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Abstract:

The changing data requirements of today’s dynamic busi-
ness environments are not handled well by current On-
Line Analytical Processing (OLAP) systems. Physically
integrating unexpected data into such systems is a long
and time-consuming process making logical integration the
better choice in many situations. The increasing use of
Extended Markup Language (XML), e.g. in business-to-
business (B2B) applications, suggests that the required data
will often be available as XML data.
In this paper we present a flexible and theoretically well-
founded approach to the logical federation of OLAP and
XML data sources. This makes it possible to reference ex-
ternal XML data in OLAP queries, which allows XML data
to be presented along with dimensional data in the result of
an OLAP query, and enables the use of XML data for se-
lection and grouping. Special care is taken to ensure that
semantic problems do not occur in the integration process.
To demonstrate the capabilities of this approach, we present
a multi-schema query language based on the SQL and XPath
languages. A complete federated system is also presented,
covering all important areas of a federated approach to the
integration of OLAP and XML. This work includes a com-
plete formal background, a collection of algebraic rewrite
rules, architectural and procedural design, and several ef-
fective cost based optimization techniques. A prototype is
being developed and initial experimental studies have been
conducted, indicating that our federated approach is indeed
a feasible alternative to physical integration. Thus, our fed-
erated approach provides a powerful and flexible way to
handle unexpected or short-term data requirements as well
as rapidly changing data. As almost all data sources can
be efficiently wrapped in XML format, the approach also
allows the logical integration of external data from sources
such as relational, object-relational, and object databases,
opening up totally new application areas for OLAP.
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Resumé:

Mange virksomheder oplever, at deres databehov varierer
over tid, hvilket er problematisk at håndtere i eksisterende
systemer til On-Line Analytical Processing (OLAP). Fy-
sisk integration af uventede data i sådanne systemer er en
lang og tidskrævende proces, og logisk integration er der-
for ofte en bedre løsning. Den øgede brug af Extended
Markup Language (XML), for eksempel i business-to-
business-applikationer (B2B), indikerer, at den slags uvent-
ede data ofte vil være tilgængelige i XML-format.
I denne artikel præsenterer vi en fleksibel og teoretisk vel-
funderet tilgang til logisk føderation af OLAP- og XML-
datakilder. Føderationen gør det muligt at referere til ek-
sterne XML-data i OLAP-forespørgsler, hvorved XML-data
kan præsenteres sammen med multidimensionelle data i re-
sultatet af en OLAP-forepørgsel og desuden kan bruges
til selektion og gruppering. I forbindelse med integratio-
nen sikres det, at der ikke opstår semantiske problemer.
Som en demonstration af føderationstilgangen har vi kon-
strueret et multi-schema-forespørgselssprog baseret på spro-
gene SQL og XPath. Udover dette sprog præsenteres et
komplet fødereret system, der dækker alle vigtige aspekter
af en føderation af OLAP og XML. Dette arbejde omfat-
ter det formelle grundlag, en samling af algebraiske om-
skrivningsregler, arkitekturdesign, procedurelt designsamt
flere effektive omkostningsbaserede optimeringsteknikker.
Desuden beskrives en igangværende prototypeimplementa-
tion samt indledende eksperimenter, der indikerer, at føder-
ation i høj grad er et praktisk alternativ til fysisk integration.
Denne føderationstilgang giver således en kraftfuld og flek-
sibel måde at håndtere uventede og kortvarige databehov
samt data, der ofte ændrer sig. Da stort set alle typer
datakilder effektivt kan “indpakkes” i XML-format, tillader
føderationen også logisk integration af relationelle, objekt-
relationelle og objektdatabaser. Dette muliggør en række
helt nye anvendelsesområder for OLAP-systemer.



Preface

This Masters Thesis presents the results of a project carried out from September 2000 to June 2001 at the
Department of Computer Science, Aalborg University.

The paper describes theoretical and practical aspects of a federation of XML and OLAP databases. This
work has been done in the area ofDatabase and Programming Technologiesduring the Dat5 and Dat6 semesters.
In the first semester, we contrived the fundamental definitions of data models and query languages as well as
the basic federation architecture. This work constitutes most of Sections 3, 4, 5, and 7. In the second semester,
we refined this foundation, and used it to create the theoretical basis for query optimization and to build and
partially implement a federated system.

Citations are formed from the abbreviated name(s) of the author(s) and the year of publication, e.g.
[PSGJ00]. The bibliography can be found on page 71.

We would like to thank our supervisor Torben Bach Pedersen for supervising this project, for sharing his
work with us, and for his many helpful and constructive thoughts throughout the project period.

Aalborg, June 15, 2001

Dennis Pedersen Karsten Riis



Contents

1 Introduction 1

2 Motivation 4
2.1 Federating OLAP and XML . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 4
2.2 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 5

3 Data Models and Query Languages 6
3.1 The OLAP Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 6
3.2 The Cube Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 9
3.3 The OLAP Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 11
3.4 The XML Data Model and Query Language . . . . . . . . . . . . . . . . .. . . . . . . . . . 12

4 Federating OLAP and XML 13

5 Querying Federations 15
5.1 Decoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 15
5.2 Extending Grouping to Federations . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 20
5.3 Extending Selection to Federations . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 20
5.4 Semantics of theSQLXM Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Algebraic Transformation Rules 23
6.1 Rules Involving Decoration and Generalized Projection. . . . . . . . . . . . . . . . . . . . . 24
6.2 Rules Involving Decoration and Selection . . . . . . . . . . . .. . . . . . . . . . . . . . . . 27
6.3 Rules Involving Selection and Generalized Projection .. . . . . . . . . . . . . . . . . . . . . 28
6.4 Rules Involving a Single Operator . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 29
6.5 High Level Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 30

7 Federation Architecture 31

8 Query Evaluation 33
8.1 Architectural Design of the Federation Manager . . . . . . .. . . . . . . . . . . . . . . . . . 34
8.2 Partitioning Federation Queries . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 35
8.3 Constructing Component Queries . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 42

9 Optimization Techniques 44
9.1 A Cost Model for Federation Queries . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 45
9.2 Inlining Decoration Data in OLAP Queries . . . . . . . . . . . . .. . . . . . . . . . . . . . 45
9.3 Optimizing XML Data Retrieval Through Limited Query Interfaces . . . . . . . . . . . . . . 50
9.4 Caching and Pre-fetching . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 52

10 Determining Cost Parameters 55
10.1 Determining OLAP Cost Parameters . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 55
10.2 Determining Cost Parameters For the XML Components . . .. . . . . . . . . . . . . . . . . 61
10.3 Determining Cost Parameters for the Temporary Component . . . . . . . . . . . . . . . . . . 64

11 Overview of the Federated System 64

12 Implementation and Experimental Results 65

13 Conclusion 70

References 71

A Syntax of SQLM and SQLXM 75

B Inlining XML Data in Predicates 76



Using XML Data in OLAP Queries

Dennis Pedersen Karsten Riis
dennisp@cs.auc.dk riis@cs.auc.dk

Department of Computer Science, Aalborg University

Fredrik Bajers Vej 7E, 9220 Aalborg Ø, Denmark

June 15, 2001

Abstract

The changing data requirements of today’s dynamic businessenvironments are not handled well by cur-
rent On-Line Analytical Processing (OLAP) systems. Physically integrating unexpected data into such sys-
tems is a long and time-consuming process making logical integration the better choice in many situations.
The increasing use of Extended Markup Language (XML), e.g. in business-to-business (B2B) applications,
suggests that the required data will often be available as XML data.

In this paper we present a flexible and theoretically well-founded approach to the logical federation of
OLAP and XML data sources. This makes it possible to reference external XML data in OLAP queries,
which allows XML data to be presented along with dimensionaldata in the result of an OLAP query,
and enables the use of XML data for selection and grouping. Special care is taken to ensure that semantic
problems do not occur in the integration process. To demonstrate the capabilities of this approach, we present
a multi-schema query language based on the SQL and XPath languages. A complete federated system is
also presented, covering all important areas of a federatedapproach to the integration of OLAP and XML.
This work includes a complete formal background, a collection of algebraic rewrite rules, architectural and
procedural design, and several effective cost based optimization techniques. A prototype is being developed
and initial experimental studies have been conducted, indicating that our federated approach is indeed a
feasible alternative to physical integration. Thus, our federated approach provides a powerful and flexible
way to handle unexpected or short-term data requirements aswell as rapidly changing data. As almost all
data sources can be efficiently wrapped in XML format, the approach also allows the logical integration of
external data from sources such as relational, object-relational, and object databases, opening up totally new
application areas for OLAP.

1 Introduction

On-line Analytical Processing (OLAP) and Extensible Markup Language (XML) are currently two of the most
significant database technologies. However, the connection between them has so far received little attention.

OLAP systems enable powerful decision support based on multidimensional analysis of large amounts of
summary data commonly drawn from a number of different transactional databases. OLAP data are often orga-
nized in multidimensionalcubescontainingmeasured valuesthat are characterized by a number of hierarchical
dimensions. Typical operations on data cubes areroll-up, which aggregates data by moving up along one or
more dimensions,drill-down, which disaggregates data by moving down dimensions, andslice-and-dice, which
performs selection and projection on a cube. The multidimensional approach offers a number of advantages
over traditional types of DBMSs, including automatic aggregation [RS90], visual querying [TSC99], and good
query performance due to the use of pre-aggregation [GHQ95,PJD99].

However,dynamic data, such as stock quotes or price lists, is not handled well in current OLAP systems, al-
though being able to incorporate such frequently changing data in the decision making-process may sometimes
be vital. Also, OLAP systems lack the necessary flexibility when faced with unanticipated or rapidly changing
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1 Introduction 2

datarequirements. These problems are due to the fact that physically integrating data can be a complex and
time-consuming process requiring the cube to be rebuilt [Kim96, Tho97]. In some situations, the required data
cannot be integrated into the cube at all e.g. because interface or copyright restrictions do not allow data to be
retrieved and stored locally, but only to be queried in an ad hoc manner. Thus, logical, rather than physical,
integration is desirable, i.e. afederateddatabase system [SL90, BKLW99] is called for. A federated system
provides a flexible way to handle rapidly changing data as well as unexpected or short term data requirements.
Also, it is possible to maintain a high degree of autonomy in the component systems, e.g. these may only allow
restricted access to component data. This is often the case when retrieving data from the Internet as well as
in business-to-business (B2B) environments, where business partners rarely provide full access to their data.
Traditionally, two different approaches have been used in the design of federations. Either component schemas
are transformed into a common data model [SL90, Hsi92, DD99], or they retain their schemas and a multi-
schema query language is used [PSGJ00, CRF00]. Here, the multi-schema query language approach offers the
additional flexibility needed in uncertain and rapidly changing environments.

The increasing use of Extended Markup Language (XML)[W3C00], e.g. in B2B applications, suggests
that the required external data will often be available in XML format. Also, most major DBMSs are now able
to publish data as XML. Thus, it is desirable to be able to access XML data from an OLAP system. The
hierarchical and often irregular structure of XML data allows the encoding of many different types of data, but
complicates its use in connection with more structured types of data. For example, irregular XML data can lead
to incorrect aggregation of data if not handled properly.

In this paper we present a theoretically well-founded approach to the logical federation of OLAP and
XML data sources. The approach allows external XML data to beused as “virtual” dimensions, enabling three
specific uses of XML data. First, OLAP query results may be “decorated” with XML data, i.e. related XML
data may be presented along with the results of an OLAP query.Second, external XML data may be used for
selection. Third, OLAP data may begroupedbased on external XML data. Special care is taken to ensure that
any irregularities in the XML data does not cause problems w.r.t. correct aggregation of data. A flexible linking
mechanism is devised to associate dimensional cube data with parts of XML documents, allowing XML data to
be referenced in a multidimensional query. As almost all data sources can be efficiently wrapped in XML format
[CCS00], the presented approach also allows external data from sources such as relational, object-relational,
and object databases to be used in a powerful and flexible way.This extends the use of OLAP to completely
new application areas as data need no longer be integrated physically in the OLAP DB.

The work presented here covers all important areas of a federated approach to the integration of OLAP
and XML, including a complete formal background, architectural and procedural design, several cost based
optimization techniques, a prototype implementation, andexperimental studies.

To demonstrate the capabilities of the approach, we presenta data model, a formal algebra over the model
and a high-level multi-schema query language based on SQL and XPath [W3C99]. SQL and XPath are chosen
for their simplicity, wide-spread use, and compact syntax.However, other languages like MDX [Mic98] or
XQuery [W3C01b] could be used instead. The extended SQL is called XML-Extended Multidimensional SQL
(SQLXM ). As a part of this work, a new data model and query language has been defined for OLAP. To
demonstrate the federation, a data model and a query language should satisfy two requirements: First, they
should be capable of handling the irregularities introduced by integration with external data. Second, they
should be close to the relational model and SQL to facilitatethe integration with existing technology and to
ease user comprehension. Unfortunately, we found the existing data models either too simple for the first
requirement or too complex for the second requirement [PJ99]. Thus, a new data model and query language
has been defined. This query language is calledSQLM .

We also present an overview of a prototype system supportingthe approach, which is currently in the early
stages of implementation. In addition, a number of effective optimization techniques are described. Together,
they provide significantly better performance for typical queries and also allow queries to be evaluated, that
would otherwise be orders of magnitude too expensive. For example, a technique is presented toinline refer-
ences to external data in queries, potentially resulting inmuch faster evaluation. Another primary result used
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for optimization, is the definition of a set ofequivalence rulesfor the federation algebra. Optimizations are
based on acost modelfor federation queries, and techniques are presented that allow cost estimates to be made
even when little or no cost information is available. Without loss of generality, we make no assumptions about
the existence of Document Type Definitions [W3C00] or XML Schemas [W3C01a] which ensures compatibil-
ity with all kinds of XML sources. Initial performance experiments with the prototype are reported, indicating
that our approach is indeed a practical alternative to physical integration. The concepts of the approach are
illustrated by a real-world case study based on the use of OLAP and XML systems in the B2B domain.

There has been a great deal of previous work on data integration, e.g., on integrating relational data
[HSC99, Dat01, Gat01], object-oriented data [RAH+96], semi-structured data [CGMH+94], and a combi-
nation of relational and semi-structured data [GW00, LAW99]. However, none of these handle the advanced
issues related to OLAP systems, e.g., dimensions with hierarchies, automatic aggregation, and the problems
related to correct aggregation. This is also true for the combined relational and XML query language Quilt
[CRF00], and fornD-SQL [GL98], which considers the federation of relationalsources providing basic OLAP
functionality. One previous paper [PSGJ00] has consideredthe federation of OLAP and object data. In compar-
ison, our approach is not restricted to object DBs, and theirrigid schemas, but can be used on any imaginable
data source as long as it allows XML wrapping. Also, we allow irregularities in federation data such as “miss-
ing” external data and offer more general use of external data when performing selection and grouping. The
same paper briefly mentions theinlining technique, but only for certain simple types of predicates.Also, we
consider a cost based use of the technique.

We believe this paper to be the first to consider the logical integration of OLAP and XML data, opening up
totally new application areas for OLAP as physical integration of data is no longer needed. More specifically,
we believe to be the first to:� define a data model, an algebra, and a query language for OLAP which support irregular hierarchies and

are close to the relational model and SQL,� define a data model, an algebra, and a multischema query language for the federation of OLAP and XML
data sources,� consider advanced OLAP issues such as dimension hierarchies, automatic aggregation, and correct ag-
gregation of data in the context of integration with XML data,� formally define thedecoration operationas a basis for logical integration of external data in OLAP
systems,� demonstrate how the decoration operation enables selection and grouping based on external data,� formulate equivalence rules involving the decoration operation,� propose a cost model for federation queries based on specificcost models for autonomous OLAP and
XML components,� devise a number of effective heuristic and cost based optimization techniques for the federation queries,� present a general form of theinlining technique for integration of external data in predicates.

The rest of the paper is organized as follows. Section 2 presents the motivation and the case study used
throughout the paper, while Section 3 defines the data modelsand query languages used in the federation
components. In Section 4, the linking mechanism and its use in OLAP-XML federations is defined, while
Section 5 defines the semantics of the approach. Equivalencerules for the federation algebra are presented in
Section 6. Section 7 and Section 8 describes the federation architecture and how queries are evaluated within
the architecture, respectively. A number of optimization techniques and a high level cost model are presented
in Section 9 followed by a more detailed explanation of the cost model in Section 10. An overview of the
federated system is presented in Section 11. Finally, Section 12 discusses implementation and performance
studies, whereas Section 13 concludes the paper and points to future work. Appendices A and B contain the
formal syntax of theSQLXM language and a formal definition of the inlining approach, respectively.
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2 Motivation

In this section, we discuss why a federation of existing OLAPand XML databases may often be useful and
present a real-world case study that is used for illustration throughout the paper.

2.1 Federating OLAP and XML

As described in the introduction, this work is aimed at, but not limited to, the use of XML data from autonomous
sources, such as the Internet, in conjunction with existingOLAP systems. Our solution is to make a federation
which allows users to quickly define their ownlogical cube viewby creatinglinksbetween existing dimensions
and XML data. This immediately permits queries that use these new “virtual” dimensions in much the same
way ordinary dimensions can be used. For example, in a cube containing data about sales, a Store-City-
Country dimension may be linked to a public XML document withinformation about cities, such as state and
population. Instead of being restricted to queries that useonly the existing dimensions, like “Show sales by
month and city”, it is now possible to pose queries such as “Show sales by month and state” or “Show sales
by month and city population”. Thus, in effect the cube data can begrouped byXML data residing e.g. on a
web page or in a database with an XML interface. In addition, such data can be used to performselection(also
known as filtering) on the cube data, e.g. “Show only sales forcities with a population of more than 100.000”
or to decoratedimensions, e.g. “Show sales by month and city and for each city, show also the state in which it
is located”.

Many types of OLAP systems may benefit from being able to logically integrate external XML data. In a
business setting, consider e.g. an OLAP database containing data about products and their production prices.
To aid in determining future sales prices, these products could be decorated with a competing company’s prices
for the same or similar products. Such prices would typically be available from the competing company’s
website. Another example could be various types of geographical information available from the Web. These
may be used in an insurance company’s customer database, a hospital’s admissions database, or a telephone
company’s database of calls. Other types of external data that will typically be available as XML data and
could be useful in OLAP systems include: addresses of employees or customers, product specifications, the
store manager’s name, dates of events, public assessment for the taxes on real estate etc. Thus, a broad range
of different systems can gain from our federation.

This federated approach whereusersare responsible for defining the federation, has been referred to as a
loosely coupled federation[SL90]. There are many reasons why this approach is a good choice for this setting.
It provides the ability to doad hoc integration, which may be needed for a number of reasons. First, it is
rarely possible to anticipate all future data requirementswhen designing a database schema. OLAP databases
may contain large amounts of data and thus, physically integrating the data can be a time consuming process
requiring a partial or total rebuild of the cube. However, being able to quickly obtain the necessary data can
sometimes be vital in making the right strategic decision. Second, not all types of data are feasible to copy
and store locally even though it is available for browsing e.g. on the Internet. Copying may not be allowed,
typically because of copyright rules, or it may not be practical, e.g. because data changes too frequently or
because only limited form-based interfaces are available,requiring each data item to be explicitly requested.
Third, attempting to anticipate a broad range of future dataneeds and physically integrating the data increases
the complexity of the system, thereby reducing maintainability. Also, this may degrade the general performance
of the system. Finally, ad hoc integration allowsrapid prototypingof OLAP systems, which can significantly
ease the task of deciding which data to physically integrate. Altogether, the federated approach provides both a
simpleand aspecial purposeOLAP system as data can be integrated when the need arises.

The federated approach also allows XML components to maintain a high degree of autonomy, which is
essential when data is accessed from sources outside the organisation that controls the federation. For example,
when a component is accessed on the Internet, the federationwill typically have no control over the component’s
structure, naming conventions, access methods, availability etc. Also, data is alwaysup-to-datewhen using a
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federated system as opposed to physically integrating the data. This may be crucial for certain types of dynamic
data such as price lists, stock quotes, contact information, scheduled dates etc.

These points suggest that in many situations a loosely coupled federation is preferable.

2.2 Case study

The case study concerns the trading of electronic components. It is inspired by the Electronic Component In-
formation Exchange (ECIX)[Eci01], which is a widely adopted initiative to use XML as a means of communi-
cating information about electronic components. The setting, simplified to fit this paper, consists of companies
producing electronic components (ECs), and of companies buying these components and integrating them to
larger appliances. In the following we refer to them as suppliers and customers, respectively.

Purchase

cost
number of units

EC

code
class
manufacturer

Time

day
month
year

Supplier

code
country

1 11

* **

Figure 1: UML schema for the Purchases OLAP database.

Customers use an OLAP database, shown in the UML diagram in Figure 1, to analyze the purchases they
have made over time. Purchases are characterized by an EC dimension, a supplier dimension, and a time
dimension, and for each purchase the total cost and the purchased amount are measured. ECs are categorized
by their manufacturers and their classes, e.g. flip-flops or latches. For suppliers, we capture the country in
which they are located. Purchase dates are categorized according to the regular calendar. This database allows
customers to view purchases at different levels of granularity e.g. to calculate the total amount spent on ECs by
class and month.

Suppliers present their products on the Web at a B2B marketplace. This allows customers and others to
access detailed specifications of their ECs. This information is encoded in an industry-wide markup language
defined in XML, which makes it easy to limit a search to the relevant parts of specifications. A simplified
example of a document containing information from different suppliers is shown in Figure 2. The fundamental
part of an XML document is theelement. Elements are identified by astart tagand anend tag, and can contain
other elements, text data, and attributes. For a more comprehensive explanation of XML see [W3C00]. In the
example document theComponent element has an attributeCompCode and contains the elementsManu-
facturer, UnitPrice andDescription. All ECs sold by a particular supplier belong to a component
class. ECs are referred to by their code. In addition to this,a document captures the manufacturer, which need
not be the same as the supplier, the price per unit, and a textual description.

Several aspects of ECs like textual descriptions and current prices are not included in the Purchases
database because their use was not anticipated or because they change too frequently. Despite this, it may
sometimes be desirable e.g. to group ECs by their marketplace descriptions, or view only purchases of ECs
within a specific price range. By logically integrating the Purchases database and the Components document in
a federation this can be handled in an easy and flexible way.
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<?xml version="1.0" encoding="utf-8"?>
<Components>

<Supplier SCode="SU13"><SName>John’s ECs</SName>
<Class ClassCode="C24"><ClassName>Flip-flop</ClassName>

<Component CompCode="EC1234">
<Manufacturer MCode="M31"><MName>Smith Components Inc.</MName></Manufacturer>
<UnitPrice Currency="euro" NoOfUnits="1000">3.00</UnitPrice>
<UnitPrice Currency="euro" NoOfUnits="10000">2.60</UnitPrice>
<Description>16-bit flip-flop</Description>

</Component>
<Component CompCode="EC1235">

<Manufacturer MCode="M32"><MName>John’s ECs</MName></Manufacturer>
<UnitPrice Currency="euro" NoOfUnits="1000">4.25</UnitPrice>
<Description>16-bit flip-flop</Description>

</Component>
</Class>

</Supplier>
<Supplier SCode="SU15"><SName>Jane’s ECs</SName>
<Class ClassCode="C27"><ClassName>Latch</ClassName>

<Component CompCode="EC2346">
<Manufacturer MCode="M31"><MName>Smith Components</MName></Manufacturer>
<UnitPrice Currency="euro" NoOfUnits="1000">3.31</UnitPrice>
<Description>16-bit latch</Description>

</Component>
</Class>
<Class ClassCode="C24"><ClassName>Flip-Flop</ClassName>

<Component CompCode="EC1234">
<Manufacturer MCode="M33"><MName>Johnson Components</MName></Manufacturer>
<UnitPrice Currency="euro" NoOfUnits="1000">2.95</UnitPrice>
<Description>D-type flip-flop</Description>

</Component>
</Class>

</Supplier>
</Components>

Figure 2: The Components document containing information about EC suppliers and their products.

3 Data Models and Query Languages

This section describes the data models and query languages used for the federated components. For the OLAP
component, a prototypical model capturing common multidimensional terms such as facts, dimensions, and
hierarchies is defined, and an OLAP-extended version of SQL is used as the query language. The OLAP
data model captures complex multidimensional data, e.g., irregular dimension hierarchies, just as the model
of Pedersen et al. [PJ99], but has been modified to be closer tostandard SQL. For a description of how to
implement such an advanced model using standard OLAP technology, we refer to previous work [PJD99].
For the XML component, the XPath data model and query language [W3C99] is used, mainly because of its
simplicity and wide-spread use.

3.1 The OLAP Data Model

The model is defined in terms of a multidimensionalcubeconsisting of acube name, dimensions, and afact
table. Each dimension comprises two partially ordered sets (posets) representing hierarchies oflevelsand the
ordering ofdimension values. Each level is associated with a set of dimension values.

Definition 3.1 (Dimension) A dimensionDi is a two-tuple(LDi ; EDi), whereLDi is a poset of levels andEDi is a poset of dimension values.LDi is the four-tuple(LS i;vi;>i;?i), whereLS i = fLi1; : : : ; Likig is a set of levels,vi is a partial order
on these levels, and>i and?i are the unique top and bottom elements of the ordering. We shall useLij 2 Di
as a shorthand meaning that the levelLij belongs to the poset of levels in dimensionDi.
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A levelLij is a name identifying a set ofdimension values. Let E be the set of all possible dimension
values andLevels be the set of all levels. Then a functionValues: Levels 7! P(E), returns the subset ofE
associated with a level inLevels. Thus,Values(Lij) = feij1; : : : ; eijlijg. We shall useLij as a shorthand for
Values(Lij).EDi is a poset

�Sj Lij;vDi �, consisting of the set of all dimension values in the dimension and a partial
ordering defined on these. We shall useDi as a shorthand for

Sj Lij .
For each levelL we assume a functionRoll-upL : Values(L) � LS i 7! P(Di), which given a dimension

value inL and a level inLS i returns the value’s ancestors in the level. That is,Roll-upL(e; L0) = fe0 2L0je vDi e0g. �
The intuition behind the partial ordervi of levels is that given two levelsLi1; Li2 2 Di we say thatLi1 vi Li2 if elements inLi2 can be said to contain the elements inLi1. For example,Day v Y ear because

years contain days. Similarly, we say thate1 v e2 if e1 is logically contained ine2 andLij vi Lik for e1 2 Lij
and e2 2 Lik and e1 6= e2. For example, the day 01.21.2000 is contained in the year 2000. Note that a
lower-level value may roll up to more than one higher-level value.

Example 3.1 In the case study presented in Section 2.2 we have a Time dimension, an ECs dimension and a
Suppliers dimension. LettingSup denoteSuppliers the Suppliers dimension consists of the levelsLSSup =f>Sup ;Country ;Supplierg, which are ordered as follows:vSup= f(Supplier ;>Sup); (Country ;>Sup);(Supplier ;Country)g. Thus, the poset of levels isLDSup = (LSSup ;vSup ;>Sup ;Supplier ).

The poset of dimension values areEDSup = (f>DSup ;US ;UK ;S1 ;S2 ;S3 g;vDSup ), wherevDSup=f(US ;>DSup ); (UK ;>DSup ); (S1 ;>DSup ); (S2 ;>DSup ); (S3 ;>DSup ); (S1 ;US ); (S2 ;US ); (S3 ;UK )g.
Hence, the Suppliers dimension is given by:DSup = (LDSup ; EDSup ). �

Definition 3.2 (Fact table) A fact tableF is a relation containing one attribute for each dimension and one
attribute for each measure. Thus,F = f(e?1 ; : : : ; e?n ; v1; : : : ; vm)j (e?1 ; : : : ; e?n) 2 ?1 � � � � � ?n ^(v1; : : : ; vm) 2 M � T1 � � � � � Tmg, wheren � 1, m � 1, andTj is the domain value for thej’th measure.
We will also refer to thej’th measure asMj = f(e?1 ; : : : ; e?n ; vj)g. The measure domainsTj all contain the
specialNULL value, which denotes that no value exists for a particular combination of dimension values. A
tuple inF , where at least one measure value exists, is called afact.

