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Abstract:

This report describes the investigation of me
ods to be used in a video conferencing syst¢
where a person gets the attention by raising
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or her right hand. A system is designed and

implemented and a number of video recordin
made to make it possible to do experiments
the methods.

To constrain the search area for hand raises,
faces in the videos are found and tracked.

find the faces, we first detect the skin-colours
the images using either lookup tables (LUT
lor Gaussian models. Methods which make
possible to adjust to changes in illuminati
colour are also investigated. A list of fag
candidates is made and each face candi
verified by looking at the size, solidity, similarit
to a nose-eye template, and elliptic shape. H
trackers are updated and new trackers sta
based on the face list. Different methods 1
tracking are investigated and a combination
the Mean Shift algorithm, ellipse fitting, and
Kalman filter is found to be suitable. Based

the face trackers, the areas in which to search

gs
on

the
To

in
's)

it

DN

e
ate
y
ace
rted
or
of
a
on
for

hand-raises are defined. To detect hand-rajses

the accumulated difference pictures (ADPSs)

used. Hand-raises will leave a vertical track
the ADPs, and can therefore be distinguish
from other skin-coloured objects passing by
the background or foreground.

Experiments are made to determine the best ¢
bination of methods to use and to find out h
well the system handles different situations sy
as illumination change, occlusion, movement
the background, etc. Finally, suggestions for
ture work are given and the investigations and
sults made in this report are concluded upon.
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Dansk Resune

Denne rapport omhandler hvorledes det kan gagres muligtrigrezson i en videokon-
ference at opnd opmeerksomhed fra et kamera ved at reekleet@sjd i vejret. Metoder
til dette formal undersgges og implementeres i et system, gar det muligt at eksperi-
mentere med metoderne i forskellige kombinationer.

For at begreense stgrrelsen af de omrader i billedet hvoledes efter handsopraekninger,
findes ansigterne fagrst og falges over tid. For at finde amsigt benyttes der hud-
farvedetektion ved brug af enten opslagstabeller ellersGianske modeller. Ydermere
undersgges og eksperimenteres der med metoder, som ggrutigt for systemet at
tilpasse sig til skift i lyskildefarven. Resultatet af hadfedetektionen segmenteres til
en liste af ansigtskandidater, som verificeres ved at tjeldtes rektanguleere form og
starrelse, deres soliditet, deres lighed med en gennesnsagte-gje-skabelon og deres
elliptiske form. Pa baggrund af denne liste opstartes nysigésfalgere og allerede
igangveerende fglgere opdateres. Forskellige metoder sonbiuges til at fglge an-
sigter undersgges og en kombination af Mean Shift-algeritrrellipsetilpasing og et
Kalmanfilter findes velegnet til brug i de miljger, som vi baskger os med i denne
rapport. Ud fra ansigtsfalgernes positioner beregnes déaen hvori der skal ledes efter
handsopreekninger. For at finde handsopraekninger kiggepaldet akkumulerede dif-
feresbillede, hvori handsopraekninger kan ses som ekatirtipor, hvilket gar det muligt
at skelne dem fra andre hudfarvede objekter, som det kandnparsderer forbi i bag- eller
forgrunden.

Ved hjeelp af eksperimenter findes der frem til de kombinatioaf metoder, som er
bedst at bruge. Desuden bruges eksperimenterne ogséfitidatud af, hvordan sys-
temet handterer forskellige situationer sasom skifsklidefarve, okklusion, beveegelse i
baggrunden m.v. Til sidst beskrives de fremtidige udvieetsuligheder for systemet og
der bliver konkluderet pa de undersggelser og resultdégrer opnaet i rapporten.






Preface

This Master’s Thesis is the result of a project made on the ®RI0S semester, spring
2001. It describes the investigation of methods for autansgieaker attention in video
conferences. Furthermore, a video conferencing systemmpgemented and used for
experiments.

The purpose of the report is to demonstrate that we are capébking the theories in the
area of computer vision to do a thorough analysis of an act@puter vision problem.
Furthermore, a theoretical or practical solution to thelypgon must be presented.

Aalborg University, June 6th, 2001.

Peter Zinck Nielsen Bjarke Andersen
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Chapter 1

Introduction

1.1 Problem Description

Video conferencing makes it possible for groups of peoptated in different parts of the
world to communicate almost as if they were in the same rodhnis i€ a great advantage
for companies that have offices in many countries, sincentszave them a lot of travel
expenses and make their employees feel more as a singlaltmitigh they are separated
by thousands of miles. Compared to other forms of commusicauch as emails and
telephone calls, video conferencing has the advantagendirgglive images. This makes
it a lot easier to communicate, because the involved peapierake full use of their body
languages when explaining something. Figure 1.1 illussra typical video conference
setup as we imagine it in the system we describe in this report

One of the primary problems when having a video conferende imake sure that the
person who is talking has the attention —i.e. is zoomed irffave just have a camera that
statically shows a whole group of people, it may be very diffifor other participating
groups to see who is talking and important information migghtost. One way of solving
this is to let a human control the camera and he must make®uamotn in on the person
who is talking. Of course this is not optimal, since the perdoing that is unable to
participate in the conference, and at the same time he or sis¢ Ime paid for doing a
rather tedious job. Some commercial systems [30, 29, 41ptaptomate the control task
by using acoustics-based tracking, where a microphoneeg@lan the camera is used to
find the direction of the person who is talking and make thearamzoom in on him or
her. Although this seems as a good solution, it has the disddge of being sensitive to
acoustic noise.

We would like to investigate if the control of the camera cardbne in another way, using
the video signal which is unaffected by acoustic noise. i th possible, an approach
using both acoustic and visual cues could result in an evae nobust system.

One way of discovering the talking person based only on Vigiiarmation, is to look
for the place in the video stream that is most active, sinoplgetend to be more active
when they talk than when they are silent [10]. Another soluttould be to search for
faces in the video stream, and then make use of some kind dfsignaling, e.g. raising
the hand, to identify the person that wants to talk. Sincednsrhave limitations in their
physical behaviors it should be possible to identify to vahtiead a raised hand belongs.
The people participating in the video conference could alse@quipped with a button
connected to the video conference system. This way a pexsad press the button



Video Conference Participants

Panorama
Camera
PTZ-
Camera

Output from PTZ-Camera

Figure 1.1: Typical Video Conference Setup: One of the cameras provddpanorama” view of the partic-
ipants, while another camera is zoomed in on the person wpeigking. It is the image from
the latter camera which will be sent to the video confereraméigipants at the other location(s).

when attention is wanted. One great disadvantage of thisaisthe system will have
to be calibrated every time the person using a particulaohunoves significantly (e.g.
more than 30 cm.), otherwise the camera will not know wheted# for the person who
pressed the button. Furthermore, this increases the hezdwanplexity of the system
since it will consist not only of the cameras and the compuietralso of the buttons.

In this project we have focused on developing a video conferesystem that makes use
of the hand-raise principle to detect the person who wargstthe attention. The system
will consist of two cameras; theanorama camerand thePan-Tilt-Zoom-camerédPTZ-
camera). The position and zoom-level of the panorama camdiged and its output
is used to search for faces and hand-raises. If a hand-metected, the PTZ-camera
is used to zoom in on the face of the person who wants the mte(gee Figure 1.1).
Throughout the report we will refer to the system as VICOVWJ®1 deoCOnferencing
WI thout aJOY stick) or the VICOWIJOY system.

1.2 Existing Systems

A system that has some similarity to the one we have in mindessribed in [10]. Here
Kriiger et al. present a teleconference system which usedtentive camera. They
assume that the person who is talking creates more motidrthbdisteners. This as-
sumption is used to turn a Pan-Tilt-Zoom-camera (PTZ-cajnierthe direction of the
area in the image which contains the most motion. Afterwaitds verified that there
is indeed a person in that direction, by analyzing the adtowsies received through a



microphone mounted on top of the camera. Video examples fhensystem in use can
be seen ottp://www.ks.informatik.uni-kiel.dé&/ok/research/research.html

Commercial systems for automatic speaker attention doexisd. Examples of these are
the SmartTrak Camera System made by VTel [41] and PolycomeiwStation [30]. Both
of these make use of voice tracking cameras — i.e. acoustis are received through a
microphone mounted on the PTZ-camera and used to find thetidineof the speaker. We
have not been able to find any commercial systems that makef wiial cues to focus
on the current speaker. This alone suggests that it is anndrieh needs more attention,
which we hope to give it with this report.

1.3 System Overview

To be able to zoom in on a persons face, its position must bekndhis can be achieved
using face detection. However, face detection may not firatécpilar face in each image.
Therefore, the system should have a way to keep track of wherfaces are, when face
detection does not find them. This can be done using a fadestréar each face that is
found using face detection. The tracker does not need toorelthe face positions and
sizes found by the face detection, but can use its own metioodisding the face, based
on where the face was in the last image, and the assumptibththtace will be close to

this position. This way, its becomes acceptable that the datection often does not find
the face, as long as new faces will be detected within a red@@ramount of time after

they appear in the image (e.g. a few seconds).

A face tracker is also desirable for another reason. Whenrsopas raising his hand, he
can be expected not to be moving his head very much, thatisssjiatially stable. This

can be used to make the system more robust towards the difidrels of noise that can
occur during a video conference, such as persons walking byei background. If it is

ensured that the camera only will zoom in on spatially stabjects, a face moving in the
background could not accidentally be zoomed in on, as itasialty unstable. Whether
a face is spatially stable can only be determined from teaipaformation about its

position and size, which a face tracker can provide.

The entire VICOWIJOY system illustrated in Figure 1.2 cetsiof a face detector, face
trackers, hand-raise detectors, and a control module &oPffiZ-camera. Separate face
trackers are started for each of the faces found by the faeete, and each face tracker
is associated with its own hand-raise detector that deteuts the person whose face is
being tracked raises his hand. The control module uses tieriation about the position
and size of the face from the face tracker for controlling Bfi&Z-camera to zoom in on
the person who has raised his hand.

When the face of a person is being tracked, it will be posdibleestrict the search for
hand-raise gestures to a region of interest (ROI) near thepethus reducing the com-
putational needs of the system. We will refer to this ROI ashand-raise RQIThe
hand-raise ROIs of two persons are illustrated in Figure W& impose the restriction
that hand-raises must be done using the right hand. Thetdfer hand-raise ROl will be
an area to the left of the person in the image.
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Figure 1.2: The VICOWIJOY Video Conferencing System.

Figure 1.3: Hand-Raise ROIs. The two large rectangles are the hand-Ris for the two persons being
tracked by the system.

1.4 Delimitation

We restrict ourselves to the investigation of methods faeck®on and tracking of faces,
and detection of hand-raise gestures. We shall not consideontrol of the PTZ-camera,
nor the communication, i.e. the exchange of images, betwgstems at different loca-
tions participating in a video conference.

We impose the following restrictions on the environment @adicipants in the video
conferencé:

e The background cannot contain large areas of skin colouraignmal/objects and
cannot contain a large number of sharp edges.

e Participants are only allowed to raise their right hand, #reltop of the fingers
must be at least at the same height as the top of the head wédank is raised.
The hand must be within the image while it is being raised. fidwd of the hand-
raising participant must be within the image as well.

e Participants are placed in a single row and the minimum -pggson distance is
0.6 m (center-to-center). They are not allowed to occludsh egher.

1These restrictions are inspired by a set of requirementgligepby Devitech ApS.



e The patrticipants are only tracked when they face (profilprafile) the camera.
In order to simplify the face detection, the participantssiriook straight into the
camera for the tracking to be initiated. Prior to this, thetipgpants may not be
tracked.

e The camera must be placed in approximately the chest/hagttlod the partici-
pants.

e The number of participants must be between 1 and 3.

1.5 Outline of Report

The structure of the report reflects the architecture of yis#esn presented in Figure 1.2.
In Chapter 2, methods for finding skin-coloured objects ia ittnage are investigated.
These methods are used by face detection, face trackindyamiiraise detection. Face
detection is described in Chapter 3, face tracking in Chaptand hand-raise detection
in Chapter 5. In Chapter 6, we present the design of the syitaimve have implemented
and used for experiments. The experiments and their resxdtdescribed in Chapter 7.
This is followed by suggestions for future work in Chaptem@l@onclusions in Chapter
9.






Chapter 2

Focus of Attention

In this chapter, methods to use for the initial focus of ditemin the VICOWIJOY system
are described. Several ways of detecting skin-colours aseribed. Furthermore, we in
particular describe how the system can adapt to illuminattbanges, e.g. due to a cloud
covering the sun or artificial lights being switched on anfi of

2.1 Introduction

When searching for humans the two major methods to use fosfotattention are skin-
colour detection and motion detection. We have decided ¢as@nly on detection of
skin-colours, since the investigations we made in [5] shibthat using motion detection
in the focus of attention phase did not aid the search for muia@es. In Chapter 5 motion
detection is nevertheless used for detecting hand-raisesdo not include this as a part
of the focus of attention phase, since it only applies to teection of hand-raises and
not detection of faces.

The first task of the VICOWIJOY system is to direct the attemtio regions in the image
which are likely to contain the objects of interest (also\wnoas ROIs for regions of
interest). In our case these are faces and hands. We witl teefhis task asocus of
Attention(FoA). Using FOA makes the job of the following methods ofdaerification,
face tracking, and hand-raise detection much easier, #iegeonly have to operate in the
areas found by the FOA methods. Because the face verificai@hods in most cases are
more complex and thereby more computational demanding ttie-oA methods, the
use of FOA also makes the system able to perform faster floeeps more frames per
second).

When searching for face and hands as we do in this projecctiet of skin-colours in a
chromatic colour space has been shown to be very effectived@s FoA [26, 20, 2, 39].
In these methods a likelihood image is created based ork#lhbod of each pixel being
skin-coloured. Further processing of this image is therd usedetect the skin-coloured
areas. The advantages of skin-colour detection methodkatriney are invariant towards
size and orientation and also light intensity if the rightoew models are used (refer to
Section 2.2). Furthermore, they are fast and thereforalsigitfor real-time tracking. To
identify the skin-colour likelihood of a colour, several theds can be used. We have
decided to investigate the uselajokup TablegLUTs) andGaussian modelsThese are
described in Sections 2.3 and 2.4.

Although the detection of skin-colours is invariant towsrchanges in light intensity,
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changes in light colour have a great influence on where takdar skin-colours in the
colour space used. Therefore we have also investigatedoagethihich make it possible
for the system to adapt to changes in lighting colour. Theselescribed in Section 2.5

2.2 Colour Models

It has been shown that although not very obvious to the hurgantee human skin-
colours lie in a small cluster when intensity is removed. (&kin-colours change in in-
tensity but not in chromaticity) [33]. In order to make thérskolour detection invariant
towards changes in the intensity of lighting, we need to ednthe RGB values of the
input image to another representation, which has lightsgree of its parameters. Exam-
ples of such models are YCrCh, HSV, YUV, and Normalized RG#&].[4T he results in
[44] show that the choice of colour model is not that impartarthey more or less per-
form equivalently in the experiments described in the Etidherefore we have chosen
to use the Normalized RGB (NRGB) model since this is the aomadel we have read
most about in the literature.

To transform an image from the RGB space to its representatithe NRGB space (also
known as thehromaticity planewhere the chromatic values indicate the “pure” colours)
Equations 2.1 through 2.3 are applied to every pixel.

R
"= RYG1B (1)
G
I"R+G+B (2.2)
B
— _  —1—r= 2.
b= RiG B Ty (2.3)

In Figure 2.1 it can be seen how a 3 dimensional distributioskm-colours in the RGB
model can be represented in only 2 dimensions in the chroitygplane. This is because
the last chromaticityp can be calculated whenand g are known, since intensity no
longer is part of the colour space.

2.3 Lookup Tables

A simple way of verifying whether a colour is skin-colouredrmt, is to define a set of
thresholds holding the minimum and maximum allowable valiechromaticityr andg.
Another way of describing this method is that a rectangufeador chromaticityr and
g in the chromaticity plane (see Figure 2.2(a)) is defined.oGal inside this rectangle
are defined as skin-coloured and colours outside the rdetasgion skin-coloured. This
method is rather simple, however it has some significant baaks. First of all, the
rectangle must be large enough to cover the colours of skithes appear under all
kinds of illumination. Therefore, many other colours th&e tctual skin-colours, will
be identified as skin-coloured. These can be considerdalses positivesvhereadalse
negativesare skin-colours which are identified as non skin-coloursing the rectangle
to define the skin-colours will in general give a high numbkfatse positives and a low
number of false negatives.

Another drawback of using the rectangle is that a colour fsdd as either skin-coloured
or non skin-coloured (i.e. its likelihood is either 1 or O)hdrefore, the likelihood image
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Figure 2.1: Skin-Colour Representations: The selected skin-colaiore(a) is represented by 3 dimensions
in the RGB model (b) and 2 dimensions in the chromaticity elér).

will be a simple binary image where white pixels indicatenskolours and black pixels
non skin-colours (see Figure 2.2(d)). This is a problem wthemumber of false positives
are high, since areas of non skin-colours might be joineti skin-coloured areas. This
can lead to a very inaccurate result of FOA and thereby arasing computation time
of the following methods of face verification and hand-rais¢ection.

Instead of using the rectangle or the thresholdgokup table(LUT) may be used. In

this project this will be a two dimensional table which hottls values of chromaticity
r andg in the chromaticity planer(is the columns ang the rows). Each record in the
LUT holds the likelihood of this particular combination ofandg being skin-coloured

(see Figure 2.2(b), where high intensity indicates a hikglilnood).

Compared to the use of the rectangle, the LUT makes it pessilile much more accurate
when defining whether a colour is skin-coloured or not. Fofstll, the area in the LUT
does not have to be as large as the rectangle. If the LUT eugdisted using the colours
of the skin-coloured objects that are being tracked as jripgan adapt to the current
skin-colours with good accuracy (see Section 2.5 for moauahdaption). Moreover,
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(e) Likelihood Image using the LUT (f) Thresholded Likelihood Image using the
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Figure 2.2: Comparing the Rectangle with the LUT: Based on the skinaotectangle (a) a binary image
(d) is created from the input image. Using a LUT (b) a skinecwollikelihood image (e) is made.
Comparing the thresholded likelihood image for the LUT (ftwthe binary image for the skin-
colour rectangle (d), shows that the use of a LUT gives a moceirate and more noise free
result.



it is possible to reflect how likely it is that a specific coldarskin-coloured — looking
at Figure 2.2(e) (where high intensity indicates a liketilaclose to 1 and low intensity
a likelihood close to 0) it can be seen, that the faces andsharedmuch more likely to
be skin-coloured than e.g. the table. Finally, threshgdhre likelihood image makes it
possible to ignore pixels that have a very low likelihood efrty skin-coloured (can be
considered as noise). Comparing the result of using thamgts in Figure 2.2(d) with
the result of using a LUT in Figure 2.2(f), it can be seen theihg a LUT reduces the
noise and increases the accuracy.

2.4 Gaussian Models

Skin-colours can be described using a Gaussian model ifdloeis are normalized and
the skin is illuminated by a single colour [42, 2]. Accorditig[39, 37] this even holds
when different races are represented in the image.

2.4.1 Estimating the Model from a LUT

According to Feriset al. in [33] and Sunet al. in [39], a unimodal Gaussian density
function can be denoted &(m, ¥?) where

m — |:'r'avg:|
gavg
or simply the center of mass, aiit the covariance matrixwhere

Y |:Urr Urg:|

Ogr Ogg

ando.. the standard deviations. To calculate the mean of chroityaticr,,,, EQuation
2.6 is used. In thisy; represents chromaticity of a vectorx; = [r; ¢;]* in the LUT S
and N the size ofS. The functionS(x;) returns the normalized skin-colour likelihood
of the colour represented by the vecigr This is done according to Equation 2.4, where
Xmaz fEpresents the colour with the highest frequencyinThe reason why we use the
the normalized skin-colour likelihood is that we want to @séxed threshold value to
segment the likelihood image into a binary image of skireaad and non skin-colours.
Alternatively, we could use a variable threshold value,chtshould be calculated based
on the likelihood of the colour with the highest frequencysSinWe have chosen the first
strategy, since we think it is easier to relate to a fixed thwkkthan a changing threshold.

The function/sum/(S) defined in Equation 2.5 returns the sum of the likelihoodsafbr
x; in the datasesb.

The mean for chromaticity is calculated in the same way, only now chromatigityy;,
is used from the LUTS. The equation for this can be seen in Equation 2.7.

L\ _freq(xi)
S(xi) = oy (2.4)

1We refer the reader to Appendix A for further description dfipability theory.




Isum(S) = Z S(x;) (2.5)
i=1

Tavg = lsum Z 1S (%) (2.6)

Javg = lsum Zgz Xz (27)

The covariance matrix.?, of the Gaussian model, defines how concentrated the proba-
bility mass is around the centeti. A low covariance indicates that the probabilities are
high close tan, and a high covariance indicates that the probabilitiesletelbuted over

a larger area. To calculate the covarianegs, in X2, based on the LUT consisting of
vectors[r; g;]7 and their likelihoods, Equations 2.8 to 2.11 are used.

N
o lsum Z ~ Tavg)” S (x1) (2.8)
z:l
1 N
072‘9 - m ;(T T‘M’g)(g gavg)S(Xi) (29)
1
o—ﬁr = Isum(S) ;(g Gavg) (Ti — Tavg) S (i) (2.10)

Mz

av Z 2.11
g lsum = Gavg)"5(x:) ( )

z:l
As it can be seen from Equation 2.9 and 2.10, the valudé)fand ogr will always be
equal. The estimation of the model can therefore be comipotdly optimized, if we
only calculate one of these values and then assign this t@bhe other. In Figure 2.3 the
appearance of a Gaussian model estimated from the skinwsabd the faces in an image

can be seen. The estimated center of massand covariance matrix,? are described
below.

~ [0.467 > [0435 —0.104
= 0277 ~|-0.104  0.087

2.4.2 Calculating Likelihoods from the Model

The Gaussian modéV (m, >22) estimated in the previous section, can be used to calcu-
late skin-colour likelihoods of the pixels in an input imadehe image colours are first
converted to chromaticity plane and afterwards the lilaih, /., (x;), of each pixel,

x;, being skin-coloured is calculated using Equation 2.12.

exp[—%(xi —m)? inv(¥?)(x; — m)]
27 det(22)%

Lskin(Xi) = (2.12)
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Figure 2.3: Estimating a Gaussian Model from a LUT: Using the skin-caddno the faces in the input image
(a) a LUT is created (b). The Gaussian model (c) is then egtnaased on the chromaticity
andg values and the normalized skin-colour likelihoods of thivas represented b, g).

Since a Gaussian model is a probability model and we use a@mdional model to de-
scribe skin-colours, its volume is 1. Therefore, the cedters not usually have the likeli-
hood 1, unless the model is estimated from a single valueesex;) = 1. E.g. the like-
lihood of the center of the model estimated in last sectidess thar8.5 - 103 = 0.35%
(see Figure 2.3). To get the normalized likelihood, we neeadjust the result of Equa-
tion 2.12, such that a colour placed in the center of the Gassodel gets a likelihood
of 1. This is done as described by Equation 2.13 where evkeyiibod, [, (x;), is
divided by the likelihood of the center of mass in the Gaussi@del,/sx;, (m).

Lskin (X4)

normlsgin(Xi) = 7 o ()
SKRIN

(2.13)

The image shown in Figure 2.4(e) illustrates the skin-colikelihoods when using a
Gaussian model. Comparing it to the result of using a LUT whg&shown in Figure

2.4(d), no significant difference can be observed. Accgdm[24] the use of LUTs

should give slightly more accurate results compared to sieeafl Gaussian models. Fur-
thermore, LUTs should be faster to calculate, which is déér in real-time systems.
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Figure 2.4: Comparing a Gaussian Model with a LUT: The likelihood ima@Bsand (e) of the input image
(c) is created based on a LUT (a) and a Gaussian model (b).€Biéts are close to identical.

2.5 Handling Changes in Light Colours

As long as the lighting colour does not change, a LUT or a Ganswodel estimated
from a training set of images can be used to find skin-colotitswever, in video con-
ferences lighting colour may change, i.e. lights in theiogibre turned on and off, light
coming through a window changes when the sun comes and goeains are pulled
forth and back, etc. When the colour of the lighting chang@es area in the chromaticity
plane which represents skin-colours (also known as the aiiomaticity distribution)

moves [38, 20]. A system which should be able to handle craimjeghting colour must
therefore be able to adjust itself to these changes basethsmnvations from the input
images.

2.5.1 The Skin Locus

When the illumination colour changes, the skin chromatidistribution moves along
a locus which is similar to thé&lanckian locus[26, 19]. The Planckian locus is the
line in chromaticity plane along which colours Bfackbody radiatorsare placeé. A

Blackbody radiator is a theoretical object, which is a perfeadiator that changes in
colour when heated. Treorrelated colour temperaturCCT) of a light source may then
be measured as the temperature (measured in Kelvin (K))edeedmnake a Blackbody

2Refer to Appendix C for more information about the skin-eslaodel we have used in this project.
This model was first described by Storriagal.in [27]



radiator the same colour (we refer to [18] for more theorywtti®lackbody radiators and
colour temperatures). Not all light sources have a coloat i similar to the colour of

a Blackbody radiator, but the everyday light sources suctuatight, fluorescent lamps,
light bulbs, etc. do. As long as these are used, the skinicohmdel we have used in this
project should be valid.

In the following we refer to the line along which the skin chaticity distributions in
the skin colour model are placed as #ién locus What happens is that when the CCT
decreases (i.e. when the CCT is low objects appear redditwhen the CCT is high
they appear bluish), the skin chromaticity distributionve® to the right along the skin
locus (see Figure 2.5). If the CCT increases, the skin chticityadistribution moves to
the left. Moreover, the size and shape of the skin chrontgtitistribution changes, when
it moves along the chromaticity axis. Finally, the skin chromaticity distribution also
rotates clockwise when moving right along the chromaticigxis. In Figure 2.5 exam-
ples of skin chromaticity distributions along the skin lscre illustrated. In this figure
a membership function defines the upper and lower boundattyeo$kin chromaticities
(the two yellow lines). In [19] they estimated this membgudianction as two quadratic
functions. To decide whether a pix@l, g) is inside the upper and lower boundary, Equa-
tions 2.14 to 2.16 are used. The values of the parametgysb,,, cup, Adown, bdown
andcg.n are estimated from a set of training images.

Gup = Aupr2 + bypr + cup (2.14)
9down = 14down'r2 + bdownlr + Cdown (215)
1 wp) and
Skin(']", g) — ’ (g < g .p) (g > gdown) (216)
0, otherwise

2.5.2 Lookup Table Update

To adapt to changes in CCT when using LUTSs, the skin-coloameds found in the
images can be used to update the LUT. If e.g. the faces aretelétend tracked, the LUT
can be updated with pixels from these. In this way a changedm @ill eventually be
reflected in the LUT. In the following we will explain two ways updating a LUT.

Simple Update

The simplest way of updating a LU, at time¢ based on a region of interest (ROI —
could e.g. be a face) in the input image, is to create a LMT,for this ROl and then
adjust the values i according to Equation 2.17.

In this, S(x;) and M (x;) returns the normalized skin-colour likelihood of a coloyr=
[r g]* in respectivelyS and M. skin(x;) uses Equation 2.16 to detect whether [thg]”
values inx; are inside the area of skin-colours in chromaticity planeait

Si(x;) = (1 — @) Sp—1(x3) + aMy(x;))skin(x;) (2.17)
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Figure 2.5: The Skin Locus: The skin chromaticity distribution movesra a locus similar to the Planckian
locus of Blackbody radiators when the CCT changes. Wherggoam the left to the right along
the skin locus, the area of the skin chromaticity distribntalso changes in size and shape and
rotates clockwise. The figure illustrates 6 different skinamaticity distributions along the skin
locus. Upper and lower boundaries for skin chromaticittee (yellow lines) can be estimated
from a set of training images.

The constanfd < o < 1 is used to control how fast the adaption occurs — i.e. wihén
close to 1 the system will adapt very quickly.

When S has been updated according A6, it must be normalized such that the high-
est likelihood of a pixelS(x;) is 1. This is done by dividing every value i with its
maximum likelihood.

Ratio Update

Calculating LUTs asatio histograms[19] is another way of finding the likelihoods of
skin-colours. Not normalized LUTs are made for both the R@l, and for the whole
image,/. The ratio LUT, R, at timet is then calculated as

M;

Ry = I,

and afterwards normalized likelihoods are computed byditig R with its highest like-
lihood value. In this way, colours which fall inside the skihromaticity area and are
highly represented in the input image, will not have gretgatfon the likelihoods in the
LUT. If e.g. a large, light brown cupboard is present in thpunimages, the use of ratio
update ensures that skin-colours that are highly repredem this cupboard do not get
high likelihoods. Therefore, the cupboard colours will et high skin-colour likeli-
hoods although they should happen to be of some of the sarnersas the faces that
are being tracked.



Equation 2.18 illustrates how the colaxy in S is updated at the timewhen using ratio
update. The functionkin(x;) uses Equation 2.16 to determine if a colayfalls inside
the skin chromaticity area. The constént « < 1 is used to control the adaption speed
over time.

Si(xi) = (1 — @) Sp1(xs) + aRi(x;)) skin(x;) (2.18)

2.5.3 Gaussian Model Update

When using a Gaussian model to represent skin-colours onwdticity plane, the adap-
tion to changes in CCT can occur in many ways. Amongst thesé&aussian ratio

updateandweighted parameters of Gaussianbich will be described in the following
sections.

Gaussian Ratio Update

This method makes heavy use of the LUT ratio method explaimébe previous sec-
tion. A Gaussian modeV (m, ¥?) is represented by a LUT. This is done by calculating
the normalized likelihood for each of the possible postiat, in the LUT using Equa-
tion 2.13 on page 13. The LUT is then updated with skin-cadtom ROIs in the images
in the same way as explained in Section 2.5.2. When this is,donew Gaussian model
is estimated from the updated LUT as described in Sectiod 2@ page 11.

Shortly said this method is the same as LUT ratio update,pixtbat a Gaussian model
is estimated from the LUT and afterwards used to update th€& tdJhold likelihoods
which fits to this model.

Weighted Parameters of Gaussians

In this method a Gaussian modél(n, £2) is estimated from the ROIs in the input image.
Based on the parameters from this model, the parameterg @dlssian model for skin-
colours,N (m, ¥2), is updated at timeé using Equation 2.19 and 2.20.

m; = (1 — a)mt,l + ang (219)

57 =(1-B)Si, +BE (2.20)

As for LUTSs, the constant8 < o < 1 and0 < g8 < 1 can be used to control how fast
the adaption to changes in CCT should occur.d.eontrols the position of the center of
mass;m, of the Gaussian model arftithe covariances in the matriz?.

2.5.4 Moment Constraints

If for some reason the adaption goes wrong, such as when a kl{Jaassian model
“over-adapts” to skin-colours in the face that is being kextt; it could happen that the
updated version of the LUT or Gaussian model is distributegr @ very small area in
chromaticity plane. Over-adaption happens when — acogrthnthe current LUT or



Gaussian model — the ROI used to update the LUT or Gaussiarelnooty contains
very few, tightly clustered skin-colours. This may happkthe face is partly occluded,
the illumination changes, or the face is being tracked ineately and parts of the back-
ground are present in the ROI. Having small skin chromatidistributions in the LUT
or Gaussian model lead to that only very few skin-colourd el detected in the future
images and thereby too small objects will be found. In thesivoase faces being tracked
are lost.

The opposite may happen if the skin chromaticities in the lddTcaussian model dis-
tributes over a very large area. Then too many pixels willdentified as skin-coloured
and too large objects will be found. Large distributions roagur if not only the face but
also parts of a skin-coloured background are present in @leuRed to update the LT or
Gaussian model.

