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Resumé:

Mange virksomheder oplever, at deres databehov varierer

over tid, hvilket er problematisk at handtere i eksisteeer
systemer til On-Line Analytical Processing (OLAP). Fy
sisk integration af uventede data i sddanne systemer ¢
lang og tidskreevende proces, og logisk integration er @

for ofte en bedre lgsning. Den ggede brug af Extended

Markup Language (XML), for eksempel i business-tp-

business-applikationer (B2B), indikerer, at den slagstive
ede data ofte vil veere tilgeengelige i XML-format.

| denne artikel preesenterer vi en fleksibel og teoretisk v
funderet tilgang til logisk faderation af OLAP- og XML

datakilder. Fgderationen ger det muligt at referere til ek-

sterne XML-data i OLAP-forespgrgsler, hvorved XML-data

kan preesenteres sammen med multidimensionelle data

sultatet af en OLAP-forepgrgsel og desuden kan bruges

til selektion og gruppering. | forbindelse med integrati
nen sikres det, at der ikke opstar semantiske problen
Som en demonstration af faderationstilgangen har vi k

strueret et multi-schema-forespgrgselssprog basergrpa $

gene SQL og XPath. Udover dette sprog preesentere
komplet fadereret system, der daekker alle vigtige aspe
af en faderation af OLAP og XML. Dette arbejde omfg
ter det formelle grundlag, en samling af algebraiske o
skrivningsregler, arkitekturdesign, procedurelt dessgmt
flere effektive omkostningsbaserede optimeringstekmikk
Desuden beskrives en igangveerende prototypeimplems
tion samt indledende eksperimenter, der indikerer, atriaq
ation i hgj grad er et praktisk alternativ til fysisk integcen.
Denne faderationstilgang giver saledes en kraftfuld og fl
sibel made at handtere uventede og kortvarige databe
samt data, der ofte eendrer sig. Da stort set alle ty
datakilder effektivt kan “indpakkes” i XML-format, tillaet
faderationen ogsa logisk integration af relationelle e&bj
relationelle og objektdatabaser. Dette muligger en ree
helt nye anvendelsesomrader for OLAP-systemer.
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Preface

This Masters Thesis presents the results of a project daaig from September 2000 to June 2001 at the
Department of Computer Science, Aalborg University.

The paper describes theoretical and practical aspectsexfaadtion of XML and OLAP databases. This
work has been done in the arealdtabase and Programming Technologikesing the Dat5 and Dat6 semesters.
In the first semester, we contrived the fundamental defimstiof data models and query languages as well as
the basic federation architecture. This work constitutestof Sections 3, 4, 5, and 7. In the second semester,
we refined this foundation, and used it to create the themadetiasis for query optimization and to build and
partially implement a federated system.

Citations are formed from the abbreviated name(s) of théaa(g) and the year of publication, e.g.
[PSGJO0Q]. The bibliography can be found on page 71.

We would like to thank our supervisor Torben Bach Pedersesupervising this project, for sharing his
work with us, and for his many helpful and constructive thiotgghroughout the project period.

Aalborg, June 15, 2001

Dennis Pedersen Karsten Riis
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Abstract

The changing data requirements of today’s dynamic busier@gsonments are not handled well by cur-
rent On-Line Analytical Processing (OLAP) systems. Phgi§yantegrating unexpected data into such sys-
tems is a long and time-consuming process making logicegnation the better choice in many situations.
The increasing use of Extended Markup Language (XML), @.gusiness-to-business (B2B) applications,
suggests that the required data will often be available a X&ta.

In this paper we present a flexible and theoretically welldfded approach to the logical federation of
OLAP and XML data sources. This makes it possible to refexemdernal XML data in OLAP queries,
which allows XML data to be presented along with dimensiahetia in the result of an OLAP query,
and enables the use of XML data for selection and groupingci@pcare is taken to ensure that semantic
problems do not occurin the integration process. To demateshe capabilities of this approach, we present
a multi-schema query language based on the SQL and XPathdgrg. A complete federated system is
also presented, covering all important areas of a federgipdoach to the integration of OLAP and XML.
This work includes a complete formal background, a coltattf algebraic rewrite rules, architectural and
procedural design, and several effective cost based agttinh techniques. A prototype is being developed
and initial experimental studies have been conductedcatitig that our federated approach is indeed a
feasible alternative to physical integration. Thus, ouleiated approach provides a powerful and flexible
way to handle unexpected or short-term data requirementelss rapidly changing data. As almost all
data sources can be efficiently wrapped in XML format, therapgph also allows the logical integration of
external data from sources such as relational, objectioel, and object databases, opening up totally new
application areas for OLAP.

1 Introduction

On-line Analytical Processing (OLAP) and Extensible Markianguage (XML) are currently two of the most
significant database technologies. However, the conmebttween them has so far received little attention.

OLAP systems enable powerful decision support based oridimé&nsional analysis of large amounts of
summary data commonly drawn from a number of different taatienal databases. OLAP data are often orga-
nized in multidimensionatubescontainingmeasured valuethat are characterized by a number of hierarchical
dimensions Typical operations on data cubes a#-up, which aggregates data by moving up along one or
more dimensiongjrill-down, which disaggregates data by moving down dimensionsskeetand-dicewhich
performs selection and projection on a cube. The multidsieral approach offers a number of advantages
over traditional types of DBMSs, including automatic aggteon [RS90], visual querying [TSC99], and good
query performance due to the use of pre-aggregation [GHR599].

However,dynamic datasuch as stock quotes or price lists, is not handled wellirect OLAP systems, al-
though being able to incorporate such frequently changatg oh the decision making-process may sometimes
be vital. Also, OLAP systems lack the necessary flexibilityan faced with unanticipated or rapidly changing
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datarequirements These problems are due to the fact that physically integratata can be a complex and
time-consuming process requiring the cube to be rebuitn®8, Tho97]. In some situations, the required data
cannot be integrated into the cube at all e.g. becauseaontedr copyright restrictions do not allow data to be
retrieved and stored locally, but only to be queried in an ad itmanner. Thus, logical, rather than physical,
integration is desirable, i.e.faderateddatabase system [SL90, BKLW99] is called for. A federatestean
provides a flexible way to handle rapidly changing data a$ agelinexpected or short term data requirements.
Also, it is possible to maintain a high degree of autonomye¢omponent systems, e.g. these may only allow
restricted access to component data. This is often the chea vetrieving data from the Internet as well as
in business-to-business (B2B) environments, where bssipartners rarely provide full access to their data.
Traditionally, two different approaches have been useti@mdiesign of federations. Either component schemas
are transformed into a common data model [SL90, Hsi92, DP80they retain their schemas and a multi-
schema query language is used [PSGJ00, CRF00]. Here, thieschéma query language approach offers the
additional flexibility needed in uncertain and rapidly chang environments.

The increasing use of Extended Markup Language (XML)[W3Ce@. in B2B applications, suggests
that the required external data will often be available in XMrmat. Also, most major DBMSs are now able
to publish data as XML. Thus, it is desirable to be able to s€céML data from an OLAP system. The
hierarchical and often irregular structure of XML data alothe encoding of many different types of data, but
complicates its use in connection with more structuredsygelata. For example, irregular XML data can lead
to incorrect aggregation of data if not handled properly.

In this paper we present a theoretically well-founded aagioto the logical federation of OLAP and
XML data sources. The approach allows external XML data tadex as “virtual” dimensions, enabling three
specific uses of XML data. First, OLAP query results may decorated with XML data, i.e. related XML
data may be presented along with the results of an OLAP q@&sagond, external XML data may be used for
selection Third, OLAP data may bgroupedbased on external XML data. Special care is taken to ensate th
any irregularities in the XML data does not cause problems.worrect aggregation of data. A flexible linking
mechanism is devised to associate dimensional cube ddtparis of XML documents, allowing XML data to
be referenced in a multidimensional query. As almost akhdaturces can be efficiently wrapped in XML format
[CCSO00], the presented approach also allows external data $ources such as relational, object-relational,
and object databases to be used in a powerful and flexible Wiag. extends the use of OLAP to completely
new application areas as data need no longer be integraysitalty in the OLAP DB.

The work presented here covers all important areas of adéetbrapproach to the integration of OLAP
and XML, including a complete formal background, architeat and procedural design, several cost based
optimization techniques, a prototype implementation, exgkrimental studies.

To demonstrate the capabilities of the approach, we presdata model, a formal algebra over the model
and a high-level multi-schema query language based on SQXBath [W3C99]. SQL and XPath are chosen
for their simplicity, wide-spread use, and compact syntebawever, other languages like MDX [Mic98] or
XQuery [W3CO01b] could be used instead. The extended SQUIsdcAML-Extended Multidimensional SQL
(SQLxu). As a part of this work, a new data model and query languageblean defined for OLAP. To
demonstrate the federation, a data model and a query laaglamuld satisfy two requirements: First, they
should be capable of handling the irregularities introdubg integration with external data. Second, they
should be close to the relational model and SQL to facilithegeintegration with existing technology and to
ease user comprehension. Unfortunately, we found theirgxisiata models either too simple for the first
requirement or too complex for the second requirement [PJBBus, a new data model and query language
has been defined. This query language is cHéd. ;.

We also present an overview of a prototype system suppdtteg@pproach, which is currently in the early
stages of implementation. In addition, a number of effectptimization techniques are described. Together,
they provide significantly better performance for typicaleges and also allow queries to be evaluated, that
would otherwise be orders of magnitude too expensive. Famgie, a technique is presentedritine refer-
ences to external data in queries, potentially resultingirch faster evaluation. Another primary result used
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for optimization, is the definition of a set e@quivalence rulesor the federation algebra. Optimizations are
based on @ost modefor federation queries, and techniques are presentedltbat@ost estimates to be made
even when little or no cost information is available. Withtass of generality, we make no assumptions about
the existence of Document Type Definitions [W3C00] or XML 8etas [W3C01a] which ensures compatibil-
ity with all kinds of XML sources. Initial performance expeents with the prototype are reported, indicating
that our approach is indeed a practical alternative to glaysntegration. The concepts of the approach are
illustrated by a real-world case study based on the use of @aid XML systems in the B2B domain.

There has been a great deal of previous work on data integraéi.g., on integrating relational data
[HSC99, Dat01, Gat01], object-oriented data [RA®6], semi-structured data [CGM#D4], and a combi-
nation of relational and semi-structured data [GWO0O0, LAW39owever, none of these handle the advanced
issues related to OLAP systems, e.g., dimensions with figieies, automatic aggregation, and the problems
related to correct aggregation. This is also true for the lwoed relational and XML query language Quilt
[CRFOQ], and fomD-SQL [GL98], which considers the federation of relatioralirces providing basic OLAP
functionality. One previous paper [PSGJO00] has considéredederation of OLAP and object data. In compar-
ison, our approach is not restricted to object DBs, and thgidl schemas, but can be used on any imaginable
data source as long as it allows XML wrapping. Also, we allowgularities in federation data such as “miss-
ing” external data and offer more general use of externa gdten performing selection and grouping. The
same paper briefly mentions ti@ining technique, but only for certain simple types of predica&kso, we
consider a cost based use of the technique.

We believe this paper to be the first to consider the logidagration of OLAP and XML data, opening up
totally new application areas for OLAP as physical inteigrabf data is no longer needed. More specifically,
we believe to be the first to:

¢ define a data model, an algebra, and a query language for OllAd¢hwupport irregular hierarchies and
are close to the relational model and SQL,

¢ define a data model, an algebra, and a multischema querydgadar the federation of OLAP and XML
data sources,

e consider advanced OLAP issues such as dimension hieraychibomatic aggregation, and correct ag-
gregation of data in the context of integration with XML data

e formally define thedecoration operatioras a basis for logical integration of external data in OLAP
systems,

e demonstrate how the decoration operation enables seleatid grouping based on external data,
e formulate equivalence rules involving the decoration atien,

e propose a cost model for federation queries based on speosicmodels for autonomous OLAP and
XML components,

e devise a number of effective heuristic and cost based ogditioin techniques for the federation queries,
e present a general form of thelining technique for integration of external data in predicates.

The rest of the paper is organized as follows. Section 2 ptegbe motivation and the case study used
throughout the paper, while Section 3 defines the data madelsquery languages used in the federation
components. In Section 4, the linking mechanism and its mseLIAP-XML federations is defined, while
Section 5 defines the semantics of the approach. Equivatefesfor the federation algebra are presented in
Section 6. Section 7 and Section 8 describes the federataitecture and how queries are evaluated within
the architecture, respectively. A number of optimizatienhiniques and a high level cost model are presented
in Section 9 followed by a more detailed explanation of thetaoodel in Section 10. An overview of the
federated system is presented in Section 11. Finally, &edi?2 discusses implementation and performance
studies, whereas Section 13 concludes the paper and poifittite work. Appendices A and B contain the
formal syntax of theSsQL x;, language and a formal definition of the inlining approackpeztively.
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2 Motivation

In this section, we discuss why a federation of existing Olakiél XML databases may often be useful and
present a real-world case study that is used for illustnatimoughout the paper.

2.1 Federating OLAP and XML

As described in the introduction, this work is aimed at, boitiimited to, the use of XML data from autonomous
sources, such as the Internet, in conjunction with exisiih@\P systems. Our solution is to make a federation
which allows users to quickly define their owogical cube viewby creatinginks between existing dimensions
and XML data. This immediately permits queries that usedhe=mwv “virtual” dimensions in much the same
way ordinary dimensions can be used. For example, in a cubwioing data about sales, a Store-City-
Country dimension may be linked to a public XML document witformation about cities, such as state and
population. Instead of being restricted to queries thatardg the existing dimensions, like “Show sales by
month and city”, it is now possible to pose queries such a®Wssales by month and state” or “Show sales
by month and city population”. Thus, in effect the cube data begrouped byXML data residing e.g. on a
web page or in a database with an XML interface. In additioghgdata can be used to perfosslection(also
known as filtering) on the cube data, e.g. “Show only salegitas with a population of more than 100.000”
or to decoratedimensions, e.g. “Show sales by month and city and for edaghstiow also the state in which it
is located”.

Many types of OLAP systems may benefit from being able to Ebidntegrate external XML data. In a
business setting, consider e.g. an OLAP database corgaiiaita about products and their production prices.
To aid in determining future sales prices, these produattddoe decorated with a competing company’s prices
for the same or similar products. Such prices would typjcakk available from the competing company’s
website. Another example could be various types of geogeapmformation available from the Web. These
may be used in an insurance company’s customer databasep#alie admissions database, or a telephone
company’s database of calls. Other types of external datavifil typically be available as XML data and
could be useful in OLAP systems include: addresses of erapbwr customers, product specifications, the
store manager’s name, dates of events, public assessméehe fiaxes on real estate etc. Thus, a broad range
of different systems can gain from our federation.

This federated approach wheusersare responsible for defining the federation, has been sxfdr as a
loosely coupled federatigisL90]. There are many reasons why this approach is a goadehar this setting.

It provides the ability to dad hoc integration which may be needed for a number of reasons. First, it is
rarely possible to anticipate all future data requiremeviten designing a database schema. OLAP databases
may contain large amounts of data and thus, physically iatew the data can be a time consuming process
requiring a partial or total rebuild of the cube. Howeveringeable to quickly obtain the necessary data can
sometimes be vital in making the right strategic decisioecddd, not all types of data are feasible to copy
and store locally even though it is available for browsing. ®n the Internet. Copying may not be allowed,
typically because of copyright rules, or it may not be preadii e.g. because data changes too frequently or
because only limited form-based interfaces are availablgyiring each data item to be explicitly requested.
Third, attempting to anticipate a broad range of future atads and physically integrating the data increases
the complexity of the system, thereby reducing maintaiitgbAlso, this may degrade the general performance
of the system. Finally, ad hoc integration allovegid prototypingof OLAP systems, which can significantly
ease the task of deciding which data to physically integrstimgether, the federated approach provides both a
simpleand aspecial purpos®©LAP system as data can be integrated when the need arises.

The federated approach also allows XML components to mairthigh degree of autonomyvhich is
essential when data is accessed from sources outside tn@satjon that controls the federation. For example,
when a component is accessed on the Internet, the fedevdtidypically have no control over the component’s
structure, naming conventions, access methods, avéyabit. Also, data is alwayap-to-datewhen using a
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federated system as opposed to physically integratingdtee @his may be crucial for certain types of dynamic
data such as price lists, stock quotes, contact informasicimeduled dates etc.
These points suggest that in many situations a loosely edupUeration is preferable.

2.2 Case study

The case study concerns the trading of electronic compsnéns inspired by the Electronic Component In-
formation Exchange (ECIX)[EciO1], which is a widely adogteitiative to use XML as a means of communi-
cating information about electronic components. Thersgtisimplified to fit this paper, consists of companies
producing electronic components (ECs), and of companigsguhese components and integrating them to
larger appliances. In the following we refer to them as sigppland customers, respectively.

EC Time Supplier
code day code
class month country
manufacturer| |year

1 1 1

* * *

Purchase

cost
number of units

Figure 1. UML schema for the Purchases OLAP database.

Customers use an OLAP database, shown in the UML diagranguréiL, to analyze the purchases they
have made over time. Purchases are characterized by an E€hglon, a supplier dimension, and a time
dimension, and for each purchase the total cost and the gsgdnamount are measured. ECs are categorized
by their manufacturers and their classes, e.g. flip-flopsatwhes. For suppliers, we capture the country in
which they are located. Purchase dates are categorizeddaugdo the regular calendar. This database allows
customers to view purchases at different levels of graitylarg. to calculate the total amount spent on ECs by
class and month.

Suppliers present their products on the Web at a B2B mawetpl This allows customers and others to
access detailed specifications of their ECs. This inforomaits encoded in an industry-wide markup language
defined in XML, which makes it easy to limit a search to thevaie parts of specifications. A simplified
example of a document containing information from différeappliers is shown in Figure 2. The fundamental
part of an XML document is thelement Elements are identified bystart tagand anend tag and can contain
other elements, text data, and attributes. For a more cdrapsive explanation of XML see [W3CO00]. In the
example document th€onponent element has an attribut@onpCode and contains the element&anu-
facturer,UnitPriceandDescri ption. All ECs sold by a particular supplier belong to a component
class. ECs are referred to by their code. In addition to thidocument captures the manufacturer, which need
not be the same as the supplier, the price per unit, and saledescription.

Several aspects of ECs like textual descriptions and cupdnes are not included in the Purchases
database because their use was not anticipated or becaysehiéinge too frequently. Despite this, it may
sometimes be desirable e.g. to group ECs by their marketplascriptions, or view only purchases of ECs
within a specific price range. By logically integrating theréhases database and the Components document in
a federation this can be handled in an easy and flexible way.
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<?xm version="1.0" encodi ng="utf-8"?>
<Conponent s>
<Suppl i er SCode="SU13" ><SNane>John’ s ECs</ SNane>
<O ass O assCode="C24"><d assNane>Fl i p-fl op</ C assNane>
<Conmponent ConpCode="EC1234" >
<Manuf act urer MCode="M31"><MNane>Sni t h Conponents | nc. </ MNanme></ Manuf act urer >
<UnitPrice Currency="euro" NoCf Units="1000">3. 00</UnitPrice>
<UnitPrice Currency="euro" NoOf Units="10000">2.60</UnitPrice>
<Description>16-bit flip-flop</Description>
</ Conponent >
<Conponent ConpCode="EC1235" >
<Manuf act urer MCode="M32"><MNanme>John’ s ECs</ MName></ Manuf act ur er >
<UnitPrice Currency="euro" NoOf Units="1000">4.25</UnitPrice>
<Description>16-bit flip-flop</Description>
</ Conponent >
</ d ass>
</ Suppl i er>
<Suppl i er SCode="SU15" ><SNane>Jane’ s ECs</ SNanme>
<O ass O assCode="C27"><Cl assName>Lat ch</ O assNane>
<Conponent ConpCode="EC2346" >
<Manuf act urer MCode="MB1"><MNane>Sni t h Conponent s</ MNane></ Manuf act ur er >
<UnitPrice Currency="euro" NoOf Units="1000">3.31</UnitPrice>
<Description>16-bit | atch</Description>
</ Conponent >
</ d ass>
<Cl ass C assCode="C24"><Cl assNanme>Fl i p- Fl op</ Cl assNane>
<Conponent ConpCode="EC1234" >
<Manuf act urer MCode="MB3" ><MNane>Johnson Conponent s</ MNane></ Manuf act ur er >
<UnitPrice Currency="euro" NoOf Units="1000">2.95</UnitPrice>
<Description>D-type flip-flop</Description>
</ Conponent >
</ d ass>
</ Suppl i er>
</ Conponent s>

Figure 2: The Components document containing informattmsu EC suppliers and their products.

3 Data Models and Query Languages

This section describes the data models and query languagdsar the federated components. For the OLAP
component, a prototypical model capturing common mult&tisional terms such as facts, dimensions, and
hierarchies is defined, and an OLAP-extended version of SQused as the query language. The OLAP
data model captures complex multidimensional data, erggular dimension hierarchies, just as the model
of Pedersen et al. [PJ99], but has been modified to be clostamaard SQL. For a description of how to
implement such an advanced model using standard OLAP tkxdypove refer to previous work [PJD99].
For the XML component, the XPath data model and query lang{3C99] is used, mainly because of its
simplicity and wide-spread use.

3.1 The OLAP Data Model

The model is defined in terms of a multidimensiooabeconsisting of acube namgdimensionsand afact
table Each dimension comprises two partially ordered sets (ppsepresenting hierarchies lefvelsand the
ordering ofdimension valuesEach level is associated with a set of dimension values.

Definition 3.1 (Dimension) A dimensionD; is a two-tuple(Lp,, Ep,), whereLp, is a poset of levels and
Ep, is a poset of dimension values.

Lp, isthe four-tuple(LS;, C;, T4, L;), whereLS; = {L;,. .., L, } is a set of levels_; is a partial order
on these levels, and; and_L; are the unique top and bottom elements of the ordering. Wewst®aL;; € D;
as a shorthand meaning that the leligl belongs to the poset of levels in dimensibp
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A level L;; is a name identifying a set afimension valuesLet E be the set of all possible dimension
values andLevels be the set of all levels. Then a functidalues: Levels — P(E), returns the subset df
associated with a level ihevels. Thus,ValuedL;;) = {e;j1,. .-, e;j,, }. We shall usd.;; as a shorthand for
VaIues{Lij).

Ep, isapose{ U; Lij, Cp, ), consisting of the set of all dimension values in the dimemsind a partial
ordering defined on these. We shall usgas a shorthand chri Li;.

For each levellL we assume a functioRoll-up;, : Value§L) x LS; — P(D;), which given a dimension
value in L and a level inLS; returns the value’s ancestors in the level. ThatRsll-up;, (e, L') = {¢' €
L,|€ EDi 6,}. [l

The intuition behind the partial order; of levels is that given two levelé;, L;» € D; we say that
L1 C; Ly, if elements inL;s can be said to contain the elementdin. For exampleDay C Y ear because
years contain days. Similarly, we say thatC e if e; is logically contained iy andL;; C; L; for e, € L;;
ande, € L;; ande; # es. For example, the day 01.21.2000 is contained in the yead.20bte that a
lower-level value may roll up to more than one higher-levaue.

Example 3.1 In the case study presented in Section 2.2 we have a Time diameran ECs dimension and a
Suppliers dimension. Lettingup denoteSuppliers the Suppliers dimension consists of the levBlss,, =
{T sup, Country, Supplier}, which are ordered as follows: g,,= {(Supplier, T sup), (Country, T sup),
(Supplier, Country)}. Thus, the poset of levels isp,,, = (LS sup, Esup, T sup, Supplier).
The poset of dimension values af;,, = ({Tpg,,, US, UK, S1,52,53},Cpg,, ), whereCp, =
{(US, Tps,,)s (UK, Tpg,,), (51, Tps,,), (52, Tps,,), (83, Tpg,, ), (51, US), (52, US), (58, UK)}.
Hence, the Suppliers dimension is given 8., = (Lps,,, Eps,,)- O

Definition 3.2 (Fact table) A fact table F' is a relation containing one attribute for each dimensiod ane
attribute for each measure. ThuB, = {(e1,,.-.,€1,,01,...,0m)| (€L,,-..ye1,) € L1 X -+ X Ly A
(v1,...,vm) €M C Ty x--- x Ty}, wheren > 1, m > 1, andT} is the domain value for thgth measure.
We will also refer to the/'th measure as/; = {(e1,,...,e1,,v;)}. The measure domair all contain the
specialNULL value, which denotes that no value exists for a particulant@oation of dimension values. A
tuple in F', where at least one measure value exists, is calfadta

Each measurd/; is associated with default aggregate functioff; : P(7;) — T}, where the input is a
multi-set. Aggregate functions ignoMJLL values as in SQL. O

Intuitively, a tuple inF’ captures the measured values associated with one conalnirdiilimension values
from the bottom levels. The number of tupledins equal tg| L, ||-- - --|| L, ||. Thatis, there is one tuple i for
each possible combination of the bottom dimension valubg i¥ just logically, in a physical implementation
only the non-empty tuples would be stored.

Example 3.2 In the case study presented in Section 2.2 we have the twounes&ostandNumber of Units
A part of the fact table is represented in Table 1. To saveespady tuples with norNULL measure values are
shown although all combinations are logically present enrilation. This is done throughout the paper.O

Definition 3.3 (Cube) An n-dimensional cub&’ is a three-tuple consisting of a cube nafiea non-empty
set of dimension® = {Dy,...,D,} and afacttablé’(D,,...,D,, M,...,My). Thatis:C = (N, D, F).
Thecube nameV describes the type of facts contained in the cube. O

Example 3.3 From the Purchases database in the case study we can coastinuee-dimensional cube with
the cube naméurchases, the dimensions, levels, and ordering of dimension valgedepicted in Figure 3,
and the fact table from Example 3.2. O
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Cost  No. Of Units Day Supplier EC

2940 1000 01.21.2000 S1 EC1234
6900 2000 01.21.2000 S3 EC1234
9480 3000 02.22.2000 S3 EC2345
14400 4000 02.22.2000 S2 EC1235
17650 5000 03.23.2001 S2 EC1235

Table 1: A part of the fact table for the Purchases database.

ECs Suppliers  Time ECs Suppliers Time
T T T T T T
Manu | Ye!ar 20@01
Cl Countr
ass  facturer y | FF L M31 M32 M33 US UK AN
\/ | Month /\ \ Jan Feb Mar
_ | l>?§< / / N\
EC Supplier  Day EC1234 EC1235 EC2345 S1 S2 S3  01-21-00 02-22-00 03-23-01

Figure 3. Schema (left) and instance (right) of the Purchak#abase. “FF” and “L” are names of classes
denoting “Flip-flops” and “Latches”, respectively.

Next, we define the notion asummarizabilityand discuss how it is used to enswga&e aggregation
Summarizability is an important cube property as it statéemlower-level aggregates, which are often pre-
computed, can be used to calculate higher-level aggregaidsvhen these must be computed from base data.
Also, it is possible to get wrong results from aggregate igsaf summarizability is not ensured. Checking for
summarizability is even more important in the setting cdesed in this paper than in normal OLAP systems,
as the irregular structure of XML data may violate the summadunility property.

