Aalborg University

Institute of Computer Science ¢ Fredrik Bajers Vej 7 ¢ 9220 Aalborg Ost.

TITLE:
The Aware Design Tool

A Tool Supporting a Data Warehouse Design Methodology

PROJECT PERIOD:

February 2nd. - May 26th. 2000
PRO%]li)_(QE(’)I‘gaGROUP. ABSTRACT:
This Masters Thesis describes the archi-
tecture of the AWARE DESIGN TOOL.
TERM: The AWARE DESIGN TOOL supports a
Dat 6 data warehouse design methodology. We
briefly describe the advantages of utiliz-
AUTHORS: ing a design methodology.

Carsten Nielsen
Flemming N. Larsen
Peter S. Kristiansen

SUPERVISOR:
Nectaria Tryfona

NUMBER PRINTED: 8

We describe the architecture of the
AWARE DESIGN TooL. This includes a
description of the communication among
the components in the AWARE DESIGN
Toor. Furthermore, we describe all
the components in the AWARE DESIGN
TooL.

We suggest expansions to the AWARE
DesicN ToorL. This include a Con-
troller, a Guardian and a conceptual
query language.

Finally, we conclude about our expe-
riences regarding the AWARE DESIGN
TooL as well as providing suggestions to
future work.

NUMBER OF PAGES: 90
APPENDIX: 3

Copyright e 2000
Group E1-209a

Aalborg Universitet

Institut for Datalogi ¢ Fredrik Bajers Vej 7 ¢ 9220 Aalborg Ost

TITEL:

The Aware Design Tool

A Tool Supporting a Data Warehouse Design Methodology

PROJEKT PERIODE:

2. Februar - 26. Maj 2000

PROJEKT GRUPPE:
E1-209a

SEMESTER:
Dat 6

FORFATTERE:
Carsten Nielsen
Flemming N. Larsen
Peter S. Kristiansen

VEJLEDER:
Nectaria Tryfona

OPLAG: 8
SIDETAL: 90
APPENDIKS: 3

SYNOPSIS:

Denne rapport beskriver arkitekturen af
et data warehouse design vearktgj, the
AWARE DESIGN TooL. Programmet
AWARE DESIGN ToOOL stgtter en data
warehouse design metodik. I denne rap-
port beskriver vi kort fordelene ved at
bruge en design metodik.

Vi beskriver arkitekturen af veerktojet
AWARE DEsSIGN TooL. Dette inklud-
erer en beskrivelse af kommunikatio-
nen mellem komponenterne i veerktgjet
AWARE DESIGN TOOL.

Vi foreslar udvidelser til veaerktojet
AWARE DESIGN TooL. Disse foreslag
inkluderer en Controller, en Guardian og
et konceptuelt spgrgesprog.

Til sidst konkluderer vi omkring vores er-
faringer angaende vaerktgjet AWARE DE-
SIGN TooOL, og vi giver foreslag til frem-
tidigt arbejde.

Copyright e 2000
Gruppe E1-209a

Preface

This Master’s Thesis is the presentation of the results of group E1-209a’s
work at Aalborg University, Institute of Computer Science in spring 2000.

This report constitutes part I of the Master’s Thesis. Part IT of the Master’s
Thesis is a seperate report; The Aware Design Tool, A User Guide.

Literature references are written on the form [Ora99a). A bibliography can
be found on page 89. Figures are enumerated by chapter number followed
by a consecutive number within the chapter. All references to elements in
figures are written in italics.

Aalborg, May 26th. 2000

Peter S. Kristiansen Carsten Nielsen

Flemming N. Larsen

Contents

1 Introduction 9
1.1 Motivation 9
1.2 The AWARE DESIGN TooL Prototype 10
1.3 Our Contribution 11
1.4 Contents of the Report 12

2 Methodology 15
2.1 A Data Warehouse Design Methodology 15
2.2 The Design Phases 17

2.2.1 The Conceptual Design Phase 18
2.2.2 The Logical Design Phase 18
2.2.3 The Physical Design Phase 19
2.3 The AWARE DESIGN TooOL Supporting the Methodology . . . 19

3 Architecture of the Aware Design Tool 23
3.1 The General Architecture 23
3.2 Communication among the components in the AWARE DE-

SIGN TOOL 26
3.3 Metadata Containers 28
3.3.1 starER Metadata Containers 28
3.3.2 Snowflake Metadata Containers 31
3.4 Parsers and Generators 36
3.4.1 StarLanguage Parser & Generator 37

7

3.4.2 SnowLanguage Parser & Generator
3.5 Schema Translators
3.5.1 starER to Extended Snowflake
3.5.2 Extended Snowflake to SQL
3.6 The Repositoryo

Expanding the Aware Design Tool

4.1 Maintaining Schemaso
4.2 The Controller L
4.3 Data Security
4.4 Conceptual Query Language

Conclusion & Future Work
5.1 Conclusion

5.2 Future Work

A The StarLanguage Syntax
B The SnowLanguage Syntax

C Translation Rules

53
53
04
o8
61

67
67
68

69

73

77

Introduction

This chapter begins with a description of the motivation that has led to the
creation of a data warehouse design tool, along with a presentation of the
previous work that led to the architecture of the design tool. Following, our
contribution to the data warehousing community in this report is described.
At the end of this chapter, the contents of the rest of the report is described.

1.1 Motivation

This report focuse upon the creation of a data warehouse design tool. This
design tool supports the data warehouse design methodology which was de-
scribed in [NLK99]. Because of the theoretical advantages of utilizing this
data warehouse design methodology, we decided to implement a tool to sup-
port the methodology.

The main advantage of utilizing a data warehouse design methodology is
abstraction. That is, the designer is provided with the ability to design a
data warehouse using high-level concepts. This has the advantage that at
the conceptual design phase, the designer can work in conjunction with the
end-users of the data warehouse, and thereby the resultant data warehouse
schema should reflect the requirements of the end-user. At the logical design
phase, the data warehouse designer is able to supply additional informa-
tion, such as data types and attribute domains. The physical design phase
represents the actual implementation of the data warehouse, and allows the
designer to specify implementation issues, such as record size.

An important aspect of data warehouse modeling is the ability to limit the

Chapter 1 AWARE DESIGN TooL Section 1.2

data to be loaded into the data warehouse. That is, not all data from the
source systems are wanted in the data warehouse. For example, data re-
garding customers below 18 years of age may not be of interest in the data
warehouse. One way to handle this is to introduce explicit constraints as
presented in [NLK99]. The constraints presented are:

e Existence Dependency constraints (EDs).
e Domain Existence Dependency constraints (DEDs).

e Equality Expressions (EEs).

In this report, the names of the above listed constraints have been altered in
order to clarify the intension of these constraints.

Existence Dependency constraints (EDs) have been renamed to Entity Con-
straints (ECs). Entity constraints are used for constraining entity sets. That
is, by specifying an entity constraint, the designer can limit instances of
entities.

Domain Existence Dependency constraints (DEDs) have been renamed to At-
tribute Constraints (ACs). Attribute Constraints can be imposed on regular
attributes', and are used to limit instances of attribute values.

Equality Expressions (EEs) have been renamed to Summarizable Attribute
Constraints (SACs). These constraints are imposed on summarizable at-
tributes. SACs are used for specifying how a summerizable attribute must
be aggregated.

1.2 The AWARE DESIGN TooL Prototype

A prototype of the AWARE DESIGN ToOOL has been implemented. This
section first provides a brief description of the requirements to a data ware-
house design tool. Following, the choices regarding implementation issues of
the prototype of the AWARE DESIGN TOOL are described.