Wrong adaption can also move the skin chromaticity distidouaway from the skin

locus. Again, this could happen due to occlusions, ina¢euracking, or illumination

changes. In the worst case, the skin chromaticity distiobuiight move to the edge of
the boundaries defined in Equations 2.14 and 2.15 on pagehis.cduld again lead to
no skin-coloured pixels being found and, as a consequenteatfloss of faces being
tracked.

To avoid these situations, the moments of the LUT and the €ausnodel can be con-
strained. Examples of how to do that are explained in theviotig sections.

Center of Mass

To make sure that the skin chromaticity distribution in tHTLor the Gaussian model
does not move in a wrong direction (i.e. out of the area of-skilours), a constraint on
the position of its center of mass can be made. How to caketife center of mass in a
Gaussian model was shown in Equations 2.5 to 2.7 on page I&ldualate the center of
mass for a LUT, the same equations are used. To constrairoigop of the center of
mass of either the Gaussian model or the LUT, we can demani liea within a certain
distance of the skin locus. This can be done by using the clioity » value of the
center of mass to set minimum and maximum borders for thenchtigity g value center
of mass. l.e. if the chromaticity center of mass is below the minimum border it is set
to the minimum border and if it is above the maximum bordes isét to the maximum
border. Updating a Gaussian model in this way is simple — weghange the position of
its center of mass. For a LUT we also have to move all its liadids the same distance
as its center of mass is moved.

Variance and Covariance Size

Human skin-colours tend to be distributed across an areaeitain size in chromaticity
plane. According to our investigations made in AppendixI@, shape of this area will
be close to circular when the CCT is high and a flattened ellipeen the CCT is low.
Moreover, the area gets smaller when moving in either doacilong the chromaticity
r axis from a chromaticity- value of(0.357. l.e. high and low CCTs give small areas,
whereas CCTs in between give larger areas. Finally, thewaiteeotate clockwise when
it moves to the right along the chromaticityaxis (refer to Figure 2.5 on page 16).

The verifications of the skin-colour model in Appendix C skaithat using the amount
of chromaticityr as an indication of how to constrain the variances and canees ir:?



was not a good idea. Overall constraints on the valués?ishould be used instead. To
control the size and shape of the skin chromaticity distidny we can make minimum
and maximum borders for the sizes of the variances alonght@aticityr andg axes,
o7, andoy,. Furthermore, we can demand théf always is larger than?, . Finally, we
can ensure clockwise rotation by demanding that the caveetso;, ando,, always are
negative (i.e. positive covariancesiHt indicate counterclockwise rotation and negative
covariances indicate clockwise rotation). LUTs can als@destrained if we calculate
covariance matrices similar ©2 and use constraints on these.

Even in the case where the variances and covariances are rjltth sizes, problems may

arise for LUTs. This is because their variances and covegiaican be represented by a
few, relatively large values (this is not the case for Garssnodels since they always

spread normally). Therefore, a minimum number of likeliilsanust be larger than the

mean of the likelihoods in a LUT.

Constraining Gaussian Models

To constrain the shape of the Gaussian model we demand ¢heatiancer2, along the
chromaticityr axis is always larger than or equal to the varianggalong the chromatic-
ity g axis. This is done according to Equation 2.21.

o2 . otherwise

2 2 2

o Ogg > O

2 T g99 rr

ol = { (2.21)
99’

To constrain the area size of the Gaussian model, minimurmendmum values for the
variances along the chromaticityandg axis are used. These can be estimated using the
skin-colour model described in Appendix C. Equations 2.2@ 2.23 illustrate how the
variances are constrainety,;,», maz, Bmin, @NdBmq, are the minimum an maximum
borders for the variances along the chromaticiggndg axis.

Umin area < Amyin
2
Orr1 = § Omaz, OT€G > Omay (222)
o? otherwise

rry

/Bmina area < /Bmm
2
Ogg2 = Brmaz, area > Pmaa (2.23)
02,1, Otherwise

To constrain the rotation of the Gaussian model we simplyataithat the covariances
or, ando?, are negative or zero. This is done in Equation 2.24 and 2.25.

0 2 0
o2 =d gV (2.24)
2 otherwise

2
S (2.25)
o, Otherwise



When all the variances and covariances have been constyaieeneed to update,,
ando,, to reflect the changes which may have happened.tando,,. This is done
according to Equations 2.26 and 2.27.

o o

Orga = Orgiy | = | =& (2.26)
Orrl \ Ogg2

2 2 Orr | Ogg

Ogr? == Og?"l (227)

Orrl \ Ogg2

Constraining LUTs

Handling too small or too large variances and covariances@d s is also possible. First

of all, we need to calculate the variances for the chromtgticiand g values, and the
covariance along they axis. This is done in the same way as for Gaussian models which
was shown in Equations 2.8 to 2.11 on page 12.

Afterwards, two of the rules used to constrain the Gaussiadeiare verified. These are
to ensure thatrgg is smaller thaw?2, (shape) and that the variances along the chromaticity
r andg axis are between minimum and maximum borders (area sizeha¥e decided
not to constrain the rotation of a LUT.

The actions taken when the rules of shape and area size digreah differ from the
actions made on Gaussian model. This is because LUTs haildealikelihood values,
whereas Gaussian models calculate them based on their gt@ram It is not possible
to change a LUT simply by changing the values of it varianaesowariances. Instead
we use dilation and erosion to increase and decrease the fizbe variances and the
covariances until they are above or below a border value.

If o3, > o7, we erode the LUT along the chromaticigyaxis untilo;, < o7.. Erosion
along the chromaticity axis is done by changing each likelihood’s value to the murim
value of its neighbours and itself. Since the chromatigipxis is vertical, we look at the
two nearest vertical neighbodtsEquation 2.28 illustrates the actions taken to constrain
oz, to be smaller tham?,. S is the LUT anderode,, erodesS along the chromaticity

g axis. After each erosion the LUT is normalized, and a new Gamae matrixX? is
calculated for the LUT, and the value @jg in this is used to find out if it is necessary to
erode the LUT again.

l15(S) = Its(erodegyy(S)), 039 > o2, (2.28)
S, otherwise '

To control the area size of the skin chromaticity distribatindicated by-7, andog,, we
either dilate or erode the LUT along the appropriate axid urgets above the minimum
border or below the maximum border. Dilation is the oppositerosion, which means
that instead of setting a likelihood to the lowest value sélit and its neighbours, it is
set to the highest value. Equation 2.29 shows the actions taken to ensure that’,
andagg are between minimum and maximum borders. When eroding datindj along
the chromaticityy axis, the two nearest horizontal neighbours are used ithsithe two
nearest vertical neighbour&,,,, maz, Bmin, @NdBma, are the minimum an maximum

borders for the variances along the chromatieitgnd g axis. After each erosion the

We also refer to [31] for more theory about dilation and easi



LUT is normalized and new variances calculated. The valfi¢isese are used to check
whether another dilation or erosion 8fis necessary.

(Ita(erode,(S)), 02, > Cmas
Ita(dilate,(S)), 02, < Qmin
Ita(S) = { lta(erodeyy(S)), 05y > Bmaz (2.29)
lta(dilategy(S)), 054 < Bmin
LS, otherwise

When the variances of the LUT have been made of appropriaés,sive need to make
sure that the skin-colours not are represented by a low nuofidéelihoods with large
values. This is done by ensuring that a minimum percentadigadihoods is above the
mean of the likelihoods. The mean is calculated accordinggoation 2.30 wheré/

is the number of likelihoods that have a value above 0 Ané the total number of
likelihoods. S(x;) returns the likelihood value at position = [r g]” in the LUT S.

1 N

tmean(S) = 7+ Z_Zl S(x;) (2.30)
Afterwards, we check if the percentage of likelihodB§S) > Imean(S) is higher than

a minimum values. If not, we raise the values of the likelihoods which are abf6wand
below the mean with a constant valyeln Equation 2.31 and 2.32 the actions to be taken
to ensure a minimum percentage of likelihoods above the measummarizedmean

is the original likelihood mean of the LU¥.

Suaa(xi) = S(xi)+7, 0<S(x;) <lmeans (2.31)
GO S(xy), otherwise '
It B
S, otherwise

2.6 Focus of Attention Conclusions

In this chapter, methods for the initial FOA of a video coefering system have been de-
scribed. If the RGB colours of an image with a single illuntioa colour are normalized,
human skin-colours are located in a very small area. Thidearsed to make an effective
distinction between skin-colours and non skin-colourshmitnage. Two ways of repre-
senting skin chromaticity distributions have been ingggtd. Lookup tables (LUTs) and
Gaussian models. LUTs consist of likelihoods of skin-caton chromaticity plane and
are calculated using values from skin-coloured areas, iwbould e.g. be faces that are
being tracked. A likelihood image is made based on the LUTanthput image. This
image can afterwards be thresholded to remove pixels witimalaw likelihood of being
skin-coloured.

The skin chromaticity distribution is close to normal aatiog to [39, 37]. Therefore, a
Gaussian model can be used to describe skin-colour liketihé Gaussian skin-colour
model can be estimated from a set of training images or froagis acquired at run-time
from the objects being tracked. Comparing LUTs and Gaussiagels, shows that they



produce more or less the same results. According to [24] L&hRaild be slightly more
accurate and computationally faster than Gaussian models.

If the LUT or Gaussian model is estimated off-line, problewit occur as soon as the
correlated colour temperature (CCT) changes. This is tsecthe skin chromaticity dis-
tribution moves when the CCT changes. This movement folltthvesskin locus, which
is almost placed along the Planckian locus of Blackbodyatads. A system capable of
coping with changes in CCTs must therefore be able to adgsif io these changes. To
update the LUT or Gaussian model to reflect the skin-colondeuthe current CCT, the
skin-coloured areas of the objects being tracked can be uHeel LUT can be updated
using eithersimple updater ratio update Both methods calculate a new LUT of skin-
colour likelihoods of the objects being tracked. The simpkthod then updates the LUT
used for skin-colour detection, using a constant betweemdOlato control how fast the
adaption should occur. The ratio method divides the LUT nfeal|a the objects being
tracked with a LUT of the whole image, and uses the resultisftthupdate the LUT used
for skin-colour detection. The advantage of doing thishet tcolours which are highly
represented in the input image will only have little effenttbe likelihoods in the updated
LUT.

Two ways to update a Gaussian model to reflect the positioneogkin chromaticity dis-
tribution were also explained. These &aussian ratio updatandweighted parameters
of GaussiansThe ratio method makes heavy use of the ratio method for LUBiMply
calculates a LUT holding the likelihoods in the Gaussian ehdivided by the likelihood
of its center. Updates then occur as with a normal LUT butratieds a new Gaussian
model is estimated from the LUT. This new Gaussian modelés thgain used to up-
date the LUT to hold its likelihoods divided by the likelirdof its center. The weighted
parameter method first calculates a new Gaussian model tignghromaticities of the
objects being tracked. Based on the parameters of this miteeimodel used for skin-
colour detection is updated. This is done in the same wayrddfds by using constants
to weight how fast the adaption to new values should occur.

To avoid that regions of interest (ROIs) holding many nomstolours make the calcu-
lated position and area of the skin chromaticity distribotreflect something else than
reality, constraints can be made on the moments of the LU@SGaussian models. In
Appendix C we have investigated and verified a skin-coloudehanvented by Storring
et al. in [27]. These investigations showed that areas of skinroataity distributions
are of certain sizes. Therefore, minimum and maximum vaifiéise variances along the
chromaticityr andg axes can be used to avoid situations where the areas get sdloosm
too large. Furthermore, the variance along the chromsticéxis is nearly always larger
than the variance along the chromaticityxis. This can be used to constrain the size of
the chromaticityg variance to be less than or equal to the chromaticityariance. The
skin chromaticity distribution also rotates clockwise whmaoving to the right along the
chromaticityr axis. Using a minimum constraint of always having clockwisgtion of
the skin chromaticity distribution should therefore be @dadea. This can be ensured
by always making the covariances 0 or negative. Accordirtpednvestigations made in
Appendix C, the position of the center of mass of the LUT or@sissian model can be
also be constrained to be within a certain distance of the Iskius. If the center moves
further away it can simply be relocated in the Gaussian moaethe LUT all the like-
lihoods also need to be moved by the same offset as the cdnteass. This is because
LUTs hold all the likelihood values, whereas the Gaussiadetscalculate them based
on their parameters.



Chapter 3

Face Verification

In this chapter methods to use for face verification are desd. The likelihood image
generated by the focus of attention phase is preprocesse@degmented into objects of
face candidates. Based on size, shape, solidity, tempktiehing using an average nose-
eye template, and ellipse matching each face candidatassifled as face or non-face.

3.1 Introduction

In the previous chapter it was explained how the detectioskof-colours can be used
for directing the focus of attention (FOA) to areas in the g@s which are of further
interest. In Section 3.2 we describe how a number of pregsiicg operations followed
by contour segmentation are used to group the skin-col&ealiiood image into a list of
face candidates Afterwards, in Section 3.3, face candidates which are acedike in
size and shape are removed using a rectangular size and fitepd he solidity of the
face candidates which made it through this filter is then astexb — i.e. the solidity of
faces will be high since most parts of them are skin-colour8dlidity is explained in
Section 3.4. Following that, the remaining face candidatescontrolled using nose-eye
template matching. This is done in Section 3.5. Finally, ahoe for detecting ellipses
in gradient images is applied to the face candidates whish silirvived the nose-eye
template matching. This method is explained in Section 3.6.

Figure 3.1 illustrates the face verification process. Asit be seen, the face verification
methods are organized serially and in order of increasimgptexity'. This is because
it supports the computational efficiency of the system, esitie simple methods (the
rectangle and solidity filters) remove the face candidateiEhvare far from being face-
like. In this way, only the face candidates which have a ctesemblance with faces are
used as input to the more complex methods of template aps$elinatching.

It is more important not to identify anything else than faesdaces, than to find all the
faces in all the images. This is because the face candidéies are verified as faces are
used to start new face trackers. These new trackers haverictuon the areas used to
search for hand-raises in the already active face trackersdfer the reader to Chapter 5
on page 51 for more about hand-raise detection). Theraf@emething else than a face
is classified as a face (also known afakse positivg it may cause that hand-raises are
missed. The face verification methods must therefore be s@ideenough to avoid that
(preferably) any false positives are made. When doing thesnumber of faces that are

Although it can be argued whether the template matchingeetlipse matching is the most complex.
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identified as non-faces (also knownfatse negativgswill inevitably raise. However, a
high number of false negatives is not that big a problem, leeave use videos of 12.5
Hz. l.e. if the number of false positives is e.g. 75% it wouitl be possible to detect a
face in every fourth image or more than 3 times per second. tifite used to find the
face of a participant in a video conference would theref@@lmost not noticeable.

Likelihood Image Preprocessing and Face Candidates List p| Rectangular Shape |
Segmentation and Size Filter
o
gz
3lo
gls
ag
Binary Image g g
S
ol &
Ziy
5K
o
A\
Elliptical List of Face Candidates Which Nose-Eye _ List of Face Candidates Solidity Filt
Shape Filter " Matched the Nose-Eye Template | Template Matching | of Correct Solidity olidity Filter <

A A

Gradient Image Gray Scale Image

1817 saoe ondijg

Nose-Eye
Template

=

Figure 3.1: The Face Verification Process: Based on the skin-coloulili@ed image made in the focus of
attention phase, face candidates are found and verifiedr€Bodting list of faces are illustrated
as green ellipses in the original input image.

3.2 Preprocessing and Segmentation

To enhance the areas of high likelihoods in the skin-colitihood image, the morpho-
logical operations erosion and dilation can be used. Rhistuse of erosion can remove
isolated likelihoods, and the low likelihoods which tendmalong the contour of faces.
Afterwards, dilation can be used to enlarge the objects whre left after the erosion.
Both methods also have the effect of quantizing groupingsiraflar likelihoods in the
likelihood image into a lower number of gray levels (see FegB.2(b) and 3.2(c)). l.e.
when erosion is used every pixel is set to the lowest grayl ieviés neighbourhood (in
this case we have defined the neighbourhood as the 8 neaigishowars, also known as
8-connectivity). Therefore, when applied enough times, likelihood image will even-
tually consist of only one gray level — the lowest in the imager dilation the opposite
happens, i.e. a pixel is set to the highest gray level in it®@ected neighbourhood.
Therefore, if dilation is used enough times, the likelihoothge will eventually consist
of only the gray level of the highest likelihood in the image.

When using erosion and dilation in reasondbdembinations, the result will be a like-
lihood image where groupings of high likelihoods are raiaed groupings of low like-
lihoods are lowered (see Figure 3.2(c)). Afterwards, a sntipreshold method can be

2\We have found a combination @f erosion andt — 6x dilation to be reasonable in this project. This
is when images a$20 x 240 pixels are used and erosion and dilation is done using Sestiivity



used to make a binary image where white pixels are skin arak lpixels non-skin (see
Figure 3.2(d)). This image will then be used as input to tlggrssntation method.

(a) Input Image (b) Likelihood Image (c) Dilated and Eroded Like-
lihood Image

(d) Thresholded Dilated and Eroded Image (e) Thresholded Likelihood Image

Figure 3.2: Preprocessing of Likelihood Image: The FoA phase genethtetikelihood image (b) based
on the input image (a). Using dilation and erosion (c) betbresholding the image makes it
possible to remove noise and make clearer distinctionsdmivthe groupings of likelihoods.
In this case 1 time of erosion and 4 times of dilation has bessudu Comparing the result of
thresholding (a threshold of 200 was used) the likelihoodgemwith (d) and without (e) the use
of dilation and erosion, should confirm the advantages afgisrosion and dilation.

3.2.1 Segmentation

To segment the binary image generated by the preprocessatigods into objects of
face candidates, we use a contour segmentation methodh#]method is only used to
find the bounding boxes of the face candidates, i.e. we dos®the information of the
contours to anything. An alternative method to use for theesaurpose, could be the
connected components method described in [12].

The input image can be divided into foreground (white) mxahd background (black)
pixels. Only white pixels are considered for the contourssithose represent skin-
colours. To describe the contours we gbain codeg12]. For any pixel we can enumer-
ate all its neighbours with numbers from 0 to 7 (see Figur¢b3)3 These numbers are
used to indicate where the next pixel along the contour shbelfound. l.e. 2 for upper
left, 4 for lower left, 7 for right, etc. (see description ditobject in Figure 3.3). Looking
at the 8 nearest neighbours when searching for the nextgiizel contour is also referred
to as using3-connectivity This is one of the two common sorts of connectivity. The pthe
is 4-connectivitywhere only the 4 nearest neighbours are being considered.
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Figure 3.3: Chain Codes: To describe the contour of an object (a) we usaia code, where numbers (b)
indicate where to find the next pixel along the contour. Is ttase the object (a) has the chain
code: 7765533211.

To find the contours in the image we start in the upper left eoamd work through all
pixels from left to right, top to bottom (also known as rasteanning). Every time a
white pixel is encountered, we mark it as unavailable anthie a new chain code object
and insert the position of the pixel (known as #tarting pointof the contour) into it.
Thereafter, the chain code of the contour is generated biirigofor white, available
pixels using 8-connectivity. If any is found and it is 8-cewted to at least one black
pixel (i.e. it is at the border of an object), this new pixemsarked as unavailable and the
direction of it is added to the chain code. Next, we do agaak lfior available, white
pixels using 8-connectivity and if any is found it is markexlumavailable and added to
the chain code. This continues until no available, whiteefsbare in the neighbourhood
of a pixel. If this pixel is 8-connected to the starting poaitthe contour, we have a
valid description of a contour and add it to a list of contouBtherwise, the contour is
discarded.

Hereafter, we return to the raster scanning of the image aactk for a new available,

white pixel which can be used to initiate a new contour. Dgirihe raster scanning

we make sure to mark white pixels as unavailable if they aoerected to a white,

unavailable pixel. This is because such pixels are boun& inside an already detected
contour and therefore they cannot be used as initiators wfawatours. In Figure 3.4 a

pseudo code algorithm for contour segmentation can be seen.

When the raster scanning is finished, the contour list wilditadl the valid contours in the
image. Based on the starting point and the chain code of eatbur, a rectangle which
exactly spans the contour is found. These are then insarteailist of rectangular face
candidates (refer to Figure 3.1, where it can be seen thatitteme of the preprocessing
and segmentation ism@ctangular faces ligt This list is then used as input to the next
phase of face verification where the size and shape of ths faitidbe investigated.



For every pixel x in binary image
if X = white and x = available
X = unavailable
if all 8-connected pixels to x are available
create contour object
starting point = position of x

while any 8-connected pixel c to x is white and available
and any 8-connected pixel to ¢ is black
chain code = chain code + direction of c
X = unavailable
X =cC
endwhile

if x is 8-connected to starting point
insert contour object into contour list
else
delete contour object
endif
endif
endif
endfor

Figure 3.4: The Contour Segmentation Algorithm.

3.3 Rectangular Size and Shape

This method takes as input the face candidates found by tliewwosegmentation method
explained in last section. A rectangle is spanned arounkl efibese regions (see Figure
3.5(c)). Afterwards, rectangles that are larger than e0@.dixels or smaller than e.g. 20
pixels in width or height are removed (these limits should e images 0820 x 240
pixels which we have used in this case, but will of course Ifkerdint if the resolution
is changed). Furthermore, rectangles where the relatibmds: width and height are
not between e.g. 0.6 and 2.0 (these values will have to bendieed empirically) are
removed. An example of the result of these limitations carsdxn in Figure 3.5 (the
Gaussian model explained in Section 2.4 on page 11 were askdect the skin-colours
in the input image).

3.4 Solidity

Characteristic for objects containing faces is that thely eantain many skin-coloured
pixels. Therefore, a face candidate received from the ngetiar size and shape method
can be verified by calculating the ratio of its area to the efzs bounding box. This can
also be referred to as thsolidity of the face candidate [2]. The area is calculated using
the binary image made by the preprocessing methods and [dysihe number of white
pixels covered by the bounding box of the face candidate. Hdqwation for the solidity

of a face candidate is therefore as illustrated in Equati@nw8hereA is the area ana
andh the width and height of the bounding box.

solidity = i 3.1
wh
A face candidate is removed if its solidity is below a thrddhe or above a threshold.
Itis also possible to define a maximum solidity of faces beeahey normally are elliptic
in shape. Henceforth, only a part of the bounding box shoalddvered by the face. The
maximum solidity of a face should therefore never be ableszih 1.



(a) Input Image (b) Binary Image Created using a Gaussian
Model and the Preprocessing Methods

(c) Regions Found using Contour Segmenta- (d) Regions left after Size and Shape Verifi-
tion cation

Figure 3.5: Removing Regions of “Wrong” Sizes and Shapes: skin-coloutise input image (a) are found
using a Gaussian skin-colour model. The resulting likalthémage is eroded, dilated, and
thresholded into a binary image (b). Afterwards, the contmgmentation method segments the
image into the regions in (c). The result of using size angbsheerification on these regions
can be seen in (d). Notice how e.g. the regions containingitirecoloured table have been
removed due to their “wrong” relations between width andghei Furthermore, the hand and
the object in the upper left corner are removed because tleeypa small to be faces.

3.5 Nose-Eye Template Matching

Nose-eye template matching is the process of classifyiraca €andidate as a face or
non-face, based on how similar it is to an average templagrdterence templajenade
from a number of nose-eye cut-outs (see Figure 3.6). Theemfe template is made
out of cut-outs from gray-scale images. Therefore, we atswert the input image to a
gray-scale image, and use this for the template match. @elarteas in the image which
are holding a face candidate are used for the matching podesmatch the reference
template with a position inside one of the face candidatésdrinput image (@andidate
templatg, it is placed with its center on top of this position, and atalince measure is
calculated. If this measure is below or above a threshthid reference template is said
to match the candidate template.

Normally, template matching is done by calculating a distameasure for every pixel

SWhether it should be above or below a threshold depends oméitieod used for distance measuring.
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Figure 3.6: Nose-Eye Template: The average nose-eye template (b)asedrérom a number of cut-outs
of the nose-eye area of different persons (a). The red poiticates where the local maximum
used as the center of the template is placed.

in the object (in our case a face candidate) to be matchedthéthieference template.
According to [32], the use of a gray-scale nose-eye temmatenevertheless speed up
the matching process. This is because the tip of the humaminasost cases holds a
local maximum — i.e. a pixel that is 8-connected with pixdl$over intensities. Setting
this pixel as the center of the reference template, we orgyg e calculate distance mea-
sures for the local maxima in the part of the gray-scale inmatge covered by the face
candidate. In general the number of local maxima in an imageany times lower than
the number of pixels altogether (see Figure 3.7). Therefiietime spend on calculat-
ing local maxima comes back many times, because most of tin@dée matches can be
skipped.

3.5.1 Image Pyramids

To be able to detect faces of different sizes we generate agamyramid. This is simply

a pyramid consisting of the gray-scale input image scalddfatent sizes. I.e. the bottom

of the pyramid holds an image of the same size as the inputdraag then the images
get smaller and smaller the higher the pyramid is climbed.h&iee used a pyramid of 6

images, zooming out in steps of 10% of the original imagesTieans, that the image at
e.g. the third level in the pyramid (the bottom of the pyraisitevel 0) is scaled to 70%

of the original image.

When doing the template match we search through all thedewdhe pyramid to find the
level with the best match. The scale of this level is aftedsarsed to calculate the size of
the face in the original image. This is done by using simpésoaing about the position
and size of the face when we know where the nose-eye area isg e pyramid we
should be able to find faces with nose-eye areas as small esf¢hhence template and up
to four times the size of the reference template (i.e. twheewidth and twice the height
of the reference template).

Since the reference template we use is an average of updghsfwe are not able to
detect faces when they are rotated in either plane or defibe 8ve demand that people
must look straight into the camera for the tracking of thenbeoinitiated (refer to the

delimitation in Section 1.4 on page 4), this should nevéegge not be a problem. To
handle faces rotated in plane we could use rotated versibtieeaeference template.
This would though increase the computation time of the tatepinatch significantly.



(b) Local Maxima in the Image

(c) Matching with the Nose-Eye Template

Figure 3.7: Template Matching Using Local Maxima: Using nose-eye tettgs we only need to match on
local maxima (white pixels in (b)) in the gray-scale inputige (a). A match is made by placing
the local maximum in the nose-eye template above a localmanxi in the input image and
calculate the distance between them (c). In this case thédawuaf local maxima in the whole
image were approximately 4.5% of the number of all pixelse Gheen rectangles indicate the
face candidate area

3.5.2 Distance Measuring

To measure the distance between the reference templatecandiaate template, a num-
ber of methods can be used. Among theseSamn of Absolute Differenc¢SAD), Nor-
malized Cross CorrelatiofNCC), andZero Mean Normalized Cross CorrelatigdM-
NCC). These will be described in the following sections.

Sum of Absolute Differences

To calculate the SAD between a reference tempilaveth center(x, y.,) and sizew x h
and a position(z, y) in the imagel, Equation 3.2 is used. The result is a value that
indicates the total distance in intensities between trexeete template and the candidate
template. l.e. the larger the value the worse the match. Aevaf O indicates a perfect
match.

Although the method is incredible simple and computatilyretficient, it has the disad-
vantage of being affected by changes in light intensity.d reference template would not
be very similar to the exact same face as it was taken fromgiftke face is shadowed.
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SAD(z,y) = ZZIT o'y) = I+ (@' —20),y + (v — o) | (3.2)

y'=0z'=

Normalized Cross Correlation

The NCC is far from being as simple as the SAD but has the adgantf including
statistical measures in the final result of the match. ThelpitensitiesT' (<, ') in the
reference template are multiplied by their correspondimgnisities! (x + (' — ),y +
(v —y.)) in the candidate template. Afterwards, the result is noizadlby theabsolute
variancesof the reference- and candidate template. The absolutanaaiexpresses the
variances of the absolute pixel values regardless of theamvalue.

Compared to the SAD, the NCC takes into account the abscéuitances before the cor-
relation result is delivered. This has the effect of lowgrihe result of templates, which
otherwise would be given a high correlation. This is becatseresult are normalized
by the absolute variances, such that the relative distagiveslen a good match and a bad
match is lowered.

The NCC measure at positidm:, y) is given by Equation 3.3 and returns a value<
NCC(z,y) < 1, wherel indicates a perfect match.

b wle(w W)@+ (@ — )y + ' — )
NCC(,y) = —— 1’; 2 — (3.3)
ST £ T 1ot o - ey 0 - )
Y T y' x

Zero Mean Normalized Cross Correlation

Using ZMNCC therelative variancenstead of the absolute variance is used for normal-
ization. The relative variance for a pixel in a template igrfd by squaring the difference
between its intensity and the mean intensity of the tempktethermore, the intensities
in the denominator in Equation 3.6 are subtracted the meansity of either the refer-
ence template]’, or the candidate templaté, Equations 3.4 and 3.5 are used to define
the value of intensities subtracted their mean values.

ZMNCC therefore has the advantage of being invariant tosvalhdinges in light intensity,
as long as the intensity change is the same for all pixelsdrcémdidate template. This
is because it matches by looking at relative distancesadsié absolute differences (see
Figure 3.8).

The value of the ZMNCC measure at positi@f y) is given by Equation 3.6 and returns
avalue—1 < ZMNCC(z,y) < 1, wherel indicates a perfect match arel a perfect
mismatch.

T(z,y) =T(x,y) - T (3.4)

Ha,y) =I(z —al,y—y.) — I (3.5)
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Figure 3.8: Absolute and Relative Distances: The absolute distangesf @@ template (a) are simply the
value of its intensities. The relative distances (c) aratbhy subtracting the average intensity
of the template from all its pixel intensities. An overallasige in lighting intensity would
change the absolute distances but not the relative distabksing relative distances is therefore
invariant towards changes in lighting intensity, which @& the case for absolute distances.

3.6 Elliptic Shapes

This method is based upon [4] and assumes that a face can txbddsas a vertical
ellipse having a minor axis af (see Equation 3.7) and a fixed aspect ratio of 1.2. Using
the face candidate list received from the nose-eye tempiateh method and a gradient
image of the input image, the best fitting ellipse to each efrdgions can be found. To-
gether with a threshold this can be used to find out whethesltjext inside the rectangle

is a face or non-face. If so, it is added to the final list ofpditi faces which is used by the
tracking methods described in Chapter 4. Describing thedfarsing ellipses instead of
rectangles does also increase the accuracy, becauseriagseral are elliptic shaped.

3.6.1 Calculating the Fit of an Ellipse

To calculate the fit of an ellipse the method in [4] uses thenadized sum of the gradient
around the perimeter of the ellipse:



1 Y
bo(s) = 5 D_ | ne(Dga(i) | (3.7)
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whereg; (i) is the intensity gradient at perimeter pixedf the ellipse at locatios, and
N, is the number of pixels on the perimeter of an ellipse witle siz

To find the position of each pixel on the perimeter, Equati@i8used. This is a modified
version of the formula describing an ellipse [17], wherandb indicates the sizes of the
major and minor axis.

2
y=1/(1 - ﬁ)bQ (3.8)
To calculate the positions, the value mofs initiated at the center of the ellipse and in-
creased towards-a (see Figure 3.9). For each valuexgfy is calculated using Equation
3.8. This gives the positions gf of the pixels on the perimeter. The rest can be found
using simple mirroring in the major and minor axis.

major axis
by
+ calculated y values

/

X values

= minor axis

+a
/ a ”

center of
ellipse

-b

Figure 3.9: The Face Model: The face is described as a vertical ellipgee @ositions of the pixels on
the perimeter are calculated increasing the x position foto +1. For each value of x the
corresponding value of y is found. The rest of the positiaresfaund by mirroring the x and y
values in the major and minor axis.

