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Abstract:
This report describes the investigation of meth-
ods to be used in a video conferencing system,
where a person gets the attention by raising his
or her right hand. A system is designed and
implemented and a number of video recordings
made to make it possible to do experiments on
the methods.

To constrain the search area for hand raises, the
faces in the videos are found and tracked. To
find the faces, we first detect the skin-colours in
the images using either lookup tables (LUTs)
or Gaussian models. Methods which make it
possible to adjust to changes in illumination
colour are also investigated. A list of face
candidates is made and each face candidate
verified by looking at the size, solidity, similarity
to a nose-eye template, and elliptic shape. Face
trackers are updated and new trackers started
based on the face list. Different methods for
tracking are investigated and a combination of
the Mean Shift algorithm, ellipse fitting, and a
Kalman filter is found to be suitable. Based on
the face trackers, the areas in which to search for
hand-raises are defined. To detect hand-raises
the accumulated difference pictures (ADPs) are
used. Hand-raises will leave a vertical track in
the ADPs, and can therefore be distinguished
from other skin-coloured objects passing by in
the background or foreground.

Experiments are made to determine the best com-
bination of methods to use and to find out how
well the system handles different situations such
as illumination change, occlusion, movement in
the background, etc. Finally, suggestions for fu-
ture work are given and the investigations and re-
sults made in this report are concluded upon.





Dansk Resuḿe

Denne rapport omhandler hvorledes det kan gøres muligt for en person i en videokon-
ference at opnå opmærksomhed fra et kamera ved at række højre hånd i vejret. Metoder
til dette formål undersøges og implementeres i et system, som gør det muligt at eksperi-
mentere med metoderne i forskellige kombinationer.

For at begrænse størrelsen af de områder i billedet hvori der ledes efter håndsoprækninger,
findes ansigterne først og følges over tid. For at finde ansigterne benyttes der hud-
farvedetektion ved brug af enten opslagstabeller eller Gaussianske modeller. Ydermere
undersøges og eksperimenteres der med metoder, som gør det muligt for systemet at
tilpasse sig til skift i lyskildefarven. Resultatet af hudfarvedetektionen segmenteres til
en liste af ansigtskandidater, som verificeres ved at tjekkederes rektangulære form og
størrelse, deres soliditet, deres lighed med en gennemsnits næse-øje-skabelon og deres
elliptiske form. På baggrund af denne liste opstartes nye ansigtsfølgere og allerede
igangværende følgere opdateres. Forskellige metoder som kan bruges til at følge an-
sigter undersøges og en kombination af Mean Shift-algoritmen, ellipsetilpasing og et
Kalmanfilter findes velegnet til brug i de miljøer, som vi beskæftiger os med i denne
rapport. Ud fra ansigtsfølgernes positioner beregnes de områder hvori der skal ledes efter
håndsoprækninger. For at finde håndsoprækninger kigges der på det akkumulerede dif-
feresbillede, hvori håndsoprækninger kan ses som et vertikalt spor, hvilket gør det muligt
at skelne dem fra andre hudfarvede objekter, som det kan hænde passerer forbi i bag- eller
forgrunden.

Ved hjælp af eksperimenter findes der frem til de kombinationer af metoder, som er
bedst at bruge. Desuden bruges eksperimenterne også til atfinde ud af, hvordan sys-
temet håndterer forskellige situationer såsom skift i lyskildefarve, okklusion, bevægelse i
baggrunden m.v. Til sidst beskrives de fremtidige udvidelsesmuligheder for systemet og
der bliver konkluderet på de undersøgelser og resultater,der er opnået i rapporten.
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Preface

This Master’s Thesis is the result of a project made on the DAT6/F10S semester, spring
2001. It describes the investigation of methods for automatic speaker attention in video
conferences. Furthermore, a video conferencing system is implemented and used for
experiments.

The purpose of the report is to demonstrate that we are capable of using the theories in the
area of computer vision to do a thorough analysis of an actualcomputer vision problem.
Furthermore, a theoretical or practical solution to the problem must be presented.

Aalborg University, June 6th, 2001.

Peter Zinck Nielsen Bjarke Andersen

v





Contents

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Delimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline of Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Focus of Attention 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Colour Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Estimating the Model from a LUT . . . . . . . . . . . . . . . . . 11

2.4.2 Calculating Likelihoods from the Model . . . . . . . . . . . .. . 12

2.5 Handling Changes in Light Colours . . . . . . . . . . . . . . . . . . .. 14

2.5.1 The Skin Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Lookup Table Update . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.3 Gaussian Model Update . . . . . . . . . . . . . . . . . . . . . . 17

2.5.4 Moment Constraints . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Focus of Attention Conclusions . . . . . . . . . . . . . . . . . . . . .. . 21

3 Face Verification 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Preprocessing and Segmentation . . . . . . . . . . . . . . . . . . . .. . 24

3.2.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Rectangular Size and Shape . . . . . . . . . . . . . . . . . . . . . . . . .27

3.4 Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Nose-Eye Template Matching . . . . . . . . . . . . . . . . . . . . . . . 28

vii



3.5.1 Image Pyramids . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Distance Measuring . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Elliptic Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.1 Calculating the Fit of an Ellipse . . . . . . . . . . . . . . . . . .32

3.6.2 Limiting the Search . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.3 Best Fit vs. First Fit . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Face Verification Conclusions . . . . . . . . . . . . . . . . . . . . . .. 35

4 Face Tracking 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Face Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Tracker Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Face Tracking Conclusions . . . . . . . . . . . . . . . . . . . . . . . . .50

5 Hand-Raise Detection 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Two Naive Bayesian Classifiers . . . . . . . . . . . . . . . . . . 55

5.3.3 Estimation of Probability Density Functions . . . . . . .. . . . . 57

5.4 Hand-Raise Detection Conclusions . . . . . . . . . . . . . . . . . .. . . 64

6 System Design 65

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 VICOWIJOY Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Skin-Colour Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Tracker Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 Face Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.7 Hand-Raise Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.8 PTZ-Camera Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.9 The Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.10 Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . . .. 70



6.11 System Design Conclusions . . . . . . . . . . . . . . . . . . . . . . . .70

7 Experiments 73

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Focus of Attention Experiments . . . . . . . . . . . . . . . . . . . . .. 74

7.2.1 Experiments Description . . . . . . . . . . . . . . . . . . . . . . 74

7.2.2 Face Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.3 Background Area . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.4 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.5 Moment Constraints . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Face Verification Experiments . . . . . . . . . . . . . . . . . . . . . .. 81

7.3.1 Experiments Description . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Preprocessing and Segmentation . . . . . . . . . . . . . . . . . .83

7.3.3 Rectangular Size and Shape . . . . . . . . . . . . . . . . . . . . 84

7.3.4 Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.5 Nose-Eye Template Matching . . . . . . . . . . . . . . . . . . . 85

7.3.6 Ellipse Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.7 Combining the Methods . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Face Tracking Experiments . . . . . . . . . . . . . . . . . . . . . . . . .90

7.4.1 Tracker Manager Parameters . . . . . . . . . . . . . . . . . . . . 90

7.4.2 Mean Shift and Ellipse Fitting Parameters . . . . . . . . . .. . . 91

7.4.3 Kalman Filter Parameters . . . . . . . . . . . . . . . . . . . . . 92

7.4.4 Tracker Accuracy Test . . . . . . . . . . . . . . . . . . . . . . . 96

7.4.5 Elimination of Trackers for Non-Face Objects . . . . . . .. . . . 100

7.5 Hand-Raise Detection Experiments . . . . . . . . . . . . . . . . . .. . . 103

7.5.1 Experiments Description . . . . . . . . . . . . . . . . . . . . . . 103

7.5.2 Valid Hand-Raises . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5.3 Clutter and Occlusion . . . . . . . . . . . . . . . . . . . . . . . 106

7.5.4 Illumination Changes . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5.5 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . 109

7.6 Experiments Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . .111

8 Future Work 113

8.1 Focus of Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Face Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Face Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



8.4 Hand-Raise Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Conclusions 117

Bibliography 121

A Probability Theory 125

A.1 Univariate Probability Distributions . . . . . . . . . . . . . .. . . . . . 125

A.2 Multivariate Probability Distributions . . . . . . . . . . . .. . . . . . . 127

B Estimators 129

B.1 The Discrete Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . .129

B.1.1 Process and Measurement Models . . . . . . . . . . . . . . . . . 129

B.1.2 Time and Measurement Update . . . . . . . . . . . . . . . . . . 130

B.1.3 Kalman Filter Order . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1.4 The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . 132

B.2 CONDENSATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2.2 The CONDENSATION Algorithm . . . . . . . . . . . . . . . . . . 133

B.2.3 Selection of a Sample . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2.4 Prediction of New Sample . . . . . . . . . . . . . . . . . . . . . 134

B.2.5 Weighting of the New Sample . . . . . . . . . . . . . . . . . . . 134

B.2.6 Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.2.7 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . 135

C The Skin-Colour Model 137

C.1 Model Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.2 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.2.1 Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2.2 Minor/Major Eigenvalue Ratio . . . . . . . . . . . . . . . . . . . 141

C.2.3 Skin Chromaticity Distribution Area Size . . . . . . . . . .. . . 142

C.2.4 Skin Chromaticity Distribution Rotation . . . . . . . . . .. . . . 143

C.3 Skin-Colour Model Conclusions . . . . . . . . . . . . . . . . . . . . .. 144

D Video Collections 145

D.1 Videos with Constant CCTs . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.2 Videos with Fast Changes in CCT . . . . . . . . . . . . . . . . . . . . . 147

D.3 Videos with Constant CCTs and Uniform Background . . . . . .. . . . 147



D.4 Videos with Mixed Illumination Colours . . . . . . . . . . . . . .. . . . 148





List of Figures

1.1 Typical Video Conference Setup . . . . . . . . . . . . . . . . . . . . .. 2

1.2 The VICOWIJOY Video Conferencing System. . . . . . . . . . . . .. . 4

1.3 Hand-Raise ROIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Skin-Colour Representations . . . . . . . . . . . . . . . . . . . . . .. . 9

2.2 Comparing the Rectangle with the LUT . . . . . . . . . . . . . . . . .. 10

2.3 Estimating a Gaussian Model from a LUT . . . . . . . . . . . . . . . .. 13

2.4 Comparing a Gaussian Model with a LUT . . . . . . . . . . . . . . . . .14

2.5 The Skin Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The Face Verification Process . . . . . . . . . . . . . . . . . . . . . . .. 24

3.2 Preprocessing of Likelihood Image . . . . . . . . . . . . . . . . . .. . . 25

3.3 Chain Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 The Contour Segmentation Algorithm . . . . . . . . . . . . . . . . .. . 27

3.5 Removing Regions of “Wrong” Sizes and Shapes . . . . . . . . . .. . . 28

3.6 Nose-Eye Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Template Matching Using Local Maxima . . . . . . . . . . . . . . . .. 30

3.8 Absolute and Relative Distances . . . . . . . . . . . . . . . . . . . .. . 32

3.9 The Face Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.10 First Fit vs. Best Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

4.1 Face and Hand Trajectories . . . . . . . . . . . . . . . . . . . . . . . . .41

4.2 Tracker Update Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Mean Shift Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Skin-Colour Likelihoods during Occlusion . . . . . . . . . . .. . . . . . 44

4.5 Skin-Colour Likelihoods during Illumination Change . .. . . . . . . . . 45

4.6 Result of Ellipse Fitting in Gradient Image . . . . . . . . . . .. . . . . . 45

4.7 Bounding Box Intersection and Union . . . . . . . . . . . . . . . . .. . 48

5.1 Hand-Raise Detection Preprocessing . . . . . . . . . . . . . . . .. . . . 53

xiii



5.2 VLine Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 NBC1: A Naive Bayesian Classifier for Hand-Raise Detection . . . . . . 56

5.4 NBC2: Another Naive Bayesian Classifier for Hand-Raise Detection . . . 56

5.5 Center Coordinates for Hand-Raise Gestures for NBC2 . . .. . . . . . . 58

5.6 Center Coordinates for Hand-Raise Gestures for NBC1 . . .. . . . . . . 60

5.7 Area and Height/Width-Ratio of Hand-Raise Gestures . . .. . . . . . . . 61

5.8 Height and Width of Hand-Raise Gestures . . . . . . . . . . . . . .. . . 62

5.9 Intersection Areas for Hand-Raise Gesture . . . . . . . . . . .. . . . . . 63

5.10 Skin Pixel Count for Hand-Raise Gesture . . . . . . . . . . . . .. . . . 63

6.1 VICOWIJOY Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 The Skin-Colour Detection Process . . . . . . . . . . . . . . . . . .. . . 67

6.3 The Face Detection Process . . . . . . . . . . . . . . . . . . . . . . . . .67

6.4 The LUTs Centers of Mass . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 The Supervisor Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 The Face, Hand, and Background Areas . . . . . . . . . . . . . . . . .. 75

7.2 Average Likelihood in the Face Area . . . . . . . . . . . . . . . . . .. . 76

7.3 Average Likelihood in the Background Area . . . . . . . . . . . .. . . . 78

7.4 Average Likelihood in Face Area using Moment Constraints . . . . . . . 80

7.5 Average Likelihood in the Background Area using Moment Constraints . 81

7.6 The Face Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.7 Average Likelihood when using Preprocessing . . . . . . . . .. . . . . . 83

7.8 Choosing a Threshold Value . . . . . . . . . . . . . . . . . . . . . . . . 84

7.9 Finding Solidity Thresholds . . . . . . . . . . . . . . . . . . . . . . .. 86

7.10 Finding the Template Matching Threshold . . . . . . . . . . . .. . . . . 87

7.11 Finding the Ellipse Fitting Threshold . . . . . . . . . . . . . .. . . . . . 88

7.12 The Search Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.13 Mean Shift Iterations Required in V11 . . . . . . . . . . . . . . .. . . . 92

7.14 Measurement Noise for Kalman Filter for V4 . . . . . . . . . . .. . . . 94

7.15 Events in V4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.16 Terms Contributing to the Measurement Noise for V4 . . . .. . . . . . . 95

7.17 Skin-Colour False Positives after Occlusion . . . . . . . .. . . . . . . . 96

7.18 Measurement Noise for Kalman Filter for V6 . . . . . . . . . . .. . . . 96

7.19 Events in V6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.20 Terms Contributing to the Measurement Noise for V6 . . . .. . . . . . . 97



7.21 Moment Changes during Change of Illumination . . . . . . . .. . . . . 98

7.22 Examples of Clutter and Occlusion . . . . . . . . . . . . . . . . . .. . . 98

7.23 Tracker Estimate during Occlusion in V4 . . . . . . . . . . . . .. . . . 99

7.24 Tracker Estimate during Illumination Change in V8 and V9 . . . . . . . . 99

7.25 Trackers Estimate during Movement in V15 . . . . . . . . . . . .. . . . 100

7.26 Ellipse Fitting Score and Unstability Measure for V4 . .. . . . . . . . . 101

7.27 Ellipse Fitting Score and Unstability Measure for V5 . .. . . . . . . . . 101

7.28 Ellipse Fitting Score and Unstability Measure for V6 . .. . . . . . . . . 102

7.29 Ellipse Fitting Score and Unstability Measure for V19 .. . . . . . . . . . 102

7.30 False Positives from Face Detection in V19 . . . . . . . . . . .. . . . . 102

7.31 Hand-Raises in V14–V16 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.32 False Positives and Negatives for V14–V16 . . . . . . . . . . .. . . . . 105

7.33 False Negatives vs. False Positives for V14–V16 . . . . . .. . . . . . . 106

7.34 Hand-Raises in V4, V6, and V12–V13 . . . . . . . . . . . . . . . . . .. 107

7.35 False Negatives vs. False Positives for V4, V6, and V12–V13 . . . . . . . 108

7.36 Hand-Raises in V8–V10 . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.37 False Negatives vs. False Positives for V8–V10 . . . . . . .. . . . . . . 109

7.38 False Positives and Negatives for All Videos . . . . . . . . .. . . . . . . 110

7.39 False Negatives vs. False Positives for All Videos . . . .. . . . . . . . . 110

A.1 Unimodal Probability Distribution . . . . . . . . . . . . . . . . .. . . . 125

A.2 Multimodal Probability Distribution . . . . . . . . . . . . . . .. . . . . 126

C.1 The Skin Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.2 Shape Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.3 Skin Chromaticity Distribution Shape Change . . . . . . . . .. . . . . . 139

C.4 Area Size Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.5 Area Rotation Constraints . . . . . . . . . . . . . . . . . . . . . . . . .. 140

C.6 Skin Locus Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.7 Chromaticityr Center of Mass Frequency . . . . . . . . . . . . . . . . . 142

C.8 Minor/Major Eigenvalue Ratio Verification . . . . . . . . . . .. . . . . 142

C.9 Area Size Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.10 Rotation Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

D.1 Image Examples from V1-V7 . . . . . . . . . . . . . . . . . . . . . . . . 146

D.2 Image Examples from V8-V10 . . . . . . . . . . . . . . . . . . . . . . . 147

D.3 Image Examples from V11-V16 . . . . . . . . . . . . . . . . . . . . . . 149



D.4 Image Examples from V17-V20 . . . . . . . . . . . . . . . . . . . . . . 150



List of Tables

5.1 Hand-Raise Attributes Mean and Variance . . . . . . . . . . . . .. . . . 57

5.2 Hand-Raise Attributes Mean and Variance for NBC1 . . . . . .. . . . . 58

5.3 Background Probabilities for Hand-Raise Gesture . . . . .. . . . . . . . 63

7.1 Average Likelihood in the Face Area . . . . . . . . . . . . . . . . . .. . 77

7.2 Average Likelihood in the Background Area . . . . . . . . . . . .. . . . 77

7.3 Average Likelihood Distance . . . . . . . . . . . . . . . . . . . . . . .. 78

7.4 Relative Average Computation Time . . . . . . . . . . . . . . . . . .. . 79

7.5 Moment Constraints Values . . . . . . . . . . . . . . . . . . . . . . . . .79

7.6 Average Likelihood in the Face Area with and without Moment Constraints 80

7.7 Distance Between Face and Background Area using Moment Constraints 80

7.8 Average Likelihood Distance when using Preprocessing .. . . . . . . . . 84

7.9 Rectangle Method Parameters . . . . . . . . . . . . . . . . . . . . . . .85

7.10 Rectangle Method Results . . . . . . . . . . . . . . . . . . . . . . . . .85

7.11 Solidity Method Results . . . . . . . . . . . . . . . . . . . . . . . . . .86

7.12 Template Matching Method Results . . . . . . . . . . . . . . . . . .. . 87

7.13 Ellipse Fitting Method Results . . . . . . . . . . . . . . . . . . . .. . . 88

7.14 Combining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.15 New Threshold and Parameter Values . . . . . . . . . . . . . . . . .. . 89

7.16 Using Stricter Threshold and Parameter Values . . . . . . .. . . . . . . 90

7.17 Measurement Noise Parameters . . . . . . . . . . . . . . . . . . . . .. 94

7.18 Hand-Raise Detection Results for V14–V16 . . . . . . . . . . .. . . . . 106

7.19 Hand-Raise Detection Results for V4, V6, and V12–V13 . .. . . . . . . 108

7.20 Hand-Raise Detection Results for V8–V10 . . . . . . . . . . . .. . . . . 108

7.21 Hand-Raise Detection Results for All Videos . . . . . . . . .. . . . . . 111

xvii





Chapter 1

Introduction

1.1 Problem Description

Video conferencing makes it possible for groups of people located in different parts of the
world to communicate almost as if they were in the same room. This is a great advantage
for companies that have offices in many countries, since it can save them a lot of travel
expenses and make their employees feel more as a single unit,although they are separated
by thousands of miles. Compared to other forms of communication such as emails and
telephone calls, video conferencing has the advantage of sending live images. This makes
it a lot easier to communicate, because the involved people can make full use of their body
languages when explaining something. Figure 1.1 illustrates a typical video conference
setup as we imagine it in the system we describe in this report.

One of the primary problems when having a video conference isto make sure that the
person who is talking has the attention – i.e. is zoomed in on.If we just have a camera that
statically shows a whole group of people, it may be very difficult for other participating
groups to see who is talking and important information mightbe lost. One way of solving
this is to let a human control the camera and he must make sure to zoom in on the person
who is talking. Of course this is not optimal, since the person doing that is unable to
participate in the conference, and at the same time he or she must be paid for doing a
rather tedious job. Some commercial systems [30, 29, 41] tryto automate the control task
by using acoustics-based tracking, where a microphone placed on the camera is used to
find the direction of the person who is talking and make the camera zoom in on him or
her. Although this seems as a good solution, it has the disadvantage of being sensitive to
acoustic noise.

We would like to investigate if the control of the camera can be done in another way, using
the video signal which is unaffected by acoustic noise. If this is possible, an approach
using both acoustic and visual cues could result in an even more robust system.

One way of discovering the talking person based only on visual information, is to look
for the place in the video stream that is most active, since people tend to be more active
when they talk than when they are silent [10]. Another solution could be to search for
faces in the video stream, and then make use of some kind of hand signaling, e.g. raising
the hand, to identify the person that wants to talk. Since humans have limitations in their
physical behaviors it should be possible to identify to which head a raised hand belongs.
The people participating in the video conference could alsobe equipped with a button
connected to the video conference system. This way a person could press the button
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Figure 1.1: Typical Video Conference Setup: One of the cameras providesa “panorama” view of the partic-
ipants, while another camera is zoomed in on the person who isspeaking. It is the image from
the latter camera which will be sent to the video conference participants at the other location(s).

when attention is wanted. One great disadvantage of this is that the system will have
to be calibrated every time the person using a particular button moves significantly (e.g.
more than 30 cm.), otherwise the camera will not know where tolook for the person who
pressed the button. Furthermore, this increases the hardware complexity of the system
since it will consist not only of the cameras and the computer, but also of the buttons.

In this project we have focused on developing a video conference system that makes use
of the hand-raise principle to detect the person who wants toget the attention. The system
will consist of two cameras; thepanorama cameraand thePan-Tilt-Zoom-camera(PTZ-
camera). The position and zoom-level of the panorama camerais fixed and its output
is used to search for faces and hand-raises. If a hand-raise is detected, the PTZ-camera
is used to zoom in on the face of the person who wants the attention (see Figure 1.1).
Throughout the report we will refer to the system as VICOWIJOY (VI deoCOnferencing
WI thout aJOYstick) or the VICOWIJOY system.

1.2 Existing Systems

A system that has some similarity to the one we have in mind, isdescribed in [10]. Here
Krüger et al. present a teleconference system which uses anattentive camera. They
assume that the person who is talking creates more motion that the listeners. This as-
sumption is used to turn a Pan-Tilt-Zoom-camera (PTZ-camera) in the direction of the
area in the image which contains the most motion. Afterwards, it is verified that there
is indeed a person in that direction, by analyzing the acoustic cues received through a



microphone mounted on top of the camera. Video examples fromthe system in use can
be seen onhttp://www.ks.informatik.uni-kiel.de/~vok/research/research.html.

Commercial systems for automatic speaker attention do alsoexist. Examples of these are
the SmartTrak Camera System made by VTel [41] and Polycom’s ViewStation [30]. Both
of these make use of voice tracking cameras – i.e. acoustic cues are received through a
microphone mounted on the PTZ-camera and used to find the direction of the speaker. We
have not been able to find any commercial systems that make useof visual cues to focus
on the current speaker. This alone suggests that it is an areawhich needs more attention,
which we hope to give it with this report.

1.3 System Overview

To be able to zoom in on a persons face, its position must be known. This can be achieved
using face detection. However, face detection may not find a particular face in each image.
Therefore, the system should have a way to keep track of wherethe faces are, when face
detection does not find them. This can be done using a face tracker for each face that is
found using face detection. The tracker does not need to relyon the face positions and
sizes found by the face detection, but can use its own methodsfor finding the face, based
on where the face was in the last image, and the assumption that the face will be close to
this position. This way, its becomes acceptable that the face detection often does not find
the face, as long as new faces will be detected within a reasonable amount of time after
they appear in the image (e.g. a few seconds).

A face tracker is also desirable for another reason. When a person is raising his hand, he
can be expected not to be moving his head very much, that is, itis spatially stable. This
can be used to make the system more robust towards the different kinds of noise that can
occur during a video conference, such as persons walking by in the background. If it is
ensured that the camera only will zoom in on spatially stableobjects, a face moving in the
background could not accidentally be zoomed in on, as it is spatially unstable. Whether
a face is spatially stable can only be determined from temporal information about its
position and size, which a face tracker can provide.

The entire VICOWIJOY system illustrated in Figure 1.2 consists of a face detector, face
trackers, hand-raise detectors, and a control module for the PTZ-camera. Separate face
trackers are started for each of the faces found by the face detector, and each face tracker
is associated with its own hand-raise detector that detectswhen the person whose face is
being tracked raises his hand. The control module uses the information about the position
and size of the face from the face tracker for controlling thePTZ-camera to zoom in on
the person who has raised his hand.

When the face of a person is being tracked, it will be possibleto restrict the search for
hand-raise gestures to a region of interest (ROI) near the person, thus reducing the com-
putational needs of the system. We will refer to this ROI as the hand-raise ROI. The
hand-raise ROIs of two persons are illustrated in Figure 1.3. We impose the restriction
that hand-raises must be done using the right hand. Therefore, the hand-raise ROI will be
an area to the left of the person in the image.



Control Module
PTZ-camera

image

control
signal

hand raised

Panorama
camera

PTZ-camara

Face Face Hand-Raise

image

faces position

position
and size

Detector Tracker Detector

Figure 1.2: The VICOWIJOY Video Conferencing System.

Figure 1.3: Hand-Raise ROIs. The two large rectangles are the hand-raise ROIs for the two persons being
tracked by the system.

1.4 Delimitation

We restrict ourselves to the investigation of methods for detection and tracking of faces,
and detection of hand-raise gestures. We shall not considerthe control of the PTZ-camera,
nor the communication, i.e. the exchange of images, betweensystems at different loca-
tions participating in a video conference.

We impose the following restrictions on the environment andparticipants in the video
conference1:� The background cannot contain large areas of skin coloured material/objects and

cannot contain a large number of sharp edges.� Participants are only allowed to raise their right hand, andthe top of the fingers
must be at least at the same height as the top of the head when the hand is raised.
The hand must be within the image while it is being raised. Thehead of the hand-
raising participant must be within the image as well.� Participants are placed in a single row and the minimum inter-person distance is
0.6 m (center-to-center). They are not allowed to occlude each other.

1These restrictions are inspired by a set of requirements supplied by Devitech ApS.



� The participants are only tracked when they face (profile-to-profile) the camera.
In order to simplify the face detection, the participants must look straight into the
camera for the tracking to be initiated. Prior to this, the participants may not be
tracked.� The camera must be placed in approximately the chest/head height of the partici-
pants.� The number of participants must be between 1 and 3.

1.5 Outline of Report

The structure of the report reflects the architecture of the system presented in Figure 1.2.
In Chapter 2, methods for finding skin-coloured objects in the image are investigated.
These methods are used by face detection, face tracking, andhand-raise detection. Face
detection is described in Chapter 3, face tracking in Chapter 4, and hand-raise detection
in Chapter 5. In Chapter 6, we present the design of the systemthat we have implemented
and used for experiments. The experiments and their resultsare described in Chapter 7.
This is followed by suggestions for future work in Chapter 8 and conclusions in Chapter
9.





Chapter 2

Focus of Attention

In this chapter, methods to use for the initial focus of attention in the VICOWIJOY system
are described. Several ways of detecting skin-colours are described. Furthermore, we in
particular describe how the system can adapt to illumination changes, e.g. due to a cloud
covering the sun or artificial lights being switched on and off.

2.1 Introduction

When searching for humans the two major methods to use for focus of attention are skin-
colour detection and motion detection. We have decided to focus only on detection of
skin-colours, since the investigations we made in [5] showed that using motion detection
in the focus of attention phase did not aid the search for human faces. In Chapter 5 motion
detection is nevertheless used for detecting hand-raises.We do not include this as a part
of the focus of attention phase, since it only applies to the detection of hand-raises and
not detection of faces.

The first task of the VICOWIJOY system is to direct the attention to regions in the image
which are likely to contain the objects of interest (also known as ROIs for regions of
interest). In our case these are faces and hands. We will refer to this task asFocus of
Attention(FoA). Using FoA makes the job of the following methods of face verification,
face tracking, and hand-raise detection much easier, sincethey only have to operate in the
areas found by the FoA methods. Because the face verificationmethods in most cases are
more complex and thereby more computational demanding thanthe FoA methods, the
use of FoA also makes the system able to perform faster (i.e. process more frames per
second).

When searching for face and hands as we do in this project, detection of skin-colours in a
chromatic colour space has been shown to be very effective touse as FoA [26, 20, 2, 39].
In these methods a likelihood image is created based on the likelihood of each pixel being
skin-coloured. Further processing of this image is then used to detect the skin-coloured
areas. The advantages of skin-colour detection methods arethat they are invariant towards
size and orientation and also light intensity if the right colour models are used (refer to
Section 2.2). Furthermore, they are fast and therefore suitable for real-time tracking. To
identify the skin-colour likelihood of a colour, several methods can be used. We have
decided to investigate the use ofLookup Tables(LUTs) andGaussian models. These are
described in Sections 2.3 and 2.4.

Although the detection of skin-colours is invariant towards changes in light intensity,
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changes in light colour have a great influence on where to search for skin-colours in the
colour space used. Therefore we have also investigated methods which make it possible
for the system to adapt to changes in lighting colour. These are described in Section 2.5

2.2 Colour Models

It has been shown that although not very obvious to the human eye, the human skin-
colours lie in a small cluster when intensity is removed (i.e. skin-colours change in in-
tensity but not in chromaticity) [33]. In order to make the skin-colour detection invariant
towards changes in the intensity of lighting, we need to convert the RGB values of the
input image to another representation, which has lighting as one of its parameters. Exam-
ples of such models are YCrCb, HSV, YUV, and Normalized RGB [44]. The results in
[44] show that the choice of colour model is not that important – they more or less per-
form equivalently in the experiments described in the article. Therefore we have chosen
to use the Normalized RGB (NRGB) model since this is the colour model we have read
most about in the literature.

To transform an image from the RGB space to its representation in the NRGB space (also
known as thechromaticity plane, where the chromatic values indicate the “pure” colours)
Equations 2.1 through 2.3 are applied to every pixel.r = RR+G+B (2.1)g = GR+G+B (2.2)b = BR+G+B = 1� r � g (2.3)

In Figure 2.1 it can be seen how a 3 dimensional distribution of skin-colours in the RGB
model can be represented in only 2 dimensions in the chromaticity plane. This is because
the last chromaticityb can be calculated whenr and g are known, since intensity no
longer is part of the colour space.

2.3 Lookup Tables

A simple way of verifying whether a colour is skin-coloured or not, is to define a set of
thresholds holding the minimum and maximum allowable values of chromaticityr andg.
Another way of describing this method is that a rectangular area for chromaticityr andg in the chromaticity plane (see Figure 2.2(a)) is defined. Colours inside this rectangle
are defined as skin-coloured and colours outside the rectangle as non skin-coloured. This
method is rather simple, however it has some significant drawbacks. First of all, the
rectangle must be large enough to cover the colours of skin asthey appear under all
kinds of illumination. Therefore, many other colours than the actual skin-colours, will
be identified as skin-coloured. These can be considered asfalse positiveswhereasfalse
negativesare skin-colours which are identified as non skin-colours. Using the rectangle
to define the skin-colours will in general give a high number of false positives and a low
number of false negatives.

Another drawback of using the rectangle is that a colour is defined as either skin-coloured
or non skin-coloured (i.e. its likelihood is either 1 or 0). Therefore, the likelihood image
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Figure 2.1: Skin-Colour Representations: The selected skin-colour region (a) is represented by 3 dimensions
in the RGB model (b) and 2 dimensions in the chromaticity plane (c).

will be a simple binary image where white pixels indicate skin-colours and black pixels
non skin-colours (see Figure 2.2(d)). This is a problem whenthe number of false positives
are high, since areas of non skin-colours might be joined with skin-coloured areas. This
can lead to a very inaccurate result of FoA and thereby an increasing computation time
of the following methods of face verification and hand-raisedetection.

Instead of using the rectangle or the thresholds, alookup table(LUT) may be used. In
this project this will be a two dimensional table which holdsthe values of chromaticityr andg in the chromaticity plane (r is the columns andg the rows). Each record in the
LUT holds the likelihood of this particular combination ofr andg being skin-coloured
(see Figure 2.2(b), where high intensity indicates a high likelihood).

Compared to the use of the rectangle, the LUT makes it possible to be much more accurate
when defining whether a colour is skin-coloured or not. Firstof all, the area in the LUT
does not have to be as large as the rectangle. If the LUT e.g. isupdated using the colours
of the skin-coloured objects that are being tracked as input, it can adapt to the current
skin-colours with good accuracy (see Section 2.5 for more about adaption). Moreover,



(a) The Skin-Colour Rectangle in Chro-
maticity Plane

(b) LUT in Chromaticity Plane

(c) Input Image (d) Binary Image using the Rectangle

(e) Likelihood Image using the LUT (f) Thresholded Likelihood Image using the
LUT

Figure 2.2: Comparing the Rectangle with the LUT: Based on the skin-colour rectangle (a) a binary image
(d) is created from the input image. Using a LUT (b) a skin-colour likelihood image (e) is made.
Comparing the thresholded likelihood image for the LUT (f) with the binary image for the skin-
colour rectangle (d), shows that the use of a LUT gives a more accurate and more noise free
result.



it is possible to reflect how likely it is that a specific colouris skin-coloured – looking
at Figure 2.2(e) (where high intensity indicates a likelihood close to 1 and low intensity
a likelihood close to 0) it can be seen, that the faces and hands are much more likely to
be skin-coloured than e.g. the table. Finally, thresholding the likelihood image makes it
possible to ignore pixels that have a very low likelihood of being skin-coloured (can be
considered as noise). Comparing the result of using the rectangle in Figure 2.2(d) with
the result of using a LUT in Figure 2.2(f), it can be seen that using a LUT reduces the
noise and increases the accuracy.