In a previous report we identified and described a number of general require-
ments for a data warehouse design tool [NLK99]. These requirements, briefly
sketched, are:

LA regular attribute is an attribute, that is not a summerizable attribute.

10

Section 1.3 AwWARE DESIGN TooOL Chapter 1

e The design phases of the data warehouse design methodology must be
explicitly supported in order to take advantage of the benefits of this
design methodology.

e [t is desirable that the design tool is able to generate documentation
based on the schemas. This would allow the data warehouse designer
to verify the structure of the data warehouse regarding the data re-
quirements provided by the end-users.

e The design tool should supply on-line help, in order to assist the de-
signer of the data warehouse. The on-line help must include a descrip-
tion of the design methodology supported by the design tool, the data
models and the languages supported in each design phase.

e The graphical user interface of the design tool must be intuitive and
easy to use. This is necessary in order to reduce the time spent on
learning how to use a design tool. Moreover, the intention of the de-
sign tool is that the designer should focus upon the design of the data
warehouse, and not how to use the tool.

The prototype of the AWARE DESIGN TOOL supports the conceptual and log-
ical design phase fully, while it does not support the physical design phase. At
the conceptual design phase, the AWARE DESIGN TOOL supports the starER
model, as described in [TBC99]. At the logical design phase, the AWARE
DEsiGN TooL supports the Extended Snowflake Schema as described by
[Kel99]. In addition, the AWARE DESIGN TooL allows the data warehouse
designer to specify explicit constraints at the conceptual design phse. The
physical design phase is not supported in the AWARE DESIGN TooL. Cre-
ation and management of the physical schema has been left for the Oracle
8.i DBMS.

For the implementation, Windows NT has been chosen as the platform for
the prototype of the AWARE DESIGN ToOOL. The actual implementation is
not platform independent and therefore the AWARE DESIGN TOOL is not
easily ported.

1.3 Our Contribution

This section contains a brief summary of the contributions provided by this
report towards the data warehouse community.

11

Chapter 1 AWARE DEsIGN TooL Section 1.4

The usefulness of utilizing a data warehouse design methodology already has
been established, as can be seen in [NLK99]. Therefore, we propose that the
architecture of a design tool should utilize a design methodology. In order to
facilitate the communication between the various components of this design
tool, we propose the utilization of metadata for this communication. More
specifically, the starER Metadata Containers should be used to communicate
conceptual schemas, and the Snowflake Metadata Containers should be used
to communicate logical schemas.

We propose how to translate an Extended Snowflake schema into SQL *Plus
statements. The translation enables the data warehouse schema, created in
the AWARE DESIGN ToOL, to be implemented in an existing DBMS.

We propose how to translate the constraints specified on a starER schema
into constraints for an Extended Snowflake schema. Furthermore, we provide
means for translating constraints into SQL *Plus statements.

We propose the AWARE DESIGN TOOL being expanded by the inclusion of a
Controller. This Controller should be able to dynamically maintain schemas.
We propose inclusion of data security into a design tool. We argue why it is
necessary to administrate user groups at the conceptual design phase, and
we suggest how the AWARE DESIGN ToOOL can facilitate such functionality.

Finally, we propose a data mining tool to extract and view data in a data
warehouse. This data mining tool should be partly independent from the
AWARE DESIGN TooL. Moreover, we exemplify how a graphical query lan-
guage could make it possible to specify conceptual queries.

1.4 Contents of the Report

In chapter 2, we present a methodology for data warehouse design. This
methodology is based on the traditional database design methodology (see
[BON92] and [EN94]). We argue why a data warehouse design methodology
should be utilized as well as describe the advantages gained by utilizing
such a design methodology. Furthermore, the individual design phases of
this methodology are described along with how the AWARE DESIGN ToOOL
supports data warehouse design methodology.

In chapter 3, the architecture of the AWARE DESIGN ToOOL is described.
First, the general architecture of the AWARE DESIGN ToOOL is described.
Following, the communication among the components in the AWARE DESIGN
TooL is described. Thereafter, the metadata containers used for communi-

12

Section 1.4 AWARE DESIGN TooL Chapter 1

cation within the tool are described. Then the parsers and generators used
in the conceptual and logical design phases are described. After this, the
translators used between each of the design phases supported in the AWARE
DesigN TooL are described. The last section in chapter 3 describes the
repository.

Chapter 4 describes the ideas for expanding the AWARE DESIGN ToOOL. First
a Controller is proposed. Subsequently, a brief description of the suggestions
for how data security can be integrated into the AWARE DESIGN TOOL is
presented. Finally, a conceptual query language is proposed. This query
language should enable the end users to specify queries on a conceptual
schema. For this purpose, we introduce a new tool, the Aware Query Tool.

Finally, chapter 5 provides conclusions upon our work as well as giving sug-
gestions for future work.

13

Methodology

In this chapter, a data warehouse design methodology is described, along
with the advantages of using a design methodology. This is followed by a de-
scription of the individual design phases in the design methodology. Finally,
it is described how the AWARE DESIGN TOOL supports the described design
methodology.

2.1 A Data Warehouse Design Methodology

Databases are traditionally designed using a database design methodology
that consists of three separate design phases (see [BCN92] and [EN94]). The
database design is divided into the conceptual, logical, and physical design
phases. The concept of having these three seperate design phases has been
utilized toward the design of data warehouses by using a data warehouse
design methodology [NLK99].

Figure 2.1 shows each of the design phases that exists in the data warehouse
design methodology. Moreover, this figure shows the input and output of
each of the design phases.

Designing a data warehouse starts with the data requirements supplied by the
end-users of the data warehouse. These data requirements are processed in
each of the design phases of the methodology. The result of the conceptual
design phase is a conceptual schema that reflects the data requirements,
based upon a specific conceptual data model. The conceptual schema is used
as input for the logical design phase, which is based on a specific logical
model, e.g. the relational data model.

15

Chapter 2 AWARE DEsIGN TooL Section 2.1

User
requirements

‘

The conceptual design phase

Conceptual
schema

‘

Thelogical design phase

Logical
schema

‘

The physical design phase

Physical
schema

Figure 2.1: The phases of the data warehouse design methodology.

The logical design phase focuses on modelling logical aspects of the data re-
quirements e.g., the structure of a schema. The result of the logical design
phase, i.e. a logical schema, is used as input for the physical design phase.
The physical design phase is the final design phase, which is dependent on a
specific physical data model i.e., a specific DBMS system and a specific plat-
form. In the physical design phase, a physical schema is created based on the
logical schema. The physical schema constitutes the actual implementation
of the designed data warehouse. The advantages of using a data warehouse
design methodology are:

e Abstraction: A data warehouse design methodology allows placement
of concepts at a proper level of abstraction, which reduces the complex-
ity of the individual design phases. That is, high-level concepts such
as entity sets, relationship sets, hierarchies etc. are modelled in the
conceptual design phase, and concepts such as tables, data types, and
attribute domains are modeled at the logical level. Low-level concepts
that are dependent on a specific physical data model, such as block
sizes and data partioning, are modelled in the physical design phase.

e Documentation: The output of each design phase i.e., a schema, can

16

Section 2.2 AWARE DESIGN TooL Chapter 2

be used as part of the data warehouse documentation.

e Evaluation: The schemas between the various design phases can be used
for evaluating the correctness of the designed schema. This evaluation
should be performed by the persons that are involved in the design
phases.

e Maintenance: The data warehouse becomes easier to maintain by fol-
lowing a design methodology. A change upon the data warehouse will
be made in a specific design phase. If the change involves concep-
tual aspects, the change will be made in the conceptual design phase.
Similarly, if the change involves either logical or physical aspects, the
change will be be made at the logical or physical design phase respec-
tively. Changes made in the conceptual or logical design phases are
propagated to the underlying design phases.

e Reusability and Portability: The schemas from the conceptual and log-
ical design phases can be reused, which is useful if the data warehouse
must be implemented on different platforms. A conceptual schema is
reusable, due to the fact that a conceptual schema must be independent
of any implementation related issues. A logical schema is independent
of the actual physical implementation, but reusable for the same logi-
cal data model only. That is, if a logical schema is based on e.g., the
relational data model, the logical schema is reusable another DBMS
that supports the relational model.