Each measureMj is associated with adefault aggregate functionfj : P(Tj) 7! Tj , where the input is a
multi-set. Aggregate functions ignoreNULL values as in SQL. �

Intuitively, a tuple inF captures the measured values associated with one combination of dimension values
from the bottom levels. The number of tuples inF is equal tok?1k�� � ��k?nk. That is, there is one tuple inF for
each possible combination of the bottom dimension values. This is just logically, in a physical implementation
only the non-empty tuples would be stored.

Example 3.2 In the case study presented in Section 2.2 we have the two measuresCostandNumber of Units.
A part of the fact table is represented in Table 1. To save space, only tuples with non-NULL measure values are
shown although all combinations are logically present in the relation. This is done throughout the paper.�
Definition 3.3 (Cube) An n-dimensional cubeC is a three-tuple consisting of a cube nameN , a non-empty
set of dimensionsD = fD1; : : : ;Dng and a fact tableF (D1; : : : ;Dn;M1; : : : ;Mm). That is:C = (N;D;F ).
Thecube nameN describes the type of facts contained in the cube. �
Example 3.3 From the Purchases database in the case study we can construct a three-dimensional cube with
the cube namePur
hases , the dimensions, levels, and ordering of dimension values as depicted in Figure 3,
and the fact table from Example 3.2. �
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Cost No. Of Units Day Supplier EC
2940 1000 01.21.2000 S1 EC1234
6900 2000 01.21.2000 S3 EC1234
9480 3000 02.22.2000 S3 EC2345
14400 4000 02.22.2000 S2 EC1235
17650 5000 03.23.2001 S2 EC1235

Table 1: A part of the fact table for the Purchases database.

T

FF L M31 M32

T T

ECs Suppliers Time

US
2000
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2001

EC1234 EC1235 EC2345 S1 01-21-00S2 02-22-00S3 03-23-01

M33
Jan Feb Mar

T

ECs

Class
Manu-
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Day

Figure 3: Schema (left) and instance (right) of the Purchases database. “FF” and “L” are names of classes
denoting “Flip-flops” and “Latches”, respectively.

Next, we define the notion ofsummarizabilityand discuss how it is used to ensuresafe aggregation.
Summarizability is an important cube property as it states when lower-level aggregates, which are often pre-
computed, can be used to calculate higher-level aggregates, and when these must be computed from base data.
Also, it is possible to get wrong results from aggregate queries if summarizability is not ensured. Checking for
summarizability is even more important in the setting considered in this paper than in normal OLAP systems,
as the irregular structure of XML data may violate the summarizability property.

Definition 3.4 (Summarizable) Given a measure domainTM , a setS = fS1; : : : ; Skg whereSj 2 P(TM ),
and a functiong : P(TM ) 7! TM we say thatg is summarizableif g(fg(S1); : : : ; g(Sk)g) = g(S1 [ � � � [ Sk)
where the argument of the left-hand side is a multiset. �
Intuitively, an aggregate function is summarizable if aggregated results from a lower-level aggregate (left-hand
side of the formula) can be combined to give the same result aswhen the aggregate is derived directly from
base data (right-hand side of the formula). If this propertyis not satisfied we are generally not allowed to use
the lower-level results for further aggregation.

It has been shown that summarizability is equivalent to requiring the aggregate function to be distributive,
and the ordering of dimension values to bestrict, onto, andcovering[LS97, PJ99]. A hierarchy isstrict if no
dimension value has more than one parent value from the same level,onto if all paths from top value to leaf
value is of equal length, andcoveringif no path skips one or more levels. Intuitively, this means that dimension
hierarchies must be balanced trees. If this is not the case some lower-level values will be either double-counted
or not counted at all. For example, the Purchases cube in Figure 3 is strict, onto, and covering.

Another important problem is that different aggregate functions may be valid when aggregating different
measures and also when aggregating the same measure over different dimensions. Consider e.g. the two mea-
sures “number of items sold per store per year” and “number ofitems in stock per store per year”. The first one
can be added meaningfully over time, e.g. to “number of itemssold per store per decade”. However, the second
one is not summarizable over the time dimension as some item may be accounted for more than once. The
average number of items would be meaningful, though. To compute the stock items per decade, it is necessary
to use the base data, i.e. each stock item. This purely semantical difference between the two types of measures
is often characterized using the termsflow andstock, respectively [LS97]. Even though stock items cannot be
added over the time dimension, it may be correct to aggregatethem over the store dimension, e.g. by country.
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Notice that this is only correct if items are only stored in one place.
To ensure correct aggregation of data we keep track of which aggregate functions can meaningfully be ap-

plied to measures for each dimension. We do this by associating anaggregation typeto each combination of a
measure and a dimension, thereby allowing us to prohibit or warn the user against illegal aggregations. Follow-
ing previous work [RR83, Leh98, PJ99], we distinguish between three types of data:
, data that may not be ag-
gregated because summarizability is not preserved,�, data that may be averaged but not added, and�, data that
may also be added. Thus, we have the following ordering of these types:
 � � � �. Considering only the stan-
dard SQL functions, we have that� = fSUM, AVG , MAX , MIN , COUNTg, � = fAVG , MAX , MIN , COUNTg,
and
 = ;. A function AggType : fM1; : : : ;Mmg �D 7! f�; �; 
g returns the aggregation type of a measureMj when aggregated in a dimensionDi 2 D. Thus, any changes to an aggregation type apply to all levelsin
a dimension. Aggregation types are used both to prohibit semantically incorrect aggregation, and to prevent
aggregation when irregular hierarchies may lead to incorrect results. We only consider the problem of non-strict
hierarchies, since this is the only type of irregularity introduced when integrating external data as discussed in
Section 5. Hence, we assume that cubes only contain hierarchies that are onto and covering.

3.2 The Cube Algebra

In this section we present an algebra over the OLAP data modelpresented in Section 3.1. Two operators
are defined: a selection operator and a generalized projection operator. Hence, the algebra is not relationally
complete, but it is sufficiently powerful for this purpose. For examples of a complete set of operators, we refer
to previous work [PJ99].

The selection operator�Cube is used to slice the cube so that it contains only facts that fulfill a given
predicate. The predicates we consider here are constructedfrom the usual SQL operators, and allow the use
of roll-up functions on the formL0(L) which returns the dimension values inL0 that contain each dimension
value inL. Assuming unique level names, this can be abbreviated toL0.
Example 3.4 Slice the purchase cube from Example 3.3 so that only the measured values for ECs not supplied
by ‘S2’ and belonging to classes starting with an ‘F’ are retained in the cube:�Cube[Supplier<>‘S2’ AND Class LIKE ‘F%’℄(Pur
hases) = Pur
hases 0 �

A predicate may have more than one interpretation if a dimension value can have more than one parent in
the same level, i.e. if the hierarchy is non-strict. This would be the case when selecting ECs belonging to classes
that start with an “F”. The predicate could be true ifall classes to which an EC belongs begins with an “F” or
it could be true ifanyof the classes do so. We call these semanticsall selection semanticsandany selection
semantics, respectively. Here, we adopt the latter interpretation, since we consider this the more natural choice
for users and since it is also the one used in the XPath standard [W3C99]. A selection only affects the tuples
in the fact table. Hence, selection returns a cube with the same fact type and the same set of dimensions. All
tuples for which the predicate holds are left unaffected. For all other tuples the measures are set toNULL .

Example 3.5 The fact table resulting from the query in Example 3.4 is:

Cost No. Of Units Day Supplier EC
2940 1000 01.21.2000 S1 EC1234
6900 2000 01.21.2000 S3 EC1234 �

Formally, we define the selection operator as follows:

Definition 3.5 (Selection operator) Let p be a predicate over the set of levelsfL1; : : : ; Lkg and measuresM1; : : : ;Mm. Selection on a cubeC = (N;D;F ) is �Cube[p℄(C) = (N 0;D0; F 0), whereN 0 = N , D0 = D
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Cost Supplier Class
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6900 S3 FF
9480 S3 L
32050 S2 FF
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Figure 4: ThePur
hases 0 cube from Example 3.6

andF 0 = ft01; : : : ; t0lg. If ti = (e?1 ; : : : ; e?n ; v1; : : : ; vm) 2 F thent0i = (ti if p(ti) = tt(e?1 ; : : : ; e?n ;NULL ; : : : ;NULL) otherwise. �
The generalized projection operator�Cube aggregates measures to a given level and at the same time

removes dimensions and measures from a cube. This is similarto the behavior of aSELECT statement with a
GROUP BYclause in SQL.

Generalized projection is evaluated in three steps: First,we remove all dimensions that are not present in
the arguments, and then each dimension value is rolled up to the specified level. Finally, we perform a regular
grouping in the fact table removing all measures not specified in the arguments. Notice that rolling up to a
higher level may result in duplicated facts if the hierarchyis non-strict.

Example 3.6 Calculate the costs per class and supplier:�Cube[Supplier;Class℄<SUM(Cost)>(Pur
hases) = Pur
hases 0
ThePur
hases0 cube resulting from this query is shown in Figure 4. �

Intuitively, the levels specified as an argument to the operator becomes the new bottom levels of their
dimensions and all other dimensions are aggregated to the top level and removed. Each new measure value is
calculated by applying the given aggregate function to the corresponding value for all tuples in the fact table
containing old bottom values that roll up to the new bottom values. To ensure safe aggregation in case of non-
strict hierarchies we explicitly check for this in each dimension. If a roll-up along some dimension duplicates
facts we disallow further aggregation along that dimensionby setting the aggregation type to
.

Formally, we define:

Definition 3.6 (Generalized projection) Let C = (N;D;F ) be a cube as defined above. Then generalized
projection is defined as:�Cube[Li1 ;:::;Lik ℄<fj1 (Mj1 );:::;fjl(Mjl )>(C) = (N 0;D0; F 0), wherefLi1 ; : : : ;Likg is a
set of levels specifying the aggregation level such that at most one level from each dimension occurs. The mea-
suresfMj1 ; : : : ;Mjlg � fM1; : : : ;Mmg are kept in the cube andfj1 ; : : : ; fjl are the given aggregate functions
for the specified measures, such that8D0g 2 fDg 2 Dj?g =2 fLi1 ; : : : ;Likgg(8fjh 2 ffj1 ; : : : ; fjlg(fjh 2
AggType(Mjh ;D0g))).

The resulting cube is given by:N 0 = N andD0 = fD0i1 ; : : : ;D0ikg, whereD0ih = (L0Dih ; E0Dih ) forh = 1; : : : ; k. The new poset of levels in the remaining dimensions isL0Dih = (LS 0ih ;v0ih ;>ih ;Lih), whereLS 0ih = fLihp 2 LS ih jLih vih Lihpg, andv0ih=vihjLS0ih . Moreover,E0Dih = (SpLihp;vDih jSp Lihp ).
The new fact table is given by:F 0 = f(e0?i1 ; : : : ; e0?ik ; v0j1 ; : : : ; v0jl)j e0?ig 2 Lig ^ vjh = fMjh (fvj(e?1 ; : : : ; e?n ; v) 2Mjh ^ (e0?i1 ; : : : ; e0?ik ) 2 Roll-up?i1 (e?i1 ;Li1)� � � � � Roll-up?ik (e?ik ;Lik)g)g.
Furthermore, if9(e?1 ; : : : ; e?n ; vj) 2 Mjh(9e 2 fe?1 ; : : : ; e?ng(kRoll-up?ig (e;Lig )k > 1 ^ vj 6=

NULL)) thenAggType(Mjh ;D0ig ) = 
. �
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3.3 The OLAP Query Language

We use a slightly extended subset of SQL, called Multidimensional SQL (SQLM ), to query multidimensional
cubes. SQL is chosen as the base language because of its simplicity and wide-spread use. We illustrate the
considered syntax with an example, while the full syntax is given in Appendix A.

Example 3.7 Calculate costs by class and supplier but only for supplierslocated in UK and only when the total
cost exceeds 10000:

SELECT SUM(Cost), Supplier, Class(EC)
FROM Purchases
WHERE Country(Supplier) = ‘UK’
GROUP BY Supplier, Class(EC)
HAVING SUM(Cost)> 10000 �

A query is constructed from SQL’sSELECT-FROM-WHERE-GROUP BY-HAVING statement, with a few
modifications to the standard language to capture the special OLAP concepts. Aggregation from a bottom
levelL to a higher levelL0 in the same dimension is performed using a roll-up functionL0(L) in the SELECT

andGROUP BYclauses. Like [AGS97], we assume these functions to be multi-valued although this is not pos-
sible in standard SQL. This is necessary because we allow hierarchies to be non-strict, e.g. ECs could belong
to more than one class. Roll-up functions can also be used in the WHERE and HAVING clauses. Since the
dimension to which the levels belong is not given in the syntax, we assume level names to be unique. This
can be handled by prepending level names with dimension names. As a shorthand, we allow the argument of
the roll-up function to be omitted ifL0 = L, that is when no roll-up should be performed in that particular
dimension.

Since we do not allow relational projection on cubes theGROUP BYclause is mandatory. Each dimension
must either be explicitly rolled up to some level or not mentioned at all. The latter indicates that the dimension
should be rolled up to the top level and projected away as is the case in standard SQL. However, if only
measures are to be removed from the cube, that is if all bottomlevels are present in theSELECT clause, and no
HAVING clause is present, theGROUP BYclause can be omitted.

To support automatic aggregation a new functionDEFAULT can be used in addition to the usual SQL
aggregate functions. When applied to a measureMj “ DEFAULT” is substituted for the default aggregate functionfj. For example, iffCost = SUM then DEFAULT(Cost) becomesSUM(Cost). In this way a user need not be
concerned with the aggregate functions once they are specified in the system. This is important, e.g. when
OLAP data is queried using a graphical tool.

Without loss of generality we only allow one cube in theFROM clause and we do not consider calculated
measures. Both multiple cubes and calculated measures can be handled by creating a view over one or more
cubes. We do allow nested queries in theFROM clause.

The semantics of an SQL query can now be expressed in terms of the cube algebra defined above: First,
the selection operator is applied with the predicate from the WHERE clause, then generalized projection with
the levels and measures listed in theSELECT andGROUP BYclauses, and finally a new selection is performed
with theHAVING predicate.

Example 3.8 The query in Example 3.7 is evaluated as follows:Pur
hases 0 = �Cube[SUM(Cost)>10:000℄(�Cube[Supplier ;Class ℄<SUM(Cost)>(�Cube[Country=0UK 0℄(Pur
hases)))�
Formally, we define the semantics of an SQL query as follows:
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Definition 3.7 (Semantics of an SQL-query)Let C be a cube,fL1; : : : ; Lkg, andfL01; : : : ; L0kg be a set of
levels from a subset of dimensions inC whereLi vi L0i, fM1; : : : ;Mlg be a set of measures fromC, predwhere
be a predicate over the levels and measures inC, andpredhaving be a predicate over levelsL01; : : : ; L0k, and
measuresM1; : : : ;Ml.

TheSQLM -query

SELECT f1(M1); : : : ; fl(Ml); L01(L1); : : : ; L0k(Lk)
FROM C
WHERE predwhere
GROUP BY L01(L1); : : : ; L0k(Lk)
HAVING predhaving

can then be evaluated asC 0 = �Cube[predhaving℄(�Cube[L01;:::;L0k℄<f1(M1);:::;fl(Ml)>(�Cube[predwhere℄(C))). �
3.4 The XML Data Model and Query Language

The XPath language is used to refer to parts of XML documents.Although not a full blown query language, this
language is sufficiently powerful for our purpose. XPath is also chosen because it has a compact syntax making
it suitable for integration into another language. Given this language, the natural choice for an XML data model
is the tree based model underlying the XPath language. Spaceconstraints prohibit a complete definition of the
language and the reader is referred to the XPath specification for details [W3C99].

The XML data model underlying the XPath language views an XMLdocument as a tree. Each node in the
tree has one of the types: root, element, namespace, text, processing instruction, attribute, or comment. The
types are defined by the setV = fR;E ;N ;T ;P ;A;Cg.

The tree structure appears because some of these nodes can contain other nodes, whereas others contain
just primitive parts like text or strings. The contents of the nodes are defined in the following.

In the definitionr; e; n; t; p; a; and
 are nodes of typeR;E ;N ;T ;P ;A, andC , respectively. An expanded
name is composed of a local name and possibly a namespace partmaking the name globally unique. CDATA
stands for character data, i.e. a piece of text.r = (e; fp1; : : : ; pk1g; f
1; : : : ; 
k2g)e = (Expanded name; Id; (e01; : : : ; e0k3); fn1; : : : ; nk4g; fp1; : : : ; pk5g; fa1; : : : ; ak6g; f
1; : : : ; 
k7g)
wheree0i is either an element or a text node, and the order of these nodes is given by the order in which start
tags occur in the document. Note that an element need not havean id, in which case the id has the special value
NULL.n = (Expanded name)t = (CDATA)p = (Expanded name; String)a = (Expanded name; String)
 = (String)
We define an XML documentx as a pairx = (URI ; r), whereURI is the globally unique name of the XML
document and Type(r) = R. We further assume a functionRoot(x) = Root((URI ; r)) = r that returns the
root of an XML documentx, a functionStrVal(s) that returns a string representation of a nodes, and a function
Nodes(x) that returns the set of nodes in an XML documentx.

The basic syntax of an XPath expression resembles a Unix file path where a full path expression is given as
a number of locations separated by a “/”, e.g. location-step1/: : : /location-stepn. Each step in turn selects a set
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of nodes relative to acontext node. Each node in that set is then used as a context node for the next step. The
syntax for one step is:axis::node-test[predicate1]: : : [predicaten]

The axis part of a location step specifies the tree relationship between the nodes selected by the location
step and the context node. These includeattribute, parent, andchild which can be abbreviated by “@”, “ ..”
and by omitting the axis, respectively. The node-test part of a location step restricts the set of nodes to having
a specific name or being of a specific type. The set of nodes returned by the node-test can be further filtered
by applying one or more predicates which supports the usual boolean, mathematical, and string operators. For
each node in the node set to be filtered, the predicate is evaluated with that node as its context node. If the
predicate evaluates to true, the context node is included inthe result set.

Example 3.9 Select all ECs which are of the flip-flop class and are manufactured by either Johnson Compo-
nents or by the manufacturer with code M33:
/Components/Class/Component[Manufacturer/MName = ‘Johnson Components’ OR Manufacturer/@MCode
= ‘M33’][../ClassName=’Flip-flop’] �

To use XPath as a foundation for the federated data model and query language we formalize the notion of
an XPath expression.

Definition 3.8 (XPath Expression) An XPath expression is a functionXP : S 7! P(S) whereS is a set of
nodes. The set of all valid XPath expressions over an XML documentx is calledXPx, while the subset ofXPx
that are absolute XPath expressions is calledAbsXPx. That is,AbsXPx = fxp 2 XPxjDom(xp) = Root(x)g.RelXPx is the set of expressions inXPx that are not inAbsXPx. �
4 Federating OLAP and XML

In this section we describe how links between an OLAP component and external XML components can be used
to logically federate OLAP databases and XML documents as defined in Section 3.

A link is essentially a relationship between a dimension value in acube and a node in an XML document.
By creating a link, the user or DBA defines a sort ofcube viewcontaining an additional dimension. However,
the actual contents of the new dimension are not defined untila query is posed. The task of creating links
can be performed by executing a special “CREATE LINK” statement or it can be performed using an XML
browser, e.g integrated in a visual querying tool. As will beseen, the link concept makes it easier for users to
refer to XML data in OLAP queries and the mechanism also provides location transparency, since links can be
changed without affecting existing queries. This is important as some types of XML documents may change
their location from time to time. The fundamental linking mechanism is simply a relation between dimension
values in a level and nodes in an XML document.

Definition 4.1 (Link) A link is a relationlinkL � f(e; s)je 2 L ^ s 2 Sg, whereL is a level andS is a set of
nodes. �

The basic way of specifying a link is byenumerated linking, which explicitly defines the relation by pro-
viding a set of three-tuples consisting of a dimension value, the XML document in which a node is to be found,
and an XPath expression identifying one or more nodes in the document. Thus, one such tuple can define a
number of link tuples for a single dimension value.

Definition 4.2 (Enumerated link) An enumerated link is a functionEnLink : P(L�X�AbsXPx) 7! Links
whereL is a level,X is a set of XML documents,AbsXPx is a set of absolute XPath expressions over a
documentx 2 X, andLinks is a set of links. The resulting link relation is given by:
EnLink(f(e1; x1; lo
atorx1); : : : ; (ek; xk; lo
atorxk)g) = f(ei; s)jei 2 fe1; : : : ; ekg^s 2 lo
atorxi(Root(xi))g, whereei is a dimension value,xi is an XML document,lo
atorxi is an absolute
XPath expression overxi called thelocator path. �
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Example 4.1 We want to refer to the suppliers’ names in the Components document when querying the Pur-
chases database. Since the codes used for suppliers in the document are different from the ones used in the
database, we have no way of identifying the links automatically. Hence, we may use an enumerated link:f(“S1”, “www.comp-org.org/components.xml”, “/Components/Supplier[@SCode=’SU13’]”);(“S3”, “www.comp-org.org/components.xml”, “/Components/Supplier[@SCode=’SU15’]”)g

Note that S2 is not present in the XML document. In this case each of the tuples identify only
one node in the document and the resulting link is:Sup_Link = f(S1; s1); (S3; s3)g, wheres1 is the
single element pointed to by: “/Components/Supplier[@SCode=’SU13’]” in the document “www.comp-
org.org/components.xml”, and similarly fors3. �

Often, names of dimension values, or a simple transformation of the names, can be found somewhere in
the nodes they should be linked to. For example, when decorating countries with their populations, it is likely
that the country names can be used to identify the populations. However, there may may not be an exact match
between the name of a dimension value and a node in the XML document. For example, dimension values
may be full country names, while only abbreviated country codes, such as UK or US, are found in the XML
document.

Enumerated linking is only necessary in the rather special case when names of dimension values cannot
easily be mapped to nodes in the linked XML document, or the nodes occur in different documents. The former
situation may e.g. be necessary if also historical population figures are present in the document and the link
should only point to the most resent figure. More oftennatural linkscan be used as a shorthand. Here, the idea
is to specify a level and a set of nodes in an XML document, and use the dimension values to identify one or
more of these nodes. Optionally, analias functionmay be supplied, mapping each dimension value to an alias
which is used to identify the XML nodes. The set of nodes is defined for each level by a URI identifying the
XML document and two XPath expressions. The first one identifies the nodes to which the link will point, and
the second one is used to select the subset of these nodes thatare linked to the given dimension value. The
reason for using two XPath expressions is to facilitate the common case that a link must point to a subtree, but
the subtree is identified by some lower node in the subtree. Itis not necessary to use two expressions since
XPath expressions allow you to move up the tree as well as down, but it makes it easier to use the links.

Definition 4.3 (Natural link) Assume a domainAliases of string values for XML nodes and an injective
functionAlias : L! Aliases , mapping dimension values fromL to strings inAliases.

A natural link is a function:NatLink : LS � X � AbsXPx � RelXPx � Alias 7! Links. The resulting
link relation is given byNatLink(L; x; base; lo
ator; alias ) = f(e; s)je 2 L ^ s 2 base(Root(x)) ^ 9s0 2lo
ator(s)(StrVal(s0) = alias(e))g, whereL is a level,x is an XML document,base 2 AbsXPx identifies the
nodes, andlo
ator 2 RelXPx identifies the nodes being compared to dimension values inL. �

If no alias function is necessary, it may be omitted, i.e. theidentity function is assumed.

Example 4.2 If we want to create a link between the ECs in the Purchases database and those in the Compo-
nents document we can make a natural link, since the same codes are used in both places.

From the natural link: (“EC”, “www.comp-org.org/components.xml”, “/Components/Supplier/Class/Com-
ponent”, “ @CompCode”, iEC), whereiEC(e) = e is the identity function, we create the linkEC_Link =f(EC1234; s1); (EC1234; s2); (EC1235; s3)g. s1 is the first element in the Components document with Com-
pCode=”EC1234”,s2 is the second element with CompCode=”EC1234”, ands3 is the single element with
CompCode=”EC1235”. �

A flexible linking mechanism must allow both dimension values and nodes to occur more than once in
the same link. Thecardinality of a link link between a levelL and an XML documentx can be either [1-1],
[n-1], [1-n], or [n-n]. A link is [1-1] if klinkk = k�L(link)k = k�x(link)k, where� denotes relational
projection andkRk denotes the cardinality of relationR. Similarly, the cardinality oflink is [n-1] if klinkk =



5 Querying Federations 15k�L(link)k > k�x(link)k, [1-n] if klinkk = k�x(link)k > k�L(link)k, and [n-n] if klinkk > k�x(link)k
andklinkk > k�L(link)k. We use the abbreviations [-1] to denote [1-1] or [n-1] and [-n] to denote [1-n] or
[n-n]. Note that these cardinalities are not specified in anyway, but are merely properties of the links.

Example 4.3 Sup_Link is [1-1] andEC_Link is [1-n]. �
To allow references to XML data in OLAP queries, links are used to definelevel expressions. A level

expression consists of a starting levelL, a link link from L to nodes in one or more XML documents, and a
relative XPath expressionxp which is applied to these nodes to identify new nodes.

Definition 4.4 (Level expression)A level expressionL=link=xp, whereL is a level,xp is an XPath expres-
sion, andlink is a link fromL, defines a linkE = f(e; s)je 2 L ^ 9s0((e; s0) 2 link ^ s 2 xp(s0))g. The
cardinality of a level expression is the link cardinality ofE. Also, we say that a level expressioncoversits
starting level ifL = �L(E). If the starting level is not covered some facts may not be linked to any nodes. We
will refer to such tuples asunconnectedfacts.

To simplify link usage we assume a functionDefaultLink : L 7! Links, whereL is a set of levels andLinks is a set of links. The function returns the default link for a given level. �
Example 4.4 The level expression “EC/EC_Link/CompCode” is [1-n] and does not cover its starting level,
since “EC2345” is not mentioned in the Components document. �

Assuming thatDefaultLink(EC) returns “EC_Link” the above level expression can be written “EC/Comp-
Code”. In the following we assume thatEC_Link andSup_Link are default links for theEC andSupplier
levels, respectively.

With the linking mechanism in place, we can now define the federated data model consisting of a cube, a
set of XML documents, and a set of links between them. We only consider one cube since multiple cubes can
be handled by creating a view over the cubes.

Definition 4.5 (Federation) A federationF of a cubeC and a set of XML documentsX is a three-tuple:F = (C;Links;X) whereLinks is a set of links between levels inC and documents inX. �
When it is clear from the context, we will refer toF as a cube, meaning the cube part of the federationF .

Example 4.5 The cube in Example 3.3 for the Purchases database, the Components document, and the linksSup_Link andEC_Link is a federation. We will refer to this as the Purchases federation in the following.�
5 Querying Federations

In this section we present an algebra over federations and use this to define the semantics of the new federation
query languageSQLXM . Hence, the focus is on the formal foundation for the querying of federations, while
the more practical aspects of this are described in Section 7and 8.SQLXM can be used to decorate a cube with
XML data, group by XML data, and use XML data for selection. The semantics are given by extending the
cube algebra to federations, providing a decoration operator, a generalized projection operator, and a selection
operator. The algebra is closed, as all operators work on a federation and also return a federation.

5.1 Decoration

It is often useful to provide supplementary information forone or more levels in the result of an OLAP query.
This is commonly referred to asdecoratingthe result [GBLP96]. For example, products could be decorated
with a competitor’s prices for the same products, employeeswith their addresses, or suppliers with their contact
person. Such information will often be available to the relevant people as Web pages on the Internet, an intranet,
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or an extranet. Also, this kind of information will most likely not be stored in an OLAP database because it
either changes too frequently, was not expected to be used, is owned by someone else, or for some other reason.
The solution suggested in this paper is to allow OLAP queriesto reference external XML data using level
expressions in theSELECT clause. In Section 5.2 we consider how to use level expressions in theGROUP BY

clause.