Definition 3.4 (Summarizable) Given a measure domaif;, a setS = {Si,..., Sy} wheresS; € P(Tu)
and a functiory : P(Ts) — Ths we say thay is summarizabléf g({g(S1),...,9(Sk)}) =g(S1U---U Sk
where the argument of the left-hand side is a multiset.

o<

Intuitively, an aggregate function is summarizable if aggted results from a lower-level aggregate (left-hand
side of the formula) can be combined to give the same resuithas the aggregate is derived directly from
base data (right-hand side of the formula). If this propéstgot satisfied we are generally not allowed to use
the lower-level results for further aggregation.

It has been shown that summarizability is equivalent to ireggithe aggregate function to be distributive,
and the ordering of dimension values todigct, onta andcovering[LS97, PJ99]. A hierarchy istrict if no
dimension value has more than one parent value from the sawak dntoif all paths from top value to leaf
value is of equal length, armbveringif no path skips one or more levels. Intuitively, this meamest dimension
hierarchies must be balanced trees. If this is not the case sawer-level values will be either double-counted
or not counted at all. For example, the Purchases cube ind-Ryis strict, onto, and covering.

Another important problem is that different aggregate fioms may be valid when aggregating different
measures and also when aggregating the same measure émarditlimensions. Consider e.g. the two mea-
sures “number of items sold per store per year” and “numbéeofs in stock per store per year”. The first one
can be added meaningfully over time, e.g. to “number of iteoid per store per decade”. However, the second
one is not summarizable over the time dimension as some itagnb@ accounted for more than once. The
average number of items would be meaningful, though. To caenghe stock items per decade, it is necessary
to use the base data, i.e. each stock item. This purely serakdifference between the two types of measures
is often characterized using the terffsv andstock respectively [LS97]. Even though stock items cannot be
added over the time dimension, it may be correct to aggrebata over the store dimension, e.g. by country.
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Notice that this is only correct if items are only stored iregiace.

To ensure correct aggregation of data we keep track of whgghegate functions can meaningfully be ap-
plied to measures for each dimension. We do this by assogiatiaggregation typeo each combination of a
measure and a dimension, thereby allowing us to prohibitasnihe user against illegal aggregations. Follow-
ing previous work [RR83, Leh98, PJ99], we distinguish betwthree types of data; data that may not be ag-
gregated because summarizability is not preserpedata that may be averaged but not added Yardhta that
may also be added. Thus, we have the following ordering siglypesc C ¢ C 3. Considering only the stan-
dard SQL functions, we have that = {SUM, AVG, MAX, MIN, COUNT}, ¢ = {AVG, MAX, MIN, COUNT},
andc = (). A function AggType: {M;,..., My} x D — {X, ¢, c} returns the aggregation type of a measure
M; when aggregated in a dimensiah € D. Thus, any changes to an aggregation type apply to all lévels
a dimension. Aggregation types are used both to prohibitasically incorrect aggregation, and to prevent
aggregation when irregular hierarchies may lead to incbmesults. We only consider the problem of non-strict
hierarchies, since this is the only type of irregularityrastuced when integrating external data as discussed in
Section 5. Hence, we assume that cubes only contain higarttfat are onto and covering.

3.2 The Cube Algebra

In this section we present an algebra over the OLAP data mu@sknted in Section 3.1. Two operators
are defined: a selection operator and a generalized prjeoperator. Hence, the algebra is not relationally
complete, but it is sufficiently powerful for this purposeorfexamples of a complete set of operators, we refer
to previous work [PJ99].

The selection operatarq,;. iS used to slice the cube so that it contains only facts thiétl fa given
predicate. The predicates we consider here are constriraiedthe usual SQL operators, and allow the use
of roll-up functions on the fornd/(L) which returns the dimension values i that contain each dimension
value inL. Assuming unique level names, this can be abbreviatdd.to

Example 3.4 Slice the purchase cube from Example 3.3 so that only the unedsalues for ECs not supplied
by ‘S2’ and belonging to classes starting with an ‘F’ areiregd in the cube:

!
O Cube[Supplier: >'S2' AND Class LIKE ‘Fo] (Purchases) = Purchases [

A predicate may have more than one interpretation if a dino@nglue can have more than one parent in
the same level, i.e. if the hierarchy is non-strict. This lbdae the case when selecting ECs belonging to classes
that start with an “F”. The predicate could be truaif classes to which an EC belongs begins with an “F” or
it could be true ifany of the classes do so. We call these semargicselection semanticandany selection
semanticsrespectively. Here, we adopt the latter interpretatiamseswe consider this the more natural choice
for users and since it is also the one used in the XPath sfd&8C99]. A selection only affects the tuples
in the fact table. Hence, selection returns a cube with theedact type and the same set of dimensions. All
tuples for which the predicate holds are left unaffected. dloother tuples the measures are sefitd L.

Example 3.5 The fact table resulting from the query in Example 3.4 is:

Cost  No. Of Units Day Supplier EC

2940 1000 01.21.2000 S1 EC1234
6900 2000 01.21.2000 S3 EC1234
O
Formally, we define the selection operator as follows:
Definition 3.5 (Selection operator) Let p be a predicate over the set of levdlg,, ..., Ly} and measures

My, ..., My,. Selection on acub€ = (N, D, F) iS ocyupep)(C) = (N', D', F'), whereN' = N, D' = D
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Cost | Supplier Clasg ETCS S“"?”ers ETC ° suPﬁﬁerS
2940 S1 FF | /\
6900 S3 FF Country us UK
9480 S3 L | /\ \
32050 S2 FF Class  Supplier FF L S1 S2 s3

Figure 4: ThePurchases' cube from Example 3.6
andF' = {t|,...,t;}. If t;, = (e1,,...,€e1,,01,...,0p) € F then

o {ti if p(t;) = t

(e1,y---5e1,,NULL,...,NULL) otherwise.
U

The generalized projection operatii-,;,. aggregates measures to a given level and at the same time
removes dimensions and measures from a cube. This is sitmitae behavior of @ELECT statement with a
GROUP BYclause in SQL.

Generalized projection is evaluated in three steps: Rirstremove all dimensions that are not present in
the arguments, and then each dimension value is rolled upetsgecified level. Finally, we perform a regular
grouping in the fact table removing all measures not spetifiethe arguments. Notice that rolling up to a
higher level may result in duplicated facts if the hierarchipon-strict.

Example 3.6 Calculate the costs per class and supplier:

/
HCube[Supplier,Class]<SUM(Cost)>(PurCha'ses) = Purchases

The Purchases’ cube resulting from this query is shown in Figure 4. O

Intuitively, the levels specified as an argument to the dperaecomes the new bottom levels of their
dimensions and all other dimensions are aggregated to phievel and removed. Each new measure value is
calculated by applying the given aggregate function to threesponding value for all tuples in the fact table
containing old bottom values that roll up to the new bottorlu@a. To ensure safe aggregation in case of non-
strict hierarchies we explicitly check for this in each dims@n. If a roll-up along some dimension duplicates
facts we disallow further aggregation along that dimenigisetting the aggregation type o

Formally, we define:

Definition 3.6 (Generalized projection) Let C = (N, D, F') be a cube as defined above. Then generalized

projection is defined astlcypelc; ,....c Li 1< Fjy (M) i, (M, )>(C) (N',D',F"), where{L;,,...,L; } is a
set of levels specifying the aggregation level such thatr&ttmne level from each dimension occurs The mea-
sures{M;,,...,M; } C {M,..., My} are keptin the cube anf},, ... ., f;, are the given aggregate functions

for the specified measures, such th&, € {D, € D|Ly & {Li),..., Li, }Y(Vfi, € {firs--os Fi} (i €
AgaType M, , Dy))).

The resultlng cube is given byN' = N andD’ = {D; ,...,D; }, whereD; = (L, ,E; ih) for
h =1,...,k. The new poset of levels in the remaining dlmensionE’,'b? (LSQ}L, zh?TZmL ), where

[ . . . . . [ — U _
LS;, = {Li,p € LS, |Li\, Ei, Liyp}, andgih_gihm,ﬁ. Moreover,£7}, = (Up Linp, £ Diylu, Lm)'

The new fact table is given byf’ = {(elil,..., iy ,v;l,...,v;lﬂ e’% € Li, Nvj, = fu,, ({v]
(€L yevs€l,,0) E. M;, A (eli1 . ,elik) € RoII-ule1 (eLll,ﬁ ) X -ee X RO"'UPJ_ik(@Likaﬁik)})}-
Furthermore, if3(ey,... eln,'l)j) € Mj;, (e € {eLl,...,eLn}(HRoII-upLig(e,Lig)H > 1 Avj #

NULL)) thenAggType(M]h,D ) = O
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3.3 The OLAP Query Language

We use a slightly extended subset of SQL, called Multidinaers SQL SQL ;/), to query multidimensional
cubes. SQL is chosen as the base language because of itecgymgid wide-spread use. We illustrate the
considered syntax with an example, while the full syntaxivergyin Appendix A.

Example 3.7 Calculate costs by class and supplier but only for suppléaated in UK and only when the total
cost exceeds 10000:

SELECT suMCost), Supplier, Class(EC)
FROM Purchases

WHERE Country(Supplier) = ‘UK’
GROUP BY Supplier, Class(EC)

HAVING sum(Cost)> 10000

O

A query is constructed from SQL'SELECT-FROM-WHERE-GROUP BY-HAVING statement, with a few
modifications to the standard language to capture the dp@tiAP concepts. Aggregation from a bottom
level L to a higher levelL’ in the same dimension is performed using a roll-up funciéf) in the SELECT
andGROUP BY clauses. Like [AGS97], we assume these functions to be +vailiied although this is not pos-
sible in standard SQL. This is necessary because we allaarbfges to be non-strict, e.g. ECs could belong
to more than one class. Roll-up functions can also be usedeiwHERE and HAVING clauses. Since the
dimension to which the levels belong is not given in the syntee assume level names to be unique. This
can be handled by prepending level names with dimension fiafk&a shorthand, we allow the argument of
the roll-up function to be omitted it.” = L, that is when no roll-up should be performed in that particul
dimension.

Since we do not allow relational projection on cubesdmOuP BY clause is mandatory. Each dimension
must either be explicitly rolled up to some level or not men&d at all. The latter indicates that the dimension
should be rolled up to the top level and projected away asdscse in standard SQL. However, if only
measures are to be removed from the cube, that is if all boéweis are present in thgeLECT clause, and no
HAVING clause is present, th@ROUP BY clause can be omitted.

To support automatic aggregation a new functmeFAULT can be used in addition to the usual SQL
aggregate functions. When applied to a meadufé DEFAULT” is substituted for the default aggregate function
fj. For example, iffcost = SUM thenDEFAULT(Cost) becomesum(Cost). In this way a user need not be
concerned with the aggregate functions once they are spetcifithe system. This is important, e.g. when
OLAP data is queried using a graphical tool.

Without loss of generality we only allow one cube in #freom clause and we do not consider calculated
measures. Both multiple cubes and calculated measureseclaanilled by creating a view over one or more
cubes. We do allow nested queries in HreM clause.

The semantics of an SQL query can now be expressed in ternhg aube algebra defined above: First,
the selection operator is applied with the predicate froewttiERE clause, then generalized projection with
the levels and measures listed in #LECT andGROUP BY clauses, and finally a new selection is performed
with the HAVING predicate.

Example 3.8 The query in Example 3.7 is evaluated as follows:

/
Purchases’ = O Cube[sum( Cost)>10.000] (HCube[Supplier,Class}<SUM(Cost)>(UCube[Country:’ UK’}(PUTChaS@S)))

0

Formally, we define the semantics of an SQL query as follows:
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Definition 3.7 (Semantics of an SQL-query)Let C be a cube{L,,..., Ly}, and{L},...,L,} be a set of

levels from a subset of dimensionsGhwhereL; C; L., {Mj, ..., M;} be a set of measures frofy prediynere
be a predicate over the levels and measureS,iandpredq.ing be a predicate over levels,, ..., L;, and
measuredy, ..., M;.

The SQL j,-query
SELECT fl(Ml)aafl(Ml)lel(Ll)aaL;c(Lk)

FROM C
WHERE predyhere
GROUP BY LY (Ly),..., L} (L)
HAVING Predpaving
can then be evaluated ég — UCube[predhavmg}(HCUbe[L&>"'>L;c}<f1(Ml)""’fl(Ml)>(OCU‘be[predwh"e}(C)))' |:|

3.4 The XML Data Model and Query Language

The XPath language is used to refer to parts of XML documekitaough not a full blown query language, this
language is sufficiently powerful for our purpose. XPaths®ahosen because it has a compact syntax making
it suitable for integration into another language. Given thnguage, the natural choice for an XML data model
is the tree based model underlying the XPath language. Sjastraints prohibit a complete definition of the
language and the reader is referred to the XPath specifictdraletails [W3C99].

The XML data model underlying the XPath language views an Xdtument as a tree. Each node in the
tree has one of the types: root, element, namespace, texggwing instruction, attribute, or comment. The
types are defined by the sét={R,E, N, T,P, A, C}.

The tree structure appears because some of these nodesntaim ather nodes, whereas others contain
just primitive parts like text or strings. The contents of tiodes are defined in the following.

In the definitionr, e, n, t, p, a, andc are nodes of typ®, £, N, T, P, A, andC, respectively. An expanded
name is composed of a local name and possibly a namespacdeaidny the name globally uniqgue. CDATA
stands for character data, i.e. a piece of text.

r= (67 {p17 s 7pk1}7{617 v 7Ck2})
e = (Ezpanded name, Id, (¢, . .. ,6;63),{77/1, ek, AP, - PRs  {ar, - akg b {ens oo ek })

wheree, is either an element or a text node, and the order of thesesriedgven by the order in which start
tags occur in the document. Note that an element need no@made in which case the id has the special value
NULL.

n = (Expanded name)
t = (CDATA)
p = (Fxpanded name, String)
a=(
(

Expanded name, String)

We define an XML documenit as a pair: = (URI,r), where URI is the globally unique name of the XML
document and Tyde) = R. We further assume a functidRoot(z) = Root((URI,r)) = r that returns the
root of an XML document, a functionStrVal(s) that returns a string representation of a nedand a function
Nodegz) that returns the set of nodes in an XML document

The basic syntax of an XPath expression resembles a Unixditeyhere a full path expression is given as
a number of locations separated by/g €.g. location-step; /. . . /location-step,,. Each step in turn selects a set
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of nodes relative to aontext nodeEach node in that set is then used as a context node for thetegx The
syntax for one step isaxis::node-test[predicate; ]. . . [predicate,,]

The axis part of a location step specifies the tree relatiprisétween the nodes selected by the location
step and the context node. These inclatteibute, parent, andchild which can be abbreviated bya”, “..”
and by omitting the axis, respectively. The node-test platlocation step restricts the set of nodes to having
a specific name or being of a specific type. The set of nodemestiby the node-test can be further filtered
by applying one or more predicates which supports the usa@khln, mathematical, and string operators. For
each node in the node set to be filtered, the predicate isatealwith that node as its context node. If the
predicate evaluates to true, the context node is includéakeimesult set.

Example 3.9 Select all ECs which are of the flip-flop class and are manufadtby either Johnson Compo-
nents or by the manufacturer with code M33:

/Components/Class/Component[Manufacturer/MName = ‘Johnson Components’ OR Manufacturer/@MCode

= ‘M33'][../ClassName="Flip-flop’] [

To use XPath as a foundation for the federated data model @eny tanguage we formalize the notion of
an XPath expression.

Definition 3.8 (XPath Expression) An XPath expression is a functiokP : S — P(S) whereS is a set of
nodes. The set of all valid XPath expressions over an XML damntz is calledX P, while the subset ok P,,
that are absolute XPath expressions is caléelX P,.. Thatis,AbsXP, = {zp € XP|Dom(xp) = Roofx)}.
RelX P, is the set of expressions iKiP,, that are not indbsXP,. O

4 Federating OLAP and XML

In this section we describe how links between an OLAP compbared external XML components can be used
to logically federate OLAP databases and XML documents &eatkin Section 3.

A link is essentially a relationship between a dimension valuecubg and a node in an XML document.
By creating a link, the user or DBA defines a sortcobe viewcontaining an additional dimension. However,
the actual contents of the new dimension are not defined arrgilery is posed. The task of creating links
can be performed by executing a speciaREATE LINK” statement or it can be performed using an XML
browser, e.g integrated in a visual querying tool. As willdgen, the link concept makes it easier for users to
refer to XML data in OLAP queries and the mechanism also plewiocation transparency, since links can be
changed without affecting existing queries. This is impottas some types of XML documents may change
their location from time to time. The fundamental linking chanism is simply a relation between dimension
values in a level and nodes in an XML document.

Definition 4.1 (Link) A link is a relationlink;, C {(e,s)le € L A s € S}, whereL is a level andS is a set of
nodes. O

The basic way of specifying a link is lsnumerated linkingwhich explicitly defines the relation by pro-
viding a set of three-tuples consisting of a dimension viatue XML document in which a node is to be found,
and an XPath expression identifying one or more nodes in ¢logrdent. Thus, one such tuple can define a
number of link tuples for a single dimension value.

Definition 4.2 (Enumerated link) An enumerated link is a functioBnLink : P(L x X x AbsXP,) — Links
where L is a level, X is a set of XML documentsdbsXP, is a set of absolute XPath expressions over a
documentz € X, andLinks is a set of links. The resulting link relation is given by:
EnLink({(e1, z1,locatory,), ..., (ek, Tk, locatory, ) }) = {(ei, s)|e; € {e1,... ex}

As € locators, (Roof(z;)) }, wheree; is a dimension value;; is an XML document/ocator,, is an absolute
XPath expression over; called thelocator path O
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Example 4.1 We want to refer to the suppliers’ names in the Componentsrdeat when querying the Pur-
chases database. Since the codes used for suppliers indhmelat are different from the ones used in the
database, we have no way of identifying the links automiijficdlence, we may use an enumerated link:
{("S1”, “www.comp-org.org/components.xml”/Components/Supplier[@SCode="SU137"),

(*S3”, “www.comp-org.org/components.xml”/Components/Supplier[@SCode="SU15]") }

Note that S2 is not present in the XML document. In this caseheaf the tuples identify only
one node in the document and the resulting link Bup_Link = {(S1,s1),(S3,s3)}, wheres; is the
single element pointed to by: /Components/Supplier[@SCode="SU13]” in the document “www.comp-
org.org/components.xml”, and similarly feg. O

Often, names of dimension values, or a simple transformaifcthe names, can be found somewhere in
the nodes they should be linked to. For example, when daagrabuntries with their populations, it is likely
that the country names can be used to identify the popukatidowever, there may may not be an exact match
between the name of a dimension value and a node in the XMLndestu For example, dimension values
may be full country names, while only abbreviated countrgle) such as UK or US, are found in the XML
document.

Enumerated linking is only necessary in the rather speeiaé avhen names of dimension values cannot
easily be mapped to nodes in the linked XML document, or tlteemccur in different documents. The former
situation may e.g. be necessary if also historical popartatigures are present in the document and the link
should only point to the most resent figure. More oftertural linkscan be used as a shorthand. Here, the idea
is to specify a level and a set of nodes in an XML document, aadtibe dimension values to identify one or
more of these nodes. Optionally, alias functionmay be supplied, mapping each dimension value to an alias
which is used to identify the XML nodes. The set of nodes isndefifor each level by a URI identifying the
XML document and two XPath expressions. The first one idestithe nodes to which the link will point, and
the second one is used to select the subset of these nodesdheked to the given dimension value. The
reason for using two XPath expressions is to facilitate hrarmon case that a link must point to a subtree, but
the subtree is identified by some lower node in the subtree Hbt necessary to use two expressions since
XPath expressions allow you to move up the tree as well as dowuirit makes it easier to use the links.

Definition 4.3 (Natural link) Assume a domaimMliases of string values for XML nodes and an injective
function Alias : L — Aliases, mapping dimension values fromto strings inAliases.

A natural link is a function:NatLink : LS x X x AbsXP, X RelXP, x Alias — Links. The resulting
link relation is given byNatLink(L, z, base, locator, alias) = {(e,s)|le € L A s € base(Roofz)) A Is' €
locator(s)(Strval(s') = alias(e))}, whereL is a level,x is an XML documentpase € AbsXP, identifies the
nodes, andocator € RelXP, identifies the nodes being compared to dimension valués in O

If no alias function is necessary, it may be omitted, i.e. ithentity function is assumed.

Example 4.2 If we want to create a link between the ECs in the Purchasedds¢ and those in the Compo-
nents document we can make a natural link, since the sames apgleised in both places.

From the natural link: (“EC”, “www.comp-org.org/comportsrxml”, “/Components/Supplier/Class/Com-
ponent”, “ @CompCode”, igc), Whereigc(e) = e is the identity function, we create the lilKC_Link =
{(EC1234,5s1), (EC1234, s2), (EC1235, s3)}. s1 is the first element in the Components document with Com-
pCode="EC1234",s5 is the second element with CompCode="EC1234", apds the single element with
CompCode="EC1235". O

A flexible linking mechanism must allow both dimension vawend nodes to occur more than once in
the same link. Theardinality of a link lsnk between a level. and an XML document can be either [1-1],
[n-1], [1-n], or [n-n]. A link is [1-1] if ||link| = ||7L(link)| = ||7(link)||, wherer denotes relational
projection and|R|| denotes the cardinality of relatiaR. Similarly, the cardinality ofink is [n-1] if |link|| =
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7w (link)|| > ||7z(link)|, [1-n] if |[link| = ||7z(link)|| > |7 (link)||, and [n-n] if||link|| > |7z (link)]|
and||link| > ||7r(link)|. We use the abbreviations [-1] to denote [1-1] or [n-1] ang fe denote [1-n] or
[n-n]. Note that these cardinalities are not specified in\aay, but are merely properties of the links.

Example 4.3 Sup_Link is [1-1] andEC'_Link is [1-n]. O

To allow references to XML data in OLAP queries, links aredise definelevel expressionsA level
expression consists of a starting levela link [ink from L to nodes in one or more XML documents, and a
relative XPath expressiarp which is applied to these nodes to identify new nodes.

Definition 4.4 (Level expression)A level expressiorl /link/xp, whereL is a level,zp is an XPath expres-
sion, andiink is a link from L, defines a linkE = {(e,s)le € L A 3s'((e,s") € link As € zp(s'))}. The
cardinality of a level expression is the link cardinality Bf Also, we say that a level expressicnversits
starting level ifL = 77, (E). If the starting level is not covered some facts may not beelinto any nodes. We
will refer to such tuples asnconnectedacts.

To simplify link usage we assume a functidefaultLink : L — Links, whereL is a set of levels and
Links is a set of links. The function returns the default link foriaem level. O

Example 4.4 The level expression “EC/EC_Link/CompCode” is [1-n] anceslaot cover its starting level,
since “EC2345” is not mentioned in the Components document. O

Assuming thaDefaultLink{ EC') returns “E'C'_Link” the above level expression can be written “EC/Comp-
Code”. In the following we assume th&1C'_Link andSup_Link are default links for theéZC' and Supplier
levels, respectively.

With the linking mechanism in place, we can now define thersee data model consisting of a cube, a
set of XML documents, and a set of links between them. We omhgicler one cube since multiple cubes can
be handled by creating a view over the cubes.

Definition 4.5 (Federation) A federationF of a cubeC' and a set of XML documentX is a three-tuple:
F = (C, Links, X) whereLinks is a set of links between levels @ and documents itX . O

When it is clear from the context, we will refer 6 as a cube, meaning the cube part of the federafion

Example 4.5 The cube in Example 3.3 for the Purchases database, the @emigalocument, and the links
Sup_Link and EC_Link is a federation. We will refer to this as the Purchases faagran the following. O

5 Querying Federations

In this section we present an algebra over federations amthisto define the semantics of the new federation
query languag&QL x,,. Hence, the focus is on the formal foundation for the queryhfederations, while
the more practical aspects of this are described in SectoodB.SQL x;, can be used to decorate a cube with
XML data, group by XML data, and use XML data for selection.eTdemantics are given by extending the
cube algebra to federations, providing a decoration opgratgeneralized projection operator, and a selection
operator. The algebra is closed, as all operators work odexd¢ion and also return a federation.

5.1 Decoration

It is often useful to provide supplementary information éore or more levels in the result of an OLAP query.
This is commonly referred to adecoratingthe result [GBLP96]. For example, products could be deedrat
with a competitor’s prices for the same products, employa#stheir addresses, or suppliers with their contact
person. Such information will often be available to thevafe people as Web pages on the Internet, an intranet,
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or an extranet. Also, this kind of information will most likenot be stored in an OLAP database because it
either changes too frequently, was not expected to be usediried by someone else, or for some other reason.
The solution suggested in this paper is to allow OLAP quetdeseference external XML data using level
expressions in theeELECT clause. In Section 5.2 we consider how to use level expressiotheGROUP BY
clause.

Example 5.1 Let “AllTimePurchases” be the Purchases cube aggregatdtet&C and Supplier levels. The
fact table of this cube is shown in Table 5(a). Given the fatien consisting of the “AllTimePurchases”
cube, the Components document, and the links defined alie/&ltowing query decorates all ECs with their
descriptions from the Components document:

SELECT Cost, Supplier, EC, EC/Description
FROM AllTimePurchases
O

There are two important problems with the use of level exgpoes for decoration which are related to
the problems with non-strict and non-covering hierarclasegliscussed earlier. First, a dimension value may
be associated with more than one node, i.e. when the leveéssipn has cardinality [-n]. Second, some
dimension values may not be associated with any nodes athadlh is the case if the level expression does not
cover its starting level.

The first problem allows for a number of differegi¢coration semanticsConsider the following example:

Example 5.2 From the query in Example 5.1 we could get the result shownaiplel' 5(b), where a fact is
created for each different description node resulting ftbhmlevel expression. Another possibility is the result
shown in Table 5(c), where an arbitrary node is picked and@dtrane fact is created for each EC. A third
possibility is shown in Table 5(d), where all descriptiordae are concatenated. In all cases we bga™to
indicate that no description is found for an EC. O

Cost | Supplier EC Cost | Supplier EC Description
2940 S1 EC1234| | 2940 S1 EC1234 D-type flip-flop|
6900 S3 EC1234|| 2940 S1 EC1234  16-bit flip-flop
32050 S2 EC1235|| 6900 S3 EC1234 D-type flip-flop
9480 S3 EC2345 6900 S3 EC1234  16-bit flip-flop
32050 S2 EC1235 16-bit flip-flop
(@) 9480 S3 EC2345 N/A

(b)

Cost | Supplier EC Description Cost | Supplier EC Description

2940 S1 EC1234 D-type flip-flop | 2940 S1 EC1234 D-type flip-flop, 16-bit flip-flog
6900 S3 EC1234 D-type flip-flop | 6900 S3 EC1234 D-type flip-flop, 16-bit flip-flog
32050 S2 EC1235 16-bitflip-flop| | 32050 S2 EC1235 16-hit flip-flop

9480 S3 EC2345 N/A 9480 S3 EC2345 N/A

© (d)

Figure 5: The fact table for the AllTimesPurchases cube affiefeint decorations of it.

The problem is which of the nodes to use for decoration whesvel lexpression returns more than one
node. Several solutions are possible including picking arwgtrarily, using the first one, concatenating all
different nodes, or using all the nodes thereby creatindichaped facts. Note that concatenating the nodes from
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an XML document is always possible since all nodes have agstalue, though the concatenated string may
not make sense to a user. Duplicating facts means that flaffggegation may give an incorrect result. This is
the case when grouping over decoration values, whereapiggover other values produces a correct result.
Note that theiny/all selection semanticdescribed in Section 3.2 are different from theseoration semantics
(However, as will be seen in Section 5.3 the two conceptsedated.)