Now that the advantages of using a data warehouse design methodology have
been described, each of the individual design phases of the methodology are
described in the following.

2.2 The Design Phases

In this section, the characteristics and advantages of each design phase in
the data warehouse methodology are described. First the conceptual design
phase is described. Secondly, the logical design phase is described, and finally
the physical design phase is described.

17

Chapter 2 AWARE DEsIGN TooL Section 2.2

2.2.1 The Conceptual Design Phase

The purpose of the conceptual design phase is to model a data warehouse
based on the data requirements provided by the end-users. The conceptual
design phase focuses on modelling concepts by abstraction. That is, the
conceptual design phase focuses on modelling concepts that are well-known
to the end-users. Thus, the conceptual design phase should always strive to
utilize as simple and expressive a conceptual data model as possible. As the
notions of simplicity and expressiveness are conflicting, a balance between
these two terms must be reached.

The conceptual data model used in the conceptual design phase must be
independent of any implementation issues. This allows the design of the
data warehouse to initiate before decisions have been made regarding what
technical platform to use for implementing the data warehouse.

2.2.2 The Logical Design Phase

The purpose of the logical design phase is to construct a logical schema
based on the conceptual schema, provided from the conceptual design phase.
The logical schema is required in order to map the concepts defined in the
conceptual schema into concepts that exists in a specific logical data model,
e.g., the relational data model. This implies that a specific logical data
model have been chosen regarding the implementation of the data warehouse.
Moreover, a specific DBMS type have chosen, which is based on this logical
data model. That is, if the relational data model has been chosen as the
logical data model, the data warehouse will be implemented on a relational
DBMS.

The logical design phase is independent of the choice of a specific DBMS.
This means that the logical schema can be reused in different DBMS’ that
supports the same logical data model.

At the logical design phase, additional information must be provided on
the logical schema, such as defining data types and domains on attributes.
Furthermore, at the logical design phase, it is possible to restructure the
logical schema. For example, it can be necessary to restructure the logical
schema in order to meet the end-users requirements regarding fast query
performance.

18

Section 2.3 AwWARE DESIGN TooOL Chapter 2

2.2.3 The Physical Design Phase

At the physical design phase, the logical schema created in the logical design
phase is mapped into an actual implementation of the data warehouse. That
is, in this design phase the physical schema is created. Thus, the physical
schema is completely dependent on the specific DBMS system chosen for the
actual implementation of the data warehouse.

At the physical design phase, it is possible to tweak implementation issues.
This means that the designers of the data warehouse are able to modify
details in the physical schema if necessary, such as changing the record size,
index structure, data partioning etc. of the underlying database.

In the following section, the support of the design methodology into the
AWARE DESIGN TooOL is described along with the basic concepts of the
Aware Design Tool.

2.3 The AWARE DESIGN ToOL Supporting the
Methodology

The design methodology described above provides a plethora of advantages.
Because of these advantages, we have decided to support the methodology
in the AWARE DESIGN TOOL.

The AWARE DESIGN TooL is used for designing conceptual and logical
schemas, but not physical schemas. Thus, the AWARE DESIGN TOOL only
supports the conceptual and logical design phases. The physical design phase
has been omitted from the AWARE DESIGN TOOL as the main focus of this
tool have been to support the conceptual and logical design phase.

The process of designing a data warehouse by utilizing the AWARE DESIGN
TooL is described in the following:

1) Creation of the conceptual schema. The conceptual schema is designed
in order to model the concepts, which the end-users wants to be modelled
in the data warehouse.

2) Transformation of the conceptual schema into a logical schema. When the
conceptual schema has been designed, it is translated into a corresponding
logical schema.

19

Chapter 2 AWARE DEsIGN TooL Section 2.3

3) Modification of the logical schema. After translating the conceptual
schema into a logical schema, the designer has the opportunity to modify
the logical schema. Modifications on the logical schema include restruc-
turing the schema, specifying data types and the domain of attributes.

4) Translation of the logical schema into SQL statements. When the mod-
ifications of the logical schema have been made, the logical schema is
translated into SQL statements. These SQL statements are used as in-
put to the physical design phase.

5) Excecution of the SQL statements in the DBMS. The physical schema
is created by executing the SQL statements provided from the logical
design phase. Note that the AWARE DESIGN ToOOL does not support the
physical design phase.

Figure 2.2 shows the design phases of the AWARE DESIGN TooL. The
specific activities that takes place in each of these design phases are also
shown on this figure.

The data model supported in the AWARE DESIGN TOOL for the conceptual
design phase is the starER model as presented by [TBC99], and enriched
with constraints by [NLK99].

The conceptual design phase is the first phase the designer encounters in the
AWARE DESIGN TooL. It is assumed that at this point, the designer has
acquired knowledge about the data requirements provided by the end-users.
A conceptual schema is designed either by drawing a starER schema, by
writing StarLanguage source code, or by a combination of these two design
approaches. For more information about the StarL.anguage, see appendix A.
Note that the two representations of a starER schema are interchangeably.
Thus, in the AWARE DESIGN TOOL it is possible to transform a graphical
representation of a starER schema into StarLanguage source code and vice
versa (see figure 2.2).

In order to transform a graphical representation of the starER schema into
StarLanguage source code, the graphical starER schema is first converted
into an instance of the starER Metadata Containers (see figure 2.2. The
starER Metadata Containers are described in section 3.3.1. Secondly, this
instance is converted into StarLanguage source code, which completes the
process of the conversion. If StarLanguage source code must be converted
into a graphical representation of a starER schema, this process is reversed.

A logical schema is constructed by translating the conceptual schema i.e., a
starER schema, into an Extended Snowflake schema. In the AWARE DESIGN

20

Section 2.3 AwWARE DESIGN TooOL Chapter 2

Conceptual Design Phase

/<>_|:| XXXX XXX XX X
XX XXXX XXX X

—> —>
<— <— XXXXX XXXXXX

Graphical starER schema starER Metadata StarLanguage
Containers source code
Schema Translator:

starER to Snowflake

I

I

3 Logical Design Phase

| —L YYYY YYY YYY
: - ﬁ f VY YYY YYY VY
| YYYY YYY YYY
| YYYyYyyy

I

I

I

I

I

I

I

Supported in the Aware Design Tool

Graphica Extended Snowflake Metadata SnowL anguage
Snowflake schema Containers source code

Schema Translator:
Snowflake to SQL

SQL *Plus
Statements

Physical Design Phase

ugle

Oracle DBMS

Figure 2.2: The design phases supported in the AWARE DESIGN TOOL.

Chapter 2 AWARE DEsIGN TooL Section 2.3

TooL this is done automatically by a built-in schema translator (see figure
2.2. When the schema translation have been made, it is possible for the
designer to modify the logical schema.