Example 5.1 Let “AllTimePurchases” be the Purchases cube aggregated tothe EC and Supplier levels. The
fact table of this cube is shown in Table 5(a). Given the federation consisting of the “AllTimePurchases”
cube, the Components document, and the links defined above, the following query decorates all ECs with their
descriptions from the Components document:

SELECT Cost, Supplier, EC, EC/Description
FROM AllTimePurchases �

There are two important problems with the use of level expressions for decoration which are related to
the problems with non-strict and non-covering hierarchiesas discussed earlier. First, a dimension value may
be associated with more than one node, i.e. when the level expression has cardinality [-n]. Second, some
dimension values may not be associated with any nodes at all,which is the case if the level expression does not
cover its starting level.

The first problem allows for a number of differentdecoration semantics. Consider the following example:

Example 5.2 From the query in Example 5.1 we could get the result shown in Table 5(b), where a fact is
created for each different description node resulting fromthe level expression. Another possibility is the result
shown in Table 5(c), where an arbitrary node is picked and at most one fact is created for each EC. A third
possibility is shown in Table 5(d), where all description nodes are concatenated. In all cases we use “N/A” to
indicate that no description is found for an EC. �

Cost Supplier EC
2940 S1 EC1234
6900 S3 EC1234
32050 S2 EC1235
9480 S3 EC2345

(a)

Cost Supplier EC Description
2940 S1 EC1234 D-type flip-flop
2940 S1 EC1234 16-bit flip-flop
6900 S3 EC1234 D-type flip-flop
6900 S3 EC1234 16-bit flip-flop
32050 S2 EC1235 16-bit flip-flop
9480 S3 EC2345 N/A

(b)

Cost Supplier EC Description
2940 S1 EC1234 D-type flip-flop
6900 S3 EC1234 D-type flip-flop
32050 S2 EC1235 16-bit flip-flop
9480 S3 EC2345 N/A

(c)

Cost Supplier EC Description
2940 S1 EC1234 D-type flip-flop, 16-bit flip-flop
6900 S3 EC1234 D-type flip-flop, 16-bit flip-flop
32050 S2 EC1235 16-bit flip-flop
9480 S3 EC2345 N/A

(d)

Figure 5: The fact table for the AllTimesPurchases cube and different decorations of it.

The problem is which of the nodes to use for decoration when a level expression returns more than one
node. Several solutions are possible including picking onearbitrarily, using the first one, concatenating all
different nodes, or using all the nodes thereby creating duplicated facts. Note that concatenating the nodes from
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an XML document is always possible since all nodes have a string value, though the concatenated string may
not make sense to a user. Duplicating facts means that further aggregation may give an incorrect result. This is
the case when grouping over decoration values, whereas grouping over other values produces a correct result.
Note that theany/all selection semanticsdescribed in Section 3.2 are different from thesedecoration semantics.
(However, as will be seen in Section 5.3 the two concepts are related.)

The second problem with the use of level expressions for decoration is how to handle expressions that do
not cover its starting level. The solution used in Example 5.2 is to add a specialN/A value, indicating that
no nodes are available. Alternatives are to remove the factsthat are not linked to any nodes or to require the
level expression to cover its starting level. Removing the unconnected facts would lead to a non-summarizable
result, whereas requiring all values in the starting level to be covered would reduce the practical usefulness of
decoration significantly. Thus, we propose to add a special value for all unconnected facts.

Since different semantics are needed in different situations, we allow the user to choose between different
types of semantics when decorating a cube with XML data. We have chosen the following because we believe
they can all be useful under different circumstances:

ANY : Use an arbitrary node. This is useful when summarizability should be preserved and no node is more
important than another, as might be the case e.g. when decorating suppliers with a contact person.

CONCAT : Use the concatenation of string values for all different nodes. Useful when summarizability should
be preserved and all nodes are needed, e.g. when decorating products with text descriptions.

ALL : Use all different nodes, possibly duplicating facts. Useful when the decoration is used for grouping or
selection.

Although we only consider these three semantics, others could be useful in some situations. For example,
all nodes could be used in theCONCAT andALL semantics, including the ones that are identical. The purpose
of this would most likely be to find the number of identical ones, e.g. the number of times an EC occurs in a list
of sales. This value could then be used to calculate new measure values in the cube, e.g. the total sales per EC
by multiplying the number of times an EC was sold with the price of a single EC. Also, semantics preserving
the document order of XML documents could sometimes be useful. However, the preservation of document
order is outside the scope of this paper.

The user specifies the semantics of a decoration by giving a semantic modifier in the level expression as
in EC[ANY]/EC_Link/Description. If no semantic modifier isspecified,ANY semantics are assumed as the
default. Notice that if the cardinality of the level expression is [-1], then decoration with the three semantics
will produce the same result.

Example 5.3 The query in Example 5.1 actually results in Table 5(c) sinceANY is the default. Table 5(b) and
Table 5(d) are the results of these two queries, respectively:

SELECT SUM(Cost), Supplier, EC, EC[ALL ]/Description
FROM AllTimePurchases

SELECT SUM(Cost), Supplier, EC, EC[CONCAT]/Description
FROM AllTimePurchases �

We decorate a cube by adding a new dimension containing only the top level and a level containing all
the decoration values. Different approaches could be to attach the decoration data as special attributes of the
decorated values [Leh98, CT98, TSC99], create a new level inthe same dimension as the starting level, or to
keep the decorated data in an external component [PSGJ00]. Our approach has the advantage that the external
data can easily be used for aggregation and selection because the decoration data is incorporated into the cube
as any other dimensional data. Furthermore, aggregation isstill possible in the original dimensions, as these
are not changed by decoration.
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With ALL decoration semantics this approach would create new facts in the fact table. Since this is an
awkward behavior for a decoration operator, decoration with ALL semantics adds a new dimension with the
same bottom values as the dimension containing the decorated level. The decoration data becomes dimension
values in the new dimension with these bottom values as children. Thus, each bottom value rolls up to the
value that decorates it. This roll-up and the possible generation of new facts is then handled by the generalized
projection operator which is defined in Section 5.4.

Example 5.4 The result of decorating Table 5(a) withALL semantics without rolling up to the decoration level
is shown in Figure 6. To avoid creating new facts in the fact table, the EC values are simply duplicated, while
the decoration values are added to the new dimension above these EC’ values. Thus, the new facts are not
created until the cube is rolled up to the Description level.Note that the new dimension is non-strict since
“EC1234” has two different descriptions. �

Cost Supplier EC EC’
2940 S1 EC1234 EC1234
6900 S3 EC1234 EC1234
32050 S2 EC1235 EC1235
9480 S3 EC2345 EC2345

T

D-type flip-flop 16-bit flip-flop

EC1234 EC1235EC2345

N/A

EC[ALL]/Description

T

EC'

Description

EC[ALL]/Description

Figure 6: The fact table, new dimension schema and new dimension resulting from decoration withALL se-
mantics.

The three semantics are formally defined in the following. The ANY semantics is defined as:

Definition 5.1 (Decoration with ANY semantics) Decoration withANY semanticsÆANY of a federationF =(C;Links;X) is defined as:ÆANY [Lz;link;xp℄(F) = (C 0; Links0;X 0) whereLz 2 Dz, link 2 Links is a link
from Lz to X andxp is an XPath expression overX. The new federation is given by:Links0 = Links,X 0 = X, C 0 = (N 0;D0; F 0), andN 0 = N . A new dimension is added if it is not already present:D0 =fD1; : : : ;Dng[fDn+1g whereDn+1 = (LDn+1 ; EDn+1). Here,LDn+1 = (LSn+1;vn+1;>n+1; Lxp), whereLSn+1 = f>n+1; Lxpg, andvn+1= f(Lxp;>n+1)g.

LetU = fe 2 Lzj8(e; s) 2 link(xp(s) = ;)_�s((e; s) 2 link)g be the set of dimension values inLz that
either has no corresponding value inxp(s) or is not linked to anything vialink. Also, letL = fexpj9(e; s) 2link(exp = StrVal(si) for somesi 2 xp(s)g. Then the new level containing the decoration values is given by:Lxp = (LSfN/Ag for U 6= ;L otherwise.

Furthermore,EDn+1 = (LxpS>n+1;vDn+1), wherevDn+1= f(exp;>Dn+1)jexp 2 Lxp ^ >Dn+1 2 >n+1g.
If Dn+1 2 D thenF 0 = F . Otherwise, the new fact table is given byF 0 = fthg, where for allexp 2 Lxp

and(e?1 ; : : : ; e?n ; v1; : : : ; vm) 2 F :th = 8>>>><>>>>:(e?1 ; : : : ; e?n ; exp; v1; : : : ; vm) if 9e?z 2 fe?1 ; : : : ; e?ng(9(e; s) 2 link(e?z vDz e ^ 9s0 2 xp(s)(StrVal(s0) = exp))_9e 2 U(e?z vDz e ^ exp = N/A))(e?1 ; : : : ; e?n ; exp;NULL ; : : : ;NULL) otherwise.

For all measuresMh in C 0 the aggregation type is:AggType(Mh;Dn+1) = AggType(Mh;Dz). �
Intuitively, only two things are changed when decorating a cube: A new dimension is added and the fact

table is updated to reflect this. However, since the cube definition does not allow duplicate dimensions, no
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changes are made if an identical dimension already exists inthe cube. The new dimension contains only
the decoration level and the top level. The new dimension values in the decoration level are created from
an arbitrarily chosen node found by following the link from the starting level and then applying the XPath
expression. If one or more values in the starting level does not produce any decoration values the specialN/A
value is used instead. The new fact table is created from the cartesian product of the dimension values from the
old fact table and the new decoration values. Measure valuesare replaced withNULL values such that no facts
are duplicated.

Example 5.5 The federationAllTimePur
hasesFed = (AllTimePur
hasesCube ; fEC_Link; Sup_Linkg;f“www.comp-org.org/components.xml”g) is decorated with EC descriptions as follows:ÆANY [EC;EC_Link;“Description”℄(AllTimePur
hasesFed ) = AllTimePur
hasesFed 0.AllTimePur
hasesFed 0 contains the same links and XML document while theAllTimePur
hasesCube
cube is extended with a new dimensionDDes
ription. LettingDes denoteDes
ription we have thatDDes =(LDDes ; EDDes). Here,LDDes is the poset(f>Des; LDesg;vDes;>Des; LDes), wherevDes= f(LDes;>Des)g.
Also,EDDes = (f>; “D-type flip-flop”, “16-bit flip-flop”, “N/A” g;vDDes), where> is the parent of the other
values in the ordering. The new fact table is shown in Table 5(c). �

The only difference betweenANY andCONCAT semantics is in the definition of the decoration values. For
ANY semantics we pick one of the values, forCONCAT semantics we concatenate all the different values.

Definition 5.2 (Decoration with CONCAT semantics) ÆCONCAT is defined as forANY semantics except for the
following change in the definition ofL:

For eache 2 Lz let Se = fsj9s0((e; s0) 2 link ^ s 2 xp(s0))g. ThenL = fexpj9e 2 Lz(exp =
Concat(StrVal(s1); : : : ;StrVal(sk)) for si 2 Se)g, whereConcatis a function concatenating a set of strings.�

For ALL semantics a new dimension is added containing the same bottom values as the dimension to which
the starting level belongs. The decoration values are then inserted between the top value and the bottom values
in the new dimension. A decoration value becomes the parent of a bottom value if the bottom value is the child
of a value in the starting level that is linked to the decoration value.

Definition 5.3 (Decoration with ALL semantics) ÆALL is defined as forANY semantics except for the follow-
ing changes:� The new poset of levels consists of three levels:LDn+1 = (LSn+1;vn+1;>n+1;?n+1) whereLSn+1 =f>n+1;?n+1; Lxpg andvn+1= f(?n+1; Lxp); (Lxp;>n+1); (?n+1;>n+1)g.� The new dimension values ofLxp isL = fexpj9(e; s) 2 link(9s0 2 xp(s)(exp = StrVal(s0)))g.

The dimension values of the new bottom level are given by:?n+1 = ?z.� The new ordering of dimension values isEDn+1 = (?n+1 [ Lxp [ >n+1;vDn+1), wherevDn+1=f(e?n+1 ;>Dn+1)je?n+1 2 ?n+1 ^ >Dn+1 2 >n+1g S f(exp;>Dn+1)jexp 2 Lxp ^ >Dn+1 2>n+1g S f(e?n+1 ; exp)je?n+1 2 ?n+1^exp 2 Lxp^(9e; e?z((e; s) 2 link^e?n+1 = e?z^e?z vDze ^ 9sj 2 xp(s)(exp = StrVal(sj))) _ 9e; e?z(e 2 U ^ e?n+1 = e?z ^ e?z vDz e ^ exp = N/A))g.� The new fact table is given byF 0 = fthg where for alle?n+1 2 ?n+1 and(e?1 ; : : : ; e?n ; v1; : : : ; vm) 2F :th = ((e?1 ; : : : ; e?n ; e?n+1 ; v1; : : : ; vm) if 9e?z2 ?z(e?z2 fe?1 ; : : : ; e?ng ^ e?z = e?n+1)(e?1 ; : : : ; e?n ; e?n+1 ;NULL ; : : : ;NULL) otherwise. �
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Intuitively, the new bottom level contains the same dimension values as the bottom level of the dimension
to which the starting level belongs. The new decoration level contains a dimension value for each distinct node
found by following the link and applying the user defined XPath expression. The fact table is created from the
dimension values from the old fact table and the new bottom values of the decoration dimension. No measure
values are duplicated since they only exist for tuples containing the same bottom value twice. All other measure
values are set toNULL . Thus, theALL decoration operator only associates values in the startinglevel with the
right decoration values through their common bottom values. To actually present the decoration along with
the other levels, the new decoration dimension must be aggregated to the level containing the new decoration
values. In the following we discuss how to perform aggregation over federations.

5.2 Extending Grouping to Federations

Allowing level expressions in theGROUP BYclause makes it possible to group by data from XML documents,
without having to physically store this data in the OLAP database. For example, product prices will often be
available from a supplier’s Web page or an e-marketplace. These up-to-date prices can then be used to group
products in an OLAP product database without having to storethe prices.

Example 5.6 The following query groups ECs after their text descriptions from the Components document.

SELECT SUM(Cost), EC[ALL ]/Description
FROM Purchases
GROUP BY EC[ALL ]/Description �

GROUP BY queries with level expressions are evaluated in two steps. First, the cube is decorated as de-
scribed in the previous section. Second, aggregation is performed by using the already defined generalized
projection�Cube on the new cube.

Example 5.7 The above query is evaluated by first decorating the Purchases cube resulting in the fact table
shown in Table 5(b), and then grouping by “Description” using �Cube. �

When decorating the cube, the new decoration dimension may be non-strict ifALL semantics are used and
a bottom value is decorated by more than one decoration value. This is the reason for allowing non-strictness
in a cube and for handling it in the generalized projection operator as defined in Definition 3.6. Consequently,
if non-strictness occurs because of the decoration and if aggregation results in duplicated facts, this is handled
by setting the aggregation type to
, preventing further aggregation in that dimension. To aggregate further, the
original cube must be used.

Formally, the generalized projection operator over federations is defined as follows:

Definition 5.4 (Generalized projection over federations)Let F = (C;Links;X) be a federation andMj1 ; : : : ;Mjm be measures inC. Also letL1; : : : ; Lk be levels inC such that at most one level from each
dimension occurs. The generalized projection operator�Fed over federationF is then defined as:�Fed[L1;:::;Lk℄<fj1 (Mj1 );:::;fjm (Mjm )>(F) = (C 0; Links0;X 0)
where the new cube isC 0 = �Cube[L1;:::;Lk℄<fj1 (Mj1 );:::;fjm (Mjm )>(C).

Links for which the starting level no longer exists are removed from the resulting federation. That is:Links0 = flink 2 Linksj9L 2 C 0(9(e; s) 2 link(e 2 L))g. XML documents to which no links refer are also
removed:X 0 = fx 2 Xj9link 2 Links0(9(e; s) 2 link(s 2 Nodes(x)))g. �
5.3 Extending Selection to Federations

XML data can also be used to perform selection over cubes. This makes it possible e.g. to view only products
where a certain supplier is cheaper than another supplier byreferring to their Web pages. The idea adopted here
is to allow level expressions inWHERE andHAVING predicates in places where levels can already be used. For
example, level expressions can be compared to constants, levels, measures, or other level expressions.
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Example 5.8 Show component costs by supplier and EC but only those available for less than 3.00 euro.

SELECT SUM(Cost), Supplier, EC
FROM Purchases
WHERE EC/UnitPrice[@Currency=’euro’] < 3.00
GROUP BY Supplier, EC �

As discussed in Section 3.2 selection semantics are also affected by the cardinality and covering properties
of level expressions. As for selection over cubes, we handlethis by usinganysemantics.

Selection over federations is evaluated by first decoratingwith all the level expressions mentioned in the
predicate. The resulting federation is then sliced using the selection operator, and finally, the new decoration
dimensions are removed again. The selection operator simply applies the cube selection operator to the cube
part of the federation since the link and XML parts should notbe affected by selection.ALL semantics are used
for the decorations to make sure that all decoration values are available. This is important sinceanyselection
semantics are used in predicates, and thus, a predicate may be satisfied by any of the decoration values. No
facts are duplicated since theALL decoration is never actually rolled up to the decoration level. The roll-up is
handled entirely by the cube selection operator.

Example 5.9 Show only components that are manufactured by the supplier.

SELECT SUM(Cost), Supplier, EC
FROM Purchases
WHERE EC/Manufacturer/MName = EC/../../Suppliers/SName
GROUP BY Supplier, EC

This query is evaluated by first decorating with the level expressions EC/Manufacturer/MName and
EC/../../Suppliers/SName using theALL semantics. This results in two new columns EC0 and EC00 in the fact
table both duplicating the EC level. A new predicate is then constructed rolling up to the decoration level:
“Manufacturer/MName”(EC0) = “../../Suppliers/SName”(EC00), and this is used to select a part of the fact table.
Finally, the two new columns are removed again. �

Formally, selection over federations is defined as follows:

Definition 5.5 (Selection over federations)LetF = (C;Links;X) be a federation.
The selection operator over federations is then defined as:�Fed[p℄(F) = (C 0; Links0;X 0), whereLinks0 =Links, X 0 = X, and the new cube isC 0 = �Cube[p℄(C). �
Hence, selection is performed on a federation by applying cube selection to the cube part using a predicate

without the level expressions. The decoration and predicate transformation are not handled by the selection
operation but instead by the mapping fromSQLXM to the federation algebra as described in the next section.

This concludes the definition of the algebra. The three operators defined all operate on federations and
result in federations, thus, the federation algebra is closed.

5.4 Semantics of theSQLXM Query Language

We can now define the semantics of aSQLXM query in terms of the federation algebra. The syntax is givenin
Appendix A.

Definition 5.6 (Semantics of anSQLXM query over a federation) In the following, let:� F = (C;Links;X) be a federation,



5 Querying Federations 22� ?g1 ; : : : ;?gk � ?1; : : : ;?n andLg1 ; : : : ; Lgk be levels inC such that?gh vi Lgh ,� Mj1 ; : : : ;Mjl �M1; : : : ;Mm be a set of measures fromC,� fj1 ; : : : ; fjl be aggregation functions all of which are assumed to be distributive,� predwhere be a predicate over levels and measures inC containing level expressionsLw1=linkw1=xpw1 ; : : : ;Lwp1=linkwp1=xpwp1 ,� Ls1 [Sems1 ℄=links1=xps1 ; : : : ;Lsp2 [Semsp2 ℄=linksp2=xpsp2 be level expressions, where eachLi is a
level inC, linki 2 Links is a link fromLi, andxpi is an XPath expression,� predhaving be a predicate over levels and measures in the cube after grouping, containing level expres-
sionsLh1=linkh1=xph1 ; : : : ;Lhp3=linkhp3=xphp3 .

Also, we use the abbreviation�E1;:::;En(F) = ÆEn(: : : (ÆE1(F)), whereEi = Semi[Li; linki; xpi℄.
TheSQLXM -query

SELECT fj1(Mj1); : : : ; fjl(Mjl); Lg1(?g1); : : : ; Lgk(?gk);Ls1 [Sems1 ℄=links1=xps1 ; : : : ;Lsp2 [Semsp2 ℄=linksp2=xpsp2
FROM F
WHERE predwhere
GROUP BY Lg1(?g1); : : : ; Lgk(?gk);Ls1 [Sems1 ℄=links1=xps1 ; : : : ;Lsp2 [Semsp2 ℄=linksp2 =xpsp2
HAVING predhaving

can then be evaluated as�Fed[Lg1 ;:::;Lgk ;xps1 ;:::;xpsp2 ℄<fj1 (Mj1 );:::;fjl (Mjl )>(�Fed[predhaving0℄(�ALL [Lh1 ;linkh1 ;xph1 ℄;:::;ALL [Lhp3 ;linkhp3 ;xphp3 ℄(�Fed[Lg1 ;:::;Lgk ;xps1 ;:::;xpsp2 ℄<fj1 (Mj1 );:::;fjl(Mjl )>(�Sems1 [Ls1 ;links1 ;xps1 ℄;:::;Semsp2 [Lsp2 ;linksp2 ;xpsp2 ℄(�Fed[predwhere0℄(�ALL [Lw1 ;linkw1 ;xpw1 ℄;:::;ALL [Lwp1 ;linkwp1 ;xpwp1 ℄(F)))))))
The new predicatespredwhere0 andpredhaving 0 are constructed frompredwhere andpredhaving, respectively,
by replacing each level expressionL=link=xp with the roll-up functionxp(L?), whereL? is the bottom level
of the dimension to whichL belongs. �
An SQLXM query over a federation is evaluated in four major steps. First, the cube is sliced as specified in
the WHERE clause, possibly requiring a decoration with XML data whichis then projected away after selec-
tion. Second, the resulting cube is decorated with externalXML data from the level expressions occurring
in the SELECT and GROUP BY clauses. This creates a number of new dimensions in the cube.Third, all di-
mensions, including the new ones, are rolled up to the levelsspecified in theGROUP BY clause. Finally, the
resulting cube is sliced according to the predicate given inthe HAVING clause, which may require additional
decorations. Notice that the new decoration dimensions used for selection are not mentioned in the following
generalized projection and are therefore removed after use. Since these new dimensions are never aggregated
to the decoration level, no changes are made to the aggregation types.

Example 5.10 Calculate costs by supplier, class and EC description, decorated with the supplier names. The
result should only reflect purchases of ECs which are manufactured by the manufacturer listed in the Compo-
nents document and are supplied by S2 or S3. Also, we only wantthe groups with a total cost of more than
7.000.
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SELECT SUM(Cost), Supplier, Class(EC), Supplier/SName, EC[ALL]/Description
FROM Purchases
WHERE EC/Manufacturer/@MCode = Manufacturer(EC) AND Supplier IN (S2, S3)
GROUP BY Supplier, Class(EC), Supplier/SName, EC[ALL]/EC_Link/Description
HAVING SUM(Cost)> 7.000

This query is evaluated as follows:�Fed[SUM(Cost)>7:000℄(�Fed[Supplier;Class;SName;Des
ription℄<SUM(Cost)>(ÆANY [Supplier;Sup_Link;SName℄(ÆALL [EC;EC_Link;Des
ription℄(�Fed[Manufa
turer=�MCode(EC)=Manufa
turer(EC) AND Supplier IN (S2;S3)℄(ÆALL [EC;EC_Link;Manufa
turer=�MCode℄(Pur
hases))))))
Notice that no generalized projection is needed after the last selection since it does not refer to any decora-

tions that must be removed. �
As can be seen from this example the resulting algebraic expression can be optimized in several ways.

For instance, a partial aggregation can often be performed before the first decoration, to reduce the size of
intermediate results. This and other optimizations are discussed in the following sections.

6 Algebraic Transformation Rules

The optimization approaches presented in this paper cover both heuristic and cost based techniques. In Section 8
we will discuss heuristic optimization ofSQLXM queries and in Section 9 a cost based approach is considered.
To provide a basis for these techniques we present here a collection of transformation rules for the federated
algebra. Most of these rules involve the decoration operation and have, to the best of our knowledge, not
been considered elsewhere. The remaining rules are similarto those for Extended Relational Algebra (ERA),
i.e. duplicate sensitive relational algebra with aggregations [GdB94, GHQ95]. Since most ERA rules have an
equivalent rule inSQLXM Algebra, the list of rules is not complete, but cover rules that are important for
optimizing federation queries. We consider only distributive aggregation functions, which is unproblematic
since all the widely used functions are distributive or can be expressed in terms of such functions. For example,
SUM, MIN , MAX are distributive,COUNT = SUM(1), andAVG can be expressed in terms ofSUM andCOUNT.

The full list of transformation rules are shown in Table 2. The rules are presented formally in the following
by first giving an intuitive description of the rule, possibly illustrated by an example, then stating the rule
formally, and finally arguing for the validity of the rule. The rules are grouped after the operators they involve.

In the formal presentation left-to-right rules are denotedby!, while bidirectional rules are denoted by$.
We begin by stating a fundamental equivalence property of the decoration operation:

Theorem 6.1 If a cubeF has already been decorated with a decorationÆS[L;link;xp℄, all subsequent decorations
with ÆS[L;link;xp℄ can be ignored. That is: ÆS[L;link;xp℄(F))$ F
Proof outline:This follows from Definition 5.1, 5.2, and 5.3, which states that if an identical decoration dimen-
sion is already present, it is not added again. Hence, the decoration has no effect and can be removed or added
without changing the cube. �

In the formal definitions let
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No. Description
6.1 Redundant Decoration Above Generalized Projection
6.2 Redundant Decoration Below Generalized Projection
6.3 Commutativity of Decoration and Generalized Projection
6.4 Pushing Generalized Projection Below Decoration
6.5 Commutativity of Selection and Decoration
6.6 Inlining of Decoration in Selection
6.7 Commutativity of Selection and Generalized Projection
6.8 Pushing Generalized Projection Below Selection
6.9 Commutativity of Generalized Projection and Selection with References to Measures

6.10 Commutativity of Decorations
6.11 Cascade of Selections
6.12 Commutativity of Selections
6.13 Cascade of Generalized Projections
6.14 Redundant Generalized Projection
6.15 Cascade of Decorations
6.16 Pushing Generalized Projection Below Decorations and Selections

Table 2: Transformation rules for the federation algebra.� E = L[S℄=link=xp be a level expression, andLxp;? andLxp the bottom and decoration level of the
dimension resulting from decoration withE, respectively,� L be a set of levels from different dimensions,� F (M) = ff1(M1); : : : ; fl(Ml)g be a set of aggregation functions applied to measures,� Dim : Levels! Dimensions be a function that returns the dimension to which a level belongs.� Dims : P(Levels) � Predi
ates ! P(Dimensions) be a function that given a set of levels, and a
predicate, returns the set of dimensions to which the levelsin the set and in the predicate belong,� Levs : Dimension�P(Levels)� Predi
ates! P(Levels) be a function, that given a dimensionD,
a set of levelsL, and a predicate� returns the set of levels fromD that are either contained inL or are
referenced in�,� Max : P(Levels)! Levels be a function that given a set of levels from the same dimension returns the
uppermost level,� MaxStrict : P(Levels)! Levels be a function that given a set of levels from the same dimension returns
the uppermost such level that do not introduce non-strictness when rolled up to from the bottom level,

For improved readability, we omit the subscriptFed for operators in the federation algebra, since no con-
fusion can occur.

6.1 Rules Involving Decoration and Generalized Projection

According to Theorem 6.1, a cube can only be decorated with the same decoration once. Thus, a decoration
can be removed or added above a generalized projection (GP) that already includes the decoration in the list of
GROUP BY levels.