The second problem with the use of level expressions forradion is how to handle expressions that do
not cover its starting level. The solution used in Examp2iS.to add a speciall/A value, indicating that
no nodes are available. Alternatives are to remove the thatsare not linked to any nodes or to require the
level expression to cover its starting level. Removing theamnected facts would lead to a non-summarizable
result, whereas requiring all values in the starting leedbé¢ covered would reduce the practical usefulness of
decoration significantly. Thus, we propose to add a speelakvfor all unconnected facts.

Since different semantics are needed in different sitnatiove allow the user to choose between different
types of semantics when decorating a cube with XML data. We lchosen the following because we believe
they can all be useful under different circumstances:

ANY: Use an arbitrary node. This is useful when summarizabilitgyusd be preserved and no node is more
important than another, as might be the case e.g. when dexpsappliers with a contact person.

CONCAT: Use the concatenation of string values for all differentesdJseful when summarizability should
be preserved and all nodes are needed, e.g. when decoredohgcfs with text descriptions.

ALL : Use all different nodes, possibly duplicating facts. Us&fhien the decoration is used for grouping or
selection.

Although we only consider these three semantics, othersl dmiuseful in some situations. For example,
all nodes could be used in tleNCAT andALL semantics, including the ones that are identical. The m&po
of this would most likely be to find the number of identical epe.g. the number of times an EC occurs in a list
of sales. This value could then be used to calculate new megalues in the cube, e.g. the total sales per EC
by multiplying the number of times an EC was sold with the @rié a single EC. Also, semantics preserving
the document order of XML documents could sometimes be Usefowever, the preservation of document
order is outside the scope of this paper.

The user specifies the semantics of a decoration by givingnarstic modifier in the level expression as
in EC[ANY]/EC_Link/Description. If no semantic modifier specified, ANY semantics are assumed as the
default. Notice that if the cardinality of the level expriessis [-1], then decoration with the three semantics
will produce the same result.

Example 5.3 The query in Example 5.1 actually results in Table 5(c) simg® is the default. Table 5(b) and
Table 5(d) are the results of these two queries, respegtivel

SELECT suMCost), Supplier, EC, EQ[LL ]/Description
FROM AllTimePurchases

SELECT suMCost), Supplier, EC, ECONCAT]/Description

FROM AllTimePurchases 0

We decorate a cube by adding a new dimension containing aelydp level and a level containing all
the decoration values. Different approaches could be &xlatthe decoration data as special attributes of the
decorated values [Leh98, CT98, TSC99], create a new levitlersame dimension as the starting level, or to
keep the decorated data in an external component [PSGJ00hgproach has the advantage that the external
data can easily be used for aggregation and selection betaeislecoration data is incorporated into the cube
as any other dimensional data. Furthermore, aggregatistillipossible in the original dimensions, as these
are not changed by decoration.
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With ALL decoration semantics this approach would create new fadisei fact table. Since this is an
awkward behavior for a decoration operator, decoratiorh witL semantics adds a new dimension with the
same bottom values as the dimension containing the deddeatel. The decoration data becomes dimension
values in the new dimension with these bottom values asremldThus, each bottom value rolls up to the
value that decorates it. This roll-up and the possible geimr of new facts is then handled by the generalized
projection operator which is defined in Section 5.4.

Example 5.4 The result of decorating Table 5(a) withL semantics without rolling up to the decoration level
is shown in Figure 6. To avoid creating new facts in the fableathe EC values are simply duplicated, while
the decoration values are added to the new dimension abege tC’ values. Thus, the new facts are not
created until the cube is rolled up to the Description levdbte that the new dimension is non-strict since
“EC1234” has two different descriptions. O

EC[ALL]/Description EC[ALL]/Description

Cost | Supplier EC EC T

2940 S1 EC1234 EC1234
6900 S3 EC1234 EC1234 Description D-type flip-flop N/A  16-bit flip-flop
32050 S2 EC1235 EC1235 l

9480 S3 EC2345 EC2345

EC' EC1234 EC2345 EC1235

Figure 6: The fact table, new dimension schema and new diorenssulting from decoration withLL se-
mantics.

The three semantics are formally defined in the followinge ARY semantics is defined as:

Definition 5.1 (Decoration with ANY semantics) Decoration withANY semantics),yy Of a federationF =
(C, Links, X) is defined asdany (1. tink,qzp)(F) = (C', Links', X') whereL, € D, link € Links is a link
from L, to X andzp is an XPath expression oveéf. The new federation is given byLinks’ = Links,
X' =X,C"= (N',D',F'),andN' = N. A new dimension is added if it is not already preseft: =
{D1,..., D} U{Dy 1} whereD, 1 = (Lp,,,,Ep,,,). Here,Lp, ., = (LSn41,Ent1, Tni1, Lep), Where
LSni1 =A{Tn+1: Lap}, andTp 1= {(Lap, Tn1)}-

LetU = {e € L,|VY(e,s) € link(zp(s) = 0)VIs((e,s) € link)} be the set of dimension valuesin that
either has no corresponding valuesip(s) or is not linked to anything vi&nk. Also, letL = {e,,|3(e,s) €
link (e, = StrVal(s;) for somes; € xp(s)}. Then the new level containing the decoration values isgie

{L U{N/IA} for U # 0
Lyp =

L otherwise.

Furthermore Ep, ., = (Lep U Try1,En,yy), WhereCp, = {(exps TDpii)|€ap € Lap A Ty € Tngt)e
If D,,41 € DthenF' = F. Otherwise, the new fact table is given BY = {¢,,}, where for alle,,, € Ly,
and(ei,,...,e1, ,V1,...,0mn) € F:

(€L ye-s€l,€apsUlyen-sUm) if Je,. €{er,,...,eL, }(3(es) € link
. (e1, Cp, e A3s" € zp(s)(Strval(s’) = egp))
" Vie e Uler, Cp, e Aegp = NIA))
(€1,,---,€1, e, NULL,...,NULL) otherwise.
For all measured/;, in C' the aggregation type igsggType M},, D, 1) = AggType My, D). O

Intuitively, only two things are changed when decoratingibec A new dimension is added and the fact
table is updated to reflect this. However, since the cube itlefindoes not allow duplicate dimensions, no
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changes are made if an identical dimension already existeercube. The new dimension contains only
the decoration level and the top level. The new dimensioneslin the decoration level are created from
an arbitrarily chosen node found by following the link froimetstarting level and then applying the XPath
expression. If one or more values in the starting level daggproduce any decoration values the spekial
value is used instead. The new fact table is created fromatiesian product of the dimension values from the
old fact table and the new decoration values. Measure valgeseplaced wittNULL values such that no facts
are duplicated.

Example 5.5 The federationdliTimePurchasespeq = (AllTimePurchasescype, { EC_Link, Sup_Link},
{“www.comp-org.org/components.xml} is decorated with EC descriptions as follows:

Sany[EC,EC_Link, 'Description’] (Al TimePurchasespeq) = AllTimePurchasesp,' .

AllTimePurchasesg,g contains the same links and XML document while th8TimePurchasescype
cube is extended with a new dimensiObescription. Letting Des denoteDescription we have thatDp.s =
(LDDES ) EDDQS)- Here,LDDes is the pOSG({TDes, LDes}a L Des; TDeSa LDes): WhereEDes: {(LDBSa TDes)}-
Also, Ep,,.. = ({T, "D-type flip-flop”, “16-bit flip-flop”, “N/A” },Cp,,..), whereT is the parent of the other
values in the ordering. The new fact table is shown in Tabdg. 5( 0

The only difference betweesiny andCONCAT semantics is in the definition of the decoration values. For
ANY semantics we pick one of the values, BmNCAT semantics we concatenate all the different values.

Definition 5.2 (Decoration with CONCAT semantics) dconcar is defined as foaNy semantics except for the
following change in the definition ak:

For eache € L, let S. = {s|3s'((e,s') € link N's € zp(s'))}. ThenL = {ey,|Te € L.(ezp =
ConcafStrval(sy), ..., Strval(sg)) for s; € Se)}, whereConcatis a function concatenating a set of strings.]

ForALL semantics a new dimension is added containing the samerbettloes as the dimension to which
the starting level belongs. The decoration values are thegrted between the top value and the bottom values
in the new dimension. A decoration value becomes the pafenbottom value if the bottom value is the child
of a value in the starting level that is linked to the decomtvalue.

Definition 5.3 (Decoration with ALL semantics) d,,, is defined as foaNy semantics except for the follow-
ing changes:

e The new poset of levels consists of three levéls; .| = (LSy41,Cnt1s Trtts Lny1) WhereLS, . =
{Tn+17 —Ln+17 me} and En+1: {(—Ln+17 sz)a (sz7 Tn+1)7 (J—n+17 Tn+1)}-

e The new dimension values @f,, is L = {e,|3(e, s) € link(3s’ € zp(s)(eyp = Strval(s’)))}.
The dimension values of the new bottom level are givenby;; = L,.

e The new ordering of dimension values#p,,, = (Ly41 U Ly U Tpy1,Ep,,,), WhereCp, =
{(eln+1vTDn+1)|eLn+1 € Lpp1 A TDn+1 € Tn-l-l} U {(expv TDn+1)|e£’3p € pr A TDn+1 €
Toel U {ler,iisemp)ler, o € LuyiAerp € LypA(Te ey ((e,s) € linkAey ., =ei Aei, Cp,
e A ds; € zp(s)(eqp = StrVal(s;))) VIe,e  (e€ UNey,,, =er, Ney, Ep, eNegy = NIA))}

e The new fact table is given b§’ = {¢,} where foralle, ,,, € L1 and(ey,,...,eL,,v1,...,0p) €

F

b = (€Llysees €Ly €l ULyene s Uy) if dey, € Lo(er,€{er,,...,e, }Ael, =el, )
(€1y5---5€1,,€e1,.,NULL,...,NULL) otherwise.

0
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Intuitively, the new bottom level contains the same dimemsialues as the bottom level of the dimension
to which the starting level belongs. The new decorationllepatains a dimension value for each distinct node
found by following the link and applying the user defined XPatpression. The fact table is created from the
dimension values from the old fact table and the new bottolmegaof the decoration dimension. No measure
values are duplicated since they only exist for tuples dnintg the same bottom value twice. All other measure
values are set tNULL . Thus, theaLL decoration operator only associates values in the stadired with the
right decoration values through their common bottom valugs actually present the decoration along with
the other levels, the new decoration dimension must be ggtgd to the level containing the new decoration
values. In the following we discuss how to perform aggrematver federations.

5.2 Extending Grouping to Federations

Allowing level expressions in theROUP BY clause makes it possible to group by data from XML documents,
without having to physically store this data in the OLAP ¢hatse. For example, product prices will often be
available from a supplier's Web page or an e-marketplaces&lup-to-date prices can then be used to group
products in an OLAP product database without having to dteeerices.

Example 5.6 The following query groups ECs after their text descripidrom the Components document.

SELECT suMCost), EChLL J/Description
FROM Purchases
GROUP BY ECIALL]/Description 0

GROUP BY queries with level expressions are evaluated in two steprst, fhe cube is decorated as de-
scribed in the previous section. Second, aggregation ®meed by using the already defined generalized
projectionllqy,,e On the new cube.

Example 5.7 The above query is evaluated by first decorating the Purshasiee resulting in the fact table
shown in Table 5(b), and then grouping by “Description” gsib-pe. O

When decorating the cube, the new decoration dimension maypb-strict ifALL semantics are used and
a bottom value is decorated by more than one decoration .vahis is the reason for allowing non-strictness
in a cube and for handling it in the generalized projectiorrajor as defined in Definition 3.6. Consequently,
if non-strictness occurs because of the decoration andyiieggtion results in duplicated facts, this is handled
by setting the aggregation typedppreventing further aggregation in that dimension. To aeggte further, the
original cube must be used.

Formally, the generalized projection operator over fetiens is defined as follows:

Definition 5.4 (Generalized projection over federations)Let 7 = (C, Links, X) be a federation and
M;j,,...,M;, be measures i@’. Also letL,...,L; be levels inC' such that at most one level from each
dimension occurs. The generalized projection operHiar; over federationf is then defined as:

M ped Ly, L)< fj, (M), fin (M,)> (F) = (€, Links', X)
where the new cube 6’ = Hcube(Ly,n Ll <fi, (M, )y fim (M) > (O)-

Links for which the starting level no longer exists are reem\rom the resulting federation. That is:
Links' = {link € Links|3L € C'(3(e, s) € link(e € L))}. XML documents to which no links refer are also
removed:X' = {z € X|3link € Links'(3(e, s) € link(s € Nodegz)))}. O

5.3 Extending Selection to Federations

XML data can also be used to perform selection over cubes filakes it possible e.g. to view only products
where a certain supplier is cheaper than another suppliezfeyring to their Web pages. The idea adopted here
is to allow level expressions WHERE andHAVING predicates in places where levels can already be used. For
example, level expressions can be compared to constavess, leneasures, or other level expressions.
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Example 5.8 Show component costs by supplier and EC but only those &laifar less than 3.00 euro.

SELECT suMCost), Supplier, EC
FROM Purchases
WHERE EC/UnitPrice[@Currency="euro’] < 3.00

GROUP BY Supplier, EC 0

As discussed in Section 3.2 selection semantics are aksctedf by the cardinality and covering properties
of level expressions. As for selection over cubes, we hatiibeby usingany semantics.

Selection over federations is evaluated by first decoratiitg all the level expressions mentioned in the
predicate. The resulting federation is then sliced usimgsilection operator, and finally, the new decoration
dimensions are removed again. The selection operator giagglies the cube selection operator to the cube
part of the federation since the link and XML parts shouldmaffected by selectiomLL semantics are used
for the decorations to make sure that all decoration valvesilable. This is important sin@y selection
semantics are used in predicates, and thus, a predicate ensatibfied by any of the decoration values. No
facts are duplicated since tiaeL decoration is never actually rolled up to the decoratiorlle¥he roll-up is
handled entirely by the cube selection operator.

Example 5.9 Show only components that are manufactured by the supplier.

SELECT suMCost), Supplier, EC

FROM Purchases

WHERE EC/Manufacturer/MName = EC/../../Suppliers/SName
GROUP BY Supplier, EC

This query is evaluated by first decorating with the level respions EC/Manufacturer/MName and
EC/..I../Suppliers/SName using theL semantics. This results in two new columns’E@d EC in the fact
table both duplicating the EC level. A new predicate is thenstructed rolling up to the decoration level:
“Manufacturer/MName”(EQ =“../../Suppliers/SName”(EQ, and this is used to select a part of the fact table.
Finally, the two new columns are removed again. O

Formally, selection over federations is defined as follows:

Definition 5.5 (Selection over federations)Let 7 = (C, Links, X) be a federation.
The selection operator over federations is then defined g, (F) = (C', Links', X'), whereLinks' =
Links, X' = X, and the new cube 8" = 0.¢ype[,) (C)- O

Hence, selection is performed on a federation by applyifmp@election to the cube part using a predicate
without the level expressions. The decoration and preglitransformation are not handled by the selection
operation but instead by the mapping fr@®L x,, to the federation algebra as described in the next section.

This concludes the definition of the algebra. The three dapesalefined all operate on federations and
result in federations, thus, the federation algebra isatlos
5.4 Semantics of theSQL x,; Query Language

We can now define the semantics QL xj, query in terms of the federation algebra. The syntax is gimen
Appendix A.

Definition 5.6 (Semantics of arSQL x; query over a federation) In the following, let:

e F = (C, Links, X) be a federation,



5 Querying Federations 22

e 1Ly, Ly, € Ly,...,LyandLy,,..., L, belevelsinC suchthatl,, C; L,

gis-

o Mj,...,M; C M,..., M, be asetof measures frof,
e fi,-.., [ be aggregation functions all of which are assumed to beildligive,

e predyhere D€ @ predicate over levels and measureS itontaining level expressions
Lo, [linkw, [Tpw, s - - - L, [linky, [Tpw,,

o Ly [Semy,]/links, [zps,, ..., Ls,, [Sems, |/links, [zps, be level expressions, where eafhis a

» ~5p,

level inC, link; € Links is alink from L;, andxp; is an XPath expression,

e prednaing D€ @ predicate over levels and measures in the cube aftgpiggyicontaining level expres-
sions

Ehl/li’rbkhl /xphl, ey Ehpg /linkhps /acphp3 .
Also, we use the abbreviatiohg, ... g, (F) = g, (... (0r, (F)), whereE; = Sem;[L;, link;, zp;).
The SQL xar-query

SELECT fjl (Mj1)7 s 7fj1(Mj1)7 Lgl (J-gl)v s 7Lgk(-]-gk)7 )
si[Sems, | /links, [zps,, ..., Ls, [Sems, |/links,, [Tps,,

» ~Spy

FROM F

WHERE predyhere

GROUP BY Ly, (Lg,),---, Ly, (Lg), Ls, [Sems, | /links, [xps,, ..., Ls, [Sems, |/links, [zps,,
HAVING predpaving

can then be evaluated as

e Lgy s Lgp 2Dy sty 1< L5y (M) )y iy (M)
OFed[predpqying'] (AALL [Chybinkny s @Phy |y ALL L g linkn gy, TPk, ] (
1_[Fed[Lg1 serLigy s TPs | 5oy TPs sy 1<fjy (Mj, )""’fjl (Mj,)> (ASemSl [Lsy links, ,xpsl],...,Semsp2 [Csp2 ,linlcsp2 ,a:psp2] (

OFedlpredypere'] (AaLL [Lowy dinkw ;@Pw) |y ALL Loy dinkwy, | @Puwy, ] (F)N))

The new predicatesred,pere’ andpredyqving’ are constructed fromred,pere ANAdpredpaving, respectively,
by replacing each level expressidiiink /xp with the roll-up functionzp(L ), whereL is the bottom level
of the dimension to whicliL belongs. O

An SQL x»s query over a federation is evaluated in four major stepsstFihe cube is sliced as specified in
the WHERE clause, possibly requiring a decoration with XML data whishthen projected away after selec-
tion. Second, the resulting cube is decorated with extexddlL data from the level expressions occurring

in the SELECT and GROUP BY clauses. This creates a number of new dimensions in the ciiued, all di-
mensions, including the new ones, are rolled up to the lesdgified in thesROUP BY clause. Finally, the
resulting cube is sliced according to the predicate giveth@HAVING clause, which may require additional
decorations. Notice that the new decoration dimensiond fegeselection are not mentioned in the following
generalized projection and are therefore removed after 8s&e these new dimensions are never aggregated
to the decoration level, no changes are made to the aggraggpes.

Example 5.10 Calculate costs by supplier, class and EC description, rd&sb with the supplier names. The
result should only reflect purchases of ECs which are matwried by the manufacturer listed in the Compo-
nents document and are supplied by S2 or S3. Also, we only thangroups with a total cost of more than
7.000.
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SELECT SuMCost), Supplier, Class(EC), Supplier/SName, EC[ALL]¢Dgption
FROM Purchases

WHERE EC/Manufacturer/@MCode = Manufacturer(EC) AND Suppligr(B2, S3)
GROUP BY Supplier, Class(EC), Supplier/SName, EC[ALLJ/EC_Link&ription
HAVING sumM(Cost)> 7.000

This query is evaluated as follows:

O Fed[sum(Cost)>7.000] (HFed[Supplier,Class,SName,Description]<SUM(Cost)> (
5ANY [Supplier,Sup_Link,SName] (5ALL [EC,EC_Link,Description] (
O Fed[Manufacturer /@M Code( EC)=Manufacturer(EC) AND Supplier IN (52,53)] (

OALL [EC,EC_Link,Manufacturer /QMCode] (PurCha'ses ) ) ) ) ))

Notice that no generalized projection is needed after tsieskection since it does not refer to any decora-
tions that must be removed. O

As can be seen from this example the resulting algebraicesgmn can be optimized in several ways.
For instance, a partial aggregation can often be perforngédré the first decoration, to reduce the size of
intermediate results. This and other optimizations areudised in the following sections.

6 Algebraic Transformation Rules

The optimization approaches presented in this paper cotktruristic and cost based techniques. In Section 8
we will discuss heuristic optimization &QL x,, queries and in Section 9 a cost based approach is considered.
To provide a basis for these techniques we present hereectiotl of transformation rules for the federated
algebra. Most of these rules involve the decoration opmma#éind have, to the best of our knowledge, not
been considered elsewhere. The remaining rules are sitnithose for Extended Relational Algebra (ERA),
i.e. duplicate sensitive relational algebra with aggriegat [GdB94, GHQ95]. Since most ERA rules have an
equivalent rule inSQL x»; Algebra, the list of rules is not complete, but cover ruleattare important for
optimizing federation queries. We consider only distmbeitaggregation functions, which is unproblematic
since all the widely used functions are distributive or carekpressed in terms of such functions. For example,
SUM, MIN, MAX are distributive COUNT = suMm(1), andAavG can be expressed in termssiM andCOUNT.

The full list of transformation rules are shown in Table 2 eTrales are presented formally in the following
by first giving an intuitive description of the rule, possihllustrated by an example, then stating the rule
formally, and finally arguing for the validity of the rule. €hules are grouped after the operators they involve.

In the formal presentation left-to-right rules are dendtgd-, while bidirectional rules are denoted by.

We begin by stating a fundamental equivalence propertyetittcoration operation:

Theorem 6.1 If a cube has already been decorated with a decorafigp i, ., @ll subsequent decorations
With (1, 1ink,zp) CAN b€ ignored. That is:

OS[L link,zp] (F)) & F
Proof outline: This follows from Definition 5.1, 5.2, and 5.3, which statbattif an identical decoration dimen-

sion is already present, it is not added again. Hence, theraigan has no effect and can be removed or added
without changing the cube. O

In the formal definitions let
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No. | Description
6.1 | Redundant Decoration Above Generalized Projection
6.2 | Redundant Decoration Below Generalized Projection
6.3 | Commutativity of Decoration and Generalized Projection
6.4 | Pushing Generalized Projection Below Decoration
6.5 | Commutativity of Selection and Decoration
6.6 | Inlining of Decoration in Selection
6.7 | Commutativity of Selection and Generalized Projection
6.8 | Pushing Generalized Projection Below Selection
6.9 | Commutativity of Generalized Projection and Selectiorhvireferences to Measures
6.10 | Commutativity of Decorations
6.11 | Cascade of Selections
6.12 | Commutativity of Selections
6.13 | Cascade of Generalized Projections
6.14 | Redundant Generalized Projection
6.15 | Cascade of Decorations
6.16 | Pushing Generalized Projection Below Decorations andc8etes

Table 2: Transformation rules for the federation algebra.

E = L[S]/link/zp be a level expression, and,, ; and L,, the bottom and decoration level of the
dimension resulting from decoration withi, respectively,

e L be a set of levels from different dimensions,
o F'(M)={f1(My),..., (M)} be a set of aggregation functions applied to measures,
e Dim : Levels — Dimensions be a function that returns the dimension to which a levelioggo

e Dims : P(Levels) x Predicates — P(Dimensions) be a function that given a set of levels, and a
predicate, returns the set of dimensions to which the laéndlse set and in the predicate belong,

e Levs: Dimension x P(Levels) x Predicates — P(Levels) be a function, that given a dimensidh
a set of levelsC, and a predicaté returns the set of levels fror» that are either contained i or are
referenced irg,

e Max: P(Levels) — Levels be a function that given a set of levels from the same dimensiturns the
uppermost level,

e MaxStrict: P(Levels) — Levels be a function that given a set of levels from the same dimensiturns
the uppermost such level that do not introduce non-stréstvehen rolled up to from the bottom level,

For improved readability, we omit the subscrifitd for operators in the federation algebra, since no con-
fusion can occur.

6.1 Rules Involving Decoration and Generalized Projection

According to Theorem 6.1, a cube can only be decorated wéls#ime decoration once. Thus, a decoration
can be removed or added above a generalized projection f@Palteady includes the decoration in the list of
GROUP BYlevels.

Example 6.1 6a. [Ec,EC_Link,Description] WL [EC, Supplier, Description)<sum( Cost)> (OaLL[EC,EC_Link, Description]
(PurCha'ses))) IS equwalent td—I[EC,Supplier,Description}<SUM(Cost)> (6ALL[EC,EC’_Link,Description](PUTChaS@S))
because the cube has already been decorated with Destriptio
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Rule 6.1 (Redundant Decoration Above Generalized Projeatn) If a level L,, resulting from decoration
with the level expressior.[S]/link/zp is already present it and L' occurs inL such thatZ' C L the
following holds:

Os tink,ap) Mgy <rn)> (F)) < Uigjcran s> (F)

ReasoningThis rule follows from Theorem 6.1. O

A decoration can be removed if it occurs below a GP that doesnlude it in the list ofcROUP BYlevels.

Example 6.2 H[EC,SupplieT]<SUM( Cost)>(5ALL[EC,EC_Lmk,Description} (PurChases)) is equivalent to
[ ge, suppiier]<sum(cost)> (Purchases)) because the decoration with Description has no effect athev&P.C]

Rule 6.2 (Redundant Decoration Below Generalized Projeain) If L,, ¢ L A Ly, | ¢ L the following
holds:

g1« pany> 0s(L ink,ap) (F)) < Wig)< pary> (F)

Reasoningif the decoration does not occur in the GP it is projected alefgre it is used and can be removed
without changing the resulting cube. O

Decoration and GP operations are commutative if the cuhgtireg from the GP contains the starting level
of the decoration. The starting level or a level below it muspresent when pushing a GP below a decoration,
because otherwise it would not be possible to decorate the after aggregation has been performed. This re-
quirement is always satisfied when pushing a decoratiomb&l@P. Two different cases may occur depending
on whether or not the decoration being pushed down has bgdiedpefore and is already present in the GP’s
GROUP BYlevels. If it is already present then the previous deconatiust be preserved instead of removing
it and decorating again. This is necessary because thaalkigécoration may be axLL decoration, that has
been rolled up to the decoration level and thereby prohdfitether aggregation. If the decoration has not been
applied before, the bottom level of the decoration dimemsiust be included in the GP&ROUP BY levels
after pushing down the decoration. This is necessary becdesoration always adds the bottom level of the
decoration dimension to the fact table. Notice that if a daton being pushed down is already present in the
GP’sGROUP BYlevels the commutativity holds because the decorationdsrrdant both above and below the
GP.

Example 6.3 Assume a new link Class_Link from the Class level to the Ctaxgles in the Components docu-
ment. ThemALL [Class,Class_Link,Class N ame] (H[EC,Country}<SUM( Cost)> (Purchases)) is eqUivaIent to
H[EC,Country,EC’]<SUM( C’ost)>(5ALL [C’la,ss,Class_Link,ClassName}(PurChaseS)) where EC' is the bottom level of
the new ClassName dimension. In both cases the resultirgglasbbottom levels EC, Country and’E&s well
as the measure Cost. Notice that the starting level Classnoe sevel below it (in this case EC) must occur in
the GP'sGcROUP BYlevels in order to push the GP below the decoration.