An Extended Snowflake schema can be modified either graphically, by writ-
ting SnowlLanguage source code, or by a combination of these two design
procedures. For more information about the SnowLanguage, see appendix
B, which provides the syntax of this language. Note that it is possible to
transform an Extended Snowflake schema into SnowLanguage source code
and vice versa in the AWARE DESIGN TOOL (see figure 2.2.

In order to transform a graphical representation of the Extended Snowflake
schema into SnowLanguage source code, the graphical schema is first con-
verted into an instance the Snowflake Metadata Containers. The Snowflake
Metadata Containers are described in section 3.3.2. Secondly, this instance
is translated into SnowLanguage source code, which completes the process
of converting the graphical Extended Snowflake schema. If SnowLanguage
source code is to be converted into a graphical representation of an Extended
Snowflake schema, this process is reversed.

When the logical schema has been designed i.e., when the logical schema
fulfills the requirements, the logical schema is translated into Oracle SQL
*Plus statements [Ora99a]. These SQL *Plus statements are used as input
for the physical design phase. For the physical design phase, the Oracle 8i
DBMS have been chosen. The SQL *Plus statements must be executed in
the physical design phase in order to generate the physical schema of the
data warehouse.

As mentioned earlier, the physical design phase is not supported by the
AWARE DESIGN TooL. This is due to the fact that this design phase
deals with the actual implementation of the data warehouse using a spe-
cific database supplied by a specific DBMS system. This task is considered
to be out of the scope of the AWARE DESIGN TOOL.

22

Architecture
of the Aware

Design Tool

In this chapter, the architecture of the AWARE DESIGN TOOL is described.
Firstly an overview of the general architecture AWARE DESIGN ToOOL is
provided. Then the communication among the components in the AWARE
DEsSIGN TooL is described. Furthermore, the functionality and internal
structure of the components in the architecture will be described in greater
detail.

3.1 The General Architecture

The architecture of the Aware Design Tool is divided into five components,
the Graphical User Interface (GUI), the Repository, the Source code parsers,
the Source code generators and the Schema translators as can be seen in
figure 3.1.

The GUI component contains the Visualizer, which is a sub-component
responsible for visualizing the conceptual and logical schemas. Moreover,
the GUI contains the Method knowledge sub-component which provides on-
line help. Furthermore, the GUI contains the Method object schema sub-
component, which contains the definitions of the supported models of the

23

Chapter 3 AWARE DESIGN TooL Section 3.1
Graphical User Interface
Method
schema
Repository Sour ce code Sour ce code Schema
parsers generators trandators
Application Conceptual Conceptual COF}%%?EL;?I to
ificati arser
specifications p generator trarslator
User-defined Logical Logical Logica to
specifications parser generator physical
translator

Figure 3.1: Architecture of the AWARE DESIGN TOOL.

design tool.

The Source code generators component handles the conversion of schemas
into source code. This component consists of two sub-components, the Con-
ceptual generator and the Logical generator. The Conceptual generator con-
verts starER schemas into StarLanguage source code, and the Logical gener-
ator converts Extended Snowflake schemas into SnowLanguage source code.

The Source code parsers component are used for converting source code into
schemas. The Source code parsers contains the sub-components Conceptual
parser and Logical parser. The Conceptual parser enables the AWARE DE-
SIGN TooL to transform StarLanguage source code into a starER schema.
At the logical design phase, the transformation of SnowLanguage into an
Extended Snowflake schema is handled by the Logical parser.

The Schema translators component is used for translation schemas between
the different design phases. The Schema translators contains the Conceptual
to logical translator and the Logical to physical translator. The Conceptual to
logical translator sub-component handles translation of starER schemas into
Extended Snowflake schemas. The sub-component Logical to physical trans-
lator translates Extended Snowflake schemas into SQL *Plus statements.

The last component of the AWARE DESIGN TOOL is the Repository. This

24

Section 3.1 AWARE DESIGN TooL Chapter 3

component is responsible for storing schemas from the conceptual and logical
design phases. The repository consists of two sub-components: the Appli-
cation specifications, and User-defined specifications. The Application spec-
ifications is the sub-component of the Repository that stores and loads the
schemas created at the various design phases of the AWARE DESIGN TOOL.
The User-defined specifications is the part of the Repository that enables the
AWARE DESIGN TOOL to store and retrieve user-defined components.

25

Chapter 3 AWARE DEsIGN TooL Section 3.2

3.2 Communication among the components
in the AWARE DESIGN TooL

In this section, the communication among the various components in the
architecture of the AWARE DESIGN TOOL is briefly described.

The GUI component is responsible for controlling all the other components
in the AWARE DESIGN ToOoOL. In addition, none of the other components
communicate directly with each other. The benefit of this architecture is
that it is easy to replace, modify, or test the components that the GUI
component is communicating with. Each of the components that the GUI is
communicating with can be replaced, modified, or tested independently, as
these components are not dependent upon each other.

Figure 3.2 provides an overview of the general communication among the
components in the architecture of the AWARE DESIGN TOOL.

Graphical User Interface (GUI)

€ @ ® @

Source code Source code Schema

Repository generators parsers translators

Figure 3.2: The general communication among the components.

In the following, the general communication among the GUI component and
each of the other components is described.

1. The Repository provides functionality for storing and loading concep-
tual and logical schemas. The GUI requests the Repository to store a
new or modified schema, or to load a previously stored schema.

2. When source code view is required by the desinger, the GUI sends the
schema to the Source Code Generator. The Source Code Generator
then generates source code based on the schema components, structure
and constraints, and returns the source code to the GUI. The GUI then
display the source code.

26

Section 3.2 AWARE DESIGN TooL Chapter 3

3. In order to view a schema based on the source code of the schema,
the GUI sends the source code to the Source Code Parser. The Source
Code Parser constructs the schema by parsing the source code, and
sends the constructed schema to the GUI. The GUI then displays the
graphically schema.

4. Schema translators are used for translating a schema from one design
phase to a schema in another design phase. That is, a schema translator
is used for translating a conceptual schema into a logical schema, and a
schema translator is used for translating a logical schema into a physical
schema.

27

Chapter 3 AWARE DESIGN ToOoOL Section 3.3

3.3 Metadata Containers

In this section the metadata containers for the AWARE DESIGN ToOOL are
described. The metadata containers are used for communication among the
various components in the AWARE DESIGN TOOL.

The metadata containers are object-oriented and consist of two separate class
hierarchies. One class hierarchy is provided for communication at the con-
ceptual design phase, and the other class hierarchy is provided for commu-
nication at the logical design phase.

In this context, we provide a definition of metadata:
Metadata: Data about a schema.

The metadata containers for the conceptual design phases are used for com-
municating starER schemas only, and the metadata containers for the logical
design phase are used for communicating Extended Snowflake schemas only.

The data about a schema includes all the elements that exists in the schema
e.g., entity sets, relationship sets, constraint definitions etc. This includes the
structure of the schema i.e., how the elements are connected and graphical
information needed to display the elements in a schema.

In the following two subsections the metadata containers used for communi-
cation among the components are described.

3.3.1 starER Metadata Containers

In this subsection the metadata containers used at the conceptual design
phase are described. These metadata containers are called the starER Meta-
data Containers. Figure 3.3 shows the class hierarchy of the starER Metadata
Containers using the object-oriented Unified Modelling Language (UML)
[MMMNS97]. In the following, the classes in this hierarchy are described.
Throughout the remainder of this section the term component is used. This
does not refer to any of the components of the AWARE DESIGN TooL, but
an abstract notion of the parts of the metadata containers.