3.6.2 Limiting the Search

The search for the best fitting ellipse is limited by a maximum.,, and minimum,
omin, Size of the minor axig. Initially o is set to half the width of the rectangle, i.e.

width of rectangle
2

Afterwards,o 4, ando,,;, are calculated according to Equations 3.9 and 3.10 where
is a constant used to control the size of the search areahdfomdre o, anda,,,;, are
used to ensure a maximum and minimum size of the ellipsesathahatched.

o =



loges ca <
Omaz = ’ N .max (3.9)
Qmaz, Otherwise

g T > s
Omin — a’ @ = n.mm (310)
Qmin, Otherwise

3.6.3 Best Fitvs. First Fit

We have decided to soften the demand of finding the best fetlipse (referred to aBest
Fit), such that we instead search for the first ellipse (refetoessFirst Fit) which have
an average gradient sum above the threshold. This is donedre- ¢,,,, and towards
o = omin- T he reason for this softening is that many gradients ofti#iroe/present in the
center of a face. If the face is of a certain size, the bestditilipse will in most cases be
too small —i.e. hold only the center of the face (see Figut®@®)). When starting from
the largest possible ellipse and searching inwards, we mmatethat we get the largest
ellipse, which have an average perimeter gradient abovthteshold. Furthermore, the
first fit method is computationally more efficient than thetliigsnethod. This is because
it stops searching as soon as the threshold is reached. Bhétbmaethod has to try out
all possible ellipses before it can be sure, that it has fabadest fitting ellipse.

(c) Ellipses Found using Best Fit (d) Ellipses Found using First Fit

Figure 3.10: First Fit vs. Best Fit: Instead of finding the best fitting gdié (c) in the gradient image (a), the
first fitting ellipse (b) is found. This is done fromaz, towardsmin, such that the largest
possible ellipse is found.



3.7 Face Verification Conclusions

In this chapter methods to be used for face verification haembnvestigated. The skin-
colour likelihood image made by the FOA phase is preprockasiang the morphological

operations erosion and dilation. Afterwards, the resglimage is thresholded and ob-
jects in the image are found using a contour segmentatiohadefhe smallest possible
rectangles spanning these objects are found and an imstiaf face candidates is created.

Four methods are used to classify the face candidates as dmagon-faces. First, a
rectangle filter is used to remove face candidates whichoaréatge or too small or have
wrong rectangular shapes (i.e. are long and thin). Aftedsathe solidity of the face
candidates are found by calculating the ratio of their atedbke size of their bounding
boxes. Because faces are elliptic in shape and have a higlitysolipper and lower
solidity thresholds can be used to verify face candidatdaes or non-faces. Hereafter
a nose-eye template matching method is applied to the rémydist of face candidates.
This method speeds up the matching process by using thehgicthiere almost always
is a local maximum on the tip of peoples nose. The nose-eyplétenis therefore only
matched to the positions of local maxima. Only one templsitesed for the matching
process. To handle faces of different scales, an image pgiammade. Rotation in plane
is not handled since one of the delimitations of the VICOWHXYstem is, that people
must look straight into the camera without turning theirgg¢oo much, for the tracking
of them to be initiated. Face candidates which look simdahe template are forwarded
to the last method of verification. This is a ellipse deteethich based on a gradient
image finds either the best or first fitting ellipse to the faaadidate. The detection is
based upon counting the average intensity value along tipse= perimeter. If this is
above a threshold the ellipse is said to fit, and the face datelis added to the final list
of faces represented by the ellipses.

The face verification process is made as a serial combinafionethods of increasing
complexity. Combining them in this way should support thenpatational efficiency
of the system, since most face candidates can be removectlgintiple methods. The
more complex methods are therefore only used on face caediaéhich have a close
resemblance to faces.






Chapter 4

Face Tracking

In this chapter, we describe several ways of tracking favésthen present the approach
that we have chosen to use, which uses skin-colour likalib@md intensity gradients to
determine the position and size of a face, and a Kalman fitiévaindle the uncertainties

related to these measurements. Finally, an algorithm fointa@ning a set of trackers for

the faces in the input images is described.

4.1 Introduction

We considertracking of a face to be the maintenance over time of estimates of face
parameters — such as position — given a number of measureroktiie parameters at
each time step. The parameters related to the face copdisitite vector. When tracking

a face in an image sequence, the tracker must for each image:

e Match the predicted state vector of the face with a face in the otireage and
measurethe parameters of that face from the image.

e Estimate the state vector from the measurements. This results & posteriori
state vector estimate.

e Predict the state vector in the next image. This prediction, reteme as thea
priori estimate, is usually necessary because the image mayrcaetzral other
objects that — when only considering the parameters indud¢he state vector —
look like the face being tracked (i.elutter). Furthermore, it can be used to reduce
the search space necessary when matching.

Below, we will describe each of these steps further.

4.2 Matching

How the matching is done is of course highly dependent onyjbe of information that

is included in the state vector. Obviously, the position sizé would be relevant param-
eters to include in our case. The matching could then be deimg semplate matching
as described in Section 3.5. The face area from the previmage could be used as
the reference template. The reference template is thenhedito different parts of the

37



current image by computing a similarity measure at eachtipasinside a search win-
dow placed around the predicted position of the object. Tdmtipn with the highest
similarity measure can then be considered the new posifitimecobject.

Another approach would be to usesaakeplaced around the face. A snake is a de-
formable contour that is governed by interior and extermmcés. The interior forces
ensure smoothness of the contour, while the exterior foatiegct the contour to features
in the image. Sobottka and Pitas [36] use snakes to traclotiteurs of the skin-coloured
regions caused by faces. A snake is placed on the image aidghgoin where the face
was detected, and the best fit of the snake is computed by mingra sum of internal
and external energy terms. The matching is done by placisgitiake on the next image
in the sequence and repeating energy minimization to finch¢eshape and position of
the snake.

Menser and Wien [2] track faces in colour image sequence®byetting each image to
a skin-colour likelihood image, which are analyzed at défe threshold levels (i.e. the
skin-colour likelihood image is thresholded with diffetéhresholds, resulting in a set of
binary images). When a face-like region has been found, mmajds done by projecting
the region into the next skin-colour likelihood image andalhthreshold levels, elim-
inating all connected components that are covered by lessdhpredefined rate of the
projected region. Then connected components that diffeertimn a predefined degree
from the projected region with regard to size of bounding bo# center of mass are dis-
carded. If more than one region is left, the region with thigdat degree of compactness
is chosen.

Schwerdt and Crowley [16] also use skin-colour likelihoogapes for the tracking of
faces. They weight the likelihood images by placing a Gauskinction at the location
where the face is expected and compute the center of mass liaéhihood image, which
approximately — because of the weighting — is the center alsrofthe face. The covari-
ance of the Gaussian is estimated from the previous imaggllyy the covariance is the
size of the expected face.

The Mean Shift algorithm [6, 1] can be used for matching baseskin-colour likelihood
images (or other types of distributions). It considers & pithe image limited by a search
window, which is centered at the predicted center of the.fedi¢hin this search window,
the center of mass of the distribution is computed. The seaindow is then centered
at this location and the new center of mass computed. THisteg is repeated until the
center of mass converges (or moves less than a predefinstidka® The center of mass
found this way will be close to the center of the face (proditieat only the face has high
skin-colour likelihoods).

The CAMShiIft algorithm [6, 1] is an extension of Mean Shift ARIShift is short for
Continuously Adaptive Mean Shift, and it continuously adape size of the search win-
dow based on the zeroth momeknof the part of the likelihood image that is contained in
the search window. Thus the object to be tracked does nottodsale a constant size.

Birchfield [4] uses colour histograms for face and hair artensity gradients to track
faces. The head is modeled as position and size of an ellifieeaviixed aspect ratio.
Matching is done — in a search space within a range of the gisgtivalues — by max-
imizing the sum of a colour-based score and a gradient-bsse. The colour-based
scored is determined by comparing the colour histogramherixels inside the ellipse
with a colour histogram for the subject produced off-lineheTgradient-based score is
determined by computing a normalized sum of the dot prodoictee gradient and the

1The zeroth moment of a region is the sum of all likelihoodsigefintensities in that region.



unit vector normal to the ellipse for each pixel around themeter of the ellipse.

In a previous project [5], we used skin-colour and motioredaon followed by connected
components segmentation of a thresholded likelihood intadmd and track faces and
hands in a video conference situation. The matching was lbpoemparing the positions
of the connected components with the predicted positiotisenbbjects.

Our preliminary experiments with CAMShift indicated, asduld be expected, that using
the zeroth moment to determine the search window size waatlevork very well when
the skin-colour detection generated false positives fakfeound pixels — the search
window would suddenly grow and become too large, even thabhghface had much
larger likelihoods than most non-face pixels. However, M&hift seemed to produce
a very stable estimate of the center of the face, much mobdestiaan the positions we
found using connected components segmentation in ourqueyiroject. The size could
then be found using ellipse fitting in a gradient image, a<mesd in Section 3.6 on
page 32, and the search window adjusted using this size.

We suspect that using Menser and Wien’s connected compshaséd approach would
produce the same amount of jitter as the somewhat simpldradete used in our previ-
ous project, and thus provide less stable estimates than Bleit.

Schwerdt and Crowley’s method — Gaussian weighting of #tediiood image and com-
putation of mean — will probably not perform much differerdrh Mean Shift. Although

it has the desirable property that skin-coloured objects tiee face are weighted less
than the face if the face is at the predicted position, it righnecessary, if the distance
between predicted and actual position is large, to incrézse&ariances of the Gaussian
function to a level where it will perform equal to or worse thislean Shift because a too
large area in the image is used. Mean Shift does not need tine face to be within the
search window because it will iterate until the center of snamverges.

Using high-resolution snakes as Sobottka and Pitas do wmierkill, since informa-
tion about the shape of the faces is irrelevant for our puepoBesides, the shape of
a face is quite constant. An ellipse is essentially a paranzed snake, and fitting this
to the face will probably be more computationally efficieRurthermore, allowing the
snake to deviate much from the elliptic shape could be proate when e.g. a hand is
temporarily occluding the face during a hand raise. Foriéson, the energy functions
for the snake should be such that the snake approximatediptical shape, but then
similar results could probably be obtained using an ellipse

Doing ellipse fitting using both colours and gradients likecBfield is rather expensive,
computationally, and our preliminary experiments havedatbd that using just the gra-
dients is sufficient if the center of the skin-coloured asefound using Mean Shift.

Using templates will also be problematic in the case of aioly as it may be difficult to
tell whether the poor fit is due to occlusion or e.g. the petsoning his head.

Based on these preliminary experiments and thoughts, we tlaesen to base the face
tracking on the Mean Shift algorithm combined with ellipgérig.

4.3 Estimation

Two estimators commonly used for tracking are the Kalmaarfdind the ©NDENSA-
TION algorithm (both are described in Appendix B on page 129).

The Kalman filter can be used for integrating several measengs into a single estimate



based on the measurements and the prewagossterioristate estimate, and for predict-
ing the next state using a process model. When computingstiraae, it incorporates
measures of the uncertainties of the measurementsn@asurement noigeand the state
estimates are accompanied by uncertainty measures ashveahr covariancg. It also
incorporates information about the accuracy of the procezdel (theprocess noige

The Kalman filter is only able to represent unimodal statéorgarobability distributions
as it only maintains estimates of the mean (i.e. the staima&®) and error covariance.
Due to clutter and occlusion, the probability distributioray be multimodal [22]. If
a wrong state at some point in time seems more likely thanrte dtate, the tracker
may loose the target, even though the true state soon woutdlierome the most likely
again. Therefore, it may be necessary to maintain sevepalthgses of the target state to
reliably track an object using a Kalman filter. This can bealby maintaining a bank of
Kalman filters, where each filter is used to track a separagpethgsis. Cham and Rehg
[40] track multiple hypotheses by maintaining a probapitiensity using a piecewise
Gaussian representation (i.e. the probability densityoatespoint is determined by the
Gaussian component that provides the largest contriutidheach time stepa priori
estimates of the modes of the Gaussians are computed antbusgidin thea posteriori
estimates of the modes through a state-space search.

The CONDENSATION algorithm has been designed specifically for multimodalbpro
bility distributions, and does not attempt to produce a lsirgjate estimate. Instead, it
maintains a set of samples from the state vector probalbiigiiyibution, from which e.g.
the mean or the dominant mode can be used as the state vdutates|f an uncertainty
measure is desired, it can be derived from the sample setlb@hesvariance would be a
good choice, as it will be low in the absence of clutter andusion).

When tracking several faces, the probability distributisrmost likely multimodal, be-
cause faces look very much alike. Hands also have some defjsimilarity to faces,
and are one of the main problems when tracking faces becheg®ften appear near the
faces, sometimes occluding the face. For this reason, itddmeidesirable with a tracker
that is able to keep track of multiple hypothesis such asiGENSATION. However, since
the face will usually not move very much, an approach that axeHound to be promis-
ing in our preliminary experiments is to use a single Kalméarfand let the amount of
change in skin-colour likelihoods near the face determime high the level of measure-
ment noise should be when updating the Kalman filter. Thufi@rmbsence of clutter, the
measurement noise will be low, and the Kalman filter will trire measurements, and,
when clutter appears, the measurement noise will be inetead/e have chosen to use
this approach for the face tracker, as it is likely to be mamputationally efficient than
using GONDENSATION or multiple Kalman filters.

4.4 Prediction

In a previous project [5], we found that the faces move vetlelduring a video confer-
ence, as it can be seen by the trajectories in Figure 4.1 hantrackers predicting that the
face had not moved performed better than trackers makingjqirens based on deriva-
tives of the face position. Therefore, we will use a zerotreoiKalman filter, i.e. predict
that the parameters have not changed This approach hasemsaubed successfully by
several others for tracking of faces and facial feature8¢2 33].
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Figure 4.1: Face and Hand Trajectories. (a) shows the positions of tesfand hands of the authors in an
image sequence. The black trajectories are the positiottsedfaces. Three images from this
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4.5 Face Tracker

We model the face as an ellipse with a vertical major axis a®tte shown in Figure 3.9

on page 33. The height/width-ratio is fixed to 1.2. Thereftine state vector only needs
to contain the center coordinates and one of the radii or éiara. We use a state vector
containing the center coordinates and the width:

Zc
X = Ye 4.1

,wface

As mentioned in Section 4.2, two types of measurements &ctosrack the faces:

e Center of face found using the Mean Shift algorithm.

e Size of face found using ellipse fitting.
Furthermore, since this information is available at leashs of the time, we will use:
e Face position and size from face detection module.

The center and size of the face found using Mean Shift angisellfitting are combined
into a single measurement, which is passed on to the Kalntan fif the face detection
has found a face that has a certain degree of overlap withrtloger's estimate, the
position and size of the detected face are incorporatederirdtker’s estimate as well.
This is described in detail below.

The update of the tracker, which is done for each image ustithted in Figure 4.2. First
the skin-colour likelihood image is computed. This is dos@lescribed in Chapter 2, but
with a skin-colour lookup table specific for the face beiracked.

The Mean Shift algorithm (grey box in Figure 4.2) is then usefind the center of mass
of the face in the skin-colour likelihood image as describe&ection 4.2. The search
window is initially centered at the previous center of thefaThe sizev; . x hyyq Of
the search window is determined from the Kalman filtergriori estimate of the width
of the facew; “““:

w1 = w] " + Bz (4.2)
hiy1 = 1.2 wipq (4.3)

[ is chosen such that the search window always is large enaugimtain the entire face.

z depends on the distance to the pefs@nd is small when the person is far away and
large when the person is close. Thus, when the person is, dloesenumber added to
the width of the face will be large, reflecting that movemehthe head will produce a
larger shift of skin-colour pixels in the image than when tead is far away. This is
done because, preferably, the entire face should be insedsgarch window even when
the window is centered at the previous position of the faset & likely that the Mean
Shift algorithm otherwise will require more iterations. & multiplication with 1.2 when
computing the height is due to the fixed height/width-ratio.

22 is a user-defined constant in our implementation, but canlgtinciple, be estimated from the images.
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Figure 4.2: Tracker Update Cycle: The update of a tracker begins wittctimputation of the skin-colour
likelihood image for the new input image and ends with theatpdf the skin-colour lookup
table that will be used to compute the next likelihood image.

The Mean Shift loop in Figure 4.2 terminates when the seaiodaw moves less than a
predefined distance or when the maximum number of iteraatios/ed have been done.
The sequence of images in Figure 4.3 illustrates how the N algorithm finds the
center of mass in a likelihood image.

(a) Initial position (b) After 1 iteration (c) After 2 iterations

Figure 4.3: Mean Shift Example: The Mean Shift algorithm iterativelyd@the center of mass of the face
by computing the center of mass and centering the searctowiatlthis position.

Using ellipse fitting as described in Section 3.6 on paget32 attempted to fit an ellipse
to the face. The position found by the Mean Shift algorithnused as center of the
ellipse. If an ellipse can be successfully fitted to the féoe center found by Mean Shift
and the size found by ellipse fitting are used to update thmats of face position and
size using a Kalman filter.

Since the faces move very little most of the time during a @idenference, and since
loosing the face if the person moves significantly (e.g.dsavs acceptable, a constant,
low process noise that only allows the face to move a few piielised for the Kalman

filter. The measurement noise can then be made to vary fronesdhat are smaller than



the process noise — when the conditions for measuring positnd size are ideal — to
values that are many times larger when the measurementelgeda not to be reliable.

To achieve this, we use a set for formulas for computing thasmement noise that we
have determined empirically. In Section 7.4, we verify ttaly perform as desired.

When the face of a person is being tracked, an accumulattatite picturé (ADP) is
computed for the hand-raise ROI of the person. This ADP igdbam the skin-colour
likelihood images, and will reflect the amount of skin-calonovement in the hand-
raise ROI. While its primary purpose is detection of handeaestures, as described in
Chapter 5, it is also used when determining the measurenaogs# for the Kalman filter.

The measurement noise associated with the position andr&asurements is based on
several parameters:

e The zeroth momend/APF of the ADP for the hand-raise ROI of the person and
the zeroth momends;* """ of the hand-raise ROI ADP for the neighbour to the
right in the image.

e The difference between the zeroth moment of the Mean Skifteenindow in the
skin-colour likelihood image and an average value for thisment. This difference
will be referred to ag\ M;.

e The difference between the variance of the Mean Shift seaictiow in the skin-
colour likelihood image and an average value for this momehis difference will
be referred to ad\o?.

The moments of the hand-raise ROl ADPs are used to increasméasurement noise
when one of the persons raises his hand, when somethingslkinred is moving in the
background, and when the skin-colour detection generatses positives (e.g. because of
changing illumination). The moments of the Mean Shift seavindow in the skin-colour
likelihood image are used to increase the measurement waise the face gets occluded
by a non-skin-coloured object and when the skin-colour aligte does not generate a
stable skin-colour likelihood image, e.g. because it isptidg to a new illumination
colour. How the skin-colour likelihood images look whengbesvents occur can be seen
in the image sequences in Figures 4.4-4.5.

(a) Input (b) Before (c) During (d) After

Figure 4.4: Skin-Colour Likelihoods during Occlusion: The images stiate how the skin-colour likeli-
hoods for the face drop as the face becomes occluded.

The measurement noise

A 0 0
R=|0 rp, 0 (4.4)
0 0 T3

3How the ADP is computed is described in Chapter 5 on page 51.



(a) Input (b) Before (c) During (d) After

Figure 4.5: Skin-Colour Likelihoods during lllumination Change: Thedges illustrate how the skin-colour
likelihoods for the face drop temporarily when the illumiiom changes.

is computed as follows:

T = Si(kHH + F? + klz) (45)

r; contains a constant teriyz, which has been included to ensure a minimum mea-
surement noise level. Since this level should depend on idtente to the facek; is
multiplied by the distance constantlescribed on page 42. Another constany;jsvhich

is used to scale the rest of the expression to a suitable |[Bvahd F' are computed using
the moments mentioned above.

As indicated by the subscripts, each; may be associated with its own valueskgpfand

s;. In preliminary experiments, we have observed that thpslifitting tends to fit the el-
lipse to two different outlines, see Figure 4.6. Sometintasill fit it to the edge between
the top of the head and the background, and sometimes to glesbedween hair and face.
This varies from image to image for each person, and is pilghatated to movement
or small changes in the skin-colour likelihood images. 8itite output from the Mean
Shift algorithm tends to be quite stable, it is desirablessogiate a higher measurement
noise with the size, found using ellipse fitting, than witk fhosition. This can be done
by using different values of; andk; for the different entries in the measurement noise
matrix.

Figure 4.6: Result of Ellipse Fitting in Gradient Image

H is computed using the zeroth moments of the hand-raise RGAAD

Ny ADP N1 ADP,N
~ C1 M_T ~  C1 M_T
H = (ln(ﬁ1 Z tA ))? + (ln(ﬁ1 Z tT))2 (4.6)
7=0 7=0

wherec, is constant for scaling the result andis the maximum area of the hand-raise
ROI, i.e. if the hand-raise ROI have this size, the zeroth ewndivided withA is the



average pixel intensity in the ADRZ/PT is the zeroth moment of the hand-raise ROI
ADP of the person being tracked, whilé;'”"" is the zeroth moment of the hand-raise
ROI ADP of the neighbour to the right in the image. Ttheubscripts indicate that these
values depend on the timel%(x) is a non-negative version of the natural logarithm:

_ 4.7)
0, otherwise

~ {ln(x), x>1
The value ofH is smoothed over time by using the average of the ADP momevetsan
period of N; images, as preliminary experiments suggested that thisebefigial. The
purpose of the logarithm is to limit the value &f, such that there is a “saturation point”
where a further increase in the sum of the moments does nufisantly affect the value
of the measurement noise. Using the constaniis Equation 4.6 ané g in Equation 4.5,
it can be controlled when this saturation point will be resthand what the contribution
of H to the measurement noise should be at this point. Thus, agehanthe zeroth
moments will have a larger effect on the measurement noisnie value of the mo-
ments are low than when the values are high. This reflectssamgsion that after some
point has been passed, the magnitude of skin-colour ligethchange will not affect the
probability that something that can confuse the trackeapening.

F'is computed from the zeroth moment and the variance of then\déit search window
after the final iteration of Mean Shift for the current image:

N, N3 2
123 27—220 wM,thAMth i <3 ZT:() wo,thAO'th

F = 4.8
N2 Z2 N3 z ( )
wherecy andcg are scaling constants and
AM; = M; — mM (4.9)
Ao? =0 —mi (4.10)

whereM is the zeroth moment of the skin-colour likelihood imagedeshe face search
window, ando? = o2 + 05 is sum of the variances of this area in the vertical and hor-
izontal directions.m andm{ are the current “average” levels faxM; and Ao?, re-
spectively, and are computed as follows:

mit = (1 — a)m! + aAM, (4.11)

mi, 1 = (1 — a)my + alo} (4.12)

Preliminary experiments indicated that using these awsragstead of simply using the
previous values or the unweighted averages for the entiegénsequence produced a
better measurement noise level during and after illumamathanges.

The weighting functionsv,; ; andw,; in Equation 4.8 are computed based on the stan-
dard deviations of\ M, andAc?, which are computed/adjusted dynamically. These stan-
dard deviations will be referred to ag; ando,, respectively. The weights are computed
using a zero-mean Gaussian funct@fz, o):



G(AM;,onm)

=1- 4.1
wM;t G(O,UM) ( 3)
G(Ao},0,)
—1 - 2% %) 4.14
Wit G(O, UU) ( )
The Gaussian function is:
1 —z?
G(z,0) = 202 4.15
(’/E 0) \/%6 2 ( )

If the value of AM; is low compared to the standard deviatior;, the weightwy;

will be low, and as the value oA M; grows, the weight will become larger. The same
holds forw, ;. This weighting scheme has been introduced to allow someiatud head
movement without a significant increase in the measurenaséhevel. Note that it only
affect the computation af whenA M, andAc? are small, as the standard deviations are
adapted to the average amount of movement, which is uswaly |

If a face has been detected by the face detection module pifogimately the same

position and size as the face a tracker has been tracking ipast frames, it is assumed
to be the same face. The position and size of the detectedsfétten used to update the
Kalman filter's estimate, using the measurement noise gibewe. This way, the results
of the face detection are used to guide the tracker if it idlento find the face itself using

Mean Shift and ellipse fitting. This could, for instance, pap because the illumination
has changed too fast, or because clutter or occlusion hdissamhthe tracker.

Each time the Kalman filter's estimate has been updated, ateou is incremented.
Moreover, a timett,,  is reset to make it possible to measure how long time that has
passed since the last update of the estimate. This infasmadi used by the Tracker
Manager described below.

To determine how much a person is moving uerstability measuré; is computed based
on the results of Mean Shift and ellipse fitting:

§er1 = (L—a)-&+a-([zf —ze[ + |y — ye| + [wy —we| + |hy —he[) /2 (4.16)

where z;, y;, w;, and h; are center coordinates, width, and height;, v, w;, andhy
are the values from the trackeasposterioriestimate, and:., y., w., andh. the values
found using Mean Shift and ellipse fitting. Note that wheipsé# fitting did not succeed,
the latter values have not been used to update the trackimisinase it is likely that the
distance between theeposterioriestimate and the values found using ellipse fitting will
be even largera € |0, 1] is a constant that is used to regulate the sensitivity togésim
the distance between the measurements and the trackeserioriestimate.

The unstability measure is used to determine whether itldHmipossible for the person
that is being tracked to get the attention of the system Isingihis hand. I is large,

it is likely that the level of noise is high or that the face isving a lot, which is usually

not the case when the person is seated and ready to spéaklso used by the tracker
manager described below to determine whether the trackeldhe deleted. If a tracker

is tracking a non-face object, e.g. a hand, it may have a largempared to the usual
values for faces. Thug, may be used to discriminate between trackers tracking faces



and trackers tracking non-face objectis initially set to a large value to prevent the
system from allowing the (hypothetical) person to speakis Tmay, the object that is
being tracked must be spatially stable for some time, befeeystem accepts the object
as a face. This helps eliminate trackers started becausssef positives from the face
detection.

4.6 Tracker Manager

The tracker manager maintains a geof trackers for the faces in the input images. For
each new image, it goes through the series of steps desdriied.

Let B, denote set of pixels within the bounding box of the face teacky the tracker
p € T, i.e. the set of pixels enclosed by the smallest rectangiéagung thea posteriori
estimate of the face ellipse. This is illustrated in Figur&d). Below, we will usé3; N Bs

to denote the intersection of two such bounding boxes, astidted by the grey area in
Figure 4.7(b).B1 N Bs is used to denote the union, which is the grey area in FiguiEe).

BEL

(a) (b) (c)

Figure 4.7: Bounding Box Intersection and Union: (a) is the bounding bba face, the grey area in (b) is
the intersection of two bounding boxes, and the grey area)iis(the union of two bounding
boxes.

|B|, the size ofB, is used below to denote the number of elements in th&sét B is a
bounding box|B| is the number of pixels inside this bounding box.

1. Eliminate unstable and dead trackers.

A trackerp is considered unstable if its unstability measgyés larger thart,,;,q,.
It is considered dead if its estimate has not been updatet);farimages in a row.
Thus, trackers fulfilling the condition

(gp > Emax V tupd > Htime) N up > Umin

are deleted. The conditiom, > u,;, is included to allow trackers to have a large
¢ in a short duration of time after they have been created. iBhisne, as the face
of a person may be detected before the person is seated,aptbtle initially may
move relatively much.

2. Eliminate overlapping trackers.

The estimates of a pair of trackers are not allowed to overlape than a predefined
degree. If it happens, the tracker with the largest unstaliieasure is deleted.



Let 6,4, be the maximal allowable ratio between the size of the ietdisn and the
size of the union of the bounding box estimates of two difieteackers. Each pair
of trackers(p, q) € T' x T is examined. If, for a pair of tracke(®, ¢),

By N Byl

= > el
|Bp U By ‘

then the unstability measures of the two trackers are coedpalf {, > &, p is
deleted, otherwise is deleted.

. Distribute detected faces to trackers.

If the face detection finds a face that overlaps more thandefireed degree with a
tracker’s estimate, the tracker is informed about the pos#énd size of the detected
face, which is used in the update cycle as described in thégue section.

Let I be the set of faces found by face detection andllgf; be the maximal
allowable ratio between the size of the intersection andike of the union of the
bounding box of the detected face and a tracker’'s boundimgebttimate.

For eachf € F the pair(f,p) € F x T that maximizes

_ |Bp N By
|BPUBf|

is found, and itz > 6,4, the detected facg is passed on to the tracker

. Create new trackers.

If a face has been detected that has no overlap with a tracketimate, a new
tracker is created for that face. That is, for each face F, if there does not exist
ap € T suchthatB, N By| > 0, then a new tracker is addedofor f.

. Update trackers with the positions of their neighbours.

Each tracker is associated with a hand-raise detectorhwd@tects hand-raises for
the person whose face is being tracked. This hand-raisetdetnsiders an area
to the left of the person — the hand-raise ROI — the width ofcwliepends on the
position of the face to the left of the face being tracked.

To make it possible for each tracker to adjust the size of thadiraise ROI of
the associated hand-raise detector, it is informed abouthMnacker that is its
left neighbour in the image. Moreover, as each tracker néz#sow the zeroth
moment of the hand-raise ROI to the right to compute the nreasent noise, it is
also informed about its right neighbour.

Let z; denote the estimatedposition of the trackei. The trackep € T is the left
neighbour ofy € T if
Ty <xzgN (T eT (zp <z < xq)) AUp > Umin

Likewise,p € T'is the right neighbour of € T' if

Ty > g AN (0T €T (xp >z > 24)) AUp > Unin

The conditionu, > u,i, helps to ensure that trackers that have been created for
non-face objects — due to false positives from the face tletee do not disturb
the other trackers.



If several choices for a left or right neighbour are possibtais can happen if two
trackers have the sameestimate — one is chosen by the tracker manager. If no
neighbour exists, the tracker is informed that this is theecdIf no left neighbour
exists, the hand-raise ROI can assume its maximal width.)

6. Update trackers with the current image.

Each tracker is updated with the current image. This caugel &acker to go
through the update cycle described in the previous section.

7. Determine if a hand-raise has occurred.

The tracker manager must inform the supervisor about haisgs to make it pos-
sible for the supervisor to control the PTZ-camera that zeomon the speaker.

To determine whether one of the participants has raisedamd,hall trackerp € T
for which

gp < gmax A Up > Umin

are queried. The condition ensures that only stable petbansiave been tracked
for a while can get the attention of the system. This is dormedaoice the risk that
the system detects hand-raises for non-face objects anith#hizand-raise detection
generates false positives while a person is coming or lgavin

4.7 Face Tracking Conclusions

In this chapter, we have described the approach we use fertfacking. A tracker
manager maintains a set of trackers for objects in the inpages that are believed to
be faces, and it continuously attempts to eliminate trecckar objects that are not faces
from this set. Each face tracker tracks a face using a zenatér dalman filter. The
measurement noise for this Kalman filter is determined basechanges in skin-colour
likelihoods inside the face area and in the hand-raise ROthé left and right of the
face. The measurements of the position and size of the facdare using the Mean
Shift algorithm and ellipse fitting. The Mean Shift algorihdetermines the center of
mass of the face in the skin-colour likelihood image. Usinig tenter, it is attempted to
fit an ellipse to the outline of the face in a gradient imagehi$ can be done, the width
of the ellipse is used together with the center of mass fowgnadguMean Shift to update
the Kalman filter. If the face detection (described in Cha@definds a face that has a
sufficient degree of overlap with the trackexpriori estimate of the face position, this
detected face is also used to update the Kalman filter.



Chapter 5

Hand-Raise Detection

In this chapter, we describe how hand-raise gestures magb®gnized in sequences of
skin-colour likelihood images using a Naive Bayesian Glessand we estimate proba-
bility density functions for the attributes of this classifi

5.1 Introduction

One way to recognize gestures is to track the hand, elbowshodlder. A gesture can
then be defined as sequence of vectors containing e.g. Hiwegbositions of these body
parts, and gesture recognition can be seen as matching spéoe of possible gestures.
The matching of gestures can be done using e.g. Dynamic Tiampiig, Hidden Markov
Models, or NDENSATION [23].