Also, daLL [Class,Class_Link,ClassName) (H[EC,Country,EC’]<SUM( Cost)> (5ALL [Class,Class_Link,ClassName]

(PUTChases)))) is equivalent tdI[EC,Country,EC’]<SUM( Cost)>(5ALL[Class,Class_Link,ClassName}
(OALL [Class,Class_Link,ClassName](Purchases)))) because the topmost decoration in both expressions can be

ignored. O

Rule 6.3 (Commutativity of Decoration and Generalized Progction) The following holds if a levelL’ oc-
cursinC suchthatl) C LandLy, ¢ LA Ly, | ¢ L:

(@ 55[L,lmk,xp](ﬂ[£]<F(M)>(7)) AN H[ﬁu{sz}]<F(M)>(5S[L,link,mp](f))
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Also, let the schema of be £, M'. If L' occurs inL such thatl T L, Ly, € LV Ly, | € L, and
Lypy € L'V Ly, | € L' the following holds:

(b) 512 tink,ap) (M) <ra)> (F)) < Uigj<rany> Os(L tink,ap) (F))

Reasoning:Part (a) of the rule holds since neithey, nor L,,, | are in£ and sinceL,, , is added to the GP
on the right-hand side. Hence, both sides have the same maihdienensions and are aggregated to the same
levels. Also, aggregation types are the same, since no poi$ yperformed in the dimension containing the
decoration data. The decoration on the left-hand side weayalbe performed because the lekkis in L. Part

(b) of the rule holds because according to Theorem 6.1 batbrddons are redundant and can be removed.

Rule 6.3 can be generalized by introducing a new GP on théhighd side. Intuitively, what this means
is that instead of decorating a cube and then aggregatitigeitube is first aggregated to yield an intermediate
cube. This cube is decorated and then further aggregatedduqe the final result. The new GP aggregates
the cube as much as possible, while still allowing the deworapperator to be applied. If the decoration is
already present in the original cube, then it occurs indre®uP BY levels of the new GP.

Example 6.4 H[EC’, Country,ClassName]<SuM( Cost)> (6ALL [Class,Class_Link,ClassN ame] (Purchases)) is eqUivaIent
to H[EC’, Country,ClassName]<SUM( Cost)> (5ALL [Class,Class_Link,ClassName] (
H[EC,Country]<SUM(Cost)>(Pu'rc}mses)))' O

The intermediate cube produced by the new GP must satisigiceequirements. First, if a level is mentioned
in the original GP, this level must also be present in thermégliate cube. Second, the starting level of the
decoration must be present in the intermediate cube to dlewdecoration to be applied to it. Third, aggre-
gation types in the intermediate cube should not be changetgared to the original cube because further
aggregation must be allowed. These three requirementsecaatisfied by choosing the proper level to roll up
to in the dimensiorD to which the starting level of the decoration belongs. Theaiging dimensions can roll
up to the same levels as the original GP. If there exists & leveferenced in the original GP, which belongs to
D, the uppermost level iV is chosen, such that it is possible to roll up to batland the starting level of the
decoration. If the chosen level is nbf that is, if the new GP does not roll up to the same level as ttigenal
GP, the aggregation type is not allowed to change, sinchdugggregation will be done by the original GP.
The bottom level ofD will always satisfy these requirements, and hence it is ywaossible to find such a
level. If no level referenced in the original GP belongsipthe starting level of the decoration can be used,
provided that no aggregation types are changed. The meaisutiee new GP are the same as in the original
GP.

Example 6.5 Instead of the Purchases cube, consider a new cube Purzhasee the usual EC dimension is
replaced with the dimension shown in Figure 7. In this din@mshe relationship from EC to Type is assumed
to be non-strict.

ThenH[Month,NoOfPins,ClassName]<SUM(Cost)>(5ALL[Class,Class_Link,ClassName}(PU'TCha3632)) is equiva-

lent toH[Month,NoOfPins,Cla.ssName]<SUM( Cost)> (5ALL [Class,Class_Link,ClassName] (
[ ponth, EC]<sum(Cost)> (Purchases2))). Note that the new GP cannot roll up to Type because furthgreag

gation along that dimension would no longer be allowed. O

Rule 6.4 (Pushing Generalized Projection Below DecoratignThe following holds :

)< rnys (05, tink,ap)(F)) < Higj<ran> Osir tinkaep) (Le< o> (F)))

wherel' = {L € L|L ¢ {Lup, Lyp 1} AL ¢ Dim(Lg)} U {Lprax}-
Here L ysq. IS given by:
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.
N

Class NoOfPins

Type
|
EC

Figure 7: The new EC dimension with non-strictness betweeraid Type.

Max(L ysqz) if Max(Lpsqz) € L
MaxStric{ L74,) Otherwise
whereL o = {L € Dim(L,)|L C Ly AVL' € Dim(Ls)(L' € L= LC L")}

If L,, is already present iff then it is preserved if’.

Reasoning:The extra GP introduced on the right side, aggregates the tmthe same levels as the original
GP, except for the dimension to which the starting level bgfoand possibly the decoration dimension. The
set of levels(’, that the extra GP aggregates to, is constructed in such ahedyt is always possible to apply
the decoration operator afterwards. Furthermdleis always possible to construct, since the bottom level of
the dimensiorDim(Ly) is always present iif ;... Note that although the rule is explained in the left to right
direction it also holds in the opposite direction becausthefway,’ is constructed.

If the decoration has already been appliedFinit must be preserved id’ because the decoration may
be anaLL decoration that is rolled up to the decoration level. If timehsion is non-strict this means that it
cannot simply be aggregated away and added again by an@beration. Notice that preserving a decoration
in the new GP is correct even when the decoration dimensioonsstrict and the decoration is aggregated
away by the top GP. Consider first the situation where the rd¢iom occuring inF is at the bottom level.

In that case the bottom level also occurs in the extra GP andehét performs no aggregation. The original
GP aggregates to the top level which does not prohibit furlggregation because it skips the non-strictness
between the bottom level and the decoration level. Thus,ditiiation is handled correctly. Now consider the
situation where the decoration occuring/nis at the decoration level. Then the decoration level ocirutise
extra GP and hence, it performs no aggregation in the decordimension. The aggregation in the original
GP does indeed prohibit further aggregation, but this wes tile case before introducing a new GP. Thus, this
situation is also handled correctly. O

LMa:B =

6.2 Rules Involving Decoration and Selection

Selection commutes with decoration if the selection doagefer to the decoration or if the cube has already
been decorated with the same decoration.

Rule 6.5 (Commutativity of Selection and Decoration)The following holds if¢ does not refer ta_,, or
Lyp, 1, 00if Lyy € L'V Ly, | € L

09(0s(1 tink,zp)(F)) < OS[L tink,2p) (00 (F))

where the schema foF is £/, M.

Reasoning:Decoration only affects one dimension and thus, the trukhevaf the predicate is only affected if
that dimension is mentioned in the predicate. Since deicoraever changes the number of facts, references to
measures are allowed in the predicate. Notice that the ttonds always satisfied in the right to left direction.
Also, observe that selections are constructed such thatiager refer to the bottom level of a decoration (see
Section 5.4). O
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A decoration can be integrated into a predicate by creatingpge complex predicate. This technique is
calledinlining. If a predicate contains references to a level expressiagrevapredicate can be constructed
instead that contains only references to constants. Inghergl case the predicate can be very large, but for
many simple predicates and if the number of values is sningdl,i$ indeed a practical solution. This technique
is generally applicable and is explained in more detail int®a 9.2 and Appendix B, where the size of the
resulting predicate is also discussed.

Example 6.6 The predicateEC/Description = '16-bit flip-flop’ can be transformed t&C IN (EC1234,
EC1235)because EC1234 and EC1235 has Description nodes equal-tut‘flie-flop”. O

After inlining the decoration can be moved up above the selecising Rule 6.5 because it no longer refers
to the decoration.

Rule 6.6 (Inlining of Decoration in Selection) If the predicatef) contains references to the level expression
E = L[S]/link/zp, the following holds:

00(0s(L tink,ap)(F)) <> 0, (05(L tink wp) (F))

whered,;, no longer refers tav.

Reasoning:This is possible because the modified predicate is expresgedns of constant values resulting
from evaluating the level expression instead of referringhie level expression directly. The transformation
technique is described in Appendix B. O

6.3 Rules Involving Selection and Generalized Projection

Selection and GP operations commute if the selection origrs¢o GROUP BY levels in the GP or to levels
above them.

Example 6.7 IL{ysonin, EC]<sum( Cost)> (T Year=2000 (Purchases)) is equivalent to
0 Year=2000 (L Month, EC1 < sum( Cost)> (Purchases)) O

Rule 6.7 (Commutativity of Selection and Generalized Projetion) The following holds if for each level
referenced irf there exists aleval’ € £ such thatl' C L:

U<y (00(F)) < oo(Uig)<rn)>(F))

ReasoningSince a single fact in the fact table will satisfy the sel@tredicate both before and after grouping,
exactly the same facts will be selected by the selectionatiperin the two cases. O

Although a GP cannot always be pushed below a selectionppéutan if the selection predicate does not
refer to measures. The way this is done is similar to Rule Bl part that can be pushed below a selection
must allow the predicate to be evaluated and it must also bsilge to roll up to the levels specified in the
original GP. In addition, the new GP may not roll up over a istmct level relationship. This would prohibit
further aggregation in the original GP.

Example 6.8 Consider again the new Purchases cube Purchases2 cogtieidimension in Figure 7.

The express‘iom[CZass,Country]<SUM(Cost)>(UNoOfPins>16(PUTC}WS&SQ)) is equivalent to
H[Class,Country}<SUM(Cost)>(UNoOfPins>16(H[EC,Country]<SUM(Cost)>(Pu'mha3652))' Here, the new GP must
make it possible to roll up to both NoOfPins and Class. Butesitimere is non-strictess between EC and Type
it can not roll up to the Type level because this would prdHilnither aggregation to the Class level. O
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Rule 6.8 (Pushing Generalized Projection Below Selectionlf a predicatef) does not contain references to
any measures i/, then the following holds:

g1« rny>(09(F)) < gy« rny> (0o en<rmon > (F)))

wherel’ = {L|VD € Dims(L, 8)(L = MaxStric{{L'|VL" € LevyD, L,0)(L' CTp L"))})}.
Reasoning:If a dimension value in a fact aggregated by the new GP saiiee selection predicate then all
facts in the original cube that correspond to children ot tlienension value will also satisfy the predicate.
Notice that this is only true because the aggregation is aatrict hierarchy. O

The above rules do not allow selections to be interchangéd @#s if the predicates contain references
to measures although it is possible to do this in some speagds. For the transformation to be legal the GP
must not perform any aggregation. This is the case iEalbup BYlevels in the GP are already present in the
cube or result from a decoration. If a level is created by d&gan (without any GP rolling the decoration up
in case ofaLL decoration) then no measures are changed, since decoadltiisra dimension without changing
the number of facts.

Rule 6.9 (Commutativity of Generalized Projection and Seletion with References to Measures)Let L
and£' be sets of levels such thef. € (£ N L')(L = zp, for some decoratiodg, jink,ep)) @andM and M’
be sets of measures such thidt C M’. Then the following holds if for each levdl referenced ir9 there
exists a levell’ € £ such thatl’ C L:

U<y (00(F)) < oo(Uig)<mn)>(F))

where the schema foF is £/, M.
Reasoning:Since the number of measure values do not change by apphen@P the same result is produced
by evaluating the selection before and after the GP is aghplie O

6.4 Rules Involving a Single Operator
Decoration operators commute if one operator does not detie other.

Rule 6.10 (Commutativity of Decorations) Let L;[S1]/linki/xp1 and La[S2]/linka/zps be level expres-
sions such thakt; # xp-. Then the following holds:

551 [Ll,linkl,xm] (552 [Lz,linkz,x[m] (f)) - 552 [Lz,linkz,xpz} (551 [Ll,linkl,xpﬂ (f))
Reasoning:Since dimensions in a cube are not ordered, the order of d&aos is not important. O

A conjunctive selection can be split up in two selections aod versa.

Rule 6.11 (Cascade of Selectiond)et 6; and#, be predicates. Then the following holds:

00110 (f) & 09, (092 (7))

ReasoningSelection only affects tuples in the fact table. Such a teatisfies the conjunctive predicate exactly
when it satisfies the first predicate and then the secondqariedi O

Selection operators commute.
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Rule 6.12 (Commutativity of Selections)Let #, and#, be predicates. Then the following holds:

06, (092 (f)) < 09, (091 (f))
ReasoningFollows from Rule 6.11 and commutativity of conjunction. O

GPs can be split up if abtrROUP BYlevels and measures of the outer GP are also listed by the @feln
addition, if the lower GP only performs a partial aggregatio some dimensions this may not result in further
aggregation being prohibited. Hence, the part of the dioanseing aggregated over must be strict.

Rule 6.13 (Cascade of Generalized Projections)et £ and £’ be sets of levels such thaf. € L£(3L' €
L'(L'CLA(L # L= L' C MaxStric{{L"|L" € Dim(L")})))) and letF'(M) and F'(M)' be aggregate
functions applied to measures such thdf\/) C F(M)'. Then the following holds:

i< rny>Uien<rory>(F)) € Ug<rmns(F)

Reasoning:This holds because aggregate functions are assumed totbhbutiige and dimensions are strict,
i.e. summarizability is preserved. O

If a GP does not perform any aggregation on the cube to whistaipplied, the GP can be removed.
Rule 6.14 (Redundant Generalized Projection)The following holds if the schema foF is £, M:

Mig1crnys(F) < F

ReasoningNo aggregation occurs in the GP since the same levels octlubbtore and after the GP is applied.
Note that this is only true because the fact table does ndaaroduplicates. O

If a decoration is applied to an identical decoration onéhefit can be removed.
Rule 6.15 (Cascade of Decorations)et L[S]/link/zp be a level expression. Then the following holds:

5S[L,link,xp](5S[L,link,xp](f)) A 5S[L,link,xp](f)
ReasoningThis follows from Theorem 6.1. O

6.5 High Level Rules

The rules presented above can be combined to high level rililgs is demonstrated by presenting a derived
rule which will be useful in Section 8.2.

Since a GP can be pushed below both decorations and setedi@mgle rule can do this across several
such operations.

Rule 6.16 (Pushing Generalized Projection Below Decoratis and Selections)Let Oy, ... O, be a set of
selection and decoration operators. If the selections toafier to measures, the following holds:

Hig)<rny>(O1(- - (On(F)) ) < Uiz pany>(O1(- - - (On( < pary>(F))) - -+ )

where£' is constructed by applying the definition 6f in Rule 6.4 or 6.8 consecutively for each.
ReasoningFirst, consider the left to right case. By applying Rule éd &ule 6.8 we get the following:

Hicj<pn)>(O1(. .. (On(F)) - ..)) = Ugjcron>(Or1 (U <ron> (- - (On(iz, 1< rn)>F)) - )

If we look at a sub-sequencely;; 1<rr)>(Oi(Hjz, 1<) (- - -))) there are two cases to consider:

i
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O; = 0s[11ink,zp): SiNCEL; is constructed from Rule 6.4, the starting level is contdimell -, 7(n7)~. Then
it follows from Rule 6.3, thaO; andll; (s> Can be swapped.

O; = o¢: Then it follows from Rule 6.7, thaD; andlIl;; . )> can be swapped singedoes not refer to
measures.

After O; andIl ., r(rr)> has been swapped, we have the following sub-sequence:

Wiz, j<rnys Uz )< rn>(Oi(. . .))). Then it follows from Rule 6.13, thal|,j (1)~ can be removed. If
this procedure is repeated, starting from the sub-sequBnee , < r(ar)> (On-1(Iz, _j<rr)>(.--))) and
up, then it follows that

H[£}<F(M)>(Ol(H[L1]<F(M)>(- - (On(H[Ln]<F(M)>—7:)) S ))) -
Hiz1<rn>(01(- - - (On(in<pans(F))) - -+ ))

Consider now the right to left case. Rule 6.3 always holdfiinléft to right direction, and Rule 6.7 holds in
the right to left direction because no selections refer tasoees. Thus, we get the following:

Hie)1<rany>(O1(- - - (On(Uinepany>(F))) - ) = Uigjernys Uiem<rany>(O1(. - - (On(F))) - .. )

According to Rule 6.13 the second GP can now be removed,@ivin

Hie<rny>ien<rons>(O1(. .- (On(F))) . ..)) = g« ran>(01(. .. (On(F))) . ..))
O

The usefulness of this and the remaining rules presentedhite 2 will become clear in Section 8. Before
that, an overview of the federation architecture is given.

7 Federation Architecture

This section describes the architectural design of a prpesystem supporting tHeQL x,, query language.
The system allows enumerated and natural links to be definddused InSQL x;; queries for decoration,
selection, and grouping. Three different semantigsy, ALL, andCONCAT, can be specified when using the
links, providing a flexible way to handle different cardiials between dimension values and XML nodes. The
following sections (8-11) describe different aspects efeélaluation and optimization of queries in the system,
while Section 12 discusses implementation aspects andieqreal studies.

Generally, current OLAP systems do not allow non-stricte@sions which is necessary to provide flexible
access to external data. Furthermore, creating dimensooften an expensive process requiring the cube to
be rebuilt, which makes it unfeasible to do this for each gu&ome OLAP systems, such as MS Analysis
Services [TSC99], allow so-callaghanging dimension® be created, which do not require the cube to be fully
processed. However, a partial processing is still neededéting it unfeasible to do at query time. Furthermore,
non-strict dimensions are not allowed. Consequently, fardift approach is taken here, that allows any OLAP
system to be used. The basic idea is to evalugd®t x;, query by constructing and evaluating the OLAP
and XML queries separately, and combine the results of thieseies using a temporary component. The
architecture is shown in Figure 8.

The key component is the Federation Manager, which prosed@& x,, queries fed to it by the user
interface by fetching data from the OLAP and XML componertgermediate interface components are in-
serted between the Federation Manager and the OLAP and XNhpooents to make the Federation Manager
independent of the query languages used by these comporfdrg-ederation Manager uses three auxiliary
components to store meta data, link data, and temporaryudathin the evaluation of8QL x3, query, respec-
tively. The meta data component contains descriptionsedlitnensions in the OLAP component, whereas the
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Figure 8: Overall architecture of the prototype supportingSQL xa, query language.

link data component contains link specifications as desdrib Section 4. The temporary data component is
used for storing intermediate results during the proceseima query. All three auxiliary components assume
only an SQL interface. Whenever possible these componenpgrticular the temporary component, should
be placed on the same host as the OLAP component to minimiagrdasportation costs. However, this may
not always be possible if e.g. the federation and the OLAPpm ant are managed by separate departments.

A relational DBMS is used for the temporary component beedhs final result can be computed by join-
ing the fact table resulting from the OLAP component quenyg &ables representing decoration data. As stated
in Definition 4.4 the result of a level expression is a set ah@hsion value, decoration value) pairs, which is
easily represented in a table. Implementing the differemantics of level expressions is straightforward, as
this only differs in which values are inserted into the tabMso, the speciaN/A value is easily handled by
using the left outer join operator when joining the fact &abhd the tables containing the decoration data. Since
NULL values are not legal dimension or decoration valuesNthiel. values introduced by the outer join can be
treated ad\/A values without confusion.

A prototype based on the architecture in Figure 8 is curyemting developed, which is described further
in Section 12. To give an overview of howS0QL x,, query is evaluated in this architecture, we now present
a simple example showing the basic steps. A more detailectigsn of the evaluation process as well as a
discussion of heuristic optimization is presented in Sec8, while Section 9 discusses cost based optimization
techniques.

Example 7.1 A user poses the following query to thederation Managerwhich decorates Supplier with
SName:

SELECT suMCost), Supplier, Class(EC), Supplier/Sup_Link/SName
FROM Purchases
GROUP BY Supplier, Class(EC), Supplier/Sup_Link/SName

As mentioned, the basic idea in evaluating such a query isttdhfdata from the OLAP and XML compo-
nents, and then combine the results using the temporary @oemp. The giversQL x;, query is analyzed and
component queries are constructed. In this case, the fiolgp®@LAP component query is posed:

SELECT suMCost), Supplier, Class(EC)
FROM Purchases
GROUP BY Supplier, Class(EC)

Note that only two dimensions are needed here, becausevbleldeing decorated (Supplier) must also be
present in the result. This would e.g. not be the case if thatMtevel was decorated instead. The fact table
resulting from this OLAP query is stored in the temporary pament, and shown here:
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Cost | Supplier Class
2940 S1 FF
6900 S3 FF
32050 S2 FF
9480 S3 L

We will refer to this table as “TempFactTable” in the followg.

To fetch the data from the XML components, the gh@@QL x3, query is analyzed, and all unique level
expressions are identified. For each of these level exjpressKML component queries are constructed, and a
table representing the resulting (dimension value, déicoraalue) pairs is created in the temporary component.
In this case there is only one level expression: Suppligr/8ink/SName. Based on the definition of Sup_Link
in Example 4.1, the following component queries are corgtdi /Components/Supplier[@SCode="SU13'})/S-
Name and/Components/Supplier[@SCode="SU15’)/SName. The first of these results in the decoration values
for S1, whereas the second one results in the decoration valué8farccording to the definition of Sup_Link.
Since no semantic modifier is given in the level expressioN,YAsemantics is assumed. Hence, one of the
resulting nodes of the first component query is paired ith and so on. This results in the following table
being added to the temporary component:

Supplier SName
S1 John's ECs|
S3 Jane’s ECs

We will refer to this table as “Supplier_SName” in the follmg.

The final step is to construct and evaluate a plain SQL quetligrtemporary component combining the
data retrieved from the OLAP and XML components. In this casefurther selection or grouping is required,
but in general this can be necessary. The component datmtsimed using a left outer join operation, resulting
in the following SQL query being posed to the temporary congu:

SELECT suMCost)As Cost, Supplier, Class, SName
FROM TempFactTabl&lATURAL LEFT OUTER JOINSupplier_SName

This query results in the following table, which is the réisg fact table of theSQL x, query:

Cost | Supplier Class SName
2940 S1 FF John’s ECs
6900 S3 FF Jane’s ECg
32050 S2 FF NULL
9480 S3 L Jane’s ECS

Note that by using the left outer join operatorNalLL value is added where no decoration value is available.
TheseNULL values can be treated as the spehi@ value because no othBIULL values occur as dimension
or decoration values. O

8 Query Evaluation

The processing of 8QL x», query can be divided into three main tasks: Constructingematliating compo-
nent queries, retrieving and storing temporary data reguftom these queries, and processing temporary data
needed to produce the final result. The most significant waypoove the total evaluation time of a federation
query will generally be to reduce the amount of temporanaddthe benefits of this are several: It reduces
data transfer costs, the time it takes to store temporawy, daid the time required to produce the final result.
Also, it will usually reduce the combined query processimgetas the OLAP component generally performs
multidimensional queries faster than a relational DBMSe Titansfer costs will be particularly significant if
temporary data is stored outside the OLAP component. Henpemary goal of our optimization efforts lies
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in reducing the amount of temporary data required to evala&QL x;; query. Because OLAP systems typi-
cally contain large amounts of data, this is particularlpartant for the OLAP component. Thus, queries are
evaluated by investigating how to splitSQL x,, query tree into a part that can be evaluated entirely in the
OLAP component, and one that must be evaluated in the nredt@mmponent because it involves XML data.
We refer to this splitting process gartitioning the query tree. This partitioning is based on the transftiona
rules described in Section 6 and will be discussed in detddldction 8.2. The partitioned query tree is used to
create the component queries, as is discussed in SectioRi&B we present the architecture of trederation
Managerand the steps involved in evaluatings®L x; query.

8.1 Architectural Design of the Federation Manager

The architecture of the Federation Manager and a single ©oem Interface is shown in Figure 9.

Federation Manager. SQLxm query

Plan Decomposer

Intermediate
Global Plan

Global Request | Global Cost
Optimizer ~ [S95t Evaluator

Optimized
Global Plan i XML Data

: Available
Execution i
Engine

Update

Execute Execute Request Cost
Component Plan Component Plan

Component Component| Component Request Statistics
Query Evaluator [Plan Cost Evaluator Manager

Component Interface

Figure 9: Architecture of the Federation Manager and a Carapblinterface.

When aSQL x;s query is posed to the Federation Manager, it is parsed andftnaned into a query tree
as described in Section 5.4. The next step in evaluat®@byx, query is to transform, or partition, the initial
query tree into a form, where redundant operators are redy@red from which component queries can easily
be formed. The result of this is an OLAP component plan andrgpteary component plan, jointly referred
to as aGlobal Plan This task is handled by tH@uery Decomposeand is described in detail in Section 8.2.
After eliminating redundant decoration nodes, the re#diedf XML data can be started. Hence, tQaiery
Decomposedispatches a series of XML Component Plans toHEecution Enginavhich fetches the XML
data. In parallel with this, it invokes th@lobal Optimizerby passing on the global plan.

The Global Optimizergenerates a number of different global plans by considehirgise of cached inter-
mediate results, and by considering whether or not to intiN data into the OLAP component query. It then
chooses a global plan by considering the cost of each gewlepédn, and dispatches this plan to Ereecution
Engine Estimating the cost of a global plan is handled by @Glebal Cost Evaluatgrwhich determines the
global cost by requesting cost information from each congporinterface. Cost based optimization and the
estimation of cost information is described in detail int8®8t9 and 10, respectively.

The Execution Engindandles the execution of component queries. It eithervesean XML component
plan, which is forwarded to the relevant component intexfaw it receives a global query plan. From a global
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plan theExecution Engindorms an OLAP component query, and a temporary component.glteexecutes

the OLAP query to the OLAP component interface, and whendhalts of this query and the XML component
queries are available in the temporary component, it exsciliie temporary component query, and returns the
result. If the result of an XML query becomes available befibwas anticipated and the OLAP query has not
yet been posed, the global plan is reconsidered. (Thosngnuously adaptivpAHOO] approach is used.) The
construction of component queries is described in deta8eotion 8.3. Upon completion of the component
queries, thé&xecution Enginénforms theCache Manageabout the intermediate results, that have been added
to the temporary component, during execution of 8L x», query.

The Federation Manager also uses pre-fetching of intermbedesults to increase query performance.
This is handled by thé&re-fetcher When the load of the system is low, tRee-fetcherexecutes a number
of component queries, and stores these intermediate seautie temporary component. It then informs the
Cache Manageabout these results, making them available for use in sules¢§QL x3, queries. Pre-fetching
and caching is discussed further in Section 9.4.

Each Component Interface compriseS@mponent Query Evaluatoa Component Cost Evaluatoand a
Statistics ManagerBy using theComponent Cost Evaluatathe Component Interface is able to perform some
cost based local query optimization before posing quedeabe component. Th8tatistics Managepbtains
and maintains statistical information about the compan@ititaining statistical information can be done in a
number of different ways, one of which is by using so-caledbing queries This technique is discussed in
Section 10.

After presenting the query evaluation and optimizatiorhiegues mentioned here, an overview of their
combined use in the federated system is provided in Secfion 1

8.2 Partitioning Federation Queries

The main problem when considering global optimizatiorS@JL x,; queries is how to determine which part
of a query can be evaluated in the OLAP component and whichata.et us for now assume that only the
part that does not refer to XML data can be evaluated in the Btémponent. In Section 9.2 we discuss how
to integrate XML data into the OLAP query, reducing the antafrdata produced by the OLAP component.
This assumption leaves the problem of splittingpartitioning, the query tree described in Section 5.4 in two
parts, such that as much as possible of the query is evaluated OLAP component.