2.4 Gaussian Models

Skin-colours can be described using a Gaussian model if the colours are normalized and
the skin is illuminated by a single colour [42, 2]. Accordingto [39, 37] this even holds
when different races are represented in the image.

2.4.1 Estimating the Model from a LUT

According to Feriset al. in [33] and Sunet al. in [39], a unimodal Gaussian density
function can be denoted asN(m;�2) wherem = �ravggavg�
or simply the center of mass, and�2 the covariance matrix1 where� = ��rr �rg�gr �gg�
and��� the standard deviations. To calculate the mean of chromaticity r, ravg, Equation
2.6 is used. In this,ri represents chromaticityr of a vectorxi = [ri gi℄T in the LUTS
andN the size ofS. The functionS(xi) returns the normalized skin-colour likelihood
of the colour represented by the vectorxi. This is done according to Equation 2.4, wherexmax represents the colour with the highest frequency inS. The reason why we use the
the normalized skin-colour likelihood is that we want to usea fixed threshold value to
segment the likelihood image into a binary image of skin-colours and non skin-colours.
Alternatively, we could use a variable threshold value, which should be calculated based
on the likelihood of the colour with the highest frequency inS. We have chosen the first
strategy, since we think it is easier to relate to a fixed threshold than a changing threshold.

The functionlsum(S) defined in Equation 2.5 returns the sum of the likelihoods forallxi in the datasetS.

The mean for chromaticityg is calculated in the same way, only now chromaticityg, gi,
is used from the LUTS. The equation for this can be seen in Equation 2.7.S(xi) = freq(xi)freq(xmax) (2.4)

1We refer the reader to Appendix A for further description of probability theory.



lsum(S) = NXi=1 S(xi) (2.5)ravg = 1lsum(S) NXi=1 riS(xi) (2.6)gavg = 1lsum(S) NXi=1 giS(xi) (2.7)

The covariance matrix,�2, of the Gaussian model, defines how concentrated the proba-
bility mass is around the centerm. A low covariance indicates that the probabilities are
high close tom, and a high covariance indicates that the probabilities aredistributed over
a larger area. To calculate the covariances,�2��, in �2, based on the LUTS consisting of
vectors[ri gi℄T and their likelihoods, Equations 2.8 to 2.11 are used.�2rr = 1lsum(S) NXi=1(ri � ravg)2S(xi) (2.8)�2rg = 1lsum(S) NXi=1(ri � ravg)(gi � gavg)S(xi) (2.9)�2gr = 1lsum(S) NXi=1(gi � gavg)(ri � ravg)S(xi) (2.10)�2gg = 1lsum(S) NXi=1(gi � gavg)2S(xi) (2.11)

As it can be seen from Equation 2.9 and 2.10, the values of�2rg and�2gr will always be
equal. The estimation of the model can therefore be computationally optimized, if we
only calculate one of these values and then assign this valueto the other. In Figure 2.3 the
appearance of a Gaussian model estimated from the skin-colours of the faces in an image
can be seen. The estimated center of mass,m, and covariance matrix,�2 are described
below. m = �0:4670:277� �2 = � 0:435 �0:104�0:104 0:087 �
2.4.2 Calculating Likelihoods from the Model

The Gaussian modelN(m;�2) estimated in the previous section, can be used to calcu-
late skin-colour likelihoods of the pixels in an input image. The image colours are first
converted to chromaticity plane and afterwards the likelihood, lskin(xi), of each pixel,xi, being skin-coloured is calculated using Equation 2.12.lskin(xi) = exp[�12(xi �m)T inv(�2)(xi �m)℄2� det(�2) 12 (2.12)



(a) Input Image

(b) Chromaticity Distribution in LUT (c) Estimated Gaussian Model

Figure 2.3: Estimating a Gaussian Model from a LUT: Using the skin-colours in the faces in the input image
(a) a LUT is created (b). The Gaussian model (c) is then estimated based on the chromaticityr
andg values and the normalized skin-colour likelihoods of the colours represented by(r; g).

Since a Gaussian model is a probability model and we use a 2 dimensional model to de-
scribe skin-colours, its volume is 1. Therefore, the centerdoes not usually have the likeli-
hood 1, unless the model is estimated from a single value whereS(xi) = 1. E.g. the like-
lihood of the center of the model estimated in last section isless than3:5 � 10�3 = 0:35%
(see Figure 2.3). To get the normalized likelihood, we need to adjust the result of Equa-
tion 2.12, such that a colour placed in the center of the Gaussian model gets a likelihood
of 1. This is done as described by Equation 2.13 where every likelihood, lskin(xi), is
divided by the likelihood of the center of mass in the Gaussian model,lskin(m).normlskin(xi) = lskin(xi)lskin(m) (2.13)

The image shown in Figure 2.4(e) illustrates the skin-colour likelihoods when using a
Gaussian model. Comparing it to the result of using a LUT which is shown in Figure
2.4(d), no significant difference can be observed. According to [24] the use of LUTs
should give slightly more accurate results compared to the use of Gaussian models. Fur-
thermore, LUTs should be faster to calculate, which is desirable in real-time systems.



(a) LUT (b) Gaussian Model

(c) Input Image (d) LUT Likelihood Image (e) Gaussian Likelihood Im-
age

Figure 2.4: Comparing a Gaussian Model with a LUT: The likelihood images(d) and (e) of the input image
(c) is created based on a LUT (a) and a Gaussian model (b). The results are close to identical.

2.5 Handling Changes in Light Colours

As long as the lighting colour does not change, a LUT or a Gaussian model estimated
from a training set of images can be used to find skin-colours.However, in video con-
ferences lighting colour may change, i.e. lights in the ceiling are turned on and off, light
coming through a window changes when the sun comes and goes, curtains are pulled
forth and back, etc. When the colour of the lighting changes,the area in the chromaticity
plane which represents skin-colours (also known as the skinchromaticity distribution)
moves [38, 20]. A system which should be able to handle changes in lighting colour must
therefore be able to adjust itself to these changes based on observations from the input
images.

2.5.1 The Skin Locus

When the illumination colour changes, the skin chromaticity distribution moves along
a locus which is similar to thePlanckian locus[26, 19]. The Planckian locus is the
line in chromaticity plane along which colours ofBlackbody radiatorsare placed2. A
Blackbody radiator is a theoretical object, which is a perfect radiator that changes in
colour when heated. Thecorrelated colour temperature(CCT) of a light source may then
be measured as the temperature (measured in Kelvin (K)) needed to make a Blackbody

2Refer to Appendix C for more information about the skin-colour model we have used in this project.
This model was first described by Störringet al. in [27]



radiator the same colour (we refer to [18] for more theory about Blackbody radiators and
colour temperatures). Not all light sources have a colour that is similar to the colour of
a Blackbody radiator, but the everyday light sources such assunlight, fluorescent lamps,
light bulbs, etc. do. As long as these are used, the skin-colour model we have used in this
project should be valid.

In the following we refer to the line along which the skin chromaticity distributions in
the skin colour model are placed as theskin locus. What happens is that when the CCT
decreases (i.e. when the CCT is low objects appear reddish and when the CCT is high
they appear bluish), the skin chromaticity distribution moves to the right along the skin
locus (see Figure 2.5). If the CCT increases, the skin chromaticity distribution moves to
the left. Moreover, the size and shape of the skin chromaticity distribution changes, when
it moves along the chromaticityr axis. Finally, the skin chromaticity distribution also
rotates clockwise when moving right along the chromaticityr axis. In Figure 2.5 exam-
ples of skin chromaticity distributions along the skin locus are illustrated. In this figure
a membership function defines the upper and lower boundary ofthe skin chromaticities
(the two yellow lines). In [19] they estimated this membership function as two quadratic
functions. To decide whether a pixel(r; g) is inside the upper and lower boundary, Equa-
tions 2.14 to 2.16 are used. The values of the parametersAup, bup, 
up, Adown, bdown,
and
down are estimated from a set of training images.gup = Aupr2 + bupr + 
up (2.14)gdown = Adownr2 + bdownr + 
down (2.15)skin(r; g) = (1; (g < gup) and(g > gdown)0; otherwise

(2.16)

2.5.2 Lookup Table Update

To adapt to changes in CCT when using LUTs, the skin-colouredareas found in the
images can be used to update the LUT. If e.g. the faces are detected and tracked, the LUT
can be updated with pixels from these. In this way a change in CCT will eventually be
reflected in the LUT. In the following we will explain two waysof updating a LUT.

Simple Update

The simplest way of updating a LUT,S, at timet based on a region of interest (ROI –
could e.g. be a face) in the input image, is to create a LUT,M , for this ROI and then
adjust the values inS according to Equation 2.17.

In this,S(xi) andM(xi) returns the normalized skin-colour likelihood of a colourxi =[r g℄T in respectivelyS andM . skin(xi) uses Equation 2.16 to detect whether the[r g℄T
values inxi are inside the area of skin-colours in chromaticity plane ornot.St(xi) = ((1� �)St�1(xi) + �Mt(xi))skin(xi) (2.17)



Figure 2.5: The Skin Locus: The skin chromaticity distribution moves along a locus similar to the Planckian
locus of Blackbody radiators when the CCT changes. When going from the left to the right along
the skin locus, the area of the skin chromaticity distribution also changes in size and shape and
rotates clockwise. The figure illustrates 6 different skin chromaticity distributions along the skin
locus. Upper and lower boundaries for skin chromaticities (the yellow lines) can be estimated
from a set of training images.

The constant0 � � � 1 is used to control how fast the adaption occurs – i.e. when� is
close to 1 the system will adapt very quickly.

WhenS has been updated according toM , it must be normalized such that the high-
est likelihood of a pixelS(xi) is 1. This is done by dividing every value inS with its
maximum likelihood.

Ratio Update

Calculating LUTs asratio histograms[19] is another way of finding the likelihoods of
skin-colours. Not normalized LUTs are made for both the ROI,M , and for the whole
image,I. The ratio LUT,R, at timet is then calculated asRt = MtIt
and afterwards normalized likelihoods are computed by dividingR with its highest like-
lihood value. In this way, colours which fall inside the skinchromaticity area and are
highly represented in the input image, will not have great effect on the likelihoods in the
LUT. If e.g. a large, light brown cupboard is present in the input images, the use of ratio
update ensures that skin-colours that are highly represented on this cupboard do not get
high likelihoods. Therefore, the cupboard colours will notget high skin-colour likeli-
hoods although they should happen to be of some of the same colours as the faces that
are being tracked.



Equation 2.18 illustrates how the colourxi in S is updated at the timet when using ratio
update. The functionskin(xi) uses Equation 2.16 to determine if a colourxi falls inside
the skin chromaticity area. The constant0 � � � 1 is used to control the adaption speed
over time. St(xi) = ((1� �)St�1(xi) + �Rt(xi))skin(xi) (2.18)

2.5.3 Gaussian Model Update

When using a Gaussian model to represent skin-colours in chromaticity plane, the adap-
tion to changes in CCT can occur in many ways. Amongst these are Gaussian ratio
updateandweighted parameters of Gaussianswhich will be described in the following
sections.

Gaussian Ratio Update

This method makes heavy use of the LUT ratio method explainedin the previous sec-
tion. A Gaussian modelN(m;�2) is represented by a LUT. This is done by calculating
the normalized likelihood for each of the possible positions,xi, in the LUT using Equa-
tion 2.13 on page 13. The LUT is then updated with skin-colours from ROIs in the images
in the same way as explained in Section 2.5.2. When this is done, a new Gaussian model
is estimated from the updated LUT as described in Section 2.4.1 on page 11.

Shortly said this method is the same as LUT ratio update, except that a Gaussian model
is estimated from the LUT and afterwards used to update the LUT to hold likelihoods
which fits to this model.

Weighted Parameters of Gaussians

In this method a Gaussian modelM(n; �2) is estimated from the ROIs in the input image.
Based on the parameters from this model, the parameters of the Gaussian model for skin-
colours,N(m;�2), is updated at timet using Equation 2.19 and 2.20.mt = (1� �)mt�1 + �nt (2.19)�2t = (1� �)�2t�1 + ��2t (2.20)

As for LUTs, the constants0 � � � 1 and0 � � � 1 can be used to control how fast
the adaption to changes in CCT should occur. I.e.� controls the position of the center of
mass,m, of the Gaussian model and� the covariances in the matrix�2.
2.5.4 Moment Constraints

If for some reason the adaption goes wrong, such as when a LUT or Gaussian model
“over-adapts” to skin-colours in the face that is being tracked, it could happen that the
updated version of the LUT or Gaussian model is distributed over a very small area in
chromaticity plane. Over-adaption happens when – according to the current LUT or



Gaussian model – the ROI used to update the LUT or Gaussian model only contains
very few, tightly clustered skin-colours. This may happen if the face is partly occluded,
the illumination changes, or the face is being tracked inaccurately and parts of the back-
ground are present in the ROI. Having small skin chromaticity distributions in the LUT
or Gaussian model lead to that only very few skin-colours will be detected in the future
images and thereby too small objects will be found. In the worst case faces being tracked
are lost.

The opposite may happen if the skin chromaticities in the LUTor Gaussian model dis-
tributes over a very large area. Then too many pixels will be identified as skin-coloured
and too large objects will be found. Large distributions mayoccur if not only the face but
also parts of a skin-coloured background are present in the ROI used to update the LT or
Gaussian model.

Wrong adaption can also move the skin chromaticity distribution away from the skin
locus. Again, this could happen due to occlusions, inaccurate tracking, or illumination
changes. In the worst case, the skin chromaticity distribution might move to the edge of
the boundaries defined in Equations 2.14 and 2.15 on page 15. This could again lead to
no skin-coloured pixels being found and, as a consequence ofthat, loss of faces being
tracked.

To avoid these situations, the moments of the LUT and the Gaussian model can be con-
strained. Examples of how to do that are explained in the following sections.

Center of Mass

To make sure that the skin chromaticity distribution in the LUT or the Gaussian model
does not move in a wrong direction (i.e. out of the area of skin-colours), a constraint on
the position of its center of mass can be made. How to calculate the center of mass in a
Gaussian model was shown in Equations 2.5 to 2.7 on page 12. Tocalculate the center of
mass for a LUT, the same equations are used. To constrain the position of the center of
mass of either the Gaussian model or the LUT, we can demand that it lies within a certain
distance of the skin locus. This can be done by using the chromaticity r value of the
center of mass to set minimum and maximum borders for the chromaticity g value center
of mass. I.e. if the chromaticityg center of mass is below the minimum border it is set
to the minimum border and if it is above the maximum border it is set to the maximum
border. Updating a Gaussian model in this way is simple – we just change the position of
its center of mass. For a LUT we also have to move all its likelihoods the same distance
as its center of mass is moved.

Variance and Covariance Size

Human skin-colours tend to be distributed across an area of acertain size in chromaticity
plane. According to our investigations made in Appendix C, the shape of this area will
be close to circular when the CCT is high and a flattened ellipse when the CCT is low.
Moreover, the area gets smaller when moving in either direction along the chromaticityr axis from a chromaticityr value of0:357. I.e. high and low CCTs give small areas,
whereas CCTs in between give larger areas. Finally, the areawill rotate clockwise when
it moves to the right along the chromaticityr axis (refer to Figure 2.5 on page 16).

The verifications of the skin-colour model in Appendix C showed that using the amount
of chromaticityr as an indication of how to constrain the variances and covariances in�2



was not a good idea. Overall constraints on the values in�2 should be used instead. To
control the size and shape of the skin chromaticity distribution, we can make minimum
and maximum borders for the sizes of the variances along the chromaticityr andg axes,�2rr and�2gg. Furthermore, we can demand that�2rr always is larger than�2gg. Finally, we
can ensure clockwise rotation by demanding that the covariances,�2rg and�2gr, always are
negative (i.e. positive covariances in�2 indicate counterclockwise rotation and negative
covariances indicate clockwise rotation). LUTs can also beconstrained if we calculate
covariance matrices similar to�2 and use constraints on these.

Even in the case where the variances and covariances are of the right sizes, problems may
arise for LUTs. This is because their variances and covariances can be represented by a
few, relatively large values (this is not the case for Gaussian models since they always
spread normally). Therefore, a minimum number of likelihoods must be larger than the
mean of the likelihoods in a LUT.

Constraining Gaussian Models

To constrain the shape of the Gaussian model we demand that the variance�2rr along the
chromaticityr axis is always larger than or equal to the variance�2gg along the chromatic-
ity g axis. This is done according to Equation 2.21.�2gg1 = (�2rr; �2gg > �2rr�2gg; otherwise

(2.21)

To constrain the area size of the Gaussian model, minimum andmaximum values for the
variances along the chromaticityr andg axis are used. These can be estimated using the
skin-colour model described in Appendix C. Equations 2.22 and 2.23 illustrate how the
variances are constrained.�min, �max, �min, and�max are the minimum an maximum
borders for the variances along the chromaticityr andg axis.�2rr1 = 8><>:�min; area < �min�max; area > �max�2rr; otherwise

(2.22)

�2gg2 = 8><>:�min; area < �min�max; area > �max�2gg1; otherwise

(2.23)

To constrain the rotation of the Gaussian model we simply demand that the covariances�2rg and�2gr are negative or zero. This is done in Equation 2.24 and 2.25.�2rg1 = (0; �2rg > 0�2rg; otherwise
(2.24)�2gr1 = (0; �2gr > 0�2gr; otherwise
(2.25)



When all the variances and covariances have been constrained, we need to update�gr1
and�rg1 to reflect the changes which may have happened to�rr and�gg. This is done
according to Equations 2.26 and 2.27.�2rg2 = �2rg1r �rr�rr1r �gg�gg2 (2.26)�2gr2 = �2gr1r �rr�rr1r �gg�gg2 (2.27)

Constraining LUTs

Handling too small or too large variances and covariances for LUTs is also possible. First
of all, we need to calculate the variances for the chromaticity r andg values, and the
covariance along therg axis. This is done in the same way as for Gaussian models which
was shown in Equations 2.8 to 2.11 on page 12.

Afterwards, two of the rules used to constrain the Gaussian model are verified. These are
to ensure that�2gg is smaller than�2rr (shape) and that the variances along the chromaticityr andg axis are between minimum and maximum borders (area size). Wehave decided
not to constrain the rotation of a LUT.

The actions taken when the rules of shape and area size are confirmed differ from the
actions made on Gaussian model. This is because LUTs hold allthe likelihood values,
whereas Gaussian models calculate them based on their parameters. It is not possible
to change a LUT simply by changing the values of it variances or covariances. Instead
we use dilation and erosion to increase and decrease the sizes of the variances and the
covariances until they are above or below a border value.

If �2gg > �2rr we erode the LUT along the chromaticityg axis until�2gg � �2rr. Erosion
along the chromaticityg axis is done by changing each likelihood’s value to the minimum
value of its neighbours and itself. Since the chromaticityg axis is vertical, we look at the
two nearest vertical neighbours3. Equation 2.28 illustrates the actions taken to constrain�2gg to be smaller than�2rr. S is the LUT anderodegg erodesS along the chromaticityg axis. After each erosion the LUT is normalized, and a new covariance matrix�2 is
calculated for the LUT, and the value of�2gg in this is used to find out if it is necessary to
erode the LUT again.lts(S) = (lts(erodegg(S)); �2gg > �2rrS; otherwise

(2.28)

To control the area size of the skin chromaticity distribution indicated by�2rr and�2gg, we
either dilate or erode the LUT along the appropriate axis until it gets above the minimum
border or below the maximum border. Dilation is the oppositeof erosion, which means
that instead of setting a likelihood to the lowest value of itself and its neighbours, it is
set to the highest value. Equation 2.29 shows the actions to be taken to ensure that�2rr
and�2gg are between minimum and maximum borders. When eroding and dilating along
the chromaticityg axis, the two nearest horizontal neighbours are used instead of the two
nearest vertical neighbours.�min, �max, �min, and�max are the minimum an maximum
borders for the variances along the chromaticityr and g axis. After each erosion the

3We also refer to [31] for more theory about dilation and erosion.



LUT is normalized and new variances calculated. The values of these are used to check
whether another dilation or erosion ofS is necessary.

lta(S) = 8>>>>>><>>>>>>:lta(eroderr(S)); �2rr > �maxlta(dilaterr(S)); �2rr < �minlta(erodegg(S)); �2gg > �maxlta(dilategg(S)); �2gg < �minS; otherwise

(2.29)

When the variances of the LUT have been made of appropriate sizes, we need to make
sure that the skin-colours not are represented by a low number of likelihoods with large
values. This is done by ensuring that a minimum percentage oflikelihoods is above the
mean of the likelihoods. The mean is calculated according toEquation 2.30 whereM
is the number of likelihoods that have a value above 0 andN is the total number of
likelihoods.S(xi) returns the likelihood value at positionxi = [r g℄T in the LUTS.lmean(S) = 1M NXi=1 S(xi) (2.30)

Afterwards, we check if the percentage of likelihoodsB(S) > lmean(S) is higher than
a minimum value�. If not, we raise the values of the likelihoods which are above 0 and
below the mean with a constant value
. In Equation 2.31 and 2.32 the actions to be taken
to ensure a minimum percentage of likelihoods above the meanare summarized.lmeans
is the original likelihood mean of the LUTS.Sadd(xi) = (S(xi) + 
; 0 < S(xi) < lmeansS(xi); otherwise

(2.31)ltr(S) = (ltr(Sadd); B(S) > �S; otherwise
(2.32)

2.6 Focus of Attention Conclusions

In this chapter, methods for the initial FoA of a video conferencing system have been de-
scribed. If the RGB colours of an image with a single illumination colour are normalized,
human skin-colours are located in a very small area. This canbe used to make an effective
distinction between skin-colours and non skin-colours in the image. Two ways of repre-
senting skin chromaticity distributions have been investigated. Lookup tables (LUTs) and
Gaussian models. LUTs consist of likelihoods of skin-colours in chromaticity plane and
are calculated using values from skin-coloured areas, which could e.g. be faces that are
being tracked. A likelihood image is made based on the LUT andan input image. This
image can afterwards be thresholded to remove pixels with a very low likelihood of being
skin-coloured.

The skin chromaticity distribution is close to normal according to [39, 37]. Therefore, a
Gaussian model can be used to describe skin-colour likelihood. A Gaussian skin-colour
model can be estimated from a set of training images or from images acquired at run-time
from the objects being tracked. Comparing LUTs and Gaussianmodels, shows that they



produce more or less the same results. According to [24] LUTsshould be slightly more
accurate and computationally faster than Gaussian models.

If the LUT or Gaussian model is estimated off-line, problemswill occur as soon as the
correlated colour temperature (CCT) changes. This is because the skin chromaticity dis-
tribution moves when the CCT changes. This movement followsthe skin locus, which
is almost placed along the Planckian locus of Blackbody radiators. A system capable of
coping with changes in CCTs must therefore be able to adjust itself to these changes. To
update the LUT or Gaussian model to reflect the skin-colours under the current CCT, the
skin-coloured areas of the objects being tracked can be used. The LUT can be updated
using eithersimple updateor ratio update. Both methods calculate a new LUT of skin-
colour likelihoods of the objects being tracked. The simplemethod then updates the LUT
used for skin-colour detection, using a constant between 0 and 1 to control how fast the
adaption should occur. The ratio method divides the LUT madefrom the objects being
tracked with a LUT of the whole image, and uses the result of this to update the LUT used
for skin-colour detection. The advantage of doing this, is that colours which are highly
represented in the input image will only have little effect on the likelihoods in the updated
LUT.

Two ways to update a Gaussian model to reflect the position of the skin chromaticity dis-
tribution were also explained. These areGaussian ratio updateandweighted parameters
of Gaussians. The ratio method makes heavy use of the ratio method for LUTs. It simply
calculates a LUT holding the likelihoods in the Gaussian model divided by the likelihood
of its center. Updates then occur as with a normal LUT but afterwards a new Gaussian
model is estimated from the LUT. This new Gaussian model is then again used to up-
date the LUT to hold its likelihoods divided by the likelihood of its center. The weighted
parameter method first calculates a new Gaussian model usingthe chromaticities of the
objects being tracked. Based on the parameters of this model, the model used for skin-
colour detection is updated. This is done in the same way as for LUTs by using constants
to weight how fast the adaption to new values should occur.

To avoid that regions of interest (ROIs) holding many non skin-colours make the calcu-
lated position and area of the skin chromaticity distribution reflect something else than
reality, constraints can be made on the moments of the LUTs and Gaussian models. In
Appendix C we have investigated and verified a skin-colour model invented by Störring
et al. in [27]. These investigations showed that areas of skin chromaticity distributions
are of certain sizes. Therefore, minimum and maximum valuesof the variances along the
chromaticityr andg axes can be used to avoid situations where the areas get too small or
too large. Furthermore, the variance along the chromaticity r axis is nearly always larger
than the variance along the chromaticityg axis. This can be used to constrain the size of
the chromaticityg variance to be less than or equal to the chromaticityr variance. The
skin chromaticity distribution also rotates clockwise when moving to the right along the
chromaticityr axis. Using a minimum constraint of always having clockwiserotation of
the skin chromaticity distribution should therefore be a good idea. This can be ensured
by always making the covariances 0 or negative. According tothe investigations made in
Appendix C, the position of the center of mass of the LUT or theGaussian model can be
also be constrained to be within a certain distance of the skin locus. If the center moves
further away it can simply be relocated in the Gaussian model. In the LUT all the like-
lihoods also need to be moved by the same offset as the center of mass. This is because
LUTs hold all the likelihood values, whereas the Gaussian models calculate them based
on their parameters.



Chapter 3

Face Verification

In this chapter methods to use for face verification are described. The likelihood image
generated by the focus of attention phase is preprocessed and segmented into objects of
face candidates. Based on size, shape, solidity, template matching using an average nose-
eye template, and ellipse matching each face candidate is classified as face or non-face.

3.1 Introduction

In the previous chapter it was explained how the detection ofskin-colours can be used
for directing the focus of attention (FoA) to areas in the images which are of further
interest. In Section 3.2 we describe how a number of preprocessing operations followed
by contour segmentation are used to group the skin-colour likelihood image into a list of
face candidates. Afterwards, in Section 3.3, face candidates which are not face-like in
size and shape are removed using a rectangular size and shapefilter. The solidity of the
face candidates which made it through this filter is then computed – i.e. the solidity of
faces will be high since most parts of them are skin-coloured. Solidity is explained in
Section 3.4. Following that, the remaining face candidatesare controlled using nose-eye
template matching. This is done in Section 3.5. Finally, a method for detecting ellipses
in gradient images is applied to the face candidates which also survived the nose-eye
template matching. This method is explained in Section 3.6.

Figure 3.1 illustrates the face verification process. As it can be seen, the face verification
methods are organized serially and in order of increasing complexity1. This is because
it supports the computational efficiency of the system, since the simple methods (the
rectangle and solidity filters) remove the face candidates which are far from being face-
like. In this way, only the face candidates which have a closeresemblance with faces are
used as input to the more complex methods of template and ellipse matching.

It is more important not to identify anything else than facesas faces, than to find all the
faces in all the images. This is because the face candidates which are verified as faces are
used to start new face trackers. These new trackers have influence on the areas used to
search for hand-raises in the already active face trackers (we refer the reader to Chapter 5
on page 51 for more about hand-raise detection). Therefore,if something else than a face
is classified as a face (also known as afalse positive), it may cause that hand-raises are
missed. The face verification methods must therefore be madestrict enough to avoid that
(preferably) any false positives are made. When doing this,the number of faces that are

1Although it can be argued whether the template matching or the ellipse matching is the most complex.
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identified as non-faces (also known asfalse negatives) will inevitably raise. However, a
high number of false negatives is not that big a problem, because we use videos of 12.5
Hz. I.e. if the number of false positives is e.g. 75% it would still be possible to detect a
face in every fourth image or more than 3 times per second. Thetime used to find the
face of a participant in a video conference would therefore be almost not noticeable.
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Figure 3.1: The Face Verification Process: Based on the skin-colour likelihood image made in the focus of
attention phase, face candidates are found and verified. Theresulting list of faces are illustrated
as green ellipses in the original input image.

3.2 Preprocessing and Segmentation

To enhance the areas of high likelihoods in the skin-colour likelihood image, the morpho-
logical operations erosion and dilation can be used. First,the use of erosion can remove
isolated likelihoods, and the low likelihoods which tend tobe along the contour of faces.
Afterwards, dilation can be used to enlarge the objects which are left after the erosion.
Both methods also have the effect of quantizing groupings ofsimilar likelihoods in the
likelihood image into a lower number of gray levels (see Figure 3.2(b) and 3.2(c)). I.e.
when erosion is used every pixel is set to the lowest gray level in its neighbourhood (in
this case we have defined the neighbourhood as the 8 nearest neighbours, also known as
8-connectivity). Therefore, when applied enough times, the likelihood image will even-
tually consist of only one gray level – the lowest in the image. For dilation the opposite
happens, i.e. a pixel is set to the highest gray level in its 8-connected neighbourhood.
Therefore, if dilation is used enough times, the likelihoodimage will eventually consist
of only the gray level of the highest likelihood in the image.

When using erosion and dilation in reasonable2 combinations, the result will be a like-
lihood image where groupings of high likelihoods are raisedand groupings of low like-
lihoods are lowered (see Figure 3.2(c)). Afterwards, a simple threshold method can be

2We have found a combination of1� erosion and4� 6� dilation to be reasonable in this project. This
is when images of320 � 240 pixels are used and erosion and dilation is done using 8-connectivity



used to make a binary image where white pixels are skin and black pixels non-skin (see
Figure 3.2(d)). This image will then be used as input to the segmentation method.

(a) Input Image (b) Likelihood Image (c) Dilated and Eroded Like-
lihood Image

(d) Thresholded Dilated and Eroded Image (e) Thresholded Likelihood Image

Figure 3.2: Preprocessing of Likelihood Image: The FoA phase generatesthe likelihood image (b) based
on the input image (a). Using dilation and erosion (c) beforethresholding the image makes it
possible to remove noise and make clearer distinctions between the groupings of likelihoods.
In this case 1 time of erosion and 4 times of dilation has been used. Comparing the result of
thresholding (a threshold of 200 was used) the likelihood image with (d) and without (e) the use
of dilation and erosion, should confirm the advantages of using erosion and dilation.

3.2.1 Segmentation

To segment the binary image generated by the preprocessing methods into objects of
face candidates, we use a contour segmentation method [1]. The method is only used to
find the bounding boxes of the face candidates, i.e. we do not use the information of the
contours to anything. An alternative method to use for the same purpose, could be the
connected components method described in [12].

The input image can be divided into foreground (white) pixels and background (black)
pixels. Only white pixels are considered for the contours since those represent skin-
colours. To describe the contours we usechain codes[12]. For any pixel we can enumer-
ate all its neighbours with numbers from 0 to 7 (see Figure 3.3(b)). These numbers are
used to indicate where the next pixel along the contour should be found. I.e. 2 for upper
left, 4 for lower left, 7 for right, etc. (see description of the object in Figure 3.3). Looking
at the 8 nearest neighbours when searching for the next pixelof an contour is also referred
to as using8-connectivity. This is one of the two common sorts of connectivity. The other
is 4-connectivitywhere only the 4 nearest neighbours are being considered.
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Figure 3.3: Chain Codes: To describe the contour of an object (a) we use a chain code, where numbers (b)
indicate where to find the next pixel along the contour. In this case the object (a) has the chain
code: 7765533211.

To find the contours in the image we start in the upper left corner and work through all
pixels from left to right, top to bottom (also known as rasterscanning). Every time a
white pixel is encountered, we mark it as unavailable and initiate a new chain code object
and insert the position of the pixel (known as thestarting pointof the contour) into it.
Thereafter, the chain code of the contour is generated by looking for white, available
pixels using 8-connectivity. If any is found and it is 8-connected to at least one black
pixel (i.e. it is at the border of an object), this new pixel ismarked as unavailable and the
direction of it is added to the chain code. Next, we do again look for available, white
pixels using 8-connectivity and if any is found it is marked as unavailable and added to
the chain code. This continues until no available, white pixels are in the neighbourhood
of a pixel. If this pixel is 8-connected to the starting pointof the contour, we have a
valid description of a contour and add it to a list of contours. Otherwise, the contour is
discarded.

Hereafter, we return to the raster scanning of the image and search for a new available,
white pixel which can be used to initiate a new contour. During the raster scanning
we make sure to mark white pixels as unavailable if they are 8-connected to a white,
unavailable pixel. This is because such pixels are bound to be inside an already detected
contour and therefore they cannot be used as initiators of new contours. In Figure 3.4 a
pseudo code algorithm for contour segmentation can be seen.

When the raster scanning is finished, the contour list will hold all the valid contours in the
image. Based on the starting point and the chain code of each contour, a rectangle which
exactly spans the contour is found. These are then inserted into a list of rectangular face
candidates (refer to Figure 3.1, where it can be seen that theoutcome of the preprocessing
and segmentation is arectangular faces list). This list is then used as input to the next
phase of face verification where the size and shape of the faces will be investigated.



For every pixel x in binary image
if x = white and x = available

x = unavailable
if all 8-connected pixels to x are available

create contour object
starting point = position of x

while any 8-connected pixel c to x is white and available
and any 8-connected pixel to c is black

chain code = chain code + direction of c
x = unavailable
x = c

endwhile

if x is 8-connected to starting point
insert contour object into contour list

else
delete contour object

endif
endif

endif
endfor

Figure 3.4: The Contour Segmentation Algorithm.