Schema

The Schema class is used for representing a starER schema. The Schema
class is the main class in the class hierarchy of the starER Metadata Contain-
ers. At the conceptual design phase, the various components in the AWARE

28

Section 3.3 AWARE DESIGN TooL Chapter 3

e 7
L egend:
Schema Component
Class
1
/™ Speciaization
<> Aggregation 0.*
0.* Granularity Component |1 0.*
with K>——1 Attribute
Role attributes
=) 1
‘ ‘ 0..*
1 0.* .
Constraint
Factset | Relationship 01 Ciiys || definition
set
1 1
2.*
Membership
0.*)) 0..* Subpart 0..*
Relationship
SuperClass

Figure 3.3: The starER metadata containers.

DEsiéN TooOL communicates by sending and recieving an instance of the
Schema class. An Schema instance contain zero to many instances of the
Component with Attribute class. These instances are the main components
in a schema.

Component

All components in a starER schema are specializations of the Component
class. The Component class contains data about the ID and graphical posi-
tion of components in a schema. The ID of a component must be unique. The
graphical position of a Component is used when the component is visualized.

Component with Attributes

The Component with Attributes is a specialized Component class. This class
is used for representing components that has attributes. That is, the Compo-
nent with Attributes class is a generalization over the classes Fact Set, Entity
Set, and Relationship Set. Instances of the Component with Attributes class
can contain zero to many attributes.

29

Chapter 3 AWARE DESIGN ToOoOL Section 3.3

Attribute

The Attribute class is a specialized Component. This class is used for repre-
senting attributes on fact sets, entity sets, or relationships sets in a schema.
The Attribute class contains data about the type of the attribute, which can
be one of the following: a regular attribute, a key or a summarizable attribute
as type flow, stock, or value-per-unit.

Constraint Definition

In order to model explicit constraints in the starER model, the Constaint
Definition class is used. The Constraint Definition class is used for mod-
elling constraints on any component that can have constaints. A Constraint
Definition consists of a text string containing StarLanguage source code.

Currently, it is possible to specify Attribute Constaints (ACs), Summarizable
Attribute Constraints (SACs), and Entity Constraints (ECs) in a starER
schema. Therefore only instances of the Attribute class and the Entity class
can contain constraint definitions.

In order to model ACs and SACs on an attribute, an Attribute instance can
contain zero to many constraint definitions. Moreover, an FEntity Set instance
can contain zero to many constraint definitions in order to model ECs on an
entity set. Note, that both entity sets and attributes can contain multiple
constraint definitions.

Entity Set
The Entity Set class is mainly used to model entity sets. This class is also
used for modelling aggregated and specialized entity sets.

In order to model aggregated and specialized entity sets, a single Entity Set
instance can reference zero to many other Entity Set instances. An Entity Set
instance that references another Entity Set instance has a role as either being
a subpart of an aggregated entity set or being a super class of a specialized
entity set.

Membership

The Membership class is used to model hierarchies. A membership between
two entity sets is modelled on the entity set of lower granularity in the hier-
archy. That is, the Entity Set instance of the lower granularity must contain
a Membership instance, and this Membership instance must be reference the
Entity Set instance of the higher granularity. Note that an entity set can

30

Section 3.3 AWARE DESIGN TooL Chapter 3

take part in zero to many memberships. Thus, an Entity Set instance can
contain zero to many Membership instances.

A Membership instance contains data about the cardinality of the member-
ship. The cardinality of a Membership can be either strict, complete, or
non-complete.

Relationship Set and Relationship

The Relationship Set class is used for modelling binary and high-order re-
lationship sets. In order to model a relationship in a relationship set, the
Relationship class is used. A Relationship instance references either a Fact
Set or an Entity Set instance.

A Relationship Set instance contains the number of Relationship instances
that corresponds to the order of the relationship set. Hence, in order to
model a binary relationship set, a Relationship Set instance must contain two
Relationship instances. Note that a Relationship Set instance must contain
at least two Relationship instances. That is, a relationship set cannot be
unary.

A Relationship instance contains data about the granularity of the related
entity set or fact set, which can be either one or many.

This concludes the description of the starER Metadata Containers. The fol-
lowing subsection will continue with a description of the Snowflake Metadata
Containers.

3.3.2 Snowflake Metadata Containers

In this subsection the metadata containers used at the logical design phase
are described. These metadata containers are called the Snowflake Metadata
Containers.

The Snowflake Metadata Containers are used for communicating Extended
Snowflake schemas. Although these containers are used for communicating
Extended Snowflake schemas, they can also be used for communicating Star
and Snowflake schemas. This is possible because these schemas uses the same
components i.e., fact tables and dimension tables. The only difference among
these schemas is the allowed number of fact tables', and the possibility of

'A Star schema and a Snowflake schema contain a single fact table only, whereas
Extended Snowflake schemas can contain several fact tables.

31

Chapter 3 AWARE DESIGN ToOoOL Section 3.3

having hierarchical structures?.

Figure 3.4 shows a class hierarchy of the Snowflake Metadata Containers. In
the following, the various classes in this hierarchy are described.

Schema — Integer
1) 01
Fact table ‘0 N ‘ o —1 Numeric
= 0.1 0.* =

4‘> Table Con_str_a_i nt
definition

1 ; 7 Real
Dimension 1 1 0.
table
— Float
0.* 0.1
Foreign Primary
k k
A g —1 VarChar
0.* 0.1
1.* 0.1
1.*
Attribute Data Type Date
1 0.* 1
— Time

Figure 3.4: The Snowflake metadata containers.

Schema

The Schema class is used for representing Extended Snowflake schemas. The
Schema class is the main class in the class hierarchy of the Snowflake Meta-
data Containers. At the logical design phase, the components in the AWARE
DESIGN TOOL communicates by sending and receiving an instance of the
Schema class.

A Schema instance contain zero to many instances of the Table class. These
Table instances are the main components in the schema. In addition, a
Schema instance contain zero to many Constraint Definition instances.

Table, Fact Table, and Dimension Table
The Table class is used for representing tables in a Snowflake schema. The
Table class is a generalization over the specialized classes Fact Table and

?Hierarchical structures are allowed on Snowflake schemas and Extended Snowflake
schemas only.

32

Section 3.3 AWARE DESIGN TooL Chapter 3

Dimension Table. The specialized versions of the Table class are used to
distinguish the semantics of a table. That is, the Fact Table class is used
for representing fact tables and the Dimension Table is used for representing
dimension tables in the Extended Snowflake schema.

Only fact tables can contain facts [Kel99]. If no primary key is defined for a
fact table explicitly, the primary key is constituted of all the foreign keys in
the fact table.

Dimension tables contains descriptive data about facts [Kel99]. In addition,
a primary key must be specified on a dimension table, as a dimension table
is always refered to by another dimension or fact table.

The Table class contains data about the ID of the table and the graphical
position of the table in the schema. The ID of a table must be unique in
order to distinguish the tables in a schema. The graphical position of a table
is used when the table is visualized.

Attribute
The Attribute class is used to represent an attribute on a table. A Table

instance must contain at least one Attribute instance 2.

It is possible to specify a not null constraint for an Attribute instance. If a
not null constraint is specified for an Attribute instance, this means that no
instance of the attribute is allowed to contain the null value. This is useful
when an attribute is part of a primary key, as primary keys are not allowed
to be null [SKS97].

Data Type

At the logical phase, a data type must be specified for each attribute. This
implies that an Attribute instance must contain an instance of a Data Type
class.