Example 6.1 ÆALL [EC ;EC_Link;Des
ription℄(�[EC ;Supplier ;Des
ription℄<SUM(Cost)>(ÆALL [EC ;EC_Link;Des
ription℄(Pur
hases))) is equivalent to�[EC ;Supplier ;Des
ription℄<SUM(Cost)>(ÆALL [EC ;EC_Link;Des
ription℄(Pur
hases))
because the cube has already been decorated with Description. �
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Rule 6.1 (Redundant Decoration Above Generalized Projection) If a level Lxp resulting from decoration
with the level expressionL[S℄=link=xp is already present inL andL0 occurs inL such thatL0 v L the
following holds: ÆS[L;link;xp℄(�[L℄<F (M)>(F))$ �[L℄<F (M)>(F)
Reasoning:This rule follows from Theorem 6.1. �

A decoration can be removed if it occurs below a GP that does not include it in the list ofGROUP BYlevels.

Example 6.2 �[EC ;Supplier ℄<SUM(Cost)>(ÆALL [EC ;EC_Link;Des
ription℄(Pur
hases)) is equivalent to�[EC ;Supplier ℄<SUM(Cost)>(Pur
hases)) because the decoration with Description has no effect abovethe GP.�
Rule 6.2 (Redundant Decoration Below Generalized Projection) If Lxp =2 L ^ Lxp;? =2 L the following
holds: �[L℄<f(M)>(ÆS[L;link;xp℄(F))$ �[L℄<f(M)>(F)
Reasoning:If the decoration does not occur in the GP it is projected awaybefore it is used and can be removed
without changing the resulting cube. �

Decoration and GP operations are commutative if the cube resulting from the GP contains the starting level
of the decoration. The starting level or a level below it mustbe present when pushing a GP below a decoration,
because otherwise it would not be possible to decorate the cube after aggregation has been performed. This re-
quirement is always satisfied when pushing a decoration below a GP. Two different cases may occur depending
on whether or not the decoration being pushed down has been applied before and is already present in the GP’s
GROUP BY levels. If it is already present then the previous decoration must be preserved instead of removing
it and decorating again. This is necessary because the original decoration may be anALL decoration, that has
been rolled up to the decoration level and thereby prohibited further aggregation. If the decoration has not been
applied before, the bottom level of the decoration dimension must be included in the GP’sGROUP BY levels
after pushing down the decoration. This is necessary because decoration always adds the bottom level of the
decoration dimension to the fact table. Notice that if a decoration being pushed down is already present in the
GP’sGROUP BY levels the commutativity holds because the decoration is redundant both above and below the
GP.

Example 6.3 Assume a new link Class_Link from the Class level to the Classnodes in the Components docu-
ment. ThenÆALL [Class;Class_Link;ClassName℄(�[EC ;Country℄<SUM(Cost)>(Pur
hases)) is equivalent to�[EC ;Country ;EC 0℄<SUM(Cost)>(ÆALL [Class ;Class_Link;ClassName℄(Pur
hases)) whereEC 0 is the bottom level of
the new ClassName dimension. In both cases the resulting cube has bottom levels EC, Country and EC0, as well
as the measure Cost. Notice that the starting level Class or some level below it (in this case EC) must occur in
the GP’sGROUP BY levels in order to push the GP below the decoration.

Also, ÆALL [Class ;Class_Link;ClassName℄(�[EC ;Country;EC 0℄<SUM(Cost)>(ÆALL [Class ;Class_Link;ClassName℄(Pur
hases)))) is equivalent to�[EC ;Country;EC 0℄<SUM(Cost)>(ÆALL [Class ;Class_Link;ClassName℄(ÆALL [Class ;Class_Link;ClassName℄(Pur
hases)))) because the topmost decoration in both expressions can be
ignored. �
Rule 6.3 (Commutativity of Decoration and Generalized Projection) The following holds if a levelL0 oc-
curs inL such thatL0 v L andLxp =2 L ^ Lxp;? =2 L:

(a) ÆS[L;link;xp℄(�[L℄<F (M)>(F))$ �[L[fxp?g℄<F (M)>(ÆS[L;link;xp℄(F))
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Also, let the schema ofF be L0;M 0. If L0 occurs inL such thatL0 v L, Lxp 2 L _ Lxp;? 2 L, andLxp 2 L0 _ Lxp;? 2 L0 the following holds:

(b) ÆS[L;link;xp℄(�[L℄<F (M)>(F))$ �[L℄<F (M)>(ÆS[L;link;xp℄(F))
Reasoning:Part (a) of the rule holds since neitherLxp norLxp;? are inL and sinceLxp;? is added to the GP
on the right-hand side. Hence, both sides have the same number of dimensions and are aggregated to the same
levels. Also, aggregation types are the same, since no roll up is performed in the dimension containing the
decoration data. The decoration on the left-hand side can always be performed because the levelL0 is inL. Part
(b) of the rule holds because according to Theorem 6.1 both decorations are redundant and can be removed.�

Rule 6.3 can be generalized by introducing a new GP on the right-hand side. Intuitively, what this means
is that instead of decorating a cube and then aggregating it,the cube is first aggregated to yield an intermediate
cube. This cube is decorated and then further aggregated to produce the final result. The new GP aggregates
the cube as much as possible, while still allowing the decoration operator to be applied. If the decoration is
already present in the original cube, then it occurs in theGROUP BY levels of the new GP.

Example 6.4 �[EC ;Country;ClassName ℄<SUM(Cost)>(ÆALL [Class ;Class_Link;ClassName℄(Pur
hases)) is equivalent
to�[EC ;Country;ClassName ℄<SUM(Cost)>(ÆALL [Class ;Class_Link;ClassName℄(�[EC ;Country℄<SUM(Cost)>(Pur
hases))). �
The intermediate cube produced by the new GP must satisfy certain requirements. First, if a level is mentioned
in the original GP, this level must also be present in the intermediate cube. Second, the starting level of the
decoration must be present in the intermediate cube to allowthe decoration to be applied to it. Third, aggre-
gation types in the intermediate cube should not be changed compared to the original cube because further
aggregation must be allowed. These three requirements can be satisfied by choosing the proper level to roll up
to in the dimensionD to which the starting level of the decoration belongs. The remaining dimensions can roll
up to the same levels as the original GP. If there exists a level L referenced in the original GP, which belongs toD, the uppermost level inD is chosen, such that it is possible to roll up to bothL and the starting level of the
decoration. If the chosen level is notL, that is, if the new GP does not roll up to the same level as the original
GP, the aggregation type is not allowed to change, since further aggregation will be done by the original GP.
The bottom level ofD will always satisfy these requirements, and hence it is always possible to find such a
level. If no level referenced in the original GP belongs toD, the starting level of the decoration can be used,
provided that no aggregation types are changed. The measures in the new GP are the same as in the original
GP.

Example 6.5 Instead of the Purchases cube, consider a new cube Purchases2 where the usual EC dimension is
replaced with the dimension shown in Figure 7. In this dimension the relationship from EC to Type is assumed
to be non-strict.

Then�[Month;NoOfPins;ClassName ℄<SUM(Cost)>(ÆALL [Class;Class_Link;ClassName℄(Pur
hases2)) is equiva-
lent to�[Month;NoOfPins;ClassName ℄<SUM(Cost)>(ÆALL [Class;Class_Link;ClassName℄(�[Month;EC ℄<SUM(Cost)>(Pur
hases2))). Note that the new GP cannot roll up to Type because further aggre-
gation along that dimension would no longer be allowed. �
Rule 6.4 (Pushing Generalized Projection Below Decoration) The following holds :�[L℄<F (M)>(ÆS[Ls;link;xp℄(F))$ �[L℄<F (M)>(ÆS[Ls;link;xp℄(�[L0℄<F (M)>(F)))

whereL0 = fL 2 LjL =2 fLxp; Lxp;?g ^ L =2 Dim(Ls)g [ fLMaxg.
HereLMax is given by:
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T

Class NoOfPins

Type

EC

Figure 7: The new EC dimension with non-strictness between EC and Type.LMax = (Max(LMax) if Max(LMax) 2 L
MaxStrict(LMax) otherwise

whereLMax = fL 2 Dim(Ls)jL v Ls ^ 8L0 2 Dim(Ls)(L0 2 L ) L v L0)g
If Lxp is already present inF then it is preserved inL0.

Reasoning:The extra GP introduced on the right side, aggregates the cube to the same levels as the original
GP, except for the dimension to which the starting level belongs and possibly the decoration dimension. The
set of levelsL0, that the extra GP aggregates to, is constructed in such a way, that it is always possible to apply
the decoration operator afterwards. Furthermore,L0 is always possible to construct, since the bottom level of
the dimensionDim(Ls) is always present inLMax. Note that although the rule is explained in the left to right
direction it also holds in the opposite direction because ofthe wayL0 is constructed.

If the decoration has already been applied inF , it must be preserved inL0 because the decoration may
be anALL decoration that is rolled up to the decoration level. If the dimension is non-strict this means that it
cannot simply be aggregated away and added again by another decoration. Notice that preserving a decoration
in the new GP is correct even when the decoration dimension isnon-strict and the decoration is aggregated
away by the top GP. Consider first the situation where the decoration occuring inF is at the bottom level.
In that case the bottom level also occurs in the extra GP and hence, it performs no aggregation. The original
GP aggregates to the top level which does not prohibit further aggregation because it skips the non-strictness
between the bottom level and the decoration level. Thus, this situation is handled correctly. Now consider the
situation where the decoration occuring inF is at the decoration level. Then the decoration level occursin the
extra GP and hence, it performs no aggregation in the decoration dimension. The aggregation in the original
GP does indeed prohibit further aggregation, but this was also the case before introducing a new GP. Thus, this
situation is also handled correctly. �
6.2 Rules Involving Decoration and Selection

Selection commutes with decoration if the selection does not refer to the decoration or if the cube has already
been decorated with the same decoration.

Rule 6.5 (Commutativity of Selection and Decoration)The following holds if� does not refer toLxp orLxp;?, or if Lxp 2 L0 _ Lxp;? 2 L0:��(ÆS[L;link;xp℄(F))$ ÆS[L;link;xp℄(��(F))
where the schema forF isL0;M 0.
Reasoning:Decoration only affects one dimension and thus, the truth value of the predicate is only affected if
that dimension is mentioned in the predicate. Since decoration never changes the number of facts, references to
measures are allowed in the predicate. Notice that the condition is always satisfied in the right to left direction.
Also, observe that selections are constructed such that they never refer to the bottom level of a decoration (see
Section 5.4). �
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A decoration can be integrated into a predicate by creating amore complex predicate. This technique is
called inlining. If a predicate contains references to a level expression, anew predicate can be constructed
instead that contains only references to constants. In the general case the predicate can be very large, but for
many simple predicates and if the number of values is small, this is indeed a practical solution. This technique
is generally applicable and is explained in more detail in Section 9.2 and Appendix B, where the size of the
resulting predicate is also discussed.

Example 6.6 The predicateEC/Description = ’16-bit flip-flop’ can be transformed toEC IN (EC1234,
EC1235)because EC1234 and EC1235 has Description nodes equal to “16-bit flip-flop”. �

After inlining the decoration can be moved up above the selection using Rule 6.5 because it no longer refers
to the decoration.

Rule 6.6 (Inlining of Decoration in Selection) If the predicate� contains references to the level expressionE = L[S℄=link=xp, the following holds:��(ÆS[L;link;xp℄(F))$ ��xp(ÆS[L;link;xp℄(F))
where�xp no longer refers toE.
Reasoning:This is possible because the modified predicate is expressedin terms of constant values resulting
from evaluating the level expression instead of referring to the level expression directly. The transformation
technique is described in Appendix B. �
6.3 Rules Involving Selection and Generalized Projection

Selection and GP operations commute if the selection only refers to GROUP BY levels in the GP or to levels
above them.

Example 6.7 �[Month;EC ℄<SUM(Cost)>(�Year=2000(Pur
hases)) is equivalent to�Year=2000(�[Month;EC ℄<SUM(Cost)>(Pur
hases)) �
Rule 6.7 (Commutativity of Selection and Generalized Projection) The following holds if for each levelL
referenced in� there exists a levelL0 2 L such thatL0 v L:�[L℄<F (M)>(��(F))$ ��(�[L℄<F (M)>(F))
Reasoning:Since a single fact in the fact table will satisfy the selection predicate both before and after grouping,
exactly the same facts will be selected by the selection operation in the two cases. �

Although a GP cannot always be pushed below a selection, partof it can if the selection predicate does not
refer to measures. The way this is done is similar to Rule 6.4.The part that can be pushed below a selection
must allow the predicate to be evaluated and it must also be possible to roll up to the levels specified in the
original GP. In addition, the new GP may not roll up over a non-strict level relationship. This would prohibit
further aggregation in the original GP.

Example 6.8 Consider again the new Purchases cube Purchases2 containing the dimension in Figure 7.
The expression�[Class ;Country℄<SUM(Cost)>(�NoOfPins>16(Pur
hases2)) is equivalent to�[Class ;Country℄<SUM(Cost)>(�NoOfPins>16(�[EC ;Country℄<SUM(Cost)>(Pur
hases2)). Here, the new GP must

make it possible to roll up to both NoOfPins and Class. But since there is non-strictess between EC and Type
it can not roll up to the Type level because this would prohibit further aggregation to the Class level. �
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Rule 6.8 (Pushing Generalized Projection Below Selection)If a predicate� does not contain references to
any measures inM , then the following holds:�[L℄<F (M)>(��(F))$ �[L℄<F (M)>(��(�[L0℄<F (M)>(F)))

whereL0 = fLj8D 2 Dims(L; �)(L = MaxStrict(fL0j8L00 2 Levs(D;L; �)(L0 vD L00))g)g.
Reasoning:If a dimension value in a fact aggregated by the new GP satisfies the selection predicate then all
facts in the original cube that correspond to children of that dimension value will also satisfy the predicate.
Notice that this is only true because the aggregation is overa strict hierarchy. �

The above rules do not allow selections to be interchanged with GPs if the predicates contain references
to measures although it is possible to do this in some specialcases. For the transformation to be legal the GP
must not perform any aggregation. This is the case if allGROUP BY levels in the GP are already present in the
cube or result from a decoration. If a level is created by decoration (without any GP rolling the decoration up
in case ofALL decoration) then no measures are changed, since decorationadds a dimension without changing
the number of facts.

Rule 6.9 (Commutativity of Generalized Projection and Selection with References to Measures)Let L
andL0 be sets of levels such that8L 2 (L \ L0)(L = xp? for some decorationÆS[Ls;link;xp℄) andM andM 0
be sets of measures such thatM � M 0. Then the following holds if for each levelL referenced in� there
exists a levelL0 2 L such thatL0 v L:�[L℄<F (M)>(��(F))$ ��(�[L℄<F (M)>(F))
where the schema forF isL0;M 0.
Reasoning:Since the number of measure values do not change by applying the GP the same result is produced
by evaluating the selection before and after the GP is applied. �
6.4 Rules Involving a Single Operator

Decoration operators commute if one operator does not decorate the other.

Rule 6.10 (Commutativity of Decorations) Let L1[S1℄=link1=xp1 andL2[S2℄=link2=xp2 be level expres-
sions such thatL1 6= xp2. Then the following holds:ÆS1[L1;link1;xp1℄(ÆS2[L2;link2;xp2℄(F))! ÆS2[L2;link2;xp2℄(ÆS1[L1;link1;xp1℄(F))
Reasoning:Since dimensions in a cube are not ordered, the order of decorations is not important. �

A conjunctive selection can be split up in two selections andvice versa.

Rule 6.11 (Cascade of Selections)Let �1 and�2 be predicates. Then the following holds:��1^�2(F)$ ��1(��2(F))
Reasoning:Selection only affects tuples in the fact table. Such a tuplesatisfies the conjunctive predicate exactly
when it satisfies the first predicate and then the second predicate. �

Selection operators commute.
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Rule 6.12 (Commutativity of Selections)Let �1 and�2 be predicates. Then the following holds:��1(��2(F))$ ��2(��1(F))
Reasoning:Follows from Rule 6.11 and commutativity of conjunction. �

GPs can be split up if allGROUP BY levels and measures of the outer GP are also listed by the inner GP. In
addition, if the lower GP only performs a partial aggregation in some dimensions this may not result in further
aggregation being prohibited. Hence, the part of the dimension being aggregated over must be strict.

Rule 6.13 (Cascade of Generalized Projections)Let L andL0 be sets of levels such that8L 2 L(9L0 2L0(L0 v L ^ (L0 6= L ) L0 v MaxStrict(fL00jL00 2 Dim(L0)g)))) and letF (M) andF (M)0 be aggregate
functions applied to measures such thatF (M) � F (M)0. Then the following holds:�[L℄<F (M)>(�[L0℄<F (M)0>(F))$ �[L℄<F (M)>(F)
Reasoning:This holds because aggregate functions are assumed to be distributive and dimensions are strict,
i.e. summarizability is preserved. �

If a GP does not perform any aggregation on the cube to which itis applied, the GP can be removed.

Rule 6.14 (Redundant Generalized Projection)The following holds if the schema forF isL;M :�[L℄<F (M)>(F)$ F
Reasoning:No aggregation occurs in the GP since the same levels occur both before and after the GP is applied.
Note that this is only true because the fact table does not contain duplicates. �

If a decoration is applied to an identical decoration one of them can be removed.

Rule 6.15 (Cascade of Decorations)LetL[S℄=link=xp be a level expression. Then the following holds:ÆS[L;link;xp℄(ÆS[L;link;xp℄(F))$ ÆS[L;link;xp℄(F)
Reasoning:This follows from Theorem 6.1. �
6.5 High Level Rules

The rules presented above can be combined to high level rules. This is demonstrated by presenting a derived
rule which will be useful in Section 8.2.

Since a GP can be pushed below both decorations and selections, a single rule can do this across several
such operations.

Rule 6.16 (Pushing Generalized Projection Below Decorations and Selections)Let O1; : : : On be a set of
selection and decoration operators. If the selections do not refer to measures, the following holds:�[L℄<F (M)>(O1(: : : (On(F)) : : : ))$ �[L℄<F (M)>(O1(: : : (On(�[L0℄<F (M)>(F))) : : : ))
whereL0 is constructed by applying the definition ofL0 in Rule 6.4 or 6.8 consecutively for eachOi.
Reasoning:First, consider the left to right case. By applying Rule 6.4 and Rule 6.8 we get the following:�[L℄<F (M)>(O1(: : : (On(F)) : : : ))! �[L℄<F (M)>(O1(�[L1℄<F (M)>(: : : (On(�[Ln℄<F (M)>F)) : : : )))
If we look at a sub-sequence:�[Li�1℄<F (M)>(Oi(�[Li℄<F (M)>(: : : ))) there are two cases to consider:



7 Federation Architecture 31Oi = ÆS[L;link;xp℄: SinceLi is constructed from Rule 6.4, the starting level is contained in�[Li℄<F (M)>. Then
it follows from Rule 6.3, thatOi and�[Li℄<F (M)> can be swapped.Oi = ��: Then it follows from Rule 6.7, thatOi and�[Li℄<F (M)> can be swapped since� does not refer to
measures.

After Oi and�[Li℄<F (M)> has been swapped, we have the following sub-sequence:�[Li�1℄<F (M)>(�[Li℄<F (M)>(Oi(: : : ))). Then it follows from Rule 6.13, that�[Li℄<F (M)> can be removed. If
this procedure is repeated, starting from the sub-sequence�[Ln�2℄<F (M)>(On�1(�[Ln�1℄<F (M)>(: : : ))) and
up, then it follows that�[L℄<F (M)>(O1(�[L1℄<F (M)>(: : : (On(�[Ln℄<F (M)>F)) : : : )))!�[L℄<F (M)>(O1(: : : (On(�[L0℄<F (M)>(F))) : : : ))
Consider now the right to left case. Rule 6.3 always holds in the left to right direction, and Rule 6.7 holds in
the right to left direction because no selections refer to measures. Thus, we get the following:�[L℄<F (M)>(O1(: : : (On(�[L0℄<F (M)>(F))) : : : ))! �[L℄<F (M)>(�[L00℄<F (M)>(O1(: : : (On(F))) : : : ))
According to Rule 6.13 the second GP can now be removed, giving:�[L℄<F (M)>(�[L00℄<F (M)>(O1(: : : (On(F))) : : : ))! �[L℄<F (M)>(O1(: : : (On(F))) : : : )) �

The usefulness of this and the remaining rules presented in Table 2 will become clear in Section 8. Before
that, an overview of the federation architecture is given.

7 Federation Architecture

This section describes the architectural design of a prototype system supporting theSQLXM query language.
The system allows enumerated and natural links to be defined and used inSQLXM queries for decoration,
selection, and grouping. Three different semantics,ANY , ALL , andCONCAT, can be specified when using the
links, providing a flexible way to handle different cardinalities between dimension values and XML nodes. The
following sections (8-11) describe different aspects of the evaluation and optimization of queries in the system,
while Section 12 discusses implementation aspects and experimental studies.

Generally, current OLAP systems do not allow non-strict dimensions which is necessary to provide flexible
access to external data. Furthermore, creating dimensionsis often an expensive process requiring the cube to
be rebuilt, which makes it unfeasible to do this for each query. Some OLAP systems, such as MS Analysis
Services [TSC99], allow so-calledchanging dimensionsto be created, which do not require the cube to be fully
processed. However, a partial processing is still needed, making it unfeasible to do at query time. Furthermore,
non-strict dimensions are not allowed. Consequently, a different approach is taken here, that allows any OLAP
system to be used. The basic idea is to evaluate aSQLXM query by constructing and evaluating the OLAP
and XML queries separately, and combine the results of thesequeries using a temporary component. The
architecture is shown in Figure 8.

The key component is the Federation Manager, which processes SQLXM queries fed to it by the user
interface by fetching data from the OLAP and XML components.Intermediate interface components are in-
serted between the Federation Manager and the OLAP and XML components to make the Federation Manager
independent of the query languages used by these components. The Federation Manager uses three auxiliary
components to store meta data, link data, and temporary dataused in the evaluation of aSQLXM query, respec-
tively. The meta data component contains descriptions of the dimensions in the OLAP component, whereas the
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Figure 8: Overall architecture of the prototype supportingtheSQLXM query language.

link data component contains link specifications as described in Section 4. The temporary data component is
used for storing intermediate results during the processing of a query. All three auxiliary components assume
only an SQL interface. Whenever possible these components,in particular the temporary component, should
be placed on the same host as the OLAP component to minimize data transportation costs. However, this may
not always be possible if e.g. the federation and the OLAP component are managed by separate departments.

A relational DBMS is used for the temporary component because the final result can be computed by join-
ing the fact table resulting from the OLAP component query, and tables representing decoration data. As stated
in Definition 4.4 the result of a level expression is a set of (dimension value, decoration value) pairs, which is
easily represented in a table. Implementing the different semantics of level expressions is straightforward, as
this only differs in which values are inserted into the table. Also, the specialN/A value is easily handled by
using the left outer join operator when joining the fact table and the tables containing the decoration data. Since
NULL values are not legal dimension or decoration values, theNULL values introduced by the outer join can be
treated asN/A values without confusion.

A prototype based on the architecture in Figure 8 is currently being developed, which is described further
in Section 12. To give an overview of how aSQLXM query is evaluated in this architecture, we now present
a simple example showing the basic steps. A more detailed description of the evaluation process as well as a
discussion of heuristic optimization is presented in Section 8, while Section 9 discusses cost based optimization
techniques.

Example 7.1 A user poses the following query to theFederation Manager, which decorates Supplier with
SName:

SELECT SUM(Cost), Supplier, Class(EC), Supplier/Sup_Link/SName
FROM Purchases
GROUP BY Supplier, Class(EC), Supplier/Sup_Link/SName

As mentioned, the basic idea in evaluating such a query is to fetch data from the OLAP and XML compo-
nents, and then combine the results using the temporary component. The givenSQLXM query is analyzed and
component queries are constructed. In this case, the following OLAP component query is posed:

SELECT SUM(Cost), Supplier, Class(EC)
FROM Purchases
GROUP BY Supplier, Class(EC)

Note that only two dimensions are needed here, because the level being decorated (Supplier) must also be
present in the result. This would e.g. not be the case if the Month level was decorated instead. The fact table
resulting from this OLAP query is stored in the temporary component, and shown here:
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Cost Supplier Class
2940 S1 FF
6900 S3 FF
32050 S2 FF
9480 S3 L

We will refer to this table as “TempFactTable” in the following.
To fetch the data from the XML components, the givenSQLXM query is analyzed, and all unique level

expressions are identified. For each of these level expressions, XML component queries are constructed, and a
table representing the resulting (dimension value, decoration value) pairs is created in the temporary component.
In this case there is only one level expression: Supplier/Sup_Link/SName. Based on the definition of Sup_Link
in Example 4.1, the following component queries are constructed: /Components/Supplier[@SCode=’SU13’]/S-
Name and/Components/Supplier[@SCode=’SU15’]/SName. The first of these results in the decoration values
for S1, whereas the second one results in the decoration values forS3, according to the definition of Sup_Link.
Since no semantic modifier is given in the level expression, ANY semantics is assumed. Hence, one of the
resulting nodes of the first component query is paired withS1, and so on. This results in the following table
being added to the temporary component:

Supplier SName
S1 John’s ECs
S3 Jane’s ECs

We will refer to this table as “Supplier_SName” in the following.
The final step is to construct and evaluate a plain SQL query inthe temporary component combining the

data retrieved from the OLAP and XML components. In this case, no further selection or grouping is required,
but in general this can be necessary. The component data is combined using a left outer join operation, resulting
in the following SQL query being posed to the temporary component:

SELECT SUM(Cost)AS Cost, Supplier, Class, SName
FROM TempFactTableNATURAL LEFT OUTER JOINSupplier_SName

This query results in the following table, which is the resulting fact table of theSQLXM query:

Cost Supplier Class SName
2940 S1 FF John’s ECs
6900 S3 FF Jane’s ECs
32050 S2 FF NULL
9480 S3 L Jane’s ECs

Note that by using the left outer join operator, aNULL value is added where no decoration value is available.
TheseNULL values can be treated as the specialN/A value because no otherNULL values occur as dimension
or decoration values. �
8 Query Evaluation

The processing of aSQLXM query can be divided into three main tasks: Constructing andevaluating compo-
nent queries, retrieving and storing temporary data resulting from these queries, and processing temporary data
needed to produce the final result. The most significant way toimprove the total evaluation time of a federation
query will generally be to reduce the amount of temporary data. The benefits of this are several: It reduces
data transfer costs, the time it takes to store temporary data, and the time required to produce the final result.
Also, it will usually reduce the combined query processing time as the OLAP component generally performs
multidimensional queries faster than a relational DBMS. The transfer costs will be particularly significant if
temporary data is stored outside the OLAP component. Hence,a primary goal of our optimization efforts lies
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in reducing the amount of temporary data required to evaluate aSQLXM query. Because OLAP systems typi-
cally contain large amounts of data, this is particularly important for the OLAP component. Thus, queries are
evaluated by investigating how to split aSQLXM query tree into a part that can be evaluated entirely in the
OLAP component, and one that must be evaluated in the relational component because it involves XML data.
We refer to this splitting process aspartitioning the query tree. This partitioning is based on the transformation
rules described in Section 6 and will be discussed in detail in Section 8.2. The partitioned query tree is used to
create the component queries, as is discussed in Section 8.3. First, we present the architecture of theFederation
Managerand the steps involved in evaluating aSQLXM query.

8.1 Architectural Design of the Federation Manager

The architecture of the Federation Manager and a single Component Interface is shown in Figure 9.
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Figure 9: Architecture of the Federation Manager and a Component Interface.

When aSQLXM query is posed to the Federation Manager, it is parsed and transformed into a query tree
as described in Section 5.4. The next step in evaluating aSQLXM query is to transform, or partition, the initial
query tree into a form, where redundant operators are removed, and from which component queries can easily
be formed. The result of this is an OLAP component plan and a temporary component plan, jointly referred
to as aGlobal Plan. This task is handled by theQuery Decomposer, and is described in detail in Section 8.2.
After eliminating redundant decoration nodes, the retrieval of XML data can be started. Hence, theQuery
Decomposerdispatches a series of XML Component Plans to theExecution Enginewhich fetches the XML
data. In parallel with this, it invokes theGlobal Optimizerby passing on the global plan.

