked(i))
dfs(n.getChild(i));

}
}
public Node makeTree(int depth) {
List listOld = new List();
List listNew;
Node root = new Node("root ");
listOld.add(root);
for(int i = 1; i < depth ; i++) {
listNew = new List();
listOld.scan(listNew);
listOld.makeEmpty();
listOld = listNew;
}
return root;
}
public void start() {
root = makeTree(5);
for(int i = 1; i<4; i++) {
dfs(root);
}
}
public static void main(String argsl]) {
Main m = new Main();
m.start();
}
}
si npl e. gb
-- betaenv:descriptor --
#
t. @integer;
X: (# do 1+1->t; #);
do

(for 1000 repeat
"

’for);
#)



B. The Test Machine

CPU

processor
vendor_id
cpu family
model

model name
stepping

cpu MHz
fdiv_bug
hit_bug
sep_bug
fOOf_bug
coma_bug
fpu
fpu_exception
cpuid level
wp

flags
bogomips

Memory

64MB

;0
: Genuinelntel
: 5

12
. Pentium 75 - 200

c 12

1 133.270677

. ho
. no

. nho

. yes

: no
:yes

. yes
1

. yes

: fpu vme de pse tsc msr mce cx8

: 53.04

Operating System

Linux version 2.2.14-5.0 (root@porky.devel.redhat.com)
(gcc version egcs-2.91.66 19990314/Linux (egcs-1.1.2 rel ease))
#1 Tue Mar 7 20:53:41 EST 2000

Compiler

GNU c++ version 2.95.3 with i586-pc-linux-gnu target machi ne
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PCl-devices

PCI devices found:
Bus 0, device 0, function O:
Host bridge: Intel 82439HX Triton Il (rev 3).
Medium devsel. Master Capable. Latency=32.
Bus 0, device 7, function O:
ISA bridge: Intel 82371SB PIIX3 ISA (rev 1).
Medium devsel. Fast back-to-back capable. Master Capable. No bursts.
Bus 0, device 7, function 1:
IDE interface: Intel 82371SB PIIX3 IDE (rev 0).
Medium devsel. Fast back-to-back capable. Master Capable. Latency=32.
I/O at 0xe800 [Oxe801].
Bus 0, device 11, function O:
Ethernet controller: 3Com 3C905 100bTX (rev 0).
Medium devsel. |IRQ 11. Master Capable. Latency=32. Min Gnt= 3.Max Lat=8.
I/0O at 0xe000 [Oxe001].
Bus 0, device 12, function O:
VGA compatible controller: ATI Mach64 VT (rev 64).
Medium devsel. Fast back-to-back capable.
Non-prefetchable 32 bit memory at 0xfaD00000 [0xfa000000]
I/O at 0xd800 [0xd801].
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