Azozet al. [43] propose a combined 3D arm localization scheme anditrgdkamework
that use colour, motion, and shape to localize the handyelimod shoulder of a person.
Colour segmentation is used to find the face and the hand,sangl the positions of these
together with the time-varying edges that movement of the@moduces in the image, the
elbow location is determined. These locations are trackatha Kalman filter (described
in Appendix B). To improve the estimates, 3D distance cainsts limiting the distances
between the locations being tracked are incorporated iestimate.

Moeslund and Granum [25] use a similar approach for locadina using kinematic and
collision constraints to limit the search space. Using sokegmentation, the face and
the hand are found. The elbow is then located in a silhouetégé of the arm, which is
produced by subtracting a background image.

Bernardoet al. [9] track the human arm in 3D using gray-scale images. Theiarm
modeled as shoulder and elbow joints and two truncatedtfiestop is missing) cones

representing the upper and lower arms. Using a Kalman filer,pose of the arm is

predicted. Matching is done by — for sets of parameters wighsearch window around

the predicted values — projecting the arm onto the images@an computing the distance
to a thresholded and blurred version of the actual input endfhen the best match has
been found, it is used to update the Kalman filter, using te&dce as prediction error.

Black and Jepson [23] use theo@DENSATION algorithm (described in Appendix B)
for recognizing gestures performed holding a distinctivebloured object in hand. A
gesture is modeled as a sequence of vectors containing libgties of the object. Each
state vector in the sample set maintained by tltedGENSATION algorithm contains a
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number indicating which gesture model that is being matgctrezlposition of the vector
within the model that aligns the model and the input gestaréhe current time step,
and two parameters used to scale the model in time and spase the sample set, a
probability distribution indicating which gesture thatsHaeen performed can be derived.

Since we only need to be able to recognize one type of gestnckdo not need infor-
mation about the exact position and pose of the arm, we hasidatketo try a somewhat
different approach to gesture recognition based on chaingagn-colour likelihood im-
ages over time. In an accumulated difference picture basgfieolikelihood images, a
hand-raise gesture will leave a vertical track. Using motpgical operations and thresh-
olding, this track is emphasized and turned into a singleneoted component, which
then is classified using a Bayesian network. This approadhssribed in detail below.

5.2 Preprocessing

When the tracker has determined the position of the face @fsop in the image, it is
possible to set a region of interest (ROI) in the image to Wihie search for hand-raise
gestures by that person can be limited. These hand-raise &®Ishown with boxes in
Figure 5.1.

The height and width of the hand-raise ROI are scaled acugrdi the distance to the
persort. As mentioned in Section 4.6 on page 48, information abaipibsition of the

neighbour is used to limit the width of the ROI such that théhleour’s face is not

contained in the ROI. When we refer to the “maximum ROI” sisbolw, we mean the
size that the ROI will have if it is not limited by the preserafea neighbour.

Within the ROI of each person, the changes over time in the-s&iour likelihood im-
ages generated with that person’s skin-colour LUT are detexd using an accumulated
difference picture (ADP). To achieve a less noisy ADP, thkellhood images are pre-
processed using erosion with3ax 3 neighbourhootl That is, for each pixelz, ) in
the likelihood image, the pixel itself and its eight neighbgixels are considered. The
value of the pixel with the smallest value is chosen as theevaf the pixel(x, y) in the
eroded image. To neutralize the effect of the erosion on #émel fin the likelihood image,
the erosion is followed by dilation using the same neighboad. Dilation is done in
the same way as erosion, except that the maximum value i®cHa$ To get a more
connected track in the ADP, the dilation is repeated two $inTéhe resulting image, that
is used as input when computing the ADP, can be seen in Figlife)5

The ADP is computed using a spatio-temporal filter that caespaach of the previous
images to a reference image, in our case the first image inetipgesice, and increments
the score/intensity of a pixel in the output image each tihee difference between its
value in the reference image and the other image exceedslefimed threshold. This
can be expressed recursively as follows [31]:

ADPy(z,y) =0 (5.1)

IFor this purpose, we use the predefined scaling constamtich was introduced in Section 4.5 on
page 42, and do not attempt to determine the distance fromthges.

2The neighbourhood sizes presented here are designed feolatien 0f320 x 240 pixels. Their sizes
should be adapted if the image resolution is changed signific



(a) Input Image (b) Skin-Colour Likelihood Image

(c) ADP Input Image (d) Final Image

Figure 5.1: Hand-Raise Detection Preprocessing. The large boxes etgatid-raise ROIs, the small boxes
the search windows used by the trackers. The input images (eriverted to a skin-colour
likelihood image (b), which is processed with erosion ardtiin to produce an input image
for the ADP computation (c). The output for the ADP is proeesfurther and thresholded to
produce the image in (d), the contents of which is classifigokdng either a hand-raise or noise.

where DP is a binary image indicating for which pixels the differerioeintensity be-
tween two images is more than Let I (z,y, ) be the intensity of the pixel dtc, y) in
thei'th image in the sequence. ThéhP can be computed as follows:

1 i |I(z,y,4) — I(z,y,k)| > T,

. (5.3)
0 otherwise

Dij(:IZ,y) = {

In our preliminary experiments, we have fouhd= 9 to be a suitable number of images
to use for the ADP, and we will use this value when estimathwy grobability density
functions for the Bayesian network. With a frame rate of 122 this number of images
corresponds to approximately 0.7 seconds.

The ADP is thresholded, and to remove noise, it is erodedgusithree pixels wide
horizontal neighbourhood that consists a pixel and its istiate neighbours to the left
and right. Using this neighbourhood appears to be suffiteealiminate much noise, and
it leaves the heights of blobs caused by a hand mostly unaffec

This is followed by dilation using the same neighbourhoole ilation is then repeated,
which have the effect of making the blobs in the image widantthey originally were.



This is done to ensure that blobs due to hand movement havedskgositions when
the hand has been moved horizontally as well as verticallyes€ blobs are now con-
nected using theline operation described in Figure 5.2, resulting in an image tlke
one presented in Figure 5.1(d). This image is segmented gsintour segmentation as
described in Section 3.2 on page 24, and the contour classifielescribed in the next
section. If the hand-raise ROI contains more than one conboly the contour with the
largest bounding box is considered.

procedure vline(image, min_height, min_blobcount)
for x := 0 to image.width-1
blobheight := 0
min_y := -1
blobcount := 0

/* count the number of times the vertical line through x inter sects
a blob which is at least min_height pixels high at this x posit ion */
for y := 0 to image.height-1
if pixel at (x,y) is white
flag := true
blobheight := blobheight + 1
if blobheight >= min_height
if min_y = -1 then min_y =y
max_y =y
endif
elseif flag = true and pixel is black
if blobheight >= min_height then blobcount := blobcount + 1
flag := false
blobheight := 0
endif
endfor

/* handle the case where the last pixel is white */

if flag = true and blobheight >= min_height then blobcount = b lobcount + 1
if blobcount >= min_blobcount then draw line from (x,min_y) to (x,max_y)
endfor
endprocedure

Figure 5.2: VLine Algorithm: This algorithm connects blobs in a binarpage which have shared x posi-
tions. To reduce the risk that noise becomes connentetheightis set to the minimum height
of a blob caused by a hand, aminblobcountis set to the minimum number of blobs with
shared x positions that a hand-raise will leave in the ADP.

5.3 Classification

The contour in the hand-raise ROI is classified as being reiieeresult of a hand-raise
gesture or something else, henceforth referred to as ndlsése could for instance be
a person walking behind the video conference participdraad movement that is not a
hand-raise gesture, or noise due to changes in the illuromat

5.3.1 Attributes

Whether a person has raised his hand or not will influencerabattributes of the contour
found in the the hand-raise ROI, including:

e The position of the contour. When a person is raising his hand, it will tsmso
degree follow a mean trajectory, while noise, e.g. due toragremoving in the
background, will tend to appear other places as well in thedkraise ROI. The



position used could be the center of mass of the area witleircdimtour, or as we
will do, the center of the bounding box of the contour, whidh wften be close to
the center of mass.

e Theheight and width of the contour. The height of the contour will generally be
larger than the width, and the area will be large compareddgotbhe head of the
neighbour, which may occasionally be included in the haisler ROl because it
has not been found yet by face detection or because the tréailee Area and
height/width-ratio provide the same information as heighd width, but by repre-
senting this information as area and height/width-ratidgrimation about size and
shape is separated.

e Thenumber of skin-coloured pixelsin the upper part of the area delimited by the
contour. When a person is raising his hand, the hand will aenupper part of
this area, and thus the number of skin-coloured pixels wlldsger than when the
hand is being taken down. By counting the skin-colouredIpikean area larger
than that of the hand, it can be determined whether the sKmic detection is
producing false positives for the background pixels. Itisithe case, the number
of skin-coloured pixels is likely to be larger than it usyak during a hand-raise
gesture, and the contour may by due to noise rather than arh@selgesture.

e Thesize of the intersectionof the pixel sets contained in the current contour and
the contour found in the previous image, compared to theditlee current con-
tour. While some types of noise may have intersection aneaitasto hand-raise
gestures, a small intersection area will be a good indinatiat the contour is not
caused by a hand-raise gesture.

e Thedirection of the movementof the skin-colour center of mass in the previous
N likelihood images within the bounding box of the contour.ridg a hand-raise
gesture, this center of mass will move upwards.

The values of these attributes also depend on whether tkerpgrarm is covered when
the hand is being raised, or he has bare arms.

5.3.2 Two Naive Bayesian Classifiers

The classification is done using a Naive Bayesian Classf&Q). NBCs assume that
the attributes are independent given the hypothesis, laut @hen this assumption does
not hold, NBCs are competitive with state-of-the-art dlgss [28].

A NBC for hand-raise detection is shown in Figure 5.3. Thedion of skin-colour
movement is not used in the NBC, as it requires significantrercomputation than
the other attributes. Instead, it is used to verify the testithe NBC when it classifies
something as a hand-raise gesture.

The hypothesis variable “Hand Raised?” (hencefaifhcan be in the statds, ..., h,,. If
the other variables, henceforth referred to as informatemmbles, are labeled., ..., A,
the probability thatH is in the statéh given the observatiodl; = a1 A ... A A, = ay IS,
according to Bayes rule [8]:

y PN, A =a; | H=h)P(H = h)
P(H =h A =a;) = =17 0 5.4
(=Rl [\ A=) PN, A = a) &4




H
Hand Raised?

Al A3 Ad
Position Skin-Colour Intersection

Figure 5.3: NBC1: A Naive Bayesian Classifier for Hand-Raise Detection.

P(H = h) is the background probability of the hypothebisP(/\f:1 Ai=a;| H=h)
is the probability of a particular observation given ti#at= h, and can, in principle, be
estimated from data, but this is impractical because ofargel state space.

If the eventsAd; = a4, ..., Ay, = ax are assumed to be independent given the stafé,of
Equation 5.4 can be rewritten to:

k k
© P(A;j=a; | H=h))P(H =
i=1 P(Nizy Ai = a;)
Since the probabilit;P(/\f:1 A; = a;) is the same for alk;, it can be substituted with a
normalizing constant:

P(H =] /’“\Ai oy = M PAi = a [ H=mPEH =) g o

. z
=1

The probabilitiesP(A; = a; | H = h) can be estimated from data.

The NBC in Figure 5.3 represents the x and y coordinates usisggle information
variable. Alternatively, this information could be repeesed using two variables, as
in Figure 5.4. This has also been done for the size varialalecintains the information
about height and width of the contour. This variable can liieigfo a variable for the area
and a variable for the height/width-ratio. By splitting sieevariables, itis assumed that the
x and y positions are independent given the hypothesis, lsatdatea and height/width-
ratio are independent given the hypothesis. We will refetheo NBC in Figure 5.3 as
NBC1, and the NBC in Figure 5.4 as NBC2.

H
Hand raised?

Al A2 A4 A5 A6
Position X Position Y Height/Width Skin-Colour Intersection

Figure 5.4: NBC2: Another Naive Bayesian Classifier for Hand-Raise Biate.



5.3.3 Estimation of Probability Density Functions

We estimate probability density functions (pdfs) for bofttlte classifiers presented in
Figures 5.3-5.4. Since the values of the attributes depenehether the person’s arm is
covered or not, the hypothesis variable can be in threerdiftestates:

e Hand-raise withArms Covered
e Hand-raise withArms Bare

o Noise

The histograms in Figures 5.5-5.10 show the frequenciefi@ivarious states of the
information variables given the state of the hypothesisale. They are based on a
few hundred examples of contours resulting from hand-rgestures and a few thousand
examples of contours resulting from nois&he data were generated automatically using,
for some image sequences, a simple NBC with binary infoilmnatariables, and for other
sequences, a set of rules producing nearly identical filessdbn. The number of false
positives (i.e. noise classified as hand-raise gesture¥ssthan 0.5%. The small contours
appearing during the first and last part of a hand-raise gestare classified as noise.

By approximating the histograms with appropriate funcéiog.g. Gaussian or piecewise
Gaussian, and normalizing such that the area or volume btemeah function equals
1, pdfs providing reasonable probabilities B8(A; = a; | H = h) can be obtained. It
would not be appropriate to use the histograms directlynéstbree persons participated
in the video sequences, and each person only raised his Hamdtemes. Furthermore,
many kinds of noise are not represented in the sequences, fHeudata used does not
provide sufficient information to make the histograms repreative, and a functional
approximation will probably result in a better mean perfame.

Together with the histograms in Figures 5.5-5.10, Gaussigriecewise Gaussian ap-
proximations are shown. The parameters of these functionprasented in Tables 5.1—
5.2.

Attribute Hand-Raise Noise
Arms Covered| Arms Bare
v o 7’ o v’ o

Center of Mass X | -0.61 0.17| -0.80| 0.21 | -0.67 | 0.24
Centerof Mass Y | -0.08 0.08| -0.16 | 0.10| -0.16 | 0.22
Area 0.15 0.08| 0.33]0.16| 0.00]| 0.12
Height/Width-Ratio| 2.48 0.84| 2.24| 050 0.00| 2.39
Intersection Area 1.00 0.16| 1.00| 0.13| 0.00| 0.03
1.00| 0.30
Skin Pixel Count 0.19 0.06| 0.46| 0.15| 0.30| 0.22

Table 5.1: Hand-Raise Attributes Mean and Variance. Two sets of nusnaer given for the intersection
area for noise, as a piecewise Gaussian approximationds use

3The exact numbers are 112 examples of contours caused byaised with covered arms, 175 examples
of contours caused by hand-raises with bare arms, and 6@82p&s of noise. The contours were primarily
taken from V1-V5, V7, and V11. Contours from parts of V8-V Ilay19-V20 were used as examples of
noise due to illumination change.



Attribute Parameters
W by
[—0.0986] | [0.0091  0.0014]
|—0.6647] | [0.0014  0.0240]
[—0.1474] | [0.0086  0.0083]
|—0.7248] | [0.0083  0.0417]
[—0.1584] | [0.0493  0.0025]
|—0.6708] | [0.0025  0.0553]
[0.5566 | [0.0101  0.0012]
0.3842] 0.0012  0.0052]
[0.6086 | [0.0537  0.0263]
0.4393 | 0.0263  0.0171]
[0.1909] [0.0381  0.0197]
0.2184 0.0197  0.0206 ]

X-Y Position, Arms Covered
X-Y Position, Arms Bare

X-Y Position, Noise

Width and Height, Arms Covered
Width and Height, Arms Bare

Width and Height, Noise

Table 5.2: Hand-Raise Attributes Mean and Variance for NBC1.

Position

The position is measured relative to the center of the face ¢goordinate system with
(0,0) in the upper left corner of the image, and the x and y coordmate normalized by
dividing with the maximum hand-raise ROI width and heiglespectively. Thus, the x
coordinates are always negative, and the y coordinatesgggive when above the center
of the face, and otherwise positive.

(a) Arms Covered (b) Arms Bare (c) Noise (d) Center X

A A // / \ \\\

(e) Arms Covered (f) Arms Bare (9) Noise (h) Center Y

Figure 5.5: Center Coordinates for Hand-Raise Gestures for NBC2.

The center y coordinates for hand-raise gestures in Figéredgem to be approximately
normally distributed, and the histograms can be approx@mhatith a Gaussian pdf by
computing mean and standard deviation for the data. The dowies for noise can also
be approximated with a Gaussian pdf.

For the x coordinates for hand-raise gestures in the cases Awovered in Figure 5.5(a),
the values do not seem to be normally distributed. This isbge the hand-raises have



been done by two persons sitting next to each other. Thigmeons the x position of the
hand for one of the persons, while the other person can mavieahd freely. The result
is a multimodal probability distribution. The persons weitting quite close with an
approximate center-to-center distance of 0.6 m. If theadist between the persons had
been larger in some of the sequences, and more sequencesdmadded, the distribution
might have become unimodal. For this reason, we approxithatdistribution in Figure
5.5(a) with a single Gaussian pdf.

The x coordinates in the Arms Bare case in Figure 5.5(b) hdaegar variance, but the
histogram is otherwise quite similar and is also approxedatith a single Gaussian pdf.

The pdfs for the center x coordinates are plotted in Figusdy, including the noise
pdf. As can be seen from the figure, the x coordinate does ootdge much information
for classification, as the pdfs are very similar, with apjmetely same mean and stan-
dard deviation. The y coordinate provides more informateasit can be seen in Figure
5.5(h), where the probability at the means of the hand-naie are more than twice the
probability of noise, due to the large standard deviationa$e compared to hand-raises.

In Figure 5.6, histograms and Gaussian approximationshenersfor the three hypothe-
ses in the case where the position is represented usingle samable. As it can be seen
from the figure, the Gaussian functions are rotated becdusenaero covariances. This
suggests that the position should indeed be representediagla variable, as a similar
effect could not be obtained by multiplying the x and y pdfg-igure 5.5. Also note
the large standard deviation for noise compared to harsgsaiAs discussed above, this
means that the position is useful for classification.

Height and Width

The height and width of the contour are normalized by digdwith, respectively, the
maximum ROI height and width, and the area is normalized faglig with the maxi-
mum ROI area. The area is computed as the area of the bounabngf khe contour, i.e.
by multiplying width and height.

As can be seen from Figure 5.7, reasonable Gaussian ap@toincan be made for
the hand-raise hypotheses for both area and height/wéadib-r The area when making
hand-raises with bare arms tends to be somewhat larger/dmitnéth a larger standard
deviation. This is because of the larger skin-colour araantoves in the image.

The noise tends to have a small area and a small heighthnatith-compared to the
hand-raise gestures. Simply making a Gaussian approximai computing mean and
standard deviation would not produce a good pdf, as the ttadlessh values of the at-
tributes would not get the largest probabilities. Instemd;aussian approximation has
been produced by mirrorifighe data arouné and then computing the mean and stan-
dard deviation. The resulting pdfs are not perfect fits, lpgins acceptable.

One might speculate that increasing the probabilities ™afmr large areas and height/width-
ratios could improve classification. However, due to the sizd height/width-ratio of the
maximum RO?¥, a contour with a large height/width-ratio will have a sreata and vice
versa.

“Let h(x) be a function describing the histogram. This function isrliforz € [0; co[. By mirroring
around 0, we produce a functién, () = h(|z|), which is defined for €] — oco; oo].

SWe use a height/width-ratio of the ROI &f6 and an area 08050z, wherez is a scaling constant
depending on the distance to the person.
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Figure 5.6: Center Coordinates for Hand-Raise Gestures for NBC1.

When the size and shape is represented using a single ariablGaussian approxima-
tions to the height-width histograms in Figure 5.8 can belasepdfs. Note that the shape
of 5.8(d) and to some extent 5.8(b) indicates that contoutfs ayarticular height/width-
ratio should have large probabilities. This confirms thasisensible to use area and
height/width-ratio, when the size and shape are modeledyugio variables, instead of
height and width.



(a) Arms Covered (b) Arms Bare (c) Noise (d) Area

(e) Arms Covered (f) Arms Bare (9) Noise (h) Height/Width-
Ratio

Figure 5.7: Area and Height/Width-Ratio of Hand-Raise Gestures.

Intersection Area

The intersection area is determined as the percentage bbimading box of the current
contour that is covered by the bounding box of the previougag. If no contour has
been found for a few frames, it is assumed that the curreriboors the first in a sequence
of contours that will be caused by a hand-raise, and thesietéion area is defined to be
1.

Histograms and Gaussian approximations for the intemeairea are shown in Figure
5.9. The approximations for the histogram in Figures 5:R&(b) were produced by
mirroring the data around 1 before computing mean and stdndkviation. The noise
in Figure 5.9(c) has been approximated using a piecewisessgaupdf. The data for
the first piece of the pdf was mirrored around 0 and the datah®rsecond piece was
mirrored around 1.

Number of Skin-Coloured Pixels

The number of skin-coloured pixels within a box placed atupper part of the contour
is determined, and normalized by dividing with the size a$ thox (which depends on
the distance to the person). The histograms and Gaussiaoxapgtions for the values
of this attribute are shown in Figure 5.10.

Verification using Skin-Colour Movement

When a contour has been classified as a hand-raise by the NB&yra based on the
previous N skin-colour likelihood images is computed. This score impated by de-

termining, for each likelihood image, the center of masgmshe bounding box of the
contour. These center of masses are considered in chrocalagder. Each time the
center of mass moves more that” pixels upwards, a counter is incremented, and
each time the center moves more thaw pixels downwards, another countrs in-
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Figure 5.8: Height and Width of Hand-Raise Gestures.

cremented. The score is then computedas- d)/N, which will be a value between
-1 and 1. If this score exceeds a threshold, the contour ispied as being caused by a
hand-raise.



(a) Arms Covered (b) Arms Bare (c) Noise (d) Intersection
Area

Figure 5.9: Intersection Areas for Hand-Raise Gestures.

(a) Arms Covered (b) Arms Bare (c) Noise (d) Skin Pixel
Count

Figure 5.10: Skin Pixel Count for Hand-Raise Gestures.

Background Probabilities

To compute the probability distribution for the hypothegsiable, the background prob-
abilities for observing a hand-raise gesture must be known.

Based on the training data, the probabilities shown in Talehave been found. How-
ever, since contours caused by hand-raises appear in tirsierd, the background proba-
bility of observing a hand-raise will depend on the numbdrarid-raise contour that have
been observed recently. This could be modeled by a chain @d\&& those presented,
where the hypothesis variables are connected in a sequ&hee. only the first NBC in
the chain would use the background probabilities in Tale 5.

P(H = ArmsCovered) | P(H = ArmsBare) | P(H = Noise)
0.0176 0.0274 0.9550

Table 5.3: Background Probabilities for Hand-Raise Gesture.

Instead of doing this, we have chosen a slightly simpler @ggn that achieves a similar
result. The background probabilities are ignored. Eacle @NBC classifies a contour as
being caused by a hand-raise, and the skin-colour movereefitation agrees, a counter
is incremented and a timer is set to 0. If the value of the cuexceeds a predefined
threshold, the system assumes that the person has raiskdrus For each frame that
passes without a hand-raise being detected by the NBC niee i incremented. If the
timer exceeds a predefined threshold, the counter is set to O.



5.4 Hand-Raise Detection Conclusions

In this chapter, we have presented the method we use forfagsaldetection. The search
for hand-raises for a person is restricted to a ROI to thedkthe person in the image.
Using the person’s skin-colour LUT, a skin-colour likeldebimage is produced for the
ROI, which is preprocessed and then used for generating @ bthe hand-raise ROI.
In this ADP, a hand-raise will leave a vertical trace. We pscthe ADP to turn the trace
into a single connected component, which is extracted usamgour segmentation and
then classified using a NBC. If the NBC classifies a contoureasgocaused by a hand-
raise, the previousV skin-colour likelihood images are examined to determinihéire
has been a sufficient degree of upwards movement in the cafitesiss for this contour
being caused by a hand-raise. If this is the case, and it happ4ficiently many times in
arow, it is reported to the rest of the system that a hanefieés occurred.



Chapter 6

System Design

In this chapter the design of the VICOWIJOY system will berde=d. The overall ar-
chitecture will be described, followed by a more detailedatigtion of each phase of the
system. Finally, the implementation platform will be désed.

6.1 Introduction

To be able to experiment on the methods described in Chaptérare have designed and
implemented a system which is based on a supervisor prdtatssantrols and distributes
data among a number of other processes. In a previous pafjeats [5] we investigated
several ways of integrating the methods in a video confengnsystem with automatic
speaker attention and found this model to be the most saitdfirst, the overall archi-
tecture of the system is described in Section 6.2. Aftergite processes in the system
are described in Sections 6.3 to 6.9. Finally, the impleet@n platform is described in
Section 6.10.

6.2 VICOWIJOY Architecture

The overall architecture of the VICOWIJOY system is illag&d in Figure 6.1. The
system consist of 6 different processes which are shortbgriteed in the following list.
In the following sections we will describe each of the preessin more detail.

e Supervisor: The supervisor is the main process in the VICOWIJOY systdns |
responsible of distributing the data it receives from peses below it to other pro-
cesses. Furthermore, it maintains a lookup table (LUT) tvisaupdated based on
the faces found by the face detection process. This LUT id bgehe skin-colour
detection process to generate a skin-colour likelihoodgenand by the tracker
manager to give new face trackers an initial LUT to use.

e Skin-Colour Detection: This process takes as input a LUT from the supervisor
and an image from the panorama camera. It converts inputarntmiRGB and
uses the LUT to generate a skin-colour likelihood image.sT#ithen returned to
the supervisor.

e Face Detection:This process detects the faces in the images taken from tioegaa
camera. It preprocesses and segments the likelihood ineagé/ed from the su-
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Panorama Camera

pervisor into face candidates. Afterwards it uses the fa#divation methods de-
scribed in Chapter 3 to remove the non-faces. The final lisaoés is sent to the
supervisor.

Tracker Manager: The tracker manager maintains a set of trackers for the faces
the image using the face list produced by the face detedtiattempts to eliminate
trackers for non-face objects that was started becausdsaf fesitives from the
face detection, as well as trackers that have lost the fésgswere supposed to
track, from this set.

Face Tracker and Hand-Raise Detector:Each time a new face appears in the
image, a face tracker and a hand-raise detector are startddd face by the tracker
manager. The face tracker attempts to track the face, wieléand-raise detector,
based on the face position determined by the face trackenitans the hand-raise
ROI to detect hand-raises.

PTZ-Camera Control: The purpose of this process is to control a PTZ-camera
(Pan-Tilt-Zoom camera) based on the current speaker’s aigeposition in the
panorama camera. We have not implemented this part of thersysvhich is why

it is shaded in Figure 6.1. Instead we use a simple digitairuog on the images
from the panorama camera to emulate the PTZ-camera’s &mcti

Skin Colour Likeli-
hood Image
Face Lis/
Lookup Table

Skin Colour Likeli’—/

hood Image
Skin Colour Face
Detection Detection

Speaker Positi(&
and Size

Speaker \
Position and Size
Lookup Tablg\
Face List

Tracker
Manager

Hand Raised?
Speaker Position

and Size
Face Tracker and
Hand-Raise Detector »

PTZ-Camera
Control

\ Posotion

Vector

PTZ-Camera

Image

Figure 6.1: The VICOWIJOY Architecture. The system consists of 6 défg@rprocesses. The PTZ-camera

control process is shaded because it has not been impletnelmstead it is emulated using
digital zooming on the images from the panorama camera.

6.3 Skin-Colour Detection

The skin-colour detection process is a rather simple psockdirst calculates a NRGB
image based on the input image which it receives from thersigoe. This is done as
explained in Section 2.2 on page 8. Based on the LUT, whiclses r@ceived from the
supervisor, and the chromaticity image, a skin-colouriil@d image is calculated. This
image is then sent back to the supervisor. The skin-colotgction process is illustrated
in Figure 6.2.
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Figure 6.2: The Skin-Colour Detection Process.
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6.4 Face Detection

The face detection process first erodes and dilates théhda image which is received
from the supervisor (the whole face detection processustiifited in Figure 6.3). The
result of this is used by the threshold method to create ayinsgge where white pixels
are skin and black pixel non skin. Based on the binary images#gmentation method
explained in Section 3.2.1 on page 25 creates the initiabfiface candidates and sends
it to the first verification method. This is the method whichifies the rectangular size
and shape of the face candidates (explained in Section 3paga 27). Face candidates
which do not apply to the size and shape of faces are remowed the list before the
list is forwarded to the solidity verification. This methodrifies whether solidity of face
candidates is within lower and upper thresholds (the meitherplained in Section 3.4 on
page 27). Face candidates which are not within these thdsshce removed before the
face candidate list is forwarded to the nose-eye templatehimgy. Here the areas covered
by the face candidates in a grey-scaled version of the impagie are matched against an
average nose-eye template. The face candidates which dmaiotike the template
(defined by using a threshold as explained in Section 3.5 ga g8) are removed from
the face candidate list. Finally, the face candidate li&tn&warded to the ellipse matching
process, which uses a gradient image to verify whether ttee dandidates are elliptic in
shape or not (this method is explained in Section 3.6 on payeFace candidates which
are below a threshold are removed from the list, before tra fist of faces is sent to the
supervisor.
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Face Candi-
date List

Gradient Image Face List

Match Ellipse

Figure 6.3: The Face Detection Process.



6.5 Tracker Manager

The tracker manager is an implementation of the algorithstueed in Section 4.6 on
page 48. For each new image, the supervisor provides a lidetfcted faces (which
can be empty), as well as the LUT that was used for this imageerVthis happens, the
tracker manager first go through the list of trackers to elee trackers that are unstable
(i.e. moving to much) or dead (i.e. have not been updatedimesime, see Section 4.6).
Then it goes through the new list, that only contains “vatidickers, and compares each
tracker with each other tracker to determine if any of thekeas overlap, i.e. the size of
the intersection of their estimated face bounding boxeargel than a threshold. If this
happens, the least stable tracker is deleted. Then theel@faces are paired with current
trackers, and if a detected face does not overlap with a fawerdly being tracker, a new
tracker is created for this face. The tracker manager thers glorough the tracker list
again to determine the neighbours of each person beingaiaekd updates each tracker
with the information about its neighbours, which allows treckers to adjust the sizes
of the hand-raise ROIs for the hand-raise detectors. Eacker is then updated with
the current image, which cause it to go through its updatéecyt the end of which the
hand-raise detector will be invoked to determine if the perigeing tracked has raised his
hand. If this is the case, the position of the person is gieghe supervisor, that use it to
zoom in on the person.

6.6 Face Tracker

The face tracker is an implementation of the face trackimgréhm described in Sec-
tion 4.5 on page 42. Firsta NRGB image and a skin-colourilikeld image is produced
as described in Section 6.3, using the tracker’'s own LUTSTRIT is initially provided
by the supervisor (through the tracker manager). Usinglikesihood image, the center
of mass of the face is found using the Mean Shift algorithmerTlthe size is determined
using ellipse fitting in a gradient image. This position amesand, if available, the
position and size of the detected face supplied by the travkmager, is used to update
the trackers estimate of the position and size of the facéindibe new estimate of the
position and size, the skin-colour LUT is updated with pgxbm the face area in the
NRGB image.

6.7 Hand-Raise Detector

The hand-raise detector is responsible for classifyingctr@ents of the hand-raise ROI.
As input, it receives the skin-colour likelihood images gwoed by the face tracker. It
performs preprocessing on these images as described iiB&c? on page 52. The
preprocessing steps results in a (possibly empty) set dboomfor the connected com-
ponents in the ADP for the hand-raise ROI. The contour with lthunding box with
largest area is classified using a Naive Bayesian ClasdNiBC{, which is implemented
as a set of functions corresponding to the attributes of BE NEach of these functions
take the bounding box of the counter as input and returns ribigapilities for the three
possible states of the hypothesis varialbland raised with covered armband raised
with bare arms andnoise Using these probabilities the probability of the eveand
raisedis computed, and if it exceeds 50%, the hand-raise verificati initiated. If it is
successful, the hand-raise counter is incremented asledan Section 5.3.3 on page 63.