The Data Type class is an abstract class of the data type classes: Integer,
Numeric, Real, Float, VarChar, Date, and Time. These classes are used
for specifying the data type of an Attribute instance, including the domain,
precision, format etc.

Integer
The Integer class is used for representing signed integers of any length. An
Integer class contains data about minimum and maximum values, if specified.

3 A table that does not contain any attributes cannot contain any data. Thus, an empty
table on a schema can be left out of the schema.

33

Chapter 3 AWARE DESIGN ToOoOL Section 3.3

Numeric
In order to represent fixed-sized and signed numbers, the Numeric class is
used. This class contains data about the number of decimals and the preci-
sion of a number, as well as data about minimum and maximum values, if
specified.

Real

The Real class is used for representing real numbers of any length. This class
contain data about the precision, and number of decimals, as well as data
about minimum and maximum values, if specified.

Float

In order to represent fixed-sized floating-point numbers, the Float class is
used. This class contains data about the size of a floating point number, as
well as data about minimum and maximum values, if specified.

VarChar

The VarChar class is used for representing variable-sized strings. This class
contains data about the upper limit of the number of characters that the
string can contain.

Date
In order to represent dates, the Date class is used, as well as data about
minimum and maximum values, if specified.

Time
The Time class is used for representing time instants, as well as data about
minimum and maximum values, if specified.

Primary Key

An Attribute instance does not contain any data whether it is a primary key
or not. In order to specify that an Attribute instance is a part of a primary
key, the Primary Key class must be used.

A Primary Key instance is included in a table, and contains data about
which attributes that takes part of the primary key of the table. Note that
a Table instance is allowed to contain a single Primary Key instance only.

Foreign Key

In order to specify that an Attribute instance is part of a foreign key, the
Foreign Key class must be used. It is possible to include zero to many
foreign keys instances in a table. Each of these instances contain data about
which attributes that are part of the foreign key.

34

Section 3.3 AWARE DESIGN TooL Chapter 3

Constraint Definition

In order to model constaints in the Extended Snowflake model, the Constaint
Definition class is used. The Constaint Definition class is a general class used
for modelling constraints on any table or attribute that has a constraint i.e.,
a Table or an Attribute instance. A Constraint Definition consists of a text
string containing SnowLanguage source code.

35

Chapter 3 AWARE DEsIGN TooL Section 3.4

3.4 Parsers and Generators

A schema in the AWARE DESIGN TOOL can be designed either graphically,
by writing source code, i.e., a textual description of a schema using a language
or a combination of these. This benefits the data warehouse designer who
can choose between drawing the schema graphically and using a language by
writing source code, which describe the contents of the schema.

The main advantage of drawing the schema is that the data warehouse de-
signer is able to have an intuitive view of the schema. The main advantage
of writing source code for the schema using a language is that the source
code is in a textual form, which can be used for transferring the schema to
another design tool, another platform, and for storing the schema. Moreover,
a designer skilled in writing source code will be faster in designing schemas
by writing than by drawing.

In order to combine the advantages of the two different approaches to design-
ing a schema, the design tool must make it possible to transform a graphical
schema into source code and vice versa. However, in order to make this pos-
sible, the language for describing schemas and the graphical representation
of the schema must be equivalent. That is, the two approaches must be equal
in expressiveness and power.

In this context, we provide two definitions for translating a schema into source
code and vice versa.

Parser: A component, that takes source code as input and produces a
graphical schema.

The output of the parser is metadata containers, which contains the produced
schema in terms of metadata. This can be seen in figure 3.5.

o

Contains

XXX XX XXXXX

XXXXXX XXXXX| Parser .
XX XXXXX XXx | Input Output

XXX XXX
XXXX

Source code Schema metadata
containers Schema

Figure 3.5: The input and output of a parser.

36

Section 3.4 AWARE DESIGN TooL Chapter 3

Generator: A component, that takes a graphical schema as input, and
generates source code as output.

The input and output of a generator can be seen in figure 3.6.

@
Schema metadata Source code

Schema containers

XXX XX XXXXX
XXXXXX XXXXX]|
XX XXXXX XXX

R —

Containedin ..

Input Output

Figure 3.6: Input and output of a generator.

Hence, in order to provide the functionality for translating a graphical rep-
resentation of a schema into source code and the other way around, both a
generator and a parser is needed.

The AWARE DESIGN ToOOL supports a design methodology allowing the
designer to specify schemas at a conceptual phase, and modify schemas at a
logical phase. Hence, the design tool must provide a parser and a generator
at both the conceptual and the logical phase, in order to allow the designer
to choose whether to design the schemas graphically or write source code for
the schemas. In the following subsections, the parsers and generators used
in the conceptual and logical design phases are described.

3.4.1 StarLanguage Parser & Generator

At the conceptual design phase, starER schemas are designed graphically by
drawing starER schemas or by textually writing StarLanguage source code
(the StarLanguage syntax is defined in appendix A).

Figure 3.7 shows the parser and generator provided in the AWARE DESIGN
TooL for the conceptual design phase. The StarLanguage Generator takes
a starER schema contained in the starER Metadata Containers (described
in 3.3.1) as input, and produces StarLanguage source code as output. The
StarLanguage Parser takes StarLanguage source code as input, and produces
a starER schema contained in the starER Metadata Containers as output.

37

Chapter 3 AWARE DEsIGN TooL Section 3.4

Schema Component Input StarLanguage | oytput
npu Generator .
fact "Repaym
¢ T has attribute
Component . has position
with & Attribute
attributes \ /
StarLanguage
I Ai | I v] | Output Parsgerag Input
starER Metadata Containers

Figure 3.7: Input and output of the StarLanguage Parser and Generator.

3.4.2 SnowLanguage Parser & Generator

At the logical design phase, Extended Snowflake schemas are designed graphi-
cally by drawing Extended Snowflake schemas or, textually by writing SnowL-
anguage source code or a combination (the SnowLanguage syntax is defined
in appendix B).

Figure 3.8 shows the parser and generator that are provided in the AWARE
DEesieN TooL for the logical design phase. The SnowLanguage Generator
takes an Extended Snowflake schema contained in the Snowflake Metadata
Containers (described in 3.3.2) as input, and produces SnowLanguage source
code as output. The SnowLanguage Parser takes SnowLanguage source
code as input, and producs a Extended Snowflake schema contained in the
Snowflake Metadata Containers as output.

Schema Input Snowlanguage| output

Generator
S / set facttable

set dimension

Table —— Attribute \ /
ﬁ SnowL anguage |

[. ‘ Output Porser

Snowflake Metadata Containers

Figure 3.8: Input and output of the SnowLanguage Parser and Generator.

38

Section 3.5 AWARE DESIGN TooL Chapter 3

3.5 Schema Translators

When a starER schema has been designed at the conceptual design phase,
it is translated into an Extended Snowflake schema. At the logical design
phase, it is possible to specify data types and domains on attributes. Also,
it is possible to restructure Extended Snowflake schemas. When the logi-
cal phase is finished i.e., when the Extended Snowflake schema reflect all
required changes, the Extended Snowflake schema must be translated into
SQL statements. These statements are used for creating the physical schema
of the data warehouse and implement the constraints specified for the data
warehouse.

The AWARE DESIGN ToOOL is made to assist the designer with designing
conceptual schemas, translating a conceptual schema into a logical schema,
restructuring the logical schema, and translating a logical schema into a
physical schema. In the AWARE DESIGN TOOL, two of these processes are
achieved automatically. That is, the AWARE DESIGN TOOL is able to trans-
late a starER schema into an Extended Snowflake schema, and is able to
translate an Extended Snowflake schema into SQL *Plus statements uto-
matically. However, a requirement is that a schema,which is about to be
translated, must be a valid schema.