TheGlobal Optimizergenerates a number of different global plans by consideringthe use of cached inter-
mediate results, and by considering whether or not to inlineXML data into the OLAP component query. It then
chooses a global plan by considering the cost of each generated plan, and dispatches this plan to theExecution
Engine. Estimating the cost of a global plan is handled by theGlobal Cost Evaluator, which determines the
global cost by requesting cost information from each component interface. Cost based optimization and the
estimation of cost information is described in detail in Section 9 and 10, respectively.

TheExecution Enginehandles the execution of component queries. It either receives an XML component
plan, which is forwarded to the relevant component interface, or it receives a global query plan. From a global
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plan theExecution Engineforms an OLAP component query, and a temporary component query. It executes
the OLAP query to the OLAP component interface, and when the results of this query and the XML component
queries are available in the temporary component, it executes the temporary component query, and returns the
result. If the result of an XML query becomes available before it was anticipated and the OLAP query has not
yet been posed, the global plan is reconsidered. (Thus, acontinuously adaptive[AH00] approach is used.) The
construction of component queries is described in detail inSection 8.3. Upon completion of the component
queries, theExecution Engineinforms theCache Managerabout the intermediate results, that have been added
to the temporary component, during execution of theSQLXM query.

The Federation Manager also uses pre-fetching of intermediate results to increase query performance.
This is handled by thePre-fetcher. When the load of the system is low, thePre-fetcherexecutes a number
of component queries, and stores these intermediate results in the temporary component. It then informs the
Cache Managerabout these results, making them available for use in subsequentSQLXM queries. Pre-fetching
and caching is discussed further in Section 9.4.

Each Component Interface comprises aComponent Query Evaluator, aComponent Cost Evaluator, and a
Statistics Manager. By using theComponent Cost Evaluator, the Component Interface is able to perform some
cost based local query optimization before posing queries to the component. TheStatistics Managerobtains
and maintains statistical information about the component. Obtaining statistical information can be done in a
number of different ways, one of which is by using so-calledprobing queries. This technique is discussed in
Section 10.

After presenting the query evaluation and optimization techniques mentioned here, an overview of their
combined use in the federated system is provided in Section 11.

8.2 Partitioning Federation Queries

The main problem when considering global optimization ofSQLXM queries is how to determine which part
of a query can be evaluated in the OLAP component and which cannot. Let us for now assume that only the
part that does not refer to XML data can be evaluated in the OLAP component. In Section 9.2 we discuss how
to integrate XML data into the OLAP query, reducing the amount of data produced by the OLAP component.
This assumption leaves the problem of splitting, orpartitioning, the query tree described in Section 5.4 in two
parts, such that as much as possible of the query is evaluatedin the OLAP component.

In Figure 10 the entire partitioning process of a query tree is shown. In the figure,� refers to asequence
of decorations, and� to a sequenceof selections. Figure 10(a) represents the initial form of the query tree,
constructed as described in Section 5.4, whereas Figure 10(g) represents the general result of the partitioning.
The figures 10(b)-(f) represent intermediate steps of the partitioning algorithm, and will be discussed in detail
later. All operations from the bottom decoration and upwardmust be evaluated in the relational component since
it refers to XML data. Only the part below the bottom decoration can be evaluated in the OLAP component.
Thus, Figure 10(a) represents the query that retrieves the entire cube and evaluates the entire query in the
temporary component. To avoid this, we partition the query tree to the form shown in Figure 10(g) in such
a way, that the OLAP query will aggregate as much as possible,while still allowing the decorations to be
performed.

Example 8.1 In this example we assume that the Class level is linked to an AverageMonthlyPurchases node
and that the Year level is linked to an ExpectedPurchases node. These nodes are not part of the Components
document, but a budget.xml document. The structure of this document is indicated by the regular expression:
Budget(Class(@ClassCode, AverageMonthlyPurchases+,Year(@YearCode, ExpectedPurchases+)+)+)

Consider the partitioning of the query in Figure 11. Here, the selectionYear > 1995 and most of the
aggregation can be evaluated in the OLAP component, since itdoes not refer to XML data. The partitioned
query is shown in Figure 11(g). Again, the figures 11(b)-(f) represents intermediate steps and will be discussed
in detail later. �
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Although the heuristic approach of pushing as much towards the component as possible is often used, it is
not generally valid, as pointed out by [ROH99]. The reason for this, is that if joins are used, it may sometimes
result in more data being transferred between components and the federation manager. However, the heuristic
is valid in this case since the operations considered alwaysreduce the size of the result. Hence, letting the
OLAP component perform as much of the evaluation as possibleis optimal in this setting.

From the partitioned query tree an OLAP query, a number of XMLqueries, and a relational query working
on the temporary results are constructed. In many cases, theresult of the OLAP query will be comparable in size
to the result of the total query. This is true in the presumably common case where the referenced XML data is
linked to values that are already present in the result, suchas in Example 8.1. Certain exceptional queries, such
as comparing each measure value in the cube to XML data in theWHEREclause, can, of course, not generally be
evaluated efficiently, since the entire cube would have to betransferred to the temporary component. However,
this is not likely to be needed in practice. Notice that if there is noHAVING clause in the query, only the bottom
GP is present in the query tree. Also, note that the two GPs arealways identical, since the only purpose of the
top GP is to remove any decorations introduced above the bottom GP. Each of the following steps are explained
in general terms by referring to Figure 10, and the same stepsare demonstrated on the Example in Figure 11.

The partitioning is performed by applying the transformation rules in Section 6 directly or by applying
higher level rules derived from them. The partitioned querytree should satisfy two requirements: First, as much
of selections and GPs as is possible, by using the transformation rules, must occur below the bottom decoration.
Second, it should have a form, such that it is easy to construct the component queries. The following sections
present algorithms, which perform such a transformation, beginning with the overall algorithm.

8.2.1 The Overall Partitioning Algorithm

Algorithm 8.2.1 transforms a query tree on the form shown in Figure 10(a) to an equivalent query tree on the
form shown in Figure 10(g). We consider the non-trivial casewhere at least one decoration occurs in the query
tree. Pure OLAP queries issued to the federation can be identified at parse-time and passed on to the OLAP
component.

Algorithm 8.2.1 Partitioning a Query Tree

1 PartitionQueryTree(RootNode)
2 RemoveAndPushDecorations(RootNode, ;)
3 SplitSelections(RootNode)
4 LowerGP := FindLowerGP(RootNode)
5 PushGPDown(LowerGP.Child, LowerGP)
6 PushSelectionsDown(RootNode, ;)
7 RemoveRedundantGPs(RootNode)

The algorithm begins by removing redundant decorations andpushing them as far down the query tree as
possible. After this, selection nodes are split allowing them to be moved more freely. Then it is identified
to which levels the cube can be aggregated by pushing the lower GP down, followed by identifying which
selections can be made in the cube by pushing down selections. Finally, any redundant GPs are removed from
the query tree. Each function mentioned in lines 2-3 and 5-7 refers to the Algorithms 8.2.2-8.2.6 which are
discussed in the following sections. All of these algorithms only visit each node once. Hence, five traversals
are performed during partitioning. Although explained separately, these algorithms can to some extent be
combined such that fewer traversals are needed.

8.2.2 Removing and Pushing Decorations Down

Two important observations can be made about the occurrenceof decorations: First, only a single decoration is
necessary to evaluate a predicate which refers to decoration data. Second, the number of decorations (zero or
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one) occuring asGROUP BY levels in a GP is only important in the top GP. For other GPs, decorations can be
removed or added to improve efficiency. Hence, only the lowest occurrence of a particular decoration is needed.
Because decorations are implemented as joins, it is generally cheaper to perform a single decoration rather than
decorating, removing the decoration, and decorating again. Thus, the number of identical decorations should
be reduced to one as shown on Figure 10(b). This is generally possible by using the rules 6.1, 6.3, 6.5, and 6.10.

Example 8.2 Only the two lowest decorations are needed in Figure 11(a). The top occurrence ofÆALL [C;CL;A℄
can be removed using rules 6.1 and 6.10. The middle occurrence can be removed using Rule 6.5 and Rule 6.15.
The decorationÆALL [Y;Y L;E℄ can be moved down because of Rule 6.3 and Rule 6.5. �

Algorithm 8.2.2 removes all redundant decorations, and pushes all remaining decorations down to the base
cube. As it will become clear later, this makes it easier to identify to which levels it is possible to aggregate the
cube, as well as to identify which selections can be performed in the OLAP component.

Algorithm 8.2.2 Remove and Push Decorations

1 RemoveAndPushDecorations(Node, Decorations)
2 Case node of:
3 Æ :
4 Decorations := Decorations [ fNodeg
5 remove Node from query tree
6 � :
7 for all n 2 Decorations
8 if Rule 6.1 applies
9 remove n from Decorations

10 else // Rule 6.3 applies
11 change Node according to Rule 6.3
12 � :
13 // Rule 6.5 always applies. Do nothing.
14 Base :
15 for all n 2 Decorations
16 insert n above Node
17 return
18 RemoveAndPushDecorations(Node.Child, Decorations)

The algorithm for removing and pushing decorations is applied recursively on the tree beginning from the
root node. In addition to the current node, it takes a set of decorations as argument, in which decorations can
be stored temporarily. It follows from Rule 6.3 and 6.5, thatdecorations can always be pushed down the query
tree to the base cube. Hence, every time the algorithm sees a decoration it is kept for later reference (lines 3-5),
and finally inserted above the base cube (lines 14-17). SinceDecorations is a set, i.e. contains no duplicates,
redundant decorations are removed in lines 4-5 in accordance with Rule 6.15. When the algorithm encounters
a generalized projection it goes throughDecorations and for each decoration determines whether it can be
considered redundant (line 8) or whether it should be pusheddown below the generalized projection (lines
10-11). Note that Rule 6.3 always applies, as long as the generalized projection is changed accordingly (line
11). According to Rule 6.5, a decoration can always be pushedbelow a selection node. Hence, whenever the
algorithm encounters a selection node (lines 12-13)Node andDecorations are left unchanged.

8.2.3 Splitting Selections

Conjunctive selections are split using Rule 6.11 to be able to move them around more freely. Hence, a number
of new selections are present in Figure 10(c).

Example 8.3 The splitting of selections is shown in Figure 11(c). �
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Algorithm 8.2.3 Split Selections

1 SplitSelections(Node)
2 Case Node of:
3 � :
4 ListOfPredicates := SplitPredicate(Node.Predicate)
5 LastNode := Node.Parent
6 for all p’ 2 ListOfPredicates
7 create new �p0 with predicate p’
8 make �p0 child of LastNode
9 LastNode := �p0

10 make Node.Child child of LastNode
11 Base :
12 return
13 SplitSelections(Node.Child)

Algorithm 8.2.3 splits selection operator nodes recursively from the top node and down.
The algorithm for splitting selections takes aNode as input. Based on the type of this node (line 2) the

algorithm either returns (line 13) in case it is a base cube, or it splits one selection node into several selection
nodes (lines 3-10). The splitting is based on the functionSplitPredicate, which splits a conjunctive predicate
into its subparts. Each new predicate is used to create a new selection node, which is added to the query tree just
below the parent of the original node (lines 7-10). According to Rule 6.11, the original query tree is equivalent
to the query tree obtained by applying Algorithm 8.2.3 to theroot.

8.2.4 Pushing Generalized Projections Down

At this point in the partitioning algorithm, the query tree is on the form shown in Figure 10(c). That is, all
decorations are at the bottom of the query tree just above thebase federation. The next step is to push the lower
of the two generalized projections below all the decorations. It follows from Rule 6.16, that a GP can be pushed
below a number of selections and decorations. The result of this rule is the addition of a single GP at the bottom
of the query tree as shown in Figure 10(d). It is only necessary to use this procedure on the second GP, since
the two original GPs are identical except for any decorations introduced when moving decorations as described
in Algorithm 8.2.2.

Example 8.4 The result of using Rule 6.16 on the example is shown in Figure11(d). It can easily be seen that
the cube produced by the new GP is sufficient for applying the decorations and evaluating the selections above
it. �

Algorithm 8.2.4 identifies to which levels it is possible to aggregate the cube, while still allowing the above
decorations and selections to be made.

This algorithm is an implementation of Rule 6.16, and is again called recursively. The inputGP is the
generalized projection which should be inserted in the query tree just above the base cube. It is modified each
time it is pushed below a decoration (line 9) or a selection (line 5). If the generalized projection cannot be
pushed down to the base cube (lines 4-7), then no generalizedprojection is inserted at all. In that case, the only
way to compute the final result is by fetching all data from thecube, and then combine this with the external
data in the temporary component. Since Algorithm 8.2.4 should be called on the child of the lower GP, it is not
nessesary to handle the case whereNode is a GP.

8.2.5 Pushing Selections Down

After identifying to which levels the cube can be aggregated, the amount of data fetched from the cube is further
reduced by pushing selections down the query tree. Selections can be pushed down using the rules 6.5, 6.7, 6.9,
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Algorithm 8.2.4 Push Generalized Projection Down.

1 PushGPDown(Node, GP)
2 Case Node of:
3 � :
4 if � does not refer to measures
5 change GP according to Rule 6.8
6 else
7 return // GP is not inserted in the query tree
8 Æ :
9 change GP according to Rule 6.4

10 Base :
11 insert GP above Node
12 return
13 PushGPDown(Node.Child, GP)

and 6.12 thereby introducing selections below the bottom decoration. The selections that can be pushed below
the bottom decoration are those that do not refer to decorations or measures. An exception from this is that
selections containing references to measures but not decorations can be pushed down, if the entire GP was
pushed down to the bottom in the previous step. In that case, the measure values will be the same below the
bottom decoration but above the bottom GP. Hence, selections can occur both below and above the bottom
GP as shown in Figure 10(e). If the entire GP was pushed down, selections referring to both measures and
decorations can also be pushed below the middle GP, but not below the decorations. Thus,�5 will be empty.
Notice that selections that refer to decorations are placedin a single group above the decorations, as this eases
the construction of component queries.

Example 8.5 The result of pushing selections down is shown in Figure 11(e). Neither of the selections that
refer to measures can be pushed down to the bottom, since the bottom GP is different from the middle GP.
The selection that refers only to levels can be pushed down tothe base cube, while the one that refers only to a
decoration can be moved down to the decorations. �

Algorithm 8.2.5 pushes selection nodes as far down the querytree as possible.
The algorithm again traverses the query tree recursively. Whenever the input nodeNode is a selection

node, it is removed from the query tree and kept inSelections (lines 3-5), until it can be reinserted. The
reinsertion of selection nodes is done in four locations in the query tree, the first of which is right above the
middle GP (lines 16-18). The selection nodes inserted here,are those referring to measure values after grouping
has been done. Note that no nodes are inserted when the algorithm is invoked with the upper GP as an argument.
This is due to the fact, that at this point no selections have been removed from the query tree and placed in the
set ofSelections. The second location in which selection nodes are inserted into the query tree is right above
the uppermost decoration node. This is done whenever the algorithm is invoked with this decoration node
as an argument (lines 7-10). All selection nodes placed in the set ofSelections, which refer to decoration
data, are inserted and removed fromSelections. Hence, all selection nodes referring to decoration data are
inserted here, leaving all such nodes in one place in the query tree. Selection nodes which can be pushed below
decorations, but cannot be pushed below the lower GP, i.e., those nodes to which the rules mentioned in lines
13-14 do not apply, are inserted right above the lower GP. Finally, the remaining selection nodes inSelections
are reinserted right above the base cube (lines 19-21). Selections inserted here are those to which the rules
mentioned in lines 13-14 did apply, i.e. those that could be pushed below the lower GP.

8.2.6 Removing Redundant Generalized Projections

In special cases, the two GPs indicated in Figure 10(f) can beremoved after having pushed selections down.
First, if all selections in�5 has been pushed down, the middle GP can be removed. This is thecase if the entire
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Algorithm 8.2.5 Push Selections Down

1 PushSelectionsDown(Node, Selections)
2 Case Node of:
3 � :
4 add Node to Selections
5 remove Node from query tree
6 Æ :
7 for all n in Selections
8 if Node.RefersToDecoration
9 insert n above Node

10 remove n from Selections
11 � :
12 for all n in Selections
13 if Rule 6.7 applies or
14 Rule 6.9 applies or
15 // nodes can be swapped
16 else
17 insert n above Node
18 remove n from Selections
19 Base :
20 for all n in Selections
21 insert n above Node in query tree
22 return
23 PushSelectionsDown(Node.Child, Selections)

GP was pushed down to the bottom in Step 4. Second, if the GP that was pushed down to the bottom does not
perform any aggregation of the input federation, it can be removed. This is equivalent to not being able to push
the middle GP down and means that no aggregation can be performed in the OLAP component. The rules used
to remove the GPs are 6.13 and 6.14, respectively.

Example 8.6 None of the GPs can be removed in the example as indicated by Figure 11(f). �
Algorithm 8.2.6 checks whether either of the two rules can beapplied, and removes redundant GPs accord-

ingly.

Algorithm 8.2.6 Remove Redundant Generalized Projections

1 RemoveRedundantGPs(RootNode)
2 locate �Top, �middle and �Bottom
3 if �Top is equal to �middle
4 // Rule 6.13 applies
5 remove �middle from query tree
6 if �Bottom is equal to base cube
7 // Rule 6.14 applies
8 remove �Bottom from query tree

After the removal of redundant GPs the query tree can be partitioned into two parts. Everything below the
bottom decoration can be evaluated in the OLAP component, while the rest involves XML data and must be
evaluated in the temporary component. Hence, the query treecan be split as indicated in Figure 10(g). Notice
how the resulting query tree has a structure that makes it suitable for translation to component queries. This is
described in the next section.

Example 8.7 The partitioned query tree is shown in Figure 11(g). �
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8.3 Constructing Component Queries

After applying Algorithm 8.2.1 on the query tree, componentqueries can be constructed directly from the
tree. Specifically, it can be divided into two parts as indicated in Figure 10(g): The bottom part, which can be
translated toSQLM , and the upper part, which can be translated to a plain SQL statement. The formulation
of XML component queries is based on the decoration operators. In the following, we describe the component
query construction for each of the components.

8.3.1 Constructing the OLAP Query

The bottom part of the query tree in Figure 10(g) can be refinedto: ��7(�[L3℄<F (M3)>(��8(F))), where all
selections in each of the two� blocks have been combined to a single conjunctive selection.

From this aSQLM query is constructed:

SELECT F (M3), L3
FROM F
WHERE �8
GROUP BY L3
HAVING �7

where the predicates and levels are converted to the syntax of SQLM .

Example 8.8 From the bottom part of the query tree in Figure 11 the following SQLM query is constructed:

SELECT SUM(Cost),SUM(NoOfUnits), Class(EC), Month(Day)
FROM Purchases
WHERE Year(Day) > 1995
GROUP BY Class(EC), Month(Day)

The fact table of the resulting cube is referred to as “Purchases0” in the following examples. �
8.3.2 Constructing XML Queries

As mentioned in Section 7 each decoration operator results in a table of (dimension value, decoration value)
pairs being added to the temporary component. The XML queries that are needed to fetch the relevant data
from the XML components, depend on the type of link used in thelevel expression, and the query interface
offered by the XML component. For enumerated links, all dimension values may refer to different parts of an
XML document, possibly even in different documents. Hence,because of the high degree of flexibility offered
by enumerated links, in the worst case one XML query is neededper tuple in the enumerated link. Assuming
that an XPath query interface is available, then for each tuple (e, URI, locator) in the enumerated link, the
following XPath query is formed:locator/xp, wherexp is the XPath expression from the decoration operator.

For natural links, a node is identified for each dimension value by the locator part of the link specification.
Thus, an XML query must relate the node identified by the locator to the node identified by the user specified
XPath expression. Since XPath does not allow queries such as(base/locator, base/xp), a more powerful
language is needed to express this in a single query. Here, the query is given in XQuery [W3C01b], the current
W3C working draft for an XML query language.Base, locator andxp represent XPath expressions from the
level expression, andv1; : : : ; vk are the dimension values from the starting level or, possibly, the alias values:
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<Result>
LET $dimvalues = [<val>v1</val>...<val>vk</val>]
FOR $b IN base
FOR $l IN $b/locator
WHERE SOME $v IN $dimvalues SATISFIES $v.data() = $l.data()
RETURN
FOR $x IN $b/xp
RETURN
<ResultPair>$l, $x<ResultPair>

</Result>

For all base/locator nodes equal to one of the dimension values, a set of nodes is constructed. Each of
these nodes is a pair of the locator and all decoration nodes returned bybase/xp. If a large part of the base
nodes are retrieved using this technique, it will often be faster to fetchall the(locator, xp) pairs. This decision
is made from the estimated cost of performing each of these queries as is discussed further in Section 9.3
and 10.2.

If XPath is the only language available, then the general approach is to construct a query for each dimension
value in the starting level by combining the base and locatorparts with the user specified XPath expression.
Thus, a querybase[locator=e]/xp is constructed for each dimension valuee. Contrary to the use of enumerated
links, an extra meta data query is needed to retrieve the dimension values when using natural links.

Example 8.9 From the decoration operatorÆALL[Y ear;Y earLink;Expe
tedPur
hases℄, and the natural link (“Year”,
“www.comp-org.org/budget.xml”, “/Budget/Class/Year”, “ @YearCode”), the following XPath expressions are
formed:

/Budget/Class/Year[@YearCode=’2000’]/ExpectedPurchases
/Budget/Class/Year[@YearCode=’2001’]/ExpectedPurchases
/Budget/Class/Year[@YearCode=’2002’]/ExpectedPurchases �
Posing many XPath expressions will often be computationally expensive, but this can be avoided as is

discussed in Section 9.3.

8.3.3 Constructing the Relational Query

Let the result of theSQLM query beF 0, andTÆ1 ; : : : ; TÆk be relational tables that represent the results of
the XML component queries. EachTÆi has two columns, one for the starting level ofÆi and one for the
corresponding decoration values. Similarly, tablesTRU1 ; : : : ; TRUl are stored for each roll-up level mentioned
in the query, where eachTRUi has one column for a bottom level inF 0 and one for the corresponding roll-up
level.

The upper part of the query tree in Figure 10(g) can be refined to:�[L1℄<F (M)>(��5(�[L2℄<F (M)>(��6(ÆS1[L1;link1;xp1℄(: : : (ÆSk [Lk;linkk;xpk℄(F 0))))
where all selections in�5 and�6 are collapsed into�5 and�6, respectively.

From this a plain SQL query is constructed, based on the fact tableF 0 of the federationF 0:
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SELECT DISTINCTM;L1
FROM (SELECT F (M), L3

FROM F 0 NATURAL JOIN TRU1: : : NATURAL JOIN TRUl
NATURAL LEFT OUTER JOINTÆ1: : : NATURAL LEFT OUTER JOINTÆk

WHERE �6
GROUP BY L3
HAVING �5)

where the predicates are converted to SQL syntax andL3 = L1 [ fRU1; : : : ; RUlg [ fÆ1; : : : ; Ækg.
Notice that the roll-up and decoration columns are not removed by the aggregation, but is instead removed

by projection in the outerSELECT statement. This is necessary because otherwise duplicatedfacts introduced
by non-strict roll-up or decoration would be aggregated, producing a wrong result. Also, these may be needed
to evaluate theHAVING clause.

Example 8.10 From the top part of the query tree in Figure 11 the following SQL query is constructed:

SELECT DISTINCTCost, NoOfUnits, Class, Month, AverageMonthlyPurchases
FROM (SELECT SUM(Cost)AS Cost,SUM(NoOfUnits) AS NoOfUnits, Class, Month, Year,

AverageMonthlyPurchases, ExpectedPurchases
FROM Purchases’NATURAL JOIN Month_Year

NATURAL LEFT OUTER JOINYear_ExpectedPurchases
NATURAL LEFT OUTER JOINClass_AverageMonthlyPurchases

WHERE AverageMonthlyPurchases > 100AND ExpectedPurchases > 3000
GROUP BY Class, Month, Year, AverageMonthlyPurchases, ExpectedPurchases
HAVING SUM(Cost) > 50000AND AverageMonthlyPurchases <SUM(NoOfUnits)) �

Although the rule-based partitioning is sufficient to achieve good performance for the most common types
of queries, other queries may be expensive. This is true if none or little of the GP can be pushed below the
bottom decoration. However, in the next section cost based techniques are presented to optimize such queries
significantly.

9 Optimization Techniques

In this section we present a number of cost based optimization techniques that have been applied in the federated
system. As noted by [SL90] the high degree of flexibility offered by federated systems comes at the cost of
more difficult query optimization. The main reason for this is the lack of knowledge about the query processing
abilities of component data sources. Here, this is especially true for the XML components as they will often
reside on the Internet, where few or no assumptions can be made about the underlying data source and how
component queries are optimized. For instance, it may be difficult or impossible to determine important factors
like which access paths are available, which algorithms canbe used to execute operations, and which results
are pre-computed. Consequently, optimization can only be approximate and requires the use of techniques
such as probing queries [ZL96] to collect information needed for optimization. Although estimating costs is
difficult when only limited information is available, a number of cost based optimizations are described in this
section. Detailed cost models have been investigated before for both XML [MW99] and relational compontents
[DKS92]. Estimating costs for OLAP queries is related to theproblem of estimating the size of a cube as
described in [SDNR96]. The cost estimation is described in Section 10.

The optimization techniques considered here all give rise to significant performance improvements for
many common types of queries. One of these techniques is based on the idea of inlining external data in
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predicates as was briefly introduced in Section 6.2. This is discussed more extensively in Section 9.2. We
believe that the issue has not been investigated to this extent before, although the idea is briefly mentioned
in [PSGJ00] for certain simple types of predicates. Also important is the problem that it may not always
be possible to use the general XQuery approach to fetching decoration data from XML compontents as was
presented in Section 8.3. This is true if only simpler interfaces, such as XPath, are available. Due to the
flexibility of the linking mechanism used to combine OLAP andXML data, a large number of small queries
may be required in such a setting. However, techniques are presented here to retrieve XML data more efficiently
by combining several such queries into one, providing acceptable performance for many queries that would
otherwise be unfeasible. Also discussed in this section, are the well-known techniques caching and pre-fetching
of queries that has been adapted to this particular setting.

The optimization of federated queries in theSQLXM system is complicated by the fact that a typical XML
component used in the federation will reside on the Web, and thus it will usually have a very high degree of
autonomy. A lower degree of autonomy can be assumed for the OLAP and relational compontents as these will
typically be part of the same information system as the federation. On the other hand, the component types are
known in advance which allows optimizations that are not possible in more general purpose federations such
as Tsimmis [CGMH+94]. For example, semantic heterogeneity is handled explicitly by user-defined links and
hence, semantic transformation is not a concern. Also, the queries posed to XML components are always on a
special form which allows special kinds of optimization.

First, we present the general cost model for federation queries, and then we explain the optimization tech-
niques together with a refined cost model. An overview of the federated system, including these optimization
techniques is provided in Section 11.

9.1 A Cost Model for Federation Queries

The cost model used in the following is based on time estimates and incorporates both I/O, CPU, and network
costs. Because of the differences in data models and the degree of autonomy for the federation components,
the cost is estimated differently for each component. Here,we only present the highlevel cost model which
expresses the total cost of evaluating a federation query. The details of how these costs are determined for each
component are described in Section 10.

As discussed earlier, the OLAP and XML components can be accessed in parallel if no XML data is used
in the construction of OLAP queries. The case where XML datais used is discussed in the next section. The
retrieval of component data is followed by computation of the final result in the temporary component. Hence,
the total time for a federation query is the time for the slowest retrieval of data from the OLAP and XML
components plus the time for producing the final result. Thisis expressed in this basic cost formula considering
a single OLAP query andk XML queries:CostBasi
 = MAX (tOLAP ; tXML;1; : : : ; tXML;k) + tTemp
wheretOLAP is the total time it takes to evaluate the OLAP query,tXML;i is the total time it takes to evaluate
theith XML query, andtTemp is the total time it takes to produce the final result from the intermediate results.