If this counter exceeds a predefined threshold, the haisd-tEtector informs the tracker
manager that a hand-raise has occurred.

6.8 PTZ-Camera Control

The PTZ-camera control process is not implemented as a ogélatling system for a
camera. Instead we use digital zooming in the input imagehtovsa close-up of the
person who has got the attention by raising his hand. Basetieoposition and size
delivered by the supervisor, the process copies the facethe input image and enlarges
it to fit 320 x 240 pixels. This is then shown as the image of the current speaker

6.9 The Supervisor

The main purpose of the supervisor is to distribute infororaamong the other pro-
cesses in the system. Besides that it has the task of mangarUT to be used by the
skin-colour detection process and the tracker manageepsoBased on the skin-colour
model described in Appendix C we have made 150 different Sanskin-colour mod-
els. These are represented as likelihoods in LUTs calalikdesxplained in Section 2.4.2
on page 12. The skin chromaticity distributions in the LUBsédr chromaticity- centers
of mass ranging from 0.2 to 0.8. Furthermore, we have douthledstandard deviations
of the variances along the chromaticityand g axes. This is because the skin-colour
model is based upon that the centers of mass of the skin chicityalistributions lie
along the skin locus. This will not always be the case in tlieidint environments of
video conferences. However, using larger variances makmsseible to find faces that
have skin-colours which are a within reasonable distand¢hen$kin locus.

The 150 LUTs are divided into 6 groups of 25 LUTs. This is altstrated in Figure
6.4, where we have misplaced the 5 groups along the chrdtyagi@xis to make the
figure easier to read. l.e. the white group at the top liesgatbe real skin locus and the
rest are misplaced. When the supervisor starts it gets el i’ T from the first group
and uses this for skin-colour detection. Afterwards, fagedtion is made and if no faces
are found, the next LUT from the current group will be usedtfor next image. When
the end of the group is reached the first from the next grousésiland when the end
of the last group is reached the whole starts over with thelfitB from the first group.
By using these rules the system covers the whole skin chioityatirea in 1 second (25
images at 25 Hz) when no faces are found. If faces are fourfteimtage, the supervisor
uses the skin chromaticities of these to update the currdiitand this LUT is then used
to detect skin-colours in the next image. In this way, newpgbeentering the scene should
be found faster, when the illumination conditions are said other people already have
been found in the scene. This is because the supervisor dbgetthe next LUT from
one of the 6 groups as long as faces are detected.

The whole supervisor process is illustrated in Figure 6.5 alkeady explained it initiates
with the first LUT from the first group of LUTS. It then goes inits main loop where it
first gets an image from the panorama camera and sends thihéogvith the LUT to the
skin detection process. The skin detection process retusks-colour likelihood image,
which the supervisor sends together with the input imagbkeddce detection process. If
the list of faces returned from the face detection processigty, the supervisor gets the
next LUT based on the rules explained above. If the list of$ais not empty the current



Figure 6.4: The LUTs Centers of Mass: The supervisor uses 6 groups of ZEslttd find skin-colours in
the image.

LUT is updated based on the skin chromaticities of the fanethe list. This is done
using one of the methods explained in Sections 2.5.2 on pagad 2.5.3 on page 17.
Afterwards, the active trackers are updated and new tracker initiated. This is done
by calling the tracker manager with the input image and thealed face list. Finally,
the supervisor calls the tracker manager to find out whethghand-raises have taken
place. If yes, the face of the hand raiser is zoomed in on befw supervisor loop starts
over by getting the next image from the panorama camera.

6.10 Implementation Platform

We have implemented a Windows version of the system destiibéhe previous sec-
tions. This has been done in C++ using the Microsoft Platf&DK and the Borland
C++Builder compiler v5.5. Furthermore, we have used ther@@£3.4a and IPL v2.5
libraries from Intel to do many of the image manipulation dtions. To emulate the
panorama camera we have recorded a number of video sequehioesare described in
Appendix D. These are saved as AVI-files and read by the pnogtaun-time.

6.11 System Design Conclusions

In this chapter we have described the design and implememtat a system called VI-
COWIJOY, which we will use to do experiments on the methogestigated in Chapters
2-5. The system is implemented in C++ and makes use of a nuoiliéraries to do
image manipulation. Input from real cameras are emulat@thudVI-files and digital
zooming. The system consists of a supervisor process whidisad to distribute data
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Figure 6.5: The Supervisor Process.

amongst the five other processes in the system. Furtherth@supervisor must main-
tain a LUT which is used as input to the face detection proaesssthe tracker manager.
The skin-colour detection process is the initial processiamnised to find the skin-colours
in the images. It makes a skin-colour likelihood image antiset to the face detection
process via the Supervisor. The face detection processéigstents the likelihood image
into a list of face candidates and then classifies each catedat face or non-face using
rectangular shape and size, solidity, similarity to a negetemplate, and ellipse match-
ing. Based on the resulting list of detected faces from tlwe fdetection process, the
tracker manager maintains a set of trackers for the facdseintage. If a detected face
does not overlap with a face that is already being trackedvatracker for that face is
created. Each face tracker tracks a face using skin-cokelifood images and intensity
gradient images. The likelihood images are produced byrdekeér's own skin-colour
LUT, and are also used for hand-raise detection for the pdosing tracked.






Chapter 7

Experiments

In this chapter we will describe the results of experimengslenupon the methods de-
scribed in Chapters 2, 3, 4, and 5. To be able to do these expets we have recorded a
number of video sequences of people doing hand-raisese Bneslescribed in Appendix
D

7.1 Introduction

We have organized the experiments into four sections, eacksponding to one of the
Chapters 2, 3, 4, and 5. First, experiments are made on ths faicattention methods

in Section 7.2. In these we measure the performance of theatetoy computing the

distance between the average skin colour likelihood in #ge fand in the rest of the im-
age. The best combination of methods found is used in thevierifecation experiments

in Section 7.3. In these we first do experiments using therpoggsing methods dilation
and erosion, and afterwards on each of the face verificatethods alone and combined
serially. Preprocessing is used to enhance the likelihawabe before it is thresholded
and segmented into a list of face candidates. It can therefor be said to do actual face
verification. On the other hand, the preprocessing cantio¢ebe said to be part of the
focus of attention phase. Since it in combination with theeshold and segmentation
methods makes the initial list of face candidates, we hawiddd to experiment on it

together with the face verification methods.

The performance of the face verification methods is idewmtifig calculating the amount
of false negatives (faces which are not identified as faces)f@se positives (non-faces
which are identified as faces).

The best combination of methods for focus of attention awe feerification is used in

Sections 7.4-7.5, where experiments are made with fackingand hand-raise detec-
tion. We measure the performance of the face tracker by myakisubjective evaluation

of how well they follow the centers of the faces in the pregent clutter, when the

faces become occluded, and when the illumination changé® pErformance of the

tracker manager is evaluated by examining its ability tonglate trackers for non-face
objects. Finally, experiments are made on the hand-raiseiilen in Section 7.5. Its per-
formance is measured by how often it miss a hand-raise (fedgative) and how often if

detects a hand-raise although none has occurred (fals#vphsi his is done for different

combinations of parameters to produce different trads-oétween the two performance
measures.
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7.2 Focus of Attention Experiments

In this section we will do experiments on the four differenéthmods, which can be used
for focus of attention (FoA). These are:

e LUTs using the simple update method (simple LUT)
e LUTs using the ratio update method (ratio LUT)
e Gaussian models based on the ratio LUT method (ratio Gayssia

e Gaussian models based on weighted parameters of Gaussiighted Gaussian)

The methods were explained in Section 2.5.2 on page 15 ar®$&c5.3 on page 17.
Furthermore, experiments will be made on the use of momemsteaints which were
explained in Section 2.5.4 on page 17.

The methods are meant to make it possible to detect skinwlmnder changing corre-
lated colour temperatures (CCTs — we refer the reader toegahbing of Section 2.5.1
on page 14 for a description of CCTs). Therefore we have éddid do experiments us-
ing three videos, which all have been recorded under cdattothanging CCTs. These
are the V8-V10 and are described in more details in AppendixrDthe videos, CCTs
of 2600K, 3680K, 4700K, and 6200K are used. The experimenthatefore show both
how well the methods detect skin-colours and how well thegpado changes in the
CCT. We have used a constant vatue= 0.9 (this constant is described in Section 2.5.2
on page 15) to indicate how fast the methods should adaptaoges in CCT. l.e. we
trust the LUT or Gaussian model estimated sodf#fo and the LUT or Gaussian model
found from the current imag&0%. Together their values are used to create the new LUT
or Gaussian model which will be used in the next image.

7.2.1 Experiments Description

In the experiments we measure four values:

e The average skin-colour likelihood inside the face area
e The average skin-colour likelihood inside the backgroureha

e The distance between the average skin-colour likelihodkariace and background
areas

e The average computation time

Theface areas the area in a video which contains the face. To avoid begpgddent on
a face tracker during these experiments, we have definecdtieedirea at a fixed position
and with a fixed size for each of the videos (see the green hoxEgure 7.1). This
can be done because the persons in the videos do not movéaitesrvery much —i.e.
they more or less stay inside the face area. Calculatingvitrage skin-colour likelihood
(from now just average likelihood) for the face area is dosg Equations 7.1 and 7.2,
where fw and fh are the width and height of the face area, gid fy its upper left
corner in the image. The functidifzz, yy) returns the likelihood of the pixel at position

(zz,yy)-



fr+fw fy+fh

facesum = Z Z l(xxayy) (7'1)
zz=fz yy=Fy
faceqg = % (7.2)

Thebackground areas the whole image excluding the face area andhidwed area The
hand area is the area in the image where the hand-raisesléake [i is also of a fixed size
and position for each video (see the blue boxes in Figure THg hand areas have been
defined to avoid, that the skin-colours of a hand influencehenatverage likelihood of
an image area. Measuring the distance between the aveketiedod of the background
area and the average likelihood of the face area, tells ust&be accuracy of the method
used for skin-colour detection. l.e. to be able to make ay dasinction between the
background area and the face area we want to have the lamgsble distance between
their likelihood averages.

(a) V8 (b) VO (c) V10

Figure 7.1: The Face, Hand, and Image Areas: The images in the threesvateodivided into areas of
faces (green boxes) and hands (blue boxes). The backgroeadalefined as the whole image
minus the face area and the hand area.

To calculate the average likelihood of the background anesfirst sum all the likeli-
hoods in the image. Afterwards, the sum of the likelihoodghefface and hand areas is
subtracted. This is done in Equation 7.4 whiezkeandbh are the width and height of the
image. The sum of likelihoods in the hand area is calculagagLEquation 7.3.

hz+hw hy+hh
handgym, = Z Z l(zzx,yy) (7.3)
rzrx=hx yy=hy
bw bh
backgroundsy, = ( Z Z l(xx,yy)) — facesym — handgym (7.4)
zx=0yy=0

Thereafter, the average likelihood in the background aréaund by dividingbackgroundsym,
with the number of likelihoods greater than 0 in the backgrbarea. Likelihoods above 0
are used because the result only should express the avdridigepotential skin-coloured
pixels in the background image (i.e. the colours which asedim the upper and lower
border of the skin locus illustrated in Figure 2.5 on page Buation 7.5 calculates the
average likelihood for the background aréd.is the number of pixels in the background
area with a likelihood greater than 0.



backgroundgym,
M

background,,g = (7.5)
Finally, we also want to compare the average computatioa foneach of the methods.
This can be used to find out whether increased accuracy iatxpense of a longer
computation time.

7.2.2 Face Area

In Figure 7.2 the results of using each of the four methods 8raié illustrated. Using
the weighted Gaussian method (the blue line) gave the Hidjkebhood average under
all kinds of CCT. Below the graphs in the figure we have indidathe CCT used. The
changing CCTs happened because one of the arrangementsresfiant lamps by in-
cident was turned in the wrong direction. The other arrang@mvas at the same time
positioned at 3680K, so the CCT should probably be found B680K. As it can be
seen, all the methods degrade in performance for a period WwieeCCT changes from
2600K to 4700K and from 6200K to changing CCTs. This is beedlis methods need
a small period of time to adapt to the new CCT, which in bothesas a long distance
away in chromaticity plane. However, it is not more than D0kBages and thereby less
than a two seconds (the frame rate in the videos is 12.5 Hahg3mm 3680K to 2600K
and from 4700K to 6200K does actually not make the methodsnpemvorse for a short
period. This must be because the distance moved in chratgatiane is short enough to
make the methods adapt fast enough from image to image. @kendor the instability
at the end of V8 is, as explained above, that one of the armegts of fluorescent lamps
was rotated while the other was not. The result of this candem ®s the two abrupt
breaks in the graphs in the area of changing CCTs.
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Figure 7.2: Average Likelihood in the Face Area: Using the weighted Gausmethod gives the highest
average likelihood under all kinds CCTs.

The use of a CCT of 2600K and 6200K is a real problem for all tlrethmds except
for the weighted Gaussian. Investigations of the skin claticity distributions made
by each of the methods, showed that the variances of the tegighaussian method
always was the largest. This meant that the likelihood ofgkia-colours in the face



area got higher and thereby increased the average likelinbbe Gaussian method also
has the highest average likelihood in the face area whergustimer CCTs. In Table
7.1 we have illustrated the average likelihoods for V8, 8 &10. As it can be seen,
the use of the weighted Gaussian method gives the highestgevékelihood in all the
videos. Therefore, the weighted Gaussian method is theapeeter, when looking at
the likelihood average in the face area.

Video No. | Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian

V8 0.155 0.164 0.220 0.33p
V9 0.19 0.28 0.288 0.376
V10 0.162 0.234 0.258 0.331L
Average 0.172 0.229 0.255 0.348

Table 7.1: Average Likelihood in the Face Area: The table illustratesaverage likelihood in the face area
in each video. The bottom row shows the average likelihoaldhe videos. Using the weighted
Gaussian method clearly gives the highest average likatiho

7.2.3 Background Area

The use of the weighted Gaussian method gives the highastga/ikelihood in the face
area. To verify that this is not at the expense of a high aweti&glihood in the back-
ground area, we calculated this for each of the images in & résults can be seen
in Figure 7.3. Here the ratio LUT method performs best mogtheftime and the ra-
tio Gaussian method worst most of the time. The weighted Sanisnethod is close to
the ratio LUT method, except when the CCT is 2600K. The be#sults made by the
weighted Gaussian method and a CCT of 2600K is thereforecadxpense of a higher
average likelihood in the background area. In Table 7.2 we lilustrated the average
image likelihoods in V8, V9, and V10 for each of the methods.itAcan be seen, the av-
erage likelihood of the ratio LUT method is about half theesif the weighted Gaussian.
In [24] they claimed that using a LUT should be more accuratatusing a Gaussian
model. The results in Figure 7.3 and Table 7.2 should vehiy, if we define accuracy
as finding only skin-coloured pixels inside the face aredse ihcreased accuracy nev-
ertheless seems to be at the expense of a lower likelihoodegpikels, which actually
are skin-coloured. In Table 7.3 we have illustrated theadists between the the average
likelihood in the face and image areas. We want this distémbe as large as possible to
be able to make a clear distinction between the face and sh@fréhe image. As it can
be seen, the distance is by far the largest when using thehteeigsaussian method. So
although this method finds higher likelihoods in the backgibarea, the likelihoods in
its face area are at the same time raised even more. Thereferwill still say that the
best method to use is the weighted Gaussian.

Video No. | Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian

V8 0.052 0.040 0.075 0.063
V9 0.059 0.030 0.084 0.05P
V10 0.069 0.030 0.125 0.06R
Average 0.060 0.033 0.095 0.061

Table 7.2: Average Likelihood in the Background Area: The table ilfasgs the average likelihood in the
background area in each video. The bottom row shows the gedilelihood of all the videos.
Using the ratio LUT method gives the lowest average likedithin the background area.
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Figure 7.3: Average Likelihood in the Background Area: Using the ratidT gives the lowest average
likelihood in the background area.

Video No. | Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian

V8 0.103 0.124 0.145 0.278
V9 0.139 0.259 0.204 0.31y
V10 0.093 0.204 0.133 0.269
Average 0.112 0.196 0.161 0.28p

Table 7.3: Average Likelihood Distance: The table illustrates theatises between the average likelihoods
in the face and background areas. When looking at this distdrere is no doubt that the method
to use is the weighted Gaussian.

7.2.4 Computation Time

Finally, we have calculated the average computation timesémh method. The time
is measured as the number of milliseconds used by a methodsowgle image. The
results were achieved on a laptop with a 1 GHz Pl and 256 MBemory. In Table
7.4 the average times for V8, V9, and V10 can be seen. Whatedsesting is whether
the weighted Gaussian method’s better distinction betWeeface and background area
compared to the ratio LUT method is at the expense of a mudelotomputation time.
As it can be seen this is not the case, since it only needs ab%umore computation time
on the average. The simple LUT method is the fastest methogedut unfortunately its
average face area likelihood also much lower than thoseeobtiter methods. Using the
weighted Gaussian method seems to be a reasonable comgtoatigeen accuracy and
speed.

7.2.5 Moment Constraints

In Section 2.5.4 on page 17 we wrote about how the performafite methods used for
FoA probably could be increased by constraining the momeintise skin chromaticity
distributions. In this section we will do experiments wittal image data to find out if
the use of moment constraints actually can increase pesiacen Since the weighted
Gaussian method clearly performs best without moment caingt, we have decided to
only experiment on this method.



Video No. | Simple LUT Ratio LUT Ratio Gaussian Weighted Gaussian

V8 16.2ms 29.2ms 46.6ms 33.1ms
V9 21.1ms 32.4ms 47.0ms 37.4ms
V10 16.8ms 33.3ms 51.7ms 33.6ms
Average 18.0ms 31.6ms 48.4ms 34.7ms

Table 7.4: Relative Average Computation Time: The fastest methodeédasshe simple LUT and the slowest
the ratio Gaussian. Unfortunately the average face areiHdod of the simple LUT method is
also much lower than those of the other methods. Using thghtesd Gaussian method seems to
be a reasonable compromise between accuracy and speed.

The constraints we want to make are the following:

Minimum and maximum chromaticity distances away from the center of masses
defined by the skin-colour model described in Appendix C.

Minimum and maximum sizes of the variance along the chraritati axis.

Minimum and maximum sizes of the variance along the chrasitaty axis.

Minimum size of the rotation angle (i.e. the covariancesgéndgr).

Having observed the position, sizes, and rotation anglesnoimber of Gaussian models
made from V8-V 10, we decided to use the moment constrairitsegtkin Table 7.5. These
values have therefore been determined empirically. Theegadre based on chromaticity
r andg values going from O to 1. l.e. the maximum width, along the chromaticity:
axis of a Gaussian model would be

w = 2v0.0039 =~ 0.125

The minimum angle of° indicates that the covariances always must be 0 or negative (
clockwise rotation of the skin chromaticity distribution)

Moment Constraint | Value
min g distance -0.0118
maxg distance 0.0118
min r variance 0.0010
maxr variance 0.0039
min g variance 0.0010
maxg variance 0.0015
min angle 0°

Table 7.5: Moment Constraints Values: The table illustrates the \slue used to constrain the moments in
the experiments.

In Figure 7.4 the average likelihood in the face area withaitout the use of moment
constraints can be seen. The results were achieved using&/&a increase in com-
putation time for one image was less than 1ms and therebyatieable. As it can be
seen, the use of moment constraints does indeed increasedtage likelihood under all
CCTs. In Table 7.6 we have illustrated the average likelitsoachieved on V8-V10 with
and without the use of moment constraints. In all the vidbesawverage likelihood gets
higher when using moment constraints. In average the useoofant constraints raises
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Figure 7.4: Average Likelihood in Face Area using Moment ConstraintgcBnstraining the position, size,
and angle of the Gaussian model it is possible to raise thagedikelihood in the face area.

Video No. | Without Moment Constraints With Moment Constraints

V8 0.336 0.372
V9 0.376 0.410
V10 0.331 0.429
Average 0.348 0.404

Table 7.6: Average Likelihood in the Face Area with and without Momergn6traints: Using moment
constraints it is possible to increase the average likelihia the face area.

the average likelihood in the face area by 16%. This indg#tat moment constraints
are worth using.

We need to ensure that the increased average likelihoodeiriaite area is not at the
expense of an even higher increase in the background aregiguine 7.5 the average
likelihood in the background area with and without the usenoiment constraints are
illustrated. As it can be seen, the average likelihood iseiased. The increase is nev-
ertheless much lower than the increase of the averagehidadi in the face area. In
Table 7.7 we have compared the distances between the adi@ljeods in the face
and background areas. The use of moment constraints iesréas average distance for
V8-V10 from 0.286 to 0.341. This is more than 19% and shoutdyéhat using moment
constraints definitely is a good idea.

Video No. | Without Moment Constraints With Moment Constraints

V8 0.273 0.299
V9 0.317 0.350
V10 0.269 0.375
Average 0.286 0.341

Table 7.7: Distance Between Face and Background Area using Momentt@anis: Using moment con-
straints increases the distance between the averagehbkels in the face and background area
by more than 19%.
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Figure 7.5: Average Likelihood in the Background Area using Moment Qraists: Constraining the mo-

ments causes a small increase in the average likelihoo@ inabkground area. This increase is
nevertheless much lower than the increase of the averagjéhtiod in the face area.

7.3 Face Verification Experiments

In this section we will describe the experiments we have ntadthe methods used for
verification. These methods were all explained in Chapterd3aae the following:

e Preprocessing of the skin-colour likelihood image reagifrem the previous phase
of focus of attention.

Verification of the rectangular size and shape of the facelidates found by the
segmentation.

Verification of the solidity of the face candidates.

Nose-eye template matching of the face candidates.

Fitting of an ellipse around the face candidates.

First, experiments are made on each of the face verificatiethods to find the optimal
threshold values to use. Furthermore, we will identify hoanpfalse negatives and false
positives that are made using these thresholds. Afterwaselsvill do experiments where
we combine the methods to see if they together can make Ipestgis than alone.

To compare the computation time of the methods we have nmexhse average compu-
tation time of each. This has been done on the same computasassed for the focus
of attention experiments in Section 7.2.

7.3.1 Experiments Description

To experiment on the preprocessing methods we use the sal@esv(V8-V10) as we
used for the focus of attention experiments. By using theesaitleos we want to find
out, whether the use of preprocessing (i.e. erosion antatilacan increase the distance



between the average skin-colour likelihoods in the faceiaradje areas. Afterwards, we
will use the result of the experiment on the preprocessinthots to choose a threshold
value. This value will be used when the preprocessed liketihimage is converted into
a binary image.

In the rest of the face verification experiments, we use tdeos V3, V8, and V14 (all
described in Appendix D). V3 has a fixed CCT of 3680K and pee@éking around
in the background, V8 has changing CCTs of 2600K, 3680K, K7@hd 6200K, and
V14 has a fixed CCT of 3680K and little movement. Using thedeas we hope that the
experiments will be able to tell how the methods perform ffedént environments.

In each of the videos we have defined the face area as rectahfjleed position and
size. We have made these areas large enough to endure snvainerts of the faces
(see Figure 7.6). To be able to measure the efficiency of thtaads, we count the
number offalse positivesaandfalse negativesFalse positives are face candidates which
are classified as faces but really are something else. Fatgines are face candidates
which are classified as non faces but really are faces. Fambdzdes covering 50% or
more (this value has been chosen based on empirical inaéstig) of a face area should
be classified as faces. A good result is achieved when the ewailfalse positives and
negatives are close to 0.

(a) V3 (b) V8 (c) V14

Figure 7.6: The Face Areas: For each of the videos V3, V8, and V14 we hafieedethe area where the
face should be found. These are indicated by the green gdetim Figures (a)-(c).

To measure the percentage of false negatives and falsévpssive use the outcome of
the segmentation method as reference. This means that weechagen to rely on the
segmentation and not ground truth. For each segmentati@am @ihage, we count the
number of face candidates which cover the face areas. Adbdemgumbers together for
all the images in a video, gives a sum which is equal to 100% pasitives (i.e. faces
that are actually verified as faces). To find the percentad@s# negatives for a method,
we use Equation 7.6. In thiST' P is the sum of true positives found by the segmentation
method, andV/T'P the sum of true positives found by a face verification method.

MTP
FN=1- o (7.6)

The number of false positives found by the segmentation odeithequal to 100% false
positives. To calculate the number of false positives mada face verification method,
we use Equation 7.7. In thiSF'P is the number of false positives found by the seg-
mentation method, andl/ F'P the number of false positives found by a face verification
method.
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7.3.2 Preprocessing and Segmentation

We want to find out whether the use of erosion and dilation carease the distance
between the average likelihood in the face and backgroued. afhe best result made
in Section 7.2 is used as reference. This was the use of thghteei Gaussian method
with moment constraints. In Figure 7.7 the results achievedn adding preprocessing
(the 8-connected neighbourhood of each pixel was used ésicar and dilation) to the
likelihood images of the weighted Gaussian method can be. sEkee figure illustrates
the average likelihood in the face area in V8. We have trieds® 3 different combina-
tions of erosion and dilation. It should be clear that usimgse methods increases the
average likelihood in the face area. At the same time, thesndee or less not raise the
average likelihood in the background area. In Table 7.8 thtauces between the aver-
age likelihood in the face and background area can be seang Bsion and dilation
clearly increases this distance for both V8, V9, and V10. ¢bmputation time used on
the preprocessing methods was in average about 5ms per.ifihgeaverage computa-
tion time for the weighted Gaussian method was measured.@ni®in Table 7.4. We
therefore think that the increase in distance between theage likelihoods in the face
and background areas outweighs the increase in computatien
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Figure 7.7: Average Likelihood when using Preprocessing: Preprongssie likelihood image by using
erosion and dilation increases the average likelihooderfale area.

We decide to use the combination Iot erosion and x dilation for the rest of the face
verification experiments. To find the threshold value to usenvconverting the likeli-

hood image to a binary image, we look at Figure 7.8. In this exetplotted the average
likelihoods of the face and background areas for each imay@i Looking at this, a rea-

sonable threshold value would be around 0.40 (indicatetiégotted line). Here most of
the average face area likelihoods are above the line (exoeptcouple of places, where
the change in CCT was to large for the system to follow). A# #dverage background
area likelihoods are below the threshold and it should foezebe possible to make a



VideoNo. | OxEand0xD 1xEand4xD 1xEand5xD 1xEand6xD

V8 0.299 0.408 0.456 0.49)
V9 0.350 0.535 0.586 0.63[L
V10 0.375 0.548 0.606 0.653
Average 0.341 0.497 0.549 0.594

Table 7.8: Average Likelihood Distance when using Preprocessing: tébée illustrates the distances be-
tween the average likelihood in the face and backgroundsaBausing combinations of erosion
and dilation this distance can be increased significanthg [€ttersE andD are short for Erosion
and Dilation.

good distinction between the face and the rest of the imagethéfefore decide to use a
threshold value of 0.40 for the rest of the face verificatimpegiments.
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Figure 7.8: Choosing a Threshold Value: The figure illustrates the ayeti&elihoods in the face and back-
ground areas. Using a threshold value just below most of tkeage likelihoods in the face
area, should make it possible to make a good distinction éetvihe face and the rest of the
image.

7.3.3 Rectangular Size and Shape

We have decided to experiment on this method using the vatueable 7.9 to constrain
the rectangular size and shape of the face candidates. Vhkses should be suitable
for the resolution of the images we use in this proj@@0(x 240 pixels). If images of

different resolution are used the minimum and maximum wattd height would have
to be adjusted. MinRelation and MaxRelation indicates theinmum and maximum

relation between the widths and heights of the rectangles.

The result of using the rectangular size and shape methoBoN8&, and V14 can been
seen in Table 7.10. It should be noted that though the methwedry simple (and fast —
the average computation time could not be measured with #ibod we used, i.e. it was
less than 1ms), it is capable of removing almost 70% of theefalositives in average.
At the same time almost no false negatives are made, so usngnethod as an initial

rough filter, before using more advanced and computatioaadashding methods, should
be wise. The number of false positives seems to increasethéthmount of motion in



Parameter Name | Parameter Value
MinWidth 20 pixels
MaxWidth 100 pixels
MinHeight 20 pixels
MaxHeight 100 pixels
MinRelation 0.6
MaxRelation 2.0

Table 7.9: Rectangle Method Parameters: The table illustrates theesalve have chosen to use for the
parameters in the rectangle method experiments.

the images. l.e. in V3 we have two people doing hand-raisdsaahird walking around
in the background, and in V14 two persons are doing very fevdhaises and are nearly
not moving. The first gives reason to more than 50% of falsétipes and the second
only around 12%.

Video No. | False Negatives False Positives
V3 0.1% 52.1%
V8 1.2% 31.0%
V14 0.4% 11.9%
Average 0.6% 31.7%

Table 7.10: Rectangle Method Results: Although the rectangle metheihiple and fast it removes almost
70% of the false positives. At the same time, the amount skfalegatives is less than 1%.
Using the method as an initial rough filter should therefaewise.

7.3.4 Solidity

To find out what the solidity of faces are, we have calculatdédrithe fixed face areas in
V3, V8, and V14 using the likelihoods in the preprocessedliliiood image. The result
of this is illustrated in Figure 7.9 (only 525 images from leatdeo have been used to
make the figure easier to read). In the same figure we hav&dtad the average solidity
of all other face candidates, found by the segmentation odefie. the false positives).
Using the two threshold values illustrated in the figure $thaoake it possible to remove
most of the non faces.

Based on the values in Figure 7.9, we choose to use a lowshiiceof 0.35 and an upper
threshold of 0.9 for the next solidity method experimené. bnly face candidates with
a solidity between 0.35 and 0.9 are verified as faces. In Talile the amount of false
positives and false negatives for the solidity method isstlated. The average number of
false positives is higher than when using the rectangle.fiéll, the solidity method is
capable of removing almost half of the false positives arnitil@same time the amount of
false negatives is kept below 3%. Its average computatioe tvas 1.5ms, so it is also
slightly more computational demanding than the rectangdéhiod.

7.3.5 Nose-Eye Template Matching

To experiment on the efficiency of nose-eye template matchire will first investigate

how similar the faces in the face areas are to the averageayesteemplate. By doing this
we will find the threshold, which should be used to determirnetiver a face candidate
is similar to the template or not. The template we use is madanaaverage of 15 cut-
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Figure 7.9: Finding Solidity Thresholds: Looking at the figure it can lees that the solidity of most faces
is between 0.35 and 0.9. The solidity of the false positieeslto be above 0.9 and these objects
can therefore be removed using a threshold.

Video No. | False Negatives False Positives
V3 2.2% 64.7%
V8 0.8% 50.3%
V14 4.6% 31.7%
Average 2.5% 48.9%

Table 7.11: Solidity Method Results: Using the solidity method morertihalf of the false positives can be
removed. At the same time the amount of false negatives isdtepminimum of 2.5%.

outs of the nose-eye area of upright faces randomly chosem the videos described in
Appendix D. The number of layers in the image pyramid is fixel,going in intervals
of 10% from 100% to 50% of the size of the width and height of ithut image. To
match a face candidate with the template, we have used thevmsan normalized cross
correlation method (described in Section 3.5.2 on page 31).

In Figure 7.10 the similarities between the face areas aeddmplate can be seen (a
similarity of 1 is a perfect match). In the same figure we hdlustrated the similarities
for the false positives in V3, V8, and V14. From this we cowgyuthat most of the faces
areas have a higher similarity with the template than theefglositives. Looking at the
figure it seems reasonable to place the threshold around(ihdicated by the dashed
line).