In Figure 10 the entire partitioning process of a query tgeghown. In the figure) refers to asequence
of decorations, and: to asequencef selections. Figure 10(a) represents the initial formhaf query tree,
constructed as described in Section 5.4, whereas Figury f€fresents the general result of the partitioning.
The figures 10(b)-(f) represent intermediate steps of thttipaing algorithm, and will be discussed in detail
later. All operations from the bottom decoration and upwardt be evaluated in the relational component since
it refers to XML data. Only the part below the bottom decamtcan be evaluated in the OLAP component.
Thus, Figure 10(a) represents the query that retrieves rilieeecube and evaluates the entire query in the
temporary component. To avoid this, we partition the queseg to the form shown in Figure 10(g) in such
a way, that the OLAP query will aggregate as much as possiihde still allowing the decorations to be
performed.

Example 8.1 In this example we assume that the Class level is linked tovamayeMonthlyPurchases node
and that the Year level is linked to an ExpectedPurchases.nbdese nodes are not part of the Components
document, but a budget.xml document. The structure of thtsichent is indicated by the regular expression:
Budget(Class(@ClassCode, AverageMonthlyPurchases™,Year(@ YearCode, ExpectedPurchases™)*)T)

Consider the partitioning of the query in Figure 11. Here $electionYear > 1995 and most of the
aggregation can be evaluated in the OLAP component, sirs@es not refer to XML data. The partitioned
query is shown in Figure 11(g). Again, the figures 11(b)-€Presents intermediate steps and will be discussed
in detail later. O
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Although the heuristic approach of pushing as much towdrdsbmponent as possible is often used, it is
not generally valid, as pointed out by [ROH99]. The reasarttis, is that if joins are used, it may sometimes
result in more data being transferred between componentsh@federation manager. However, the heuristic
is valid in this case since the operations considered alweggce the size of the result. Hence, letting the
OLAP component perform as much of the evaluation as possilptimal in this setting.

From the partitioned query tree an OLAP query, a number of XdMkries, and a relational query working
on the temporary results are constructed. In many caseseshk of the OLAP query will be comparable in size
to the result of the total query. This is true in the presumaloimmon case where the referenced XML data is
linked to values that are already present in the result, aséh Example 8.1. Certain exceptional queries, such
as comparing each measure value in the cube to XML data WwHERE clause, can, of course, not generally be
evaluated efficiently, since the entire cube would have todresferred to the temporary component. However,
this is not likely to be needed in practice. Notice that ifrthis nOHAVING clause in the query, only the bottom
GP is present in the query tree. Also, note that the two GPalet&ys identical, since the only purpose of the
top GP is to remove any decorations introduced above therbd®P. Each of the following steps are explained
in general terms by referring to Figure 10, and the same stepdemonstrated on the Example in Figure 11.

The partitioning is performed by applying the transforroatrules in Section 6 directly or by applying
higher level rules derived from them. The partitioned queg should satisfy two requirements: First, as much
of selections and GPs as is possible, by using the transfianmales, must occur below the bottom decoration.
Second, it should have a form, such that it is easy to cortstneccomponent queries. The following sections
present algorithms, which perform such a transformati@gitning with the overall algorithm.

8.2.1 The Overall Partitioning Algorithm

Algorithm 8.2.1 transforms a query tree on the form showniguFe 10(a) to an equivalent query tree on the
form shown in Figure 10(g). We consider the non-trivial cedere at least one decoration occurs in the query
tree. Pure OLAP queries issued to the federation can beifigenat parse-time and passed on to the OLAP
component.

Algorithm 8.2.1 Partitioning a Query Tree

1 PartitionQueryTree(RootNode)
RemoveAndPushDecorations(RootNode, 0))
SplitSelections(RootNode)

LowerGP := FindLowerGP(RootNode)
PushGPDown(LowerGP.Child, LowerGP)
PushSelectionsDown(RootNode, 0)
RemoveRedundantGPs(RootNode)

~NoO b wN

The algorithm begins by removing redundant decorationspausthing them as far down the query tree as
possible. Atfter this, selection nodes are split allowingnthto be moved more freely. Then it is identified
to which levels the cube can be aggregated by pushing ther I@kedown, followed by identifying which
selections can be made in the cube by pushing down selectamally, any redundant GPs are removed from
the query tree. Each function mentioned in lines 2-3 and &f&rs to the Algorithms 8.2.2-8.2.6 which are
discussed in the following sections. All of these algorithamly visit each node once. Hence, five traversals
are performed during partitioning. Although explained agely, these algorithms can to some extent be
combined such that fewer traversals are needed.

8.2.2 Removing and Pushing Decorations Down

Two important observations can be made about the occurecorations: First, only a single decoration is
necessary to evaluate a predicate which refers to decordéita. Second, the number of decorations (zero or
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one) occuring asRoOUP BYlevels in a GP is only important in the top GP. For other GPspdions can be

removed or added to improve efficiency. Hence, only the lbwesurrence of a particular decoration is needed.
Because decorations are implemented as joins, it is génetedaper to perform a single decoration rather than
decorating, removing the decoration, and decorating aggtiis, the number of identical decorations should
be reduced to one as shown on Figure 10(b). This is genemadlsilple by using the rules 6.1, 6.3, 6.5, and 6.10.

Example 8.2 Only the two lowest decorations are needed in Figure 11(ag tdp occurrence Gy, (c,cr,4]
can be removed using rules 6.1 and 6.10. The middle occuwresnt be removed using Rule 6.5 and Rule 6.15.
The decoratio,, [y,y,r) can be moved down because of Rule 6.3 and Rule 6.5. O

Algorithm 8.2.2 removes all redundant decorations, andhesigll remaining decorations down to the base
cube. As it will become clear later, this makes it easier ety to which levels it is possible to aggregate the
cube, as well as to identify which selections can be perfdrmeéhe OLAP component.

Algorithm 8.2.2 Remove and Push Decorations

1 RemoveAndPushDecorations(Node, Decorations)

2 Case node of:

3 d:

4 Decorations := Decorations U {Node}
5 remove Node from query tree

6 II:

7 for all n € Decorations

8 if Rule 6.1 applies

9 remove n from Decorations

10 else // Rule 6.3 applies

11 change Node according to Rule 6.3
12 o

13 /I Rule 6.5 always applies. Do nothing.
14 Base :

15 for all n € Decorations

16 insert n above Node

17 return

18 RemoveAndPushDecorations(Node.Child, Decorations)

The algorithm for removing and pushing decorations is &gpiecursively on the tree beginning from the
root node. In addition to the current node, it takes a set obddions as argument, in which decorations can
be stored temporarily. It follows from Rule 6.3 and 6.5, tatorations can always be pushed down the query
tree to the base cube. Hence, every time the algorithm sessogadion it is kept for later reference (lines 3-5),
and finally inserted above the base cube (lines 14-17). $hecerations is a set, i.e. contains no duplicates,
redundant decorations are removed in lines 4-5 in accosdaith Rule 6.15. When the algorithm encounters
a generalized projection it goes throublecorations and for each decoration determines whether it can be
considered redundant (line 8) or whether it should be pusieeeh below the generalized projection (lines
10-11). Note that Rule 6.3 always applies, as long as thergkzerl projection is changed accordingly (line
11). According to Rule 6.5, a decoration can always be publesulv a selection node. Hence, whenever the
algorithm encounters a selection node (lines 12N@&)le andDecorations are left unchanged.

8.2.3 Splitting Selections

Conjunctive selections are split using Rule 6.11 to be abhladve them around more freely. Hence, a number
of new selections are present in Figure 10(c).

Example 8.3 The splitting of selections is shown in Figure 11(c). O
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Algorithm 8.2.3 Split Selections

1 SplitSelections(Node)
Case Node of:

o:
ListOfPredicates := SplitPredicate(Node.Predicate)
LastNode := Node.Parent
for all p’ € ListOfPredicates

create new o, with predicate p’

make o, child of LastNode

LastNode := o,

make Node.Child child of LastNode
11 Base :

12 return

13 SplitSelections(Node.Child)

Boo~v~ounswn

Algorithm 8.2.3 splits selection operator nodes recuigii®®m the top node and down.

The algorithm for splitting selections takedNade as input. Based on the type of this node (line 2) the
algorithm either returns (line 13) in case it is a base cubé, splits one selection node into several selection
nodes (lines 3-10). The splitting is based on the func8plitPredicate, which splits a conjunctive predicate
into its subparts. Each new predicate is used to create aeleation node, which is added to the query tree just
below the parent of the original node (lines 7-10). Accogdio Rule 6.11, the original query tree is equivalent
to the query tree obtained by applying Algorithm 8.2.3 to rihet.

8.2.4 Pushing Generalized Projections Down

At this point in the partitioning algorithm, the query treean the form shown in Figure 10(c). That is, all
decorations are at the bottom of the query tree just abovieabe federation. The next step is to push the lower
of the two generalized projections below all the decoratidhfollows from Rule 6.16, that a GP can be pushed
below a number of selections and decorations. The resuti®file is the addition of a single GP at the bottom
of the query tree as shown in Figure 10(d). It is only necgssause this procedure on the second GP, since
the two original GPs are identical except for any decoratiotroduced when moving decorations as described
in Algorithm 8.2.2.

Example 8.4 The result of using Rule 6.16 on the example is shown in Figa(d). It can easily be seen that
the cube produced by the new GP is sufficient for applying treothtions and evaluating the selections above
it. O

Algorithm 8.2.4 identifies to which levels it is possible @gaegate the cube, while still allowing the above
decorations and selections to be made.

This algorithm is an implementation of Rule 6.16, and is agzlled recursively. The inpu&P is the
generalized projection which should be inserted in the ytree just above the base cube. It is modified each
time it is pushed below a decoration (line 9) or a selectiame(b). If the generalized projection cannot be
pushed down to the base cube (lines 4-7), then no generaipgettion is inserted at all. In that case, the only
way to compute the final result is by fetching all data from ¢oee, and then combine this with the external
data in the temporary component. Since Algorithm 8.2.4 khba called on the child of the lower GP, it is not
nessesary to handle the case whdogle is a GP.

8.2.5 Pushing Selections Down

After identifying to which levels the cube can be aggregatied amount of data fetched from the cube is further
reduced by pushing selections down the query tree. Setsotian be pushed down using the rules 6.5, 6.7, 6.9,
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Algorithm 8.2.4 Push Generalized Projection Down.

1 PushGPDown(Node, GP)

2 Case Node of:

3 o

4 if  does not refer to measures

5 change GP according to Rule 6.8
6 else

7 return // GP is not inserted in the query tree
8 d:

9 change GP according to Rule 6.4
10 Base :

11 insert GP above Node

12 return

13 PushGPDown(Node.Child, GP)

and 6.12 thereby introducing selections below the bottooodgion. The selections that can be pushed below
the bottom decoration are those that do not refer to deocmstdbr measures. An exception from this is that
selections containing references to measures but not alémws can be pushed down, if the entire GP was
pushed down to the bottom in the previous step. In that casemeasure values will be the same below the
bottom decoration but above the bottom GP. Hence, selesctian occur both below and above the bottom
GP as shown in Figure 10(e). If the entire GP was pushed doglect®ns referring to both measures and
decorations can also be pushed below the middle GP, but few lbee decorations. Thug;s will be empty.
Notice that selections that refer to decorations are platedsingle group above the decorations, as this eases
the construction of component queries.

Example 8.5 The result of pushing selections down is shown in Figure JL1either of the selections that
refer to measures can be pushed down to the bottom, sinceotterbGP is different from the middle GP.
The selection that refers only to levels can be pushed dowhetbase cube, while the one that refers only to a
decoration can be moved down to the decorations. O

Algorithm 8.2.5 pushes selection nodes as far down the quegyas possible.

The algorithm again traverses the query tree recursivelyeiéver the input noddode is a selection
node, it is removed from the query tree and kepSialections (lines 3-5), until it can be reinserted. The
reinsertion of selection nodes is done in four locationsh query tree, the first of which is right above the
middle GP (lines 16-18). The selection nodes inserted laeeghose referring to measure values after grouping
has been done. Note that no nodes are inserted when thefahgaiinvoked with the upper GP as an argument.
This is due to the fact, that at this point no selections haenlremoved from the query tree and placed in the
set ofSelections. The second location in which selection nodes are insentiectihe query tree is right above
the uppermost decoration node. This is done whenever tlegithlign is invoked with this decoration node
as an argument (lines 7-10). All selection nodes placed enstit ofSelections, which refer to decoration
data, are inserted and removed fr@rlections. Hence, all selection nodes referring to decoration daga ar
inserted here, leaving all such nodes in one place in theydress. Selection nodes which can be pushed below
decorations, but cannot be pushed below the lower GP,h@&setnodes to which the rules mentioned in lines
13-14 do not apply, are inserted right above the lower GPallirthe remaining selection nodesSelections
are reinserted right above the base cube (lines 19-21).ct®waie inserted here are those to which the rules
mentioned in lines 13-14 did apply, i.e. those that could tmhpd below the lower GP.

8.2.6 Removing Redundant Generalized Projections

In special cases, the two GPs indicated in Figure 10(f) caretmoved after having pushed selections down.
First, if all selections irt; has been pushed down, the middle GP can be removed. Thisdaghef the entire
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Algorithm 8.2.5 Push Selections Down

1 PushSelectionsDown(Node, Selections)

2 Case Node of:

3 o

4 add Node to Selections

5 remove Node from query tree
6 J:

7 for all n in Selections

8 if Node.RefersToDecoration
9 insert n above Node

10 remove n from Selections
11 II:

12 for all n in Selections

13 if Rule 6.7 applies or

14 Rule 6.9 applies or

15 /I nodes can be swapped
16 else

17 insert n above Node

18 remove n from Selections
19 Base :

20 for all n in Selections

21 insert n above Node in query tree
22 return

23 PushSelectionsDown(Node.Child, Selections)

GP was pushed down to the bottom in Step 4. Second, if the GRvésapushed down to the bottom does not
perform any aggregation of the input federation, it can lmeaeed. This is equivalent to not being able to push
the middle GP down and means that no aggregation can be pedan the OLAP component. The rules used
to remove the GPs are 6.13 and 6.14, respectively.

Example 8.6 None of the GPs can be removed in the example as indicatedgbyeF11(f). O

Algorithm 8.2.6 checks whether either of the two rules caajyglied, and removes redundant GPs accord-
ingly.

Algorithm 8.2.6 Remove Redundant Generalized Projections

1 RemoveRedundantGPs(RootNode)
locate I 7oy, IImiqare @nd pottom
if II7op is equal to IL,,iqdie

/I Rule 6.13 applies

remove II,,;q41c from query tree
if IIgottom IS €qual to base cube

/I Rule 6.14 applies

remove Ilgyiom from query tree

O~NO O WN

After the removal of redundant GPs the query tree can betipaid into two parts. Everything below the
bottom decoration can be evaluated in the OLAP componerite whe rest involves XML data and must be
evaluated in the temporary component. Hence, the quencéede split as indicated in Figure 10(g). Notice
how the resulting query tree has a structure that makestélsaifor translation to component queries. This is
described in the next section.

Example 8.7 The partitioned query tree is shown in Figure 11(g). O
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8.3 Constructing Component Queries

After applying Algorithm 8.2.1 on the query tree, componeaneries can be constructed directly from the
tree. Specifically, it can be divided into two parts as intkdain Figure 10(g): The bottom part, which can be
translated t&SQL 7, and the upper part, which can be translated to a plain SQemsent. The formulation
of XML component queries is based on the decoration opexratorthe following, we describe the component
query construction for each of the components.

8.3.1 Constructing the OLAP Query

The bottom part of the query tree in Figure 10(g) can be reftoedry, (I1jz, < r(rs)> (065 (F))), where all
selections in each of the two blocks have been combined to a single conjunctive selection
From this aSQL , query is constructed:

SELECT F(Ms), L3

FROM F
WHERE Os
GROUP BY L3
HAVING 07

where the predicates and levels are converted to the syhtagQb,,.
Example 8.8 From the bottom part of the query tree in Figure 11 the follmpsQL 3, query is constructed:

SELECT suMCost),suMm(NoOfUnits), Class(EC), Month(Day)
FROM Purchases

WHERE Year(Day) > 1995

GROUP BY Class(EC), Month(Day)

The fact table of the resulting cube is referred to as “Pwelain the following examples. O

8.3.2 Constructing XML Queries

As mentioned in Section 7 each decoration operator resuléstable of (dimension value, decoration value)
pairs being added to the temporary component. The XML gsdhat are needed to fetch the relevant data
from the XML components, depend on the type of link used inlével expression, and the query interface
offered by the XML component. For enumerated links, all disien values may refer to different parts of an
XML document, possibly even in different documents. Hemegzause of the high degree of flexibility offered
by enumerated links, in the worst case one XML query is negeeduple in the enumerated link. Assuming
that an XPath query interface is available, then for eaclket(gy URI, locator) in the enumerated link, the
following XPath query is formedocator/xp, wherexp is the XPath expression from the decoration operator.
For natural links, a node is identified for each dimensiomedly the locator part of the link specification.
Thus, an XML query must relate the node identified by the loctd the node identified by the user specified
XPath expression. Since XPath does not allow queries su¢has®/locator, base/xp), a more powerful
language is needed to express this in a single query. Herguery is given in XQuery [W3CO01b], the current
W3C working draft for an XML query languag®ase, locator andxp represent XPath expressions from the
level expression, and, .. . , v, are the dimension values from the starting level or, pogsibk alias values:
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<Resul t >
LET $di nval ues = [<val >v;</val >. .. <val >y;</ val >]
FOR $b I N base
FOR $I | N $b/ locator
VWHERE SOME $v | N $di nval ues SATI SFIES $v.data() = $l.data()
RETURN
FOR $x I N $b/ xp
RETURN
<Resul t Pai r >$l , $x<Resul t Pair >
</ Resul t>

For all base/locator nodes equal to one of the dimension values, a set of nodesistraoted. Each of
these nodes is a pair of the locator and all decoration nastesned bybase/xp. If a large part of the base
nodes are retrieved using this technique, it will often tstdato fetchall the (locator, xp) pairs. This decision
is made from the estimated cost of performing each of thesgiepias is discussed further in Section 9.3
and 10.2.

If XPath is the only language available, then the generaiagmh is to construct a query for each dimension
value in the starting level by combining the base and locptots with the user specified XPath expression.
Thus, a querpase[locator=e]/xp is constructed for each dimension vakieContrary to the use of enumerated
links, an extra meta data query is needed to retrieve therdimoe values when using natural links.

Example 8.9 From the decoration operatdfi;, i,y car,year Link, EzpectedPurchases)» @Nd the natural link (“Year”,
“www.comp-org.org/budget.xml”, /Budget/Class/Year”, “ @YearCode”), the following XPath expressions are
formed:

/Budget/Class/Year[@ YearCode="2000']/ExpectedPurchases

/Budget/Class/Year[@ YearCode="2001"]/ExpectedPurchases

/Budget/Class/Year[@ YearCode="2002'/ExpectedPurchases [l

Posing many XPath expressions will often be computatignetipensive, but this can be avoided as is
discussed in Section 9.3.

8.3.3 Constructing the Relational Query

Let the result of theSQLy, query beF’, andTy,,...,T;, be relational tables that represent the results of
the XML component queries. Ead, has two columns, one for the starting level fand one for the
corresponding decoration values. Similarly, tabilgg;,, ..., Try, are stored for each roll-up level mentioned
in the query, where eachiry, has one column for a bottom level Ji' and one for the corresponding roll-up
level.

The upper part of the query tree in Figure 10(g) can be refioed t

Uiz, < ran)> (005 Wiz« m(ary> (006 (08, (L1 tinks apy] (- - - (08, (L pink ape] (F))))

where all selections ik; andX¢ are collapsed intos; andog, respectively.
From this a plain SQL query is constructed, based on the &t ¥’ of the federationF’:
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SELECT DISTINCTM, L,
FROM  (SELECT  F(M), L3
FROM F’ NATURAL JOIN Ty,
. NATURAL JOIN Tgy,
NATURAL LEFT OUTER JOINT},
. NATURAL LEFT OUTER JOINTj,

WHERE O
GROUP BY L3
HAVING 05)

where the predicates are converted to SQL syntax@ne £, U {RUy,...,RU;} U{d1,..., 0}

Notice that the roll-up and decoration columns are not resddwy the aggregation, but is instead removed
by projection in the outesELECT statement. This is necessary because otherwise duplifsatedintroduced
by non-strict roll-up or decoration would be aggregateddpicing a wrong result. Also, these may be needed
to evaluate thelaAvING clause.

Example 8.10 From the top part of the query tree in Figure 11 the followir@LSquery is constructed:

SELECT DISTINCTCost, NoOfUnits, Class, Month, AverageMonthlyPurchases
FROM (SELECT suMCost)Aas Cost,suM(NoOfUnits) As NoOfUnits, Class, Month, Year,
AverageMonthlyPurchases, ExpectedPurchases
FROM PurchasesNATURAL JOIN Month_Year
NATURAL LEFT OUTER JOIN Year_ExpectedPurchases
NATURAL LEFT OUTER JOINClass_AverageMonthlyPurchases
WHERE AverageMonthlyPurchases > 180D ExpectedPurchases > 3000
GROUP BY Class, Month, Year, AverageMonthlyPurchases, Expectetises

HAVING suM(Cost) > 50000aND AverageMonthlyPurchasessum(NoOfUnNits)) 0

Although the rule-based partitioning is sufficient to agkigood performance for the most common types
of queries, other queries may be expensive. This is truenenar little of the GP can be pushed below the
bottom decoration. However, in the next section cost basethiques are presented to optimize such queries
significantly.

9 Optimization Techniques

In this section we present a number of cost based optimizégithniques that have been applied in the federated
system. As noted by [SL90] the high degree of flexibility offé by federated systems comes at the cost of
more difficult query optimization. The main reason for tiighe lack of knowledge about the query processing
abilities of component data sources. Here, this is espgdrale for the XML components as they will often
reside on the Internet, where few or no assumptions can be mlaout the underlying data source and how
component queries are optimized. For instance, it may liewulifor impossible to determine important factors
like which access paths are available, which algorithmshsansed to execute operations, and which results
are pre-computed. Consequently, optimization can onlydg@oaximate and requires the use of techniques
such as probing queries [ZL96] to collect information nekéte optimization. Although estimating costs is
difficult when only limited information is available, a numbof cost based optimizations are described in this
section. Detailed cost models have been investigatedd&ioboth XML [MW99] and relational compontents
[DKS92]. Estimating costs for OLAP queries is related to fneblem of estimating the size of a cube as
described in [SDNR96]. The cost estimation is describedeictiSn 10.

The optimization techniques considered here all give mssignificant performance improvements for
many common types of queries. One of these techniques isl lmas¢he idea of inlining external data in
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predicates as was briefly introduced in Section 6.2. Thisssudsed more extensively in Section 9.2. We
believe that the issue has not been investigated to thistekefore, although the idea is briefly mentioned
in [PSGJOO0] for certain simple types of predicates. Alsooangnt is the problem that it may not always
be possible to use the general XQuery approach to fetchingrdion data from XML compontents as was
presented in Section 8.3. This is true if only simpler irdeds, such as XPath, are available. Due to the
flexibility of the linking mechanism used to combine OLAP aXiiL data, a large number of small queries
may be required in such a setting. However, techniques asepted here to retrieve XML data more efficiently
by combining several such queries into one, providing att#e performance for many queries that would
otherwise be unfeasible. Also discussed in this secti@thar well-known techniques caching and pre-fetching
of queries that has been adapted to this particular setting.

The optimization of federated queries in tBOL x, system is complicated by the fact that a typical XML
component used in the federation will reside on the Web, aod it will usually have a very high degree of
autonomy. A lower degree of autonomy can be assumed for teRQInd relational compontents as these will
typically be part of the same information system as the fetmr. On the other hand, the component types are
known in advance which allows optimizations that are notsjis in more general purpose federations such
as Tsimmis [CGMH 94]. For example, semantic heterogeneity is handled ettpllty user-defined links and
hence, semantic transformation is not a concern. Also, tieeies posed to XML components are always on a
special form which allows special kinds of optimization.

First, we present the general cost model for federationigsieand then we explain the optimization tech-
nigues together with a refined cost model. An overview of #defated system, including these optimization
techniques is provided in Section 11.

9.1 A Cost Model for Federation Queries

The cost model used in the following is based on time estisnatel incorporates both 1/0, CPU, and network
costs. Because of the differences in data models and thealefiautonomy for the federation components,
the cost is estimated differently for each component. Herepnly present the highlevel cost model which
expresses the total cost of evaluating a federation quéry.details of how these costs are determined for each
component are described in Section 10.

As discussed earlier, the OLAP and XML components can besaeden parallel if no XML data is used
in the construction of OLAP queries. The case where XML daissed is discussed in the next section. The
retrieval of component data is followed by computation @ fimal result in the temporary component. Hence,
the total time for a federation query is the time for the sletmetrieval of data from the OLAP and XML
components plus the time for producing the final result. Thexpressed in this basic cost formula considering
a single OLAP query and XML queries:

Costpasic = MAX (toLAP, tXML,1, - - - s txmLk) + E Temp

wheret o4 p is the total time it takes to evaluate the OLAP quény ., ; is the total time it takes to evaluate
theith XML query, andt .., is the total time it takes to produce the final result from titeimediate results.

9.2 Inlining Decoration Data in OLAP Queries

As discussed in Section 6.2, references to level expressian be inlined in predicates thereby improving
performance considerably in many cases. Better performmaan be achieved when selection predicates refer
to decorations of dimension values at a lower level than ¢wellto which the cube is aggregated. If e.g. a
predicate refers to decorations of dimension values at ¢t level of some dimension, large amounts of
data may have to be transferred to the temporary componalining level expressions may also be a good
idea if it results in a more selective predicate.
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As Example 6.6 illustrated, level expressions can be idlic@npactly into some types of predicates. Even
though it is always possible to make this inlining (See AmerB), the resulting predicate may sometimes
become very long. For predicates such as “EC/EC_Link/Martufer/MName = Supplier/Sup_Link/SName”,
where two level expressions are compared, this may be the s for a moderate number of dimension
values. However, as long as predicates do not compare bepedssions to measure values the predicate length
will never be more than quadratic in the number of dimensialues. Furthermore, this is only the case when
two level expressions are compared. For all other types edlipates the length is linear in the number of
dimension values. (For details, see Appendix B.) Thus, witedicates are relatively simple or the number of
dimension values is small, this is indeed a practical smtutMery long predicates may degrade performance,
e.g. because parsing the query will be slower. However, @rmoportant practical problem that can prevent
inlining, is the fact that almost all systems have an uppsitlon the length of a query. For example, in many
systems the maximum length of an SQL query is about 8000 cteasa Certain techniques can reduce the
length of a predicate. For instance, user defined sets oésdhamed sets) can be created in MDX and later
used in predicates. However, the resulting predicate nithpsttoo long for a single query and not all systems
provide such facilities. A more general solution to the peob of very long predicates is to split a single
predicate into several shorter predicates and evaluase ihea number of queries. We refer to these individual
gueries apartial queries, whereas the single query is calledtttal query.

Example 9.1 Consider the predicate: “EC/Manufacturer/@MCode = Mactufier(EC)”. The decoration data
for the level expression is retrieved from the XML documenegplained in Section 7 resulting in the following
relationships between dimension values and decoratiaresal

EC Manufacturer/@MCode
EC1234 M31
EC1234 M33
EC1235 M32

Using this table, the predicate can be transformed to: “OWhacturer(EC)N (M31, M33)AND EC="EC1234")
OR (Manufacturer(EC)YN (M32) AND EC='EC1235’)". This predicate may be to long to actually kesed
and can then be split into: “Manufacturer(E®) (M31, M33) AND EC="EC1234’ " and “Manufacturer(EC)
IN (M32) AND EC='EC1235" " O

Of course, in general this approach entails a large overbeaduse of the extra queries. However, since
the query result may sometimes be reduced by orders of matgnithen inlining level expressions, being able
to do so can be essential in achieving acceptable perforn@ecause of the typically high cost of performing
extra queries, the cost model must be revised to reflect this.