9.2 Inlining Decoration Data in OLAP Queries

As discussed in Section 6.2, references to level expressions can be inlined in predicates thereby improving
performance considerably in many cases. Better performance can be achieved when selection predicates refer
to decorations of dimension values at a lower level than the level to which the cube is aggregated. If e.g. a
predicate refers to decorations of dimension values at the bottom level of some dimension, large amounts of
data may have to be transferred to the temporary component. Inlining level expressions may also be a good
idea if it results in a more selective predicate.
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As Example 6.6 illustrated, level expressions can be inlined compactly into some types of predicates. Even
though it is always possible to make this inlining (See Appendix B), the resulting predicate may sometimes
become very long. For predicates such as “EC/EC_Link/Manufacturer/MName = Supplier/Sup_Link/SName”,
where two level expressions are compared, this may be the case even for a moderate number of dimension
values. However, as long as predicates do not compare level expressions to measure values the predicate length
will never be more than quadratic in the number of dimension values. Furthermore, this is only the case when
two level expressions are compared. For all other types of predicates the length is linear in the number of
dimension values. (For details, see Appendix B.) Thus, whenpredicates are relatively simple or the number of
dimension values is small, this is indeed a practical solution. Very long predicates may degrade performance,
e.g. because parsing the query will be slower. However, a more important practical problem that can prevent
inlining, is the fact that almost all systems have an upper limit on the length of a query. For example, in many
systems the maximum length of an SQL query is about 8000 characters. Certain techniques can reduce the
length of a predicate. For instance, user defined sets of values (named sets) can be created in MDX and later
used in predicates. However, the resulting predicate may still be too long for a single query and not all systems
provide such facilities. A more general solution to the problem of very long predicates is to split a single
predicate into several shorter predicates and evaluate these in a number of queries. We refer to these individual
queries aspartial queries, whereas the single query is called thetotal query.

Example 9.1 Consider the predicate: “EC/Manufacturer/@MCode = Manufacturer(EC)”. The decoration data
for the level expression is retrieved from the XML document as explained in Section 7 resulting in the following
relationships between dimension values and decoration values:

EC Manufacturer/@MCode
EC1234 M31
EC1234 M33
EC1235 M32

Using this table, the predicate can be transformed to: “(Manufacturer(EC)IN (M31, M33)AND EC=’EC1234’)
OR (Manufacturer(EC)IN (M32) AND EC=’EC1235’)”. This predicate may be to long to actually be posed
and can then be split into: “Manufacturer(EC)IN (M31, M33) AND EC=’EC1234’ ” and “Manufacturer(EC)
IN (M32) AND EC=’EC1235’ ”. �

Of course, in general this approach entails a large overheadbecause of the extra queries. However, since
the query result may sometimes be reduced by orders of magnitude when inlining level expressions, being able
to do so can be essential in achieving acceptable performance. Because of the typically high cost of performing
extra queries, the cost model must be revised to reflect this.

The evaluation time of an OLAP query can be divided into threeparts: A constant query overhead that does
not depend on the particular query being evaluated, the timeit takes to evaluate the query, and the time it takes
to transfer data across the network, if necessary. The overhead is repeated for each query that is posed, while
the transfer time can be assumed not to depend on the number ofqueries as the total amount of data transferred
will be approximately the same whether a single query or manypartial queries are posed. The query evaluation
time will depend e.g. on the aggregation level and selectivity of any selections in a query. How these values are
determined, is described in Section 10.

The revised cost formula fork XML queries and a single total OLAP query that is split inton partial
OLAP queries is presented in the following. The cost formuladistinguishes between two types of XML query
results: Those that have been inlined in some predicate and those that have not been inlined in any predicate.
The estimated time it takes to retrieve these results is denoted bytXML;Int andtXML;NotInt , respectively. In the
formula let:� tMAXXML;NotInt be the maximum time it takes to evaluate some XML query for which the result is not inlined

in any predicate,
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some predicate,� tOLAP;OH be the constant overhead of performing OLAP queries,� tiOLAP;Eval be the time it takes to evaluate theith partial query,� tOLAP;Trans be the time it takes to transfer the result of the total query (or, equivalently, the combined
result of all partial queries).

Then the cost of a federation query is given by:Cost = MAX (tMAXXML;NotInt ; n � tOLAP;OH + nXi=1 tiOLAP;Eval + tOLAP;Trans + tMAXXML;Int) + tTemp
The cost formula is best explained with an example.

Example 9.2 In Figure 12, four XML queries are used, two of which are inlined in the OLAP query (XML3
and XML4). Hence, the OLAP query cannot be posed until the results of both these queries are returned.
The inlining makes the OLAP query too long and it is split intotwo partial queries as discussed above. In
parallel with this, the two other XML queries (XML1 and XML2) are processed. Thus, the final query to the
temporary component, which combines the intermediate component results, cannot be issued until the slowest
of the component queries has finished. In this case, the OLAP component finishes after XML1 and XML2, and
thus, the temporary query must wait for it. �

XML1

XML2

XML3

XML4

OLAP1 OLAP2

Temp

time

Figure 12: An example showing the total evaluation times forthe component queries required to evaluate a
single federation query.

The two OLAP queries are usually not issued one after anotheras shown in the figure, but in parallel.
Nevertheless, we made the assumption that the total evaluation time for a number of partial queries is close to
the sum of the individual evaluation times. However, since the partial queries can be evaluated in parallel, the
actual evaluation time will sometimes be shorter than that,e.g. due to the use of caching. The data used by
one query may cause some data used by another query to be available in the cache, depending on how the data
is stored in disk blocks. Working against this, is the fact that the partial queries will always work ondifferent
parts of data because of the way the predicates are constructed. Furthermore, the assumption is most accurate
for OLAP systems running on machines with only a single CPU and disk. For machines with multiple CPUs
and disks the maximum evaluation time for any partial query may provide a better estimate. Often the best
general estimate will be somewhere in between, and thus, an average value can be used. Also, the evaluation
time for the total query will sometimes provide a good estimate. It will always take longer than any partial
query, because the partial queries are more selective, and it will generally be faster than the sum of the partial
evaluation times, because optimization can be more effective when a single query is used. For example, a full
table scan may be the fastest way to find the answer to the totalquery, but by posing several partial queries
a number of index lookups may be used instead. Using the sum ofthe partial evaluation times will generally
be sufficiently accurate, because, as is further discussed in Section 10, we cannot assume to have detailed cost
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information available, and consequently, estimates can only be approximate. Which of these estimates is best
for a particular OLAP system can be specified as a tuning parameter to the federation.

Since any subset of the level expressions can be inlined in the OLAP query, the number of inlining strategies
is exponential in the number of level expressions. None of these can be disregarded simply by looking at the
type of predicate and estimated amount of XML data. Even a large number of OLAP queries each retrieving
a small amount of data may be faster than a few queries retrieving most or all of the stored data. Further
complicating the issue, is the fact that the choice of whether a particular level expression should be inlined may
depend on which other expressions are inlined. Consider e.g. two predicates that both refer to decorations of
values at a low level in the cube, and hence, require the retrieval of a large part of the cube. Inlining only one of
them may give only a small reduction in the OLAP result size, because the low level values must still be present
in the result to allow the other decoration to be performed. For the same reason, we cannot consider XML data
used for selection independently from XML data that are onlyused for decoration or grouping. Also, a level
expression that occurs multiple times in a predicate need not be inlined for all occurrences.

When adding a level expression to the set of inlined expressions, the total cost may increase or it may
decrease. An increase in cost can be caused by two things: TheOLAP query may have to wait longer for the
extra XML data, or more OLAP queries may be needed to hold the extra data. Any decrease in cost is caused by
a reduction in the size of the OLAP result, either because theselectivity of the predicate is reduced or because
a higher level of aggregation is possible. A smaller OLAP result may reduce both the OLAP evaluation time
and the temporary evaluation time.
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Figure 13: Top-down (a) and bottom-up (b) generation of inlining strategies for the four level expressions A, B,
C, and D. The numbers represent the cost of a strategy, and theoptimal solution is indicated by a dashed circle.

Even though there is an exponential number of inlining strategies, this will almost never be a problem, as
selections typically contain only a few level expressions.Thus, performing an exhaustive search is an adequate
solution to this problem. A few heuristics are used to reducethe search space even more: If a combination
of level expressions produces a cost that is much larger thanthe combinations previously generated, it is not
used to generate further combinations. For this to be a validheuristic, it is important to begin from the full
set of level expressions and remove each one iteratively until none are left. Using the opposite approach, i.e.
beginning from the empty set and add elements iteratively, the heuristic will sometimes fail. Consider e.g. the
two approaches shown in Figure 13, where each letter represents a level expression and the values shown for
some of the combinations represent costs. A top-down approach, beginning from the empty set of expressions,
is shown in Figure 13(a) and a bottom-up approach, beginningfrom the full set, in Figure 13(b). A heuristic
top-down approach ignores all combinations containing a certain level expression if it is very expensive to
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inline. For instance, all combinations containing B would be ignored in Figure 13(a). However, even though
an expression is much more expensive to inline than the otherexpressions, this may be compensated for by
a much higher level of aggregation in the OLAP query. This mayonly be achieved when the expensive level
expression is inlined together with other expressions as discussed above. Hence, the optimal cost, represented
by the dashed circle, may actually contain expression B, andconsequently, the top-down approach will fail to
find the optimal value. A bottom-up approach is less likely tofail because it first considers the strategy where
all expressions are inlined. Thus, if any combinations givea special reduction in the cost, this is taken into
account when selecting which combinations to disregard.

Certain situations may still cause the bottom-up approach to fail, but a refinement to the heuristic can often
prevent this. Consider the situation in Figure 13(b). Here,the optimal strategy may be skipped because all the
combinations leading to it are very expensive. This can onlyoccur if all the level expressions not in the optimal
strategy take very long time to evaluate or produce a high number of OLAP queries. In Figure 13(b), both
A and D would have to be very expensive. First, this makes it likely that the other combinations, which also
involve A or D, are expensive too. Second, the heuristic can be refined to handle this problem by identifying
when a single level expression causes a long waiting time or many OLAP queries.

The optimization approach can be summarized as follows: Generate all inlining strategies bottom-up except
for combinations with a very high cost. Thus, if the cost is high for a particular combination, no subsets of the
combination are considered. However, if the high cost is mainly caused by a single level expression, this
restriction does not apply and the subsets of the combination are considered anyway. What constitutes a “very
high cost”, is determined dynamically based on the number oflevel expressions. Thus, for only few expressions
almost all combinations are considered, whereas for more expressions the heuristic is used more aggresively.
This can be generalized to cope with a higher number of level expressions by choosing only a fixed number of
combinations at each level. This reduces the time complexity from exponential to quadratic in the number of
level expressions.

Although predicates in a query will typically contain only afew level expressions, a higher number is, of
course, possible. If the number of level expressionsn is too high, then the optimal solution cannot be found
within reasonable time. In fact, the problem of finding the minimal cost is NP-hard as will be shown in the
following. It is well known that finding the global minimum ofa complex cost function in a large search space
with a high number of local minima is NP-hard [SSV98]. In the following, we will useCost(S), whereS is a
set of level expressions, to mean the value of theCost function when inlining the expressions inS.

Theorem 9.1 Finding the global minimum of the cost functionCost is NP-hard.
Proof outline: (Proof by example)
Let S be a set of level expressions.Cost(S) is a local minimum if for all level expressionsxi =2 S andxj 2 S
the following is satisfied:Cost(S) < Cost(S [ fxig) andCost(S) < Cost(S n fxjg). Such situationscan
occur. Consider e.g. this example:� Inlining eachxi increases the number of OLAP queries without an equivalent reduction in the size of the

OLAP result.� All xj in S decorate the same level and thus, inlining only a subset of them prevents the cube from being
aggregated to a higher level.

Moreover, these local minima can exist independently of each other, e.g if there is no overlap between their
elements. Hence, a large number of minima can exist if the search space is large. �

A well known and relatively simple technique to find a good solution to this sort of problem isSimulated
Annealing[KGV83, IW87]. A Simulated Annealing algorithm attempts tofind the global minimum by con-
sidering only part of the search space, and behaves much likea greedy algorithm. However, with a certain
probability transitions to a state with a higher cost than the previous one are allowed, which enables the al-
gorithm to escape a local minimum. The propability with which these “up-hill moves” are allowed, decreases
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over time. As stated earlier, the search space will typically be small and hence, the application of techniques
such as Simulated Annealing to this specific optimization problem is outside the scope of this paper.

9.3 Optimizing XML Data Retrieval Through Limited Query Int erfaces

As explained in Section 8.3 a single XQuery query can be used to fetch all decoration data from each XML
component. However, such a highlevel query language cannotgenerally be assumed when data is accessed
over the Web, e.g. through a URI. Also, systems such as the Tamino XML Database currently only provides an
XPath-like interface [AG01b]. The XPath language is sufficient for applications such as in theSQLXM syntax,
where it provides a compact and simple way to identify nodes in an XML document, but the language exhibits
great limitations when used for querying data sources [BC00]. In this section, we investigate methods for
retrieving decoration data efficiently when only an XPath interface is available. Although we focus on XPath,
the optimization methods presented here can easily be applied to other comparable languages like e.g. XQL
[RLS98]. A related problem is investigated in [GMY99] whichconsiders queries through limited interfaces.
These interfaces may e.g. require certain data values to be specified in the query in order to retrieve the result.

Having only an XPath interface, decoration data can be fetched by posing a query for each dimension value
as described in Section 8.3. If the XML component is specifically optimized for this and the primary perfor-
mance bottleneck is the transfer of result data, this methodmay provide acceptable performance. However, in
general the overhead of transferring, parsing and evaluating a large number of queries will be too expensive. A
general technique to reduce this cost is to combine groups ofqueries into a single query. For instance, a number
of queries each containing a predicate can sometimes be combined to a single query containing the disjunction
of the predicates. The result of this combined query will then have to be split up locally. Consider e.g. the
following example:

Example 9.3 Recall the definition of EC_link in Example 4.2. The XML data for the level expression
“EC[ALL]/EC_link/Description” can be retrieved by issuing these three XPath expressions:

/Components/Supplier/Class/Component[@CompCode = ‘EC1234’]/Description
/Components/Supplier/Class/Component[@CompCode = ‘EC1235’]/Description
/Components/Supplier/Class/Component[@CompCode = ‘EC2345’]/Description
These expressions can be combined into a single expression retrieving the Description nodes:

/Components/Supplier/Class/Component[@CompCode = ‘EC1234’ OR @CompCode = ‘EC1235’ OR @Com-
pCode = ‘EC2345’]/Description. �

The problem with this approach is that the resulting nodes cannot always be distinguished in the result. For
this to be possible, both the locator and the user defined XPath expression must be present. This is necessary
because according to the XPath Recommendation [W3C99] the result of an XPath expression is anunordered
collection of nodes, and hence, there is no way to identify each decoration node, except by using the locator.
Furthermore, an XPath expression cannot change the structure of a document, but only return a set of existing
nodes from it. Consequently, the result of an expression canonly containentire nodes and not partial nodes.
Thus, to maintain the relationship between the locator and the user defined XPath expression, their common
parent node must be retrieved in its entirety.

Example 9.4 Considering the Components document, a single XPath expression cannot fetch only the Comp-
Code and Description children providing a result such as:

<Component CompCode="EC1235">
<Description>16-bit flip-flop</Description>

</Component>

It is possible to fetch only the CompCode and Description nodes using an expression such as/Compo-
nents/Supplier/Class/Component/@CompCode j /Components/Supplier/Class/Component/Description. How-
ever, the result contains only an unordered set of CompCode and Description nodes that cannot be used to
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determine which pairs of nodes belong together. Thus, the entire Component nodes including all children must
be fetched instead of just the Description nodes using the expression/Components/Supplier/Class/Compo-
nent[@CompCode = ‘EC1234’ OR @CompCode = ‘EC1235’ OR @CompCode = ‘EC2345’]. The Description
nodes can then be matched with their corresponding CompCodenodes by applying three expressions locally,
each similar to this:/Component[@CompCode = ‘EC1234’]/Description. This means that instead of using three
expressions to retrieve the Description nodes, a single expression is used to retrieve the Component nodes.
Notice that if the CompCode attribute were part of the Description node or if the entire Component nodes were
needed, no additional data would be fetched. �

This example illustrates that combining multiple expressions may result in the retrieval of extra data. Still,
this approach may be much faster than evaluating each expression individually. In fact, it may be advantageous
to combine multiple expressions even if this means retrieving much more data. For example, a large part or even
the whole document can be fetched and queried locally. The choice between evaluating many small expressions
and combining the expressions, possibly retrieving too much data, is decided by comparing the estimated cost
of each strategy. Details of how to estimate the cost of an XPath expression is presented in Section 10.2.

The strategy of combining XPath expressions is valid for both enumerated and natural links. However,
because XPath expressions constructed from a natural link is always on the special form discussed in Section 4
and in the example above, creating a combined expression is straightforward compared to the general case.
For enumerated links the high degree of flexibility means that each dimension value may be associated with a
unique XPath expression. In the worst case each expression refers to a unique XML document. However, this
is unlikely to occur in practice, and it will usually be possible to combine most of the expressions.

Example 9.5 Assume that the manufacturer codes were not present in the Components document. Then the
enumerated link Manuf_link could be defined as:f(“M31”, “components.xml”, “/Components/Supplier[@SCo-
de=’SU13’]/Class/Component[@CompCode=’EC1234’]/Manufacturer”); (“M32”,“components.xml”, “/Compo-
nents/Supplier/Class/Component[@CompCode=’EC1235’]/Manufacturer”)g. In order to retrieve the decora-
tion data for the level expression Manufacturer[ALL]/Manuf_link/MName these two XPath expressions could
be used individually:/Components/Supplier[@SCode=’SU13’]/Class/Component[@CompCode=’EC1234’]/Ma-
nufacturer/MName and/Components/Supplier/Class/Component[@CompCode=’EC1235’]/Manufacturer/MNa-
me.

The two expressions cannot simply be combined by creating a disjunctive predicate. In this case, the entire
Supplier nodes must be retrieved, because the second XPath expression does not select any particular Supplier
nodes. �

The following algorithm combines a set of XPath expressionsXP to a single expression that may retrieve
additional data compared to evaluating the individual expressions. For simplicity the expressions are assumed
to be on the form=node1[predi
ate1℄=node2[predi
ate2℄= : : : =nodek[predi
atek℄, that is, without any wild-
cards, shorthand notations or union expressions, and allowing only downwards movement in the XML tree.
Recall that, a (location)stepof an XPath expression is the element name selected between each pair of “/”.

Algorithm 9.3.1 Combine XPath Expressions
1 CombineXPathExpressions(XP, StepNo)
2 Step := GetNextStep(xp1, StepNo)
3 for all xpi 2 XP:
4 Stepi := GetNextStep(xpi, StepNo)
5 if Stepi 6= Step or Stepi contains a predicate then Done := true
6 if Done then return CommonPredicate(XP, StepNo)
7 else return Concat(Step, CombineXPathExpressions(XP, StepNo+1))

Algorithm 9.3.1 combines all XPath expressions inXP into a single expression. The function Common-
Predicate combines the predicates at the same step of a number of XPath expressions, e.g. by creating the
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disjunction of the predicates.
Given a set of XPath expressions, any subset of these can be combined resulting in more than one expres-

sion. Hence, there is an exponential number of ways to combine the expressions, one of which may be faster
than the other. Providing a general algorithm for finding an optimal or good solution to this problem is outside
the scope of this paper. Instead, we simply estimate the costfor three situations: When evaluating the expres-
sionsindividually, when combiningall expressionsreferring to the same document, and when combining all
expressions with predicates at thesame location step. The latter is done using a slightly modified version of
Algorithm 9.3.1. Although not an optimal solution, this avoids evaluating many expressions if the overhead of
doing so is very high, and also avoids retrieving too much data if the data transfer rate is low.

To summarize, three different strategies are used when evaluating a set of XPath expressions resulting
from a level expression: combining none, some, or all of the expressions using Algorithm 9.3.1. If the level
expression is based on a natural link, it is always possible to combine all the expressions which typically
produces a low overhead expression because of the way these links are defined. If it is based on an enumerated
link, combining all expressions to a single expression may retrieve all or a large part of the document. Hence,
we also consider the situation where only expressions having predicates at the same location step are combined.
For each of these three strategies, the total evaluation cost is estimated and the cheapest one is used.

9.4 Caching and Pre-fetching

Another technique that can significantly reduce the total query evaluation time is caching. Two types of results
should be considered for caching: Results of complete federation queries as produced by the temporary com-
ponent and intermediate results produced by the OLAP and XMLcomponents. In this section we discuss how
and when to use cached data for these types of results. Because of the potentially large performance gains that
can be achieved by storing results locally, it will often be agood idea to pre-fetch certain data that are likely to
be needed. The main question regarding pre-fetching is whatdata to fetch, which is discussed briefly. We will
begin by looking at caching of intermediate results.

Basically, caching results of OLAP queries is done by keeping the otherwise temporary tables that are
created in the temporary component. Associated with each such table is the part of the query tree that produced
the table. Given a new query tree, it is determined whether the cached result is identical to or can be used to
produce the new result. When this is the case, the cost of using the cached result is compared to the cost of not
using it. If the query that produced the cached result is identical to the new query, it will always be cheaper to
use the cache. However, if e.g. extensive aggregation is needed on the cached result to produce the final result,
it may be cheaper to fetch a possibly pre-aggregated result from the OLAP component.

Determining whether a cached result can be used to produce a new result must be done efficiently since a
large cache may hold many different results. This is done by performing a few simple tests on the query tree
corresponding to each cached result. Consider the two querytreesQC andQU in Figure 14(a), representing
thecachedand theuserquery, respectively. If the cached result can be used to produce the needed result thenQU must be expressible in terms ofQC . The tests discussed next will determine whether this is possible, but
let us first see how the final query is constructed in the non-trivial case whereQU andQC are not identical. (By
identical we mean that they contain the same operations, disregarding the order of selections in each� block.)QC must form the bottom part of thenewqueryQN that is constructed fromQU , and the part ofQU
that restricts the result further must be applied to this bottom part. The resulting queryQN is also shown in
Figure 14(a). Two observations can be made here. First, the selections in�U;2 are divided into two groups:
Those that can be pushed below�C and those that cannot. The first group must contain all selections in�C;2,
while the latter must contain all the selections in�C;1. Any remaining selections are placed above�C;1 in �N .
Second, we see that�U;1 is preserved at the top. This is always the case because only selections that cannot be
pushed below the GP are left above it as described in Section 8.2.

The transformation ofQU toQN is possible if the following three requirements are all satisfied:

1. CC = CU . The component cubes must be the same.
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Figure 14: Determining when a cached result can be used for OLAP queries and federation queries.

2. Let�C = �[LC ℄<F (MC)> and�U = �[LU ℄<F (MU )>. ThenLC � LU ^MC � MU must be satisfied.
This is necessary because it must be possible to roll up fromQC to QU . Furthermore, the roll-up from
the levels inCC toLC must be strict, since it should be legal to roll further up toLU .

3. �C;2 � �U;2 and all� 2 �U;2n�C;2 can be pulled above�C . The remaining selections must contain�C;1, i.e.�C;1 � �U;2n�C;2. This leaves�N = (�U;2n�C;2)n�C;1, which is performed in the temporary
component.

All these requirements can be tested efficiently because no transformations need to be done on either of the
trees. Only simple comparisons of the operations are performed and the number of comparisons is quadratic in
the number of selections, typically for only a few selections.

Intermediate XML results can also be cached, either by storing the temporary tables relating dimension
values and decoration values, or by storing the XML nodes that are retrieved. The benefit of storing the unpro-
cessed XML data is that too much data may have been retrieved as described in Section 9.3 and this extra data
may be requested at a later time. However, the decoration data must be processed and stored in a table each time
it is used, which is avoided if the decoration tables are retained. This local processing can be expected to be
much faster than retrieving the decoration data from its source and the performance gain will still be significant
by storing the raw XML data. Hence, this approach is used if temporary data storage is scarce, otherwise, both
approaches are used. For each cached XML result the corresponding query is stored. By comparing this query
with the user query, it can be determined whether the cached result can be used. This comparison is very similar
to the one performed in Algorithm 9.3.1.

If only limited storage is available for caching, it may be necessary to choose between caching of OLAP
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data and caching of XML data. Which of these choices providesthe best performance depends e.g. on the
amount of data, the communication delay, and whether or not the temporary component is located on the same
server as the OLAP component. Thus, no general rule can be made about which is better, but this must be
decided for each component e.g. by the DBA.

Caching of entire federation queries can potentially provide a larger performance gain in case of a cache
hit than caching of intermediate queries. However, an intermediate result can be used in different federation
queries and is more likely to be useful than that of an entire query. Also, it is more expensive to determine
whether a cached result of an entire query can be used to produce the result of another query. As for OLAP
queries, the optimal solution to this problem is to decide whether the incoming query can be transformed such
that the cached query constitutes the bottom part of it. However, there are no simple list of requirements that can
be tested to determine exactly when this is possible. Simplerequirements can be listed to identify some special
situations where it is possible, though, and still achieve significantly better than requiring the two trees to be
identical. Because of the time overhead of comparing entirequeries, and because computing the final result
from the intermediate component results will typically notbe a performance bottleneck, we do not cache entire
federation queries. Hence, it is out of this paper’s scope tomake a complete analysis of these requirements.
Instead, we present a few heuristics to illustrate the idea.

Consider the two queriesQC andQU in Figure 14(b). One way to loosen the requirement that the trees
should be identical, is to say thatQU is allowed to contain selections that are not inQC , but only if they can be
pulled above�C;1. The result of this is queryQN1 shown in Figure 14(b). If this is possible the selection only
refers to levels in�C;1 and hence, it can also be pulled over all GPs below�C;1, as well as any decorations.
Since a selection can always be pulled above other selections, it is sufficient to compare the extra selections to�C;1. Extra decorations inQU can also be pulled above�C;1 if they are notALL decorations and are not used
in selections. This situation is illustrated by queryQN2 in Figure 14(b).

All cached results expire after a certain time. This time depends on the specific type of data and can be
specified as a tuning parameter by the DBA or, for XML components, by the creator of a link. When the cache
fills up, aleast recently usedreplacement strategy is used.

Because retrieving data over a network will often be a bottleneck in the federation, pre-fetching relevant
component data and storing it locally can improve performance considerably. The central question is what to
fetch. Entire federation queries can be pre-fetched, but unless the same or very similar queries are asked repeat-
edly, keeping a store of results is not likely to provide manyhits. Also, the same difficulties as described above
for caching apply here. Consequently, we do not pre-fetch entire federation queries. Pre-fetching component
data is more likely to result in a high hit-rate, because the same data can be used in many different federation
queries. OLAP data can be pre-fetched in different roll-up combinations and used like cached results. Statis-
tics, about which combinations of levels are most often usedin queries, are used to select which combinations
should be pre-fetched. How to obtain these statistics is discussed further in Section 10.1. For XML compo-
nents, the entire subtrees pointed to by links can be retrieved in advance on a periodical basis. This means
that all decoration data will be available locally and may improve performance significantly if access to XML
components is slow. If only limited temporary storage is available, decoration data is retrieved for only the
most frequently used links. A more sophisticated strategy could also take the access times of XML components
into account.

It may also be a good idea to retrieve additional data during the evaluation of a federation query if this
improves the likelihood that the data can be reused later. Hence, if the selectivity for an OLAP or XML query
is estimated to be more than 20%, we retrieve the data withoutperforming selection. This may reduce the future
response times significantly at only a small extra cost. The estimation of selectivity is discussed in Section 10.1.

In summary, we perform caching and pre-fetching for component queries only. Intermediate OLAP results
stored in temporary tables as well as raw XML data are kept fora certain amount of time, which can specified as
a tuning parameter. If adequate storage is available, temporary XML tables are also stored to avoid constructing
the same tables again. Currently, we do not cache or pre-fetch entire federation queries. Aleast recently used
replacement strategy is used. As will be described in Section 12, experiments indicate that large cost reductions



10 Determining Cost Parameters 55

can be achieved using these techniques.