3.5.1 starER to Extended Snowflake

The schema translator between the conceptual and logical design phase takes
a starER schema expressed by the starER Metadata Containers as input,
and produces an Extended Snowflake schema expressed by the Snowflake
Metadata Containers as output. This is illustrated in figure 3.9.

The translator uses the translation rules provided in appendix C for trans-
lating a starER schema into an Extended Snowflake schema. The translation
rules provide a proper translation of the elements and constraints in starER
schemas into dimension tables, fact tables, and logical constraints for the
Extended Snowflake schema.

No data type is defined on an attribute at the conceptual design phase,
as the conceptual design phase is focused on modelling concepts of a data
warehouse. However, at the logical design phase, a data type must be defined
on attributes. If no data type is specified on an attribute in the logical design
phase, a default data type is provided for the attribute *. Thus, as no data

“In the AWARE DESIGN TooL, the default data type is a varchar(0).

39

Chapter 3 AWARE DESIGN ToOoOL Section 3.5
Conceptual Design Phase
Schema Component
[——
Component .
contained in at%,rvil tt)nte — Attribute
[ﬁi |
\ I I \
starER schema starER Metadata Containers
Input
Schema Trandator
Tranglation starER to Extended
Snowflake
Output
Logical Design Phase
Schema
- Table ——— Attribute
Contains
\ | \
Extended Snowflake schema Snowflake Metadata Containers

Figure 3.9: The translator between the conceptual and logical design phase.

40

Section 3.5 AWARE DESIGN TooL Chapter 3

type is specified on a conceptual schema, the schema translator used between
the conceptual and logical design phase provides the default data type on the
translated attribute in the resulting logical schema.

In the following, we continue by describing the schema translator provided
in the AWARE DESIGN TOOL between the logical and the physical design
phase.

3.5.2 Extended Snowflake to SQL

The schema translator between the logical and physical design phases takes
an Extended Snowflake schema expressed by Snowflake Metadata Containers
as input, and produces a set of files containing SQL *Plus statements as
output. This is illustrated in figure 3.10.

Logica Design Phase

-

Contains Table ——— Attribute

Extended Snowflake schema Snowflake Metadata containers

Input

Schema Translator
Trandation Extended Snowflake
to SQL

Output

create table”

name varcha
street varcha
city

Files containing SQL statements
|

Physical Design Phase ¢ |

Figure 3.10: The translator between the logical and physical design phase.

The schema translator produces several files containing SQL statements us-

41

Chapter 3 AWARE DESIGN ToOoOL Section 3.5

ing the SQL Data Definition Language (DDL) and the SQL Data Manipu-
lation Language (DML). One of these files contains DDL statements only,
which are used for defining and creating all the tables that must exists in
the physical schema. In addition, the DDL statements are used for defining
integrity constraints on the various tables. The integrity constraints guard
against accidential damage to the data warehouse [SKS97], and are used for
constraining the domain of attributes.

The other produced files contains DML statements, which are used for manip-
ulation of the data in the data warehouse. Note that the facts and descriptive
data about facts must be preserved i.e., this data is read-only [Mat96]. The
produced DML statements are used only for the purpose of aggregating exist-
ing data in the data warehouse. That is, the aggregated data® does not affect
existing data in the data warehouse, but is provided for the data warehouse
as additional data.

Translation of a Logical Schema to SQL
When the schema translator translates an Extended Snowflake schema into

SQL statements, each table in the Extended Snowflake schema is translated
into a CREATE TABLE statement [Ora99b], which specifies:

e the table name,

the name and data type of each attribute that exists on the table,

the primary key of the table,

foreign keys of the table, and

integrity constraints on the attributes of the table.

If one or more integrity constraints are defined on attributes of a specific
table, the CHECK clause [Ora99b] is used in conjunction with the CREATE
TABLE statement in order to preserve the integrity constraints. The CHECK
clause specifies a condition that must be checked for each row in the table,
when new data is inserted into table or when existing data in the table
is modified [SKS97]. New data can only be inserted into the table if the
condition of the CHECK clause is not violated. Moreover, data can only be
inserted into the data warehouse if the condition of the CHECK clause is not
violated.

5The aggregated data is data of coarser granularity, which can be derived from the
existing data in the data warehouse.

42

Section 3.5 AWARE DESIGN TooL Chapter 3

In the following, we provide an example of how a table is translated into
a SQL statement. Figure 3.11 shows the dimension table Inventory, which
contains the primary key inventory, the foreign key store, and the attribute
value. An integrity constrain is defined on walue, which specifies that the
attribute value must be positive.

Inventory

inventory ——— Primary key

store —— Foreign key

value —— Constraint: minimum valueis0

Figure 3.11: The Inventory dimension table.

This dimension table is translated into the following SQL statement:

CREATE TABLE Inventory
(inventory VARCHAR(30),
store VARCHAR(25),
value REAL,
PRIMARY KEY (inventory),
FOREIGN KEY (store) REFERENCES Store,
CHECK (value >= 0))

The domains of the inventory, store, and value attributes reflect the domains
specified for these attributes on the Inventory table at the logical design
phase. By default, an attribute can assume null values. An attributes which
takes part in a primary key is not allowed to assume a null value [SKS97].
Note that the foreign key of the Inventory table refers to the table Store. The
Store table must exist when the Inventory table is created. Thus, the order
of the CREATE TABLE statements produced by the schema translator is
important. However, it is not always possible to determine if a table must
be created before other tables. This is the case when a table is involved in a
referential cycle as shown in figure 3.12.

In this figure, Tablel! refers to Table2, which refers to Table3. Table3 refers to
Tablel, and thus it cannot be determined which table must be created first.
This problem can be solved by omitting the definition of the foreign keys in
the produced CREATE TABLE statements. Hence, the various tables can
be created in any order. When the tables have been created, the foreign
key definitions, that have been left out of the CREATE TABLE statements,

43

Chapter 3 AWARE DESIGN ToOoOL Section 3.5

Tablel Table2
id id
Table2.id Table3.id

Table3

id

Tablel.id

Figure 3.12: Tables involved in a referential cycle

must be inserted into their respective tables. This can be achieved by the
ALTER TABLE statement [SKS97].

Translation of explicit constraints

Explicit constraints are expressed in the logical design phase using the set
constraint statement from the SnowLanguage. The set constraint statement
is used for expressing the constraints derived from the conceptual design
phase. The set constraint statement is used for three different purposes in
order to reflect the ACs, SACs, and ECs from the conceptual design phase:

e For constraining the domain of an attribute. These constraints are
derived from ACs.

e For specifying how a summarizable attribute must be aggregated. Such
constraints are derived from SACs.

e For constraining the row instances (tuples) of a table. These constraints
are derived from ECs.

The set constraint statement has the following syntax:

9,9

set constraint identifier for (table_id | attr_id)
(aggr_expr | ranges)

The keywords of the set constraint statement are written in boldface. The
first identifier is the name of the constraint. The keyword for is followed
by either a table_id or an attr_id. The table_id is used for specifying a table,
and the attr_id is used for specifying an attribute on a table. The semicolon

44

Section 3.5 AWARE DESIGN TooL Chapter 3

is followed by either an aggr_exzpr (aggregation expression) or ranges. The
aggr_expr is used when the constraint definition is used for specifying how an
attribute must be aggregated. The ranges are used for two purposes. If the
constraint definition is specified for an attribute on a table, the ranges is used
for defining the domain of the specified attribute. If the constraint definition
is specified for an table, the ranges are used for defining a condition for a
table.