3.3 Rectangular Size and Shape

This method takes as input the face candidates found by the contour segmentation method
explained in last section. A rectangle is spanned around each of these regions (see Figure
3.5(c)). Afterwards, rectangles that are larger than e.g. 100 pixels or smaller than e.g. 20
pixels in width or height are removed (these limits should suit the images of320 � 240
pixels which we have used in this case, but will of course be different if the resolution
is changed). Furthermore, rectangles where the relation between width and height are
not between e.g. 0.6 and 2.0 (these values will have to be determined empirically) are
removed. An example of the result of these limitations can beseen in Figure 3.5 (the
Gaussian model explained in Section 2.4 on page 11 were used to detect the skin-colours
in the input image).

3.4 Solidity

Characteristic for objects containing faces is that they will contain many skin-coloured
pixels. Therefore, a face candidate received from the rectangular size and shape method
can be verified by calculating the ratio of its area to the sizeof its bounding box. This can
also be referred to as thesolidity of the face candidate [2]. The area is calculated using
the binary image made by the preprocessing methods and is simply the number of white
pixels covered by the bounding box of the face candidate. TheEquation for the solidity
of a face candidate is therefore as illustrated in Equation 3.1, whereA is the area andw
andh the width and height of the bounding box.solidity = Awh (3.1)

A face candidate is removed if its solidity is below a threshold � or above a threshold�.
It is also possible to define a maximum solidity of faces because they normally are elliptic
in shape. Henceforth, only a part of the bounding box should be covered by the face. The
maximum solidity of a face should therefore never be able to reach 1.



(a) Input Image (b) Binary Image Created using a Gaussian
Model and the Preprocessing Methods

(c) Regions Found using Contour Segmenta-
tion

(d) Regions left after Size and Shape Verifi-
cation

Figure 3.5: Removing Regions of “Wrong” Sizes and Shapes: skin-coloursin the input image (a) are found
using a Gaussian skin-colour model. The resulting likelihood image is eroded, dilated, and
thresholded into a binary image (b). Afterwards, the contour segmentation method segments the
image into the regions in (c). The result of using size and shape verification on these regions
can be seen in (d). Notice how e.g. the regions containing theskin-coloured table have been
removed due to their “wrong” relations between width and height. Furthermore, the hand and
the object in the upper left corner are removed because they are too small to be faces.

3.5 Nose-Eye Template Matching

Nose-eye template matching is the process of classifying a face candidate as a face or
non-face, based on how similar it is to an average template (thereference template) made
from a number of nose-eye cut-outs (see Figure 3.6). The reference template is made
out of cut-outs from gray-scale images. Therefore, we also convert the input image to a
gray-scale image, and use this for the template match. Only the areas in the image which
are holding a face candidate are used for the matching process. To match the reference
template with a position inside one of the face candidates inthe input image (acandidate
template), it is placed with its center on top of this position, and a distance measure is
calculated. If this measure is below or above a threshold3 the reference template is said
to match the candidate template.

Normally, template matching is done by calculating a distance measure for every pixel

3Whether it should be above or below a threshold depends on themethod used for distance measuring.



(a) Examples of Nose-Eye
Cut-Outs

(b) The Average Nose-Eye
Template

Figure 3.6: Nose-Eye Template: The average nose-eye template (b) is created from a number of cut-outs
of the nose-eye area of different persons (a). The red point indicates where the local maximum
used as the center of the template is placed.

in the object (in our case a face candidate) to be matched withthe reference template.
According to [32], the use of a gray-scale nose-eye templatecan nevertheless speed up
the matching process. This is because the tip of the human nose in most cases holds a
local maximum – i.e. a pixel that is 8-connected with pixels of lower intensities. Setting
this pixel as the center of the reference template, we only need to calculate distance mea-
sures for the local maxima in the part of the gray-scale inputimage covered by the face
candidate. In general the number of local maxima in an image is many times lower than
the number of pixels altogether (see Figure 3.7). Therefore, the time spend on calculat-
ing local maxima comes back many times, because most of the template matches can be
skipped.

3.5.1 Image Pyramids

To be able to detect faces of different sizes we generate an image pyramid. This is simply
a pyramid consisting of the gray-scale input image scaled atdifferent sizes. I.e. the bottom
of the pyramid holds an image of the same size as the input image and then the images
get smaller and smaller the higher the pyramid is climbed. Wehave used a pyramid of 6
images, zooming out in steps of 10% of the original image. This means, that the image at
e.g. the third level in the pyramid (the bottom of the pyramidis level 0) is scaled to 70%
of the original image.

When doing the template match we search through all the levels in the pyramid to find the
level with the best match. The scale of this level is afterwards used to calculate the size of
the face in the original image. This is done by using simple reasoning about the position
and size of the face when we know where the nose-eye area is. Using the pyramid we
should be able to find faces with nose-eye areas as small as thereference template and up
to four times the size of the reference template (i.e. twice the width and twice the height
of the reference template).

Since the reference template we use is an average of upright faces, we are not able to
detect faces when they are rotated in either plane or depth. Since we demand that people
must look straight into the camera for the tracking of them tobe initiated (refer to the
delimitation in Section 1.4 on page 4), this should nevertheless not be a problem. To
handle faces rotated in plane we could use rotated versions of the reference template.
This would though increase the computation time of the template match significantly.



(a) Gray-scale Input Image (b) Local Maxima in the Image

(c) Matching with the Nose-Eye Template

Figure 3.7: Template Matching Using Local Maxima: Using nose-eye templates we only need to match on
local maxima (white pixels in (b)) in the gray-scale input image (a). A match is made by placing
the local maximum in the nose-eye template above a local maximum in the input image and
calculate the distance between them (c). In this case the number of local maxima in the whole
image were approximately 4.5% of the number of all pixels. The green rectangles indicate the
face candidate area

3.5.2 Distance Measuring

To measure the distance between the reference template and acandidate template, a num-
ber of methods can be used. Among these areSum of Absolute Differences(SAD), Nor-
malized Cross Correlation(NCC), andZero Mean Normalized Cross Correlation(ZM-
NCC). These will be described in the following sections.

Sum of Absolute Differences

To calculate the SAD between a reference templateT with center(x0
; y0x) and sizew�h
and a position(x; y) in the imageI, Equation 3.2 is used. The result is a value that
indicates the total distance in intensities between the reference template and the candidate
template. I.e. the larger the value the worse the match. A value of 0 indicates a perfect
match.

Although the method is incredible simple and computationally efficient, it has the disad-
vantage of being affected by changes in light intensity. I.e. a reference template would not
be very similar to the exact same face as it was taken from, if e.g. the face is shadowed.



SAD(x; y) = h�1Xy0=0 w�1Xx0=0 j T (x0; y0)� I(x+ (x0 � x0
); y + (y0 � y0
)) j (3.2)

Normalized Cross Correlation

The NCC is far from being as simple as the SAD but has the advantage of including
statistical measures in the final result of the match. The pixel intensitiesT (x0; y0) in the
reference template are multiplied by their corresponding intensitiesI(x+ (x0 � x0
); y +(y0 � y0
)) in the candidate template. Afterwards, the result is normalized by theabsolute
variancesof the reference- and candidate template. The absolute variance expresses the
variances of the absolute pixel values regardless of their mean value.

Compared to the SAD, the NCC takes into account the absolute variances before the cor-
relation result is delivered. This has the effect of lowering the result of templates, which
otherwise would be given a high correlation. This is becausethe result are normalized
by the absolute variances, such that the relative distance between a good match and a bad
match is lowered.

The NCC measure at position(x; y) is given by Equation 3.3 and returns a value0 �NCC(x; y) � 1, where1 indicates a perfect match.

NCC(x; y) = h�1Py0=0 w�1Px0=0T (x0; y0)I(x+ (x0 � x0
); y + (y0 � y0
))sh�1Py0=0 w�1Px0=0T (x0; y0)2 h�1Py0=0 w�1Px0=0I(x+ (x0 � x0
); y + (y0 � y0
))2 (3.3)

Zero Mean Normalized Cross Correlation

Using ZMNCC therelative varianceinstead of the absolute variance is used for normal-
ization. The relative variance for a pixel in a template is found by squaring the difference
between its intensity and the mean intensity of the template. Furthermore, the intensities
in the denominator in Equation 3.6 are subtracted the mean intensity of either the refer-
ence template,�T , or the candidate template,�I. Equations 3.4 and 3.5 are used to define
the value of intensities subtracted their mean values.

ZMNCC therefore has the advantage of being invariant towards changes in light intensity,
as long as the intensity change is the same for all pixels in the candidate template. This
is because it matches by looking at relative distances instead of absolute differences (see
Figure 3.8).

The value of the ZMNCC measure at position(x; y) is given by Equation 3.6 and returns
a value�1 � ZMNCC(x; y) � 1, where1 indicates a perfect match and�1 a perfect
mismatch. ~T (x; y) = T (x; y)� �T (3.4)~I(x; y) = I(x� x0
; y � y0
)� �I (3.5)



ZMNCC(x; y) = h�1Py0=0w�1Px0=0 ~T (x0; y0)~I(x+ x0; y + y0)sh�1Py0=0w�1Px0=0 ~T (x0; y0)2 h�1Py0=0w�1Px0=0~I(x+ x0; y + y0)2 (3.6)

(a) A Nose-Eye
Template

(b) The Absolute Differences (c) The Relative Differences

Figure 3.8: Absolute and Relative Distances: The absolute distances (b) of a template (a) are simply the
value of its intensities. The relative distances (c) are found by subtracting the average intensity
of the template from all its pixel intensities. An overall change in lighting intensity would
change the absolute distances but not the relative distances. Using relative distances is therefore
invariant towards changes in lighting intensity, which is not the case for absolute distances.

3.6 Elliptic Shapes

This method is based upon [4] and assumes that a face can be described as a vertical
ellipse having a minor axis of� (see Equation 3.7) and a fixed aspect ratio of 1.2. Using
the face candidate list received from the nose-eye templatematch method and a gradient
image of the input image, the best fitting ellipse to each of the regions can be found. To-
gether with a threshold this can be used to find out whether theobject inside the rectangle
is a face or non-face. If so, it is added to the final list of elliptic faces which is used by the
tracking methods described in Chapter 4. Describing the faces using ellipses instead of
rectangles does also increase the accuracy, because faces in general are elliptic shaped.

3.6.1 Calculating the Fit of an Ellipse

To calculate the fit of an ellipse the method in [4] uses the normalized sum of the gradient
around the perimeter of the ellipse:



�g(s) = 1N� N�Xi=1 j n�(i)gs(i) j; (3.7)

wheregs(i) is the intensity gradient at perimeter pixeli of the ellipse at locations, andN� is the number of pixels on the perimeter of an ellipse with size�.

To find the position of each pixel on the perimeter, Equation 3.8 is used. This is a modified
version of the formula describing an ellipse [17], wherea andb indicates the sizes of the
major and minor axis. y =r(1� x2a2 )b2 (3.8)

To calculate the positions, the value ofx is initiated at the center of the ellipse and in-
creased towards+a (see Figure 3.9). For each value ofx, y is calculated using Equation
3.8. This gives the positions of14 of the pixels on the perimeter. The rest can be found
using simple mirroring in the major and minor axis.

calculated y values
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-b
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x

y

Figure 3.9: The Face Model: The face is described as a vertical ellipse. The positions of the pixels on
the perimeter are calculated increasing the x position from0 to +1. For each value of x the
corresponding value of y is found. The rest of the positions are found by mirroring the x and y
values in the major and minor axis.

3.6.2 Limiting the Search

The search for the best fitting ellipse is limited by a maximum, �max, and minimum,�min, size of the minor axis�. Initially � is set to half the width of the rectangle, i.e.� = width of re
tangle2
Afterwards,�max and�min are calculated according to Equations 3.9 and 3.10 where�
is a constant used to control the size of the search area. Furthermore,�max and�min are
used to ensure a maximum and minimum size of the ellipses thatare matched.



�max = (��; �� � �max�max; otherwise
(3.9)�min = (�� ; �� � �min�min; otherwise

(3.10)

3.6.3 Best Fit vs. First Fit

We have decided to soften the demand of finding the best fittingellipse (referred to asBest
Fit), such that we instead search for the first ellipse (referredto asFirst Fit) which have
an average gradient sum above the threshold. This is done from � = �max and towards� = �min. The reason for this softening is that many gradients often will be present in the
center of a face. If the face is of a certain size, the best fitting ellipse will in most cases be
too small – i.e. hold only the center of the face (see Figure 3.10(c)). When starting from
the largest possible ellipse and searching inwards, we makesure that we get the largest
ellipse, which have an average perimeter gradient above thethreshold. Furthermore, the
first fit method is computationally more efficient than the best fit method. This is because
it stops searching as soon as the threshold is reached. The best fit method has to try out
all possible ellipses before it can be sure, that it has foundthe best fitting ellipse.

(a) Input Image (b) Gradient Image

(c) Ellipses Found using Best Fit (d) Ellipses Found using First Fit

Figure 3.10: First Fit vs. Best Fit: Instead of finding the best fitting ellipse (c) in the gradient image (a), the
first fitting ellipse (b) is found. This is done frommax� towardsmin� such that the largest
possible ellipse is found.



3.7 Face Verification Conclusions

In this chapter methods to be used for face verification have been investigated. The skin-
colour likelihood image made by the FoA phase is preprocessed using the morphological
operations erosion and dilation. Afterwards, the resulting image is thresholded and ob-
jects in the image are found using a contour segmentation method. The smallest possible
rectangles spanning these objects are found and an initial list of face candidates is created.

Four methods are used to classify the face candidates as faces or non-faces. First, a
rectangle filter is used to remove face candidates which are too large or too small or have
wrong rectangular shapes (i.e. are long and thin). Afterwards, the solidity of the face
candidates are found by calculating the ratio of their areasto the size of their bounding
boxes. Because faces are elliptic in shape and have a high solidity, upper and lower
solidity thresholds can be used to verify face candidates asfaces or non-faces. Hereafter
a nose-eye template matching method is applied to the remaining list of face candidates.
This method speeds up the matching process by using the fact that there almost always
is a local maximum on the tip of peoples nose. The nose-eye template is therefore only
matched to the positions of local maxima. Only one template is used for the matching
process. To handle faces of different scales, an image pyramid is made. Rotation in plane
is not handled since one of the delimitations of the VICOWIJOY system is, that people
must look straight into the camera without turning their faces too much, for the tracking
of them to be initiated. Face candidates which look similar to the template are forwarded
to the last method of verification. This is a ellipse detectorwhich based on a gradient
image finds either the best or first fitting ellipse to the face candidate. The detection is
based upon counting the average intensity value along the ellipses perimeter. If this is
above a threshold the ellipse is said to fit, and the face candidate is added to the final list
of faces represented by the ellipses.

The face verification process is made as a serial combinationof methods of increasing
complexity. Combining them in this way should support the computational efficiency
of the system, since most face candidates can be removed by the simple methods. The
more complex methods are therefore only used on face candidates which have a close
resemblance to faces.





Chapter 4

Face Tracking

In this chapter, we describe several ways of tracking faces.We then present the approach
that we have chosen to use, which uses skin-colour likelihoods and intensity gradients to
determine the position and size of a face, and a Kalman filter to handle the uncertainties
related to these measurements. Finally, an algorithm for maintaining a set of trackers for
the faces in the input images is described.

4.1 Introduction

We considertracking of a face to be the maintenance over time of estimates of face
parameters – such as position – given a number of measurements of the parameters at
each time step. The parameters related to the face constitute a state vector. When tracking
a face in an image sequence, the tracker must for each image:� Match the predicted state vector of the face with a face in the current image and

measurethe parameters of that face from the image.� Estimate the state vector from the measurements. This results in ana posteriori
state vector estimate.� Predict the state vector in the next image. This prediction, referred to as thea
priori estimate, is usually necessary because the image may contain several other
objects that – when only considering the parameters included in the state vector –
look like the face being tracked (i.e.clutter). Furthermore, it can be used to reduce
the search space necessary when matching.

Below, we will describe each of these steps further.

4.2 Matching

How the matching is done is of course highly dependent on the type of information that
is included in the state vector. Obviously, the position andsize would be relevant param-
eters to include in our case. The matching could then be done using template matching
as described in Section 3.5. The face area from the previous image could be used as
the reference template. The reference template is then matched to different parts of the
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current image by computing a similarity measure at each position inside a search win-
dow placed around the predicted position of the object. The position with the highest
similarity measure can then be considered the new position of the object.

Another approach would be to use asnakeplaced around the face. A snake is a de-
formable contour that is governed by interior and exterior forces. The interior forces
ensure smoothness of the contour, while the exterior forcesattract the contour to features
in the image. Sobottka and Pitas [36] use snakes to track the contours of the skin-coloured
regions caused by faces. A snake is placed on the image at the location where the face
was detected, and the best fit of the snake is computed by minimizing a sum of internal
and external energy terms. The matching is done by placing this snake on the next image
in the sequence and repeating energy minimization to find thenew shape and position of
the snake.

Menser and Wien [2] track faces in colour image sequences by converting each image to
a skin-colour likelihood image, which are analyzed at different threshold levels (i.e. the
skin-colour likelihood image is thresholded with different thresholds, resulting in a set of
binary images). When a face-like region has been found, matching is done by projecting
the region into the next skin-colour likelihood image and, at all threshold levels, elim-
inating all connected components that are covered by less than a predefined rate of the
projected region. Then connected components that differ more than a predefined degree
from the projected region with regard to size of bounding boxand center of mass are dis-
carded. If more than one region is left, the region with the largest degree of compactness
is chosen.

Schwerdt and Crowley [16] also use skin-colour likelihood images for the tracking of
faces. They weight the likelihood images by placing a Gaussian function at the location
where the face is expected and compute the center of mass of the likelihood image, which
approximately – because of the weighting – is the center of mass of the face. The covari-
ance of the Gaussian is estimated from the previous image. Initially, the covariance is the
size of the expected face.

The Mean Shift algorithm [6, 1] can be used for matching basedon skin-colour likelihood
images (or other types of distributions). It considers a part of the image limited by a search
window, which is centered at the predicted center of the face. Within this search window,
the center of mass of the distribution is computed. The search window is then centered
at this location and the new center of mass computed. This last step is repeated until the
center of mass converges (or moves less than a predefined threshold). The center of mass
found this way will be close to the center of the face (provided that only the face has high
skin-colour likelihoods).

The CAMShift algorithm [6, 1] is an extension of Mean Shift. CAMShift is short for
Continuously Adaptive Mean Shift, and it continuously adapts the size of the search win-
dow based on the zeroth moment1 of the part of the likelihood image that is contained in
the search window. Thus the object to be tracked does not needto have a constant size.

Birchfield [4] uses colour histograms for face and hair and intensity gradients to track
faces. The head is modeled as position and size of an ellipse with a fixed aspect ratio.
Matching is done – in a search space within a range of the predicted values – by max-
imizing the sum of a colour-based score and a gradient-basedscore. The colour-based
scored is determined by comparing the colour histogram for the pixels inside the ellipse
with a colour histogram for the subject produced off-line. The gradient-based score is
determined by computing a normalized sum of the dot productsof the gradient and the

1The zeroth moment of a region is the sum of all likelihoods or pixel intensities in that region.



unit vector normal to the ellipse for each pixel around the perimeter of the ellipse.

In a previous project [5], we used skin-colour and motion detection followed by connected
components segmentation of a thresholded likelihood imageto find and track faces and
hands in a video conference situation. The matching was doneby comparing the positions
of the connected components with the predicted positions ofthe objects.

Our preliminary experiments with CAMShift indicated, as itcould be expected, that using
the zeroth moment to determine the search window size would not work very well when
the skin-colour detection generated false positives for background pixels – the search
window would suddenly grow and become too large, even thoughthe face had much
larger likelihoods than most non-face pixels. However, Mean Shift seemed to produce
a very stable estimate of the center of the face, much more stable than the positions we
found using connected components segmentation in our previous project. The size could
then be found using ellipse fitting in a gradient image, as described in Section 3.6 on
page 32, and the search window adjusted using this size.

We suspect that using Menser and Wien’s connected components-based approach would
produce the same amount of jitter as the somewhat simpler method we used in our previ-
ous project, and thus provide less stable estimates than Mean Shift.

Schwerdt and Crowley’s method – Gaussian weighting of the likelihood image and com-
putation of mean – will probably not perform much different from Mean Shift. Although
it has the desirable property that skin-coloured objects near the face are weighted less
than the face if the face is at the predicted position, it might be necessary, if the distance
between predicted and actual position is large, to increasethe variances of the Gaussian
function to a level where it will perform equal to or worse than Mean Shift because a too
large area in the image is used. Mean Shift does not need the entire face to be within the
search window because it will iterate until the center of mass converges.

Using high-resolution snakes as Sobottka and Pitas do wouldbe overkill, since informa-
tion about the shape of the faces is irrelevant for our purposes. Besides, the shape of
a face is quite constant. An ellipse is essentially a parameterized snake, and fitting this
to the face will probably be more computationally efficient.Furthermore, allowing the
snake to deviate much from the elliptic shape could be problematic when e.g. a hand is
temporarily occluding the face during a hand raise. For thisreason, the energy functions
for the snake should be such that the snake approximates an elliptical shape, but then
similar results could probably be obtained using an ellipse.

Doing ellipse fitting using both colours and gradients like Birchfield is rather expensive,
computationally, and our preliminary experiments have indicated that using just the gra-
dients is sufficient if the center of the skin-coloured area is found using Mean Shift.

Using templates will also be problematic in the case of occlusion, as it may be difficult to
tell whether the poor fit is due to occlusion or e.g. the personturning his head.

Based on these preliminary experiments and thoughts, we have chosen to base the face
tracking on the Mean Shift algorithm combined with ellipse fitting.

4.3 Estimation

Two estimators commonly used for tracking are the Kalman filter and the CONDENSA-
TION algorithm (both are described in Appendix B on page 129).

The Kalman filter can be used for integrating several measurements into a single estimate



based on the measurements and the previousa posterioristate estimate, and for predict-
ing the next state using a process model. When computing the estimate, it incorporates
measures of the uncertainties of the measurements (themeasurement noise), and the state
estimates are accompanied by uncertainty measures as well (theerror covariance). It also
incorporates information about the accuracy of the processmodel (theprocess noise).

The Kalman filter is only able to represent unimodal state vector probability distributions
as it only maintains estimates of the mean (i.e. the state estimate) and error covariance.
Due to clutter and occlusion, the probability distributionmay be multimodal [22]. If
a wrong state at some point in time seems more likely than the true state, the tracker
may loose the target, even though the true state soon would have become the most likely
again. Therefore, it may be necessary to maintain several hypotheses of the target state to
reliably track an object using a Kalman filter. This can be done by maintaining a bank of
Kalman filters, where each filter is used to track a separate hypothesis. Cham and Rehg
[40] track multiple hypotheses by maintaining a probability density using a piecewise
Gaussian representation (i.e. the probability density at some point is determined by the
Gaussian component that provides the largest contribution). At each time step,a priori
estimates of the modes of the Gaussians are computed and usedto obtain thea posteriori
estimates of the modes through a state-space search.

The CONDENSATION algorithm has been designed specifically for multimodal proba-
bility distributions, and does not attempt to produce a single state estimate. Instead, it
maintains a set of samples from the state vector probabilitydistribution, from which e.g.
the mean or the dominant mode can be used as the state vector estimate. If an uncertainty
measure is desired, it can be derived from the sample set as well (the variance would be a
good choice, as it will be low in the absence of clutter and occlusion).

When tracking several faces, the probability distributionis most likely multimodal, be-
cause faces look very much alike. Hands also have some degreeof similarity to faces,
and are one of the main problems when tracking faces because they often appear near the
faces, sometimes occluding the face. For this reason, it would be desirable with a tracker
that is able to keep track of multiple hypothesis such as CONDENSATION. However, since
the face will usually not move very much, an approach that we have found to be promis-
ing in our preliminary experiments is to use a single Kalman filter and let the amount of
change in skin-colour likelihoods near the face determine how high the level of measure-
ment noise should be when updating the Kalman filter. Thus, inthe absence of clutter, the
measurement noise will be low, and the Kalman filter will trust the measurements, and,
when clutter appears, the measurement noise will be increased. We have chosen to use
this approach for the face tracker, as it is likely to be more computationally efficient than
using CONDENSATION or multiple Kalman filters.

4.4 Prediction

In a previous project [5], we found that the faces move very little during a video confer-
ence, as it can be seen by the trajectories in Figure 4.1, and that trackers predicting that the
face had not moved performed better than trackers making predictions based on deriva-
tives of the face position. Therefore, we will use a zeroth order Kalman filter, i.e. predict
that the parameters have not changed This approach has also been used successfully by
several others for tracking of faces and facial features [2,36, 33].
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(a) Trajectories of Faces and Hands
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(b) Projection of Trajectories onto XY-plane

(c) Frame 0 (d) Frame 40 (e) Frame 150

Figure 4.1: Face and Hand Trajectories. (a) shows the positions of the faces and hands of the authors in an
image sequence. The black trajectories are the positions ofthe faces. Three images from this
sequence are shown in (c), (d), and (e).



4.5 Face Tracker

We model the face as an ellipse with a vertical major axis as the one shown in Figure 3.9
on page 33. The height/width-ratio is fixed to 1.2. Therefore, the state vector only needs
to contain the center coordinates and one of the radii or diameters. We use a state vector
containing the center coordinates and the width:x = 24 x
y
wfa
e35 (4.1)

As mentioned in Section 4.2, two types of measurements are used to track the faces:� Center of face found using the Mean Shift algorithm.� Size of face found using ellipse fitting.

Furthermore, since this information is available at least some of the time, we will use:� Face position and size from face detection module.

The center and size of the face found using Mean Shift and ellipse fitting are combined
into a single measurement, which is passed on to the Kalman filter. If the face detection
has found a face that has a certain degree of overlap with the tracker’s estimate, the
position and size of the detected face are incorporated in the tracker’s estimate as well.
This is described in detail below.

The update of the tracker, which is done for each image, is illustrated in Figure 4.2. First
the skin-colour likelihood image is computed. This is done as described in Chapter 2, but
with a skin-colour lookup table specific for the face being tracked.

The Mean Shift algorithm (grey box in Figure 4.2) is then usedto find the center of mass
of the face in the skin-colour likelihood image as describedin Section 4.2. The search
window is initially centered at the previous center of the face. The sizewt+1 � ht+1 of
the search window is determined from the Kalman filter’sa priori estimate of the width
of the face,wfa
et : wt+1 = wfa
et + �z (4.2)ht+1 = 1:2 � wt+1 (4.3)� is chosen such that the search window always is large enough to contain the entire face.z depends on the distance to the person2, and is small when the person is far away and
large when the person is close. Thus, when the person is close, the number added to
the width of the face will be large, reflecting that movement of the head will produce a
larger shift of skin-colour pixels in the image than when thehead is far away. This is
done because, preferably, the entire face should be inside the search window even when
the window is centered at the previous position of the face, as it is likely that the Mean
Shift algorithm otherwise will require more iterations. The multiplication with 1.2 when
computing the height is due to the fixed height/width-ratio.

2z is a user-defined constant in our implementation, but could,in principle, be estimated from the images.
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Figure 4.2: Tracker Update Cycle: The update of a tracker begins with thecomputation of the skin-colour
likelihood image for the new input image and ends with the update of the skin-colour lookup
table that will be used to compute the next likelihood image.

The Mean Shift loop in Figure 4.2 terminates when the search window moves less than a
predefined distance or when the maximum number of iterationsallowed have been done.
The sequence of images in Figure 4.3 illustrates how the MeanShift algorithm finds the
center of mass in a likelihood image.

(a) Initial position (b) After 1 iteration (c) After 2 iterations

Figure 4.3: Mean Shift Example: The Mean Shift algorithm iteratively finds the center of mass of the face
by computing the center of mass and centering the search window at this position.

Using ellipse fitting as described in Section 3.6 on page 32, it is attempted to fit an ellipse
to the face. The position found by the Mean Shift algorithm isused as center of the
ellipse. If an ellipse can be successfully fitted to the face,the center found by Mean Shift
and the size found by ellipse fitting are used to update the estimate of face position and
size using a Kalman filter.

Since the faces move very little most of the time during a video conference, and since
loosing the face if the person moves significantly (e.g. leaves) is acceptable, a constant,
low process noise that only allows the face to move a few pixels is used for the Kalman
filter. The measurement noise can then be made to vary from values that are smaller than



the process noise – when the conditions for measuring position and size are ideal – to
values that are many times larger when the measurements are believed not to be reliable.
To achieve this, we use a set for formulas for computing the measurement noise that we
have determined empirically. In Section 7.4, we verify thatthey perform as desired.

When the face of a person is being tracked, an accumulated difference picture3 (ADP) is
computed for the hand-raise ROI of the person. This ADP is based on the skin-colour
likelihood images, and will reflect the amount of skin-colour movement in the hand-
raise ROI. While its primary purpose is detection of hand-raise gestures, as described in
Chapter 5, it is also used when determining the measurement noise for the Kalman filter.

The measurement noise associated with the position and sizemeasurements is based on
several parameters:� The zeroth momentMADPt of the ADP for the hand-raise ROI of the person and

the zeroth momentMADP;Nt of the hand-raise ROI ADP for the neighbour to the
right in the image.� The difference between the zeroth moment of the Mean Shift search window in the
skin-colour likelihood image and an average value for this moment. This difference
will be referred to as�Mt.� The difference between the variance of the Mean Shift searchwindow in the skin-
colour likelihood image and an average value for this moment. This difference will
be referred to as��2t .

The moments of the hand-raise ROI ADPs are used to increase the measurement noise
when one of the persons raises his hand, when something skin-coloured is moving in the
background, and when the skin-colour detection generates false positives (e.g. because of
changing illumination). The moments of the Mean Shift search window in the skin-colour
likelihood image are used to increase the measurement noisewhen the face gets occluded
by a non-skin-coloured object and when the skin-colour detection does not generate a
stable skin-colour likelihood image, e.g. because it is adapting to a new illumination
colour. How the skin-colour likelihood images look when these events occur can be seen
in the image sequences in Figures 4.4–4.5.

(a) Input (b) Before (c) During (d) After

Figure 4.4: Skin-Colour Likelihoods during Occlusion: The images illustrate how the skin-colour likeli-
hoods for the face drop as the face becomes occluded.

The measurement noise R = 24r1 0 00 r2 00 0 r335 (4.4)

3How the ADP is computed is described in Chapter 5 on page 51.



(a) Input (b) Before (c) During (d) After

Figure 4.5: Skin-Colour Likelihoods during Illumination Change: The images illustrate how the skin-colour
likelihoods for the face drop temporarily when the illumination changes.

is computed as follows: ri = si(kHH + F 2 + kiz) (4.5)ri contains a constant termkiz, which has been included to ensure a minimum mea-
surement noise level. Since this level should depend on the distance to the face,ki is
multiplied by the distance constantz described on page 42. Another constant issi, which
is used to scale the rest of the expression to a suitable level. H andF are computed using
the moments mentioned above.

As indicated by thei subscripts, eachri may be associated with its own values ofki andsi. In preliminary experiments, we have observed that the ellipse fitting tends to fit the el-
lipse to two different outlines, see Figure 4.6. Sometimes,it will fit it to the edge between
the top of the head and the background, and sometimes to the edge between hair and face.
This varies from image to image for each person, and is probably related to movement
or small changes in the skin-colour likelihood images. Since the output from the Mean
Shift algorithm tends to be quite stable, it is desirable to associate a higher measurement
noise with the size, found using ellipse fitting, than with the position. This can be done
by using different values ofki andki for the different entries in the measurement noise
matrix.

Figure 4.6: Result of Ellipse Fitting in Gradient ImageH is computed using the zeroth moments of the hand-raise ROI ADPs:H = ( bln( 
1N1 N1X�=0 MADPt��A ))2 + ( bln( 
1N1 N1X�=0 MADP;Nt��A ))2 (4.6)

where
1 is constant for scaling the result andA is the maximum area of the hand-raise
ROI, i.e. if the hand-raise ROI have this size, the zeroth moment divided withA is the



average pixel intensity in the ADP.MADPt is the zeroth moment of the hand-raise ROI
ADP of the person being tracked, whileMADP;Nt is the zeroth moment of the hand-raise
ROI ADP of the neighbour to the right in the image. Thet subscripts indicate that these
values depend on the timet. bln(x) is a non-negative version of the natural logarithm:bln(x) = (ln(x); x > 10; otherwise

(4.7)

The value ofH is smoothed over time by using the average of the ADP moments over a
period ofN1 images, as preliminary experiments suggested that this be beneficial. The
purpose of the logarithm is to limit the value ofH, such that there is a “saturation point”
where a further increase in the sum of the moments does not significantly affect the value
of the measurement noise. Using the constants
1 in Equation 4.6 andkH in Equation 4.5,
it can be controlled when this saturation point will be reached, and what the contribution
of H to the measurement noise should be at this point. Thus, a change in the zeroth
moments will have a larger effect on the measurement noise when the value of the mo-
ments are low than when the values are high. This reflects an assumption that after some
point has been passed, the magnitude of skin-colour likelihood change will not affect the
probability that something that can confuse the tracker is happening.F is computed from the zeroth moment and the variance of the Mean Shift search window
after the final iteration of Mean Shift for the current image:F = 
2N2PN2�=0 !M;t���Mt��z2 + 
3N3PN3�=0 !�;t����2t��z (4.8)

where
2 and
3 are scaling constants and�Mt =Mt �mMt (4.9)��2t = �2t �m�t (4.10)

whereM is the zeroth moment of the skin-colour likelihood image inside the face search
window, and�2 = �2x + �2y is sum of the variances of this area in the vertical and hor-
izontal directions.mMt andm�t are the current “average” levels for�Mt and��2t , re-
spectively, and are computed as follows:mMt+1 = (1� �)mMt + ��Mt (4.11)m�t+1 = (1� �)m�t + ���2t (4.12)

Preliminary experiments indicated that using these averages instead of simply using the
previous values or the unweighted averages for the entire image sequence produced a
better measurement noise level during and after illumination changes.