In Table 7.12 the number of false negatives and false pesitwhen using template
matching and a threshold of 0.67 are shown. It can be notedl thle number of false

negatives is higher than when using the rectangle or splidéthod. This is most likely

because we use a template for upright faces, and therefberenoapable of recognizing
the faces when they are rotated. Finally, we want to stremtsthiie template matching
method is rather computational demanding. Its average atatipn time was 122ms
which is more than 60 times slower than the rectangle andisotnethods together. Us-
ing the rectangle and solidity methods in advance couldagisiybremove a lot of uninter-

esting objects, and thereby decrease computation timeedéthplate matching method.
We will investigate this in Section 7.3.7.
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Figure 7.10: Finding the Template Matching Threshold: Looking at the ffégit can be seen that the face
areas in most cases have a similarity with the template oért@m 0.67. At the same time the
false positives do mostly have a lower similarity. Therefawe will use a threshold of 0.67.

Video No. | False Negatives False Positives
V3 13.0% 62.8%
V8 2.5% 33.5%
V14 5.2% 20.0%
Average 6.9% 38.8%

Table 7.12: Template Matching Method Results: Using the template ntkthith a threshold of 0.67, more
than 60% of the false positives generated by the segmentagédhod are removed. The number
of false negatives is higher than when using the rectangseladity method. This is probably
because of faces being rotated.

7.3.6 Ellipse Fitting

In Section 3.6 on page 32 we described two ways of measurmdttbf an ellipse by
calculating the average gradient in its perimeter. Thesee West fit (BF) and first fit
(FF). To find out what the highest, average gradients ofsabpplaced around faces are,
we have used the BF method. We made a gradient image fromt#éresity image of the
input image, and calculated the best fitting ellipses ardbadace areas in V3, V8, V14.
The result of this is illustrated in Figure 7.11, where weodigve plotted the average
gradients of the false positives in the videos. The facesamestly have an average
gradient of more than 0.4, and the false positives are mosiiyw this value. Therefore
we choose to use a threshold of 0.4 in the following experimeletermine whether a
face candidate should be verified as a face or not.

In Table 7.13 the numbers of false positives and false negmtvhen using the BF and
FF methods can be seen. They are close to the same, so whicbdwetuse should not
matter that much. The average computation time of the BF odetfas 32ms per image.
Using the FF method the computation time was only 28ms pegénBased on this, we
choose to use the BF method for the rest of the face verific&iperiments.
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Figure 7.11: Finding the Ellipse Fitting Threshold: Looking at the figutean be seen that the face areas
in most cases have a best fitting ellipse with an average peingradient of more than 0.4.
Other objects (false positives) are mostly below this value

VideoNo. | BFFN FFFN BFFP FFFP

V3 3.4%  3.0% 38.6% 40.0%
V8 13.6% 13.4% 23.0% 24.1%
V14 55% 54% 21.2% 22.2%

Average 75% 7.3% 27.6% 28.8%

Table 7.13: Ellipse Fitting Method Results: Using the best fit (BF) or finst fit (FF) method gives more or
less the same results. Since the FF is computational fastesthoose to use that. FN means
false negatives and FP false positives.

7.3.7 Combining the Methods

In this final section of face verification experiments, we westigate whether the meth-
ods in combination can achieve better results than indallgu In Table 7.14 we have
compared the result made by each of the methods individaallijthe result when com-
bining them all serially (the serial combination is expkdnin Section 6.4). It should be
clear that by combining the methods, we get a significanebetisult. The number of
false negatives is only just above 10%, and the average datigrutime is also lower
than when using only template matching. The computatioe giets shorter, because the
first simple methods remove face candidates, that are vesyndilar to faces. In this way,
the template matching method is made on fewer face candidate

Method(s) False Negatives False Positives Computation Time
Rectangle 0.6% 31.7% <1ms
Solidity 2.5% 48.9% 1-2mg
Template Matching 6.9% 38.8% 122ms
Ellipse Fitting 7.3% 28.8% 28mg
Serial Combination of All 15.8% 10.7% 105ms

Table 7.14: Combining Methods: By combining the face verification mekhd is possible to shorten the
computation time compared to when using only template niagch-urthermore, the number
of false negatives gets down to 10.7%.



The number of false negatives rises when combining the rdethédowever, as also
explained in Section 3.1 on page 23, it is much more impottahave few false positives
than having few false negatives. This is because the faddidzatas that are verified as
faces are used to start new trackers, which changes the asedsto search for hand-
raises (we refer the reader to Chapter 5 for more about haisd-detection). A non face
object that is verified as a face, could therefore be causamd-haises being missed by
the system. To avoid this, we need to make sure that the fadecagon methods are
strict enough to only verify objects that actually looksslifaces as faces. The 10.7% of
false positives achieved by combining the face verificati@thods is still too large —i.e.
in average it would mean, that approximately 1.25 non fageatd would be verified as
faces every second (with a frame rate of 12.5 Hz).

To lower the number of false positives, we have tried to useenstrict threshold and

parameter values for the face verification methods. Thesevatues can be seen in
Table 7.15, where we also have illustrated the old values\tieae used to create the
results in Table 7.14. Furthermore, we have constrainediteeof the area in the images
in which we search for face candidates. We think that thisrsasonable constraint to
make, since the faces of people sitting down normally wilslieated around the center
of the image. Defining this area before the start of everywicienference should not be
a large overhead to the use of the system. In Figure 7.12 weiliastrated the areas in
V3, V8, and V14 in which we look for face candidates.

Parameter/Threshold Old Value New Value
Rectangle MinWidth 20 pixels 20 pixels
Rectangle MaxWidth 100 pixels 50 pixelg
Rectangle MinHeight 20 pixels 20 pixels
Rectangle MaxHeight 100 pixels 60 pixels
Rectangle MinRelation 0.6 1.0
Rectangle MaxRelation 2.0 1.5
Solidity Lower Threshold 0.35 0.45
Solidity Upper Threshold 0.90 0.90
Template Matching Threshold 0.67 0.70
Ellipse Fitting Threshold 0.4 0.5

Table 7.15: New Threshold and Parameter Values: To make the face veidgficanore strict we have chosen
to experiment with a new set of parameters and thresholdesal

(a) V3 (b) V8 (c) V14

Figure 7.12: The Search Areas: For each of the videos V3, V8, and V14 we tiefieed the area in which
we want to look for face candidates. These are indicated dyeti boxes in (a)-(c).

The result of using these new values on the images in V3, V8,\d¥ can be seen
compared to the result of using the old values in Table 746 (gsults are averages of



the three videos). We now have 0.0%lse positives, which must be said to be ideal. At
the same time, the number of false negatives has only rige®1 886, which means that we
in average should be able to find a face within 2-3 images.eSiechave a video stream
with 12.5 images per second, the time used to find a face showderage be almost
not noticeable. Finally, the computation time is only 67nes jnage when using the
new values. This is about 36% faster than the computatioreesth when using the old
values. The reason for this is that the rectangle and splidéthods removes more face
candidates when using the new values. Therefore, the téenplatching method, which
is the most computational demanding method, is applied tchnfiewer face candidates.

Threshold/Parameter Values| False Negatives False Positives Avg. Comp. Time
Old Values 15.8% 10.7% 105m;
New Values 53.6% 0.0% 67ms

o

Table 7.16: Using Stricter Threshold and Parameter Values: Usingtstraonstraints in the face verification
methods, makes it possible to have 0.0% false positiveshé\same time only about half of
the valid faces are verified as non faces. It should therdfengossible to find a face within 2-3
images.

7.4 Face Tracking Experiments

In this section, experiments done to evaluate the perfocea the tracking algorithm
and the tracker manager are described. First, suitablenegeas for the system are cho-
sen in Sections 7.4.1-7.4.3. In Section 7.4.4 it is detezthinow accurately the face
tracker is able to track the face in the presence of cluttdraaelusions. Then, in Section
7.4.5, the ability of the tracker manager to eliminate teaskstarted for non-face targets
is examined.

7.4.1 Tracker Manager Parameters

As described in Section 4.6 on page 48, the tracker manageinds on five parameters:

® Uy, —the minimum number of times a tracker must have fitted apgalito the
object tracked.

e ¢mar — the maximal allowable value of the unstability measgifer a tracker. If
& > &naz, the tracker is deleted.

e 64, — the maximal allowable overlap between the estimates ofttaakers. The
overlap is measured as the ratio between intersection acaiion area of the
bounding boxes of the estimated face ellipses.

e 0,4 — the minimum overlap between between a detected face aaghkets esti-
mate for the detected face to be used to update the traclstirsade. The overlap
is measured as fdty,;.

IActually the number was 0.029%, since we had 2 false positgether in the three videos, which
consist of 7003 faces. However, these two false positives ahee to one person, which moved his head out
of the fixed positioned face area two times. So what was ifiedtas a false positives, was actually a face
which was outside the face area. We will therefore claimt itha more correct to say, that we did not have
any false positives at all.



o 0iime — the maximum number of time steps (frames) that is allowezhss without
the tracker’s estimate being updated (with either the tegillean Shift and ellipse
fitting, or a detected face).

As discussed in Chapter 4, the purpose.gf,, is to ensure that new trackers — that may
have been created due to false positives from the face detecto not affect the width
of the hand-raise ROI belonging to the tracker to the righthlyQvhen the system has
been tracking an object for a while, the object will be aceds being a face, as it then
will be more likely that it actually is a face (because it hasb verified several times that
the shape is elliptic). Moreover, it is also used to allow timstability measuré for a
tracker to be large in the beginning. We havewsgt, = 12 in the following experiments.
This value ensures that at least a second will pass beforabjket is accepted as a face,
and it seems to provide sufficient time for the unstabilityasge to drop to a “safe” level
(i.e. less thar,,4z)-

In Section 7.4.5, a reasonable value {gr,, is determined for the purpose of eliminat-
ing trackers caused by false positives from the face detectin Sections 7.4.3-7.4.4 a
“large” &4 has been used to avoid that trackers tracking faces wertedele

Since the faces of the persons participating in a video cente are unlikely to overlap,
the threshold,.; has been set to 0.05. Overlap of the tracker estimates igasgyn the
videos that we use, and is always caused by false positivastfre face detection.

t.pa = 0.5 appears to be a reasonable degree of overlap to requires kden verified

that this will usually result in the detected face to be usadujpdating the tracker's
estimate. This value should not be set too low, as it then egpédn that a false positive
from the face detection is used to update the tracker.

The time that is allowed to pass for a tracker without Mearft@md ellipse fitting pro-
ducing any measurements for the Kalman filter, or the faceatien supplying any mea-
surements, has been se#itg,,. = 15. This corresponds to 1.2 seconds. Our preliminary
experiments have shown that this is enough in most casesif\ealue is used to delete
a tracker if it was started due to a false positive from the féetection or if it has lost the
face it was tracking, it should not be set higher than necgdsahandle occlusions and
temporary maladaptions of the skin-colour detection.

7.4.2 Mean Shift and Ellipse Fitting Parameters

As described in Section 4.5 on page 42, Mean Shift dependsree parameters:

e 3 which controls the size of the search window.
e The maximum number of iterations allowed for a single image.

e The distance that the search window must move less thanddtdtations to end
for the current image (unless the maximum number of itenativas been reached).

We have found that a value fgr = 16 results in a search window that usually is large
enough to contain the entire head and perform ellipse fittimghe outline of the head.
If the search window size is increased beyond this size, ithewill be increased that
“noise” such as hand movement in the hand-raise ROl wiludisMean Shift. Therefore,
we sets = 16.



Usually, Mean Shift only requires one or two iterations talfthe center of mass of the
face, see Figure 7.13. Hence, we restrict the number otibesafor Mean Shift to 3. If
the search window has only moved 1 pixel after an iteratioMean Shift, it is likely that

it will not move if another iteration is done. This is becauise search window is large
enough to contain the entire face, and if the face is at theédsamf the search window, it
will move more than 1 pixel. Therefore, we will set the minimulistance that the search
window must move for another iteration to be done to 1.
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Figure 7.13: Mean Shift Iterations Required in V11: These plots show hamyniterations the Mean Shift
algorithm performed for each image for each person whilekiray the faces of two persons.

Since the face that is being tracked already has been veadiadace, we will use a lower
threshold for the ellipse fitting, such that a poorer fit isegated. This is necessary, as the
rather strict threshold used for face detection often isiigh. We have found that with a
threshold of 0.2, the ellipse fitting will fit an ellipse to tfece in most images. However,
instead of using the first fit approach as described in Se&tiéywe will have to use the
best fit, as the low threshold otherwise can result in thpsdlisometimes being fitted to
the background instead of the face.

7.4.3 Kalman Filter Parameters

As described in Section 4.5 on page 42, we use a zeroth orderakdilter for estimating
the position and size of the face, that is, we predict thaptmameters does not change
from one image to the next. In all experiments, the processeraf the Kalman filter has
been fixed to:

472 0 0
Q=10 42 0 (7.8)
0 0 0.2522

wherez is the scaling constant depending on the distance to theme(slescribed in
Section 4.5 on page 42). For the videos we use, this congants 1.0 or z = 0.8.
The three non-zero entries @ correspond to the variances of x position, y position,
and width of the face ellipse, respectively. We found in aviges project [5] using
similar image resolution and slightly higher frame ratet tha face on the average moved
approximately one pixel per image in a video conferenciriggseéWe wish to allow for a



little more movement, hence the variancetof for the position entries. The size of the
face (that is, its projection onto the image plane) is naljiko change very much during
a video conference, but in case the size found by face deteistinot accurate, it should
be possible for the estimate of the width of the face to ad@lpérefore, the variance for
the width has been set (02522.

As described in Section 4.5 on page 42, the measurement noise

1 0 0
R=|0 rp, 0 (7.9)
0 0 T3

for the Kalman filter is computed as follows:

ri = si(ky H + F* + k;2) (7.10)
N1 ADP Ny ADP,N
~.C1 Mi™7 2 i~ C1 M;—7 2
H = (In(— In(— —T 7.11
(i 2 =70+ il =5 (7.11)
~ [ 1
() = { @)y > 1 (7.12)
0, otherwise
N.
F:C_227]—v:20 wM,t—TAMt—T +C_327—io wa,thAO'tQ_q— (7.13)

N2 22 N3 z

where MAPP is the zeroth moment of the hand-raise ROI belonging to the feing
tracked andM 4PN s the zeroth moment of the right neighbour hand-raise RDI (i
there is a neighbour to the right in the imag&)M is the difference between the zeroth
moment of the Mean Shift search window and a weighted avdaghis value that has
been computed such that recent values are weighted mestis the difference between
the variance for the search window and a similar averagesvallnese averages depend
on a parametetr that controls the speed with which these averages adape toutihent
values.

Thus, there are 8 constants for which reasonable valueshbeudttermineds;, k;, kg,

kg, N1, No, N3, anda. The values must ensure that the measurement noise vaiance
are large when something happens that can cause a bad rmeastlg Mean Shift and
ellipse fitting, but at the same time, the measurement nbiseld be low when the mea-
surement done using Mean Shift and ellipse fitting can beaggeo be reliable. More-
over, the values must ensure that the measurement noisme@si are within reasonable
ranges compared to the process noise.

The events that could cause bad measurements include:

e Occlusion of the face, e.g. by a person in the foreground.

e Hand-raise gestures by the person being tracked or by His mgighbour in the
image.

e Skin-colour movement in the background, e.g. by a personimgow the back-
ground.



e Changing illumination, causing changes in the skin-coldalihoods of the face
and the background.

The values presented in Table 7.17 have been determinedieafipiby adjusting them
to ensure reasonable performance in all of the above cades.tffle values are reason-
able has been verified by plotting the measurement noiseathmeviation for videos
including the four types of events.

spandssy | s3 | ¢ | ecoandes | k; | kg | N1 | No | N3 o
1 2|32 1 1125 3 3 3 | 0.05

Table 7.17: Measurement Noise Parameters.

The plots of measurement noise standard deviatjgn ) in Figure 7.14 were produced
for video V4, where a person walks back and forth in front ob tether persons. The
interesting events in this video are shown in Figure 7.15.
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Figure 7.14: Measurement Noise for Kalman Filter: The plot shows the messent noise standard de-
viation (/1) for each person for each frame in V4. The graph for the petsdhe left is
plotted with red, while the graph for the person to the righplotted with blue (see Figure
7.15). The vertical lines indicate when hand-raises wertopaed (the blue line corresponds
to the person with the blue measurement noise graph).

In Figure 7.16, the two term&? and

Ny ADP
~ C] M*T
b (- >0 =5))?
7=0

are plotted to illustrate what contribution each of them esto the measurement noise.
Some of the peaks in Figure 7.16(a) do not coincide with hamsks (the vertical lines)
— these peaks are caused by the person walking by in the danedr Note that for the
person to the left (red graphs), both the red and blue grapkigure 7.16(a) contribute
to the measurement noise (see Equation 7.11). The peakgureFi.16(b) all coincide
with the occlusions due to the person in the foreground. Aatitbe seen from the ADP
in Figure 7.17, temporary occlusion may cause the systenddptao the colour of the
occluding object. This results in noise in the ADP if the adapcause an increase in the
skin-colour likelihoods for the background pixels. As tisreases the zeroth moment
of the hand-raise ROI, it will contribute to the measurenmresise. This will only happen



(b) Image 27 (c) Image 101

(e) Image 186 (f) Image 204 (g) Image 300 (h) Image 410

Figure 7.15: Events in V4: First, both persons raise their hands and taém tdown. Then the person to
the left raise his hand. While the hand is raised, anothesgmewalks by in the foreground,
temporarily occluding each of the persons. Then the persdhe left takes down his hand
(around image 150). The person to the right raises his hamdl,agperson walks by in the
foreground. He takes down his hand around image 230. Thempénsthe foreground then
walks back and forth one time more.
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Figure 7.16: Terms Contributing to the Measurement Noise for V4: The negbls are for the person to the
left in the image in Figure 7.15 and the blue graphs for thes@erto the right. The vertical
lines indicate when hand-raises occur.

if the occluding object has a colour that under some kind amab illumination could
have been the colour of skin.

As the plots for video V4 in Figure 7.14 show, the measuremerge will become large
compared to the process noise when a hand is raised and whiacghbecomes occluded.
To verify that the measurement noise also becomes large wpenson is moving in the
background, similar plots have been made for image videdVhis video, two persons
are making hand-raises while a third person is moving antingron a blackboard in the
background. This is illustrated with the images in Figured7 Note the low contribution
from the face region in Figure 7.20(b), compared to the domtion when the face be-
comes occluded in Figure 7.16(b). From image 40, where theopédn the background



(a) Image 864 (b) Image 864 ADP

Figure 7.17: Skin-Colour False Positives after Occlusion: If the facegdracked is occluded for so long
that the tracker adapts to the colours of the object occluttie face, the re-adaption to the
colours of the face when the occlusion ends may cause a laiisé in the ADP, as it can be
seenin (b).
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Figure 7.18: Measurement Noise for Kalman Filter: The plot shows the mmessent noise standard de-
viation for each person for each frame in V6. The graph forpgheson to the left is plotted
with red, while the graph for the person to the right is pldttéth blue (see Figure 7.19). The
vertical lines indicate when hand-raises were performed.

enters the hand-raise ROI of the person to the right, to ing@fewhere he leaves, the
measurement noise in Figure 7.18 is relatively high betwesmd-raises. After he has
left, the measurement noise between hand-raises becomes lo

The measurement noise should also be increased when chiandjemination occur,
as these can result in false positives that can confusedhketr That this indeed does
happen can be seen in Figure 7.21(a), which shows the chang&sas the illumination
colour changes three times. Each change result in a peak pidhfor £2, this resulting
in an increased measurement noise. As it can be seen fromeFiged (b), each type of
illumination has it own averages. This confirms that when potimg the average, the
recent values should be weighted significantly higher tHervalues.

7.4.4 Tracker Accuracy Test

The tracking ability of the tracking algorithm — Mean Shé#tlipse fitting, and Kalman
filter — has been evaluated for videos V1-V16, using the patara described in the
previous sections. This has been done by observing in whight®ns the tracker’s



(a) Image 30 (b) Image 46 (c) Image 106

(e) Image 243 (f) Image 320 (g) Image 389 (h) Image 456

Figure 7.19: Events in V6: Two persons make hand-raise gestures whil@aguwhites on a blackboard in
the background.
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Figure 7.20: Terms Contributing to the Measurement Noise for V6: The negbhs are for the person to the
left in the image in Figure 7.15 and the blue graphs for theqetto the right. The vertical
lines indicate when hand-raises occur.

estimate deviates significantly from the center and sizehefface. We consider the
deviation significant, when the tracker’s estimate is @&d$he border of the face.

In general, there is no problem tracking the face in the at®sai occlusion, clutter,
changes in illumination, and fast face movement. In factnost cases of occlusion and
clutter, and in all cases of illumination change, the traskestimate does not deviate
significantly from the center and size of the face, and evérldes, it will readjust to the
correct center and size within a few seconds. The imageguré&i7.22 illustrate a small
selection of situations that are handled well by the tracker

In some cases where the face is occluded by a person walkingthg foreground, the
tracker’s estimate will move away from the center of the fatde the face is occluded,
because the center of mass of the skin-colour likelihoodyanmoves. In all cases it
has moved back when the occlusion ended. This is illustiat&dgure 7.23. The same



3500

3000

Deviation from Avg. Moments
= = N N
o (o)) o a
o o o o
o o o o
N
o

3
=3
=]

L ]

00 260 400 660 860 1000 12‘00 1400 00 260 460 660 860 1600 1200 1400
Frame Frame
(a) Face Search Window Moment Changes (b) Average Moments

Figure 7.21: Moment Changes during Change of Illumination: The plot nstzows the deviation from the
average value faF'2. The three peaks correspond to changes in illuminatiorucétom white
(3680 K) to yellow (2600 K), yellow to blue (6200 K), and blue‘tess blue” (4700 K). The
vertical blue lines indicate when hand-raises occur. Tlaplgs in (b) show what the average
moments are. The dotted line is the variance, the other isdt@th moment.

(b) V2 Image 263 (c) V11 Image 510 (d) V12 Image 49

(e) V12 Image 329 () V13 Image 884 (g) V15 Image 500 (h) V15 Image 564

Figure 7.22: Examples of Clutter and Occlusion: These images are a fempgbes of the many cases,
where the tracker handled clutter and occlusion well. Thied@ts are tha posterioriposition
estimates. The boxes are the Mean Shift search windowsthéeast iteration for the image.
The number to the left below the search window is the unstalileasuret, and the number
to the right is the measurement noise standard deviation.

thing sometimes happens when the illumination changed|uasrated in Figure 7.24.
This happens because the skin-colour detection geneeRigh likelihoods for the
background pixels.

Fast movement of the face is handled less well by the trackehe face moves fast,
it may move outside the Mean Shift search window, which igerenl at the estimated
position from the Kalman filter. If this happens, the MeanftStigorithm will not be able
to center the search window at the face. A situation wherehbppens is illustrated in
Figure 7.25, where the tracker looses the face and is eligdnaecause it cannot find any
ellipses in the background.



(a) t=0 sec. (b)t=1.1sec.

Figure 7.23: Tracker Estimate during Occlusion in V4: During an occlusithe estimate of the tracker (red
dot) moves away from the center of the face, but returns irs&écbnd when the occlusion has
ended.

(@) t=0sec. (b) t=1.8 sec. (c)t=7.8sec.

(d) t=0sec. (e) t=5.6 sec.

Figure 7.24: Tracker Estimate during lllumination Change in V8 and V9:ridg change in the illumination,
the tracker’s estimate (red dot) moves away from the cerittreoface, but as the skin-colour
detection adapts to the new illumination, the estimate mdaek.

The face movement also results in an increased measuremisat T his means that the
use of the Kalman filter's estimate as the initial center & fearch window for each
frame will cause the distance between the face and the tfaadgstimate of the position
to become larger for each frame, eventually causing thééreo loose the face.

In conclusion, the proposed face tracking scheme appeamsotio quite well for the
videos we have used, although fast face movement can caoiskeqis. However, fast
face movement is not likely to happen when the person is deaté wish to get the at-
tention of the system, but rather when the person is leavirigerefore, it is acceptable
that the face is lost in such cases.

2If the Mean Shift algorithm was used alone, perhaps it wodble to track the face, as the position
found by Mean Shift in the previous image would be used agiitialicenter in the currentimage. However,
without the Kalman filter the tracker would be more vulneeata occlusion and clutter. Perhaps the tracker
could be made to handle this situation, if it used both theipus center found by Mean Shift as well as
the estimate from the Kalman filter as initial positions foe&t Shift for the current image. Of the two
positions found by Mean Shift, the position where ellipsénfifis most successful could then be used as the
new measurement for the Kalman filter.



(a)t=0sec. (b) t=2.9 sec. (c)t=4.3sec.

Figure 7.25: Trackers Estimate during Movement in V15: During the somewdxaggerated movement,
the tracker looses the face because the distance betwetaténand the tracker’s estimate of
its position becomes to large.

7.4.5 Elimination of Trackers for Non-Face Objects

Trackers that are tracking non-face objects are eliminaseag the two threshold;,,,.
and& ae- Grime limits the number of time steps that a tracker can “survivithaut an
ellipse being successfully fitted to the object it is tragkify.... limits the average amount
of jitter that is allowed for the measurements.

Figure 7.26(a) shows the ellipse fitting score for the twekeas tracking the faces in
V4. This video was described in Section 7.4.3. The four dingke score coincide with

the occlusions by the person walking by in the foregrounde &lipse fitting threshold

of 0.2 that we use corresponds to a score of 51 in the figuret éemibe seen from the
figure, the score drops below this level during the occlusi@s one would expect). For
images where the ellipse fitting score is below the threstibElmeasurement is not used
to update the tracker’s estimat;,,,. should therefore be chosen to be at least as large as
the longest amount of time that the ellipse fitting score Iswéehe threshold, unless it is
acceptable that the tracker looses the face during the sioalu

On the other handdy;,,. should be as small as possible, since it is used to eliminate
trackers caused by false positives. In Figure 7.27(a), ldekicurve is the ellipse fitting
score for a hand, for which a tracker was started due to a fadsétive from the face
detection. The score quickly drops to a low level when thedhartaken down and the
tracker looses it, as the background does not resembleipseellThe same thing can be
seen in Figure 7.28(a). Thus, it appears that trackers fee faositives caused by hands
can be eliminated by limitingy;,,... However, as long as the hand is raised, the ellipse
fitting score may be above the threshold, and therefore thd heay be considered a face
by the system. To reduce the risk that this happepsg, — the minimum number of times
that the tracker’s estimate must be updated before thetabjedracking is considered a
face — can be set to a "high” value, although this would meantte video conference
participants would have to wait for, perhaps, several sgstefore their hand-raises will
be detected.

The computation of the unstability measure depends on anedess (see Equation 4.16
on page 47), that controls to which degree the past influemeectirrent value of the
unstability measure. We use the value- 0.2, which has been determined empirically.

From the unstability plots in Figures 7.26(b)-7.28(b),ahde seen that the unstability
measure is high for the false positives compared to the bitisfameasures for faces,
except when the persons are entering and leaving. Unlesadcepted that the faces are
lost during occlusionss,,,.. must be at least as high as the peaks in Figure 7.26(b), i.e.
approximately 40. This value df, ., will also allow the trackers for faces in Figures
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Figure 7.26: Ellipse Fitting Score and Unstability Measure for V4: Thipsle fitting score for each of the
two faces being tracked in V4 drops as the face becomes aatludt the same time, the
unstability measure increases.
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Figure 7.27: Ellipse Fitting Score and Unstability Measure for V5: Thedknd red graphs correspond to
trackers tracking faces, while the black graphs corresgoradtracker created for a hand due
to a false positive from the face detection.

7.27(b)-7.28(b) to survive, except when the persons avenigan Figure 7.27(b), though
it may be necessary to lower the initial value of the unsiigbiheasure for trackers.

However, the hands have a higher unstability measure sonfe dine, and will thus be
deleted.

In Figure 7.29, the ellipse fitting score and unstability swea can be seen for V19. In
V19, only one of the faces is detected. The black curves aré&rdokers due to false
positives. The ellipse fitting score only drop to a sufficigiaw level for one of the false
positives. This false positive was caused by a hand. The dlse positives are caused
by other objects in the image, see Figure 7.30, and they ak gelatively high ellipse
fitting score. Some of them can be eliminated wit}),a, of 40. However, it appears that
not all trackers for false positives can be eliminated uging. andéy;,,. without at the
same time causing trackers for faces to be deleted.

In conclusion, the method used for eliminating trackersiimm-face trackers is only suf-
ficient for eliminating trackers started for a hand whilesitheing raised or taken down.
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Figure 7.28: Ellipse Fitting Score and Unstability Measure for V6: Thedkand red graphs correspond to
trackers tracking faces, while the black graphs corresporadtracker created for a hand due
to a false positive from the face detection.
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Figure 7.29: Ellipse Fitting Score and Unstability Measure for V19: Theedbcurve is for a tracker tracking
aface, while the black curves are for trackers created feefaositives from the face detection.

(a) Image 63 (b) Image 433 (c) Image 465

Figure 7.30: False Positives from Face Detection in V19: The tracker lier false positive in (a) moves
towards the face and is deleted as the estimates of the teketsaoverlap, but later a new
false positive appears in the same place. Two other falséyessappear on the wall and on a
raised hand.

More information will be needed to eliminate trackers stdror other types of objects.



7.5 Hand-Raise Detection Experiments

In this section, we describe experiments done to evaluatalitity of the system to detect

hand-raise gestures, and to discriminate between hase-gastures and other types of
events. Both of the Naive Bayesian Classifiers (NBCs) desdrin Chapter 5 are tested

using several different combinations of parameters foihued-raise detection.

7.5.1 Experiments Description

The hand-raise detection has been tested on V4, V6, V8-\iid Vd2-V16. These
videos cover illumination change, clutter, and occlusjoas well as valid hand-raise
gestures. The performance is measured by the number offatstives and the number
of false negatives. Here,false positives the detection of a hand-raise gesture when a
hand-raise has not occurred, and can be caused by noise lratideraise ROI ADP. A
false negativés when the system does not detect a hand-raise gestureheeghtit was
performed. Ideally, both these numbers should be zero. Mexvas the experiments will
show, this cannot be archived with the current system. Toerewe attempt to find some
sets of parameters for the hand-raise detection that proe@sonable trade-offs between
these two performance measures.

The parameters that are examined for the hand-raise deieante:

e The amount of upward movement in the skin-colour likelihdodges that must
occur for something classified as a hand-raise by the NBC twbsidered a hand-
raise by the system.

e The number of times in a row that a hand-raise must be detdotéore the system
redirects the attention (i.e. camera) to the person thatdissd his hand.

Summarizing from Chapter 5 on page 51, if the NBC classifieboh im the ADP as a
hand-raise, a score based on the shift in skin-colour hikelil center of mass inside in the
bounding box of the blob is computed. The previdusikelihood images are considered.

If the vertical shift from one image to the next is greatemntidgl” and is directed upwards,

a counterm is incremented. If it is greater thelY and directed downwards, a counter

is incremented. When all of th& images have been considered, the score is computed
as(u — d)/N. This results in a number between -1 and 1.

If this score exceeds a threshalebre,,;,, @ hand-raise counteris incremented. At the
same time, a timer is reset. This timer is incremented foheamge, and if it exceeds

a thresholdrl’, r is set to 0. Ifr reaches a threshold,;,,, the system will assume that a
hand-raise has occurred. Thusg,;,, blobs must be classified as hand-raises by the NBC
with no more tharf” images between the blobs for a hand-raise to be detected.

For practical reasons, we have chosen to fix the valuéé ahd7’, and only experiment
with AY', scoremn, andr,,;,. T has been set to 10, corresponding to 0.8 second. This
threshold is rarely, if ever, exceeded in the videos we useajppears to be small enough
to avoid that blobs that are not caused by hand-raises atgegowith blobs that are
caused by hand-raises. This must be avoided as one of tlwrparfce measures is false
positives.

N has been set to 9, since the ADP is based on 9 likelihood ima&iels this choice of
N, one end of the blob will, when the hand is being raised orrtad@vn, correspond to



the position of the hand in the current image, and the othetpéthe blob will correspond
to the position of the hand 9 images ago. The number of imaggs for the ADP cannot
be changed without estimating new pdfs for the NBCs, whichld/oequire much work.
Therefore, we will not experiment with this number.