The evaluation time of an OLAP query can be divided into thyaes: A constant query overhead that does
not depend on the particular query being evaluated, theititakes to evaluate the query, and the time it takes
to transfer data across the network, if necessary. The eae€rfs repeated for each query that is posed, while
the transfer time can be assumed not to depend on the numgeeés as the total amount of data transferred
will be approximately the same whether a single query or npamtial queries are posed. The query evaluation
time will depend e.g. on the aggregation level and seldgtofiany selections in a query. How these values are
determined, is described in Section 10.

The revised cost formula fot XML queries and a single total OLAP query that is split intgpartial
OLAP queries is presented in the following. The cost formdiktinguishes between two types of XML query
results: Those that have been inlined in some predicaterase tthat have not been inlined in any predicate.
The estimated time it takes to retrieve these results isteeiayt x /7, m: andt xarr, Notme, respectively. In the
formula let:

o VL Nourn: D€ the maximum time it takes to evaluate some XML query foroivhine result is not inlined
in any predicate,
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o 1%/ m: D€ the maximum time it takes to evaluate some XML query forcilthe result is inlined in
some predicate,

e torap,on be the constant overhead of performing OLAP queries,
* t',4p,ma D€ the time it takes to evaluate tith partial query,

* torap,1rans D€ the time it takes to transfer the result of the total query €quivalently, the combined
result of all partial queries).

Then the cost of a federation query is given by:

n

MAX ] MAX
Cost = MAX (tXa11, Notimts T * toLaP,0n + E toLap Bval T tOLAP, Trans + XML, i) T tTemp
i—1

The cost formula is best explained with an example.

Example 9.2 In Figure 12, four XML queries are used, two of which are ialinin the OLAP query (XMk

and XML,). Hence, the OLAP query cannot be posed until the resultsodf these queries are returned.
The inlining makes the OLAP query too long and it is split imeo partial queries as discussed above. In
parallel with this, the two other XML queries (XMLand XML;) are processed. Thus, the final query to the
temporary component, which combines the intermediate oot results, cannot be issued until the slowest
of the component queries has finished. In this case, the OloAponent finishes after XMLand XML,, and
thus, the temporary query must wait for it. O

x
<
e

Temp
OLAP, | OLAP,

> time

Figure 12: An example showing the total evaluation timestifier component queries required to evaluate a
single federation query.

The two OLAP queries are usually not issued one after ana@bkeshown in the figure, but in parallel.
Nevertheless, we made the assumption that the total ei@iuane for a number of partial queries is close to
the sum of the individual evaluation times. However, sifw piartial queries can be evaluated in parallel, the
actual evaluation time will sometimes be shorter than teaf, due to the use of caching. The data used by
one query may cause some data used by another query to baebéevail the cache, depending on how the data
is stored in disk blocks. Working against this, is the faetttthe partial queries will always work afifferent
parts of data because of the way the predicates are comstruetrthermore, the assumption is most accurate
for OLAP systems running on machines with only a single CPd disk. For machines with multiple CPUs
and disks the maximum evaluation time for any partial quesymrovide a better estimate. Often the best
general estimate will be somewhere in between, and thusyerage value can be used. Also, the evaluation
time for the total query will sometimes provide a good estendt will always take longer than any partial
query, because the partial queries are more selective tavlil generally be faster than the sum of the partial
evaluation times, because optimization can be more effeethen a single query is used. For example, a full
table scan may be the fastest way to find the answer to thedqogad, but by posing several partial queries
a number of index lookups may be used instead. Using the suhegdartial evaluation times will generally
be sufficiently accurate, because, as is further discuss8eédtion 10, we cannot assume to have detailed cost
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information available, and consequently, estimates cénlmmapproximate. Which of these estimates is best
for a particular OLAP system can be specified as a tuning petemto the federation.

Since any subset of the level expressions can be inline&i®thAP query, the number of inlining strategies
is exponential in the number of level expressions. None e$é¢hcan be disregarded simply by looking at the
type of predicate and estimated amount of XML data. Evengelaumber of OLAP queries each retrieving
a small amount of data may be faster than a few queries rietgawost or all of the stored data. Further
complicating the issue, is the fact that the choice of wiredhgarticular level expression should be inlined may
depend on which other expressions are inlined. Considemegpredicates that both refer to decorations of
values at a low level in the cube, and hence, require theevedrdf a large part of the cube. Inlining only one of
them may give only a small reduction in the OLAP result sizzause the low level values must still be present
in the result to allow the other decoration to be performeat.the same reason, we cannot consider XML data
used for selection independently from XML data that are ardgd for decoration or grouping. Also, a level
expression that occurs multiple times in a predicate nee¢temlined for all occurrences.

When adding a level expression to the set of inlined exprassithe total cost may increase or it may
decrease. An increase in cost can be caused by two thingsOTA® query may have to wait longer for the
extra XML data, or more OLAP queries may be needed to holdsxttra data. Any decrease in cost is caused by
a reduction in the size of the OLAP result, either becausesdiectivity of the predicate is reduced or because
a higher level of aggregation is possible. A smaller OLARuleshay reduce both the OLAP evaluation time
and the temporary evaluation time.

QSO ﬂg\
A12 B100 C20 D14 A B C D
AB AC AD BC:2 BD CD AB AC AD BC:2 BD CD
ABC ABD ACD BCD ABC100 ABD20 ACD30 BCDe90
ABCD ABCD150

(a) (b)

Figure 13: Top-down (a) and bottom-up (b) generation ofinly strategies for the four level expressions A, B,
C, and D. The numbers represent the cost of a strategy, amgtimeal solution is indicated by a dashed circle.

Even though there is an exponential number of inlining sgi&s, this will almost never be a problem, as
selections typically contain only a few level expressionisus, performing an exhaustive search is an adequate
solution to this problem. A few heuristics are used to redilngesearch space even more: If a combination
of level expressions produces a cost that is much largertti@combinations previously generated, it is not
used to generate further combinations. For this to be a Vadigtistic, it is important to begin from the full
set of level expressions and remove each one iterativelinorie are left. Using the opposite approach, i.e.
beginning from the empty set and add elements iterativieé/hieuristic will sometimes fail. Consider e.g. the
two approaches shown in Figure 13, where each letter repiesdevel expression and the values shown for
some of the combinations represent costs. A top-down apprdeeginning from the empty set of expressions,
is shown in Figure 13(a) and a bottom-up approach, beginfnorg the full set, in Figure 13(b). A heuristic
top-down approach ignores all combinations containing réaire level expression if it is very expensive to
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inline. For instance, all combinations containing B wouglignored in Figure 13(a). However, even though
an expression is much more expensive to inline than the atk@essions, this may be compensated for by
a much higher level of aggregation in the OLAP query. This roaly be achieved when the expensive level
expression is inlined together with other expressions smudsed above. Hence, the optimal cost, represented
by the dashed circle, may actually contain expression Bcandequently, the top-down approach will fail to
find the optimal value. A bottom-up approach is less likelydibbecause it first considers the strategy where
all expressions are inlined. Thus, if any combinations giv&ecial reduction in the cost, this is taken into
account when selecting which combinations to disregard.

Certain situations may still cause the bottom-up approadait, but a refinement to the heuristic can often
prevent this. Consider the situation in Figure 13(b). Hére,optimal strategy may be skipped because all the
combinations leading to it are very expensive. This can onbur if all the level expressions not in the optimal
strategy take very long time to evaluate or produce a hightraurnof OLAP queries. In Figure 13(b), both
A and D would have to be very expensive. First, this makegkdyi that the other combinations, which also
involve A or D, are expensive too. Second, the heuristic aanefined to handle this problem by identifying
when a single level expression causes a long waiting timeamyn®LAP queries.

The optimization approach can be summarized as followse@dm all inlining strategies bottom-up except
for combinations with a very high cost. Thus, if the cost ighhfor a particular combination, no subsets of the
combination are considered. However, if the high cost isnilgataused by a single level expression, this
restriction does not apply and the subsets of the combmatie considered anyway. What constitutes a “very
high cost”, is determined dynamically based on the numbbsved expressions. Thus, for only few expressions
almost all combinations are considered, whereas for mgpeesgions the heuristic is used more aggresively.
This can be generalized to cope with a higher number of lexglessions by choosing only a fixed number of
combinations at each level. This reduces the time complésan exponential to quadratic in the number of
level expressions.

Although predicates in a query will typically contain onlyfeav level expressions, a higher number is, of
course, possible. If the number of level expressians too high, then the optimal solution cannot be found
within reasonable time. In fact, the problem of finding thenimial cost is NP-hard as will be shown in the
following. It is well known that finding the global minimum afcomplex cost function in a large search space
with a high number of local minima is NP-hard [SSV98]. In tioidwing, we will useCost(S), whereS is a
set of level expressions, to mean the value of@aet function when inlining the expressions $h

Theorem 9.1 Finding the global minimum of the cost functi@rvst is NP-hard.

Proof outline: (Proof by example)

Let S be a set of level expressionSost(S) is a local minimum if for all level expressions ¢ S andz; € S
the following is satisfiedCost(S) < Cost(S U {z;}) andCost(S) < Cost(S \ {z;}). Such situationgan
occur. Consider e.g. this example:

e Inlining eachz; increases the number of OLAP queries without an equivakshigtion in the size of the
OLAP result.

e All z;in S decorate the same level and thus, inlining only a subsetenf forevents the cube from being
aggregated to a higher level.

Moreover, these local minima can exist independently ofiedicer, e.g if there is no overlap between their
elements. Hence, a large number of minima can exist if theeBespace is large. 0

A well known and relatively simple technique to find a goodusioh to this sort of problem iSimulated
Annealing[KGV83, IW87]. A Simulated Annealing algorithm attemptsfiod the global minimum by con-
sidering only part of the search space, and behaves mucla ldteedy algorithm. However, with a certain
probability transitions to a state with a higher cost tham pinevious one are allowed, which enables the al-
gorithm to escape a local minimum. The propability with whtbese “up-hill moves” are allowed, decreases
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over time. As stated earlier, the search space will typycladl small and hence, the application of techniques
such as Simulated Annealing to this specific optimizatiarbfam is outside the scope of this paper.

9.3 Optimizing XML Data Retrieval Through Limited Query Int erfaces

As explained in Section 8.3 a single XQuery query can be usddtth all decoration data from each XML
component. However, such a highlevel query language cagematrally be assumed when data is accessed
over the Web, e.g. through a URI. Also, systems such as th@ntax¥ML Database currently only provides an
XPath-like interface [AG01b]. The XPath language is suintifor applications such as in tB®L x, syntax,
where it provides a compact and simple way to identify nodesni XML document, but the language exhibits
great limitations when used for querying data sources [BCO00 this section, we investigate methods for
retrieving decoration data efficiently when only an XPatieiface is available. Although we focus on XPath,
the optimization methods presented here can easily beeabfui other comparable languages like e.g. XQL
[RLS98]. A related problem is investigated in [GMY99] whicbnsiders queries through limited interfaces.
These interfaces may e.g. require certain data values tpdwmified in the query in order to retrieve the result.

Having only an XPath interface, decoration data can be éetdly posing a query for each dimension value
as described in Section 8.3. If the XML component is spedi§iagtimized for this and the primary perfor-
mance bottleneck is the transfer of result data, this methag provide acceptable performance. However, in
general the overhead of transferring, parsing and evalgatiarge number of queries will be too expensive. A
general technique to reduce this cost is to combine grougaeries into a single query. For instance, a number
of queries each containing a predicate can sometimes beigedhto a single query containing the disjunction
of the predicates. The result of this combined query wilinttave to be split up locally. Consider e.g. the
following example:

Example 9.3 Recall the definition of EC_link in Example 4.2. The XML datar fthe level expression
“EC[ALL)/EC_link/Description” can be retrieved by issugrthese three XPath expressions:
/Components/Supplier/Class/Component[@CompCode = ‘EC1234']/Description
/Components/Supplier/Class/Component[@CompCode = ‘EC1235’)/Description
/Components/Supplier/Class/Component[@CompCode = ‘EC2345’)/Description
These expressions can be combined into a single expressieving the Description nodes:
/Components/Supplier/Class/Componentf@CompCode = ‘EC1234’ OR @CompCode = ‘EC1235' OR @Com-
pCode = ‘EC2345’)/Description. [l

The problem with this approach is that the resulting nodescgalways be distinguished in the result. For
this to be possible, both the locator and the user definedhX&adression must be present. This is necessary
because according to the XPath Recommendation [W3C99¢thwtrof an XPath expression is anordered
collection of nodes, and hence, there is no way to identifshedecoration node, except by using the locator.
Furthermore, an XPath expression cannot change the sieusta document, but only return a set of existing
nodes from it. Consequently, the result of an expressionocén containentire nodes and not partial nodes.
Thus, to maintain the relationship between the locator &eduser defined XPath expression, their common
parent node must be retrieved in its entirety.

Example 9.4 Considering the Components document, a single XPath esipresannot fetch only the Comp-
Code and Description children providing a result such as:

<Conponent ConpCode="EC1235">
<Description>16-bit flip-flop</Description>
</ Conponent >

It is possible to fetch only the CompCode and Description nodesy e expression such &ompo-
nents/Supplier/Class/Component/@CompCode | /Components/Supplier/Class/Component/Description. How-
ever, the result contains only an unordered set of CompCadeDescription nodes that cannot be used to
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determine which pairs of nodes belong together. Thus, theedbomponent nodes including all children must
be fetched instead of just the Description nodes using tipeesgion/Components/Supplier/Class/Compo-
nent[@CompCode = ‘EC1234' OR @CompCode = ‘EC1235 OR @CompCode = ‘EC2345]. The Description
nodes can then be matched with their corresponding Comp@adies by applying three expressions locally,
each similar to thisiComponent{@CompCode = ‘EC1234']/Description. This means that instead of using three
expressions to retrieve the Description nodes, a singleesgn is used to retrieve the Component nodes.
Notice that if the CompCode attribute were part of the Degian node or if the entire Component nodes were
needed, no additional data would be fetched. O

This example illustrates that combining multiple expressimay result in the retrieval of extra data. Still,
this approach may be much faster than evaluating each eipnaadividually. In fact, it may be advantageous
to combine multiple expressions even if this means remggwuch more data. For example, a large part or even
the whole document can be fetched and queried locally. Thieelbetween evaluating many small expressions
and combining the expressions, possibly retrieving toomuata, is decided by comparing the estimated cost
of each strategy. Details of how to estimate the cost of arttX&gpression is presented in Section 10.2.

The strategy of combining XPath expressions is valid fohbetumerated and natural links. However,
because XPath expressions constructed from a naturaklialviays on the special form discussed in Section 4
and in the example above, creating a combined expressidmaightforward compared to the general case.
For enumerated links the high degree of flexibility means #a&h dimension value may be associated with a
unique XPath expression. In the worst case each expressiens to a unique XML document. However, this
is unlikely to occur in practice, and it will usually be pdsisi to combine most of the expressions.

Example 9.5 Assume that the manufacturer codes were not present in thgo@wents document. Then the
enumerated link Manuf_link could be defined §:M31”, “components.xml”, ‘Components/Supplier[@SCo-
de="SU13']/Class/Component[@CompCode="EC1234’/Manufacturer”), (“M32”,“components.xml”, YCompo-
nents/Supplier/Class/Component[@CompCode="EC1235]/Manufacturer”)}. In order to retrieve the decora-
tion data for the level expression Manufacturer[ALL]/M&nlink/MName these two XPath expressions could
be used individually/Components/Supplier[@SCode="SU13")/Class/Component[@CompCode="EC1234"]/Ma-
nufacturer/MName and/Components/Supplier/Class/Component[@CompCode="EC1235")/Manufacturer/MNa-
me.

The two expressions cannot simply be combined by creatingjandtive predicate. In this case, the entire
Supplier nodes must be retrieved, because the second Xgatssion does not select any particular Supplier
nodes. O

The following algorithm combines a set of XPath expressi@iisto a single expression that may retrieve
additional data compared to evaluating the individual egpions. For simplicity the expressions are assumed
to be on the fornynode; [predicate; | /nodes[predicates]/ . .. [nodeg[predicatey], that is, without any wild-
cards, shorthand notations or union expressions, and iajpanly downwards movement in the XML tree.
Recall that, a (locationgtepof an XPath expression is the element name selected betwaebrpair of 7.

Algorithm 9.3.1 Combine XPath Expressions

CombineXPathExpressions(XP, StepNo)
Step := GetNextStep(xp:, StepNo)
for all xp; € XP:
Step; := GetNextStep(xp;, StepNo)
if Step; # Step or Step; contains a predicate then Done := true
if Done then return CommonPredicate(XP, StepNo)
else return Concat(Step, CombineXPathExpressions(XP, StepNo+1))

~NOoO O WNBE

Algorithm 9.3.1 combines all XPath expressionsXi#? into a single expression. The function Common-
Predicate combines the predicates at the same step of a nahB®ath expressions, e.g. by creating the
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disjunction of the predicates.

Given a set of XPath expressions, any subset of these camii@resd resulting in more than one expres-
sion. Hence, there is an exponential number of ways to coenthi@ expressions, one of which may be faster
than the other. Providing a general algorithm for finding ptiroal or good solution to this problem is outside
the scope of this paper. Instead, we simply estimate thefao#iree situations: When evaluating the expres-
sionsindividually, when combiningall expressiongeferring to the same document, and when combining all
expressions with predicates at th@me location stepThe latter is done using a slightly modified version of
Algorithm 9.3.1. Although not an optimal solution, this &@® evaluating many expressions if the overhead of
doing so is very high, and also avoids retrieving too mucla ifahe data transfer rate is low.

To summarize, three different strategies are used whemavay) a set of XPath expressions resulting
from a level expression: combining none, some, or all of theressions using Algorithm 9.3.1. If the level
expression is based on a natural link, it is always possibleombine all the expressions which typically
produces a low overhead expression because of the way thksaite defined. If it is based on an enumerated
link, combining all expressions to a single expression neave all or a large part of the document. Hence,
we also consider the situation where only expressions bawiedicates at the same location step are combined.
For each of these three strategies, the total evaluatiansestimated and the cheapest one is used.

9.4 Caching and Pre-fetching

Another technique that can significantly reduce the totaelgevaluation time is caching. Two types of results
should be considered for caching: Results of complete &tider queries as produced by the temporary com-
ponent and intermediate results produced by the OLAP and Xbdfhponents. In this section we discuss how
and when to use cached data for these types of results. Beohtle potentially large performance gains that
can be achieved by storing results locally, it will often bgomd idea to pre-fetch certain data that are likely to
be needed. The main question regarding pre-fetching is ddtatto fetch, which is discussed briefly. We will
begin by looking at caching of intermediate results.

Basically, caching results of OLAP queries is done by kegphe otherwise temporary tables that are
created in the temporary component. Associated with eaclintsible is the part of the query tree that produced
the table. Given a new query tree, it is determined whetheicdthed result is identical to or can be used to
produce the new result. When this is the case, the cost of tiséhncached result is compared to the cost of not
using it. If the query that produced the cached result istidahto the new query, it will always be cheaper to
use the cache. However, if e.g. extensive aggregation tbegkean the cached result to produce the final result,
it may be cheaper to fetch a possibly pre-aggregated resuft the OLAP component.

Determining whether a cached result can be used to produew agsult must be done efficiently since a
large cache may hold many different results. This is donedsjopming a few simple tests on the query tree
corresponding to each cached result. Consider the two duegg() and Qy in Figure 14(a), representing
the cachedand theuserquery, respectively. If the cached result can be used toysethe needed result then
Qu must be expressible in terms @f-. The tests discussed next will determine whether this isiptes but
let us first see how the final query is constructed in the nisteticase wheré&);; andQ¢ are not identical. (By
identical we mean that they contain the same operationggdieding the order of selections in eaclolock.)

Q¢ must form the bottom part of theew query @ that is constructed frond;;, and the part ol
that restricts the result further must be applied to thigdmtpart. The resulting quer§  is also shown in
Figure 14(a). Two observations can be made here. First,eleetgns in¥; » are divided into two groups:
Those that can be pushed belbly and those that cannot. The first group must contain all sefectnX¢ o,
while the latter must contain all the selectiongip ;. Any remaining selections are placed abdyg; in Xy .
Second, we see thal; ; is preserved at the top. This is always the case becauseaabtiens that cannot be
pushed below the GP are left above it as described in Sect#n 8

The transformation of);; to @y is possible if the following three requirements are all Sad:

1. Ce = Cy. The component cubes must be the same.
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Figure 14: Determining when a cached result can be used féffOdueries and federation queries.

2. Letllg = H[LC]<F(MC)> andIly = H[LU]<F(MU)>' ThenLe C Ly A M C My must be satisfied.
This is necessary because it must be possible to roll up fgemmo Q. Furthermore, the roll-up from
the levels inC'¢ to Lo must be strict, since it should be legal to roll further uplio.

3. Yoo C Xpp and allo € Xy 2\Xc 2 can be pulled abovl . The remaining selections must contain
Yo, 1.e.801 CYy2\Ecp. Thisleavey = (Xp2\X¢2)\E¢,1, which is performed in the temporary
component.

All these requirements can be tested efficiently becauseaneformations need to be done on either of the
trees. Only simple comparisons of the operations are paddrand the number of comparisons is quadratic in
the number of selections, typically for only a few selection

Intermediate XML results can also be cached, either byrgjotine temporary tables relating dimension
values and decoration values, or by storing the XML nodesdteretrieved. The benefit of storing the unpro-
cessed XML data is that too much data may have been retrievddszribed in Section 9.3 and this extra data
may be requested at a later time. However, the decorati@ndast be processed and stored in a table each time
it is used, which is avoided if the decoration tables areimeth This local processing can be expected to be
much faster than retrieving the decoration data from its@@and the performance gain will still be significant
by storing the raw XML data. Hence, this approach is usedifterary data storage is scarce, otherwise, both
approaches are used. For each cached XML result the com@isigoquery is stored. By comparing this query
with the user query, it can be determined whether the cadksdtrcan be used. This comparison is very similar
to the one performed in Algorithm 9.3.1.

If only limited storage is available for caching, it may becassary to choose between caching of OLAP
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data and caching of XML data. Which of these choices provitiesbest performance depends e.g. on the
amount of data, the communication delay, and whether orhsoteamporary component is located on the same
server as the OLAP component. Thus, no general rule can be ataalit which is better, but this must be
decided for each component e.g. by the DBA.

Caching of entire federation queries can potentially pteva larger performance gain in case of a cache
hit than caching of intermediate queries. However, an mégliate result can be used in different federation
queries and is more likely to be useful than that of an entirerg Also, it is more expensive to determine
whether a cached result of an entire query can be used to ggdtie result of another query. As for OLAP
queries, the optimal solution to this problem is to decidestlubr the incoming query can be transformed such
that the cached query constitutes the bottom part of it. Wewehere are no simple list of requirements that can
be tested to determine exactly when this is possible. Singgleirements can be listed to identify some special
situations where it is possible, though, and still achidgaicantly better than requiring the two trees to be
identical. Because of the time overhead of comparing entileries, and because computing the final result
from the intermediate component results will typically beta performance bottleneck, we do not cache entire
federation queries. Hence, it is out of this paper's scopmaie a complete analysis of these requirements.
Instead, we present a few heuristics to illustrate the idea.

Consider the two querieQ and @y in Figure 14(b). One way to loosen the requirement that thestr
should be identical, is to say th@y is allowed to contain selections that are notjga, but only if they can be
pulled abovdlc ;. The result of this is querg) x; shown in Figure 14(b). If this is possible the selection only
refers to levels iMl¢c; and hence, it can also be pulled over all GPs bdlw;, as well as any decorations.
Since a selection can always be pulled above other selsciios sufficient to compare the extra selections to
Il ;. Extra decorations id);; can also be pulled abovéc ; if they are notaLL decorations and are not used
in selections. This situation is illustrated by qué&py in Figure 14(b).

All cached results expire after a certain time. This timeate}s on the specific type of data and can be
specified as a tuning parameter by the DBA or, for XML compadsieloly the creator of a link. When the cache
fills up, aleast recently useteplacement strategy is used.

Because retrieving data over a network will often be a bogitdk in the federation, pre-fetching relevant
component data and storing it locally can improve perforoeatonsiderably. The central question is what to
fetch. Entire federation queries can be pre-fetched, bigissrthe same or very similar queries are asked repeat-
edly, keeping a store of results is not likely to provide maitg. Also, the same difficulties as described above
for caching apply here. Consequently, we do not pre-fetdimeefederation queries. Pre-fetching component
data is more likely to result in a high hit-rate, because #rmaesdata can be used in many different federation
gueries. OLAP data can be pre-fetched in different roll-ombinations and used like cached results. Statis-
tics, about which combinations of levels are most often useplieries, are used to select which combinations
should be pre-fetched. How to obtain these statistics msudsed further in Section 10.1. For XML compo-
nents, the entire subtrees pointed to by links can be retlien advance on a periodical basis. This means
that all decoration data will be available locally and mayiove performance significantly if access to XML
components is slow. If only limited temporary storage isilalde, decoration data is retrieved for only the
most frequently used links. A more sophisticated stratemydcalso take the access times of XML components
into account.

It may also be a good idea to retrieve additional data duttegevaluation of a federation query if this
improves the likelihood that the data can be reused latemceldf the selectivity for an OLAP or XML query
is estimated to be more than 20%, we retrieve the data witherfiorming selection. This may reduce the future
response times significantly at only a small extra cost. Btienation of selectivity is discussed in Section 10.1.

In summary, we perform caching and pre-fetching for compbeeries only. Intermediate OLAP results
stored in temporary tables as well as raw XML data are kepd frgrtain amount of time, which can specified as
a tuning parameter. If adequate storage is available, teanpXML tables are also stored to avoid constructing
the same tables again. Currently, we do not cache or prb-&aitire federation queries. &ast recently used
replacement strategy is used. As will be described in Sedtit) experiments indicate that large cost reductions
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can be achieved using these techniques.

10 Determining Cost Parameters

This section describes the estimation of the cost paramttat were used in the cost formulas in Section 9.2.
This cost information is collected by tt&tatistics Manageand used by the cost evaluators in Figure 9.

The amount of cost information available to the federati@ywary between federation components. Du et
al. [DKS92] distinguish between three types of federatiomponentsProprietary, where all cost information
is available to the federatioiGonforming where the component DBMS provides the basic cost statjdiat
not full information about the cost functions used, and fipallon-Conforming where no cost information
is available. Usually, only the DBMS vendor has full accesslt cost information, and hence, we consider
only conforming and non-conforming components here. A prynmotivation for the federation of OLAP
and XML components is to provide easy access from e.g. a @EpO®LAP database to XML data available
from restricted sources such as the Internet. Thus, a highedeof autonomy must be expected for XML
components, while OLAP components may or may not provideseto cost information. Because of this,
we assume in the following that the OLAP component is eitt@rfarming or non-conforming, while the
XML components are non-conforming. The temporary compbnsed by the federation is assumed to be a
conforming component.