The weighting functions!M;t and!�;t in Equation 4.8 are computed based on the stan-
dard deviations of�Mt and��2t , which are computed/adjusted dynamically. These stan-
dard deviations will be referred to as�M and��, respectively. The weights are computed
using a zero-mean Gaussian functionG(x; �):



!M;t = 1� G(�Mt; �M )G(0; �M ) (4.13)!�;t = 1� G(��2t ; ��)G(0; ��) (4.14)

The Gaussian function is: G(x; �) = 1p2��e�x22�2 (4.15)

If the value of�Mt is low compared to the standard deviation�M , the weight!M;t
will be low, and as the value of�Mt grows, the weight will become larger. The same
holds for!�;t. This weighting scheme has been introduced to allow some amount of head
movement without a significant increase in the measurement noise level. Note that it only
affect the computation ofF when�Mt and��2t are small, as the standard deviations are
adapted to the average amount of movement, which is usually low.

If a face has been detected by the face detection module with approximately the same
position and size as the face a tracker has been tracking in the past frames, it is assumed
to be the same face. The position and size of the detected faceis then used to update the
Kalman filter’s estimate, using the measurement noise givenabove. This way, the results
of the face detection are used to guide the tracker if it is unable to find the face itself using
Mean Shift and ellipse fitting. This could, for instance, happen because the illumination
has changed too fast, or because clutter or occlusion has confused the tracker.

Each time the Kalman filter’s estimate has been updated, a counter u is incremented.
Moreover, a timertupd is reset to make it possible to measure how long time that has
passed since the last update of the estimate. This information is used by the Tracker
Manager described below.

To determine how much a person is moving, anunstability measure�t is computed based
on the results of Mean Shift and ellipse fitting:�t+1 = (1� a) � �t + a � (jxf � xej+ jyf � yej+ jwf � wej+ jhf � hej)=z (4.16)

wherexi; yi; wi; andhi are center coordinates, width, and height.xf ; yf ; wf ; andhf
are the values from the trackersa posterioriestimate, andxe; ye; we; andhe the values
found using Mean Shift and ellipse fitting. Note that when ellipse fitting did not succeed,
the latter values have not been used to update the tracker; inthis case it is likely that the
distance between thea posterioriestimate and the values found using ellipse fitting will
be even larger.a 2 ℄0; 1℄ is a constant that is used to regulate the sensitivity to changes in
the distance between the measurements and the trackersa posterioriestimate.

The unstability measure is used to determine whether it should be possible for the person
that is being tracked to get the attention of the system by raising his hand. If� is large,
it is likely that the level of noise is high or that the face is moving a lot, which is usually
not the case when the person is seated and ready to speak.� is also used by the tracker
manager described below to determine whether the tracker should be deleted. If a tracker
is tracking a non-face object, e.g. a hand, it may have a large� compared to the usual
values for faces. Thus,� may be used to discriminate between trackers tracking faces



and trackers tracking non-face objects.� is initially set to a large value to prevent the
system from allowing the (hypothetical) person to speak. This way, the object that is
being tracked must be spatially stable for some time, beforethe system accepts the object
as a face. This helps eliminate trackers started because of false positives from the face
detection.

4.6 Tracker Manager

The tracker manager maintains a setT of trackers for the faces in the input images. For
each new image, it goes through the series of steps describedbelow.

Let Bp denote set of pixels within the bounding box of the face tracked by the trackerp 2 T , i.e. the set of pixels enclosed by the smallest rectangle containing thea posteriori
estimate of the face ellipse. This is illustrated in Figure 4.7(a). Below, we will useB1\B2
to denote the intersection of two such bounding boxes, as illustrated by the grey area in
Figure 4.7(b).B1\B2 is used to denote the union, which is the grey area in Figure 4.7(c).

(a) (b) (c)

Figure 4.7: Bounding Box Intersection and Union: (a) is the bounding boxof a face, the grey area in (b) is
the intersection of two bounding boxes, and the grey area in (c) is the union of two bounding
boxes.jBj, the size ofB, is used below to denote the number of elements in the setB. If B is a

bounding box,jBj is the number of pixels inside this bounding box.

1. Eliminate unstable and dead trackers.

A trackerp is considered unstable if its unstability measure�p is larger than�max.
It is considered dead if its estimate has not been updated for�time images in a row.
Thus, trackers fulfilling the condition(�p > �max _ tupd > �time) ^ up � umin
are deleted. The conditionup � umin is included to allow trackers to have a large� in a short duration of time after they have been created. Thisis done, as the face
of a person may be detected before the person is seated, and therefore initially may
move relatively much.

2. Eliminate overlapping trackers.

The estimates of a pair of trackers are not allowed to overlapmore than a predefined
degree. If it happens, the tracker with the largest unstability measure is deleted.



Let �del be the maximal allowable ratio between the size of the intersection and the
size of the union of the bounding box estimates of two different trackers. Each pair
of trackers(p; q) 2 T � T is examined. If, for a pair of trackers(p; q),jBp \BqjjBp [Bqj > �del
then the unstability measures of the two trackers are compared. If �p > �q, p is
deleted, otherwiseq is deleted.

3. Distribute detected faces to trackers.

If the face detection finds a face that overlaps more than a predefined degree with a
tracker’s estimate, the tracker is informed about the position and size of the detected
face, which is used in the update cycle as described in the previous section.

Let F be the set of faces found by face detection and let�upd be the maximal
allowable ratio between the size of the intersection and thesize of the union of the
bounding box of the detected face and a tracker’s bounding box estimate.

For eachf 2 F the pair(f; p) 2 F � T that maximizesz = jBp \Bf jjBp [Bf j
is found, and ifz > �upd, the detected facef is passed on to the trackerp.

4. Create new trackers.

If a face has been detected that has no overlap with a tracker’s estimate, a new
tracker is created for that face. That is, for each facef 2 F , if there does not exist
ap 2 T such thatjBp \Bf j > 0, then a new tracker is added toT for f .

5. Update trackers with the positions of their neighbours.

Each tracker is associated with a hand-raise detector, which detects hand-raises for
the person whose face is being tracked. This hand-raise detector considers an area
to the left of the person – the hand-raise ROI – the width of which depends on the
position of the face to the left of the face being tracked.

To make it possible for each tracker to adjust the size of the hand-raise ROI of
the associated hand-raise detector, it is informed about which tracker that is its
left neighbour in the image. Moreover, as each tracker needsto know the zeroth
moment of the hand-raise ROI to the right to compute the measurement noise, it is
also informed about its right neighbour.

Letxi denote the estimatedx position of the trackeri. The trackerp 2 T is the left
neighbour ofq 2 T ifxp � xq ^ (:9i 2 T (xp < xi < xq)) ^ up � umin
Likewise,p 2 T is the right neighbour ofq 2 T ifxp � xq ^ (:9i 2 T (xp > xi > xq)) ^ up � umin
The conditionup � umin helps to ensure that trackers that have been created for
non-face objects – due to false positives from the face detection – do not disturb
the other trackers.



If several choices for a left or right neighbour are possible– this can happen if two
trackers have the samex estimate – one is chosen by the tracker manager. If no
neighbour exists, the tracker is informed that this is the case. (If no left neighbour
exists, the hand-raise ROI can assume its maximal width.)

6. Update trackers with the current image.

Each tracker is updated with the current image. This causes each tracker to go
through the update cycle described in the previous section.

7. Determine if a hand-raise has occurred.

The tracker manager must inform the supervisor about hand-raises to make it pos-
sible for the supervisor to control the PTZ-camera that zooms in on the speaker.

To determine whether one of the participants has raised his hand, all trackersp 2 T
for which �p � �max ^ up � umin
are queried. The condition ensures that only stable personsthat have been tracked
for a while can get the attention of the system. This is done toreduce the risk that
the system detects hand-raises for non-face objects and that the hand-raise detection
generates false positives while a person is coming or leaving.

4.7 Face Tracking Conclusions

In this chapter, we have described the approach we use for face tracking. A tracker
manager maintains a set of trackers for objects in the input images that are believed to
be faces, and it continuously attempts to eliminate trackers for objects that are not faces
from this set. Each face tracker tracks a face using a zeroth order Kalman filter. The
measurement noise for this Kalman filter is determined basedon changes in skin-colour
likelihoods inside the face area and in the hand-raise ROIs to the left and right of the
face. The measurements of the position and size of the face are done using the Mean
Shift algorithm and ellipse fitting. The Mean Shift algorithm determines the center of
mass of the face in the skin-colour likelihood image. Using this center, it is attempted to
fit an ellipse to the outline of the face in a gradient image. Ifthis can be done, the width
of the ellipse is used together with the center of mass found using Mean Shift to update
the Kalman filter. If the face detection (described in Chapter 3) finds a face that has a
sufficient degree of overlap with the trackersa priori estimate of the face position, this
detected face is also used to update the Kalman filter.



Chapter 5

Hand-Raise Detection

In this chapter, we describe how hand-raise gestures may be recognized in sequences of
skin-colour likelihood images using a Naive Bayesian Classifier, and we estimate proba-
bility density functions for the attributes of this classifier.

5.1 Introduction

One way to recognize gestures is to track the hand, elbow, andshoulder. A gesture can
then be defined as sequence of vectors containing e.g. the relative positions of these body
parts, and gesture recognition can be seen as matching in thespace of possible gestures.
The matching of gestures can be done using e.g. Dynamic Time Warping, Hidden Markov
Models, or CONDENSATION [23].

Azozet al. [43] propose a combined 3D arm localization scheme and tracking framework
that use colour, motion, and shape to localize the hand, elbow, and shoulder of a person.
Colour segmentation is used to find the face and the hand, and using the positions of these
together with the time-varying edges that movement of the arm produces in the image, the
elbow location is determined. These locations are tracked using a Kalman filter (described
in Appendix B). To improve the estimates, 3D distance constraints limiting the distances
between the locations being tracked are incorporated in theestimate.

Moeslund and Granum [25] use a similar approach for localization, using kinematic and
collision constraints to limit the search space. Using colour segmentation, the face and
the hand are found. The elbow is then located in a silhouette image of the arm, which is
produced by subtracting a background image.

Bernardoet al. [9] track the human arm in 3D using gray-scale images. The armis
modeled as shoulder and elbow joints and two truncated (i.e.the top is missing) cones
representing the upper and lower arms. Using a Kalman filter,the pose of the arm is
predicted. Matching is done by – for sets of parameters within a search window around
the predicted values – projecting the arm onto the image plane and computing the distance
to a thresholded and blurred version of the actual input image. When the best match has
been found, it is used to update the Kalman filter, using the distance as prediction error.

Black and Jepson [23] use the CONDENSATION algorithm (described in Appendix B)
for recognizing gestures performed holding a distinctively coloured object in hand. A
gesture is modeled as a sequence of vectors containing the velocities of the object. Each
state vector in the sample set maintained by the CONDENSATION algorithm contains a
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number indicating which gesture model that is being matched, the position of the vector
within the model that aligns the model and the input gesture at the current time step,
and two parameters used to scale the model in time and space. From the sample set, a
probability distribution indicating which gesture that has been performed can be derived.

Since we only need to be able to recognize one type of gesture,and do not need infor-
mation about the exact position and pose of the arm, we have decided to try a somewhat
different approach to gesture recognition based on changesin skin-colour likelihood im-
ages over time. In an accumulated difference picture based on the likelihood images, a
hand-raise gesture will leave a vertical track. Using morphological operations and thresh-
olding, this track is emphasized and turned into a single connected component, which
then is classified using a Bayesian network. This approach isdescribed in detail below.

5.2 Preprocessing

When the tracker has determined the position of the face of a person in the image, it is
possible to set a region of interest (ROI) in the image to which the search for hand-raise
gestures by that person can be limited. These hand-raise ROIs are shown with boxes in
Figure 5.1.

The height and width of the hand-raise ROI are scaled according to the distance to the
person1. As mentioned in Section 4.6 on page 48, information about the position of the
neighbour is used to limit the width of the ROI such that the neighbour’s face is not
contained in the ROI. When we refer to the “maximum ROI” size below, we mean the
size that the ROI will have if it is not limited by the presenceof a neighbour.

Within the ROI of each person, the changes over time in the skin-colour likelihood im-
ages generated with that person’s skin-colour LUT are determined using an accumulated
difference picture (ADP). To achieve a less noisy ADP, the likelihood images are pre-
processed using erosion with a3 � 3 neighbourhood2. That is, for each pixel(x; y) in
the likelihood image, the pixel itself and its eight neighbour pixels are considered. The
value of the pixel with the smallest value is chosen as the value of the pixel(x; y) in the
eroded image. To neutralize the effect of the erosion on the hand in the likelihood image,
the erosion is followed by dilation using the same neighbourhood. Dilation is done in
the same way as erosion, except that the maximum value is chosen [1]. To get a more
connected track in the ADP, the dilation is repeated two times. The resulting image, that
is used as input when computing the ADP, can be seen in Figure 5.1(c).

The ADP is computed using a spatio-temporal filter that compares each of the previousk
images to a reference image, in our case the first image in the sequence, and increments
the score/intensity of a pixel in the output image each time the difference between its
value in the reference image and the other image exceeds a predefined threshold� . This
can be expressed recursively as follows [31]:ADP0(x; y) = 0 (5.1)ADPk(x; y) = ADPk�1(x; y) +DP1k(x; y) (5.2)

1For this purpose, we use the predefined scaling constantz which was introduced in Section 4.5 on
page 42, and do not attempt to determine the distance from theimages.

2The neighbourhood sizes presented here are designed for a resolution of320 � 240 pixels. Their sizes
should be adapted if the image resolution is changed significantly.



(a) Input Image (b) Skin-Colour Likelihood Image

(c) ADP Input Image (d) Final Image

Figure 5.1: Hand-Raise Detection Preprocessing. The large boxes are the hand-raise ROIs, the small boxes
the search windows used by the trackers. The input image (a) is converted to a skin-colour
likelihood image (b), which is processed with erosion and dilation to produce an input image
for the ADP computation (c). The output for the ADP is processed further and thresholded to
produce the image in (d), the contents of which is classified as being either a hand-raise or noise.

whereDP is a binary image indicating for which pixels the differencein intensity be-
tween two images is more than� . Let I(x; y; i) be the intensity of the pixel at(x; y) in
thei’th image in the sequence. ThenDP can be computed as follows:DPjk(x; y) = (1 if jI(x; y; j) � I(x; y; k)j > �;0 otherwise

(5.3)

In our preliminary experiments, we have foundk = 9 to be a suitable number of images
to use for the ADP, and we will use this value when estimating the probability density
functions for the Bayesian network. With a frame rate of 12.5Hz, this number of images
corresponds to approximately 0.7 seconds.

The ADP is thresholded, and to remove noise, it is eroded using a three pixels wide
horizontal neighbourhood that consists a pixel and its immediate neighbours to the left
and right. Using this neighbourhood appears to be sufficientto eliminate much noise, and
it leaves the heights of blobs caused by a hand mostly unaffected.

This is followed by dilation using the same neighbourhood. The dilation is then repeated,
which have the effect of making the blobs in the image wider than they originally were.



This is done to ensure that blobs due to hand movement have shared x positions when
the hand has been moved horizontally as well as vertically. These blobs are now con-
nected using thevline operation described in Figure 5.2, resulting in an image like the
one presented in Figure 5.1(d). This image is segmented using contour segmentation as
described in Section 3.2 on page 24, and the contour classified as described in the next
section. If the hand-raise ROI contains more than one contour, only the contour with the
largest bounding box is considered.

procedure vline(image, min_height, min_blobcount)
for x := 0 to image.width-1

blobheight := 0
min_y := -1
blobcount := 0

/* count the number of times the vertical line through x inter sects
a blob which is at least min_height pixels high at this x posit ion */

for y := 0 to image.height-1
if pixel at (x,y) is white

flag := true
blobheight := blobheight + 1
if blobheight >= min_height

if min_y = -1 then min_y := y
max_y := y

endif
elseif flag = true and pixel is black

if blobheight >= min_height then blobcount := blobcount + 1
flag := false
blobheight := 0

endif
endfor

/* handle the case where the last pixel is white */
if flag = true and blobheight >= min_height then blobcount = b lobcount + 1

if blobcount >= min_blobcount then draw line from (x,min_y) to (x,max_y)
endfor

endprocedure

Figure 5.2: VLine Algorithm: This algorithm connects blobs in a binary image which have shared x posi-
tions. To reduce the risk that noise becomes connected,minheightis set to the minimum height
of a blob caused by a hand, andminblobcountis set to the minimum number of blobs with
shared x positions that a hand-raise will leave in the ADP.

5.3 Classification

The contour in the hand-raise ROI is classified as being either the result of a hand-raise
gesture or something else, henceforth referred to as noise.Noise could for instance be
a person walking behind the video conference participants,hand movement that is not a
hand-raise gesture, or noise due to changes in the illumination.

5.3.1 Attributes

Whether a person has raised his hand or not will influence several attributes of the contour
found in the the hand-raise ROI, including:� The position of the contour. When a person is raising his hand, it will to some

degree follow a mean trajectory, while noise, e.g. due to a person moving in the
background, will tend to appear other places as well in the hand-raise ROI. The



position used could be the center of mass of the area within the contour, or as we
will do, the center of the bounding box of the contour, which will often be close to
the center of mass.� Theheight and width of the contour. The height of the contour will generally be
larger than the width, and the area will be large compared to e.g. the head of the
neighbour, which may occasionally be included in the hand-raise ROI because it
has not been found yet by face detection or because the tracker fails. Area and
height/width-ratio provide the same information as heightand width, but by repre-
senting this information as area and height/width-ratio, information about size and
shape is separated.� Thenumber of skin-coloured pixelsin the upper part of the area delimited by the
contour. When a person is raising his hand, the hand will be inthe upper part of
this area, and thus the number of skin-coloured pixels will be larger than when the
hand is being taken down. By counting the skin-coloured pixels in an area larger
than that of the hand, it can be determined whether the skin-colour detection is
producing false positives for the background pixels. If this is the case, the number
of skin-coloured pixels is likely to be larger than it usually is during a hand-raise
gesture, and the contour may by due to noise rather than a hand-raise gesture.� Thesize of the intersectionof the pixel sets contained in the current contour and
the contour found in the previous image, compared to the sizeof the current con-
tour. While some types of noise may have intersection areas similar to hand-raise
gestures, a small intersection area will be a good indication that the contour is not
caused by a hand-raise gesture.� Thedirection of the movementof the skin-colour center of mass in the previousN likelihood images within the bounding box of the contour. During a hand-raise
gesture, this center of mass will move upwards.

The values of these attributes also depend on whether the person’s arm is covered when
the hand is being raised, or he has bare arms.

5.3.2 Two Naive Bayesian Classifiers

The classification is done using a Naive Bayesian Classifier (NBC). NBCs assume that
the attributes are independent given the hypothesis, but even when this assumption does
not hold, NBCs are competitive with state-of-the-art classifiers [28].

A NBC for hand-raise detection is shown in Figure 5.3. The direction of skin-colour
movement is not used in the NBC, as it requires significantly more computation than
the other attributes. Instead, it is used to verify the result of the NBC when it classifies
something as a hand-raise gesture.

The hypothesis variable “Hand Raised?” (henceforth,H) can be in the statesh1; :::; hn. If
the other variables, henceforth referred to as informationvariables, are labeledA1; :::; Ak ,
the probability thatH is in the stateh given the observationA1 = a1 ^ ::: ^Ak = ak is,
according to Bayes rule [8]:P (H = h j k̂i=1Ai = ai) = P (Vki=1Ai = ai j H = h)P (H = h)P (Vki=1Ai = ai) (5.4)
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Figure 5.3: NBC1: A Naive Bayesian Classifier for Hand-Raise Detection.P (H = h) is the background probability of the hypothesish. P (Vki=1Ai = ai j H = h)
is the probability of a particular observation given thatH = h, and can, in principle, be
estimated from data, but this is impractical because of the large state space.

If the eventsA1 = a1; :::; Ak = ak are assumed to be independent given the state ofH,
Equation 5.4 can be rewritten to:P (H = h j k̂i=1Ai = ai) = (Qki=1 P (Ai = ai j H = h))P (H = h)P (Vki=1Ai = ai) (5.5)

Since the probabilityP (Vki=1Ai = ai) is the same for allhi, it can be substituted with a
normalizing constantz:P (H = h j k̂i=1Ai = ai) = (Qki=1 P (Ai = ai j H = h))P (H = h)z (5.6)

The probabilitiesP (Ai = ai j H = h) can be estimated from data.

The NBC in Figure 5.3 represents the x and y coordinates usinga single information
variable. Alternatively, this information could be represented using two variables, as
in Figure 5.4. This has also been done for the size variable that contains the information
about height and width of the contour. This variable can be split into a variable for the area
and a variable for the height/width-ratio. By splitting these variables, it is assumed that the
x and y positions are independent given the hypothesis, and that area and height/width-
ratio are independent given the hypothesis. We will refer tothe NBC in Figure 5.3 as
NBC1, and the NBC in Figure 5.4 as NBC2.

IntersectionSkin-ColourAreaPosition YPosition X

Hand raised?

H

A2A1 A3 A4 A5 A6

Height/Width

Figure 5.4: NBC2: Another Naive Bayesian Classifier for Hand-Raise Detection.



5.3.3 Estimation of Probability Density Functions

We estimate probability density functions (pdfs) for both of the classifiers presented in
Figures 5.3–5.4. Since the values of the attributes depend on whether the person’s arm is
covered or not, the hypothesis variable can be in three different states:� Hand-raise withArms Covered� Hand-raise withArms Bare� Noise

The histograms in Figures 5.5–5.10 show the frequencies of the various states of the
information variables given the state of the hypothesis variable. They are based on a
few hundred examples of contours resulting from hand-raisegestures and a few thousand
examples of contours resulting from noise3. The data were generated automatically using,
for some image sequences, a simple NBC with binary information variables, and for other
sequences, a set of rules producing nearly identical classification. The number of false
positives (i.e. noise classified as hand-raise gesture) is less than 0.5%. The small contours
appearing during the first and last part of a hand-raise gesture were classified as noise.

By approximating the histograms with appropriate functions, e.g. Gaussian or piecewise
Gaussian, and normalizing such that the area or volume beneath each function equals
1, pdfs providing reasonable probabilities forP (Ai = ai j H = h) can be obtained. It
would not be appropriate to use the histograms directly, as only three persons participated
in the video sequences, and each person only raised his hand afew times. Furthermore,
many kinds of noise are not represented in the sequences. Thus, the data used does not
provide sufficient information to make the histograms representative, and a functional
approximation will probably result in a better mean performance.

Together with the histograms in Figures 5.5–5.10, Gaussianor piecewise Gaussian ap-
proximations are shown. The parameters of these functions are presented in Tables 5.1–
5.2.

Attribute Hand-Raise Noise
Arms Covered Arms Bare� � � � � �

Center of Mass X -0.61 0.17 -0.80 0.21 -0.67 0.24
Center of Mass Y -0.08 0.08 -0.16 0.10 -0.16 0.22
Area 0.15 0.08 0.33 0.16 0.00 0.12
Height/Width-Ratio 2.48 0.84 2.24 0.50 0.00 2.39
Intersection Area 1.00 0.16 1.00 0.13 0.00 0.03

1.00 0.30
Skin Pixel Count 0.19 0.06 0.46 0.15 0.30 0.22

Table 5.1: Hand-Raise Attributes Mean and Variance. Two sets of numbers are given for the intersection
area for noise, as a piecewise Gaussian approximation is used.

3The exact numbers are 112 examples of contours caused by hand-raises with covered arms, 175 examples
of contours caused by hand-raises with bare arms, and 6092 examples of noise. The contours were primarily
taken from V1–V5, V7, and V11. Contours from parts of V8–V10 and V19–V20 were used as examples of
noise due to illumination change.



Attribute Parameters� �
X-Y Position, Arms Covered

��0:0986�0:6647� �0:0091 0:00140:0014 0:0240�
X-Y Position, Arms Bare

��0:1474�0:7248� �0:0086 0:00830:0083 0:0417�
X-Y Position, Noise

��0:1584�0:6708� �0:0493 0:00250:0025 0:0553�
Width and Height, Arms Covered

�0:55660:3842� �0:0101 0:00120:0012 0:0052�
Width and Height, Arms Bare

�0:60860:4393� �0:0537 0:02630:0263 0:0171�
Width and Height, Noise

�0:19090:2184� �0:0381 0:01970:0197 0:0206�
Table 5.2: Hand-Raise Attributes Mean and Variance for NBC1.

Position

The position is measured relative to the center of the face ina coordinate system with(0; 0) in the upper left corner of the image, and the x and y coordinates are normalized by
dividing with the maximum hand-raise ROI width and height, respectively. Thus, the x
coordinates are always negative, and the y coordinates are negative when above the center
of the face, and otherwise positive.
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Figure 5.5: Center Coordinates for Hand-Raise Gestures for NBC2.

The center y coordinates for hand-raise gestures in Figure 5.5 seem to be approximately
normally distributed, and the histograms can be approximated with a Gaussian pdf by
computing mean and standard deviation for the data. The y coordinates for noise can also
be approximated with a Gaussian pdf.

For the x coordinates for hand-raise gestures in the case Arms Covered in Figure 5.5(a),
the values do not seem to be normally distributed. This is because the hand-raises have



been done by two persons sitting next to each other. This constrains the x position of the
hand for one of the persons, while the other person can move the hand freely. The result
is a multimodal probability distribution. The persons weresitting quite close with an
approximate center-to-center distance of 0.6 m. If the distance between the persons had
been larger in some of the sequences, and more sequences had been used, the distribution
might have become unimodal. For this reason, we approximatethe distribution in Figure
5.5(a) with a single Gaussian pdf.

The x coordinates in the Arms Bare case in Figure 5.5(b) have alarger variance, but the
histogram is otherwise quite similar and is also approximated with a single Gaussian pdf.

The pdfs for the center x coordinates are plotted in Figure 5.5(d), including the noise
pdf. As can be seen from the figure, the x coordinate does not provide much information
for classification, as the pdfs are very similar, with approximately same mean and stan-
dard deviation. The y coordinate provides more information, as it can be seen in Figure
5.5(h), where the probability at the means of the hand-raisepdfs are more than twice the
probability of noise, due to the large standard deviation ofnoise compared to hand-raises.

In Figure 5.6, histograms and Gaussian approximations are shown for the three hypothe-
ses in the case where the position is represented using a single variable. As it can be seen
from the figure, the Gaussian functions are rotated because of nonzero covariances. This
suggests that the position should indeed be represented as asingle variable, as a similar
effect could not be obtained by multiplying the x and y pdfs inFigure 5.5. Also note
the large standard deviation for noise compared to hand-raises. As discussed above, this
means that the position is useful for classification.

Height and Width

The height and width of the contour are normalized by dividing with, respectively, the
maximum ROI height and width, and the area is normalized by dividing with the maxi-
mum ROI area. The area is computed as the area of the bounding box of the contour, i.e.
by multiplying width and height.

As can be seen from Figure 5.7, reasonable Gaussian approximation can be made for
the hand-raise hypotheses for both area and height/width-ratio. The area when making
hand-raises with bare arms tends to be somewhat larger, but also with a larger standard
deviation. This is because of the larger skin-colour area that moves in the image.

The noise tends to have a small area and a small height/width-ratio compared to the
hand-raise gestures. Simply making a Gaussian approximation by computing mean and
standard deviation would not produce a good pdf, as the the smallest values of the at-
tributes would not get the largest probabilities. Instead,a Gaussian approximation has
been produced by mirroring4 the data around0 and then computing the mean and stan-
dard deviation. The resulting pdfs are not perfect fits, but seem acceptable.

One might speculate that increasing the probabilities of noise for large areas and height/width-
ratios could improve classification. However, due to the size and height/width-ratio of the
maximum ROI5, a contour with a large height/width-ratio will have a smallarea and vice
versa.

4Let h(x) be a function describing the histogram. This function is defined forx 2 [0;1[. By mirroring
around 0, we produce a functionhm(x) = h(jxj), which is defined forx 2 ℄�1;1[.

5We use a height/width-ratio of the ROI of1:6 and an area of8050z, wherez is a scaling constant
depending on the distance to the person.
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Figure 5.6: Center Coordinates for Hand-Raise Gestures for NBC1.

When the size and shape is represented using a single variable, the Gaussian approxima-
tions to the height-width histograms in Figure 5.8 can be used as pdfs. Note that the shape
of 5.8(d) and to some extent 5.8(b) indicates that contours with a particular height/width-
ratio should have large probabilities. This confirms that itis sensible to use area and
height/width-ratio, when the size and shape are modeled using two variables, instead of
height and width.
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Figure 5.7: Area and Height/Width-Ratio of Hand-Raise Gestures.

Intersection Area

The intersection area is determined as the percentage of thebounding box of the current
contour that is covered by the bounding box of the previous contour. If no contour has
been found for a few frames, it is assumed that the current contour is the first in a sequence
of contours that will be caused by a hand-raise, and the intersection area is defined to be
1.

Histograms and Gaussian approximations for the intersection area are shown in Figure
5.9. The approximations for the histogram in Figures 5.9(a)–5.9(b) were produced by
mirroring the data around 1 before computing mean and standard deviation. The noise
in Figure 5.9(c) has been approximated using a piecewise Gaussian pdf. The data for
the first piece of the pdf was mirrored around 0 and the data forthe second piece was
mirrored around 1.

Number of Skin-Coloured Pixels

The number of skin-coloured pixels within a box placed at theupper part of the contour
is determined, and normalized by dividing with the size of this box (which depends on
the distance to the person). The histograms and Gaussian approximations for the values
of this attribute are shown in Figure 5.10.

Verification using Skin-Colour Movement

When a contour has been classified as a hand-raise by the NBC, ascore based on the
previousN skin-colour likelihood images is computed. This score is computed by de-
termining, for each likelihood image, the center of mass inside the bounding box of the
contour. These center of masses are considered in chronological order. Each time the
center of mass moves more than�Y pixels upwards, a counteru is incremented, and
each time the center moves more than�Y pixels downwards, another counterd is in-
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Figure 5.8: Height and Width of Hand-Raise Gestures.

cremented. The score is then computed as(u � d)=N , which will be a value between
-1 and 1. If this score exceeds a threshold, the contour is accepted as being caused by a
hand-raise.
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Figure 5.9: Intersection Areas for Hand-Raise Gestures.
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Figure 5.10: Skin Pixel Count for Hand-Raise Gestures.

Background Probabilities

To compute the probability distribution for the hypothesisvariable, the background prob-
abilities for observing a hand-raise gesture must be known.

Based on the training data, the probabilities shown in Table5.3 have been found. How-
ever, since contours caused by hand-raises appear in time clusters, the background proba-
bility of observing a hand-raise will depend on the number ofhand-raise contour that have
been observed recently. This could be modeled by a chain of NBCs as those presented,
where the hypothesis variables are connected in a sequence.Then only the first NBC in
the chain would use the background probabilities in Table 5.3.P (H = ArmsCovered) P (H = ArmsBare) P (H = Noise)

0.0176 0.0274 0.9550

Table 5.3: Background Probabilities for Hand-Raise Gesture.

Instead of doing this, we have chosen a slightly simpler approach that achieves a similar
result. The background probabilities are ignored. Each time a NBC classifies a contour as
being caused by a hand-raise, and the skin-colour movement verification agrees, a counter
is incremented and a timer is set to 0. If the value of the counter exceeds a predefined
threshold, the system assumes that the person has raised hishand. For each frame that
passes without a hand-raise being detected by the NBC, the timer is incremented. If the
timer exceeds a predefined threshold, the counter is set to 0.



5.4 Hand-Raise Detection Conclusions

In this chapter, we have presented the method we use for hand-raise detection. The search
for hand-raises for a person is restricted to a ROI to the leftof the person in the image.
Using the person’s skin-colour LUT, a skin-colour likelihood image is produced for the
ROI, which is preprocessed and then used for generating an ADP for the hand-raise ROI.
In this ADP, a hand-raise will leave a vertical trace. We process the ADP to turn the trace
into a single connected component, which is extracted usingcontour segmentation and
then classified using a NBC. If the NBC classifies a contour as being caused by a hand-
raise, the previousN skin-colour likelihood images are examined to determine ifthere
has been a sufficient degree of upwards movement in the centerof mass for this contour
being caused by a hand-raise. If this is the case, and it happens sufficiently many times in
a row, it is reported to the rest of the system that a hand-raise has occurred.



Chapter 6

System Design

In this chapter the design of the VICOWIJOY system will be described. The overall ar-
chitecture will be described, followed by a more detailed description of each phase of the
system. Finally, the implementation platform will be described.

6.1 Introduction

To be able to experiment on the methods described in Chapters2–5 we have designed and
implemented a system which is based on a supervisor process that controls and distributes
data among a number of other processes. In a previous projectof ours [5] we investigated
several ways of integrating the methods in a video conferencing system with automatic
speaker attention and found this model to be the most suitable. First, the overall archi-
tecture of the system is described in Section 6.2. Afterwards, the processes in the system
are described in Sections 6.3 to 6.9. Finally, the implementation platform is described in
Section 6.10.