The experiments have been done by counting the numberssef falsitives and false
negatives for different combinations of values W\Y', scoremin, andry,;,. This has

been done for both of the NBCs. For brevity, we will refer te tiBC in Figure 5.3 on

page 56, which use a position attribute and a size attrilage\BC1, and the NBC in
Figure 5.4, which split each of these attributes in 2 ancesdituse x position, y position,
area, and height/width-ratio attributes, as NBC2.

The videos have been divided into different groups, depgndn the type of events that
they contain. These groups are:

¢ Videos containing mostly valid hand-raises.

¢ Videos containing valid hand-raises, but also hand-mowvesnthat are not valid
hand-raises, as well as persons walking by in the backgranddoreground.

¢ Videos containing valid hand-raises and illumination ades

Images from the videos can be found in Appendix D on page 145.

Below, a section for each of these groups can be found, whaeeillustrating the per-
formance of the hand-raise detection for each group is ptede Afterwards, data to
illustrate the performance for the entire set of videos espnted.

7.5.2 Valid Hand-Raises

The videos V14-V16 contain mostly valid hand-raises, atfggened with bare arms.
The total number of hand-raises in these videos is 37.

In Figure 7.31, the hand-raise counteis plotted for fixed values oAY andscore .

It is indicated with vertical dotted lines when hand-raisesur (this has been manually
recorded). As it can be seen from the figureis often high when hand-raises occur,
but sometimes is non-zero when a hand-raise is not occurring and sometingegero
even though a hand-raise does occur. The effeet,gf is that of thresholding the graph.
When doing the thresholding, a trade-off is made betweemtineber of false positives
and false negatives. This can be seen from the bar graphgure~7.32, where the
numbers of false positives and false negatives are showdifferent combination of the
parameters,,,;, andscore,,;, and afixedAY. (The graphs for other values &fY” show

a similar dependency on the parameters.)

From these histograms, it appears that wheri = 3 reasonable values fet,,;,, are in
the range 1-4 and faicore,,;;, in the range 0.3-0.5, as both the number of false positives
and the number of false negatives are low for these parasreiges.

Based on histograms as those in Figure 7.32, the plots inéigy83 have been produced.
This has been done by, for each set of parameter-pairs thespond to a particular
number of false positives, finding the numbers of false negmthat correspond to these
parameter-pairs. Thus, pairs consisting of a number oé fptssitives and a number of
false negatives are produced. The locations of these parshmwn with diamonds in
the figure. The graphs in Figure 7.33 show how low a numberlséfaegatives one can
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Figure 7.31: Hand-Raises in V14-V16: The black dotted lines indicate whand-raises occur. The ma-
genta lines indicate when one video ends and another stdresnumber at the top indicates
which video that starts at that line. Some of the videos athuded two times, because they
contain two persons; that is, there is a section for eactoperBhe blue graph is the value of
the hand-raise counter. This graph has been producegéoe,,;,, = 0.4 andAY = 3 using
NBCL1.
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Figure 7.32: False Positives and Negatives for V14—V16: The histogrdrowss the frequencies of different
combinations of parameters,;, andscore..;, in the sets of false positives and false negatives
for AY = 3. The numbers on the vertical axes have been normalized lgirtivwith the
number of hand-raises.

achieve for this particular set of videos if a particular raenof false positives is accepted
and the value oAY fixed.

As one would expect, the number of false negatives fallsastimber of false positives
grows. The number of false negatives in general appearssmbéer for NBC1 than for
NBC2, but the number of false positives larger. During thpegiments, it was observed
that NBC1 tended to classify far too many events as hanésaihile NBC2 performed
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Figure 7.33: False Negatives vs. False Positives for V14-V16: The grapbs/ the minimum number of
false negatives that occurs for a particular number of fpsgtives, while the diamonds show
all the numbers of false negatives that occur for this nunuféalse positives. The numbers
on the axes have been normalized by dividing with the numbkand-raises.

better in this respect. This may be the cause of the differemean increase in the number
of hand-raise candidates will be followed by an increaséénrtumber of false positives,
unless the subsequent hand-raise verification discards #ie extra candidates. Thus,
the experiments with NBC1 could be considered more a tesiedfiand-raise verification
that follows the classification with the NBC, than a test af MBC.

For both of the NBCs in Figure 7.33, diamonds appear neamadjshthe parameter pairs
that correspond to these diamonds produce relative low ewniif false positives and
negatives. A few of these parameter-pairs are presenteahile 7.18.

NBC | AY | rpin | scorenmn | False Positives False Negatives Distance
abs. % abs. %
1 3 1 0.4 2 5.4 1 2.7 0.06
2 1 1 0.4 1 2.7 3 8.1 0.09
1 5 1 0.3 4 10.8 0 0.0 0.11
1 3 2 0.4 0 0.0 5 135 0.14

Table 7.18: Hand-Raise Detection Results for V14-V16: The numbersleéfpositives and negatives are
listed together with the parameters that were used to pmduem. The false positives and
negatives are expressed both as an absolute number whitle campared to the total number
of hand-raises in these videos (37), and as a percentage afiber. The distance shown is the
distance fron(0, 0) to the diamond corresponding to the set of parameters ir€&ig33. Note
that several other combinations of parameters can prodstdts similar to those presented in
this table.

As it can be seen from Table 7.18, it is possible to obtaireeitto false positives or no
false negatives, but not both at the same time.

7.5.3 Clutter and Occlusion

V4, V6, V12, and V13 contain many examples of clutter and usion, as well as valid

hand-raises with both bare and covered arms. These videmshe®n used to test the
ability of the hand-raise detector to discriminate betwealid hand-raises and several
other types of events. Figure 7.34 show where hand-raisesr ac these videos. The



total number of hand-raises is 24.
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Figure 7.34: Hand-Raises in V4, V6, and V12—-V13: The black dotted linelsdate when hand-raises occur.
The magenta lines indicate when one video ends and anotims.sThe number at the top
indicates which video that starts at that line. Some of thliees are included two times,
because they contain two persons; that is, there is a sdoti@ach person. The blue graph
is the value of the hand-raise counter. This graph has bemtuped forscorenm,in, = 0.4 and
AY = 3 using NBC1.

In V4, a person walks back and forth in the foreground two spreccluding the video
conference participants (see Figure 7.15 on page 95). Ira\¢@rson in the background
is writing on a blackboard during most of the video (see Fégtirl9 on page 97). V12
contains mostly hand-movements that are not hand-raiség|do two valid hand-raises
as it can be seen in Figure 7.34. V13 contains valid hanésgisrformed while a person
is walking back and forth in the background, and a singleusioh by a person walking
by in the foreground. Six of the hand-raises coincide wita gerson walking in the
background being inside the hand-raise ROI.

To evaluate the performance, a graph similar to that in EiguB5 has been produced.
This graph is shown in Figure 7.35. For some of the diamonaisecto O in this figure,
the numbers of false positives and negatives are shownhegelith the corresponding
parameters in Table 7.19.

In spite of the presence of clutter and occlusions, it is jptes$o obtain no false positives,
but only at the expense of a rather high number of false negmti

7.5.4 lllumination Changes

V8-V10 each contain several changes of illumination colamd several valid hand-

raises are performed under different kinds of illuminatamd in some cases also while
the illumination is being changed. All hand-raises are deite covered arms. Figure

7.36 shows when hand-raises occur. The total number of haigds is 41, and 13 of the
hand-raises are done during an illumination change.
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: False Negatives vs. False Positives for V4, V6, and V12-\1#: graphs show the minimum

number of false negatives that occurs for a particular nundbefalse positives, while the
diamonds show all the numbers of false negatives that oocthis number of false positives.
The numbers on the axes have been normalized by dividingthéthumber of hand-raises.

NBC | AY | rn | scorenin, | False Positives False Negatives Distance
abs. % abs. %
2 1 1 0.4 2 8.3 2 8.3 0.12
2 1 1 0.5 1 4.2 6 25.0 0.25
2 1 2 0.4 0 0.0 7 29.2 0.29
1 5 7 0.3 0 0.0 8 33.3 0.33

Table 7.19:

Hand-Raise Detection Results for V4, V6, and V12-V13: Thmbers of false positives and
negatives are listed together with the parameters that weed to produce them. The false
positives and negatives are expressed both as an absohlatezenwhich can be compared to
the total number of hand-raises in these videos (24), andpascentage of this number. The
distance shown is the distance frgf 0) to the diamond corresponding to the set of parameters
in Figure 7.35. Note that several other combinations of pa&tars can produce results similar
to those presented in this table.

Figure 7.37 shows the number of false negatives vs. the nupflfalse positives, and
Table 7.20 lists the parameters for some of the diamonde ¢to8 in Figure 7.37.

At it can be seen from Table 7.20, with the right parametditgnination change can be
handled without any false positives.

NBC | AY | rpin | scoremin | False Positives False Negatives Distance
abs. % abs. %
1 1 3 0.4 1 24 2 4.9 0.05
1 3 4 0.3 0 0.0 4 9.8 0.10
2 1 1 0.5 0 0.0 4 9.8 0.10
2 3 1 04 0 0.0 4 9.8 0.10
Table 7.20: Hand-Raise Detection Results for V8-V10: The numbers ckfalositives and negatives are

listed together with the parameters that were used to pmduem. The false positives and
negatives are expressed both as an absolute number whitle campared to the total number
of hand-raises in these videos (41), and as a percentage afinber. The distance shown is the
distance fron(0, 0) to the diamond corresponding to the set of parameters ir&ig37. Note
that several other combinations of parameters can prodszdts similar to those presented in
this table.
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Figure 7.36: Hand-Raises in V8-V10: The black dotted lines indicate wheamd-raises occur. The magenta
lines indicate when one video ends and another starts. Timb&wat the top indicates which
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two persons; that is, there is a section for each person. Teedraph is the value of the
hand-raise counter. This graph has been produceddare,,;, = 0.4 andAY = 3 using
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Figure 7.37: False Negatives vs. False Positives for V8-V10: The grapbs/ghe minimum number of
false negatives that occurs for a particular number of fpsstives, while the diamonds show
all the numbers of false negatives that occur for this nundbéalse positives. The numbers
on the axes have been normalized by dividing with the numbkaid-raises.

7.5.5 Overall Performance

To get an impression of the overall performance that can lteirdd, the hand-raise
detection has been tested on all the videos used above 4i,8/6/ V8-V10, and V12—
V16. The total number of hand-raises in all of these videdOi

Histograms showing the frequencies of different combaoretiof the parameters in the



sets of false positives and false negatives can be foundguréi7.38. A plot of false
negatives vs. false positives is presented in Figure 7139 eaamples of the numbers of
false positives and negatives for different parameter ¢oations are given in Table 7.21.

Zero false positives can be obtained, but only if a large nremdj false negatives is

accepted. The false positives are usually caused by evaitare within the control of

the video conference patrticipants. Therefore, some of dlee fpositives that occur in
these videos would probably be acceptable, as the panisipsould behave in such a
way that the false positives were avoided. |.e. a tradeeoff, 5.9% false positives and
8.8% false negatives, might be acceptable.
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Figure 7.38: False Positives and Negatives for All Videos: The histograhrows the frequencies of different
combinations of parameters,;, andscorenir in the sets of false positives and false negatives
for AY = 3. The numbers on the vertical axes have been normalized ligimdvwith the

number of hand-raises.
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all the numbers of false negatives that occur for this nunabdalse positives. The numbers
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NBC | AY | rn | scoren:, | False Positives False Negatives Distance
abs. % abs. %
2 1 1 0.4 6 5.9 9 8.8 0.11
2 1 1 0.5 2 2.0 14 13.7 0.14
1 3 1 0.4 13 12.7 8 7.8 0.15
1 1 1 0.5 18 17.6 7 6.9 0.19
1 3 7 0.3 0 0.0 23 225 0.23
2 1 2 0.4 1 1.0 24 23.5 0.24
2 1 3 0.4 0 0.0 29 28.4 0.28

Table 7.21: Hand-Raise Detection Results for All Videos: The numberfalse positives and negatives are
listed together with the parameters that were used to peduem. The false positives and
negatives are expressed both as an absolute number whitie campared to the total number
of hand-raises in these videos (102), and as a percentagésafumber. The distance shown
is the distance fron{0, 0) to the diamond corresponding to the set of parameters inr&igu
7.39. Note that several other combinations of parameterpoaduce results similar to those
presented in this table.

7.6 Experiments Conclusions

In this chapter, we have described the experiments madealosge the performance
of the methods for FOA, face verification, face tracking, dwehd-raise detection. The
performance of the FOA methods was measured by computindistence between the
average skin-colour likelihood in the face and backgroueé aFurthermore, the average
computation per image time was used to detect whether a ahethich increased the

face-background distance also increased the computatien The experiments showed
that the best method to use was the weighted Gaussian, whighagface-background

distance of 0.286. At the same time, the computation timedofr8s was close to the
average of the four evaluated methods, so the weighted Gaussethod should be a
good compromise between distance and computational sgdetwards, experiments

were made using moment constraints on the weighted Gaussitdod. These made the
face-background distance increase to 0.341 and at the sar@dhte computation time

increased by less than 1ms. It was therefore concluded thiatamt constraints definitely

are worth using.

Before evaluating the performance of the face verificaticgthads, experiments were
made to find out if the use of erosion and dilation on the Iik@tid image made by the
FoA methods could increase the face-background distareereBults of the experiments
clearly indicated that this was the case — i.e. when usixgrasion and &dilation, the
distance increased from 0.341 to 0.594. To measure therpaafwe of the face veri-
fication methods, experiments were first made on each metboé & find its optimal
threshold values. Thereafter, the performance of eachadettas found by counting
the number of false positives and false negatives usingahee shreshold values. These
experiments showed that the rectangle method, althoughstwery simple and fast, was
able to remove almost 70% of the false positives and at the same it only made 0.6%
false negatives. This method should therefore be used awstiah iough filter, before the
more computational demanding methods are used. The tesmplatiching method was
without doubt the most computational demanding, havingvemnage computation time
of 122ms. However, by combining the methods serially, it wassible to decrease the
average computation time to 105ms, because many face eaeslidere removed by the
simple and fast rectangle and solidity methods before tataphatching was done. Serial
combination of the methods also made the false positives filoon 28.8% when using



the ellipse fitting method to 10.7%. At the same time, the nemald false negatives rose
from 7.3% when using the ellipse fitting method to 15.8%. Heevebecause false posi-
tives may be used to start new trackers and thereby can htiverine on the hand-raise
ROIs, it is more important to have a low number of false pesgithan a low number
of false negatives. A final face verification experiment wasréfore made using stricter
thresholds, which made the number of false positives drdp.@&6 and the number of
false negatives rise to 53.6%. At the same time, the averagmutation time per im-

age decreased to 67ms due to more face candidates beinge@tmpthe rectangle and
solidity methods, before template matching and ellipsimdjttvere done.

To be able to test the face tracker and the tracker managefetgemined a set of param-
eters to use empirically, and verified that these parameters reasonable. Using these
parameters, the performance of the face tracker was eealud/e found that the face
tracker works as desired in the presence of clutter, oamhssiand illumination change,
but fast face movement can cause the tracker to loose theHageever, this is acceptable
as it rarely will occur when the person is seated and pagtioig in the video conference.
We also tested ability of the tracker manager to eliminaaekers for non-face objects.
Such trackers may be started due to false positives fromattedetection. We found that
it only was possible to eliminate such trackers when theyevstarted for a raised hand.

Finally, experiments were performed to evaluate the hamskrdetection. This was done
by measuring the numbers of false positives and false negator different sets of pa-
rameters for the hand-raise detector. In these experimemstsliscovered that false pos-
itives, that is, the detection of a hand-raise when none basred, could only be elim-
inated if a large number of false negatives is accepted. Wiserg the complete set of
videos used for the hand-raise detection experiments,niadlesst number of false nega-
tives that could be obtained if no false positives was aetkptas 22.5%, that is, 22.5%
of the hand-raises were not detected by the system. Howaevéne events causing false
positives are within the control of the video conferencetipgrants, a low number of
false positives will be acceptable. If 2% false positives arcepted for the complete set
of videos, the number of false negatives can be reduced 18d.3f 5.9% false positives
are accepted, the number of false negatives is 8.8%.



Chapter 8

Future Work

In this chapter we will describe future work which may be mé&a¢he VICOWIJOY
system.

8.1 Focus of Attention

The methods for focus of attention, which we have investigatnd experimented upon
in this project, all expect that the faces are illuminatedabgingle colour. This will
not always be the case if we want to be able to do video confesem less controlled
environments. If e.g. the conference takes place in a roadm fluiorescent lamps in the
ceiling and the sun is shining through a window, half of a fa@y be illuminated by the
sun and the other half by the fluorescent lamps. The CCT of eeftgent lamp is around
3000K and the CCT of direct sunlight around 5700K (refer guré C.1 on page 138), so
if a Gaussian model is estimated from the face, the centergbwould be right between
the two illumination sources. Furthermore, the chromstiei variance would be very
large and therefore be constrained if moment constraietsised. This would lead to that
none of the actual skin-colours in the face would be covesethé Gaussian model, and
it would therefore not be found in the next image. One way bfisg this problem could
be to use LUTs instead of Gaussian models to detect the skiis. |.e. it is possible
to have several skin chromaticity distribution groupingsiLUT, because it is computed
directly from the skin-colours in the face and not estimaasdhe Gaussian models are.
However, the experiments made on LUTs and Gaussian mod8kiton 7.2 on page 74
showed that Gaussian models outperform LUTs when the fattangnated by a single
colour. A more promising method is the use of Gaussian mextnodels described by
McKennaet al. in [37]. A Gaussian mixture model describes the skin-caousing
several Gaussian models and should therefore be able tolsetwe skin-colours in the
above mentioned example using a combination of two Gaussaatels instead of one. It
would be interesting to investigate and experiment furtrethe use of Gaussian mixture
models. When using those instead of single Gaussian mddgisuld be possible to do
video conferencing in environments with fewer restrician the illumination.

8.2 Face Verification

The experiments made on the face verification methods indett3 on page 81 showed
that it was possible to avoid (almost) false positives. Tds at the cost of a high number
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(53.6%) of false negatives, which does not matter that mindes video stream of 12.5
Hz still makes it possible to find a face several times per mg&cdHowever, it would
be nice if the number of false negatives could be loweredaliee the face trackers use
the outcome of the face verification to ensure that they nastto track the right objects.
Finding more of the faces in the images should therefore rtrek&ackers able to perform
better.

One way to improve the face verification is to make it posdiblénd faces that are rotated
in the image plane. In [34] Saber and Tekalp computes thecefhmass and the covari-
ance matrix for the part of the skin-colour likelihood imabat is covered by a face can-
didate. Afterwards, they find the eigenvalues and the cpamrding eigenvectors of the
covariance matrix and computes an ellipse from these vallesreafter, ellipse fitting is
done in the gradient image by computing the average grasi@oe of the perimeter of
the ellipse. Based on the eigenvalues upper an lower sizitge gdii in the ellipse are
used to constrain the search for the best fitting ellipse. gagadvantage of this method
is that it makes it possible to find rotated ellipses (facHghe temporal positions of the
template matching and ellipse fitting in the face verificatprocess were swapped, the
ellipse fitting could give information to the template matghabout the orientation of
the face. Furthermore, the size of the face could also bendivéhe template matching.
This would lower the computation time of the template matgtsince it would not be
necessary to use an image pyramid — instead the face camdiolaid simply be resized
to fit the size of the template (or vice versa). Moreover, akbaintemplates rotated at
different angles could be loaded at the start of the systease® on the orientation of the
ellipse, a template with the same orientation could thendael dor template matching.
This should make it possible to detect rotated faces in tigl&te matching method.

Another and more simple way of computing the orientation fz#ce candidate is simply
to compute the height/width ratio of its bounding box. If.glge height/width ratio of
an upright face is set to 1.25, lower values would indicat the face is rotated and
a value of 0.8 that the face is rotateeD0°. A problem with this method is that the
rotation direction is unknown. Therefore, the followingjgge fitting method would have
to be done at two orientations. It could nevertheless bedstmg to implement both this
method and the previously mentioned method where eigeesaind eigenvectors are
computed. Experiments could then be made to compare theiraxwy and computational
efficiency.

In [2] Menser and Wien use the compactness of the face caedidathe thresholded
(binary) likelihood image to classify them as faces or nacek. The compactness is
found by dividing the area of a face candidate with the sqliatenber of pixels along
its perimeter — i.ecompactness = %. Since a face is elliptic in shape its com-
pactness is high and a lower threshold can therefore be osemntove non-faces. This
method is simple and computational efficient and if used rieefoe ellipse fitting and
template matching, it could probably decrease the numbfarcef candidates which have
to be verified by these methods. Furthermore, we alreadyvidhe perimeters of the face
candidates in the contour segmentation method and carfare@mpute their lengths
at the same time. This will make the compactness method eves computational effi-
cient.

Finally, we have observed that significant for the faces aipte that are participating
in video conferences is that they do not move very much. Thiswedge can be used
for face verification by setting a maximimum average moventkereshold of the face
candidates in the likelihood image. The method should eslheenake it possible to
handle the situations where hands are detected as facedateslduring a hand-raise.



I.e. these hands will inevitably have a large amount of mam@nand can therefore be
removed from the face candidate list.

8.3 Face Tracking

The face tracking scheme presented in this report was faunoik quite well. However,
two problems were discovered in the experiments. The fithtisthe tracker’s estimate of
the position of the face, when the face is occluded and wheilltimination is changed,
may move away from the center of the face. The second is thkera inability to track
fast moving faces.

The first problem could be solved by using better methodsdteating occlusions and il-
lumination changes. We have primarily done this detectfomcolusion and illumination
changes by considering the skin-colour likelihood momehtke face area, but informa-
tion deducted from the rest of the image would also be uséfulhange in illumination
colour will not only affect the pixels in the face area, bug #mtire image. Therefore, we
expect it would be possible to detect the change in illunmatolour by considering the
colours of the pixels in the rest of the image, or perhapsgustibset of it. This could
be used to increase the measurement noise level for the Kdilea during illumination
change, to avoid that the estimate moves too far.

Occlusions by a person walking by in the foreground couldphlty be detected by con-
sidering the overall amount of movement in the image, aspgharson will be closer to

the camera than the video conference participants, and sigudicantly more when he

is walking. Even when he is not walking it would be possiblel&tect his presence by
comparing the current image to an average image computed tis previous images.
The knowledge obtained this way could be used to control thasurement noise level.
It could also reduce the risk of false positives from the heaide detection, as a video
conference participant probably would not raise his handentcluded, and if he did, it

would make sense to ignore it, as the camera cannot zoom iis dade.

The second problem is primarily related to the measuremaisenwhich was found to be
too high during fast face movement. If occlusions and illeation changes were detected
in other ways, e.g. as suggested above, the moments of thafaa could be given less
weight in the computation of the measurement noise. The uneaent noise would then
be lower when the face is moving, since this movement doeaffestt the contents of the
hand-raise ROIs, unless the tracker looses the face, afiddbenters one of these ROIs.

In addition to considering more information in the compigtaif the measurement noise,
the information could be integrated into the set of numberded for the Kalman filter in
other ways. One way would be to train a Bayesian network toprdenthe probabilities
of various events, such as occlusion and illumination ckanging data collected from
different video conference situations. The measuremeisenmuld then be based on
these probabilities.

The face detection occasionally results in false positivéghen this happens, a face
tracker is started for something that is not a face. Our expts showed that the meth-
ods used for eliminating these trackers could not handleaais of false positives. This
also means that if a tracker looses the face it is trackingay not be eliminated. There-
fore, more should be done to continuously verify that theeobbeing tracked is a face,
e.g. using some or all of the methods used for face detection.

We only attempt to track the faces of persons that are seasethis appears to be suf-



ficient for our purposes, though also knowing the positiohthe faces of persons who
are coming, leaving, or walking by could be used for adjgstile measurement noise.
However, the tracking system could be extended to allowgperso e.g. get up, and walk
over to a blackboard to illustrate something. This woulduregjthe tracker to be able
to track the head of the person when he is not facing the camimna tracking could
still be done using Mean Shift, but instead of using a skilm@olikelihood image, a
skin-or-hair-colour likelihood image must be used.

Finally, it must be investigated how the control of the PTanera can be done using the
information available from the face tracker, i.e. 2D pasitand size. Since two cameras
are available, the 3D position could also be obtained, hsttiay not be necessary, since
the size of the face in the PTZ-camera image could be usectootthe zoom.

8.4 Hand-Raise Detection

It would be worthwhile to investigate ways to improve the dhamise detection. This
could be done by including more or different informationightes in the Bayesian net-
work, and by training the network using a larger dataset.drigular, the dataset should
probably include a more varied selection of noise to redneenumber of false positives.
Since Gaussian approximations may not be appropriate fprabability density func-
tions, the use of other functional approximations or logktables could be examined.

Additional information variables could provide more infioation about the shape of the
hand-raise trace in the ADP. Alternatively, the idea of tugnthe trace into a single

connected component using morphological operations cbeldbandoned, and other
measures, e.g. the moments of the hand-raise ROI, couldede us

Additional verification steps could be added to eliminatedgositives from the Bayesian
network. For instance, the gradient image could be searched attempt to find the
outline of the arm, using e.g. an approach similar to the aesgmted in [43]. Since
the face position is known and the hand position can be détethfrom the skin-colour
likelihood image, the search space for the elbow should eddige, in particular because
it can be assumed that the hand is raised. Another approaaldvee to produce a
silhouette image for the hand-raise ROI, as described ih [His is done by subtracting
a background image from the current image. The backgrourgéncould be an average
image for the hand-raise ROI, since there — at least in sotu@se- will not be much
change in this area, except when a hand is being raised.



Chapter 9

Conclusions

In this report we have investigated and experimented upathauds for use in a video
conferencing system, where a speaker gets the attentioaiging his right hand. The
system consists of two cameras; a panorama camera in wigi¢ades of the participants
are tracked and hand-raises detected, and a PTZ-cameria mbist automatically zoom
in on a speaker when he raises his hand. Zooming in on the epeakures that other
participants located in other video conference rooms carlsefacial expressions of the
speaker. In the implemented version of the system no camegassed. Instead they are
emulated using images from AVI-files as the panorama canmetdigital zooming in the
same images as the PTZ-camera.

Methods for the initial focus of attention (FOA) in the systdave been investigated.
These have been based on skin-colour detection, using éoibleup tables (LUTS) or
Gaussian models to describe the skin chromaticity didiobu The skin-colour likeli-
hoods of the pixels in the input image are found using the LUGaussian model and a
likelihood image made. A large focus was placed on makingssible for the system to
adapt to changes in illumination colour. This is becauseskitechromaticity distribution
moves along the skin locus when the correlated colour teatpes (CCT) of the illumi-
nation source changes. Therefore, using a LUT or a Gaussialelneomputed from a
collection of training images would only work as long as tlemination colour is the
same as in the training images. Four methods of illuminagidaption were investigated
— simple LUT, ratio LUT, ratio Gaussian, and weighted parerseof Gaussian. Experi-
ments were made by updating the LUT or Gaussian model usixg@ fiosition and size
of the face in the images, and calculating the average skouc likelihood in the face
area and the background area. When using the weighted @aussthod the best result
was achieved —i.e. it gave the longest distance betweewénage skin-colour likelihood
in the face area and in the image area. To avoid the situati@mreninaccurate tracking of
a face leads to a “wrong” skin chromaticity distribution etLUT or Gaussian model, we
investigated a skin-colour model invented by Stormt@l.in [27]. This investigation re-
vealed that under changing CCTs the center of mass of theekkimaticity distribution
follows a locus which is close to the Planckian locus of Blamdy radiators. Moreover,
the areas of the distributions were close to the same andighédtions were in most
cases rotated clockwise along the chromatieigxkis. Using this knowledge to constrain
the position, shape, size, and rotation of the skin chrastatdistributions, it was pos-
sible improve the experiment results achieved when usiegwtbighted parameters of
Gaussian method.

To build a list of face candidates based on the likelihoodgenmmade by the FOA meth-
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ods, the image was first eroded and dilated. Experiments esthdiat this significantly
increased the distance between the average skin-colalihlilod in the face and image
area. Afterwards, a binary image was made using a threshbidnwmade it possible
to make a clear distinction between the face and the backdratea. Finally, a list of
face candidates was created using contour segmentatitve birtary image. To classify
the face candidates as faces or non-faces, four differettiads were used and experi-
mented upon. First, the face candidates which had wrongmgatar shapes and sizes
were removed. This was followed by a check of the solidityhef face candidates, where
candidates with a too low or too high solidity were removaatrirthe list. Afterwards,
a nose-eye template was used to remove face candidates teitH@v similarity to the
template. Finally, ellipse matching was done in a gradiemge using either the first
fitting or the best fitting ellipse around the face candidat€andidates with a too low
average gradient value in the perimeter of the ellipse wemeoved. Experiments were
made by counting the number of false positives and falsetivegaand by recording the
computation time of each method. First each method was emxpeted upon alone to
find out what the threshold values should be and afterwargdsrerents were made on
the methods in serial combination. The experiments shohatdhe computational fastest
method was the rectangle verification and the slowest thelsematching. However,
by combining the methods it was both possible to lower themgation time of the tem-
plate matching and decrease the number of false positioes #8.8% achieved when
using only ellipse fitting to 10.7%. To lower the number ofstalpositives even further,
an experiment was made using stricter threshold valuess fMiide the average compu-
tation time of all the methods in serial combination deceefism 105ms to 67ms and
the number of false positives drop to 0%. At the same time timber of false negatives
rose from 15.8% to 53.6%. However, a high number of false tegmis not that much
of a problem, since the videos run at 12.5 Hz —i.e. in averagjgould still be possible to
detect a face 6 times per second.

Several tracking methods were investigated to make it plest track the detected faces.
Based on these investigations we decided to use a combinatihe Mean Shift algo-
rithm applied to the skin-colour likelihood image and edligfitting in the gradient image
to measure the positions and sizes of the faces. To handientiesgtainties of these mea-
surements, a Kalman filter was used. Finally, a tracker mamalgorithm which deletes
the unstable, dead, and overlapping trackers and createsi@tates trackers was de-
scribed. Suitable parameters to use for the tracker manisigam Shift algorithm, ellipse
fitting, and Kalman filter were found empirically and expeemtally. Afterwards, experi-
ments were performed to determine how illumination changeslusion, fast movement,
and clutter influenced on the tracking accuracy. These stitina the trackers in general
did not have any problems when clutter, occlusion, and ilhation changes occurred.
Only when fast movement of the faces took place, the trackers unable to continue
tracking and were eventually eliminated by the tracker rngana Finally, experiments
were made to determine the ability of the tracker managetinoireate trackers track-
ing non-face objects. In these it was determined that tiygsellscore of trackers tracking
moving non-face objects often quickly drops to a value belmnscores of faces. Increas-
ing the time before an object being tracked may be considaseal face to the maximal
time an ellipse can be fitted to a non-face object, shouldrerthiat only faces will be
used to define hand-raise detection areas. However, thid owean that several seconds
must pass from a person is detected till his hand-raises eatetected. The unstability
measures for faces and non-faces showed the same tendeacthe unstability measure
for non-faces was in general higher than that of faces. [Quottlusions the unstability
measure for faces nevertheless got higher than the unstabiéasure for some of the



non-face objects. Unless it is acceptable for face tracteize deleted during an oc-
clusion, the maximal allowable unstability will in some easalso include the non-face
objects.