10 Determining Cost Parameters

This section describes the estimation of the cost parameters that were used in the cost formulas in Section 9.2.
This cost information is collected by theStatistics Managerand used by the cost evaluators in Figure 9.

The amount of cost information available to the federation may vary between federation components. Du et
al. [DKS92] distinguish between three types of federation components:Proprietary, where all cost information
is available to the federation,Conforming, where the component DBMS provides the basic cost statistics, but
not full information about the cost functions used, and finally, Non-Conforming, where no cost information
is available. Usually, only the DBMS vendor has full access to all cost information, and hence, we consider
only conforming and non-conforming components here. A primary motivation for the federation of OLAP
and XML components is to provide easy access from e.g. a corporate OLAP database to XML data available
from restricted sources such as the Internet. Thus, a high degree of autonomy must be expected for XML
components, while OLAP components may or may not provide access to cost information. Because of this,
we assume in the following that the OLAP component is either conforming or non-conforming, while the
XML components are non-conforming. The temporary component used by the federation is assumed to be a
conforming component.

Several techniques have been used in the past for acquiring cost information from federation components.
A commonly used technique isquery probing[ZL96] where special queries, calledprobing queries, are used to
determine cost parameters. For proprietary or conforming components, cost data, such as selectivities and data
cardinalities, can simply be fetched from the available meta data. If this information is not available, probing
queries can instead retrieve samples of the component data.Typical information that can be determined in this
way includes maximum and minimum values, cardinalities, and data element sizes as well as the time required
to evaluate the probing query. In general the latter type of queries will provide less accurate information than
when it is gathered from the component’s own statistical data. Adaptive cost estimation[LTD95] is used to
enhance the quality of cost information based on the actual evaulation costs of user queries.

Because different requirements and difficulties are exhibited by the three types of components (OLAP,
XML, and relational) different techniques are used to determine their cost information. Hence, the presentation
of cost parameters is divided into three sections corresponding to each of the three component types.

10.1 Determining OLAP Cost Parameters

As described earlier the cost of an OLAP query comprises a constant query overhead that does not depend on
the particular query being evaluated, the time it takes to actually evaluate the query, and the time it takes to
transfer data across the network if necessary:tOLAP = tOLAP;OH + tOLAP;Eval + tOLAP;Trans

The statistical information that is needed to estimate these parameters, may be available from the OLAP
component’s meta data, in which case it is used directly. However, if such data is not available, we use probing
queries to determine the statistical information and continuously update it by measuring the actual cost of all
queries posed to the components. The probing queries are allrelatively inexpensive and can be posed when the
system load is low, and the overhead of adapting the cost information to the actual costs is insignificant. Hence,
these methods introduce little overhead on the federated system.

In the following, we explain how the cost parameters are estimated given an OLAP query by using probing
queries, and how to adapt the cost information when the actual cost of a query is found. We do not explicitly
consider the use of existing statistical information as this depends very much on the specific DBMS and is
similar to the use of information determined using probing.More specifically, we describe the statistical infor-
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mation that the estimation is based on and how it is obtained,how the three cost parameters are estimated using
this information, and how the information is updated.

10.1.1 Statistical Information

The estimation of cost parameters is based on statistical information represented by the functions shown in
Table 3.

Function DescriptionNetworkDataRate(C) The rate with which data can be transferred from cubeC to the temporary
componentDiskDataRate(C) The rate with which data can be read from disk for cubeCSele
tivity(�; C) The selectivity of predicate� evaluated on cubeCFa
tSize(M) The size of measuresMRollUpFra
tion(L; C) The relative reduction in size when rolling cubeC up to levelsLSize(C) The size of cubeCEvalTime(Q) The time for evaluating queryQ

Table 3: Statistical functions used to determine OLAP cost parameters.

These functions are explained in the following:NetworkDataRate(C): This function returns the rate with which data can be transferred from cubeC to the
temporary component if this is not located on the same serveras the OLAP component. This is estimated
by posing a probing query toC. The result is measured in size and timed from when the first result
tuple is received until the last result tuple is received. The data rate can then be approximated from the
measured size and time.DiskDataRate(C): This function returns the rate with which data can be read from disk for cubeC. This can
be estimated by posing a probing query that retrieves a part of the base cube and measuring the size of the
result as well as the total query evaluation time:DiskDataRate(C) = Size(QProbe(C))tQProbe�tOLAP;OH�tOLAP;Trans;QProbe .

By subtracting the constant query overhead and the estimated transfer cost, which will be described later,
only the evaluation time is left. The assumption is that a large part of the evaluation time for a query that
retrieves data from the base cube is spent reading the resultdata from disk. Because indexes are typically
used to locate such data, little additional data is read fromdisk.Sele
tivity(�; C): This function returns the fraction of the total size ofC that is selected by�. This is esti-
mated using standard methods, i.e. by assuming a uniform distribution, and by considering cardinality,
minimum and maximum values of the involved attributes[EN00]. E.g., if � = \Level � k00, wherek
is a constant, the selectivity of� can be estimated bySele
tivity(�; C) = k�min(Level)max(level)�min(Level) . (Often
the smallest/largest but one is used to ignore extreme values.) If information about cardinality, minimum
and maximum values is not available, it is obtained by posingprobing queries that explicitly request this
information.Fa
tSize(M): This function returns the size in bytes of a fact containing only values for the measures inM .
This is based on the average size of a measure value which is determined from a single probing query.Fa
tSize(C) is used to refer to the size of a fact containing all measures inC.RollUpFra
tion(L; C): This function returns the fraction to whichC is reduced in size, when it is rolled
up to the levelsL. Shukla et al. [SDNR96] propose three different techniquesto estimate the size of
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multidimensional aggregates without actually computing the aggregates: One is based on the assumption
that facts are distributed uniformly in the cube and does notconsider the actual contents of the cube, one
performs the aggregation on samples of the cube data and extrapolates to the full cube size, and one scans
the entire cube to produce a more precise estimate. Here we use the first method because of its simplicity
and speed, and because experimental results in [SDNR96] show that it performs well even when facts are
distributed rather non-uniformly.

Using this method, the size of an aggregated result is given by the following standard formula for comput-
ing the number of distinct elementsd obtained when drawingr elements from a multiset ofn elements:d = n � n(1 � 1n)r. Given a GP�[L℄;<F (M)>(C) we can then estimate the size of the result lettingn = kL1�L2� � � � �Lkk for all Li 2 L andr be the number of facts inC, i.e.r = Size(C)Fa
tSize(C) . Hence,RollUpFra
tion(L; C) = dr .Size(C): This function returns an estimated size ofC, whereC may be a cube resulting from an OLAP query,
denoted asC = Q(C 0). The size ofQ(C 0) depends on the selectivity of the predicates included in the
query, and to which levels the cube is rolled up. This leads tothe following:Size(Q(C 0)) = 8><>:Sele
tivity(�; C 0) � Size(Q0(C 0)) if Q = ��(Q0)RollUpFra
tion(L; C 0) � Fa
tSize(M)Fa
tSize(C) � Size(Q0(C 0)) if Q = �[L℄;<F (M)>(Q0)

Size of fact table ifQ(C 0) is the base cube.EvalTime(Q): This function returns the estimated time it takes to evaluate the queryQ in the OLAP compo-
nent. OLAP components often use pre-aggregation to enable fast response times. Hence, the evaluation
of a query can be divided into three strategies, the choice ofwhich is determined by which aggregations
are available in the cube. The cost of each of these strategies are discussed in the following. We first
present the general formulas that may be used to calculate the evaluation time of an OLAP query, and
then we describe how they are used and when they are applicable.

First, a pre-aggregated result may be available that rolls up to the same levels as the query being evaluated.
In that case, the evaluation of the query reduces to a simple lookup. Assuming that proper indexes are
available on dimension values, any selections referring todimension values in the aggregated result can
be evaluated using these indexes. This means that the evaluation time of such a query can be assumed
to be directly proportional to the combined selectivity of selections in the query and to the size of the
pre-aggregated result. However, such a pre-aggregated result can only be used if it is available and if no
selection refers to measures in the unaggregated cube or to levels that has been aggregated away in the
pre-aggregated result.

If these requirements are not satisfied, the cube may follow asecond strategy, in which no pre-aggregated
results are used. Instead, the query is computed entirely from the base cube. The cost of this computation
depends, of course, on the algorithms implemented in the DBMS, but a simplified cost formula is used,
that reflects the evaluation capabilities of many OLAP databases. As above, we assume that selections
can be evaluated efficiently by use of proper indexing. Hence, any selections in the query that refers to
levels in the cube can be evaluated while accessing the cube,such that only facts that satisfy the selection
predicates are read from disk. Let this data amount be denoted byd. Any selections that refer to measures
in the unaggregated cube can be evaluated at the same time, but these cannot be assumed to make use
of indexes. Let the resulting amount of data be denoted byd0. A widely used method of performing
aggregation is hashing, see e.g. [Gra93, GBC98], and we assume that a simple hashing strategy is used.
Hence,d0 bytes of data is partitioned using a hash function and written to disk. Each partition is then
read, while aggregation as well as any selections referringto the aggregated values are performed on the
fly. Hence,d+ 2d0 bytes are read from disk to produce the final result.
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A third strategy can be used when no selections refer to measures in the unaggregated cube, but one or
more selections may refer to levels that are not present in the aggregated result. In that case the first
strategy cannot be used. However, any pre-aggregated result can still be used as long as it allows all
selections that do not refer to measures in the aggregated result to be evaluated. Further aggregation must
be performed as described for the second strategy to producethe final aggregated result. Hence, the same
cost formula can be used, but now the initial cube is instead pre-aggregated and no selections refer to
measures. Hence,d0 = d and3d bytes are read.

These strategies are summarized in the following formula for the evaluation time of an OLAP query.
Assume that queries are on the formQ(C) = �2(�[L℄<F (M)>(�1(C))), where�i denotes a sequence

on selections. LetSL = Qkj=1 Sele
tivity(�j ; C), where selection predicates1; : : : ; k refer to levels inC, and letSM =Qlj=1 Sele
tivity(�j ; C), where selection predicates1; : : : ; l appear in�1 and refer to
measures inC. We use the abbreviationDDR for DiskDataRate .

EvalTime(Q(C)) =
8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
DDR(C)�1 � d whered = SL � Size(�[L℄<F (M)>(C))

if no selections in�1 refer to measures or levels not in�[L℄<F (M)>(C),
and�[L℄<F (M)> is pre-aggregatedDDR(C)�1 � (d+ 2d0) whered = SL � Size(C) andd0 = SM � d
if any selections in�1 refer to measuresDDR(C)�1 � 3d whered = SL � Size(�[L0℄<F (M)>(C))
for �[L℄<F (M)>(C)! �[L℄<F (M)>(�[L0℄<F (M 0)>(Q(C)))
if no selections in�1 refer to measures, or to levels

not in�[L0℄<F (M 0)>(C), and�[L0℄<F (M 0)> is pre-aggregated

The problem with this formula is that, if a non-conforming component is used, it is not possible to know
which results are pre-aggregated and which are not. Hence, we cannot always distinguish between fully
and partially pre-aggregated results, and for partially pre-aggregated results we cannot knowwhichresults
are used. To handle this problem, we use an adaptive approachbased on the actual costs of performing the
OLAP query. Still, an initial guess is made at the level of pre-aggregation used to evaluate a query. This
could be based on the pessimistic assumption that no pre-aggregated results are present in the cube and
thus, get a cost that is likely to be too high. Alternatively,it could be based on the optimistic assumption
that the optimal pre-aggregated result is available and geta cost that is likely to be too low. However,
it is not possible to say which of these are best, even for a specific purpose such as deciding whether
or not to inline XML data as discussed earlier. The reason forthis is, that no simple relationship exists
betweenEvalT ime and the amount of inlining performed. Whether a low estimatefor EvalT ime will
cause more or less XML data to be inlined depends e.g. on the size and selectivities of predicates and the
cost of performing computation in the temporary component.Hence, no simple guidelines can be given
as to whether it is better to use an optimistic or a pessimistic estimate ofEvalT ime. Instead, a level of
pre-aggregation is chosen between the bottom and top level of each dimension and this choice is then
improved by moving up or down in the dimensions as the actual cost of the query is measured. If the
actual cost is larger than the estimate, too high a level of pre-aggregation is assumed and vice versa. This
adaptive technique is explained in more detail later.

10.1.2 Estimating Cost Parameters

The cost parameterstOLAP;OH , tOLAP;Eval , and tOLAP;Trans can now be estimated. The first parametertOLAP;OH is assumed to be constant, and is estimated by timing a probing query posed to the OLAP com-
ponent. The probing query specifies a single measure and one particular combination of dimension values all



10 Determining Cost Parameters 59

belonging to bottom levels of the cube. Assuming that the cube has indexes on dimension values, the evaluation
time of such a query is negligible. Also, the query returns atmost one value, which means that little or no time
is used on transporting data from the OLAP component. Hence,tOLAP;OH includes the full processing and
network communication time of a query except the time it takes to actually produce the result and to transfer the
result over the network. A better estimate can be achieved byusing the average time for a number of queries.

The estimate oftOLAP;Trans for a queryQ is calculated from the estimated result size and the networkdata
transfer rate: tOLAP;Trans = Size(Q(C))NetworkDataRate(C)
Both Size(Q(C)) andNetworkDataRate(C) are estimated as described above. However, if the OLAP com-
ponent is also used as temporary component,tOLAP;Trans is set to zero cost.

The evaluation costtOLAP;Eval can be estimated in two ways. The simplest is to use the formula forEvalT ime directly and base all evaluation cost estimates on a single estimate of the cube size. Alternatively,
the estimated cost for a query can be based on the measured cost for a similar query that has been posed earlier.
The cost can be measured from a probing query or a user query. Alist of these queries can be maintained
together with their measured cost and used to compute the cost of future queries. The latter should intuitively
provide the best estimates, since it is based on an actual measured cost for a similar query. This approach is
described in more detail in the following.

Using the second method,tOLAP;Eval is estimated from a set of probing queries and the statistical infor-
mation presented above. The probing queries are used to estimate the query evaluation time and result size of
queries that aggregates the cube to a certain combination oflevels without performing any selections. From this
estimate the size and evaluation time of a given query can be calculated using the functions presented above.
Queries that retrieve all data at a given combination of levels cannot generally be posed directly, and instead
the size and evaluation time of such a queryQAll is estimated by posing a probing queryQProbe as described
later. These estimated results are stored for each cubeC in a table containing a row for each queryQAll :

Columns DescriptionDim1 ; : : : ;Dimn The combination of levels to which the cube is rolled up inQAllSize(Q(C )) The estimated size of the result ofQAllEvalTimewith preagg The estimated evaluation time ofQAll when preaggr. may have been usedEvalTimewithout preagg The estimated evaluation time ofQAll when preaggr. have not been usedQueryCount The number of user queries that has rolled up to the same levels asQAllPreDim1 ; : : : ;PreDimn The level of pre-aggregation that is assumed to be used to evaluateQAll
Table 4: The statistics that are stored for OLAP queries.

Due to the typically large amounts of data stored in OLAP databases, it is often unfeasible to fetch the
entire cube to get the size estimate and evaluation time estimates. This is especially true for the lower level
aggregates, whereas the amount of data at higher aggregation levels can often be retrieved in its entirety. Instead,
probing queries are used that select a certain percentage ofthe facts on the specified levels, that is, selections
are performed on dimension values to keep the size of the returned result reasonable. Notice that if the simple
size based method is used, it is sufficient to use probing queries like “SELECT COUNT(*) FROM F” to estimate
the size. However, when using the second method the time mustalso be measured.

Example 10.1 Here is an example of a query that can be expected to select approximately 25% of the cube
data, because all bottom values are selected in the ECs dimension, while 50% are selected in both the Suppliers
and Time dimensions:
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SELECT SUM(Cost),SUM (NoOfUnits), Class(EC), Country(Supplier), Year(Day)
FROM Purchases
WHERE Class IN (’FF’, ’L’) AND Country IN (’US’) AND Year(Day) IN (’2000’)
GROUP BY Class(EC), Country(Supplier), Year(Day)

Assuming a uniform distribution of facts in the cube this returns around 25% of the data. In a real example
smaller amounts of data are used. �
Each probing query is timed resulting intQProbe , and the size of the result is measured, resulting inSizeQProbe .
Again, assuming that facts are distributed uniformly in thecube, the actual size of the cube without the se-
lectionsSizeQAll can then be estimated based onSizeQProbe by using theSize function mentioned in Ta-
ble 3. Likewise, the evaluation timeEvalTimeQAll can be estimated using the approximationtQProbe =tOLAP;OH + EvalTimeQProbe + SizeQProbeNetworkDataRate(C) and the definition ofEvalT ime. Two different values of
the evaluation time are needed to provide good estimates forboth queries that may make use of pre-aggregation
and for queries that cannot use pre-aggregation, because some selection refers to unaggregated measures. To
measure these values two probing queries are used: One that performs selection only on dimension values
as described above, and one that also contains a selection ona measure in theWHERE clause. This forces
the OLAP component to access the base cube directly, in effect disabling the use of pre-aggregated results.
The problem with using the definition ofEvalT ime is that it is not generally possible to know which pre-
aggregations are used. Hence, an adaptive strategy is used as discussed in the presentation ofEvalT ime
above. However, ifEvalTimewith preagg t EvalTimewithout preagg, we can conclude that no pre-aggregations
have been used even though the probing query permitted it. Tosupport this adaptive strategy, the columnsPreDim1 ; : : : ;PreDimn contains the current guess at which level of pre-aggregation is used.

Example 10.2 Assume that a probing query has taken5 sec. and returned100 KB of data, and that the OLAP
result is pre-aggregated. Also,tOLAP;OH ;Probe = 1 sec.,tOLAP;Trans;Probe = 2 sec.,DiskDataRate(C) = 10
MB/s, andSL = 10%.

ThentOLAP;Eval ;Probe = 5s � 1s � 2s = 2s which yieldstOLAP;Eval ;All = tOLAP ;Eval;ProbeSL = 2s0:1 = 20s
Notice that this simple formula only holds because full pre-aggregation is assumed. The size can be estimated
similarly: Size(QAll) = Size(QProbe)SL = 100KB0:1 = 1000KB �

Often, the number of different combinations of levels is high, which makes it unfeasible to execute a
probing query for each combination. When a certain combination of levels is needed but is not present in
the table, theEvalT ime function is used directly. The problem with this approach isthat we do not know
what pre-aggregated values have been used. However, here wecan do better than to simply guess at some
combination between full and no pre-aggregation, as is necessary if the estimation is based only on the cube
size. ThePreDimi columns in Table 4 provides information about which pre-aggregations are believed to
have been used for lower level combinations. Hence, we base the guess on the best level of pre-aggregation
occuring in the table instead of assuming no pre-aggregation as the worst case scenario. The table is updated
such that the next time a query aggregating to the same level is posed, we can provide a better guess.

The statistics table can now be used to estimate the cost parameterstOLAP;Eval and tOLAP;Trans for an
arbitrary queryQ in the following way: First, determine to which levels the cube is rolled up inQ, and then
retrieve the relevant values from the statistics table. If these values do not exist in the table, then they are
computed as discussed above. Second, determine whether or not pre-aggregation can be used, and choose the
correct value ofEvalTime. Third, compute the new estimates ofSize andEvalTime, SizeQ andEvalTimeQ,
using the functions in Table 3 and the values in the statistics table. Finally, the two parameters can be estimated:tOLAP;Eval = EvalTimeQ and tOLAP;Trans = SizeQNetworkDataRate(C) . After the query has been evaluated the
statistics table is updated to reflect the actual cost as described next.
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10.1.3 Maintaining the Statistical Information

The statistics table is updated for each query that is posed to the OLAP component. The assumed level of pre-
aggregation, which is stored in the thePreDimi columns, is updated as described above, while the estimated
values ofSize andEvalTime are updated as follows.

For each user query, newSize andEvalTime values are computed for the correspondingQAll query
exactly as was described for probing queries. However, the measured costs may vary, e.g. because of network
disturbances, and hence, the old value is not just replaced by the new value. Instead, a weighted average is used,
based on theQueryCount column: LetVO, VQ andVN be the old value, the value obtained from the query,

and the new value, respectively. ThenVN = VQ+VO �Min(MaxCount ;QueryCount)Min(MaxCount ;QueryCount)+1 , whereMaxCount is a tuning
parameter that ensures that the new value has a certain weight even whenQueryCount is large. Without this
parameter, any changes to the cube, such as updates, would bereflected too slowly in the statistics table. TheQueryCount column is also used when determining which results should bepre-fetched, as those with a high
count are most likely to result in a high hit-rate.

The statistics table for the OLAP component contains one rowfor each combination of levels that has been
used in a query. If many different queries are posed over a long period of time this number may become large.
In that case, the size can be kept at a fixed level by expiring old and less frequently used combinations each
time a new row is added.

10.2 Determining Cost Parameters For the XML Components

Estimating cost for XML components is exceedingly difficultbecause little or nothing can be assumed about the
underlying data source, i.e. XML components are non-conforming. An XML data source may be a simple text
file used with an XPath engine [Pro01, Cla99], a relational [Cor01a, Cor01b] or OO [Sof01b, eC01] database
or a specialized XML database [AG01a, Sof01a, GMW99]. The query optimization techniques used by these
systems range from none at all to highly optimized. Optimizations are typically based on sophisticated indexing
and cost analysis [MW99]. Hence, it is impossible e.g to estimate the amount of disk I/O required to evaluate
a query, and consequently, only a rough cost estimate can be made. Providing a good cost model under these
conditions is not the focus of this paper and hence, we describe only a simple cost model.

The cost model is primarily used to determine whether or not XML data should be inlined into OLAP
queries. Hence, in general a pessimistic estimate is betterthan an optimistic, because the latter may cause XML
data not to be inlined. This could result in a very long running OLAP query being accepted, simply because it
is not estimated to take longer than the XML query. However, the actual cost will never be significantly larger
than the false estimate. Making a pessimistic estimate willnot cause this problem although it may sometimes
increase the cost because XML data is retrieved before OLAP data instead of retrieving it concurrently. For
that reason, conservative estimates are preferred in the model.

The model presented here is based on estimating the amount ofdata returned by a query, and assuming
a constant data rate when retrieving data from the component. Similar to the cost formula for OLAP queries,
we distinguish between the constant overhead of performinga querytXML;OH and the time it takes to actually
process the querytXML;Pro
 : tXML = tXML;OH + tXML;Pro

Hence, only the latter depends on the size of the result.

In the following we describe how to estimate these two cost parameters given an XPath query. Although
other more powerful languages may be used, the estimation technique can easily be changed to reflect this. For
simplicity we consider only a subset of the XPath language where XPath expressions are on the form described
in Section 9.3. Because XML components are non-conforming,the estimates are based on posing probing
queries to the XML component to retrieve the necessary statistics.
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10.2.1 Statistical Information

Estimation of the cost parameterstXML;OH andtXML;Pro
 is based on the statistical information described in
the following. The way this information is obtained and usedto calculate the cost parameters is described later.
In the descriptionsN is the name of a node, e.g. the element node “Supplier” or the attribute node “NoOfUnits”,
whileE denotes the name of an element node. LetpathEn be a simple XPath expression on the form=E1=E2=: : : =En, that specifies a single direct path from the root to a set of element nodes at some leveln without
applying any predicates.NodeSize(pathE): The average size in bytes of the nodes pointed to bypathE . The size of a node is the total

size of all its children, if any.Fanout(pathEn ): The average number ofEn elements pointed to by each of its parent elementsEn�1. Notice
that there may beEn elements that are children of other elements, since there can be several paths to the
same type of element. The fanout is estimated for each of these paths.Sele
tivity(�): The selectivity of predicate� in its given context. For simplicity, two types of predicates are
distinguished: Simple predicates and complex predicates.Simple predicates are on the formx1 
 x2,
where eachxi is either a node with a numeric content or a numeric constant and 
 is a comparison
operator. The selectivity of these predicates are estimated from the maximum and minimum values as
decribed for OLAP queries. All other predicates are complexand may refer to non-numeric nodes and
various functions, e.g. for string manipulation. (An exception is predicates involving theposition()
function, which is estimated as a simple predicate.) Following previous work [BMG93], the selectivity
of complex predicates is set to a constant value of 10%.Cardinality(pathEn ): The total number of elements pointed to bypathEn . The cardinality ofEn can be
calculated from any ancestor elementEk along the path using this formula:Cardinality(pathEn) = Cardinality(pathEk) � nYi=k+1Fanout(pathEi) � Sele
tivity(�i)
If no predicate occurs in an elementEi the selectivity of�i is 100%.DataRate(x): The average amount of data that can be retrieved from the XML documentx per second. Given
a set of queriesxp1; : : : ; xpn the data rate can be estimated like this:DataRate(x) = Pni=1(time(xpi)� tXML;OH )Pni=1 size(xpi)
wheretime(xp) andsize(xp) gives the total evaluation time and result size of queryxp, respectively.

As a refinement, this data rate can be estimated on a per element basis, which may give better performance
for some types of components.

10.2.2 Obtaining and Using Statistical Information

Some of the information discussed above can be obtained directly if an XML Schema is available [W3C01a].
In that case, information such asNodeSize, Cardinality, or Fanout is determined from the schema. DTDs
[W3C00] can also be used to provide this information, but only if no repetition operators (i.e. the “*” and “+”
operators) are used. However, if such meta data is not available, then the statistical information is obtained
using probing queries that are based on the links defined for each XML document. Which queries can be used
depends on the type of the link. Three different types of probing queries are used as shown here:
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No. Query Measured values

Probe1 /�[false()] time
Probe2 /E1[position()=i1℄/ : : : /Ek[position()=in] fanout, cardinality
Probe3 /base[locator=vi] (Natural links) time, size, fanout,

/locatorvi (Enumerated links) cardinality, min value,
for n random values ofi max value

From Probe1 the query overheadtXML;OH can be estimated. The assumptions are that no data is returned
and that the work performed by this query will always have to be performed. Hence, it represents the minimum
time it takes to perform a query. This may include everythingfrom parsing the entire XML document to parsing
only the query. In either case it is a reasonable approximation to the constant overhead, which will often be
dominated by the server response time. However, sometimes aclever parser may discover that this query always
produces an empty result and avoid most of the query overhead. In that situation, requesting a leaf node would
usually provide a better estimate of the overhead. By running the probing query a number of times a more
precise average value can be found.

A number of queries on the form of Probe2 are used to find the fanout and cardinality of the elements
above and including the nodes pointed to by the link. For smaller amounts of XML data, this is done by simply
retrieving all the nodes. However, for large amounts of datathis may not be feasible, and another method must
be used. Since XPath does not allow computed values such ascount() to be returned, binary search is used to
find the maximum valueij of position() for which any data is returned. The idea is to find the number ofvalues
on the first level, use a sample of these to estimate the numberof values on the second level, use a sample of
these to estimate the number of values on the third level, andso on. Most of these queries will work on data that
has already been retrieved, and hence, only a few queries will actually retrieve data. However, these queries
may return large amounts of data because they refer to nodes close to the root node. If this is not feasible, a
guess is made at the number of nodes.

Probe3 is used to find statistical information about the nodes below the nodes pointed to by the link. A
sample of the nodes pointed to is retrieved using Probe3 for the given type of link. The nodes are then analyzed
locally to find the remaining information:Fanout , Cardinality andSize of the remaining elements, as well
as maximum and minimum values for numerical nodes. The time and size of the queries are measured and
used in the computation ofDataRate . Where several links exist for a single document, only one set of probing
queries is performed. All the statistical information obtained from the probing queries is stored in the federation
metadata for each XML document.