6.2 VICOWIJOY Architecture

The overall architecture of the VICOWIJOY system is illustrated in Figure 6.1. The
system consist of 6 different processes which are shortly described in the following list.
In the following sections we will describe each of the processes in more detail.� Supervisor: The supervisor is the main process in the VICOWIJOY system. It is

responsible of distributing the data it receives from processes below it to other pro-
cesses. Furthermore, it maintains a lookup table (LUT) which is updated based on
the faces found by the face detection process. This LUT is used by the skin-colour
detection process to generate a skin-colour likelihood image and by the tracker
manager to give new face trackers an initial LUT to use.� Skin-Colour Detection: This process takes as input a LUT from the supervisor
and an image from the panorama camera. It converts input image to NRGB and
uses the LUT to generate a skin-colour likelihood image. This is then returned to
the supervisor.� Face Detection:This process detects the faces in the images taken from the panorama
camera. It preprocesses and segments the likelihood image received from the su-
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pervisor into face candidates. Afterwards it uses the face verification methods de-
scribed in Chapter 3 to remove the non-faces. The final list offaces is sent to the
supervisor.� Tracker Manager: The tracker manager maintains a set of trackers for the facesin
the image using the face list produced by the face detection.It attempts to eliminate
trackers for non-face objects that was started because of false positives from the
face detection, as well as trackers that have lost the faces they were supposed to
track, from this set.� Face Tracker and Hand-Raise Detector:Each time a new face appears in the
image, a face tracker and a hand-raise detector are started for this face by the tracker
manager. The face tracker attempts to track the face, while the hand-raise detector,
based on the face position determined by the face tracker, monitors the hand-raise
ROI to detect hand-raises.� PTZ-Camera Control: The purpose of this process is to control a PTZ-camera
(Pan-Tilt-Zoom camera) based on the current speaker’s sizeand position in the
panorama camera. We have not implemented this part of the system, which is why
it is shaded in Figure 6.1. Instead we use a simple digital zooming on the images
from the panorama camera to emulate the PTZ-camera’s function.
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Figure 6.1: The VICOWIJOY Architecture. The system consists of 6 different processes. The PTZ-camera
control process is shaded because it has not been implemented. Instead it is emulated using
digital zooming on the images from the panorama camera.

6.3 Skin-Colour Detection

The skin-colour detection process is a rather simple process. It first calculates a NRGB
image based on the input image which it receives from the supervisor. This is done as
explained in Section 2.2 on page 8. Based on the LUT, which is also received from the
supervisor, and the chromaticity image, a skin-colour likelihood image is calculated. This
image is then sent back to the supervisor. The skin-colour detection process is illustrated
in Figure 6.2.
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Figure 6.2: The Skin-Colour Detection Process.

6.4 Face Detection

The face detection process first erodes and dilates the likelihood image which is received
from the supervisor (the whole face detection process is illustrated in Figure 6.3). The
result of this is used by the threshold method to create a binary image where white pixels
are skin and black pixel non skin. Based on the binary image the segmentation method
explained in Section 3.2.1 on page 25 creates the initial list of face candidates and sends
it to the first verification method. This is the method which verifies the rectangular size
and shape of the face candidates (explained in Section 3.3 onpage 27). Face candidates
which do not apply to the size and shape of faces are removed from the list before the
list is forwarded to the solidity verification. This method verifies whether solidity of face
candidates is within lower and upper thresholds (the methodis explained in Section 3.4 on
page 27). Face candidates which are not within these thresholds are removed before the
face candidate list is forwarded to the nose-eye template matching. Here the areas covered
by the face candidates in a grey-scaled version of the input image are matched against an
average nose-eye template. The face candidates which do notlook like the template
(defined by using a threshold as explained in Section 3.5 on page 28) are removed from
the face candidate list. Finally, the face candidate list isforwarded to the ellipse matching
process, which uses a gradient image to verify whether the face candidates are elliptic in
shape or not (this method is explained in Section 3.6 on page 32). Face candidates which
are below a threshold are removed from the list, before the final list of faces is sent to the
supervisor.
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Figure 6.3: The Face Detection Process.



6.5 Tracker Manager

The tracker manager is an implementation of the algorithm described in Section 4.6 on
page 48. For each new image, the supervisor provides a list ofdetected faces (which
can be empty), as well as the LUT that was used for this image. When this happens, the
tracker manager first go through the list of trackers to eliminate trackers that are unstable
(i.e. moving to much) or dead (i.e. have not been updated for some time, see Section 4.6).
Then it goes through the new list, that only contains “valid”trackers, and compares each
tracker with each other tracker to determine if any of the trackers overlap, i.e. the size of
the intersection of their estimated face bounding boxes is larger than a threshold. If this
happens, the least stable tracker is deleted. Then the detected faces are paired with current
trackers, and if a detected face does not overlap with a face currently being tracker, a new
tracker is created for this face. The tracker manager then goes through the tracker list
again to determine the neighbours of each person being tracked, and updates each tracker
with the information about its neighbours, which allows thetrackers to adjust the sizes
of the hand-raise ROIs for the hand-raise detectors. Each tracker is then updated with
the current image, which cause it to go through its update cycle, at the end of which the
hand-raise detector will be invoked to determine if the person being tracked has raised his
hand. If this is the case, the position of the person is given to the supervisor, that use it to
zoom in on the person.

6.6 Face Tracker

The face tracker is an implementation of the face tracking algorithm described in Sec-
tion 4.5 on page 42. First a NRGB image and a skin-colour likelihood image is produced
as described in Section 6.3, using the tracker’s own LUT. This LUT is initially provided
by the supervisor (through the tracker manager). Using thislikelihood image, the center
of mass of the face is found using the Mean Shift algorithm. Then, the size is determined
using ellipse fitting in a gradient image. This position and size, and, if available, the
position and size of the detected face supplied by the tracker manager, is used to update
the trackers estimate of the position and size of the face. Using the new estimate of the
position and size, the skin-colour LUT is updated with pixels from the face area in the
NRGB image.

6.7 Hand-Raise Detector

The hand-raise detector is responsible for classifying thecontents of the hand-raise ROI.
As input, it receives the skin-colour likelihood images produced by the face tracker. It
performs preprocessing on these images as described in Section 5.2 on page 52. The
preprocessing steps results in a (possibly empty) set of contours for the connected com-
ponents in the ADP for the hand-raise ROI. The contour with the bounding box with
largest area is classified using a Naive Bayesian Classifier (NBC), which is implemented
as a set of functions corresponding to the attributes of the NBC. Each of these functions
take the bounding box of the counter as input and returns the probabilities for the three
possible states of the hypothesis variable,hand raised with covered arms, hand raised
with bare arms, andnoise. Using these probabilities the probability of the eventhand
raised is computed, and if it exceeds 50%, the hand-raise verification is initiated. If it is
successful, the hand-raise counter is incremented as described in Section 5.3.3 on page 63.



If this counter exceeds a predefined threshold, the hand-raise detector informs the tracker
manager that a hand-raise has occurred.

6.8 PTZ-Camera Control

The PTZ-camera control process is not implemented as a real controlling system for a
camera. Instead we use digital zooming in the input image to show a close-up of the
person who has got the attention by raising his hand. Based onthe position and size
delivered by the supervisor, the process copies the face from the input image and enlarges
it to fit 320� 240 pixels. This is then shown as the image of the current speaker.

6.9 The Supervisor

The main purpose of the supervisor is to distribute information among the other pro-
cesses in the system. Besides that it has the task of maintaining a LUT to be used by the
skin-colour detection process and the tracker manager process. Based on the skin-colour
model described in Appendix C we have made 150 different Gaussian skin-colour mod-
els. These are represented as likelihoods in LUTs calculated as explained in Section 2.4.2
on page 12. The skin chromaticity distributions in the LUTs have chromaticityr centers
of mass ranging from 0.2 to 0.8. Furthermore, we have doubledthe standard deviations
of the variances along the chromaticityr and g axes. This is because the skin-colour
model is based upon that the centers of mass of the skin chromaticity distributions lie
along the skin locus. This will not always be the case in the different environments of
video conferences. However, using larger variances makes it possible to find faces that
have skin-colours which are a within reasonable distance ofthe skin locus.

The 150 LUTs are divided into 6 groups of 25 LUTs. This is also illustrated in Figure
6.4, where we have misplaced the 5 groups along the chromaticity g axis to make the
figure easier to read. I.e. the white group at the top lies along the real skin locus and the
rest are misplaced. When the supervisor starts it gets the first LUT from the first group
and uses this for skin-colour detection. Afterwards, face detection is made and if no faces
are found, the next LUT from the current group will be used forthe next image. When
the end of the group is reached the first from the next group is used and when the end
of the last group is reached the whole starts over with the first LUT from the first group.
By using these rules the system covers the whole skin chromaticity area in 1 second (25
images at 25 Hz) when no faces are found. If faces are found in the image, the supervisor
uses the skin chromaticities of these to update the current LUT and this LUT is then used
to detect skin-colours in the next image. In this way, new people entering the scene should
be found faster, when the illumination conditions are stable and other people already have
been found in the scene. This is because the supervisor does not get the next LUT from
one of the 6 groups as long as faces are detected.

The whole supervisor process is illustrated in Figure 6.5. As already explained it initiates
with the first LUT from the first group of LUTs. It then goes intoits main loop where it
first gets an image from the panorama camera and sends this together with the LUT to the
skin detection process. The skin detection process returnsa skin-colour likelihood image,
which the supervisor sends together with the input image to the face detection process. If
the list of faces returned from the face detection process isempty, the supervisor gets the
next LUT based on the rules explained above. If the list of faces is not empty the current



Figure 6.4: The LUTs Centers of Mass: The supervisor uses 6 groups of 25 LUTs to find skin-colours in
the image.

LUT is updated based on the skin chromaticities of the faces in the list. This is done
using one of the methods explained in Sections 2.5.2 on page 15 and 2.5.3 on page 17.
Afterwards, the active trackers are updated and new trackers are initiated. This is done
by calling the tracker manager with the input image and the detected face list. Finally,
the supervisor calls the tracker manager to find out whether any hand-raises have taken
place. If yes, the face of the hand raiser is zoomed in on before the supervisor loop starts
over by getting the next image from the panorama camera.

6.10 Implementation Platform

We have implemented a Windows version of the system described in the previous sec-
tions. This has been done in C++ using the Microsoft PlatformSDK and the Borland
C++Builder compiler v5.5. Furthermore, we have used the OpenCV 3.4a and IPL v2.5
libraries from Intel to do many of the image manipulation functions. To emulate the
panorama camera we have recorded a number of video sequenceswhich are described in
Appendix D. These are saved as AVI-files and read by the program at run-time.

6.11 System Design Conclusions

In this chapter we have described the design and implementation of a system called VI-
COWIJOY, which we will use to do experiments on the methods investigated in Chapters
2–5. The system is implemented in C++ and makes use of a numberof libraries to do
image manipulation. Input from real cameras are emulated using AVI-files and digital
zooming. The system consists of a supervisor process which is used to distribute data
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amongst the five other processes in the system. Furthermore,the supervisor must main-
tain a LUT which is used as input to the face detection processand the tracker manager.
The skin-colour detection process is the initial process and is used to find the skin-colours
in the images. It makes a skin-colour likelihood image and sends it to the face detection
process via the Supervisor. The face detection process firstsegments the likelihood image
into a list of face candidates and then classifies each candidate as face or non-face using
rectangular shape and size, solidity, similarity to a nose-eye template, and ellipse match-
ing. Based on the resulting list of detected faces from the face detection process, the
tracker manager maintains a set of trackers for the faces in the image. If a detected face
does not overlap with a face that is already being tracked, a new tracker for that face is
created. Each face tracker tracks a face using skin-colour likelihood images and intensity
gradient images. The likelihood images are produced by the tracker’s own skin-colour
LUT, and are also used for hand-raise detection for the person being tracked.





Chapter 7

Experiments

In this chapter we will describe the results of experiments made upon the methods de-
scribed in Chapters 2, 3, 4, and 5. To be able to do these experiments we have recorded a
number of video sequences of people doing hand-raises. These are described in Appendix
D

7.1 Introduction

We have organized the experiments into four sections, each corresponding to one of the
Chapters 2, 3, 4, and 5. First, experiments are made on the focus of attention methods
in Section 7.2. In these we measure the performance of the methods by computing the
distance between the average skin colour likelihood in the face and in the rest of the im-
age. The best combination of methods found is used in the faceverification experiments
in Section 7.3. In these we first do experiments using the preprocessing methods dilation
and erosion, and afterwards on each of the face verification methods alone and combined
serially. Preprocessing is used to enhance the likelihood image before it is thresholded
and segmented into a list of face candidates. It can therefore not be said to do actual face
verification. On the other hand, the preprocessing cannot either be said to be part of the
focus of attention phase. Since it in combination with the threshold and segmentation
methods makes the initial list of face candidates, we have decided to experiment on it
together with the face verification methods.

The performance of the face verification methods is identified by calculating the amount
of false negatives (faces which are not identified as faces) and false positives (non-faces
which are identified as faces).

The best combination of methods for focus of attention and face verification is used in
Sections 7.4–7.5, where experiments are made with face tracking and hand-raise detec-
tion. We measure the performance of the face tracker by making a subjective evaluation
of how well they follow the centers of the faces in the presence of clutter, when the
faces become occluded, and when the illumination changes. The performance of the
tracker manager is evaluated by examining its ability to eliminate trackers for non-face
objects. Finally, experiments are made on the hand-raise detection in Section 7.5. Its per-
formance is measured by how often it miss a hand-raise (falsenegative) and how often if
detects a hand-raise although none has occurred (false positive). This is done for different
combinations of parameters to produce different trade-offs between the two performance
measures.
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7.2 Focus of Attention Experiments

In this section we will do experiments on the four different methods, which can be used
for focus of attention (FoA). These are:� LUTs using the simple update method (simple LUT)� LUTs using the ratio update method (ratio LUT)� Gaussian models based on the ratio LUT method (ratio Gaussian)� Gaussian models based on weighted parameters of Gaussians (weighted Gaussian)

The methods were explained in Section 2.5.2 on page 15 and Section 2.5.3 on page 17.
Furthermore, experiments will be made on the use of moment constraints which were
explained in Section 2.5.4 on page 17.

The methods are meant to make it possible to detect skin-colours under changing corre-
lated colour temperatures (CCTs – we refer the reader to the beginning of Section 2.5.1
on page 14 for a description of CCTs). Therefore we have decided to do experiments us-
ing three videos, which all have been recorded under controlled, changing CCTs. These
are the V8-V10 and are described in more details in Appendix D. In the videos, CCTs
of 2600K, 3680K, 4700K, and 6200K are used. The experiments do therefore show both
how well the methods detect skin-colours and how well they adapt to changes in the
CCT. We have used a constant value� = 0:9 (this constant is described in Section 2.5.2
on page 15) to indicate how fast the methods should adapt to changes in CCT. I.e. we
trust the LUT or Gaussian model estimated so far90% and the LUT or Gaussian model
found from the current image10%. Together their values are used to create the new LUT
or Gaussian model which will be used in the next image.

7.2.1 Experiments Description

In the experiments we measure four values:� The average skin-colour likelihood inside the face area� The average skin-colour likelihood inside the background area� The distance between the average skin-colour likelihood inthe face and background
areas� The average computation time

Theface areais the area in a video which contains the face. To avoid being dependent on
a face tracker during these experiments, we have defined the face area at a fixed position
and with a fixed size for each of the videos (see the green boxesin Figure 7.1). This
can be done because the persons in the videos do not move theirfaces very much – i.e.
they more or less stay inside the face area. Calculating the average skin-colour likelihood
(from now just average likelihood) for the face area is done using Equations 7.1 and 7.2,
wherefw andfh are the width and height of the face area, andfx; fy its upper left
corner in the image. The functionl(xx; yy) returns the likelihood of the pixel at position(xx; yy).



fa
esum = fx+fwXxx=fx fy+fhXyy=fy l(xx; yy) (7.1)fa
eavg = fa
esumfw � fh (7.2)

Thebackground areais the whole image excluding the face area and thehand area. The
hand area is the area in the image where the hand-raises take place. It is also of a fixed size
and position for each video (see the blue boxes in Figure 7.1). The hand areas have been
defined to avoid, that the skin-colours of a hand influence on the average likelihood of
an image area. Measuring the distance between the average likelihood of the background
area and the average likelihood of the face area, tells us about the accuracy of the method
used for skin-colour detection. I.e. to be able to make an easy distinction between the
background area and the face area we want to have the largest possible distance between
their likelihood averages.

(a) V8 (b) V9 (c) V10

Figure 7.1: The Face, Hand, and Image Areas: The images in the three videos are divided into areas of
faces (green boxes) and hands (blue boxes). The background area is defined as the whole image
minus the face area and the hand area.

To calculate the average likelihood of the background area,we first sum all the likeli-
hoods in the image. Afterwards, the sum of the likelihoods ofthe face and hand areas is
subtracted. This is done in Equation 7.4 wherebw andbh are the width and height of the
image. The sum of likelihoods in the hand area is calculated using Equation 7.3.handsum = hx+hwXxx=hx hy+hhXyy=hy l(xx; yy) (7.3)ba
kgroundsum =  bwXxx=0 bhXyy=0 l(xx; yy)!� fa
esum � handsum (7.4)

Thereafter, the average likelihood in the background area is found by dividingba
kgroundsum
with the number of likelihoods greater than 0 in the background area. Likelihoods above 0
are used because the result only should express the average of the potential skin-coloured
pixels in the background image (i.e. the colours which are inside the upper and lower
border of the skin locus illustrated in Figure 2.5 on page 16.Equation 7.5 calculates the
average likelihood for the background area.M is the number of pixels in the background
area with a likelihood greater than 0.



ba
kgroundavg = ba
kgroundsumM (7.5)

Finally, we also want to compare the average computation time for each of the methods.
This can be used to find out whether increased accuracy is at the expense of a longer
computation time.

7.2.2 Face Area

In Figure 7.2 the results of using each of the four methods on V8 are illustrated. Using
the weighted Gaussian method (the blue line) gave the highest likelihood average under
all kinds of CCT. Below the graphs in the figure we have indicated the CCT used. The
changing CCTs happened because one of the arrangements of fluorescent lamps by in-
cident was turned in the wrong direction. The other arrangement was at the same time
positioned at 3680K, so the CCT should probably be found near3680K. As it can be
seen, all the methods degrade in performance for a period when the CCT changes from
2600K to 4700K and from 6200K to changing CCTs. This is because the methods need
a small period of time to adapt to the new CCT, which in both cases is a long distance
away in chromaticity plane. However, it is not more than 10-20 images and thereby less
than a two seconds (the frame rate in the videos is 12.5 Hz). Going from 3680K to 2600K
and from 4700K to 6200K does actually not make the methods perform worse for a short
period. This must be because the distance moved in chromaticity plane is short enough to
make the methods adapt fast enough from image to image. The reason for the instability
at the end of V8 is, as explained above, that one of the arrangements of fluorescent lamps
was rotated while the other was not. The result of this can be seen as the two abrupt
breaks in the graphs in the area of changing CCTs.
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Figure 7.2: Average Likelihood in the Face Area: Using the weighted Gaussian method gives the highest
average likelihood under all kinds CCTs.

The use of a CCT of 2600K and 6200K is a real problem for all the methods except
for the weighted Gaussian. Investigations of the skin chromaticity distributions made
by each of the methods, showed that the variances of the weighted Gaussian method
always was the largest. This meant that the likelihood of theskin-colours in the face



area got higher and thereby increased the average likelihood. The Gaussian method also
has the highest average likelihood in the face area when using other CCTs. In Table
7.1 we have illustrated the average likelihoods for V8, V9, and V10. As it can be seen,
the use of the weighted Gaussian method gives the highest average likelihood in all the
videos. Therefore, the weighted Gaussian method is the one to prefer, when looking at
the likelihood average in the face area.

Video No. Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian
V8 0.155 0.164 0.220 0.336
V9 0.19 0.28 0.288 0.376
V10 0.162 0.234 0.258 0.331
Average 0.172 0.229 0.255 0.348

Table 7.1: Average Likelihood in the Face Area: The table illustrates the average likelihood in the face area
in each video. The bottom row shows the average likelihood ofall the videos. Using the weighted
Gaussian method clearly gives the highest average likelihood.

7.2.3 Background Area

The use of the weighted Gaussian method gives the highest average likelihood in the face
area. To verify that this is not at the expense of a high average likelihood in the back-
ground area, we calculated this for each of the images in V8. The results can be seen
in Figure 7.3. Here the ratio LUT method performs best most ofthe time and the ra-
tio Gaussian method worst most of the time. The weighted Gaussian method is close to
the ratio LUT method, except when the CCT is 2600K. The betterresults made by the
weighted Gaussian method and a CCT of 2600K is therefore at the expense of a higher
average likelihood in the background area. In Table 7.2 we have illustrated the average
image likelihoods in V8, V9, and V10 for each of the methods. As it can be seen, the av-
erage likelihood of the ratio LUT method is about half the size of the weighted Gaussian.
In [24] they claimed that using a LUT should be more accurate than using a Gaussian
model. The results in Figure 7.3 and Table 7.2 should verify this, if we define accuracy
as finding only skin-coloured pixels inside the face areas. The increased accuracy nev-
ertheless seems to be at the expense of a lower likelihood of the pixels, which actually
are skin-coloured. In Table 7.3 we have illustrated the distances between the the average
likelihood in the face and image areas. We want this distanceto be as large as possible to
be able to make a clear distinction between the face and the rest of the image. As it can
be seen, the distance is by far the largest when using the weighted Gaussian method. So
although this method finds higher likelihoods in the background area, the likelihoods in
its face area are at the same time raised even more. Therefore, we will still say that the
best method to use is the weighted Gaussian.

Video No. Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian
V8 0.052 0.040 0.075 0.063
V9 0.059 0.030 0.084 0.059
V10 0.069 0.030 0.125 0.062
Average 0.060 0.033 0.095 0.061

Table 7.2: Average Likelihood in the Background Area: The table illustrates the average likelihood in the
background area in each video. The bottom row shows the average likelihood of all the videos.
Using the ratio LUT method gives the lowest average likelihood in the background area.
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Figure 7.3: Average Likelihood in the Background Area: Using the ratio LUT gives the lowest average
likelihood in the background area.

Video No. Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian
V8 0.103 0.124 0.145 0.273
V9 0.139 0.259 0.204 0.317
V10 0.093 0.204 0.133 0.269
Average 0.112 0.196 0.161 0.286

Table 7.3: Average Likelihood Distance: The table illustrates the distances between the average likelihoods
in the face and background areas. When looking at this distance there is no doubt that the method
to use is the weighted Gaussian.

7.2.4 Computation Time

Finally, we have calculated the average computation time for each method. The time
is measured as the number of milliseconds used by a method on asingle image. The
results were achieved on a laptop with a 1 GHz PIII and 256 MB ofmemory. In Table
7.4 the average times for V8, V9, and V10 can be seen. What is interesting is whether
the weighted Gaussian method’s better distinction betweenthe face and background area
compared to the ratio LUT method is at the expense of a much longer computation time.
As it can be seen this is not the case, since it only needs about10% more computation time
on the average. The simple LUT method is the fastest method touse but unfortunately its
average face area likelihood also much lower than those of the other methods. Using the
weighted Gaussian method seems to be a reasonable compromise between accuracy and
speed.

7.2.5 Moment Constraints

In Section 2.5.4 on page 17 we wrote about how the performanceof the methods used for
FoA probably could be increased by constraining the momentsof the skin chromaticity
distributions. In this section we will do experiments with real image data to find out if
the use of moment constraints actually can increase performance. Since the weighted
Gaussian method clearly performs best without moment constraints, we have decided to
only experiment on this method.



Video No. Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian
V8 16.2ms 29.2ms 46.6ms 33.1ms
V9 21.1ms 32.4ms 47.0ms 37.4ms
V10 16.8ms 33.3ms 51.7ms 33.6ms
Average 18.0ms 31.6ms 48.4ms 34.7ms

Table 7.4: Relative Average Computation Time: The fastest method to use is the simple LUT and the slowest
the ratio Gaussian. Unfortunately the average face area likelihood of the simple LUT method is
also much lower than those of the other methods. Using the weighted Gaussian method seems to
be a reasonable compromise between accuracy and speed.

The constraints we want to make are the following:� Minimum and maximum chromaticityg distances away from the center of masses
defined by the skin-colour model described in Appendix C.� Minimum and maximum sizes of the variance along the chromaticity r axis.� Minimum and maximum sizes of the variance along the chromaticity g axis.� Minimum size of the rotation angle (i.e. the covariances ofrg andgr).

Having observed the position, sizes, and rotation angles ofa number of Gaussian models
made from V8-V10, we decided to use the moment constraints defined in Table 7.5. These
values have therefore been determined empirically. The values are based on chromaticityr andg values going from 0 to 1. I.e. the maximum width,w, along the chromaticityr
axis of a Gaussian model would bew = 2p0:0039 � 0:125
The minimum angle of0Æ indicates that the covariances always must be 0 or negative (i.e.
clockwise rotation of the skin chromaticity distribution).

Moment Constraint Value
min g distance -0.0118
maxg distance 0.0118
min r variance 0.0010
maxr variance 0.0039
min g variance 0.0010
maxg variance 0.0015
min angle 0Æ

Table 7.5: Moment Constraints Values: The table illustrates the values we used to constrain the moments in
the experiments.

In Figure 7.4 the average likelihood in the face area with andwithout the use of moment
constraints can be seen. The results were achieved using V8 and the increase in com-
putation time for one image was less than 1ms and thereby not noticeable. As it can be
seen, the use of moment constraints does indeed increase theaverage likelihood under all
CCTs. In Table 7.6 we have illustrated the average likelihoods achieved on V8-V10 with
and without the use of moment constraints. In all the videos the average likelihood gets
higher when using moment constraints. In average the use of moment constraints raises
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Figure 7.4: Average Likelihood in Face Area using Moment Constraints: By constraining the position, size,
and angle of the Gaussian model it is possible to raise the average likelihood in the face area.

Video No. Without Moment Constraints With Moment Constraints
V8 0.336 0.372
V9 0.376 0.410
V10 0.331 0.429
Average 0.348 0.404

Table 7.6: Average Likelihood in the Face Area with and without Moment Constraints: Using moment
constraints it is possible to increase the average likelihood in the face area.

the average likelihood in the face area by 16%. This indicates that moment constraints
are worth using.

We need to ensure that the increased average likelihood in the face area is not at the
expense of an even higher increase in the background area. InFigure 7.5 the average
likelihood in the background area with and without the use ofmoment constraints are
illustrated. As it can be seen, the average likelihood is increased. The increase is nev-
ertheless much lower than the increase of the average likelihood in the face area. In
Table 7.7 we have compared the distances between the averagelikelihoods in the face
and background areas. The use of moment constraints increases the average distance for
V8-V10 from 0.286 to 0.341. This is more than 19% and should verify that using moment
constraints definitely is a good idea.

Video No. Without Moment Constraints With Moment Constraints
V8 0.273 0.299
V9 0.317 0.350
V10 0.269 0.375
Average 0.286 0.341

Table 7.7: Distance Between Face and Background Area using Moment Constraints: Using moment con-
straints increases the distance between the average likelihoods in the face and background area
by more than 19%.
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Figure 7.5: Average Likelihood in the Background Area using Moment Constraints: Constraining the mo-
ments causes a small increase in the average likelihood in the background area. This increase is
nevertheless much lower than the increase of the average likelihood in the face area.

7.3 Face Verification Experiments

In this section we will describe the experiments we have madeon the methods used for
verification. These methods were all explained in Chapter 3 and are the following:� Preprocessing of the skin-colour likelihood image received from the previous phase

of focus of attention.� Verification of the rectangular size and shape of the face candidates found by the
segmentation.� Verification of the solidity of the face candidates.� Nose-eye template matching of the face candidates.� Fitting of an ellipse around the face candidates.

First, experiments are made on each of the face verification methods to find the optimal
threshold values to use. Furthermore, we will identify how many false negatives and false
positives that are made using these thresholds. Afterwards, we will do experiments where
we combine the methods to see if they together can make betterresults than alone.

To compare the computation time of the methods we have measured the average compu-
tation time of each. This has been done on the same computer aswas used for the focus
of attention experiments in Section 7.2.

7.3.1 Experiments Description

To experiment on the preprocessing methods we use the same videos (V8-V10) as we
used for the focus of attention experiments. By using the same videos we want to find
out, whether the use of preprocessing (i.e. erosion and dilation) can increase the distance



between the average skin-colour likelihoods in the face andimage areas. Afterwards, we
will use the result of the experiment on the preprocessing methods to choose a threshold
value. This value will be used when the preprocessed likelihood image is converted into
a binary image.

In the rest of the face verification experiments, we use the videos V3, V8, and V14 (all
described in Appendix D). V3 has a fixed CCT of 3680K and peoplewalking around
in the background, V8 has changing CCTs of 2600K, 3680K, 4700K, and 6200K, and
V14 has a fixed CCT of 3680K and little movement. Using these videos we hope that the
experiments will be able to tell how the methods perform in different environments.

In each of the videos we have defined the face area as rectangleof fixed position and
size. We have made these areas large enough to endure small movements of the faces
(see Figure 7.6). To be able to measure the efficiency of the methods, we count the
number offalse positivesand false negatives. False positives are face candidates which
are classified as faces but really are something else. False negatives are face candidates
which are classified as non faces but really are faces. Face candidates covering 50% or
more (this value has been chosen based on empirical investigations) of a face area should
be classified as faces. A good result is achieved when the number of false positives and
negatives are close to 0.

(a) V3 (b) V8 (c) V14

Figure 7.6: The Face Areas: For each of the videos V3, V8, and V14 we have defined the area where the
face should be found. These are indicated by the green rectangles in Figures (a)-(c).

To measure the percentage of false negatives and false positives, we use the outcome of
the segmentation method as reference. This means that we have chosen to rely on the
segmentation and not ground truth. For each segmentation ofan image, we count the
number of face candidates which cover the face areas. Addingthe numbers together for
all the images in a video, gives a sum which is equal to 100% true positives (i.e. faces
that are actually verified as faces). To find the percentage offalse negatives for a method,
we use Equation 7.6. In thisSTP is the sum of true positives found by the segmentation
method, andMTP the sum of true positives found by a face verification method.FN = 1� MTPSTP (7.6)

The number of false positives found by the segmentation method is equal to 100% false
positives. To calculate the number of false positives made by a face verification method,
we use Equation 7.7. In thisSFP is the number of false positives found by the seg-
mentation method, andMFP the number of false positives found by a face verification
method.



FP = MFPSFP (7.7)

7.3.2 Preprocessing and Segmentation

We want to find out whether the use of erosion and dilation can increase the distance
between the average likelihood in the face and background area. The best result made
in Section 7.2 is used as reference. This was the use of the weighted Gaussian method
with moment constraints. In Figure 7.7 the results achievedwhen adding preprocessing
(the 8-connected neighbourhood of each pixel was used for erosion and dilation) to the
likelihood images of the weighted Gaussian method can be seen. The figure illustrates
the average likelihood in the face area in V8. We have tried touse 3 different combina-
tions of erosion and dilation. It should be clear that using these methods increases the
average likelihood in the face area. At the same time, they domore or less not raise the
average likelihood in the background area. In Table 7.8 the distances between the aver-
age likelihood in the face and background area can be seen. Using erosion and dilation
clearly increases this distance for both V8, V9, and V10. Thecomputation time used on
the preprocessing methods was in average about 5ms per image. The average computa-
tion time for the weighted Gaussian method was measured to 34.7ms in Table 7.4. We
therefore think that the increase in distance between the average likelihoods in the face
and background areas outweighs the increase in computationtime.
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Figure 7.7: Average Likelihood when using Preprocessing: Preprocessing the likelihood image by using
erosion and dilation increases the average likelihood in the face area.

We decide to use the combination of1� erosion and6� dilation for the rest of the face
verification experiments. To find the threshold value to use when converting the likeli-
hood image to a binary image, we look at Figure 7.8. In this we have plotted the average
likelihoods of the face and background areas for each image in V8. Looking at this, a rea-
sonable threshold value would be around 0.40 (indicated by the dotted line). Here most of
the average face area likelihoods are above the line (exceptfor a couple of places, where
the change in CCT was to large for the system to follow). All the average background
area likelihoods are below the threshold and it should therefore be possible to make a



Video No. 0�E and 0�D 1�E and 4�D 1�E and 5�D 1�E and 6�D
V8 0.299 0.408 0.456 0.497
V9 0.350 0.535 0.586 0.631
V10 0.375 0.548 0.606 0.653
Average 0.341 0.497 0.549 0.594

Table 7.8: Average Likelihood Distance when using Preprocessing: Thetable illustrates the distances be-
tween the average likelihood in the face and background areas. By using combinations of erosion
and dilation this distance can be increased significantly. The lettersE andD are short for Erosion
and Dilation.

good distinction between the face and the rest of the image. We therefore decide to use a
threshold value of 0.40 for the rest of the face verification experiments.
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Figure 7.8: Choosing a Threshold Value: The figure illustrates the average likelihoods in the face and back-
ground areas. Using a threshold value just below most of the average likelihoods in the face
area, should make it possible to make a good distinction between the face and the rest of the
image.

7.3.3 Rectangular Size and Shape

We have decided to experiment on this method using the valuesin Table 7.9 to constrain
the rectangular size and shape of the face candidates. Thesevalues should be suitable
for the resolution of the images we use in this project (320 � 240 pixels). If images of
different resolution are used the minimum and maximum widthand height would have
to be adjusted. MinRelation and MaxRelation indicates the minimum and maximum
relation between the widths and heights of the rectangles.