Several techniques have been used in the past for acquostgnformation from federation components.
A commonly used technique @aiery probingZL96] where special queries, callguobing queriesare used to
determine cost parameters. For proprietary or conformomgmonents, cost data, such as selectivities and data
cardinalities, can simply be fetched from the availableardzita. If this information is not available, probing
gueries can instead retrieve samples of the component Bgtacal information that can be determined in this
way includes maximum and minimum values, cardinalities] data element sizes as well as the time required
to evaluate the probing query. In general the latter typeuefrigs will provide less accurate information than
when it is gathered from the component’s own statisticahdatdaptive cost estimatiofl. TD95] is used to
enhance the quality of cost information based on the acuaallation costs of user queries.

Because different requirements and difficulties are exibby the three types of components (OLAP,
XML, and relational) different techniques are used to detee their cost information. Hence, the presentation
of cost parameters is divided into three sections corredipgrnto each of the three component types.

10.1 Determining OLAP Cost Parameters

As described earlier the cost of an OLAP query comprises ataohquery overhead that does not depend on
the particular query being evaluated, the time it takes taaly evaluate the query, and the time it takes to
transfer data across the network if necessary:

torap =torar,oH + toLAP,Eval + tOLAP,Trans

The statistical information that is needed to estimatedlpmameters, may be available from the OLAP
component’s meta data, in which case it is used directly. é@w if such data is not available, we use probing
queries to determine the statistical information and car@usly update it by measuring the actual cost of all
gueries posed to the components. The probing queries ardatlzely inexpensive and can be posed when the
system load is low, and the overhead of adapting the costiration to the actual costs is insignificant. Hence,
these methods introduce little overhead on the federatste sy

In the following, we explain how the cost parameters areresitd given an OLAP query by using probing
gueries, and how to adapt the cost information when the bhctsh of a query is found. We do not explicitly
consider the use of existing statistical information as theépends very much on the specific DBMS and is
similar to the use of information determined using probiltpre specifically, we describe the statistical infor-
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mation that the estimation is based on and how it is obtained,the three cost parameters are estimated using
this information, and how the information is updated.

10.1.1 Statistical Information

The estimation of cost parameters is based on statistit@nmation represented by the functions shown in
Table 3.

| Function | Description \
NetworkDataRate(C) | The rate with which data can be transferred from cubéo the temporary
component
DiskDataRate(C) The rate with which data can be read from disk for cabe
Selectivity (0, C) The selectivity of predicaté evaluated on cub€é'
FactSize(M) The size of measurel®/
RollUpFraction(L,C) | The relative reduction in size when rolling cubeup to levelsC
Size(C) The size of cub&’
EvalTime(Q) The time for evaluating querg

Table 3: Statistical functions used to determine OLAP casameters.

These functions are explained in the following:

NetworkDataRate(C'): This function returns the rate with which data can be tramstefrom cubeC' to the
temporary component if this is not located on the same sasvédre OLAP component. This is estimated
by posing a probing query t¢'. The result is measured in size and timed from when the figtltre
tuple is received until the last result tuple is receivede tata rate can then be approximated from the
measured size and time.

DiskDataRate(C): This function returns the rate with which data can be reanhfdisk for cubeC. This can
be estimated by posing a probing query that retrieves a pHredrase cube and measuring the size of the

result as well as the total query evaluation tini#iskDataRate(C) = tof:;e(ogprg’gffg)T P

By subtracting the constant query overhead and the estiniaesfer cost which will be described Iater
only the evaluation time is left. The assumption is that gdgpart of the evaluation time for a query that
retrieves data from the base cube is spent reading the degalfrom disk. Because indexes are typically
used to locate such data, little additional data is read fik.

Selectivity (0, C'): This function returns the fraction of the total size@fthat is selected by. This is esti-
mated using standard methods, i.e. by assuming a uniformibdison, and by considering cardinality,
minimum and maximum values of the involved attributes[ENCB.g., if # = “Level < k", wherek
is a constant, the selectivity éfcan be estimated b§electivity (6, C) = mm(ﬁ;ﬂg”%g?;eml (Often
the smallest/largest but one is used to ignore extreme salifenformation about cardlnallty minimum
and maximum values is not available, it is obtained by popitadping queries that explicitly request this

information.

FuctSize(M): This function returns the size in bytes of a fact containingy walues for the measures M.
This is based on the average size of a measure value whicleisrdeed from a single probing query.
FactSize(C) is used to refer to the size of a fact containing all measurés. i

RollUpFraction(L,C): This function returns the fraction to whiof¥ is reduced in size, when it is rolled
up to the levelsC. Shukla et al. [SDNR96] propose three different techniguesstimate the size of
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multidimensional aggregates without actually computimgaggregates: One is based on the assumption
that facts are distributed uniformly in the cube and doescoasider the actual contents of the cube, one
performs the aggregation on samples of the cube data arapekdtes to the full cube size, and one scans
the entire cube to produce a more precise estimate. Hereawh@dirst method because of its simplicity
and speed, and because experimental results in [SDNR9%]tblad it performs well even when facts are
distributed rather non-uniformly.

Using this method, the size of an aggregated result is giyehedfollowing standard formula for comput-
ing the number of distinct elemenisobtained when drawing elements from a multiset of elements:
d=n-mn(l-21). Givena GPIlz) < r(ar)>(C) we can then estimate the size of the result letting
n = ||Ly X Ly x --- x Ly|| forall L; € £ andr be the number of facts i€0, i.e.r = Size(0) _ Hence,

FactSize(C) "
RollUpFraction(L,C) = g.

Size(C): This function returns an estimated size(dfwhereC' may be a cube resulting from an OLAP query,
denoted ag’ = Q(C"). The size of@Q(C') depends on the selectivity of the predicates included in the
query, and to which levels the cube is rolled up. This leadkedollowing:

Selectivity (0, C") - Size(Q'(C'.)) if Q=04(Q")
Size(Q(C")) = { RollUpFraction (L, C") - Tl l) - Size(Q'(C"))  if Q = gy <oany>(Q')
Size of fact table i) (C") is the base cube.

EvalTime(Q): This function returns the estimated time it takes to evaltia¢ query) in the OLAP compo-
nent. OLAP components often use pre-aggregation to enabledsponse times. Hence, the evaluation
of a query can be divided into three strategies, the choieehath is determined by which aggregations
are available in the cube. The cost of each of these strategédiscussed in the following. We first
present the general formulas that may be used to calculatevidduation time of an OLAP query, and
then we describe how they are used and when they are applicabl

First, a pre-aggregated result may be available that rplte the same levels as the query being evaluated.
In that case, the evaluation of the query reduces to a simplkup. Assuming that proper indexes are
available on dimension values, any selections referringjteension values in the aggregated result can
be evaluated using these indexes. This means that the gwaltime of such a query can be assumed
to be directly proportional to the combined selectivity efetions in the query and to the size of the
pre-aggregated result. However, such a pre-aggregatati cas only be used if it is available and if no
selection refers to measures in the unaggregated cube ewvdts lthat has been aggregated away in the
pre-aggregated result.

If these requirements are not satisfied, the cube may follsecand strategy, in which no pre-aggregated
results are used. Instead, the query is computed entiiaty fhe base cube. The cost of this computation
depends, of course, on the algorithms implemented in the BBbddt a simplified cost formula is used,
that reflects the evaluation capabilities of many OLAP dasals. As above, we assume that selections
can be evaluated efficiently by use of proper indexing. Heang selections in the query that refers to
levels in the cube can be evaluated while accessing the subke that only facts that satisfy the selection
predicates are read from disk. Let this data amount be detyté. Any selections that refer to measures
in the unaggregated cube can be evaluated at the same titrtbeba cannot be assumed to make use
of indexes. Let the resulting amount of data be denoted’byA widely used method of performing
aggregation is hashing, see e.g. [Gra93, GBC98], and wenesthat a simple hashing strategy is used.
Hence,d' bytes of data is partitioned using a hash function and writeedisk. Each partition is then
read, while aggregation as well as any selections refetarige aggregated values are performed on the
fly. Hence,d + 2d’ bytes are read from disk to produce the final result.
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A third strategy can be used when no selections refer to messu the unaggregated cube, but one or
more selections may refer to levels that are not presentdratigregated result. In that case the first
strategy cannot be used. However, any pre-aggregated oesuktill be used as long as it allows all
selections that do not refer to measures in the aggregadatt te be evaluated. Further aggregation must
be performed as described for the second strategy to pradadmal aggregated result. Hence, the same
cost formula can be used, but now the initial cube is insteaeaggregated and no selections refer to
measures. Hencd, = d and3d bytes are read.

These strategies are summarized in the following formutatie evaluation time of an OLAP query.
Assume that queries are on the fof{C') = (Il < p(ar)> (21(C))), whereX; denotes a sequence
on selections. Lef, = ]_[2?:1 Selectivity(0;,C), where selection predicatés. . ., k refer to levels in

C,and letSy; = H§:1 Selectivity (0, C), where selection predicatés. . .,/ appear in; and refer to
measures it’. We use the abbreviatioR DR for DiskDataRate.

(DDR(C)~'-d whered = S - Size(Iljj< p(an)> (C))
if no selections ir; refer to measures or levels notlif ) 7(ar)> (C),
andIljz < (nr)> IS pre-aggregated
DDR(C)~!-(d+2d) whered =S, - Size(C)andd = Sy -d
EvalTime(Q(C)) = ¢  if any selections irt;; refer to measures
DDR(C) ' -3d whered = S, - Size(Iljz< p(any> (C))
for g1« r(any> (C) = Wig)<ran> i< rur> (Q(C)))
if no selections i, refer to measures, or to levels
notinIlz«py>(C), andllzn < p(ary> is pre-aggregated

The problem with this formula is that, if a non-conforminghgoonent is used, it is not possible to know
which results are pre-aggregated and which are not. Hereeawnot always distinguish between fully
and partially pre-aggregated results, and for partialepggregated results we cannot knetichresults

are used. To handle this problem, we use an adaptive appbbageldl on the actual costs of performing the
OLAP query. Still, an initial guess is made at the level of-pggregation used to evaluate a query. This
could be based on the pessimistic assumption that no pregagd results are present in the cube and
thus, get a cost that is likely to be too high. Alternativéiy,ould be based on the optimistic assumption
that the optimal pre-aggregated result is available andhgetst that is likely to be too low. However,

it is not possible to say which of these are best, even for aifipg@urpose such as deciding whether
or not to inline XML data as discussed earlier. The reasoriHisris, that no simple relationship exists
betweenEvalTime and the amount of inlining performed. Whether a low estinMiateZvalTime will
cause more or less XML data to be inlined depends e.g. onzbkeasd selectivities of predicates and the
cost of performing computation in the temporary componeétgnce, no simple guidelines can be given
as to whether it is better to use an optimistic or a pessimegtimate offvalTime. Instead, a level of
pre-aggregation is chosen between the bottom and top Iéwsdah dimension and this choice is then
improved by moving up or down in the dimensions as the actasi of the query is measured. If the
actual cost is larger than the estimate, too high a level@fgggregation is assumed and vice versa. This
adaptive technigue is explained in more detail later.

10.1.2 Estimating Cost Parameters

The cost parametersorap,on, toLAP,Eval, @NAtorap, Trans CaGN NOW be estimated. The first parameter
torap,on 1S assumed to be constant, and is estimated by timing a grahiery posed to the OLAP com-
ponent. The probing query specifies a single measure andastieytar combination of dimension values all
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belonging to bottom levels of the cube. Assuming that theecds indexes on dimension values, the evaluation
time of such a query is negligible. Also, the query returnsiast one value, which means that little or no time
is used on transporting data from the OLAP component. Hengeip, on includes the full processing and
network communication time of a query except the time it $aikeactually produce the result and to transfer the
result over the network. A better estimate can be achievagsing the average time for a number of queries.
The estimate of o1, 4 p, 7vans fOr a query( is calculated from the estimated result size and the netaaik

transfer rate:
Size(Q(C))
NetworkDataRate (C)

Both Size(Q(C)) and NetworkDataRate(C') are estimated as described above. However, if the OLAP com-
ponent is also used as temporary compong$iiap, 7rans IS St t0 Zero cost.

The evaluation costorap,gva Can be estimated in two ways. The simplest is to use the farrforl
EwvalTime directly and base all evaluation cost estimates on a sirgjimate of the cube size. Alternatively,
the estimated cost for a query can be based on the measutddrasimilar query that has been posed earlier.
The cost can be measured from a probing query or a user queligt 8f these queries can be maintained
together with their measured cost and used to compute thetagure queries. The latter should intuitively
provide the best estimates, since it is based on an actuaumeshcost for a similar query. This approach is
described in more detail in the following.

Using the second methotlp., 4 p,kva iS €Stimated from a set of probing queries and the statistitar-
mation presented above. The probing queries are used tagstihe query evaluation time and result size of
gueries that aggregates the cube to a certain combinatiemed$ without performing any selections. From this
estimate the size and evaluation time of a given query caralogllated using the functions presented above.
Queries that retrieve all data at a given combination ofleeannot generally be posed directly, and instead
the size and evaluation time of such a quéry;; is estimated by posing a probing que&pp,.,. as described
later. These estimated results are stored for each €ubea table containing a row for each quepy;:

tOLAP, Trans =

| Columns | Description |
Dimy,...,Dim, The combination of levels to which the cube is rolled ugn;
Size(Q(C)) The estimated size of the result@fy;
EvalTime with preagg The estimated evaluation time @f4;; when preaggr. may have been used
EvalTimeyithout preagg | The estimated evaluation time Qf4; when preaggr. have not been used
QueryCount The number of user queries that has rolled up to the sameslagé) 4;;
PreDimy, ..., PreDim, | The level of pre-aggregation that is assumed to be used toated) 4;;

Table 4: The statistics that are stored for OLAP queries.

Due to the typically large amounts of data stored in OLAP loasas, it is often unfeasible to fetch the
entire cube to get the size estimate and evaluation timmatgs. This is especially true for the lower level
aggregates, whereas the amount of data at higher aggmet¢mtals can often be retrieved in its entirety. Instead,
probing queries are used that select a certain percentaitpe ¢dcts on the specified levels, that is, selections
are performed on dimension values to keep the size of theneduesult reasonable. Notice that if the simple
size based method is used, it is sufficient to use probingegike “SELECT COUNT*) FROM F” to estimate
the size. However, when using the second method the timeatstsbe measured.

Example 10.1 Here is an example of a query that can be expected to selecidapately 25% of the cube
data, because all bottom values are selected in the ECs slimnemhile 50% are selected in both the Suppliers
and Time dimensions:
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SELECT suM(Cost),sum (NoOfUnits), Class(EC), Country(Supplier), Year(Day)
FROM Purchases
WHERE Class IN ('FF’, 'L’) AND Country IN (US’) AND Year(Day) IN ("2000")
GROUP BY Class(EC), Country(Supplier), Year(Day)
Assuming a uniform distribution of facts in the cube thisuras around 25% of the data. In a real example
smaller amounts of data are used. O

Each probing query is timed resultingdp, _,_, and the size of the result is measured, resultin§itreg,, , .
Again, assuming that facts are distributed uniformly in tube, the actual size of the cube without the se-
lections Sizeq,, can then be estimated based 8izeq, ,. by using theSize function mentioned in Ta-
ble 3. Likewise, the evaluation tim&valTimeg,, can be estimated using the approximatioy, , =

torap,on + EvalTimeg, , + Netwf:;;%ft’;;{b;te(c) and the definition offvalTime. Two different values of
the evaluation time are needed to provide good estimatdmtarqueries that may make use of pre-aggregation
and for queries that cannot use pre-aggregation, becanse selection refers to unaggregated measures. To
measure these values two probing queries are used: Onedtiatrps selection only on dimension values
as described above, and one that also contains a selectiam@asure in thevHERE clause. This forces
the OLAP component to access the base cube directly, inteffeabling the use of pre-aggregated results.
The problem with using the definition dfvalTime is that it is not generally possible to know which pre-
aggregations are used. Hence, an adaptive strategy is gs@idcaissed in the presentation BHalTime
above. However, iftval Timeyith preagg = EvalTimeyithout preagg: WE €aN conclude that no pre-aggregations
have been used even though the probing query permitted itsupport this adaptive strategy, the columns
PreDimy, ..., PreDim, contains the current guess at which level of pre-aggregagioised.

Example 10.2 Assume that a probing query has takesec. and returnetil0 KB of data, and that the OLAP
result is pre-aggregated. Alstyap,om,Probe = 1 SEC..toLAP, Trans,Probe = 2 S€C.,DiskDataRate(C) = 10
MB/s, andSy = 10%.

ThentOLAp Eval,Probe = 5s — 1s — 2s = 2s which y|e|dStOLAp Eval,All = Wgﬂ = 351 = 20s
Notice that this simple formula only holds because full pggregation is assumed. The size can be estimated
similarly: Size(Q ay) = SZZ"’(?LPWW) = 10853 = 1000KB O

Often, the number of different combinations of levels ishhigvhich makes it unfeasible to execute a
probing query for each combination. When a certain comkinatf levels is heeded but is not present in
the table, thelfvalTime function is used directly. The problem with this approacthigt we do not know
what pre-aggregated values have been used. However, hecarweo better than to simply guess at some
combination between full and no pre-aggregation, as isssare if the estimation is based only on the cube
size. ThePreDim,; columns in Table 4 provides information about which preraggtions are believed to
have been used for lower level combinations. Hence, we lhesguess on the best level of pre-aggregation
occuring in the table instead of assuming no pre-aggregatiothe worst case scenario. The table is updated
such that the next time a query aggregating to the same epelsed, we can provide a better guess.

The statistics table can now be used to estimate the coSnp&est o4 p,pya aNdtoLaP, Trans fOr @an
arbitrary query@ in the following way: First, determine to which levels thebeuis rolled up inQ, and then
retrieve the relevant values from the statistics table.héfse values do not exist in the table, then they are
computed as discussed above. Second, determine whethetr greraggregation can be used, and choose the
correct value ofval Time. Third, compute the new estimates$te and EvalTime, Sizeg and EvalTime,
using the functions in Table 3 and the values in the stasiséible. Finally, the two parameters can be estimated:
torLap.Eva = BvalTimeg andtoraprrans = Network%ftgmte(c). After the query has been evaluated the
statistics table is updated to reflect the actual cost agidedmext.
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10.1.3 Maintaining the Statistical Information

The statistics table is updated for each query that is pasttetOLAP component. The assumed level of pre-
aggregation, which is stored in the tie Dim; columns, is updated as described above, while the estimated
values ofSize and Eval Time are updated as follows.

For each user query, neWize and FvalTime values are computed for the correspondilg;, query
exactly as was described for probing queries. However, thasured costs may vary, e.g. because of network
disturbances, and hence, the old value is not just replagétetmew value. Instead, a weighted average is used,
based on th&ueryCount column: LetVp, Vg andVy be the old value, the value obtained from the query,

and the new value, respectively. ThER = VQE;O(A%Zéﬁ“:fgﬂy%’;ﬁgﬁm) where MazCount is a tuning
parameter that ensures that the new value has a certain tvesigh whenQuery Count is large. Without this
parameter, any changes to the cube, such as updates, wodfldoted too slowly in the statistics table. The
QueryCount column is also used when determining which results shouldrédetched, as those with a high
count are most likely to result in a high hit-rate.

The statistics table for the OLAP component contains onefoovwwach combination of levels that has been
used in a query. If many different queries are posed over g pamiod of time this number may become large.
In that case, the size can be kept at a fixed level by expiridgantl less frequently used combinations each
time a new row is added.

10.2 Determining Cost Parameters For the XML Components

Estimating cost for XML components is exceedingly diffidudtcause little or nothing can be assumed about the
underlying data source, i.e. XML components are non-coniiog. An XML data source may be a simple text
file used with an XPath engine [Pro01, Cla99], a relationalrfta, Cor01b] or OO [Sof0lb, eC01] database
or a specialized XML database [AG0O1la, Sof01a, GMW99]. Thergoptimization techniques used by these
systems range from none at all to highly optimized. Optiriizes are typically based on sophisticated indexing
and cost analysis [MW99]. Hence, it is impossible e.g taeste the amount of disk 1/0 required to evaluate
a query, and consequently, only a rough cost estimate carabde.nProviding a good cost model under these
conditions is not the focus of this paper and hence, we desonly a simple cost model.

The cost model is primarily used to determine whether or netLXdata should be inlined into OLAP
gueries. Hence, in general a pessimistic estimate is libttaran optimistic, because the latter may cause XML
data not to be inlined. This could result in a very long rugn@®LAP query being accepted, simply because it
is not estimated to take longer than the XML query. However,dctual cost will never be significantly larger
than the false estimate. Making a pessimistic estimatensilicause this problem although it may sometimes
increase the cost because XML data is retrieved before OLa® itistead of retrieving it concurrently. For
that reason, conservative estimates are preferred in tlieimo

The model presented here is based on estimating the amodatafeturned by a query, and assuming
a constant data rate when retrieving data from the compor&ntilar to the cost formula for OLAP queries,
we distinguish between the constant overhead of performiqgeryt xa, oz and the time it takes to actually
process the quemx i, Proc:

txmr = txmr, 08 + tXML,Proc

Hence, only the latter depends on the size of the result.

In the following we describe how to estimate these two costipaters given an XPath query. Although
other more powerful languages may be used, the estimatbimitpue can easily be changed to reflect this. For
simplicity we consider only a subset of the XPath languagere/lXPath expressions are on the form described
in Section 9.3. Because XML components are non-conformiing,estimates are based on posing probing
gueries to the XML component to retrieve the necessarystiti
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10.2.1 Statistical Information

Estimation of the cost parametergy;, or andtxur, proc is based on the statistical information described in
the following. The way this information is obtained and usedalculate the cost parameters is described later.
In the descriptionsV is the name of a node, e.g. the element node “Supplier” ortthbute node “NoOfUnits”,
while £ denotes the name of an element node.fagh ;;, be a simple XPath expression on the fofft, / E5/

.../ E,, that specifies a single direct path from the root to a set @heht nodes at some levelwithout
applying any predicates.

NodeSize(pathg): The average size in bytes of the nodes pointed tpds¥ ;. The size of a node is the total
size of all its children, if any.

Fanout(pathg,): The average number @, elements pointed to by each of its parent eleméfts;. Notice
that there may bé&,, elements that are children of other elements, since therbeaeveral paths to the
same type of element. The fanout is estimated for each o thaths.

Selectivity(0): The selectivity of predicaté in its given context. For simplicity, two types of predicatare
distinguished: Simple predicates and complex predica&siple predicates are on the form ® x-,
where eachr; is either a node with a numeric content or a numeric constadtzais a comparison
operator. The selectivity of these predicates are estunften the maximum and minimum values as
decribed for OLAP queries. All other predicates are comale® may refer to non-numeric nodes and
various functions, e.g. for string manipulation. (An exiiep is predicates involving theosition()
function, which is estimated as a simple predicate.) Faligwrevious work [BMG93], the selectivity
of complex predicates is set to a constant value of 10%.

Cardinality (pathg, ): The total number of elements pointed to pythr,. The cardinality ofE, can be
calculated from any ancestor elemé)t along the path using this formula:

n
Cardinality (pathg, ) = Cardinality (pathg, ) - H Fanout(pathg,) - Selectivity(6;)
i=k+1

If no predicate occurs in an elemefit the selectivity of; is 100%.

DataRate(z): The average amount of data that can be retrieved from the Xdtushentz per second. Given
a set of queriesp,, . .., zp,, the data rate can be estimated like this:

i (time(zp;) — txmr,om)
> iy size(zp;)

wheretime(zp) andsize(zp) gives the total evaluation time and result size of quagryrespectively.

DataRate () =

As a refinement, this data rate can be estimated on a per eleasds, which may give better performance
for some types of components.

10.2.2 Obtaining and Using Statistical Information

Some of the information discussed above can be obtainedtlgittan XML Schema is available [W3CO01a].
In that case, information such &odeSizeCardinality, or Fanoutis determined from the schema. DTDs
[W3CO00] can also be used to provide this information, buyohho repetition operators (i.e. the “*” and “+”
operators) are used. However, if such meta data is not &lailthen the statistical information is obtained
using probing queries that are based on the links definedaitt XML document. Which queries can be used
depends on the type of the link. Three different types of prgplgueries are used as shown here:
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| No. [ Query | Measured values |
Probel| /«[false()] time
Probe2| /E,[position()=i,]/ ... /Ex[position()=i,] | fanout, cardinality
Probe3| /base[locator=v;] (Natural links) time, size, fanout,
flocator,, (Enumerated links) cardinality, min value,
for n random values of max value

From Probel the query overheagyz, or can be estimated. The assumptions are that no data is reéturne
and that the work performed by this query will always haveagbrformed. Hence, it represents the minimum
time it takes to perform a query. This may include everyttinogn parsing the entire XML document to parsing
only the query. In either case it is a reasonable approxonat the constant overhead, which will often be
dominated by the server response time. However, sometirtieser parser may discover that this query always
produces an empty result and avoid most of the query overliedlat situation, requesting a leaf node would
usually provide a better estimate of the overhead. By ruptive probing query a number of times a more
precise average value can be found.

A number of queries on the form of Probe2 are used to find theutaand cardinality of the elements
above and including the nodes pointed to by the link. For enamounts of XML data, this is done by simply
retrieving all the nodes. However, for large amounts of daismay not be feasible, and another method must
be used. Since XPath does not allow computed values sugbuag) to be returned, binary search is used to
find the maximum valué; of position() for which any data is returned. The idea is to find the numbeabfes
on the first level, use a sample of these to estimate the nuailbvalues on the second level, use a sample of
these to estimate the number of values on the third levelsarmh. Most of these queries will work on data that
has already been retrieved, and hence, only a few queriéswtilally retrieve data. However, these queries
may return large amounts of data because they refer to ndoes  the root node. If this is not feasible, a
guess is made at the number of nodes.

Probe3 is used to find statistical information about the sdakdow the nodes pointed to by the link. A
sample of the nodes pointed to is retrieved using Probeéogiven type of link. The nodes are then analyzed
locally to find the remaining informationFanout, Cardinality and Size of the remaining elements, as well
as maximum and minimum values for numerical nodes. The tiniesize of the queries are measured and
used in the computation ddataRate. Where several links exist for a single document, only on@sprobing
queries is performed. All the statistical information db&ad from the probing queries is stored in the federation
metadata for each XML document.

The combination of a limited interface and almost no knogkdbout the underlying source can some-
times make the probing of XML components expensive. As dised in Section 9.3 several optimizations are
possible, including the retrieval of larger parts of the wloent in a single query. However, probing may still
be a problem for very slow XML components, e.g. on the Web.ddethe default behaviour is not to perform
probing immediately, when a link is created, but insteadt watil the system load has been low for a while.
When no probing has been performed, nothing is known abeutdimponent, and instead a predefined set of
cost values are used. The probing can also be disabled fpsi@y components.

The cost of an XPath expression can now be computed using#héormula for XML queriest x ., on
is estimated as described above, wihitg,r, pro. is calculated for an XPath expressiop in a documentX as

follows:
NodeSize(zp) - Cardinality(zp)

DataRate(x)

Example 10.3 Lettxy,0or = 1 S, DataRate = 32 KB/S, NodeSize = 120 Bytes, andCardinality = 500.
Then the total cost can be calculated as:

tXML,Proc =

120Bytes - 500

~ 2.
32KB/s 85

txmrn = 1s +
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An approach similar to that for OLAP queries is used to keepdiatistical information updated. Hence,
when new XML data has been retrieved, it is analyzed and theesdor fanout, cardinality, node size, and
minimum and maximum values are corrected. This analysieifopned only when the system load is low.
Hence, overall performance is not affected.