The combination of a limited interface and almost no knowledge about the underlying source can some-
times make the probing of XML components expensive. As discussed in Section 9.3 several optimizations are
possible, including the retrieval of larger parts of the document in a single query. However, probing may still
be a problem for very slow XML components, e.g. on the Web. Hence, the default behaviour is not to perform
probing immediately, when a link is created, but instead wait until the system load has been low for a while.
When no probing has been performed, nothing is known about the component, and instead a predefined set of
cost values are used. The probing can also be disabled for very slow components.

The cost of an XPath expression can now be computed using the cost formula for XML queries.tXML;OH
is estimated as described above, whiletXML;Pro
 is calculated for an XPath expressionxp in a documentX as
follows: tXML;Pro
 = NodeSize(xp) � Cardinality(xp)DataRate(x)
Example 10.3 Let tXML;OH = 1 s,DataRate = 32 KB/s,NodeSize = 120 Bytes, andCardinality = 500.
Then the total cost can be calculated as:tXML = 1s+ 120Bytes � 50032KB=s t 2:8s �
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An approach similar to that for OLAP queries is used to keep the statistical information updated. Hence,
when new XML data has been retrieved, it is analyzed and the values for fanout, cardinality, node size, and
minimum and maximum values are corrected. This analysis is performed only when the system load is low.
Hence, overall performance is not affected.

10.3 Determining Cost Parameters for the Temporary Component

The temporary relational component is used as a scratch-padby the Federation Manager during the processing
of a query. For efficiency, we assume to have full access to itsmeta data, such as cardinalities, attribute domains
and histograms, as well as knowledge about which algorithmsare implemented for processing operations.
Additionally, we have full knowledge about which access paths are available because all tables are created by
the federation itself. Hence, the temporary component is assumed to be a conforming component. Also, for
simplicity we assume that the temporary component is located on the same node as the Federation Manager.
This allows us to ignore network costs for this component. Consequently, existing work on query optimization
can be used to provide efficient access to this component. Specifically, we use a simplified variant of the cost
model defined in [DKS92]. This model has been demonstrated toprovide good results for different DMBSs.

11 Overview of the Federated System

In this section we give an overview of the presented design considerations and optimization techniques as well
as their use in the federated system.

An overall architectural design of a prototype system supporting the SQLXM query language has been
presented in Figure 8. Besides the OLAP component and the XMLcomponents, three auxiliary components
have been introduced to hold meta data, link data, and temporary data. Generally, current OLAP systems either
do not support non-strict hierarchies or it is too expensiveto add a new dimension, which necessitates the use
of a temporary component.SQLXM queries are posed to theFederation Manager, which coordinates the exe-
cution of queries in the data components using several optimization techniques to improve query performance.
Since the primary bottleneck in the federation will usuallybe the moving of data from OLAP and XML com-
ponents, our optimization efforts have focused on this issue. These efforts include bothrule basedandcost
basedoptimization techniques, which are based on the transformation rules for the federation algebra.

The rule basedoptimization uses the heuristic of pushing as much of the query evaluation towards the
components as possible. Although not generally valid, thisheuristic is useful in our case, since the considered
operations all reduce the size of the result obtained from the data components. The rule based optimization
algorithm that has been presentedpartitions a SQLXM query tree, meaning that theSQLXM operators are
grouped into an OLAP part, an XML part, and a relational part.After partitioning the query tree, it has been
identified to which levels the OLAP component can be aggregated and which selections can be performed in
the OLAP component. Furthermore, the partitioned query tree has a structure that makes it easy to create
component queries.

Three differentcost basedoptimization techniques have been presented: One targetedat OLAP compo-
nents, one at XML components and a more general one targeted at both types of components. Together, these
techniques offer a considerable performance improvement in general and in particular for many queries that
would otherwise be too costly.

The first technique tries to tackle one of the fundamental problems with the idea of evaluating part of the
query in a temporary component: If selections refer to data that are not present in the result, more than the
result needs to be transferred to the temporary component. The proposed solution to this problem is toinline
XML data into OLAP predicates. However, it is not always a good idea to do so because, in general, a single
query cannot be of arbitrary length. Hence, more than one query may have to be used. Whether or not XML
data should be inlined into some OLAP query, is decided by comparing the estimated cost of inlining with the
estimated cost of not doing so.
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The second technique is focused on the special kind of XML queries that are used in the federation. These
queries can easily be expressed in more powerful languages like XQuery, but many XML sources have more
limited interfaces, such as XPath or XQL. The special queries needed to retrieve data from XML components
cannot be expressed in a single query in these simple languages, and hence, special techniques must be used
for this to be practical. The main solution suggested here isto combine these queries, even though more data
would have to be retrieved. Again, a cost analysis is used to decide whether or not to employ this technique.

The third technique is an application ofcachingto this particular domain. The use of caching is important
for both OLAP and XML components, as both types of componentsmay cause significant delays for certain
kinds of queries. One of the approaches that was presented here is an efficient way to find a useful cached result
for a given OLAP query.Pre-fetchinghas also been suggested as a way to speed up queries that have not been
posed before.

The use of cost based optimization requires the estimation of several cost parameters. One of the main
arguments for federated systems is that components can still operate independently from the federation. How-
ever, this autonomy also means that little cost informationwill typically be available to the federation. Hence,
providing a good general cost model is exceedingly difficult. In this context, it is especially true for XML
components, because of the wide variety of underlying systems that may be found. Two general techniques
have been used to deal with these problems:Probing queries, which are used to collect cost information from
components, andadaption, which ensures that this cost information is updated when user queries are posed.

To outline how the techniques discussed above are used in combination, we will refer to the software
component architecture in Figure 9. When a federation queryhas been parsed, the Query Decomposer partitions
the resultingSQLXM query tree, splitting it into three parts: an OLAP query, a relational query, and a number
of XML queries. The XML queries are immediately passed on to the Execution Engine, which determines for
each query whether the result is obtainable from the cache. If this is not the case, it is sent to the Component
Query Evaluator. Here, the specific actions depend on which query languages are supported. If e.g. only an
XPath interface is available, it is determined which is cheaper: To pose many queries or to combine some or all
of them into a single query. This decision is based on costs estimated by the Component Cost Evaluator. For the
OLAP part of the query, it is also determined whether the result can be obtained from any of the cached results.
If so, the cost of evaluating theSQLXM query using the cached results is compared to the cost of evaluating
the SQLXM query without the use of cached results. This cost is determined by the Global Cost Evaluator.
The cost estimates are also used by the Global Optimizer to pick a good inlining strategy. When the results of
the component queries are available in the temporary component, the relational part of theSQLXM query is
evaluated.

In the next section we describe the implementation of the federation prototype. A number of experiments
have been conducted which are also presented.

12 Implementation and Experimental Results

This section describes the ongoing prototype implementation of the architecture presented in Section 7. Some
initial experiments are also reported.

A prototype is currently being developed based on the overall and software component architecture pre-
sented in Figure 8 and 9, respectively. In the prototype, theOLAP component uses Microsoft Analysis Services
and is queried with MDX and SQL[Mic98]. The XML component is based on Software AG’s Tamino XML
Database system [AG01a], which provides an XPath-like interface. As discussed earlier, the possibilities for
optimization depend on the degree of autonomy exhibited by components. Thus, we have performed exper-
iments for two different settings: First, the general case where the OLAP component has a high degree of
autonomy and an external component is used for temporary data. Second, the highly optimized situation where
the OLAP component is also used for temporary data and all XMLdata is assumed to be cached. For the exter-
nal temporary component, a single Oracle 8i system is used. The prototype is being implemented in Java using
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Microsoft ADO and ADO-MD APIs following the component architecture discussed in Section 8.1. So far,
only the most basic functionality has been implemented. In particular, the cost based optimization techniques
have not been implemented yet. Nevertheless, it has been possible to conduct initial experiments that support
the idea of a federation as a practical alternative to physical integration for rapidly changing environments.

The example cube used in the experiments is shown in Figure 15. The cube is based on about 50 MB of
data generated using the TPC-H benchmark [Cou01] and about 10 MB of pre-aggregated results. The cache
size was limited to 10 MB to prevent an unrealistically largepart of the data from being cached.

Quantity, ExtPrice, Tax, DiscountMeasures:

Dimensions:

Supplier

Nation

Region

AllSuppliers

Suppliers

Day

Month

Year

AllTime

Time

AllParts

Part

Type

Manufacturer

Brand

Parts

Order

Customer

AllOrders

Orders

LineNumber

LineStatus

AllLineItems

LineItems

Figure 15: Example cube used in the experiments.

About 3 MB of XML data is used for the XML component which is divided into two documents that have
been generated from the TPC-H data and public data about nations. The structure of these documents is il-
lustrated in Figure 16. Two natural links are defined: NLink =(“Nation”, “nations.xml”, “/Nations/Nation/”,
“NationName”) and TLink = (“Type”, “types.xml”, “/Types/Type/”, “ TypeName”). The nodes used for decora-
tion arePopulation andRetailPrice.

<Nations>
<Nation><NationName>Denmark</NationName><Population>5.3</Population></Nation>
<Nation><NationName>China</NationName><Population>1264.5</Population></Nation>
<Nation><NationName>Mozambique</NationName><Population>19.1</Population></Nation>
...

</Nations>

<Types>
<Type><TypeName>Promo Polished Brass</TypeName><RetailPrice>1890</RetailPrice></Type>
<Type><TypeName>Promo Burnished Copper</TypeName><RetailPrice>1240</RetailPrice></Type>
<Type><TypeName>Medium Brushed Steel</TypeName><RetailPrice>1410</RetailPrice></Type>
...

</Types>

Figure 16: Part of the two XML documents used in the experiments.

The queries that were used in the experiments are shown in Table 5 and the results of these queries are
shown in Figure 17. Result 1-7 are used to illustrate the situation where the OLAP component has a high
degree of autonomy, whereas Result 8 compares these resultsto the highly optimized situation where all data is
stored in the OLAP component. The results do not show the overhead of parsing and optimizing the federation
queries but only the component evaluation times as these will dominate the total evaluation time. In the results,
the total evaluation time for each query is divided into three parts: One for each of the three types of component
queries posed during the evaluation of a federation query. Thus, the following tasks are represented in the
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results:

Task 1(a). Fetch XML data and store it in the temporary component. (Denoted by an “X”)

Task 1(b). Fetch OLAP data and store it in the temporary component. (Denoted by an “O”)

Task 2. Compute the final result in the temporary component. (Denoted by a “T”)

Task 1(a) and 1(b) can be performed in parallel unless the XMLdata is inlined into the OLAP query. We
first consider the setting where an autonomous OLAP component is used and thus, all three tasks have to be
performed.

Label QueryA1 SELECT SUM(Quantity),SUM(ExtPrice), Nation(Supplier), Brand(Part), LineStatus(LineNumber),
Nation/NLink/Population

FROM Sales
GROUP BYNation(Supplier), Brand(Part), LineStatus(LineNumber), Nation/NLink/PopulationA2 SELECT SUM(Quantity),SUM(ExtPrice), Nation(Supplier), Brand(Part), Nation/NLink/Population
FROM Sales
GROUP BYNation(Supplier), Brand(Part), Nation/NLink/PopulationB SELECT SUM(Quantity),SUM(ExtPrice), Brand(Part), LineStatus(LineNumber), Nation/NLink/Population
FROM Sales
GROUP BYBrand(Part), LineStatus(LineNumber), Nation/NLink/PopulationC SELECT SUM(Quantity),SUM(ExtPrice), Nation(Supplier), Brand(Part), LineStatus(LineNumber),
FROM Sales
GROUP BYNation(Supplier), Brand(Part), LineStatus(LineNumber)
HAVING Nation/NLink/Population > 10D SELECT SUM(Quantity),SUM(ExtPrice), Type(Part)

(1-3) FROM Sales
WHERE Nation/NLink/Population > 10AND Type/TLink/RetailPrice < 1000
GROUP BYType(Part)

Table 5: Queries used in the experiments.

QueryA1 andA2 both illustrate the use of decoration. The results of these queries are shown in Result
1. Furthermore, they illustrate the basic structure of the cost model presented in Section 9.1 as the temporary
component query must wait for the slower of the XML and OLAP queries. Result 1 displays a low overhead
of performing decoration compared to the time it takes to retrieve the OLAP and XML data. Thus, if it is
acceptable to wait for the component data when retrieved independently, it will also be acceptable to wait
for the federation query. This low overhead is representative for decoration queries since they do not require
additional data to be retrieved from the OLAP component. Hence, the overhead of combining the intermediate
results will be low, since typically only small amounts of OLAP data (at most a few thousand facts) will be
requested for presentation to a user.

QueryB illustrates the use of XML data for grouping, while QueryC uses XML data for selection. Since
both queries use the same decoration as in QueryA1, the same XML and OLAP queries are performed to
evaluate these queries. As can be seen from Result 2 and 3, theoverhead endured by the temporary component
query is also low for these queries. This is typical for both grouping and certain types of selection because the
size of the intermediate OLAP result will often be comparable to the size of the final result. Again, since the
final result is mostly presented to a user, it is often relatively small. For grouping, the OLAP and final results
are comparable in size unless there is a great overlap in the decoration values which reduces the size of the
final result. In this case, QueryB has approximately as many Population values as there are Nation values. For
selections, the OLAP result is often comparable in size to the final result for queries such as QueryC, where
the predicate refers to decorations of levels that must be present in the result. This is true unless the predicate
is very selective. However, as discussed in Section 9, selections may also refer to lower levels. To handle the
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Figure 17: Experimental results. Notice that different time intervals are used in the graphs.

problem of selections requiring large amounts of data to be retrieved, the inlining technique was presented.
This technique has not been used in evaluating QueryC.

Results 4, 5, and 6 demonstrate how effective the inlining technique can be. Here, two XML queries
are used:X1 is the time it takes to retrieve the Population data, whileX2 is the time it takes to retrieve the
RetailPrice data. The results show the processing times forthree different strategies for evaluating QueryD,
in which the selection on Population refers to a low level that is not needed in the result. Thus, in Result 4,
where no inlining is used, this produces a very large overhead as the OLAP query can only aggregate to Type
and Nation although only Type should be present in the result. As a consequence, not only the OLAP query but
also the temporary component query take much longer to evaluate. Result 5 illustrates the use of a simple rule
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based inlining strategy, “Always use inlining if the predicate is simple”, which causes both XML predicates
to be inlined. This is significantly faster than before because the OLAP query can now aggregate to the Type
level. Also, since theWHERE clause has been evaluated entirely in the cube, no work needsto be done after
the OLAP result has been returned. However, six OLAP queriesare needed to hold the new predicate because
the Type level contains a large number of dimension values. Also, the OLAP query cannot be evaluated until
the RetailPrice data has been retrieved. Consequently, in this example, it is faster to inline only the Population
data. This is shown in Result 6 where the cost based inlining strategy presented in Section 9.2 is used. Because
the Nation level only contains few dimension values, this requires only one OLAP query and the Population
data is also faster to retrieve. Thus, by estimating the costof the federation query for each of the four inlining
strategies and picking the fastest one, a better query performance is achieved. The three results are also shown
in Result 7 for easy comparison. These results have shown examples of the different types of queries supported
by the federation as well as illustrated the potentially large performance improvements possible by using the
inlining technique. These evaluation times are acceptableeven though the component data is retrieved from a
remote data source and transferred to the temporary component.

If the OLAP component does not have a high degree of autonomy,e.g. if it is managed by the federation
DBA, large performance improvements are possible by using caching and by storing temporary data with the
OLAP data. By caching or pre-fetching XML data and storing itin tables, Task 1(a) can be avoided. Caching
XML data is often possible as the amount of XML data will typically be much smaller than the amount of
OLAP data. If only few XML documents are used, it may even be possible to keep the cache updated by pre-
fetching XML data at a regular basis. If a ROLAP (Relational OLAP) system is used for storing OLAP data, all
pre-aggregated results are stored directly in relational tables, whereas if a MOLAP (Multidimensional OLAP)
or HOLAP (Hybrid OLAP) system is used, some additional processing is needed to produce these tables. Thus,
if the ROLAP system can also be used for storing temporary data, the tables containing pre-aggregated results
can be joined directly with the tables containing XML data. In that case, Task 1(b) can be avoided. This is
not an unreasonable assumption as the OLAP DBA will often also be responsible for managing the federation
and thus, be able to use the OLAP component to store the temporary data. Hence, if both cached XML data
and pre-aggregated results are available as relational tables, only Task 2 is necessary. To illustrate the potential
performance improvements in this situation, all queries inTable 5 have also been evaluated using a fully pre-
aggregated cube where both these OLAP data and XML data were stored in tables. Theselocal evaluation times
are shown in Result 8 together with the non-local, orremote, evaluation times described above. As expected,
the local values are significantly smaller than the remote values. Since these local evaluation times require a low
degree of autonomy for the OLAP component, physically integrating the data is also an option. If XML data
is physically integrated into the cube and the resulting cube is fully pre-aggregated, no processing is needed as
the result can be read directly from disk. However, this requires additional storage compared to the federated
approach as the new cube contains more dimensions. If such storage is not available, a smaller percentage of
the new cube can be pre-aggregated compared to the original cube. Thus, on average, an OLAP query working
on the new cube will have to perform more aggregation than an OLAP query working on the original cube.
More significant is the more or less manual work that needs to be done to integrate the data, as well as the time
it takes to re-process the cube.

The results presented in this section indicate that for manyuseful queries the federated approach is indeed
a practical alternative to physical integration when flexibility is needed. For the analyzed queries, the federation
overhead is insignificant compared to the time it takes to retrieve data from the OLAP and XML components.
As is the case for any database system, including ordinary OLAP systems, there are also queries that cannot
be evaluated efficiently. However, the optimization techniques presented in this paper can provide significant
performance improvements for many federation queries, in effect allowing otherwise unfeasible queries to be
evaluated efficiently. In particular, the potentially dramatic effect of the caching and inlining techniques have
been demonstrated in this section. Further experiments arerequired to make any decisive conclusions about the
general performance of our federated approach compared to alternative solutions, such as physical integration.
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13 Conclusion

Many OLAP systems operate in dynamic business environmentswhere changes to data and data requirements
are common and data may not always be available for local storage but only for querying. In these situations
physical integration is not feasible, making logical integration in a federation the better choice.

In this paper we have presented a flexible approach to the logical federation of OLAP databases and XML
documents. This allows XML data to be used directly in an OLAPquery to decorate multidimensional cubes
with XML data from external sources, to group cube data basedon external XML data, and to perform selection
based on external XML data. The incorporation of XML data in acube is made such that semantic problems are
avoided, e.g. aggregation types are used to ensure that no measure values are double-counted when aggregation
is performed.

The theoretical and practical work on this federated approach has covered all important aspects of a feder-
ated system. The fundamental idea was formally defined in terms of a federated data model and algebraic query
language. As a demonstration of this general formal approach, the algebra was used to define the semantics
of a federated query language,SQLXM . This language incorporates the XML query language XPath into a
subset of SQL adapted to multidimensional querying. A complete federated system supporting this language
was designed and a number of effectiverule basedandcost basedquery optimization techniques were pre-
sented. To provide a basis for these optimizations, a collection of transformation ruleswas presented for the
federation algebra. The rule based optimization distributes query processing on the participating components
using the presentedpartitioning algorithm. The cost based optimization focuses on three techniques: First,
inlining of XML data was suggested to reduce the overhead of evaluating queries that uses external XML data
for selection. Second, for simple languages, such as XPath,the special queries needed to retrieve data from
XML components can only be expressed using several queries.Hence, techniques were described to combine
these queries at the cost of retrieving additional data. Third, techniques were presented to allowcachingand
pre-fetchingof intermediate query results. These techniques provide dramatic performance improvements for
many queries that would otherwise be unfeasible to evaluatein the federated system. To illustrate the practical
value of the system, a prototype is being developed, and the implementation has progressed far enough to allow
experiments to be conducted. These indicate that this federated approach is indeed a practical alternative to
physical integration when additional flexibility is needed.

We believe that this paper is the first to consider the federation of OLAP databases and XML documents.
Specifically, we believe to be the first to consider advanced OLAP issues such as dimension hierarchies, auto-
matic aggregation, and correct aggregation of data in the context of integration with XML data. Additionally,
we extend previous work on federating OLAP databases with external data significantly by relaxing require-
ments for the data used for integration. Also, we propose a more general integration approach that can be
used directly for selection and grouping. This approach is based on thedecoration operationwhich has been
formally defined and analyzed with respect to its equivalence properties. Also, query optimization issues for
federations involving OLAP databases have not been investigated to this extent before.

Our immediate future work will focus on implementation aspects. In particular, the current prototype
needs additional work, but it could also be interesting to explore how this work could be used in a real software
product. For example, the ability to quickly integrate XML data could be incorporated into an existing OLAP
querying tool. Here, a key issue which has not been considered yet, would be the design of a user tool to
aid in the process of linking XML and OLAP data. Other interesting research issues include how to capture
the document order of an XML document in the result of an OLAP query, and how to extract new measures
from XML data and incorporate these into a cube. Also, other query languages than SQL and XPath could be
considered for the federation. For example, it could be investigated how to integrate XPath expressions into
the OLAP query language MDX without violating its syntax. Another area that needs more work is how to
provide better cost estimates when querying autonomous OLAP components and, in particular, autonomous
XML components.
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A Syntax of SQLM and SQLXM
The considered subset of SQL is given by the following syntax:<query> ::= SELECT<select list>

FROM Cubej <query>
[WHERE<where predicate>]
[GROUP BY<group by list>
[HAVING <having predicate>]]<select list> ::= <select name>j <select list>,<select name><select name> ::= <level name>j <aggregate function>(Measure)<aggregate function> ::= DEFAULT j COUNT j SUM j MIN j MAX j AVG<where predicate> ::= NOT(<where predicate>)j <where predicate> ANDjOR<where predicate>j (<where predicate>)j <where expression><where expression> ::= <where name> <predicate operator> <where name>j <where name> <predicate operator> <value>j <where name> IN (<value list>)j <where name> LIKE ‘String’<where name> ::= <level name>j Measure<group by list> ::= <group by name>j <group by name>, <group by list><group by name> ::= <level name><having predicate> ::= NOT(<having predicate>)j <having predicate> ANDjOR<having predicate>j (<having predicate>)j <having expression><having expression> ::= <having name> <predicate operator> <having name>j <having name> <predicate operator> <value>j <having name> IN (<value list>)j <having name> LIKE ‘String’<having name> ::= <select name><level name> ::= Levelj Level(Level)<predicate operator> ::= <> j = j > j >= j < j <=<value> ::= ‘String’ j Realj Integer<value list> ::= <value>j <value>,<value list>

Allowing level expressions in the SELECT, WHERE, GROUP BY, and HAVING clauses causes the fol-
lowing changes to this syntax:<select name> ::= <level name>j <aggregate function>(Measure)j <decoration expression><where name> ::= <level name>j Measurej <selection expression><having name> ::= <level name>j <aggregate function>(Measure)j <selection expression><group by name> ::= <level name>j Measurej <decoration expression><decoration expression> ::= Level [ ’[’ <semantic modifier> ’]’ ] [/Link]/ <xpath expression> [AS Level]
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B Inlining XML Data in Predicates

This section describes how to transform a predicate containing level expressions to a new predicate without the
level expressions but instead containing references to theXML data. This is done by defining a transformation
function that, given a predicate with level expressions andthe data that is referred to in the predicate, returns an
equivalent predicate without the level expressions. We consider five different uses of level expressions in the
predicates: comparing level expressions to a constant, a level, a measure, and a sequence of constants using the
IN operator, and finally comparing XML data returned from twodifferent level expressions.

Definition B.1 The transformation functionT : FederationPredi
ates 7! CubePredi
ates is defined re-
cursively as follows.

T (p) =
8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
T (p1) bo T (p2) if p = p1 bo p2;NOT (T (p1)) if p = NOT (p1);p
onst if p = L=Link=xp po K, whereK is a constant value;plevel if p = L1=Link=xp po L2, whereL2 is a level;pmeasure if p = L=Link=xp po M , whereM is a measure;plevexp if p = L1=Link1=xp1 po L2=Link2=xp2;pin if p = L=Link=xp IN (K1; : : : ;Kn), whereKi is constant value;p Otherwise:

where the binary operatorbo is either AND or OR, and the predicate operatorpo is one of:=; <;>;<>;>=; <=; and LIKE.
The new predicates are defined in the following. �
Since the function is only applied recursively to parts of a predicate that are smaller than the original

predicate the recursion will always terminate.
For each of the predicate types defined below the approximatelength of the resulting predicate is given.p
onst: The idea is to construct a set of dimension values being linked to nodes that satisfy the predicate and

then require the values in the level to be equal to one of thesevalues:T (L=Link=xp po K) = “L IN ( t1; : : : ; tn)”
whereti 2 ftj8(e; s) 2 Link(t 2 StrVal(sj) ^ sj 2 xp(s) ^ sj po K = true)g. That is, a stringti is added to
the set if the node it represents satisfies the predicate.

The length of the predicate isLength
onst = O(n).plevel: A level L2 is be compared to a set of nodes resulting from a level expression L1=Link=xp. This
comparison is done by comparing the levelL2 to each of the nodes in the set and if just one of these new
predicates is satisfied for some valuee2 in L2 the tuple containinge2 should be included in the result. Note
that this is only true for tuples containing the value inL1 that generated the set of nodes. Thus,L2 must be
compared to all the node sets generated by values inL1:T (L1=Link=xp po L2) =“((L2 po t11 OR : : : ORL2 po t1k1) AND L1 = e1)

OR : : : OR((L2 po tn1 OR : : : ORL2 po tnkn) AND L1 = en)”
for all ei; : : : ; en andt11; : : : ; tnkn where8(ei; s) 2 Link(ei 2 L1 ^ tij 2 StrVal(sj) ^ sj 2 xp(s)).
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Intuitively we only make a sequence of disjunctions for the values inL1 that participate in the link, since
only these values generate a set of nodes. Values that don’t participate in the link should never be included in
the result because we useanysemantics.

The length of the predicate isLength level = O(Pni=1 ki).pmeasure: Comparisons between measures and level expressions are treated similarly toplevel.plevexp: This is the result of comparing two level expressions. This means that we must compare two sets of
nodes to determine whether or not to include a tuple in the result: one node set generated by the level expressionL1=link1=xp1 and one generated byL1=link2=xp2. Intuitively a tuple containinge1 2 L1 ande2 2 L2 should
be included if the two node sets generated bye1 ande2 have some common node. In other words it should be
included if the intersection of the two sets is non-empty.

For ease of presentation a disjunctive clause on the form(tab po r
d OR: : :OR tab po r
e) is abbreviated
asPab;
d;ab;
e.T (L1=link1=xp1 po L1=link2=xp2) =

“
�((P11;11;11;1l1 OR: : :ORP1k1;11;1k1;1l1) AND L1 = e11 AND L2 = e21) OR: : :OR((P11;m1;11;mlm OR: : :ORP1k1;m1;1k1;mlm) AND L1 = e11 AND L2 = e2m)� OR: : :OR�((Pn1;11;n1;1l1 OR: : :ORPnkn;11;nkn;1l1) AND L1 = e1n AND L2 = e21) OR: : :OR((Pn1;m1;n1;mlm OR: : :ORPnkn;m1;nkn;mlm) AND L1 = e1n AND L2 = e2m)�”

where8(e1i; s1) 2 Link(e1i 2 L1 ^ tij 2 StrVal(sj) ^ sj 2 xp(s1))
and8(e2i; s2) 2 Link(e2i 2 L2 ^ rij 2 StrVal(sj) ^ sj 2 xp(s2))
for all e1i; : : : ; e1n, t11; : : : ; tnkn , e2i; : : : ; e2m, andr11; : : : ; rmkm .

The length of the predicate isLength levexp = O((Pni=1 ki) � (Pmi=1 li)).pin: The IN operator is a shorthand for a series of equalities involving a constant. Thus, the last predicatepin
is simply constructed from the new predicate for constant expressionsp
onst:T (L=Link=xp IN (K1; : : : ;Kn)) = T (L=Link=xp = K1) OR : : : ORT (L=Link=xp = Kn))

Thus, the length of the predicate isLength in = O(Pni=0 Length level ;i).