The result of using the rectangular size and shape method on V3, V8, and V14 can been
seen in Table 7.10. It should be noted that though the method is very simple (and fast –
the average computation time could not be measured with the method we used, i.e. it was
less than 1ms), it is capable of removing almost 70% of the false positives in average.
At the same time almost no false negatives are made, so using the method as an initial
rough filter, before using more advanced and computational demanding methods, should
be wise. The number of false positives seems to increase withthe amount of motion in



Parameter Name Parameter Value
MinWidth 20 pixels
MaxWidth 100 pixels
MinHeight 20 pixels
MaxHeight 100 pixels
MinRelation 0.6
MaxRelation 2.0

Table 7.9: Rectangle Method Parameters: The table illustrates the values we have chosen to use for the
parameters in the rectangle method experiments.

the images. I.e. in V3 we have two people doing hand-raises and a third walking around
in the background, and in V14 two persons are doing very few hand-raises and are nearly
not moving. The first gives reason to more than 50% of false positives and the second
only around 12%.

Video No. False Negatives False Positives
V3 0.1% 52.1%
V8 1.2% 31.0%
V14 0.4% 11.9%
Average 0.6% 31.7%

Table 7.10: Rectangle Method Results: Although the rectangle method issimple and fast it removes almost
70% of the false positives. At the same time, the amount of false negatives is less than 1%.
Using the method as an initial rough filter should therefore be wise.

7.3.4 Solidity

To find out what the solidity of faces are, we have calculated it for the fixed face areas in
V3, V8, and V14 using the likelihoods in the preprocessed likelihood image. The result
of this is illustrated in Figure 7.9 (only 525 images from each video have been used to
make the figure easier to read). In the same figure we have illustrated the average solidity
of all other face candidates, found by the segmentation method (i.e. the false positives).
Using the two threshold values illustrated in the figure should make it possible to remove
most of the non faces.

Based on the values in Figure 7.9, we choose to use a lower threshold of 0.35 and an upper
threshold of 0.9 for the next solidity method experiment. I.e. only face candidates with
a solidity between 0.35 and 0.9 are verified as faces. In Table7.11 the amount of false
positives and false negatives for the solidity method is illustrated. The average number of
false positives is higher than when using the rectangle filter. Still, the solidity method is
capable of removing almost half of the false positives and atthe same time the amount of
false negatives is kept below 3%. Its average computation time was 1.5ms, so it is also
slightly more computational demanding than the rectangle method.

7.3.5 Nose-Eye Template Matching

To experiment on the efficiency of nose-eye template matching, we will first investigate
how similar the faces in the face areas are to the average nose-eye template. By doing this
we will find the threshold, which should be used to determine whether a face candidate
is similar to the template or not. The template we use is made as an average of 15 cut-
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Figure 7.9: Finding Solidity Thresholds: Looking at the figure it can be seen that the solidity of most faces
is between 0.35 and 0.9. The solidity of the false positives tend to be above 0.9 and these objects
can therefore be removed using a threshold.

Video No. False Negatives False Positives
V3 2.2% 64.7%
V8 0.8% 50.3%
V14 4.6% 31.7%
Average 2.5% 48.9%

Table 7.11: Solidity Method Results: Using the solidity method more than half of the false positives can be
removed. At the same time the amount of false negatives is kept at a minimum of 2.5%.

outs of the nose-eye area of upright faces randomly chosen from the videos described in
Appendix D. The number of layers in the image pyramid is fixed at 6, going in intervals
of 10% from 100% to 50% of the size of the width and height of theinput image. To
match a face candidate with the template, we have used the zero mean normalized cross
correlation method (described in Section 3.5.2 on page 31).

In Figure 7.10 the similarities between the face areas and the template can be seen (a
similarity of 1 is a perfect match). In the same figure we have illustrated the similarities
for the false positives in V3, V8, and V14. From this we conclude, that most of the faces
areas have a higher similarity with the template than the false positives. Looking at the
figure it seems reasonable to place the threshold around 0.67(indicated by the dashed
line).

In Table 7.12 the number of false negatives and false positives when using template
matching and a threshold of 0.67 are shown. It can be noted, that the number of false
negatives is higher than when using the rectangle or solidity method. This is most likely
because we use a template for upright faces, and therefore not are capable of recognizing
the faces when they are rotated. Finally, we want to stress that the template matching
method is rather computational demanding. Its average computation time was 122ms
which is more than 60 times slower than the rectangle and solidity methods together. Us-
ing the rectangle and solidity methods in advance could probably remove a lot of uninter-
esting objects, and thereby decrease computation time of the template matching method.
We will investigate this in Section 7.3.7.
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Figure 7.10: Finding the Template Matching Threshold: Looking at the figure it can be seen that the face
areas in most cases have a similarity with the template of more than 0.67. At the same time the
false positives do mostly have a lower similarity. Therefore, we will use a threshold of 0.67.

Video No. False Negatives False Positives
V3 13.0% 62.8%
V8 2.5% 33.5%
V14 5.2% 20.0%
Average 6.9% 38.8%

Table 7.12: Template Matching Method Results: Using the template method with a threshold of 0.67, more
than 60% of the false positives generated by the segmentation method are removed. The number
of false negatives is higher than when using the rectangle orsolidity method. This is probably
because of faces being rotated.

7.3.6 Ellipse Fitting

In Section 3.6 on page 32 we described two ways of measuring the fit of an ellipse by
calculating the average gradient in its perimeter. These were best fit (BF) and first fit
(FF). To find out what the highest, average gradients of ellipses placed around faces are,
we have used the BF method. We made a gradient image from the intensity image of the
input image, and calculated the best fitting ellipses aroundthe face areas in V3, V8, V14.
The result of this is illustrated in Figure 7.11, where we also have plotted the average
gradients of the false positives in the videos. The face areas mostly have an average
gradient of more than 0.4, and the false positives are mostlybelow this value. Therefore
we choose to use a threshold of 0.4 in the following experiment to determine whether a
face candidate should be verified as a face or not.

In Table 7.13 the numbers of false positives and false negatives when using the BF and
FF methods can be seen. They are close to the same, so which method to use should not
matter that much. The average computation time of the BF method was 32ms per image.
Using the FF method the computation time was only 28ms per image. Based on this, we
choose to use the BF method for the rest of the face verification experiments.
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Figure 7.11: Finding the Ellipse Fitting Threshold: Looking at the figureit can be seen that the face areas
in most cases have a best fitting ellipse with an average perimeter gradient of more than 0.4.
Other objects (false positives) are mostly below this value.

Video No. BF FN FF FN BF FP FF FP
V3 3.4% 3.0% 38.6% 40.0%
V8 13.6% 13.4% 23.0% 24.1%
V14 5.5% 5.4% 21.2% 22.2%
Average 7.5% 7.3% 27.6% 28.8%

Table 7.13: Ellipse Fitting Method Results: Using the best fit (BF) or thefirst fit (FF) method gives more or
less the same results. Since the FF is computational fastest, we choose to use that. FN means
false negatives and FP false positives.

7.3.7 Combining the Methods

In this final section of face verification experiments, we will investigate whether the meth-
ods in combination can achieve better results than individually. In Table 7.14 we have
compared the result made by each of the methods individuallyand the result when com-
bining them all serially (the serial combination is explained in Section 6.4). It should be
clear that by combining the methods, we get a significant better result. The number of
false negatives is only just above 10%, and the average computation time is also lower
than when using only template matching. The computation time gets shorter, because the
first simple methods remove face candidates, that are very dissimilar to faces. In this way,
the template matching method is made on fewer face candidates.

Method(s) False Negatives False Positives Computation Time
Rectangle 0.6% 31.7% <1ms
Solidity 2.5% 48.9% 1-2ms
Template Matching 6.9% 38.8% 122ms
Ellipse Fitting 7.3% 28.8% 28ms
Serial Combination of All 15.8% 10.7% 105ms

Table 7.14: Combining Methods: By combining the face verification methods it is possible to shorten the
computation time compared to when using only template matching. Furthermore, the number
of false negatives gets down to 10.7%.



The number of false negatives rises when combining the methods. However, as also
explained in Section 3.1 on page 23, it is much more importantto have few false positives
than having few false negatives. This is because the face candidates that are verified as
faces are used to start new trackers, which changes the areasused to search for hand-
raises (we refer the reader to Chapter 5 for more about hand-raise detection). A non face
object that is verified as a face, could therefore be cause of hand-raises being missed by
the system. To avoid this, we need to make sure that the face verification methods are
strict enough to only verify objects that actually looks like faces as faces. The 10.7% of
false positives achieved by combining the face verificationmethods is still too large – i.e.
in average it would mean, that approximately 1.25 non face objects would be verified as
faces every second (with a frame rate of 12.5 Hz).

To lower the number of false positives, we have tried to use more strict threshold and
parameter values for the face verification methods. These new values can be seen in
Table 7.15, where we also have illustrated the old values that were used to create the
results in Table 7.14. Furthermore, we have constrained thesize of the area in the images
in which we search for face candidates. We think that this is areasonable constraint to
make, since the faces of people sitting down normally will besituated around the center
of the image. Defining this area before the start of every video conference should not be
a large overhead to the use of the system. In Figure 7.12 we have illustrated the areas in
V3, V8, and V14 in which we look for face candidates.

Parameter/Threshold Old Value New Value
Rectangle MinWidth 20 pixels 20 pixels
Rectangle MaxWidth 100 pixels 50 pixels
Rectangle MinHeight 20 pixels 20 pixels
Rectangle MaxHeight 100 pixels 60 pixels
Rectangle MinRelation 0.6 1.0
Rectangle MaxRelation 2.0 1.5
Solidity Lower Threshold 0.35 0.45
Solidity Upper Threshold 0.90 0.90
Template Matching Threshold 0.67 0.70
Ellipse Fitting Threshold 0.4 0.5

Table 7.15: New Threshold and Parameter Values: To make the face verification more strict we have chosen
to experiment with a new set of parameters and thresholds values.

(a) V3 (b) V8 (c) V14

Figure 7.12: The Search Areas: For each of the videos V3, V8, and V14 we havedefined the area in which
we want to look for face candidates. These are indicated by the red boxes in (a)-(c).

The result of using these new values on the images in V3, V8, and V14 can be seen
compared to the result of using the old values in Table 7.16 (the results are averages of



the three videos). We now have 0.0%1 false positives, which must be said to be ideal. At
the same time, the number of false negatives has only risen to53.6%, which means that we
in average should be able to find a face within 2-3 images. Since we have a video stream
with 12.5 images per second, the time used to find a face shouldin average be almost
not noticeable. Finally, the computation time is only 67ms per image when using the
new values. This is about 36% faster than the computation achieved when using the old
values. The reason for this is that the rectangle and solidity methods removes more face
candidates when using the new values. Therefore, the template matching method, which
is the most computational demanding method, is applied to much fewer face candidates.

Threshold/Parameter Values False Negatives False Positives Avg. Comp. Time
Old Values 15.8% 10.7% 105ms
New Values 53.6% 0.0% 67ms

Table 7.16: Using Stricter Threshold and Parameter Values: Using stricter constraints in the face verification
methods, makes it possible to have 0.0% false positives. At the same time only about half of
the valid faces are verified as non faces. It should thereforebe possible to find a face within 2-3
images.

7.4 Face Tracking Experiments

In this section, experiments done to evaluate the performance of the tracking algorithm
and the tracker manager are described. First, suitable parameters for the system are cho-
sen in Sections 7.4.1–7.4.3. In Section 7.4.4 it is determined how accurately the face
tracker is able to track the face in the presence of clutter and occlusions. Then, in Section
7.4.5, the ability of the tracker manager to eliminate trackers started for non-face targets
is examined.

7.4.1 Tracker Manager Parameters

As described in Section 4.6 on page 48, the tracker manager depends on five parameters:� umin – the minimum number of times a tracker must have fitted an ellipse to the
object tracked.� �max – the maximal allowable value of the unstability measure� for a tracker. If� > �max, the tracker is deleted.� �del – the maximal allowable overlap between the estimates of twotrackers. The
overlap is measured as the ratio between intersection area and union area of the
bounding boxes of the estimated face ellipses.� �upd – the minimum overlap between between a detected face and a trackers esti-
mate for the detected face to be used to update the tracker’s estimate. The overlap
is measured as for�del.

1Actually the number was 0.029%, since we had 2 false positives altogether in the three videos, which
consist of 7003 faces. However, these two false positives were due to one person, which moved his head out
of the fixed positioned face area two times. So what was identified as a false positives, was actually a face
which was outside the face area. We will therefore claim, that it is more correct to say, that we did not have
any false positives at all.



� �time – the maximum number of time steps (frames) that is allowed topass without
the tracker’s estimate being updated (with either the result of Mean Shift and ellipse
fitting, or a detected face).

As discussed in Chapter 4, the purpose ofumin is to ensure that new trackers – that may
have been created due to false positives from the face detection – do not affect the width
of the hand-raise ROI belonging to the tracker to the right. Only when the system has
been tracking an object for a while, the object will be accepted as being a face, as it then
will be more likely that it actually is a face (because it has been verified several times that
the shape is elliptic). Moreover, it is also used to allow theunstability measure� for a
tracker to be large in the beginning. We have setumin = 12 in the following experiments.
This value ensures that at least a second will pass before theobject is accepted as a face,
and it seems to provide sufficient time for the unstability measure to drop to a “safe” level
(i.e. less than�max).

In Section 7.4.5, a reasonable value for�max is determined for the purpose of eliminat-
ing trackers caused by false positives from the face detection. In Sections 7.4.3–7.4.4 a
“large” �max has been used to avoid that trackers tracking faces were deleted.

Since the faces of the persons participating in a video conference are unlikely to overlap,
the threshold�del has been set to 0.05. Overlap of the tracker estimates is veryrare in the
videos that we use, and is always caused by false positives from the face detection.�upd = 0:5 appears to be a reasonable degree of overlap to require. It has been verified
that this will usually result in the detected face to be used for updating the tracker’s
estimate. This value should not be set too low, as it then can happen that a false positive
from the face detection is used to update the tracker.

The time that is allowed to pass for a tracker without Mean Shift and ellipse fitting pro-
ducing any measurements for the Kalman filter, or the face detection supplying any mea-
surements, has been set to�time = 15. This corresponds to 1.2 seconds. Our preliminary
experiments have shown that this is enough in most cases. As this value is used to delete
a tracker if it was started due to a false positive from the face detection or if it has lost the
face it was tracking, it should not be set higher than necessary to handle occlusions and
temporary maladaptions of the skin-colour detection.

7.4.2 Mean Shift and Ellipse Fitting Parameters

As described in Section 4.5 on page 42, Mean Shift depends on three parameters:� � which controls the size of the search window.� The maximum number of iterations allowed for a single image.� The distance that the search window must move less than for the iterations to end
for the current image (unless the maximum number of iterations has been reached).

We have found that a value for� = 16 results in a search window that usually is large
enough to contain the entire head and perform ellipse fittingon the outline of the head.
If the search window size is increased beyond this size, the risk will be increased that
“noise” such as hand movement in the hand-raise ROI will disturb Mean Shift. Therefore,
we set� = 16.



Usually, Mean Shift only requires one or two iterations to find the center of mass of the
face, see Figure 7.13. Hence, we restrict the number of iterations for Mean Shift to 3. If
the search window has only moved 1 pixel after an iteration ofMean Shift, it is likely that
it will not move if another iteration is done. This is becausethe search window is large
enough to contain the entire face, and if the face is at the border of the search window, it
will move more than 1 pixel. Therefore, we will set the minimum distance that the search
window must move for another iteration to be done to 1.
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Figure 7.13: Mean Shift Iterations Required in V11: These plots show how many iterations the Mean Shift
algorithm performed for each image for each person while tracking the faces of two persons.

Since the face that is being tracked already has been verifiedas a face, we will use a lower
threshold for the ellipse fitting, such that a poorer fit is accepted. This is necessary, as the
rather strict threshold used for face detection often is toohigh. We have found that with a
threshold of 0.2, the ellipse fitting will fit an ellipse to theface in most images. However,
instead of using the first fit approach as described in Section3.6, we will have to use the
best fit, as the low threshold otherwise can result in the ellipse sometimes being fitted to
the background instead of the face.

7.4.3 Kalman Filter Parameters

As described in Section 4.5 on page 42, we use a zeroth order Kalman filter for estimating
the position and size of the face, that is, we predict that theparameters does not change
from one image to the next. In all experiments, the process noise of the Kalman filter has
been fixed to: Q = 244z2 0 00 4z2 00 0 0:25z235 (7.8)

wherez is the scaling constant depending on the distance to the persons (described in
Section 4.5 on page 42). For the videos we use, this constant is z = 1:0 or z = 0:8.
The three non-zero entries inQ correspond to the variances of x position, y position,
and width of the face ellipse, respectively. We found in a previous project [5] using
similar image resolution and slightly higher frame rate that the face on the average moved
approximately one pixel per image in a video conferencing setup. We wish to allow for a



little more movement, hence the variance of4z2 for the position entries. The size of the
face (that is, its projection onto the image plane) is not likely to change very much during
a video conference, but in case the size found by face detection is not accurate, it should
be possible for the estimate of the width of the face to adapt.Therefore, the variance for
the width has been set to0:25z2.

As described in Section 4.5 on page 42, the measurement noiseR = 24r1 0 00 r2 00 0 r335 (7.9)

for the Kalman filter is computed as follows:ri = si(kHH + F 2 + kiz) (7.10)H = ( bln( 
1N1 N1X�=0 MADPt��A ))2 + ( bln( 
1N1 N1X�=0 MADP;Nt��A ))2 (7.11)bln(x) = (ln(x); x > 10; otherwise
(7.12)F = 
2N2PN2�=0 !M;t���Mt��z2 + 
3N3PN3�=0 !�;t����2t��z (7.13)

whereMADP is the zeroth moment of the hand-raise ROI belonging to the face being
tracked andMADP;N is the zeroth moment of the right neighbour hand-raise ROI (if
there is a neighbour to the right in the image).�M is the difference between the zeroth
moment of the Mean Shift search window and a weighted averagefor this value that has
been computed such that recent values are weighted most.��2 is the difference between
the variance for the search window and a similar average value. These averages depend
on a parameter� that controls the speed with which these averages adapt to the current
values.

Thus, there are 8 constants for which reasonable values mustbe determined:si, ki, kH ,kF , N1, N2, N3, and�. The values must ensure that the measurement noise variances
are large when something happens that can cause a bad measurement by Mean Shift and
ellipse fitting, but at the same time, the measurement noise should be low when the mea-
surement done using Mean Shift and ellipse fitting can be expected to be reliable. More-
over, the values must ensure that the measurement noise variances are within reasonable
ranges compared to the process noise.

The events that could cause bad measurements include:� Occlusion of the face, e.g. by a person in the foreground.� Hand-raise gestures by the person being tracked or by his right neighbour in the
image.� Skin-colour movement in the background, e.g. by a person moving in the back-
ground.



� Changing illumination, causing changes in the skin-colourlikelihoods of the face
and the background.

The values presented in Table 7.17 have been determined empirically by adjusting them
to ensure reasonable performance in all of the above cases. That the values are reason-
able has been verified by plotting the measurement noise standard deviation for videos
including the four types of events.s1 ands2 s3 
1 
2 and
3 ki kH N1 N2 N3 �

1 2 32 1 1 25 3 3 3 0.05

Table 7.17: Measurement Noise Parameters.

The plots of measurement noise standard deviation (
pr1) in Figure 7.14 were produced

for video V4, where a person walks back and forth in front of two other persons. The
interesting events in this video are shown in Figure 7.15.
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Figure 7.14: Measurement Noise for Kalman Filter: The plot shows the measurement noise standard de-
viation (

pr1) for each person for each frame in V4. The graph for the personto the left is
plotted with red, while the graph for the person to the right is plotted with blue (see Figure
7.15). The vertical lines indicate when hand-raises were performed (the blue line corresponds
to the person with the blue measurement noise graph).

In Figure 7.16, the two termsF 2 andkH( bln( 
1N1 N1X�=0 MADPt��A ))2
are plotted to illustrate what contribution each of them makes to the measurement noise.
Some of the peaks in Figure 7.16(a) do not coincide with hand-raises (the vertical lines)
– these peaks are caused by the person walking by in the foreground. Note that for the
person to the left (red graphs), both the red and blue graphs in Figure 7.16(a) contribute
to the measurement noise (see Equation 7.11). The peaks in Figure 7.16(b) all coincide
with the occlusions due to the person in the foreground. As itcan be seen from the ADP
in Figure 7.17, temporary occlusion may cause the system to adapt to the colour of the
occluding object. This results in noise in the ADP if the adaption cause an increase in the
skin-colour likelihoods for the background pixels. As thisincreases the zeroth moment
of the hand-raise ROI, it will contribute to the measurementnoise. This will only happen



(a) Image 5 (b) Image 27 (c) Image 101 (d) Image 129

(e) Image 186 (f) Image 204 (g) Image 300 (h) Image 410

Figure 7.15: Events in V4: First, both persons raise their hands and take them down. Then the person to
the left raise his hand. While the hand is raised, another person walks by in the foreground,
temporarily occluding each of the persons. Then the person to the left takes down his hand
(around image 150). The person to the right raises his hand, and a person walks by in the
foreground. He takes down his hand around image 230. The person in the foreground then
walks back and forth one time more.
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(a) Hand-Raise ROI Log Zeroth Moment
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(b) Face Search Window Moment Changes

Figure 7.16: Terms Contributing to the Measurement Noise for V4: The red graphs are for the person to the
left in the image in Figure 7.15 and the blue graphs for the person to the right. The vertical
lines indicate when hand-raises occur.

if the occluding object has a colour that under some kind of normal illumination could
have been the colour of skin.

As the plots for video V4 in Figure 7.14 show, the measurementnoise will become large
compared to the process noise when a hand is raised and when the face becomes occluded.
To verify that the measurement noise also becomes large whena person is moving in the
background, similar plots have been made for image video V6.In this video, two persons
are making hand-raises while a third person is moving and writing on a blackboard in the
background. This is illustrated with the images in Figure 7.19. Note the low contribution
from the face region in Figure 7.20(b), compared to the contribution when the face be-
comes occluded in Figure 7.16(b). From image 40, where the person in the background



(a) Image 864 (b) Image 864 ADP

Figure 7.17: Skin-Colour False Positives after Occlusion: If the face being tracked is occluded for so long
that the tracker adapts to the colours of the object occluding the face, the re-adaption to the
colours of the face when the occlusion ends may cause a lot of noise in the ADP, as it can be
seen in (b).
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Figure 7.18: Measurement Noise for Kalman Filter: The plot shows the measurement noise standard de-
viation for each person for each frame in V6. The graph for theperson to the left is plotted
with red, while the graph for the person to the right is plotted with blue (see Figure 7.19). The
vertical lines indicate when hand-raises were performed.

enters the hand-raise ROI of the person to the right, to image300 where he leaves, the
measurement noise in Figure 7.18 is relatively high betweenhand-raises. After he has
left, the measurement noise between hand-raises becomes low.

The measurement noise should also be increased when changesin illumination occur,
as these can result in false positives that can confuse the tracker. That this indeed does
happen can be seen in Figure 7.21(a), which shows the changesin F 2 as the illumination
colour changes three times. Each change result in a peak in the plot forF 2, this resulting
in an increased measurement noise. As it can be seen from Figure 7.21(b), each type of
illumination has it own averages. This confirms that when computing the average, the
recent values should be weighted significantly higher than old values.

7.4.4 Tracker Accuracy Test

The tracking ability of the tracking algorithm – Mean Shift,ellipse fitting, and Kalman
filter – has been evaluated for videos V1–V16, using the parameters described in the
previous sections. This has been done by observing in which situations the tracker’s



(a) Image 30 (b) Image 46 (c) Image 106 (d) Image 172

(e) Image 243 (f) Image 320 (g) Image 389 (h) Image 456

Figure 7.19: Events in V6: Two persons make hand-raise gestures while a third writes on a blackboard in
the background.
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(b) Face Search Window Moment Changes

Figure 7.20: Terms Contributing to the Measurement Noise for V6: The red graphs are for the person to the
left in the image in Figure 7.15 and the blue graphs for the person to the right. The vertical
lines indicate when hand-raises occur.

estimate deviates significantly from the center and size of the face. We consider the
deviation significant, when the tracker’s estimate is outside the border of the face.

In general, there is no problem tracking the face in the absence of occlusion, clutter,
changes in illumination, and fast face movement. In fact, inmost cases of occlusion and
clutter, and in all cases of illumination change, the tracker’s estimate does not deviate
significantly from the center and size of the face, and even ifit does, it will readjust to the
correct center and size within a few seconds. The images in Figure 7.22 illustrate a small
selection of situations that are handled well by the tracker.

In some cases where the face is occluded by a person walking byin the foreground, the
tracker’s estimate will move away from the center of the facewhile the face is occluded,
because the center of mass of the skin-colour likelihood image moves. In all cases it
has moved back when the occlusion ended. This is illustratedin Figure 7.23. The same
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(a) Face Search Window Moment Changes
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Figure 7.21: Moment Changes during Change of Illumination: The plot in (a) shows the deviation from the
average value forF 2. The three peaks correspond to changes in illumination colour from white
(3680 K) to yellow (2600 K), yellow to blue (6200 K), and blue to “less blue” (4700 K). The
vertical blue lines indicate when hand-raises occur. The graphs in (b) show what the average
moments are. The dotted line is the variance, the other is thezeroth moment.

(a) V2 Image 107 (b) V2 Image 263 (c) V11 Image 510 (d) V12 Image 49

(e) V12 Image 329 (f) V13 Image 884 (g) V15 Image 500 (h) V15 Image 564

Figure 7.22: Examples of Clutter and Occlusion: These images are a few examples of the many cases,
where the tracker handled clutter and occlusion well. The red dots are thea posterioriposition
estimates. The boxes are the Mean Shift search windows afterthe last iteration for the image.
The number to the left below the search window is the unstability measure�, and the number
to the right is the measurement noise standard deviation.

thing sometimes happens when the illumination changes, as illustrated in Figure 7.24.
This happens because the skin-colour detection generates too high likelihoods for the
background pixels.

Fast movement of the face is handled less well by the tracker.If the face moves fast,
it may move outside the Mean Shift search window, which is centered at the estimated
position from the Kalman filter. If this happens, the Mean Shift algorithm will not be able
to center the search window at the face. A situation where this happens is illustrated in
Figure 7.25, where the tracker looses the face and is eliminated because it cannot find any
ellipses in the background.



(a) t = 0 sec. (b) t = 1.1 sec.

Figure 7.23: Tracker Estimate during Occlusion in V4: During an occlusion, the estimate of the tracker (red
dot) moves away from the center of the face, but returns in 1.1second when the occlusion has
ended.

(a) t = 0 sec. (b) t = 1.8 sec. (c) t = 7.8 sec.

(d) t = 0 sec. (e) t = 5.6 sec.

Figure 7.24: Tracker Estimate during Illumination Change in V8 and V9: During change in the illumination,
the tracker’s estimate (red dot) moves away from the center of the face, but as the skin-colour
detection adapts to the new illumination, the estimate moves back.

The face movement also results in an increased measurement noise. This means that the
use of the Kalman filter’s estimate as the initial center of the search window for each
frame will cause the distance between the face and the tracker’s estimate of the position
to become larger for each frame, eventually causing the tracker to loose the face.2

In conclusion, the proposed face tracking scheme appears towork quite well for the
videos we have used, although fast face movement can cause problems. However, fast
face movement is not likely to happen when the person is seated and wish to get the at-
tention of the system, but rather when the person is leaving.Therefore, it is acceptable
that the face is lost in such cases.

2If the Mean Shift algorithm was used alone, perhaps it would be able to track the face, as the position
found by Mean Shift in the previous image would be used as the initial center in the current image. However,
without the Kalman filter the tracker would be more vulnerable to occlusion and clutter. Perhaps the tracker
could be made to handle this situation, if it used both the previous center found by Mean Shift as well as
the estimate from the Kalman filter as initial positions for Mean Shift for the current image. Of the two
positions found by Mean Shift, the position where ellipse fitting is most successful could then be used as the
new measurement for the Kalman filter.



(a) t = 0 sec. (b) t = 2.9 sec. (c) t = 4.3 sec.

Figure 7.25: Trackers Estimate during Movement in V15: During the somewhat exaggerated movement,
the tracker looses the face because the distance between theface and the tracker’s estimate of
its position becomes to large.

7.4.5 Elimination of Trackers for Non-Face Objects

Trackers that are tracking non-face objects are eliminatedusing the two thresholds�time
and�max. �time limits the number of time steps that a tracker can “survive” without an
ellipse being successfully fitted to the object it is tracking. �max limits the average amount
of jitter that is allowed for the measurements.

Figure 7.26(a) shows the ellipse fitting score for the two trackers tracking the faces in
V4. This video was described in Section 7.4.3. The four dropsin the score coincide with
the occlusions by the person walking by in the foreground. The ellipse fitting threshold
of 0.2 that we use corresponds to a score of 51 in the figure. As it can be seen from the
figure, the score drops below this level during the occlusions (as one would expect). For
images where the ellipse fitting score is below the threshold, the measurement is not used
to update the tracker’s estimate.�time should therefore be chosen to be at least as large as
the longest amount of time that the ellipse fitting score is below the threshold, unless it is
acceptable that the tracker looses the face during the occlusion.

On the other hand,�time should be as small as possible, since it is used to eliminate
trackers caused by false positives. In Figure 7.27(a), the black curve is the ellipse fitting
score for a hand, for which a tracker was started due to a falsepositive from the face
detection. The score quickly drops to a low level when the hand is taken down and the
tracker looses it, as the background does not resemble an ellipse. The same thing can be
seen in Figure 7.28(a). Thus, it appears that trackers for false positives caused by hands
can be eliminated by limiting�time. However, as long as the hand is raised, the ellipse
fitting score may be above the threshold, and therefore the hand may be considered a face
by the system. To reduce the risk that this happens,umin – the minimum number of times
that the tracker’s estimate must be updated before the object it is tracking is considered a
face – can be set to a “high” value, although this would mean that the video conference
participants would have to wait for, perhaps, several seconds before their hand-raises will
be detected.

The computation of the unstability measure depends on a parametera (see Equation 4.16
on page 47), that controls to which degree the past influence the current value of the
unstability measure. We use the valuea = 0:2, which has been determined empirically.

From the unstability plots in Figures 7.26(b)–7.28(b), it can be seen that the unstability
measure is high for the false positives compared to the unstability measures for faces,
except when the persons are entering and leaving. Unless it is accepted that the faces are
lost during occlusions,�max must be at least as high as the peaks in Figure 7.26(b), i.e.
approximately 40. This value of�max will also allow the trackers for faces in Figures
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Figure 7.26: Ellipse Fitting Score and Unstability Measure for V4: The ellipse fitting score for each of the
two faces being tracked in V4 drops as the face becomes occluded. At the same time, the
unstability measure increases.
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Figure 7.27: Ellipse Fitting Score and Unstability Measure for V5: The blue and red graphs correspond to
trackers tracking faces, while the black graphs correspondto a tracker created for a hand due
to a false positive from the face detection.

7.27(b)–7.28(b) to survive, except when the persons are leaving in Figure 7.27(b), though
it may be necessary to lower the initial value of the unstability measure for trackers.
However, the hands have a higher unstability measure some ofthe time, and will thus be
deleted.

In Figure 7.29, the ellipse fitting score and unstability measure can be seen for V19. In
V19, only one of the faces is detected. The black curves are for trackers due to false
positives. The ellipse fitting score only drop to a sufficiently low level for one of the false
positives. This false positive was caused by a hand. The other false positives are caused
by other objects in the image, see Figure 7.30, and they all get a relatively high ellipse
fitting score. Some of them can be eliminated with a�max of 40. However, it appears that
not all trackers for false positives can be eliminated using�max and�time without at the
same time causing trackers for faces to be deleted.

In conclusion, the method used for eliminating trackers fornon-face trackers is only suf-
ficient for eliminating trackers started for a hand while it is being raised or taken down.
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Figure 7.28: Ellipse Fitting Score and Unstability Measure for V6: The blue and red graphs correspond to
trackers tracking faces, while the black graphs correspondto a tracker created for a hand due
to a false positive from the face detection.
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Figure 7.29: Ellipse Fitting Score and Unstability Measure for V19: The blue curve is for a tracker tracking
a face, while the black curves are for trackers created for false positives from the face detection.

(a) Image 63 (b) Image 433 (c) Image 465

Figure 7.30: False Positives from Face Detection in V19: The tracker for the false positive in (a) moves
towards the face and is deleted as the estimates of the two trackers overlap, but later a new
false positive appears in the same place. Two other false positives appear on the wall and on a
raised hand.

More information will be needed to eliminate trackers started for other types of objects.



7.5 Hand-Raise Detection Experiments

In this section, we describe experiments done to evaluate the ability of the system to detect
hand-raise gestures, and to discriminate between hand-raise gestures and other types of
events. Both of the Naive Bayesian Classifiers (NBCs) described in Chapter 5 are tested
using several different combinations of parameters for thehand-raise detection.

7.5.1 Experiments Description

The hand-raise detection has been tested on V4, V6, V8–V10, and V12-V16. These
videos cover illumination change, clutter, and occlusions, as well as valid hand-raise
gestures. The performance is measured by the number of falsepositives and the number
of false negatives. Here, afalse positiveis the detection of a hand-raise gesture when a
hand-raise has not occurred, and can be caused by noise in thehand-raise ROI ADP. A
false negativeis when the system does not detect a hand-raise gesture even though it was
performed. Ideally, both these numbers should be zero. However, as the experiments will
show, this cannot be archived with the current system. Therefore, we attempt to find some
sets of parameters for the hand-raise detection that provide reasonable trade-offs between
these two performance measures.