10.3 Determining Cost Parameters for the Temporary Componet

The temporary relational component is used as a scratchyp#te Federation Manager during the processing
of a query. For efficiency, we assume to have full access toéts data, such as cardinalities, attribute domains
and histograms, as well as knowledge about which algoritaresimplemented for processing operations.
Additionally, we have full knowledge about which accesshpadre available because all tables are created by
the federation itself. Hence, the temporary componentssiragd to be a conforming component. Also, for
simplicity we assume that the temporary component is lacatethe same node as the Federation Manager.
This allows us to ignore network costs for this componentmgeguently, existing work on query optimization
can be used to provide efficient access to this componentifigadly, we use a simplified variant of the cost
model defined in [DKS92]. This model has been demonstratpdoiide good results for different DMBSs.

11 Overview of the Federated System

In this section we give an overview of the presented desigisiderations and optimization techniques as well
as their use in the federated system.

An overall architectural design of a prototype system sujip® the SQL x», query language has been
presented in Figure 8. Besides the OLAP component and the Xdmponents, three auxiliary components
have been introduced to hold meta data, link data, and teanpdata. Generally, current OLAP systems either
do not support non-strict hierarchies or it is too expensivadd a new dimension, which necessitates the use
of a temporary componen8QL x,, queries are posed to tikederation Managerwhich coordinates the exe-
cution of queries in the data components using several ggtion techniques to improve query performance.
Since the primary bottleneck in the federation will usudde/the moving of data from OLAP and XML com-
ponents, our optimization efforts have focused on thisasslhese efforts include botiule basedand cost
basedoptimization techniques, which are based on the transfioomaules for the federation algebra.

The rule basedoptimization uses the heuristic of pushing as much of theygeealuation towards the
components as possible. Although not generally valid,Hbigristic is useful in our case, since the considered
operations all reduce the size of the result obtained froenddita components. The rule based optimization
algorithm that has been presentedlrtitions a SQL x5, query tree, meaning that tH&QL x,, operators are
grouped into an OLAP part, an XML part, and a relational padfter partitioning the query tree, it has been
identified to which levels the OLAP component can be aggeepjand which selections can be performed in
the OLAP component. Furthermore, the partitioned querg tras a structure that makes it easy to create
component queries.

Three differentcost basedptimization techniques have been presented: One target®ilAP compo-
nents, one at XML components and a more general one targebedhatypes of components. Together, these
techniques offer a considerable performance improvenregeneral and in particular for many queries that
would otherwise be too costly.

The first technique tries to tackle one of the fundamentableras with the idea of evaluating part of the
query in a temporary component: If selections refer to das &re not present in the result, more than the
result needs to be transferred to the temporary componére.pioposed solution to this problem isitdine
XML data into OLAP predicates. However, it is not always a diadea to do so because, in general, a single
guery cannot be of arbitrary length. Hence, more than oneyquay have to be used. Whether or not XML
data should be inlined into some OLAP query, is decided bypaoing the estimated cost of inlining with the
estimated cost of not doing so.
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The second technique is focused on the special kind of XMlrigsi¢hat are used in the federation. These
queries can easily be expressed in more powerful langudgeXQuery, but many XML sources have more
limited interfaces, such as XPath or XQL. The special qgenieeded to retrieve data from XML components
cannot be expressed in a single query in these simple laeguagd hence, special techniques must be used
for this to be practical. The main solution suggested hete ombine these queries, even though more data
would have to be retrieved. Again, a cost analysis is use@tald whether or not to employ this technique.

The third technique is an application edichingto this particular domain. The use of caching is important
for both OLAP and XML components, as both types of componardy cause significant delays for certain
kinds of queries. One of the approaches that was presentedstan efficient way to find a useful cached result
for a given OLAP queryPre-fetchinghas also been suggested as a way to speed up queries thabhbeem
posed before.

The use of cost based optimization requires the estimati@@weral cost parameters. One of the main
arguments for federated systems is that components chopsiiate independently from the federation. How-
ever, this autonomy also means that little cost informatidhtypically be available to the federation. Hence,
providing a good general cost model is exceedingly difficdit this context, it is especially true for XML
components, because of the wide variety of underlying systthat may be found. Two general techniques
have been used to deal with these probleR®ibing querieswhich are used to collect cost information from
components, anddaption which ensures that this cost information is updated when ggeries are posed.

To outline how the techniques discussed above are used ibication, we will refer to the software
component architecture in Figure 9. When a federation goasybeen parsed, the Query Decomposer partitions
the resultingSQL x, query tree, splitting it into three parts: an OLAP query, atienal query, and a number
of XML queries. The XML queries are immediately passed orhwExecution Engine, which determines for
each query whether the result is obtainable from the cadtthislis not the case, it is sent to the Component
Query Evaluator. Here, the specific actions depend on whighyglanguages are supported. If e.g. only an
XPath interface is available, it is determined which is giegaTo pose many queries or to combine some or all
of them into a single query. This decision is based on cositvated by the Component Cost Evaluator. For the
OLAP part of the query, it is also determined whether theltesin be obtained from any of the cached results.
If so, the cost of evaluating th@QL x;, query using the cached results is compared to the cost afiatvad
the SQL x5, query without the use of cached results. This cost is detexthby the Global Cost Evaluator.
The cost estimates are also used by the Global Optimizectogpgood inlining strategy. When the results of
the component queries are available in the temporary coemipthe relational part of th8QL x3, query is
evaluated.

In the next section we describe the implementation of thern prototype. A number of experiments
have been conducted which are also presented.

12 Implementation and Experimental Results

This section describes the ongoing prototype implememntadf the architecture presented in Section 7. Some
initial experiments are also reported.

A prototype is currently being developed based on the ovaral software component architecture pre-
sented in Figure 8 and 9, respectively. In the prototype(ha&P component uses Microsoft Analysis Services
and is queried with MDX and SQL[Mic98]. The XML component iaded on Software AG’s Tamino XML
Database system [AGO1la], which provides an XPath-likerfinte. As discussed earlier, the possibilities for
optimization depend on the degree of autonomy exhibiteddmgponents. Thus, we have performed exper-
iments for two different settings: First, the general caseer® the OLAP component has a high degree of
autonomy and an external component is used for temporaay &aicond, the highly optimized situation where
the OLAP component is also used for temporary data and all Xisitla is assumed to be cached. For the exter-
nal temporary component, a single Oracisystem is used. The prototype is being implemented in Jaug us
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Microsoft ADO and ADO-MD APIs following the component artdgtture discussed in Section 8.1. So far,
only the most basic functionality has been implemented.altiqular, the cost based optimization techniques
have not been implemented yet. Nevertheless, it has besibf@# conduct initial experiments that support
the idea of a federation as a practical alternative to playsntegration for rapidly changing environments.

The example cube used in the experiments is shown in Figurdié cube is based on about 50 MB of
data generated using the TPC-H benchmark [Cou01] and alfoMBLof pre-aggregated results. The cache
size was limited to 10 MB to prevent an unrealistically lapget of the data from being cached.

Dimensions: Suppliers Parts Orders Lineltems Time
AllParts
AllSuppliers Manufgcturer AllTime
Reg‘;ion BrsLnd AllOrders AllLineltems Ye‘ar
Nalion Ty‘pe Cust‘omer LineS‘tatus Mo‘nth
Sup‘plier P;rt Orc‘jer LineNLmber D‘ay
Measures: Quantity, ExtPrice, Tax, Discount

Figure 15: Example cube used in the experiments.

About 3 MB of XML data is used for the XML component which is idigd into two documents that have
been generated from the TPC-H data and public data abowtnsatiThe structure of these documents is il-
lustrated in Figure 16. Two natural links are defined: NLinK'Nation”, “nations.xml”, “/Nations/Nation/”,
“NationName”) and TLink = (“Type”, “types.xml”, “/Types/Type/”, “ TypeName”). The nodes used for decora-
tion arePopulation andRetailPrice.

<Nati ons>
<Nat i on><Nat i onNane>Denmar k</ Nat i onNane><Popul ati on>5. 3</ Popul ati on></ Nati on>
<Nat i on><Nat i onNane>Chi na</ Nat i onNane><Popul at i on>1264. 5</ Popul ati on></ Nati on>
<Nat i on><Nat i onNane>Mozanbi que</ Nat i onName><Popul ati on>19. 1</ Popul ati on></ Nati on>
</ Nati ons>

<Types>
<Type><TypeNanme>Pronb Pol i shed Brass</ TypeName><Ret ai | Pri ce>1890</ Ret ai | Pri ce></ Type>
<Type><TypeNane>Pr onp Bur ni shed Copper </ TypeNane><Ret ai | Pri ce>1240</ Ret ai | Pri ce></ Type>
<Type><TypeNanme>Medi um Brushed St eel </ TypeNanme><Ret ai | Pri ce>1410</ Retai | Pri ce></ Type>

</ Types>

Figure 16: Part of the two XML documents used in the experisien

The queries that were used in the experiments are shown iie Bahnd the results of these queries are
shown in Figure 17. Result 1-7 are used to illustrate thea8dn where the OLAP component has a high
degree of autonomy, whereas Result 8 compares these resthleshighly optimized situation where all data is
stored in the OLAP component. The results do not show theheaetl of parsing and optimizing the federation
queries but only the component evaluation times as thes$eavilinate the total evaluation time. In the results,
the total evaluation time for each query is divided into éhparts: One for each of the three types of component
queries posed during the evaluation of a federation quetwusTthe following tasks are represented in the
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results:

Task 1(a). Fetch XML data and store it in the temporary component. (Deshby an “X”)
Task 1(b). Fetch OLAP data and store it in the temporary component. ¢ixehby an “O”)
Task 2. Compute the final result in the temporary component. (Dehbyea “T”)

Task 1(a) and 1(b) can be performed in parallel unless the Xdia is inlined into the OLAP query. We
first consider the setting where an autonomous OLAP compdaarsed and thus, all three tasks have to be
performed.

Label | Query
A SELECT suMQuantity),suM(ExtPrice), Nation(Supplier), Brand(Part), LineStatlis€Number),
Nation/NLink/Population
FROM Sales
GROUP BY Nation(Supplier), Brand(Part), LineStatus(LineNumbBition/NLink/Population
A SELECT suMQuantity),sum(ExtPrice), Nation(Supplier), Brand(Part), Nation/NkiRopulation
FROM Sales
GROUP BY Nation(Supplier), Brand(Part), Nation/NLink/Populatio
B SELECT suMQuantity),suM(ExtPrice), Brand(Part), LineStatus(LineNumber), NathLink/Population
FROM Sales
GROUP BY Brand(Part), LineStatus(LineNumber), Nation/NLink/Régtion
c SELECT SuMQuantity),sum(ExtPrice), Nation(Supplier), Brand(Part), LineStatlis€Number),
FROM Sales
GROUP BY Nation(Supplier), Brand(Part), LineStatus(LineNumber)
HAVING Nation/NLink/Population > 10
D SELECT suMQuantity),suM(ExtPrice), Type(Part)
(1-3) | FROM Sales
WHERE Nation/NLink/Population > 1&ND Type/TLink/RetailPrice < 1000
GROUP BY Type(Part)

Table 5: Queries used in the experiments.

Query A; and A, both illustrate the use of decoration. The results of thagigs are shown in Result
1. Furthermore, they illustrate the basic structure of thet ecnodel presented in Section 9.1 as the temporary
component query must wait for the slower of the XML and OLARIGes. Result 1 displays a low overhead
of performing decoration compared to the time it takes tdee¢ the OLAP and XML data. Thus, if it is
acceptable to wait for the component data when retrievedpeddently, it will also be acceptable to wait
for the federation query. This low overhead is represeradidr decoration queries since they do not require
additional data to be retrieved from the OLAP component. d¢ethe overhead of combining the intermediate
results will be low, since typically only small amounts of @R data (at most a few thousand facts) will be
requested for presentation to a user.

Query B illustrates the use of XML data for grouping, while Qué&ryuses XML data for selection. Since
both queries use the same decoration as in Qugrythe same XML and OLAP queries are performed to
evaluate these queries. As can be seen from Result 2 and@;ahHeead endured by the temporary component
query is also low for these queries. This is typical for botbuping and certain types of selection because the
size of the intermediate OLAP result will often be compagalal the size of the final result. Again, since the
final result is mostly presented to a user, it is often reégivsmall. For grouping, the OLAP and final results
are comparable in size unless there is a great overlap indberation values which reduces the size of the
final result. In this case, Que® has approximately as many Population values as there arerNaues. For
selections, the OLAP result is often comparable in size ¢dfitnal result for queries such as Query where
the predicate refers to decorations of levels that must bsgnt in the result. This is true unless the predicate
is very selective. However, as discussed in Section 9, ti@hscmay also refer to lower levels. To handle the
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Figure 17: Experimental results. Notice that differentdimtervals are used in the graphs.

problem of selections requiring large amounts of data todieeved, the inlining technique was presented.
This technique has not been used in evaluating QUery

Results 4, 5, and 6 demonstrate how effective the inlinimprieue can be. Here, two XML queries
are used:X; is the time it takes to retrieve the Population data, whilgis the time it takes to retrieve the
RetailPrice data. The results show the processing timethfee different strategies for evaluating Qudpy
in which the selection on Population refers to a low levet ikanot needed in the result. Thus, in Result 4,
where no inlining is used, this produces a very large ovettasathe OLAP query can only aggregate to Type
and Nation although only Type should be present in the redsla consequence, not only the OLAP query but
also the temporary component query take much longer to ataliResult 5 illustrates the use of a simple rule
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based inlining strategy, “Always use inlining if the prealie is simple”, which causes both XML predicates
to be inlined. This is significantly faster than before bessathe OLAP query can now aggregate to the Type
level. Also, since thevHERE clause has been evaluated entirely in the cube, no work nedasts done after
the OLAP result has been returned. However, six OLAP queniesieeded to hold the new predicate because
the Type level contains a large number of dimension valuéso,Ahe OLAP query cannot be evaluated until
the RetailPrice data has been retrieved. Consequentlyisekxample, it is faster to inline only the Population
data. This is shown in Result 6 where the cost based inlirtiageg)y presented in Section 9.2 is used. Because
the Nation level only contains few dimension values, thigurees only one OLAP query and the Population
data is also faster to retrieve. Thus, by estimating the abste federation query for each of the four inlining
strategies and picking the fastest one, a better querynopesfuce is achieved. The three results are also shown
in Result 7 for easy comparison. These results have shownm@ga of the different types of queries supported
by the federation as well as illustrated the potentiallgéaperformance improvements possible by using the
inlining technique. These evaluation times are accepta@e though the component data is retrieved from a
remote data source and transferred to the temporary compone

If the OLAP component does not have a high degree of autonergyif it is managed by the federation
DBA, large performance improvements are possible by usawiog and by storing temporary data with the
OLAP data. By caching or pre-fetching XML data and storingpitables, Task 1(a) can be avoided. Caching
XML data is often possible as the amount of XML data will tygdlg be much smaller than the amount of
OLAP data. If only few XML documents are used, it may even bssjie to keep the cache updated by pre-
fetching XML data at a regular basis. If a ROLAP (Relation&lAP) system is used for storing OLAP data, all
pre-aggregated results are stored directly in relaticaalets, whereas if a MOLAP (Multidimensional OLAP)
or HOLAP (Hybrid OLAP) system is used, some additional pssoag is needed to produce these tables. Thus,
if the ROLAP system can also be used for storing temporarg, dae tables containing pre-aggregated results
can be joined directly with the tables containing XML data.that case, Task 1(b) can be avoided. This is
not an unreasonable assumption as the OLAP DBA will oftea laésresponsible for managing the federation
and thus, be able to use the OLAP component to store the tamypdata. Hence, if both cached XML data
and pre-aggregated results are available as relationaktadnly Task 2 is necessary. To illustrate the potential
performance improvements in this situation, all querie$able 5 have also been evaluated using a fully pre-
aggregated cube where both these OLAP data and XML data veeesl$n tables. Thedecal evaluation times
are shown in Result 8 together with the non-localyamote evaluation times described above. As expected,
the local values are significantly smaller than the remoligega Since these local evaluation times require a low
degree of autonomy for the OLAP component, physically iraggg the data is also an option. If XML data
is physically integrated into the cube and the resultingedsldully pre-aggregated, no processing is heeded as
the result can be read directly from disk. However, this mnegpuadditional storage compared to the federated
approach as the new cube contains more dimensions. If soystis not available, a smaller percentage of
the new cube can be pre-aggregated compared to the origibal & hus, on average, an OLAP query working
on the new cube will have to perform more aggregation than BARDquery working on the original cube.
More significant is the more or less manual work that need® tddme to integrate the data, as well as the time
it takes to re-process the cube.

The results presented in this section indicate that for mesejul queries the federated approach is indeed
a practical alternative to physical integration when fldiibis needed. For the analyzed queries, the federation
overhead is insignificant compared to the time it takes taenet data from the OLAP and XML components.
As is the case for any database system, including ordinamxFD&ystems, there are also queries that cannot
be evaluated efficiently. However, the optimization tegleis presented in this paper can provide significant
performance improvements for many federation queriesffeceallowing otherwise unfeasible queries to be
evaluated efficiently. In particular, the potentially draio effect of the caching and inlining techniques have
been demonstrated in this section. Further experimentegtéred to make any decisive conclusions about the
general performance of our federated approach compardtetaaive solutions, such as physical integration.
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13 Conclusion

Many OLAP systems operate in dynamic business environnvemése changes to data and data requirements
are common and data may not always be available for locagtobut only for querying. In these situations
physical integration is not feasible, making logical ireggn in a federation the better choice.

In this paper we have presented a flexible approach to thedbfgideration of OLAP databases and XML
documents. This allows XML data to be used directly in an Olcpery to decorate multidimensional cubes
with XML data from external sources, to group cube data baseekternal XML data, and to perform selection
based on external XML data. The incorporation of XML data guble is made such that semantic problems are
avoided, e.g. aggregation types are used to ensure thatasuneevalues are double-counted when aggregation
is performed.

The theoretical and practical work on this federated apgrdes covered all important aspects of a feder-
ated system. The fundamental idea was formally defined ind@f a federated data model and algebraic query
language. As a demonstration of this general formal apjprotie algebra was used to define the semantics
of a federated query languag8QL x,,. This language incorporates the XML query language XPath én
subset of SQL adapted to multidimensional querying. A catgpfederated system supporting this language
was designed and a number of effectiude basedand cost basedjuery optimization techniques were pre-
sented. To provide a basis for these optimizations, a dalleof transformation rulesvas presented for the
federation algebra. The rule based optimization disteébwjuery processing on the participating components
using the presentepartitioning algorithm The cost based optimization focuses on three techniquiest, F
inlining of XML data was suggested to reduce the overhead of evafpqtieries that uses external XML data
for selection. Second, for simple languages, such as XHathspecial queries needed to retrieve data from
XML components can only be expressed using several quétiiesce, techniques were described to combine
these queries at the cost of retrieving additional datardTl echniques were presented to alloachingand
pre-fetchingof intermediate query results. These techniques providedtic performance improvements for
many queries that would otherwise be unfeasible to evainates federated system. To illustrate the practical
value of the system, a prototype is being developed, andrtpkementation has progressed far enough to allow
experiments to be conducted. These indicate that this destrapproach is indeed a practical alternative to
physical integration when additional flexibility is needed

We believe that this paper is the first to consider the fedmraif OLAP databases and XML documents.
Specifically, we believe to be the first to consider advanced®issues such as dimension hierarchies, auto-
matic aggregation, and correct aggregation of data in tidegt of integration with XML data. Additionally,
we extend previous work on federating OLAP databases witbreal data significantly by relaxing require-
ments for the data used for integration. Also, we propose eergeneral integration approach that can be
used directly for selection and grouping. This approachasell on thelecoration operatiorwhich has been
formally defined and analyzed with respect to its equivadepoperties. Also, query optimization issues for
federations involving OLAP databases have not been iryagsiil to this extent before.

Our immediate future work will focus on implementation asfge In particular, the current prototype
needs additional work, but it could also be interesting fgl@e how this work could be used in a real software
product. For example, the ability to quickly integrate XMhtd could be incorporated into an existing OLAP
querying tool. Here, a key issue which has not been considgee would be the design of a user tool to
aid in the process of linking XML and OLAP data. Other intéirgg research issues include how to capture
the document order of an XML document in the result of an OLAIRrg, and how to extract new measures
from XML data and incorporate these into a cube. Also, otharg languages than SQL and XPath could be
considered for the federation. For example, it could bestigated how to integrate XPath expressions into
the OLAP query language MDX without violating its syntax. dther area that needs more work is how to
provide better cost estimates when querying autonomousFOt@mponents and, in particular, autonomous
XML components.
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A Syntax of SQL ,; and SQL xy,

The considered subset of SQL is given by the following syntax

<query>

<select list>
<select name

<aggregate function
<where predicate

<where expressian

<where namg-
<group by list>

<group by namg
<having predicate

<having expression

<having name-
<level name>

<predicate operator
<value>
<value list>

Allowing level expressions in the SELECT, WHERE, GROUP BNd&HAVING clauses causes the fol-

SELECT<select list>

FROM Cube| <query>

[WHERE <where predicate]

[GROUP BY <group by list>

[HAVING <having predicate]]

<select namp

<select list>, <select namg

<level name-

<aggregate functian(Measure)

DEFAULT | COUNT | SUM | MIN | MAX | AVG
NOT(<where predicate)

<where predicate AND|OR <where predicate
(<where predicate)

<where expressian

<where namg <predicate operator <where namg
<where namg <predicate operator <value>
<where namg IN (<value list>)

<where namg LIKE ‘String’

<level name-

Measure

<group by namge-

<group by namg, <group by list>

<level name-

NOT(<having predicate)

<having predicate AND|OR <having predicate
(<having predicatg)

<having expression

<having name- <predicate operator <having namg
<having namg- <predicate operator <value>
<having name- IN (<value list>)

<having namg LIKE 'String’

<select namp

Level

Level(Level)

<> |=|>|>=< <=

‘String’ | Real| Integer

<value>

<value>, <value list>

lowing changes to this syntax

<select namg

<where namg

<having name-

<group by namge

<decoration expression

<level name-

<aggregate functiasn(Measure)
<decoration expression

<level name-

Measure

<selection expression

<level name-

<aggregate functian(Measure)
<selection expression

<level name-

Measure

<decoration expression

Level ['[" <semantic modifies 1" ] [/Link]/ <xpath expression [AS Level]
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<selection expression = Level [/Link]/ <xpath expression

B Inlining XML Data in Predicates

This section describes how to transform a predicate cantaievel expressions to a new predicate without the
level expressions but instead containing references tXHie data. This is done by defining a transformation
function that, given a predicate with level expressions thiecdata that is referred to in the predicate, returns an
equivalent predicate without the level expressions. Wesiclam five different uses of level expressions in the
predicates: comparing level expressions to a constanieg Bemeasure, and a sequence of constants using the
IN operator, and finally comparing XML data returned from tditferent level expressions.

Definition B.1 The transformation functioff : FederationPredicates — CubePredicates is defined re-
cursively as follows.

(T(p1) bo T(ps) if p=p1 bops,
NOT(T(p1)) ifp=NOT(p),
Dconst if p=L/Link/xp po K, whereK is a constant value
T() = Dlevel if p = Ly/Link/zp po Ly, WhereL, is a leve]
Dmeasure if p = L/Link/zp po M, whereM is a measure
Dleveap if p = L1/Linky/xp1 po La/Links/xpa,
Din if p=L/Link/xp IN (K,..., K,), whereK; is constant value
P Otherwise

\

where the binary operatéw is either AND or OR, and the predicate operatoris one of.=, <, >, <>,
>=, <=, and LIKE.
The new predicates are defined in the following. O

Since the function is only applied recursively to parts ofradicate that are smaller than the original
predicate the recursion will always terminate.
For each of the predicate types defined below the approxiteatgh of the resulting predicate is given.

peonst.  The idea is to construct a set of dimension values beingdinkenodes that satisfy the predicate and
then require the values in the level to be equal to one of thalses:

T(L/Link/zppo K) =“LIN (t1,...,t,)"
wheret; € {t|V(e,s) € Link(t € StrVal(s;) A s; € zp(s) A s; po K = true)}. That s, a string; is added to
the set if the node it represents satisfies the predicate.

The length of the predicate ¥ength.,, = O(n).

Prevel: A level Ly is be compared to a set of nodes resulting from a level exipreds, /Link/zp. This
comparison is done by comparing the level to each of the nodes in the set and if just one of these new
predicates is satisfied for some valeein L, the tuple containings should be included in the result. Note
that this is only true for tuples containing the valuelin that generated the set of nodes. Thlg,must be
compared to all the node sets generated by valués:in

T(Ly/Link/xp po Ls) =*((L2 pot;1 OR ... OR Ly po t1x,) AND Ly = e;)
OR ... OR
((Ly poty1 OR ... ORLs potyk, ) AND Ly = e,)”

foralle;,..., e, andtiy, ..., ty,, WhereV(e;, s) € Link(e; € L1 At;; € StrVal(sj) A sj € zp(s)).
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Intuitively we only make a sequence of disjunctions for th&ues inL, that participate in the link, since
only these values generate a set of nodes. Values that datitipate in the link should never be included in
the result because we uary semantics.

The length of the predicate isength ., = O(> ", ki).

Pmeasure. COMparisons between measures and level expressions aredtemilarly tap;eye;.

Dlevezp-  ThiS is the result of comparing two level expressions. Théeans that we must compare two sets of

nodes to determine whether or not to include a tuple in thatresne node set generated by the level expression
Ly /link, /zp, and one generated Wy, /links /xp,. Intuitively a tuple containing; € L; andey € Ly should

be included if the two node sets generated:pynde, have some common node. In other words it should be
included if the intersection of the two sets is non-empty.

For ease of presentation a disjunctive clause on the fogppo r.q OR...ORty, po ) is abbreviated
aspab,cd,ab,ce-

T (Ly/linky [zpy po Ly /links/xzps) =
(Pi111,11,1; OR...ORPig, 11,1k,,11,) AND Ly = €11 AND Ly = €91) OR...OR
P11 m111,mi, OR...OR Pig, imi1,1k,,mi,,) AND Ly = e11 AND Lj = e3,)) OR...OR

n1,11,n1,1; OR...OR Py, 11 nk,,11,) AND L1 = €1, AND Ly = e3;) OR...OR
nl,ml,nl,ml,, OR...OR Pnkmmlmkmmlm) AND Ll = €1n AND LZ = eZm)) K
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wherev(ei;, s1) € Link(ei; € L1 At;; € Strval(s;) A s; € xp(s1))
andV(egi, 82) S Link(egi S WA rij € StrVaI(sj) ANsj € wp(SQ))

for all €liy---,Clny b11,--- ,tnkn, €20y -5 E2m, andru, e Tk, -
The length of the predicate Bength ., = O((3_i1, ki) - (35 1))

pin:  The IN operator is a shorthand for a series of equalitiesiting a constant. Thus, the last predicpig
is simply constructed from the new predicate for constapt&ssion® .o, s::

T(L/Link/xp IN (Ki,...,K,)) = T(L/Link/xp = K1) OR ... ORT(L/Link/zp = K,))

Thus, the length of the predicateligngth;,, = O (> i Length ey ;)-