To be able to do hand-raise detection several hand gestocognmtion methods were
investigated. Based on these investigations and the faioionly need to recognize one
type of gesture (a hand-raise), it was decided to solve thiglgpm in a somewhat different
way by using changes in the skin-colour likelihood imagesrdime as an indication of
when the hand-raises occurred. Based on the position ofeatfacker, a hand-raise
region of interest (ROI) was defined. Within this ROI, an analated difference picture
(ADP) was produced. The contour of the largest connectedbooent in this ADP was
classified as being caused by a hand-raise or not using oree divo Naive Bayesian
Classifiers, that we implemented. This classification wabgi contour was classified as
a hand-raise, followed by a verification step that examimedvertical shift in the center
of mass in the previous skin-colour likelihood images. Eipents were performed to
evaluate the performance of the hand-raise detection. eTaegeriments showed that
false positives could be eliminated, that is, it could beided that the system classified
an event that was not a hand-raise as a hand-raise. Howrgerptld only be obtained
if, for the videos we used, 22.5% false negatives were aedef@ince the events that lead
to false positives generally are within the control of thdeo conference participants, a
low number of false positives will be acceptable. For 5.996deositives (measured
as a percentage of the total number of hand-raises), thespmnding number of false
negatives in our videos were 8.8%.
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Appendix A

Probability Theory

This appendix will introduce some of the concepts relategrddability theory that are
used in the report. The reader is assumed to be familiar withidoconcepts such as
probability, probability densities/distributions, raoch variables, etc. Otherwise we rec-
ommend reading some of the literature that we used when prgpthis appendix[14, 3,
21, 22,13].

A.1 Univariate Probability Distributions

A probability distribution (or density if it is continuodismay beunimodalor multimodal
A unimodal distribution has a single peak (or “mode”), i.esiagle local maximum, as
illustrated in Figure A.1. A multimodal distribution is agfiiibution with several peaks,
as illustrated in Figure A.2.

Figure A.1: Unimodal Probability Distribution. This unimodal disttition is also a normal probability
distribution. The mean (and mode) of this distributiom:is= 0 and the variance i8.8.

Themean(or expected value, or first moment) of the distribution foe tandom variable
X is given by:

lWhat is written about distributions here also applies tosités (the continuous counter-part of distri-
butions), or is easily adapted to the continuous case.
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Figure A.2: Multimodal Probability Distribution.

EX = xpx (zk)
[

wherepx (z) is the probability thatX = z. Thevariance(or second central moment) is
given by:

VarX = B(X - EX)* =) (2, — EX)?px ()
k

The variance is a measure of how concentrated the prolyahiiass” — the areas under
the graphs in Figures A.1-A.2 — is around the mean. A low vemgameans that the
probabilities are high close to the mean and a high variadmaitihey are distributed over
a larger area (the total area under the graph must equal flshsuld correspond to the
probability of getting a value in the interval under the drap

Thestandard deviatio x of a random variableX is given by:

ox =VVarX

Thecovarianceof two random variables( andY is given by:

Cov(X,Y) = E(X — EX)(Y — EY)

Variance is a special case of covariance, correspondirfgetodvariance of two identical
variables:

VarX = Cov(X, X)

A patrticular kind of unimodal distribution is the normal olGssian distribution, which
is actually what was illustrated in Figure A.1. The mean aratenof this distribution
coincide, and the distribution is characterized compjetgl its mean and variance. That
a random variableX has a normal distribution with meanand variancer? is written:



p(X) ~ N(n,0?)

The probability distribution of a standard normal randomialsle has mean 0 and vari-
ance 1.

A.2 Multivariate Probability Distributions

A multivariate probability distribution is the probabilidistribution for a random vector,
i.e. a vector whose components are random variables. It shiogvprobability of each
combination of values for the variables.

A multivariate probability distribution normal if and only every linear combination

of its components is nornli.e. each variable in the random vector must be normal.
A multivariate normal distribution is characterized by iteean vectorand covariance
matrix.

Let X be a random vector. Thmean vectoof X is
p=FEX
It has the componengs; = EX;,i = 1,2, ...,n, whereX; are the components &.
Thecovariance matribof X is
A=EX—p)(X-p)

It has the components;; = E(X; — pi)(X; — p4), 4,7 = 1,2,...,n. Note that);
(located on the diagonal) is the varianceXjf

That a random vectoK has a normal distribution with mean vecigrand covariance
matrix A is written:

p(X) ~ N(u,A)

2Several definitions of the multivariate normal distributiexist.






Appendix B

Estimators

In this appendix, two estimators for object tracking aregeneted. Familiarity with some
of the basic concepts from probability theory will be need&tle refer the reader to
Appendix A for an introduction to these concepts.

B.1 The Discrete Kalman Filter

B.1.1 Process and Measurement Models

The Kalman filter [13, 21, 35, 7] can be used for estimatingctimeent statex; € R and
predicting the state at the next time step of a process geudoy the linear difference
equation

Xt+1 = AtXt + But + Wy

given a measuremenrt € R” of the state at the current time step

Z; — Htxt + v
x; IS the state at time steand is related to the state at time sigp; by then x n matrix
Ayt

u; € R represents the control input to the system, which is reltietie statex;,; by
then x [ matrix B. If this cannot be measured, as it is the case in this prdjatiay be
assumed thati; = 0.

Them x n matrix H relates the state to what is measured.

w; represents the process noise, apdhe measurement noise. They are assumed to be
independent of each other, white, and with normal prohighidlistributions with covari-
ances) andR:

p(w) ~ N(0,Q)
The result of multiplying a matrix with a vector is a linearmsbination of the columns of the matrix,

e.g.
ar  az2| |r1| _ (@121 + a2x2
az a4 [x2 asr1 + asx2
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p(vt) ~ N(Ov R)

Whiteness implies that the noise value is not correlatedrie,tand that the power of the
noise is equal at all frequenciés.

In order to use the Kalman filted, B, H, (), andR must be known.

B.1.2 Time and Measurement Update

Thea priori estimate error covariance matrix is:

(A$1)2 A$1A$2 T A$1A$n

B = = Az Az (Azy)? Azry Az,
P =E((x =% )(xe — %)) = : : . .

AziAzy, Azro Az, e (Azy)?

whereAz; = z; — &, andz;, 2, ,¢ = 1,2,...,n are the components of the vectors.

Similarly, thea posterioriestimate error covariance matrix is:

Py = B((x¢ — %) (% — %) ") (B.1)

The Kalman filter maintains estimates of the mean and ernar@nce of the state prob-
ability distribution. This is done recursively using twdsef equations:

Thetime updatesquations use the posterioristate estimate to compute thgriori state
and covariance estimates for the next time step (i.e. agired):

Xip1 = AiXy + Buy

Py = APAT +Q (B.2)

Themeasurement updaggjuations use the measurement to computae fiasterioristate
and covariance estimates for the current time step:

K, = PTH! (H,P; H + R;)™" (B.3)

X =X, + Ki(z — Hixy) (B.4)

P =(I-KH)P,

That the power of the noise is equal at all frequencies irahat white noise has infinite power, so it
cannot exist. However, because of the limited bandwidtteaf systems, they will not be able to distinguish
white noise from a noise which “looks like” white noise withihe range of frequencies that the system
responds to. If the noise is not of equal power within thiggenf frequencies, or if it is correlated in time,
a so-called “shaping filter” may be added to the model of the&esy, which converts white noise to the
particular kind of non-white noise — then the system can karagd to be driven by white noise.



K, is the Kalman gain. It determines to which degree the memsenme affects the
posteriori estimates, as it can be seen from Equation B.4, where thécpoederror (in
measurement space) is weightedAyand added to tha priori state estimate. Equation
B.3 has been chosen such that thg@osteriori error covarianceP; (Equation B.1) is
minimized.

B.1.3 Kalman Filter Order

The order of a Kalman filter denotes the number of derivatofethe parameters being
tracked (e.g. the position) that is included in the stat¢orec

A zeroth order Kalman filter includes no derivatives and ubesidentity matrix as A,
i.e. the mean of tha posteriori estimate for time step — 1 becomes the mean of the
a priori estimate for time step (assuming that the control inpui; is zero). The error
covariance is updated as indicated by Equation B.2 to refiedncreased uncertainty.

First order Kalman filters use state vectors of the form:

z1
T
X = :
In
Ty,
Ais an x n block-diagonal matrix:
D 0 0
0 D 0
A= ,
0 0 D
where
1 At
o[ A

The effect of multiplyingA with a state vectat containing positions and their derivatives
(velocities) is that the product of the velocity and the tipgssed since the positions was
estimated is added to each position. This will corresporitigmew positions if the object
moves with constant velocity and the velocities stored are correct.

A second order Kalman filter includes the second derivatacedleration) as well, and
uses

1 At A#2)2
D=0 1 At
0 0 1

%In an identity matrix, all components are 0, except the omethe diagonal from upper left corner to
lower right corner, which are all 1.



B.1.4 The Extended Kalman Filter

If it is impossible to model the process using the linearaddéhce equation given above,
or the relationship between the measurement and the actielcaf the process is non-
linear, arextended Kalman filtgEKF) may be used. The EKF can be used for estimating
and predicting the state of a process governed by the neaflidifference equation

X1 = f(xe,ug, wy)

given measurements that are related to the state by

zy = h(x¢, vi)

The functionsf andh must be known in advance. At each time step, at set of matrices
is computed from these functions. These matrices are uséthénand measurement
update equations very similar to those of the (linear) Kalriléer to obtaina priori and

a posterioriestimates. For further information about the EKF, see [13].

B.2 CONDENSATION

The CONDENSATION algorithm [22] is designed to track curves in visual cluttéris,
however, sufficiently general to be applicable to otherdhithan curves. GNDENSA-
TION works by propagating a conditional density over time usinge&hnique known
as “factored sampling”. The conditional densities are espnted as sample sets. This
means, that unlike the Kalman filter (and the EKFQNDENSATION is able to handle
multimodal probability distributions. Furthermore, ite®not assume that the process
can be modeled with a linear differential equation like thelrifan filter, and does not
make assumptions about the statistical nature of the nibiek@iman filter and the EKF
assumes normally distributed noise).

B.2.1 Assumptions

Let X; = {x1,x2,...,x;} be the history of state vectoss. It is assumed that they form
a temporal Markov chain, i.e.:

p(xs | Xi—1) = p(x¢ | x¢-1)

I.e. information about the state at the previous time stepiges as much relevant infor-
mation as information about all previous states.

Let Z; = {z1, z2, ..., z; } be the history of measurements It is assumed that:

t—1
P(Zi—1,x¢ | Xi—1) = p(xe | Xo—1)p(Zy—1 | Xim1) = p(xq | Xi—1) Hp(Zi | x;)

i=1
This means that the measuremesjteust be mutually independent (implied by the prod-
uct of the probabilitie®(z; | x;)), and that they must be independent of the process.



B.2.2 The CONDENSATION Algorithm

Let the sample set at time step- 1 be

St = {8 m 6" [ =12, N}

and let the sample set at time stelpe

o= {(s™, 7™ ™y | n=1,2,.., N}

The sample sets have a constant $izé s\ is a state vectorr\™ is the probability of

the state vector, anﬁi”) the cumulative probability:

n
an) _ Z Wél)
i=1
The samples of; are computed as follows:

1. Select samplesfgn), n=1,2,..,N from S, ;.
2. Predict new sampleé”), n=1,2,..,N by samplingp(x; | x; 1 = s'§”>).

3. Weight each samp@”), n = 1,2, ..., N according to the probability of the mea-
surementz, givens,".

The initial sample se$;, can, for instance, be obtained by sampling a Gaussian amcti
which has the state vector of the detected object as its mEais.reduces the problem
of obtaining Sy to the problem of constructing a state vector for the objeoinfthe
information provided by the previous phases of the systeg f®sition, but not velocity
and acceleration).

B.2.3 Selection of a Sample

The samples’%”) is selected fronb;_; using the following procedure:

1. Generate a random numbere [0,1]. The numbers should be uniformly dis-
tributed.

2. Find the smallest for which c,@l >r

3. Lets’,g”) = s,@l.

The procedure chooseﬁéi)1 with the probabilitngf)l. It may result in the the same
sample fromS,_; being chosen several times, especially if the sample haghaweight.
Some samples may not be chosen at all, especially thoseamitivéights.

A constant size — or at least an upper limit on the size — of tmapde set is required for real-time
operation.



B.2.4 Prediction of New Sample
The new samplegn) in S; is, in principle, computed by sampling:

(n))

p(xe | %1 =5}

How this is done depends on how the process dynamics is nibflkle will be discussed

below). The result can be divided into a deterministic dnfthich displace$’§”) in
state space, and a diffusion step, which displaces the samptiomly according to the
stochastic component of the process model. If the same sam@; ; was chosen
several times foiS;, the identical copies of this sample will become non-idsitin S;
due to the diffusion.

B.2.5 Weighting of the New Sample

The probability weight for the new sample given the new messentz, is computed as
follows:

Wén) = kp(z¢ | x¢ = s,gn))

le. wﬁ”) is a measure of how well the samplﬁél) explains the current measuremeit

k is a normalization constant chosen such that:

Since k cannot be computed before all probabilitieg, | x;—1 = s'§j>) have been
computed, the normalization must be postponed until alldasmhave been processed.

The cumulative probability is computed as follows:

wheren = 1,2, ..., N.

B.2.6 Process Model

To use the ©ONDENSATION algorithm, models describing the process dynamics and the
measurement process must be established.

The process modahust specifyp(x; | x;—1). If the process can be modeled as a linear
difference equation, the prediction of the new sample vaarebe done as follows:

s§”’ = As'gn) + wgn)

Ais aN x N matrix, and is responsible for the deterministic driﬁé”) is a random
vector with a covariance matrix that reflects the processenolt is responsible for the



diffusion that ensures that identical samples fr6fm; get different values in the new
sample seb;.

The state vectors and may have the form presented in the section about the order of
Kalman filters on page 131. The number of derivatives of tharpaters being tracked
that are included in the state vectors will be referred tchasarder of the ©NDENSA-

TION based tracker.

B.2.7 Measurement Model

The measurement modetust specifyp(z; | x;), or, if the measurement process is as-
sumed to be stationary in timg(z | x).

Let

m;
moy

mpuys

wheremy., ..., mj; are the measurements for a particular time step (they candiars,
or, as indicated by the bold font, vectors).

z contains more than one measurement because of cluttern$tance, when tracking
a face, the presence of other faces than the one being trackgdauser to have sev-
eral components, because all faces have the same basictehiates (e.g. colour, size,
movement). It may be assumed that only one of the measuremeniespond to the
object being tracked. Then the event,, that m,, is the measurement corresponding
to the object is true with the probabilit#(¢,,) and the evenP(¢,,.,¢) that none of the
measurements correspond to the object is true with the piiitga

Then

p(Z | X) = p(z | ¢none)P(¢none) + Z p(Z | X, ¢m)P(¢m)

m=1

where the first term reflects that the contents of the measnemectorz could be due
to clutter rather than the object being tracked, and therskterm reflects the possibility
that the measurements would arise gixen

The conditional probability distribution given Ip(z | x) will have peaks corresponding
to the different measurements,,, and a “background” probability reflecting the possi-
bility that none of the measurements correspond to the tbbjec

If it is assumed that the measurement corresponding to tjeetdb normally distributed
with a mean corresponding to the state vector (mapped frate space to measurement

5Obviously, this is not always true. If, for instance, the sig@ments are regions found in the image
using colour segmentation, an object may split into two ctgjelue to occlusion or changing illumination.



space),p(z | x) may be approximated by setting(¢,,) = 0 for measurements that
are too far away fronx, i.e. ignoring measurements outside a search window areaund
The size of the necessary search window will depend on thariemce matrix of the
measurement normal distribution.



Appendix C

The Skin-Colour Model

To define the skin chromaticity distributions we have usesttia-colour modeteported
by Storringet al.in [27]. Using this model we have calculated a set of Gaussiadels
N(X?,m) for r chromaticities between 0.2 and 0.8. The area in chromgafitétne cov-
ered by these models can handle illuminations of correleddalir temperatures (CCTs —
we refer the reader to the beginning of Section 2.5.1 on pdderk description of CCTs)
from 1750 Kelvin (K) to 15000K. This should be enough to caher most common ev-
ery day light sources (see Figure C.1). The model was whitnbad using a canonical
illuminant with a CCT of 3600K. The centers of mass of the Garsmodels make out
the skin locusin Figure C.1, and as it can be seen this locus has close rémsrelio the
Planckian locus The Planckian locus is the locus along which the light cdand differ-
ent Blackbody radiators lie. According to [11] all other &&of everyday light sources
lie close to this locus. Therefore, the Planckian locus @fcBbody radiators should be
usable for approximating general purpose light sources ddtted lines in Figure C.1
indicate the relation between the CCT of the light sourcethaatorresponding skin chro-
maticity distribution center of mass. The distance of tleltion gets longer the lower
the CCT gets. This is the reason why the skin chromaticityriligion changes in shape
and size when the CCT changes. We will discuss how the sizeslaayoke of the skin
chromaticity distribution can be constrained in the foliog/sections.

C.1 Model Constraints

Our main purpose of using the skin-colour model, is to be &blEnstrain the moments
of the LUTs or Gaussian models (see Section 2.5.4 on pagsstifjeged by the VICOW-

IJOY system at run-time. We know that the skin-colours stidna found close to the skin
locus and can use this to constrain the position of the cafterass of the LUTs or the
Gaussian models.

In Figure C.2, the minor/majagigenvalueratio with increasing:- chromaticities is illus-
trated. The eigenvalues are calculated from the covariamatgix X2 and indicate the
variances along the two directions of highest varianc@s it can be seen, the relative
size of the minor eigenvalue compared to the major gets emafid smaller with in-
creasing chromaticity values. l.e. the shape of the skin chromaticity distributstarts
out close to circular and then it gets more and more flatte(gzk Figure C.3). Having
this information it is possible to constrain the shape ofgkia chromaticity distribution

"We refer the reader to [15] for more information about eigdugs
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Figure C.1: The Skin Locus: The skin chromaticity distribution movesraj a locus similar to the Planckian
locus of Blackbody radiators when the CCT changes. The dldities indicate the relation be-
tween the CCT of an illumination colour, and the correspogdikin chromaticity distribution
center of mass.

in either the LUTs or the Gaussian models estimated in theO¥MTIOY system. This
can be done by using minimum and maximum borders for the rmragor eigenvalue
ratio. This is also illustrated in Figure C.2.
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Figure C.2: Shape Constraints: The figure illustrates the minor/magervalue ratio. Minimum and max-
imum borders can be used to constrain the shape of the skametticity distribution in either
LUTs or Gaussian models.

In Figure C.4 the normalized area sizes of the skin chrontatiistributions along the
chromaticityr axis are illustrated. These areas have been calculatedraythe equation
for the area of an ellipse, i.e.



Figure C.3: Skin Chromaticity Distribution Shape Change: The shap&efskin chromaticity distribution
goes from being close to circular at lawvalues to a flattened ellipse at higkvalues.

area = TAB

where A and B are the major and minor axis of the ellipse. Since the eigamgacorre-
spond to the variances of the distribution, we use the squarteof them as the radii of
the ellipse. I.e.

A = \/major eigenvalue

and

B = \/minor eigenvalue

The curve in the figure peaks at= 0.357. Moving in either direction along the chro-
maticity r axis from this point the area gets smaller. Again, we shoeldliie to use this
knowledge to make minimum and maximum borders for the ama si

Looking at Figure C.3 it can be seen that the skin chromugtiigtribution seems to rotate
clockwise, when it moves to the right along the chromatieitgxis. In Figure C.5, we

have illustrated the degrees of clockwise rotation of thgomeaigenvalue in relation to
the chromaticityr axis. As it can be seen, the skin chromaticity distributioeslindeed

rotate clockwise when increases. Using this knowledge, we can verify that thetimita

of the skin chromaticity distribution in a LUT or a Gaussiamwae! is inside minimum

and maximum borders.

Using the skin-colour model should therefore enable us tdrobthe position, shape,
size, and rotation of the skin chromaticity distribution.helminimum and maximum
borders must nevertheless be rather non-restrictive gsinekward illuminations (such
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Figure C.4: Area Size Constraints: The area size of the skin chromwtitigtribution is largest when chro-
maticity r = 0.357. Moving in either direction from this point, the area getsadier. This
information can be used to define a minimum and maximum sizkeo$kin chromaticity dis-
tribution, according to where a LUT or Gaussian model hashtematicityr center of mass.
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Figure C.5: Area Rotation Constraints: When moving to the right along ¢hromaticityr axis, the skin
chromaticity distribution rotates clockwise.

as when several light sources of different CCTs are focusethe same face) do exist.
Using the borders as guidelines should nevertheless bediidea. In Section 2.5.4 on
page 17 the use of moment constraints is discussed further.

C.2 Model Verification

To verify the skin-colour model, we have used the videos UB8\&h0 which are described
in Appendix D. In both V8 and V10 the person does not move hig feery much,
and therefore it was possible to define an area at a fixed oditi use for the whole



video. For each image in V8 and V10 the pixels in the defined arere converted to
chromaticity plane and used to generate a Gaussian modelpditameter§X?2, m) of
these models were saved to a file and afterwards comparee testlts of the skin-colour
model. In both V8 and V10, the CCT is changed artificially btatmn of an arrangement
of fluorescent lamps. This makes sure that a rather largeadoeg the chromaticity:
axis is covered (see Figure C.6).

C.2.1 Center of Mass

In Figure C.6(a) the centers of mass of the Gaussian modelplaited. As it can be
seen, they are rather close to the skin locus, where V8 istkfipelow and V10 slightly
above. Using the skin locus defined by the skin-colour maulebnstrain the position of
the centers of mass of LUTs and Gaussian models should ¢inerle¢ a good idea.

Looking at the figures it may also be notified, that the plottatlies from V8 and V10
group in 4 places. This can be seen more clearly if we insteakl &t the frequencies
of the chromaticityr centers of mass, which are illustrated in Figure C.7). Theotigs
correspond with the number of different light sources thatewised when recording the
videos.
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Figure C.6: Skin Locus Verification: The sampled centers of mass arétijiglbove the skin locus in V8
(a) and slightly below in V10 (b).

C.2.2 Minor/Major Eigenvalue Ratio

In Figure C.8 we have plotted the minor/major eigenvaluesain V8 and V10. V10
can to some extend be said to follow the model, but V8 seemaue tmore or less the
same ratios no matter what the chromaticityalue is. Constraining the minor/major
eigenvalue ratio based on the chromatieityalue is therefore not a good idea. It is better
to make a soft constraint that demands that the variancey alon chromaticityr axis
always must be larger than the variance along the chrormatcaxis. l.e. since we in
almost all cases have clockwise rotation betweeand45° (refer to Section C.2.4), the
variance along the chromaticityaxis is bound to be larger than the variation along the
chromaticityg axis.
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Figure C.8: Minor/Major Eigenvalue Ratio Verification: The samples & {&) show that the minor/major
eigenvalue ratio more or less is the same all the time. For @)l&he ratio has a tendency of
following the skin-colour model curve. Constraining thenmi/major eigenvalue ratio might
not be a good idea. It would probably be better with a softerstraint that demands that
the variance along the chromaticityaxis always must be larger than the variance along the
chromaticityg axis.

C.2.3 Skin Chromaticity Distribution Area Size

Constraining the area size of the skin chromaticity distidn might also be a possibility.
In Figure C.9 the sampled area sizes are shown. As it can be theeresults of both V8
and V10 do not evolve in the same way as the skin-colour maatslec However, the
sizes of the areas in V8 and V10 are almost identical at éiffechromaticityr values
(i.e. they go from about 25% to twice the size of the maximueaaize in the skin-colour
model). Therefore, it might be reasonable to make overalstraints about the area size.
This can be done by making overall constraints about thermini and maximum size
of the variances along the chromaticityandg axis. Using the amount of chromaticity
as an indicator of these maximum and minimum sizes is nesdesh not a good idea.
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Figure C.9: Area Size Verification: The data plotted from V8 (a) and V1Pdb not evolve in the same way
as the skin-colour model curve. Using overall borders fertariances along the chromaticity
r and g axis to constrain the area size might be better than usingndticity » dependent
borders.

C.2.4 Skin Chromaticity Distribution Rotation

The last characteristic of the skin-colour model we wantdnfy, is the use of constraints
on the rotation of the major eigenvalue of skin chromatidiistribution. In Figure C.10
the data made by V8 and V10 can be seen. Again, the data doesate¢ in the same
way as the skin-colour model along the chromatieigxis. However, it may be noted that
the rotation always seems to be clockwise in relation to kimeroaticityr axis. Therefore
an overall constraint could be to ensure that rotation abasiglockwise in relation to the
chromaticityr axis.
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Figure C.10: Rotation Verification: The sampled data from V8 (a) and V1Pdb not evolve in the same
way as the skin-colour model along the chromatieigis. Not allowing the skin chromaticity
distribution to rotate counter-clockwise in relation te tthromaticityr axis could be used as
an overall constraint.



C.3 Skin-Colour Model Conclusions

The verification of the skin-colour model has shown a closemblance with data ac-
quired from two video sequences, V8 and V10, when it comekdaénters of mass of
the Gaussian models. Therefore, the chromaticigenter of mass should be possible
to use as an indicator of where the chromatigitgenter of mass should be. Regarding
the evolvement of the relative size of the eigenvalues atbaghromaticityr axis, only
the results of V8 could to some extend be said to follow tha-skilour model. It would
probably be better to use a softer constraint about thatdhiance along the chromatic-
ity  axis always must be larger than the variance along the chircitgag axis. When
verifying the skin chromaticity distribution area sizeettlata from V8 and V10 did again
not follow the evolvement of the skin model along the chraaitgt » axis. It was nev-
ertheless noted, that the area sizes of V8 and V10 always lss o the area size of
the skin-colour model. This can be used to make overall $itiuhs of the area size by
constraining the variances along the chromatieigndg axis. Finally, the rotation of the
major eigenvalue in relation to the chromaticityaxis was verified and again the results
from V8 and V10 did not follow the skin-colour model curve. &totation was neverthe-
less always clockwise, which can be used to constrain thekwige rotation to always
be above or equal 10°.



Appendix D

Video Collections

To be able to do experiments in this project, we have made dauof video sequences,
where people do hand-raises in many different ways. In sditfeeovideos the CCT (the
illumination colour) is changed either artificially by ugifiuorescent lamps of different
CCTs or more naturally by pulling curtains back to let in $gint through a window. The
videos were recorded with 25 Hz using a Sony DSR-PD150Patligimcorder which
have a 1/3 type CCD with a resolution of approximat¢dp000 pixels. In all the videos
the camera was white balanced at a CCE6H0K, and afterwards the auto white balance
function was turned off. The videos were afterwards tramsfeéo the program iMovie on
an iMac via a firewire connection. The videos was then sav&lLiaskTime movies using
Indeo5 compression. Thereafter, they was converted tof#®4-using a small program
called Movie Translator. Finally, we downscaled the viden$20 x 240 pixels using the
program VirtualDub.

The use of the Indeo5 compression changed the movement moawlénfiage to image in
the videos. Therefore, almost no movement is detectablecirysecond image. We have
not investigated the technical details behind this “fegltuput a few tests have shown that
the system runs fine when using only every second image ofitte®s. Therefore the
videos are said to be recorded at a framerate of 12.5 Hz thmughe report.

In the following sections we will describe the scenario fack of the videos.

D.1 Videos with Constant CCTs

We have made 7 video sequences using a controlled CCT of 368K illumination
colour is created by having two pairs of vertical fluoresdantps in front of the scene.
All other indoor lights are turned off and dark curtains arawi in front of the windows
to block out the outdoor light. The following list describesch of the video sequences.
Example images taken from the videos can be seen in Figure D.1

V1 Two persons making correct hand-raises.
V2 Two persons making incorrect hand-raises.

V3 Two persons making correct hand-raises. A third personsuvadick an forth in the
background.

V4 Two persons making making a few hand-raises. A third persalksvback and
forth in the foreground.
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V5 Two persons walks into the scene and sits down and do a cotipterect hand-
raises. The one person then leaves the scene for a shortamidilthe comes back.
Both persons then do a couple of hand-raises before theyidwmth the scene.

V6 Two persons do correct hand-raises. A third person entersdhne in the back-
ground, writes something on the black border, and leavesdéee again.

V7 Two bare-armed persons making correct hand-raises.

() Image Example from V6 (k) Image Example from V6 () Image Example from V7

Figure D.1: Image Examples from Videos with Fixed CCT: Figures (a) -l(listrates image examples from
the videos V1-V7.



D.2 Videos with Fast Changes in CCT

To be able to do experiments on VICOWIJOYs capability of atiiig to rather fast
changes in CCT, we have made 3 videos, where the CCT is chatidally about
every 15th second. This is done by turning two vertical ayeaments of fluorescent
lamps. Each arrangement holds 4 pairs of fluorescent lanthsG&1Ts of 2600K, 3680K,
4700K, and 6200K. The fluorescent lamps are turned in the sineetion such that we
do not get a mix of illumination colours. All other lights arérned off and outdoor light
coming through the windows is blocked out by dark curtainghk list below each of the
videos are described. Example images from the videos caedreis Figure D.2.

V8 One person making correct hand-raises.
V9 Another person making correct hand-raises.

V10 A third (quite relaxed) person making correct hand-raises.

(a) Image Example from V8  (b) Image Example fromV8  (c) Image Example from V9

(d) Image Example fromV9  (e) Image Example from (f) Image Example from
V10 V10

Figure D.2: Image Examples from Videos with Fixed CCT: Figures (a) -I(@istrates image examples from
the videos V8-V10.

D.3 Videos with Constant CCTs and Uniform Background

In these 6 videos we have used a very controlled environnTdmg recordings were made
in a closed room with no windows and with a grey screen as backgl. The CCT is
3680K in all the videos and is made by having two pairs of gaftiluorescent lamps in
front of the scene. Each of the scenarios of the videos aritled in the following list.
Example images from the videos can be seen in Figure D.3.

V11 Two persons making correct hand-raises.



V12 Two persons making few correct hand-raises and many inciolnand-raises. One
of the persons demonstrates his crawling talent.

V13 Two persons making correct hand-raises. The first one getsvalxs back and

forth in the background and then sits back down. Inspiredhiy, the second
person does the same.

V14 Two persons making making a few correct hand-raises. Only small face rota-
tions are made.

V15 Two persons making a few correct hand-raises. Faces atedotathout limits.

V16 Two persons making mostly correct hand-raises.

D.4 Videos with Mixed lllumination Colours

The four last videos we have made have CCTs made of mixedifiion colours. In
V17 the only lights we have turned on are the fluorescent lampise ceiling. In V18
we combine this with artificial sunlight, which is made by agandescent lamp which
is slowly increased and decreased in intensity. In V19 wevdrack the curtains to mix
sunlight into the video. Finally, in V20 we do the same buteéhthe fluorescent lamps in
the ceiling turned off. What happens in the four videos iscdbed in the list below. In
Figure D.4 example images from the videos can be seen.

V17 Two persons making both correct and incorrect hand-raises.

V18 Two persons making correct hand-raises.

V19 Two persons making both correct and incorrect hand-raigethird person pulls
back the curtains to let in the sunlight. He then walks a lmtiad in the background
before he finally draws the curtains in front of the windowsiag

V20 Two persons making both correct and incorrect hand-raigethird person pulls
back the curtains and sunlight enters the scene. He theaddhen scene for a

while, comes back, and pulls back the curtains. Finally bheds the scene in the
background.



(@) Image Example from (b) Image Example from (c) Image Example from
Vil Vil V12

(d) Image Example from (e) Image Example from (f) Image Example from
V12 V13 V13

(g) Image Example from (h) Image Example from (i) Image Example from
V14 V14 V15

() Image Example from (k) Image Example from () Image Example from
V15 V16 V16

Figure D.3: Image Examples from Videos with Fixed CCT: Figures (a) -llistrates image examples from
the videos V11-V16.



(&) Image Example from (b) Image Example from (c) Image Example from
V17 V17 V18

(d) Image Example from (e) Image Example from  (f) Image Example from
V18 V19 V19

(g9) Image Example from (h) Image Example from (i) Image Example from
V20 V20 V20

Figure D.4: Image Examples from Videos with mixed: Figures (a) - (i)stiates image examples from the
videos V17-V20.