The parameters that are examined for the hand-raise detection are:� The amount of upward movement in the skin-colour likelihoodimages that must
occur for something classified as a hand-raise by the NBC to beconsidered a hand-
raise by the system.� The number of times in a row that a hand-raise must be detected, before the system
redirects the attention (i.e. camera) to the person that hasraised his hand.

Summarizing from Chapter 5 on page 51, if the NBC classifies a blob in the ADP as a
hand-raise, a score based on the shift in skin-colour likelihood center of mass inside in the
bounding box of the blob is computed. The previousN likelihood images are considered.
If the vertical shift from one image to the next is greater than�Y and is directed upwards,
a counteru is incremented. If it is greater then�Y and directed downwards, a counterd
is incremented. When all of theN images have been considered, the score is computed
as(u� d)=N . This results in a number between -1 and 1.

If this score exceeds a thresholds
oremin, a hand-raise counterr is incremented. At the
same time, a timer is reset. This timer is incremented for each image, and if it exceeds
a thresholdT , r is set to 0. Ifr reaches a thresholdrmin, the system will assume that a
hand-raise has occurred. Thus,rmin blobs must be classified as hand-raises by the NBC
with no more thanT images between the blobs for a hand-raise to be detected.

For practical reasons, we have chosen to fix the values ofN andT , and only experiment
with �Y , s
oremin, andrmin. T has been set to 10, corresponding to 0.8 second. This
threshold is rarely, if ever, exceeded in the videos we use, but appears to be small enough
to avoid that blobs that are not caused by hand-raises are grouped with blobs that are
caused by hand-raises. This must be avoided as one of the performance measures is false
positives.N has been set to 9, since the ADP is based on 9 likelihood images. With this choice ofN , one end of the blob will, when the hand is being raised or taken down, correspond to



the position of the hand in the current image, and the other end of the blob will correspond
to the position of the hand 9 images ago. The number of images used for the ADP cannot
be changed without estimating new pdfs for the NBCs, which would require much work.
Therefore, we will not experiment with this number.

The experiments have been done by counting the numbers of false positives and false
negatives for different combinations of values for�Y , s
oremin, andrmin. This has
been done for both of the NBCs. For brevity, we will refer to the NBC in Figure 5.3 on
page 56, which use a position attribute and a size attribute,as NBC1, and the NBC in
Figure 5.4, which split each of these attributes in 2 and instead use x position, y position,
area, and height/width-ratio attributes, as NBC2.

The videos have been divided into different groups, depending on the type of events that
they contain. These groups are:� Videos containing mostly valid hand-raises.� Videos containing valid hand-raises, but also hand-movements that are not valid

hand-raises, as well as persons walking by in the backgroundand foreground.� Videos containing valid hand-raises and illumination changes.

Images from the videos can be found in Appendix D on page 145.

Below, a section for each of these groups can be found, where data illustrating the per-
formance of the hand-raise detection for each group is presented. Afterwards, data to
illustrate the performance for the entire set of videos is presented.

7.5.2 Valid Hand-Raises

The videos V14–V16 contain mostly valid hand-raises, all performed with bare arms.
The total number of hand-raises in these videos is 37.

In Figure 7.31, the hand-raise counterr is plotted for fixed values of�Y ands
oremin.
It is indicated with vertical dotted lines when hand-raisesoccur (this has been manually
recorded). As it can be seen from the figure,r is often high when hand-raises occur,
but sometimesr is non-zero when a hand-raise is not occurring and sometimesr is zero
even though a hand-raise does occur. The effect ofrmin is that of thresholding the graph.
When doing the thresholding, a trade-off is made between thenumber of false positives
and false negatives. This can be seen from the bar graphs in Figure 7.32, where the
numbers of false positives and false negatives are shown fordifferent combination of the
parametersrmin ands
oremin and a fixed�Y . (The graphs for other values of�Y show
a similar dependency on the parameters.)

From these histograms, it appears that when�Y = 3 reasonable values forrmin are in
the range 1–4 and fors
oremin in the range 0.3–0.5, as both the number of false positives
and the number of false negatives are low for these parameter-ranges.

Based on histograms as those in Figure 7.32, the plots in Figure 7.33 have been produced.
This has been done by, for each set of parameter-pairs that correspond to a particular
number of false positives, finding the numbers of false negatives that correspond to these
parameter-pairs. Thus, pairs consisting of a number of false positives and a number of
false negatives are produced. The locations of these pairs are shown with diamonds in
the figure. The graphs in Figure 7.33 show how low a number of false negatives one can
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Figure 7.31: Hand-Raises in V14–V16: The black dotted lines indicate when hand-raises occur. The ma-
genta lines indicate when one video ends and another starts.The number at the top indicates
which video that starts at that line. Some of the videos are included two times, because they
contain two persons; that is, there is a section for each person. The blue graph is the value of
the hand-raise counter. This graph has been produced fors
oremin = 0:4 and�Y = 3 using
NBC1.
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Figure 7.32: False Positives and Negatives for V14–V16: The histograms shows the frequencies of different
combinations of parametersrmin ands
oremin in the sets of false positives and false negatives
for �Y = 3. The numbers on the vertical axes have been normalized by dividing with the
number of hand-raises.

achieve for this particular set of videos if a particular number of false positives is accepted
and the value of�Y fixed.

As one would expect, the number of false negatives falls as the number of false positives
grows. The number of false negatives in general appears to besmaller for NBC1 than for
NBC2, but the number of false positives larger. During the experiments, it was observed
that NBC1 tended to classify far too many events as hand-raises, while NBC2 performed



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives

F
al

se
 N

eg
at

iv
es

dy=1
dy=3
dy=5

(a) NBC1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives

F
al

se
 N

eg
at

iv
es

dy=1
dy=3
dy=5

(b) NBC2

Figure 7.33: False Negatives vs. False Positives for V14–V16: The graphsshow the minimum number of
false negatives that occurs for a particular number of falsepositives, while the diamonds show
all the numbers of false negatives that occur for this numberof false positives. The numbers
on the axes have been normalized by dividing with the number of hand-raises.

better in this respect. This may be the cause of the difference, as an increase in the number
of hand-raise candidates will be followed by an increase in the number of false positives,
unless the subsequent hand-raise verification discards allof the extra candidates. Thus,
the experiments with NBC1 could be considered more a test of the hand-raise verification
that follows the classification with the NBC, than a test of the NBC.

For both of the NBCs in Figure 7.33, diamonds appear near 0, that is, the parameter pairs
that correspond to these diamonds produce relative low numbers of false positives and
negatives. A few of these parameter-pairs are presented in Table 7.18.

NBC �Y rmin s
oremin False Positives False Negatives Distance
abs. % abs. %

1 3 1 0.4 2 5.4 1 2.7 0.06
2 1 1 0.4 1 2.7 3 8.1 0.09
1 5 1 0.3 4 10.8 0 0.0 0.11
1 3 2 0.4 0 0.0 5 13.5 0.14

Table 7.18: Hand-Raise Detection Results for V14–V16: The numbers of false positives and negatives are
listed together with the parameters that were used to produce them. The false positives and
negatives are expressed both as an absolute number which canbe compared to the total number
of hand-raises in these videos (37), and as a percentage of this number. The distance shown is the
distance from(0; 0) to the diamond corresponding to the set of parameters in Figure 7.33. Note
that several other combinations of parameters can produce results similar to those presented in
this table.

As it can be seen from Table 7.18, it is possible to obtain either no false positives or no
false negatives, but not both at the same time.

7.5.3 Clutter and Occlusion

V4, V6, V12, and V13 contain many examples of clutter and occlusion, as well as valid
hand-raises with both bare and covered arms. These videos have been used to test the
ability of the hand-raise detector to discriminate betweenvalid hand-raises and several
other types of events. Figure 7.34 show where hand-raises occur in these videos. The



total number of hand-raises is 24.
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Figure 7.34: Hand-Raises in V4, V6, and V12–V13: The black dotted lines indicate when hand-raises occur.
The magenta lines indicate when one video ends and another starts. The number at the top
indicates which video that starts at that line. Some of the videos are included two times,
because they contain two persons; that is, there is a sectionfor each person. The blue graph
is the value of the hand-raise counter. This graph has been produced fors
oremin = 0:4 and�Y = 3 using NBC1.

In V4, a person walks back and forth in the foreground two times, occluding the video
conference participants (see Figure 7.15 on page 95). In V6,a person in the background
is writing on a blackboard during most of the video (see Figure 7.19 on page 97). V12
contains mostly hand-movements that are not hand-raises, but also two valid hand-raises
as it can be seen in Figure 7.34. V13 contains valid hand-raises performed while a person
is walking back and forth in the background, and a single occlusion by a person walking
by in the foreground. Six of the hand-raises coincide with the person walking in the
background being inside the hand-raise ROI.

To evaluate the performance, a graph similar to that in Figure 7.35 has been produced.
This graph is shown in Figure 7.35. For some of the diamonds close to 0 in this figure,
the numbers of false positives and negatives are shown together with the corresponding
parameters in Table 7.19.

In spite of the presence of clutter and occlusions, it is possible to obtain no false positives,
but only at the expense of a rather high number of false negatives.

7.5.4 Illumination Changes

V8–V10 each contain several changes of illumination colour, and several valid hand-
raises are performed under different kinds of illuminationand in some cases also while
the illumination is being changed. All hand-raises are donewith covered arms. Figure
7.36 shows when hand-raises occur. The total number of hand-raises is 41, and 13 of the
hand-raises are done during an illumination change.
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Figure 7.35: False Negatives vs. False Positives for V4, V6, and V12–V13:The graphs show the minimum
number of false negatives that occurs for a particular number of false positives, while the
diamonds show all the numbers of false negatives that occur for this number of false positives.
The numbers on the axes have been normalized by dividing withthe number of hand-raises.

NBC �Y rmin s
oremin False Positives False Negatives Distance
abs. % abs. %

2 1 1 0.4 2 8.3 2 8.3 0.12
2 1 1 0.5 1 4.2 6 25.0 0.25
2 1 2 0.4 0 0.0 7 29.2 0.29
1 5 7 0.3 0 0.0 8 33.3 0.33

Table 7.19: Hand-Raise Detection Results for V4, V6, and V12–V13: The numbers of false positives and
negatives are listed together with the parameters that wereused to produce them. The false
positives and negatives are expressed both as an absolute number which can be compared to
the total number of hand-raises in these videos (24), and as apercentage of this number. The
distance shown is the distance from(0; 0) to the diamond corresponding to the set of parameters
in Figure 7.35. Note that several other combinations of parameters can produce results similar
to those presented in this table.

Figure 7.37 shows the number of false negatives vs. the number of false positives, and
Table 7.20 lists the parameters for some of the diamonds close to 0 in Figure 7.37.

At it can be seen from Table 7.20, with the right parameters, illumination change can be
handled without any false positives.

NBC �Y rmin s
oremin False Positives False Negatives Distance
abs. % abs. %

1 1 3 0.4 1 2.4 2 4.9 0.05
1 3 4 0.3 0 0.0 4 9.8 0.10
2 1 1 0.5 0 0.0 4 9.8 0.10
2 3 1 0.4 0 0.0 4 9.8 0.10

Table 7.20: Hand-Raise Detection Results for V8–V10: The numbers of false positives and negatives are
listed together with the parameters that were used to produce them. The false positives and
negatives are expressed both as an absolute number which canbe compared to the total number
of hand-raises in these videos (41), and as a percentage of this number. The distance shown is the
distance from(0; 0) to the diamond corresponding to the set of parameters in Figure 7.37. Note
that several other combinations of parameters can produce results similar to those presented in
this table.
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Figure 7.36: Hand-Raises in V8–V10: The black dotted lines indicate whenhand-raises occur. The magenta
lines indicate when one video ends and another starts. The number at the top indicates which
video that starts at that line. Some of the videos are included two times, because they contain
two persons; that is, there is a section for each person. The blue graph is the value of the
hand-raise counter. This graph has been produced fors
oremin = 0:4 and�Y = 3 using
NBC2.
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Figure 7.37: False Negatives vs. False Positives for V8–V10: The graphs show the minimum number of
false negatives that occurs for a particular number of falsepositives, while the diamonds show
all the numbers of false negatives that occur for this numberof false positives. The numbers
on the axes have been normalized by dividing with the number of hand-raises.

7.5.5 Overall Performance

To get an impression of the overall performance that can be obtained, the hand-raise
detection has been tested on all the videos used above, i.e. V4, V6, V8–V10, and V12–
V16. The total number of hand-raises in all of these videos is102.

Histograms showing the frequencies of different combinations of the parameters in the



sets of false positives and false negatives can be found in Figure 7.38. A plot of false
negatives vs. false positives is presented in Figure 7.39, and examples of the numbers of
false positives and negatives for different parameter combinations are given in Table 7.21.

Zero false positives can be obtained, but only if a large number of false negatives is
accepted. The false positives are usually caused by events that are within the control of
the video conference participants. Therefore, some of the false positives that occur in
these videos would probably be acceptable, as the participants could behave in such a
way that the false positives were avoided. I.e. a trade-off,e.g. 5.9% false positives and
8.8% false negatives, might be acceptable.

1
2

3
4

5
6

7
8

9
100

0.1
0.2

0.3
0.4

0.5
0.6

0

0.2

0.4

0.6

0.8

1

rscore

F
al

se
 P

os
iti

ve
s

(a) False Positives

1
2

3
4

5
6

7
8

9
100

0.1
0.2

0.3
0.4

0.5
0.6

0

0.2

0.4

0.6

0.8

1

rscore

F
al

se
 N

eg
at

iv
es

(b) False Negatives

Figure 7.38: False Positives and Negatives for All Videos: The histograms shows the frequencies of different
combinations of parametersrmin ands
oremin in the sets of false positives and false negatives
for �Y = 3. The numbers on the vertical axes have been normalized by dividing with the
number of hand-raises.
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Figure 7.39: False Negatives vs. False Positives for All Videos: The graphs show the minimum number of
false negatives that occurs for a particular number of falsepositives, while the diamonds show
all the numbers of false negatives that occur for this numberof false positives. The numbers
on the axes have been normalized by dividing with the number of hand-raises.



NBC �Y rmin s
oremin False Positives False Negatives Distance
abs. % abs. %

2 1 1 0.4 6 5.9 9 8.8 0.11
2 1 1 0.5 2 2.0 14 13.7 0.14
1 3 1 0.4 13 12.7 8 7.8 0.15
1 1 1 0.5 18 17.6 7 6.9 0.19
1 3 7 0.3 0 0.0 23 22.5 0.23
2 1 2 0.4 1 1.0 24 23.5 0.24
2 1 3 0.4 0 0.0 29 28.4 0.28

Table 7.21: Hand-Raise Detection Results for All Videos: The numbers offalse positives and negatives are
listed together with the parameters that were used to produce them. The false positives and
negatives are expressed both as an absolute number which canbe compared to the total number
of hand-raises in these videos (102), and as a percentage of this number. The distance shown
is the distance from(0; 0) to the diamond corresponding to the set of parameters in Figure
7.39. Note that several other combinations of parameters can produce results similar to those
presented in this table.

7.6 Experiments Conclusions

In this chapter, we have described the experiments made to evaluate the performance
of the methods for FoA, face verification, face tracking, andhand-raise detection. The
performance of the FoA methods was measured by computing thedistance between the
average skin-colour likelihood in the face and background area. Furthermore, the average
computation per image time was used to detect whether a method which increased the
face-background distance also increased the computation time. The experiments showed
that the best method to use was the weighted Gaussian, which gave a face-background
distance of 0.286. At the same time, the computation time of 34.7ms was close to the
average of the four evaluated methods, so the weighted Gaussian method should be a
good compromise between distance and computational speed.Afterwards, experiments
were made using moment constraints on the weighted Gaussianmethod. These made the
face-background distance increase to 0.341 and at the same time the computation time
increased by less than 1ms. It was therefore concluded that moment constraints definitely
are worth using.

Before evaluating the performance of the face verification methods, experiments were
made to find out if the use of erosion and dilation on the likelihood image made by the
FoA methods could increase the face-background distance. The results of the experiments
clearly indicated that this was the case – i.e. when using 1�erosion and 6�dilation, the
distance increased from 0.341 to 0.594. To measure the performance of the face veri-
fication methods, experiments were first made on each method alone to find its optimal
threshold values. Thereafter, the performance of each method was found by counting
the number of false positives and false negatives using the same threshold values. These
experiments showed that the rectangle method, although it was very simple and fast, was
able to remove almost 70% of the false positives and at the same time it only made 0.6%
false negatives. This method should therefore be used as an initial rough filter, before the
more computational demanding methods are used. The template matching method was
without doubt the most computational demanding, having an average computation time
of 122ms. However, by combining the methods serially, it waspossible to decrease the
average computation time to 105ms, because many face candidates were removed by the
simple and fast rectangle and solidity methods before template matching was done. Serial
combination of the methods also made the false positives drop from 28.8% when using



the ellipse fitting method to 10.7%. At the same time, the number of false negatives rose
from 7.3% when using the ellipse fitting method to 15.8%. However, because false posi-
tives may be used to start new trackers and thereby can have influence on the hand-raise
ROIs, it is more important to have a low number of false positives than a low number
of false negatives. A final face verification experiment was therefore made using stricter
thresholds, which made the number of false positives drop to0.0% and the number of
false negatives rise to 53.6%. At the same time, the average computation time per im-
age decreased to 67ms due to more face candidates being removed by the rectangle and
solidity methods, before template matching and ellipse fitting were done.

To be able to test the face tracker and the tracker manager, wedetermined a set of param-
eters to use empirically, and verified that these parameterswere reasonable. Using these
parameters, the performance of the face tracker was evaluated. We found that the face
tracker works as desired in the presence of clutter, occlusions, and illumination change,
but fast face movement can cause the tracker to loose the face. However, this is acceptable
as it rarely will occur when the person is seated and participating in the video conference.
We also tested ability of the tracker manager to eliminate trackers for non-face objects.
Such trackers may be started due to false positives from the face detection. We found that
it only was possible to eliminate such trackers when they were started for a raised hand.

Finally, experiments were performed to evaluate the hand-raise detection. This was done
by measuring the numbers of false positives and false negatives for different sets of pa-
rameters for the hand-raise detector. In these experiments, we discovered that false pos-
itives, that is, the detection of a hand-raise when none has occurred, could only be elim-
inated if a large number of false negatives is accepted. Whenusing the complete set of
videos used for the hand-raise detection experiments, the smallest number of false nega-
tives that could be obtained if no false positives was accepted, was 22.5%, that is, 22.5%
of the hand-raises were not detected by the system. However,as the events causing false
positives are within the control of the video conference participants, a low number of
false positives will be acceptable. If 2% false positives are accepted for the complete set
of videos, the number of false negatives can be reduced to 13.7%. If 5.9% false positives
are accepted, the number of false negatives is 8.8%.



Chapter 8

Future Work

In this chapter we will describe future work which may be madeto the VICOWIJOY
system.

8.1 Focus of Attention

The methods for focus of attention, which we have investigated and experimented upon
in this project, all expect that the faces are illuminated bya single colour. This will
not always be the case if we want to be able to do video conferences in less controlled
environments. If e.g. the conference takes place in a room with fluorescent lamps in the
ceiling and the sun is shining through a window, half of a facemay be illuminated by the
sun and the other half by the fluorescent lamps. The CCT of a fluorescent lamp is around
3000K and the CCT of direct sunlight around 5700K (refer to Figure C.1 on page 138), so
if a Gaussian model is estimated from the face, the center of mass would be right between
the two illumination sources. Furthermore, the chromaticity r variance would be very
large and therefore be constrained if moment constraints are used. This would lead to that
none of the actual skin-colours in the face would be covered by the Gaussian model, and
it would therefore not be found in the next image. One way of solving this problem could
be to use LUTs instead of Gaussian models to detect the skin-colours. I.e. it is possible
to have several skin chromaticity distribution groupings in a LUT, because it is computed
directly from the skin-colours in the face and not estimatedas the Gaussian models are.
However, the experiments made on LUTs and Gaussian models inSection 7.2 on page 74
showed that Gaussian models outperform LUTs when the face isilluminated by a single
colour. A more promising method is the use of Gaussian mixture models described by
McKennaet al. in [37]. A Gaussian mixture model describes the skin-colours using
several Gaussian models and should therefore be able to describe the skin-colours in the
above mentioned example using a combination of two Gaussianmodels instead of one. It
would be interesting to investigate and experiment furtheron the use of Gaussian mixture
models. When using those instead of single Gaussian models it should be possible to do
video conferencing in environments with fewer restrictions on the illumination.

8.2 Face Verification

The experiments made on the face verification methods in Section 7.3 on page 81 showed
that it was possible to avoid (almost) false positives. Thiswas at the cost of a high number
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(53.6%) of false negatives, which does not matter that much since a video stream of 12.5
Hz still makes it possible to find a face several times per second. However, it would
be nice if the number of false negatives could be lowered, because the face trackers use
the outcome of the face verification to ensure that they continue to track the right objects.
Finding more of the faces in the images should therefore makethe trackers able to perform
better.

One way to improve the face verification is to make it possibleto find faces that are rotated
in the image plane. In [34] Saber and Tekalp computes the center of mass and the covari-
ance matrix for the part of the skin-colour likelihood imagethat is covered by a face can-
didate. Afterwards, they find the eigenvalues and the corresponding eigenvectors of the
covariance matrix and computes an ellipse from these values. Thereafter, ellipse fitting is
done in the gradient image by computing the average gradientvalue of the perimeter of
the ellipse. Based on the eigenvalues upper an lower sizes ofthe radii in the ellipse are
used to constrain the search for the best fitting ellipse. A great advantage of this method
is that it makes it possible to find rotated ellipses (faces).If the temporal positions of the
template matching and ellipse fitting in the face verification process were swapped, the
ellipse fitting could give information to the template matching about the orientation of
the face. Furthermore, the size of the face could also be given to the template matching.
This would lower the computation time of the template matching since it would not be
necessary to use an image pyramid – instead the face candidate could simply be resized
to fit the size of the template (or vice versa). Moreover, a bank of templates rotated at
different angles could be loaded at the start of the system. Based on the orientation of the
ellipse, a template with the same orientation could then be used for template matching.
This should make it possible to detect rotated faces in the template matching method.

Another and more simple way of computing the orientation of aface candidate is simply
to compute the height/width ratio of its bounding box. If e.g. the height/width ratio of
an upright face is set to 1.25, lower values would indicate that the face is rotated and
a value of 0.8 that the face is rotated�90Æ. A problem with this method is that the
rotation direction is unknown. Therefore, the following ellipse fitting method would have
to be done at two orientations. It could nevertheless be interesting to implement both this
method and the previously mentioned method where eigenvalues and eigenvectors are
computed. Experiments could then be made to compare their accuracy and computational
efficiency.

In [2] Menser and Wien use the compactness of the face candidates in the thresholded
(binary) likelihood image to classify them as faces or non-faces. The compactness is
found by dividing the area of a face candidate with the squared number of pixels along
its perimeter – i.e.
ompa
tness = AreaPerimeter2 . Since a face is elliptic in shape its com-
pactness is high and a lower threshold can therefore be used to remove non-faces. This
method is simple and computational efficient and if used before the ellipse fitting and
template matching, it could probably decrease the number offace candidates which have
to be verified by these methods. Furthermore, we already follow the perimeters of the face
candidates in the contour segmentation method and can therefore compute their lengths
at the same time. This will make the compactness method even more computational effi-
cient.

Finally, we have observed that significant for the faces of people that are participating
in video conferences is that they do not move very much. This knowledge can be used
for face verification by setting a maximimum average movement threshold of the face
candidates in the likelihood image. The method should especially make it possible to
handle the situations where hands are detected as face candidates during a hand-raise.



I.e. these hands will inevitably have a large amount of movement and can therefore be
removed from the face candidate list.

8.3 Face Tracking

The face tracking scheme presented in this report was found to work quite well. However,
two problems were discovered in the experiments. The first isthat the tracker’s estimate of
the position of the face, when the face is occluded and when the illumination is changed,
may move away from the center of the face. The second is the tracker’s inability to track
fast moving faces.

The first problem could be solved by using better methods for detecting occlusions and il-
lumination changes. We have primarily done this detection of occlusion and illumination
changes by considering the skin-colour likelihood momentsof the face area, but informa-
tion deducted from the rest of the image would also be useful.A change in illumination
colour will not only affect the pixels in the face area, but the entire image. Therefore, we
expect it would be possible to detect the change in illumination colour by considering the
colours of the pixels in the rest of the image, or perhaps justa subset of it. This could
be used to increase the measurement noise level for the Kalman filter during illumination
change, to avoid that the estimate moves too far.

Occlusions by a person walking by in the foreground could probably be detected by con-
sidering the overall amount of movement in the image, as thisperson will be closer to
the camera than the video conference participants, and movesignificantly more when he
is walking. Even when he is not walking it would be possible todetect his presence by
comparing the current image to an average image computed using the previous images.
The knowledge obtained this way could be used to control the measurement noise level.
It could also reduce the risk of false positives from the hand-raise detection, as a video
conference participant probably would not raise his hand while occluded, and if he did, it
would make sense to ignore it, as the camera cannot zoom in on his face.

The second problem is primarily related to the measurement noise, which was found to be
too high during fast face movement. If occlusions and illumination changes were detected
in other ways, e.g. as suggested above, the moments of the face area could be given less
weight in the computation of the measurement noise. The measurement noise would then
be lower when the face is moving, since this movement does notaffect the contents of the
hand-raise ROIs, unless the tracker looses the face, and theface enters one of these ROIs.

In addition to considering more information in the computation of the measurement noise,
the information could be integrated into the set of numbers needed for the Kalman filter in
other ways. One way would be to train a Bayesian network to compute the probabilities
of various events, such as occlusion and illumination change, using data collected from
different video conference situations. The measurement noise could then be based on
these probabilities.

The face detection occasionally results in false positives. When this happens, a face
tracker is started for something that is not a face. Our experiments showed that the meth-
ods used for eliminating these trackers could not handle allcases of false positives. This
also means that if a tracker looses the face it is tracking, itmay not be eliminated. There-
fore, more should be done to continuously verify that the object being tracked is a face,
e.g. using some or all of the methods used for face detection.

We only attempt to track the faces of persons that are seated,as this appears to be suf-



ficient for our purposes, though also knowing the positions of the faces of persons who
are coming, leaving, or walking by could be used for adjusting the measurement noise.
However, the tracking system could be extended to allow persons to e.g. get up, and walk
over to a blackboard to illustrate something. This would require the tracker to be able
to track the head of the person when he is not facing the camera. The tracking could
still be done using Mean Shift, but instead of using a skin-colour likelihood image, a
skin-or-hair-colour likelihood image must be used.

Finally, it must be investigated how the control of the PTZ-camera can be done using the
information available from the face tracker, i.e. 2D position and size. Since two cameras
are available, the 3D position could also be obtained, but this may not be necessary, since
the size of the face in the PTZ-camera image could be used to control the zoom.

8.4 Hand-Raise Detection

It would be worthwhile to investigate ways to improve the hand-raise detection. This
could be done by including more or different information variables in the Bayesian net-
work, and by training the network using a larger dataset. In particular, the dataset should
probably include a more varied selection of noise to reduce the number of false positives.
Since Gaussian approximations may not be appropriate for all probability density func-
tions, the use of other functional approximations or look-up tables could be examined.

Additional information variables could provide more information about the shape of the
hand-raise trace in the ADP. Alternatively, the idea of turning the trace into a single
connected component using morphological operations couldbe abandoned, and other
measures, e.g. the moments of the hand-raise ROI, could be used.

Additional verification steps could be added to eliminate false positives from the Bayesian
network. For instance, the gradient image could be searchedin an attempt to find the
outline of the arm, using e.g. an approach similar to the one presented in [43]. Since
the face position is known and the hand position can be determined from the skin-colour
likelihood image, the search space for the elbow should not be large, in particular because
it can be assumed that the hand is raised. Another approach would be to produce a
silhouette image for the hand-raise ROI, as described in [25]. This is done by subtracting
a background image from the current image. The background image could be an average
image for the hand-raise ROI, since there – at least in some setups – will not be much
change in this area, except when a hand is being raised.



Chapter 9

Conclusions

In this report we have investigated and experimented upon methods for use in a video
conferencing system, where a speaker gets the attention by raising his right hand. The
system consists of two cameras; a panorama camera in which the faces of the participants
are tracked and hand-raises detected, and a PTZ-camera which must automatically zoom
in on a speaker when he raises his hand. Zooming in on the speaker ensures that other
participants located in other video conference rooms can see the facial expressions of the
speaker. In the implemented version of the system no camerasare used. Instead they are
emulated using images from AVI-files as the panorama camera and digital zooming in the
same images as the PTZ-camera.

Methods for the initial focus of attention (FoA) in the system have been investigated.
These have been based on skin-colour detection, using either lookup tables (LUTs) or
Gaussian models to describe the skin chromaticity distribution. The skin-colour likeli-
hoods of the pixels in the input image are found using the LUT or Gaussian model and a
likelihood image made. A large focus was placed on making it possible for the system to
adapt to changes in illumination colour. This is because theskin chromaticity distribution
moves along the skin locus when the correlated colour temperature (CCT) of the illumi-
nation source changes. Therefore, using a LUT or a Gaussian model computed from a
collection of training images would only work as long as the illumination colour is the
same as in the training images. Four methods of illuminationadaption were investigated
– simple LUT, ratio LUT, ratio Gaussian, and weighted parameters of Gaussian. Experi-
ments were made by updating the LUT or Gaussian model using a fixed position and size
of the face in the images, and calculating the average skin-colour likelihood in the face
area and the background area. When using the weighted Gaussian method the best result
was achieved – i.e. it gave the longest distance between the average skin-colour likelihood
in the face area and in the image area. To avoid the situation where inaccurate tracking of
a face leads to a “wrong” skin chromaticity distribution in the LUT or Gaussian model, we
investigated a skin-colour model invented by Störringet al. in [27]. This investigation re-
vealed that under changing CCTs the center of mass of the skinchromaticity distribution
follows a locus which is close to the Planckian locus of Blackbody radiators. Moreover,
the areas of the distributions were close to the same and the distributions were in most
cases rotated clockwise along the chromaticityr axis. Using this knowledge to constrain
the position, shape, size, and rotation of the skin chromaticity distributions, it was pos-
sible improve the experiment results achieved when using the weighted parameters of
Gaussian method.

To build a list of face candidates based on the likelihood image made by the FoA meth-
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ods, the image was first eroded and dilated. Experiments showed that this significantly
increased the distance between the average skin-colour likelihood in the face and image
area. Afterwards, a binary image was made using a threshold which made it possible
to make a clear distinction between the face and the background area. Finally, a list of
face candidates was created using contour segmentation of the binary image. To classify
the face candidates as faces or non-faces, four different methods were used and experi-
mented upon. First, the face candidates which had wrong rectangular shapes and sizes
were removed. This was followed by a check of the solidity of the face candidates, where
candidates with a too low or too high solidity were removed from the list. Afterwards,
a nose-eye template was used to remove face candidates with atoo low similarity to the
template. Finally, ellipse matching was done in a gradient image using either the first
fitting or the best fitting ellipse around the face candidates. Candidates with a too low
average gradient value in the perimeter of the ellipse were removed. Experiments were
made by counting the number of false positives and false negatives and by recording the
computation time of each method. First each method was experimented upon alone to
find out what the threshold values should be and afterwards experiments were made on
the methods in serial combination. The experiments showed that the computational fastest
method was the rectangle verification and the slowest the template matching. However,
by combining the methods it was both possible to lower the computation time of the tem-
plate matching and decrease the number of false positives from 28.8% achieved when
using only ellipse fitting to 10.7%. To lower the number of false positives even further,
an experiment was made using stricter threshold values. This made the average compu-
tation time of all the methods in serial combination decrease from 105ms to 67ms and
the number of false positives drop to 0%. At the same time the number of false negatives
rose from 15.8% to 53.6%. However, a high number of false negatives is not that much
of a problem, since the videos run at 12.5 Hz – i.e. in average it should still be possible to
detect a face 6 times per second.

Several tracking methods were investigated to make it possible to track the detected faces.
Based on these investigations we decided to use a combination of the Mean Shift algo-
rithm applied to the skin-colour likelihood image and ellipse fitting in the gradient image
to measure the positions and sizes of the faces. To handle theuncertainties of these mea-
surements, a Kalman filter was used. Finally, a tracker manager algorithm which deletes
the unstable, dead, and overlapping trackers and creates and updates trackers was de-
scribed. Suitable parameters to use for the tracker manager, Mean Shift algorithm, ellipse
fitting, and Kalman filter were found empirically and experimentally. Afterwards, experi-
ments were performed to determine how illumination changes, occlusion, fast movement,
and clutter influenced on the tracking accuracy. These showed that the trackers in general
did not have any problems when clutter, occlusion, and illumination changes occurred.
Only when fast movement of the faces took place, the trackerswere unable to continue
tracking and were eventually eliminated by the tracker manager. Finally, experiments
were made to determine the ability of the tracker manager to eliminate trackers track-
ing non-face objects. In these it was determined that the ellipse score of trackers tracking
moving non-face objects often quickly drops to a value belowthe scores of faces. Increas-
ing the time before an object being tracked may be consideredas a face to the maximal
time an ellipse can be fitted to a non-face object, should ensure that only faces will be
used to define hand-raise detection areas. However, this could mean that several seconds
must pass from a person is detected till his hand-raises can be detected. The unstability
measures for faces and non-faces showed the same tendency – i.e. the unstability measure
for non-faces was in general higher than that of faces. During occlusions the unstability
measure for faces nevertheless got higher than the unstability measure for some of the



non-face objects. Unless it is acceptable for face trackersto be deleted during an oc-
clusion, the maximal allowable unstability will in some cases also include the non-face
objects.

To be able to do hand-raise detection several hand gesture recognition methods were
investigated. Based on these investigations and the fact that we only need to recognize one
type of gesture (a hand-raise), it was decided to solve the problem in a somewhat different
way by using changes in the skin-colour likelihood images over time as an indication of
when the hand-raises occurred. Based on the position of a face tracker, a hand-raise
region of interest (ROI) was defined. Within this ROI, an accumulated difference picture
(ADP) was produced. The contour of the largest connected component in this ADP was
classified as being caused by a hand-raise or not using one of the two Naive Bayesian
Classifiers, that we implemented. This classification was, if the contour was classified as
a hand-raise, followed by a verification step that examined the vertical shift in the center
of mass in the previous skin-colour likelihood images. Experiments were performed to
evaluate the performance of the hand-raise detection. These experiments showed that
false positives could be eliminated, that is, it could be avoided that the system classified
an event that was not a hand-raise as a hand-raise. However, this could only be obtained
if, for the videos we used, 22.5% false negatives were accepted. Since the events that lead
to false positives generally are within the control of the video conference participants, a
low number of false positives will be acceptable. For 5.9% false positives (measured
as a percentage of the total number of hand-raises), the corresponding number of false
negatives in our videos were 8.8%.
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Appendix A

Probability Theory

This appendix will introduce some of the concepts related toprobability theory that are
used in the report. The reader is assumed to be familiar with basic concepts such as
probability, probability densities/distributions, random variables, etc. Otherwise we rec-
ommend reading some of the literature that we used when preparing this appendix[14, 3,
21, 22, 13].

A.1 Univariate Probability Distributions

A probability distribution (or density if it is continuous1) may beunimodalor multimodal.
A unimodal distribution has a single peak (or “mode”), i.e. asingle local maximum, as
illustrated in Figure A.1. A multimodal distribution is a distribution with several peaks,
as illustrated in Figure A.2.
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Figure A.1: Unimodal Probability Distribution. This unimodal distribution is also a normal probability
distribution. The mean (and mode) of this distribution isx = 0 and the variance is0:8.

Themean(or expected value, or first moment) of the distribution for the random variableX is given by:

1What is written about distributions here also applies to densities (the continuous counter-part of distri-
butions), or is easily adapted to the continuous case.
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Figure A.2: Multimodal Probability Distribution.EX =Xk xkpX(xk)
wherepX(x) is the probability thatX = x. Thevariance(or second central moment) is
given by: V arX = E(X �EX)2 =Xk (xk �EX)2pX(xk)
The variance is a measure of how concentrated the probability “mass” – the areas under
the graphs in Figures A.1-A.2 – is around the mean. A low variance means that the
probabilities are high close to the mean and a high variance that they are distributed over
a larger area (the total area under the graph must equal 1, as it should correspond to the
probability of getting a value in the interval under the graph).

Thestandard deviation�X of a random variableX is given by:�X = pV arX
Thecovarianceof two random variablesX andY is given by:Cov(X;Y ) = E(X �EX)(Y �EY )
Variance is a special case of covariance, corresponding to the covariance of two identical
variables: V arX = Cov(X;X)
A particular kind of unimodal distribution is the normal or Gaussian distribution, which
is actually what was illustrated in Figure A.1. The mean and mode of this distribution
coincide, and the distribution is characterized completely by its mean and variance. That
a random variableX has a normal distribution with mean� and variance�2 is written:



p(X) � N(�; �2)
The probability distribution of a standard normal random variable has mean 0 and vari-
ance 1.

A.2 Multivariate Probability Distributions

A multivariate probability distribution is the probability distribution for a random vector,
i.e. a vector whose components are random variables. It shows the probability of each
combination of values for the variables.

A multivariate probability distribution normal if and onlyif every linear combination
of its components is normal2, i.e. each variable in the random vector must be normal.
A multivariate normal distribution is characterized by itsmean vectorand covariance
matrix.

LetX be a random vector. Themean vectorof X is��� = EX
It has the components�i = EXi, i = 1; 2; :::; n, whereXi are the components ofX.

Thecovariance matrixof X is � = E(X����)(X����)T
It has the components�ij = E(Xi � �i)(Xj � �j), i; j = 1; 2; :::; n. Note that�ii
(located on the diagonal) is the variance ofXi.
That a random vectorX has a normal distribution with mean vector��� and covariance
matrix� is written: p(X) � N(���;�)

2Several definitions of the multivariate normal distribution exist.





Appendix B

Estimators

In this appendix, two estimators for object tracking are presented. Familiarity with some
of the basic concepts from probability theory will be needed. We refer the reader to
Appendix A for an introduction to these concepts.

B.1 The Discrete Kalman Filter

B.1.1 Process and Measurement Models

The Kalman filter [13, 21, 35, 7] can be used for estimating thecurrent statext 2 Rn and
predicting the state at the next time step of a process governed by the linear difference
equation xt+1 = Atxt +But +wt
given a measurementzt 2 Rm of the state at the current time stepzt = Htxt + vtxt is the state at time stept and is related to the state at time stepxt+1 by then�nmatrixAt.1ut 2 Rl represents the control input to the system, which is relatedto the statext+1 by
then� l matrixB. If this cannot be measured, as it is the case in this project,it may be
assumed thatut = 0.

Them� n matrixH relates the state to what is measured.wt represents the process noise, andvt the measurement noise. They are assumed to be
independent of each other, white, and with normal probability distributions with covari-
ancesQ andR: p(wt) � N(0; Q)

1The result of multiplying a matrix with a vector is a linear combination of the columns of the matrix,
e.g. �a1 a2a3 a4��x1x2� = �a1x1 + a2x2a3x1 + a4x2�
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p(vt) � N(0; R)
Whiteness implies that the noise value is not correlated in time, and that the power of the
noise is equal at all frequencies.2

In order to use the Kalman filter,A, B, H, Q, andR must be known.

B.1.2 Time and Measurement Update

Thea priori estimate error covariance matrix is:

P�t = E((xt � x̂�t )(xt � x̂�t )T ) = E 26664 (�x1)2 �x1�x2 � � � �x1�xn�x1�x2 (�x2)2 � � � �x2�xn
...

...
. . .

...�x1�xn �x2�xn � � � (�xn)2 37775
where�xi = xi � x̂�i andxi, x̂�i , i = 1; 2; :::; n are the components of the vectors.

Similarly, thea posterioriestimate error covariance matrix is:Pt = E((xt � x̂t)(xt � x̂t)T ) (B.1)

The Kalman filter maintains estimates of the mean and error covariance of the state prob-
ability distribution. This is done recursively using two sets of equations:

Thetime updateequations use thea posterioristate estimate to compute thea priori state
and covariance estimates for the next time step (i.e. a prediction):x̂t+1 = Atx̂t +ButP�t+1 = AtPtATt +Qt (B.2)

Themeasurement updateequations use the measurement to compute thea posterioristate
and covariance estimates for the current time step:Kt = P�t HTt (HtP�t HTt +Rt)�1 (B.3)x̂t = x̂�t +Kt(zt �Htx̂�t ) (B.4)Pt = (I �KtHt)P�t

2That the power of the noise is equal at all frequencies implies that white noise has infinite power, so it
cannot exist. However, because of the limited bandwidth of real systems, they will not be able to distinguish
white noise from a noise which “looks like” white noise within the range of frequencies that the system
responds to. If the noise is not of equal power within this range of frequencies, or if it is correlated in time,
a so-called “shaping filter” may be added to the model of the system, which converts white noise to the
particular kind of non-white noise – then the system can be assumed to be driven by white noise.



Kt is the Kalman gain. It determines to which degree the measurement affects thea
posteriori estimates, as it can be seen from Equation B.4, where the prediction error (in
measurement space) is weighted byKt and added to thea priori state estimate. Equation
B.3 has been chosen such that thea posteriori error covariancePt (Equation B.1) is
minimized.

B.1.3 Kalman Filter Order

The order of a Kalman filter denotes the number of derivativesof the parameters being
tracked (e.g. the position) that is included in the state vector.

A zeroth order Kalman filter includes no derivatives and usesthe identity matrix3 asA,
i.e. the mean of thea posteriori estimate for time stept � 1 becomes the mean of the
a priori estimate for time stept (assuming that the control inputut is zero). The error
covariance is updated as indicated by Equation B.2 to reflectthe increased uncertainty.

First order Kalman filters use state vectors of the form:

x = 2666664x1x01...xnx0n
3777775

A is an� n block-diagonal matrix:A = 26664D 0 � � � 00 D � � � 0
...

...
. . .

...0 0 � � � D37775
where D = �1 �t0 1 �
The effect of multiplyingAwith a state vectorx containing positions and their derivatives
(velocities) is that the product of the velocity and the timepassed since the positions was
estimated is added to each position. This will correspond tothe new positions if the object
moves with constant velocity and the velocities stored inx are correct.

A second order Kalman filter includes the second derivative (acceleration) as well, and
uses D = 241 �t �t2=20 1 �t0 0 1 35

3In an identity matrix, all components are 0, except the ones on the diagonal from upper left corner to
lower right corner, which are all 1.



B.1.4 The Extended Kalman Filter

If it is impossible to model the process using the linear difference equation given above,
or the relationship between the measurement and the actual state of the process is non-
linear, anextended Kalman filter(EKF) may be used. The EKF can be used for estimating
and predicting the state of a process governed by the non-linear difference equation~xt+1 = f(xt;ut;wt)
given measurements that are related to the state by~zt = h(xt;vt)
The functionsf andh must be known in advance. At each time step, at set of matrices
is computed from these functions. These matrices are used intime and measurement
update equations very similar to those of the (linear) Kalman filter to obtaina priori and
a posterioriestimates. For further information about the EKF, see [13].

B.2 CONDENSATION

The CONDENSATION algorithm [22] is designed to track curves in visual clutter. It is,
however, sufficiently general to be applicable to other things than curves. CONDENSA-
TION works by propagating a conditional density over time using atechnique known
as “factored sampling”. The conditional densities are represented as sample sets. This
means, that unlike the Kalman filter (and the EKF), CONDENSATION is able to handle
multimodal probability distributions. Furthermore, it does not assume that the process
can be modeled with a linear differential equation like the Kalman filter, and does not
make assumptions about the statistical nature of the noise (the Kalman filter and the EKF
assumes normally distributed noise).

B.2.1 Assumptions

LetXt = fx1;x2; :::;xtg be the history of state vectorsxi. It is assumed that they form
a temporal Markov chain, i.e.:p(xt j Xt�1) = p(xt j xt�1)
I.e. information about the state at the previous time step provides as much relevant infor-
mation as information about all previous states.

LetZt = fz1; z2; :::; ztg be the history of measurementszi. It is assumed that:p(Zt�1;xt j Xt�1) = p(xt j Xt�1)p(Zt�1 j Xt�1) = p(xt j Xt�1) t�1Yi=1 p(zi j xi)
This means that the measurementszi must be mutually independent (implied by the prod-
uct of the probabilitiesp(zi j xi)), and that they must be independent of the process.



B.2.2 The CONDENSATION Algorithm

Let the sample set at time stept� 1 beSt�1 = f(s(n)t�1; �(n)t�1; 
(n)t�1) j n = 1; 2; :::; Ng
and let the sample set at time stept beSt = f(s(n)t ; �(n)t ; 
(n)t ) j n = 1; 2; :::; Ng
The sample sets have a constant sizeN .4 s(n)t is a state vector.�(n)t is the probability of

the state vector, and
(n)t the cumulative probability:
(n)t = nXi=1 �(i)t
The samples ofSt are computed as follows:

1. Select sampless0(n)t , n = 1; 2; :::; N from St�1.
2. Predict new sampless(n)t , n = 1; 2; :::; N by samplingp(xt j xt�1 = s0(n)t ).
3. Weight each samples(n)t , n = 1; 2; :::; N according to the probability of the mea-

surementzt givens(n)t .

The initial sample setS0 can, for instance, be obtained by sampling a Gaussian function
which has the state vector of the detected object as its mean.This reduces the problem
of obtainingS0 to the problem of constructing a state vector for the object from the
information provided by the previous phases of the system (e.g. position, but not velocity
and acceleration).

B.2.3 Selection of a Sample

The samples0(n)t is selected fromSt�1 using the following procedure:

1. Generate a random numberr 2 [0; 1℄. The numbers should be uniformly dis-
tributed.

2. Find the smallestj for which 
(j)t�1 � r.
3. Lets0(n)t = s(j)t�1.

The procedure choosess(j)t�1 with the probability�(n)t�1. It may result in the the same
sample fromSt�1 being chosen several times, especially if the sample has a high weight.
Some samples may not be chosen at all, especially those with low weights.

4A constant size – or at least an upper limit on the size – of the sample set is required for real-time
operation.



B.2.4 Prediction of New Sample

The new samples(n)t in St is, in principle, computed by sampling:p(xt j xt�1 = s0(n)t )
How this is done depends on how the process dynamics is modeled (this will be discussed
below). The result can be divided into a deterministic drift, which displacess0(n)t in
state space, and a diffusion step, which displaces the sample randomly according to the
stochastic component of the process model. If the same sample in St�1 was chosen
several times forSt, the identical copies of this sample will become non-identical in St
due to the diffusion.

B.2.5 Weighting of the New Sample

The probability weight for the new sample given the new measurementzt is computed as
follows: �(n)t = kp(zt j xt = s(n)t )
I.e.�(n)t is a measure of how well the samples(n)t explains the current measurementzt.k is a normalization constant chosen such that:NXn=1�(n)t = 1
Sincek cannot be computed before all probabilitiesp(zt j xt�1 = s0(j)t ) have been
computed, the normalization must be postponed until all samples have been processed.

The cumulative probability is computed as follows:
(0)t = 0
(n)t = 
(n�1)t + �(n)t
wheren = 1; 2; :::; N .

B.2.6 Process Model

To use the CONDENSATION algorithm, models describing the process dynamics and the
measurement process must be established.

Theprocess modelmust specifyp(xt j xt�1). If the process can be modeled as a linear
difference equation, the prediction of the new sample valuecan be done as follows:s(n)t = As0(n)t +w(n)tA is aN � N matrix, and is responsible for the deterministic drift.w(n)t is a random
vector with a covariance matrix that reflects the process noise. It is responsible for the



diffusion that ensures that identical samples fromSt�1 get different values in the new
sample setSt.
The state vectors andA may have the form presented in the section about the order of
Kalman filters on page 131. The number of derivatives of the parameters being tracked
that are included in the state vectors will be referred to as the order of the CONDENSA-
TION based tracker.

B.2.7 Measurement Model

The measurement modelmust specifyp(zt j xt), or, if the measurement process is as-
sumed to be stationary in time,p(z j x).
Let z = 26664m1m2

...mM37775
wherem1; :::;mM are the measurements for a particular time step (they can be scalars,
or, as indicated by the bold font, vectors).z contains more than one measurement because of clutter. For instance, when tracking
a face, the presence of other faces than the one being trackedmay causez to have sev-
eral components, because all faces have the same basic characteristics (e.g. colour, size,
movement). It may be assumed that only one of the measurements correspond to the
object being tracked.5 Then the event�m thatmm is the measurement corresponding
to the object is true with the probabilityP (�m) and the eventP (�none) that none of the
measurements correspond to the object is true with the probability:P (�none) = 1� MXm=1P (�m)
Then p(z j x) = p(z j �none)P (�none) + MXm=1 p(z j x; �m)P (�m)
where the first term reflects that the contents of the measurement vectorz could be due
to clutter rather than the object being tracked, and the second term reflects the possibility
that the measurements would arise givenx.

The conditional probability distribution given byp(z j x) will have peaks corresponding
to the different measurementsmm and a “background” probability reflecting the possi-
bility that none of the measurements correspond to the object.

If it is assumed that the measurement corresponding to the object is normally distributed
with a mean corresponding to the state vector (mapped from state space to measurement

5Obviously, this is not always true. If, for instance, the measurements are regions found in the image
using colour segmentation, an object may split into two objects due to occlusion or changing illumination.



space),p(z j x) may be approximated by settingP (�m) = 0 for measurements that
are too far away fromx, i.e. ignoring measurements outside a search window aroundx.
The size of the necessary search window will depend on the covariance matrix of the
measurement normal distribution.



Appendix C

The Skin-Colour Model

To define the skin chromaticity distributions we have used askin-colour modelreported
by Störringet al. in [27]. Using this model we have calculated a set of GaussianmodelsN(�2;m) for r chromaticities between 0.2 and 0.8. The area in chromaticity plane cov-
ered by these models can handle illuminations of correlatedcolour temperatures (CCTs –
we refer the reader to the beginning of Section 2.5.1 on page 14 for a description of CCTs)
from 1750 Kelvin (K) to 15000K. This should be enough to coverthe most common ev-
ery day light sources (see Figure C.1). The model was white balanced using a canonical
illuminant with a CCT of 3600K. The centers of mass of the Gaussian models make out
theskin locusin Figure C.1, and as it can be seen this locus has close resemblance to the
Planckian locus. The Planckian locus is the locus along which the light colours of differ-
ent Blackbody radiators lie. According to [11] all other kinds of everyday light sources
lie close to this locus. Therefore, the Planckian locus of Blackbody radiators should be
usable for approximating general purpose light sources. The dotted lines in Figure C.1
indicate the relation between the CCT of the light source andthe corresponding skin chro-
maticity distribution center of mass. The distance of this relation gets longer the lower
the CCT gets. This is the reason why the skin chromaticity distribution changes in shape
and size when the CCT changes. We will discuss how the size andshape of the skin
chromaticity distribution can be constrained in the following sections.

C.1 Model Constraints

Our main purpose of using the skin-colour model, is to be ableto constrain the moments
of the LUTs or Gaussian models (see Section 2.5.4 on page 17) estimated by the VICOW-
IJOY system at run-time. We know that the skin-colours should be found close to the skin
locus and can use this to constrain the position of the centerof mass of the LUTs or the
Gaussian models.

In Figure C.2, the minor/majoreigenvalueratio with increasingr chromaticities is illus-
trated. The eigenvalues are calculated from the covariancematrix �2 and indicate the
variances along the two directions of highest variance1. As it can be seen, the relative
size of the minor eigenvalue compared to the major gets smaller and smaller with in-
creasing chromaticityr values. I.e. the shape of the skin chromaticity distribution starts
out close to circular and then it gets more and more flattened.(see Figure C.3). Having
this information it is possible to constrain the shape of theskin chromaticity distribution

1We refer the reader to [15] for more information about eigenvalues
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Figure C.1: The Skin Locus: The skin chromaticity distribution moves along a locus similar to the Planckian
locus of Blackbody radiators when the CCT changes. The dotted lines indicate the relation be-
tween the CCT of an illumination colour, and the corresponding skin chromaticity distribution
center of mass.

in either the LUTs or the Gaussian models estimated in the VICOWIJOY system. This
can be done by using minimum and maximum borders for the minor/major eigenvalue
ratio. This is also illustrated in Figure C.2.
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Figure C.2: Shape Constraints: The figure illustrates the minor/major eigenvalue ratio. Minimum and max-
imum borders can be used to constrain the shape of the skin chromaticity distribution in either
LUTs or Gaussian models.

In Figure C.4 the normalized area sizes of the skin chromaticity distributions along the
chromaticityr axis are illustrated. These areas have been calculated by using the equation
for the area of an ellipse, i.e.



Figure C.3: Skin Chromaticity Distribution Shape Change: The shape of the skin chromaticity distribution
goes from being close to circular at lowr-values to a flattened ellipse at highr-values.area = �AB

whereA andB are the major and minor axis of the ellipse. Since the eigenvalues corre-
spond to the variances of the distribution, we use the squareroot of them as the radii of
the ellipse. I.e. A =pmajor eigenvalue
and B =pminor eigenvalue
The curve in the figure peaks atr = 0:357. Moving in either direction along the chro-
maticity r axis from this point the area gets smaller. Again, we should be able to use this
knowledge to make minimum and maximum borders for the area size.

Looking at Figure C.3 it can be seen that the skin chromaticity distribution seems to rotate
clockwise, when it moves to the right along the chromaticityr axis. In Figure C.5, we
have illustrated the degrees of clockwise rotation of the major eigenvalue in relation to
the chromaticityr axis. As it can be seen, the skin chromaticity distribution does indeed
rotate clockwise whenr increases. Using this knowledge, we can verify that the rotation
of the skin chromaticity distribution in a LUT or a Gaussian model is inside minimum
and maximum borders.

Using the skin-colour model should therefore enable us to control the position, shape,
size, and rotation of the skin chromaticity distribution. The minimum and maximum
borders must nevertheless be rather non-restrictive, since awkward illuminations (such
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Figure C.4: Area Size Constraints: The area size of the skin chromaticity distribution is largest when chro-
maticity r = 0:357. Moving in either direction from this point, the area gets smaller. This
information can be used to define a minimum and maximum size ofthe skin chromaticity dis-
tribution, according to where a LUT or Gaussian model has itschromaticityr center of mass.
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Figure C.5: Area Rotation Constraints: When moving to the right along the chromaticityr axis, the skin
chromaticity distribution rotates clockwise.

as when several light sources of different CCTs are focused on the same face) do exist.
Using the borders as guidelines should nevertheless be a good idea. In Section 2.5.4 on
page 17 the use of moment constraints is discussed further.

C.2 Model Verification

To verify the skin-colour model, we have used the videos V8 and V10 which are described
in Appendix D. In both V8 and V10 the person does not move his face very much,
and therefore it was possible to define an area at a fixed position to use for the whole



video. For each image in V8 and V10 the pixels in the defined area were converted to
chromaticity plane and used to generate a Gaussian model. The parameters(�2;m) of
these models were saved to a file and afterwards compared to the results of the skin-colour
model. In both V8 and V10, the CCT is changed artificially by rotation of an arrangement
of fluorescent lamps. This makes sure that a rather large areaalong the chromaticityr
axis is covered (see Figure C.6).

C.2.1 Center of Mass

In Figure C.6(a) the centers of mass of the Gaussian models are plotted. As it can be
seen, they are rather close to the skin locus, where V8 is slightly below and V10 slightly
above. Using the skin locus defined by the skin-colour model to constrain the position of
the centers of mass of LUTs and Gaussian models should therefore be a good idea.

Looking at the figures it may also be notified, that the plottedvalues from V8 and V10
group in 4 places. This can be seen more clearly if we instead look at the frequencies
of the chromaticityr centers of mass, which are illustrated in Figure C.7). The 4 groups
correspond with the number of different light sources that were used when recording the
videos.
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(a) Samples from V8
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(b) Samples from V10

Figure C.6: Skin Locus Verification: The sampled centers of mass are slightly above the skin locus in V8
(a) and slightly below in V10 (b).

C.2.2 Minor/Major Eigenvalue Ratio

In Figure C.8 we have plotted the minor/major eigenvalue ratios in V8 and V10. V10
can to some extend be said to follow the model, but V8 seems to have more or less the
same ratios no matter what the chromaticityr value is. Constraining the minor/major
eigenvalue ratio based on the chromaticityr value is therefore not a good idea. It is better
to make a soft constraint that demands that the variance along the chromaticityr axis
always must be larger than the variance along the chromaticity g axis. I.e. since we in
almost all cases have clockwise rotation between0Æ and45Æ (refer to Section C.2.4), the
variance along the chromaticityr axis is bound to be larger than the variation along the
chromaticityg axis.
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Figure C.7: Chromaticityr Center of Mass Frequency: The chromaticityr centers of mass group in 4 places
which corresponds to the number of illuminations that were used when recording the videos.
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(a) Samples from V8
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(b) Samples from V10

Figure C.8: Minor/Major Eigenvalue Ratio Verification: The samples of V8 (a) show that the minor/major
eigenvalue ratio more or less is the same all the time. For V10(b) the ratio has a tendency of
following the skin-colour model curve. Constraining the minor/major eigenvalue ratio might
not be a good idea. It would probably be better with a softer constraint that demands that
the variance along the chromaticityr axis always must be larger than the variance along the
chromaticityg axis.

C.2.3 Skin Chromaticity Distribution Area Size

Constraining the area size of the skin chromaticity distribution might also be a possibility.
In Figure C.9 the sampled area sizes are shown. As it can be seen, the results of both V8
and V10 do not evolve in the same way as the skin-colour model curve. However, the
sizes of the areas in V8 and V10 are almost identical at different chromaticityr values
(i.e. they go from about 25% to twice the size of the maximum area size in the skin-colour
model). Therefore, it might be reasonable to make overall constraints about the area size.
This can be done by making overall constraints about the minimum and maximum size
of the variances along the chromaticityr andg axis. Using the amount of chromaticityr
as an indicator of these maximum and minimum sizes is nevertheless not a good idea.
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(a) Samples from V8
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(b) Samples from V10

Figure C.9: Area Size Verification: The data plotted from V8 (a) and V10 (b) do not evolve in the same way
as the skin-colour model curve. Using overall borders for the variances along the chromaticityr andg axis to constrain the area size might be better than using chromaticity r dependent
borders.

C.2.4 Skin Chromaticity Distribution Rotation

The last characteristic of the skin-colour model we want to verify, is the use of constraints
on the rotation of the major eigenvalue of skin chromaticitydistribution. In Figure C.10
the data made by V8 and V10 can be seen. Again, the data does notevolve in the same
way as the skin-colour model along the chromaticityr axis. However, it may be noted that
the rotation always seems to be clockwise in relation to the chromaticityr axis. Therefore
an overall constraint could be to ensure that rotation always is clockwise in relation to the
chromaticityr axis.
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(a) Samples from V8
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(b) Samples from V10

Figure C.10: Rotation Verification: The sampled data from V8 (a) and V10 (b) do not evolve in the same
way as the skin-colour model along the chromaticityr axis. Not allowing the skin chromaticity
distribution to rotate counter-clockwise in relation to the chromaticityr axis could be used as
an overall constraint.



C.3 Skin-Colour Model Conclusions

The verification of the skin-colour model has shown a close resemblance with data ac-
quired from two video sequences, V8 and V10, when it comes to the centers of mass of
the Gaussian models. Therefore, the chromaticityr center of mass should be possible
to use as an indicator of where the chromaticityg center of mass should be. Regarding
the evolvement of the relative size of the eigenvalues alongthe chromaticityr axis, only
the results of V8 could to some extend be said to follow the skin-colour model. It would
probably be better to use a softer constraint about that the variance along the chromatic-
ity r axis always must be larger than the variance along the chromaticity g axis. When
verifying the skin chromaticity distribution area size, the data from V8 and V10 did again
not follow the evolvement of the skin model along the chromaticity r axis. It was nev-
ertheless noted, that the area sizes of V8 and V10 always was close to the area size of
the skin-colour model. This can be used to make overall limitations of the area size by
constraining the variances along the chromaticityr andg axis. Finally, the rotation of the
major eigenvalue in relation to the chromaticityr axis was verified and again the results
from V8 and V10 did not follow the skin-colour model curve. The rotation was neverthe-
less always clockwise, which can be used to constrain the clockwise rotation to always
be above or equal to0Æ.



Appendix D

Video Collections

To be able to do experiments in this project, we have made a number of video sequences,
where people do hand-raises in many different ways. In some of the videos the CCT (the
illumination colour) is changed either artificially by using fluorescent lamps of different
CCTs or more naturally by pulling curtains back to let in sunlight through a window. The
videos were recorded with 25 Hz using a Sony DSR-PD150P digital camcorder which
have a 1/3 type CCD with a resolution of approximately400000 pixels. In all the videos
the camera was white balanced at a CCT of3680K, and afterwards the auto white balance
function was turned off. The videos were afterwards transfered to the program iMovie on
an iMac via a firewire connection. The videos was then saved asQuickTime movies using
Indeo5 compression. Thereafter, they was converted to AVI-files using a small program
called Movie Translator. Finally, we downscaled the videosto 320� 240 pixels using the
program VirtualDub.

The use of the Indeo5 compression changed the movement made from image to image in
the videos. Therefore, almost no movement is detectable in every second image. We have
not investigated the technical details behind this “feature”, but a few tests have shown that
the system runs fine when using only every second image of the videos. Therefore the
videos are said to be recorded at a framerate of 12.5 Hz throughout the report.

In the following sections we will describe the scenario for each of the videos.

D.1 Videos with Constant CCTs

We have made 7 video sequences using a controlled CCT of 3680K. This illumination
colour is created by having two pairs of vertical fluorescentlamps in front of the scene.
All other indoor lights are turned off and dark curtains are drawn in front of the windows
to block out the outdoor light. The following list describeseach of the video sequences.
Example images taken from the videos can be seen in Figure D.1.

V1 Two persons making correct hand-raises.

V2 Two persons making incorrect hand-raises.

V3 Two persons making correct hand-raises. A third person walks back an forth in the
background.

V4 Two persons making making a few hand-raises. A third person walks back and
forth in the foreground.
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V5 Two persons walks into the scene and sits down and do a couple of correct hand-
raises. The one person then leaves the scene for a short whileand the comes back.
Both persons then do a couple of hand-raises before they bothleave the scene.

V6 Two persons do correct hand-raises. A third person enters the scene in the back-
ground, writes something on the black border, and leaves thescene again.

V7 Two bare-armed persons making correct hand-raises.

(a) Image Example from V1 (b) Image Example from V2 (c) Image Example from V2

(d) Image Example from V3 (e) Image Example from V3 (f) Image Example from V4

(g) Image Example from V4 (h) Image Example from V5 (i) Image Example from V5

(j) Image Example from V6 (k) Image Example from V6 (l) Image Example from V7

Figure D.1: Image Examples from Videos with Fixed CCT: Figures (a) - (l) illustrates image examples from
the videos V1-V7.



D.2 Videos with Fast Changes in CCT

To be able to do experiments on VICOWIJOYs capability of adjusting to rather fast
changes in CCT, we have made 3 videos, where the CCT is changedartificially about
every 15th second. This is done by turning two vertical arrangements of fluorescent
lamps. Each arrangement holds 4 pairs of fluorescent lamps with CCTs of 2600K, 3680K,
4700K, and 6200K. The fluorescent lamps are turned in the samedirection such that we
do not get a mix of illumination colours. All other lights areturned off and outdoor light
coming through the windows is blocked out by dark curtains. In the list below each of the
videos are described. Example images from the videos can be seen in Figure D.2.

V8 One person making correct hand-raises.

V9 Another person making correct hand-raises.

V10 A third (quite relaxed) person making correct hand-raises.

(a) Image Example from V8 (b) Image Example from V8 (c) Image Example from V9

(d) Image Example from V9 (e) Image Example from
V10

(f) Image Example from
V10

Figure D.2: Image Examples from Videos with Fixed CCT: Figures (a) - (f) illustrates image examples from
the videos V8-V10.

D.3 Videos with Constant CCTs and Uniform Background

In these 6 videos we have used a very controlled environment.The recordings were made
in a closed room with no windows and with a grey screen as background. The CCT is
3680K in all the videos and is made by having two pairs of vertical fluorescent lamps in
front of the scene. Each of the scenarios of the videos are described in the following list.
Example images from the videos can be seen in Figure D.3.

V11 Two persons making correct hand-raises.



V12 Two persons making few correct hand-raises and many incorrect hand-raises. One
of the persons demonstrates his crawling talent.

V13 Two persons making correct hand-raises. The first one gets up, walks back and
forth in the background and then sits back down. Inspired by this, the second
person does the same.

V14 Two persons making making a few correct hand-raises. Only very small face rota-
tions are made.

V15 Two persons making a few correct hand-raises. Faces are rotated without limits.

V16 Two persons making mostly correct hand-raises.

D.4 Videos with Mixed Illumination Colours

The four last videos we have made have CCTs made of mixed illumination colours. In
V17 the only lights we have turned on are the fluorescent lampsin the ceiling. In V18
we combine this with artificial sunlight, which is made by an incandescent lamp which
is slowly increased and decreased in intensity. In V19 we draw back the curtains to mix
sunlight into the video. Finally, in V20 we do the same but have the fluorescent lamps in
the ceiling turned off. What happens in the four videos is described in the list below. In
Figure D.4 example images from the videos can be seen.

V17 Two persons making both correct and incorrect hand-raises.

V18 Two persons making correct hand-raises.

V19 Two persons making both correct and incorrect hand-raises.A third person pulls
back the curtains to let in the sunlight. He then walks a bit around in the background
before he finally draws the curtains in front of the windows again.

V20 Two persons making both correct and incorrect hand-raises.A third person pulls
back the curtains and sunlight enters the scene. He then leaves then scene for a
while, comes back, and pulls back the curtains. Finally he leaves the scene in the
background.



(a) Image Example from
V11

(b) Image Example from
V11

(c) Image Example from
V12

(d) Image Example from
V12

(e) Image Example from
V13

(f) Image Example from
V13

(g) Image Example from
V14

(h) Image Example from
V14

(i) Image Example from
V15

(j) Image Example from
V15

(k) Image Example from
V16

(l) Image Example from
V16

Figure D.3: Image Examples from Videos with Fixed CCT: Figures (a) - (l) illustrates image examples from
the videos V11-V16.



(a) Image Example from
V17

(b) Image Example from
V17

(c) Image Example from
V18

(d) Image Example from
V18

(e) Image Example from
V19

(f) Image Example from
V19

(g) Image Example from
V20

(h) Image Example from
V20

(i) Image Example from
V20

Figure D.4: Image Examples from Videos with mixed: Figures (a) - (i) illustrates image examples from the
videos V17-V20.