A set constraint statement that is used for constraining the domain of an
attribute in a table, is translated into a CONSTRAINT clause [Ora99b]. The
CONSTRAINT clause is useful for constraining the domain of an attribute,
where the domain must depend on other attribute values. By specifying a
CHECK clause together with the CONSTRAINT clause, the CONSTRAINT
clause expresses a condition that must always be satisfied. That is, whenever
new data is loaded into the data warehouse, the new data is accepted only
if it does not violate the constraint defined by the CONSTRAINT-CHECK
clause.

In the following we provide an example of how a constraint definition on
an attribute domain is translated into SQL statements. The name of the
constraint definition is acLoanAmount. The constraint definition specifies
that the value of the amount attribute on the Loan table must be lesser than
10000, if the value of the age attribute on the Person table is lesser than 25.

set constraint acLoanAmount for Loan.amount:
Loan.amount < 10000 if Person.age < 25;

Figure 3.13 shows the relation between the Loan and the Person tables,
which are related through the Repayment table.

Loan Repayment Person
id Loan.id ssn
amount Person.ssn age

Figure 3.13: The relation between the Loan, Repayment and Person tables

In order to translate the acLoanAmount constraint definition into a CON-
STRAINT-CHECK clause, the NOT-EXISTS clause [Ora99b] is used in the
CHECK clause. The NOT-EXISTS clause is used for specifying that the
result of a query must be empty i.e., no rows exist in the result returned by
a query. This is useful, as this can be used for forming a query that extracts
data on from the Loan and Person tables about the values of the amount

45

Chapter 3 AWARE DESIGN ToOoOL Section 3.5

and age attributes. Thus, the acLoanAmount constraint definition can be
translated into the following SQL constraint clause:

CONSTRAINT acLoanAmount CHECK
(NOT EXISTS
(SELECT * FROM Person WHERE age < 25 and ssn =
(SELECT ssn FROM Repayment WHERE id =
(SELECT id FROM Loan WHERE NOT amount < 10000))));

The innermost query in the constraint clause extracts all ¢ds from the Loan
table where the amount is not lesser than 10000. These ids are used for
extracting all the ssn (Social Security Number) values from the Repayment
table, where the id of the Repayment equals the extracted ids from the in-
nermost query. The outermost query uses the extracted ssn values from
the subquery in order to extract all tuples in the Person table, where the
age is lesser than 25 and the ssn equals an ssn value extracted in the sub-
query. Thus, the NOT-EXISTS clause is used for checking if any tables have
been extracted from the outermost query. If this is the case, the constraint
definition is violated.

A set constraint definition that is used for specifying how an attribute must
be aggregated is translated into the SQL statement: SELECT-FROM. This
statement is used for forming one or more queries, where the extracted data
is aggregated. The SQL aggregate functions AVG, COUNT, MAX, MIN,
and SUM are used for aggregating data extracted from the queries.

In the following, we provide an example of how a set constraint definition,
used for specifying how an attribute must be aggregated, is translated into
SQL statements. The following constraint definition must be translated into
SQL statements:

set constraint sacSumValue for Store.stock_value:
sum(Inventory.value)

The name of the constraint definition is sacSum Value, and is used for identi-
fying the constraint definition. The constraint definition is specified for the
attribute stock_value on the Store table. The stock_value must be aggregated
by summing all the values of the value attribute on the Inventory table. This
constraint definition is translated into the following SQL statements:

UPDATE Store SET stock_value =
(SELECT SUM(value) FROM Inventory) ;

46

Section 3.5 AWARE DESIGN TooL Chapter 3

The UPDATE-SET statement is used for updating the value of the attribute
stock_value in the Store table. The SELECT-SUM-FROM query sums the
values of the value attribute from the Inventory table.

A set constraint definition that is used for constraining row instances (tuples)
is translated into the SQL statement: CREATE TRIGGER. The CREATE
TRIGGER statement is an Oracle SQL specific statement [Ora99b], which
is used for creating a trigger. A trigger is a statement that is executed
automatically by the DBMS as a side effect of a modification to the database
[SKS97]. A trigger specifies the conditions under which the trigger is to be
executed, and the actions to be taken when the trigger executes [SKS97].
The CREATE TRIGGER statement is available in SQL *Plus, and can be
used for constraining an entire row in a table.

In the following, we provide an example of how a set constraint definition,
used for constraining the row instances of a table, is translated into SQL
statements. The following constraint definition must be translated into SQL
statements:

set constraint ecPersonAge for Person: Person.age > 18;

The name of the constraint definition is ecPersonAge. This constraint is
defined on the Person table, and specifies that row instances (tuples) in
this table can be inserted or updated, if the value of the age attribute is
greater than 18. This ecPersonAge constraint definition is translated into
the following SQL statement:

CREATE TRIGGER ecPersonAge BEFORE UPDATE OF age ON Person
FOR EACH ROW ecPersonAgeProc;

This trigger statement specifies that the procedure ecPersonAgeProc will be
called, before an update of the age attribute on the Person table occurs.
The FOR EACH ROW clause [Ora99b] specifies that the ecPersonAgeProc
procedure will be called for each row in the table that is affected by an update
operation on the age attribute.

Note that the ecPersonAgeProc is a procedure that is not generated by the
translator. It is the task of the designer to provide the procedure for the
trigger.

47

Chapter 3 AWARE DESIGN ToOoOL Section 3.6

3.6 The Repository

The Repository component of the design tool architecture (see figure 3.1) is
the component that store schemas in the AWARE DESIGN TOOL.

GUI

Repository
Repository Interface
Application Specification User-defined Specification
Conceptual Logica Conceptual

Oracle DBMS

Figure 3.14: Architecture of the Repository.

The Repository component consists of the following sub-components (see
figure 3.14):

Repository Interface: This part of the Repository provides access to the
functionality of the Application Specification sub-component and User-
defined Specification sub-component.

Application Specification: This component is split into two sub-components,
as seen in figure 3.14. These sub-components perform the storing and
loading of schemas. Each of the sub-components provide functionality
for a specific design phase. Thus, there is a sub-component for both
the conceptual and the logical design phase.

User-defined Specification: This component handles storage of user de-
fined components. In the current implementation of the AWARE DE-

48

Section 3.6 AWARE DESIGN TooL Chapter 3

SIGN TooL, the User-defined specification component has one sub-com-
ponent, namely for the conceptual design phase (see figure 3.14). Thus,
it is possible to store and load user-defined components from the con-
ceptual design phase only.

Two storage schemas has been defined for the Repository: a Conceptual stor-
age schema and a Logical storage schema. The Conceptual storage schema
represents the starER model. The Conceptual storage schema can be seen in

figure 3.15.
user component %
number
Conceptual fonsia
schema 1 of N Fact set 1

=
]

Membership o 1 N
set N cardinality @
of
N N

Aggregation i Relationshi
ggsteelg pla?t Entity set N connect, st P

N of N

1 1 1 1
Key info>
N name
Generdlization/| N V
Speci glelt zation N has N Attribute

1
‘ ;
limits 1 Constraint 1 @ P>
definition

Figure 3.15: ER diagram of the Conceptual storage schema.

S

The elements in the Conceptual storage schema will be described in the fol-
lowing. Emphasized words refer to specific sub-components in the Conceptual
storage schema.

e The entity set Conceptual schema represents definitions of conceptual
schema (starER schemas). For a conceptual schema, the name of the
schema is stored along with data about whether the schema is a user-
defined component or not.

e The entity set named FEntity set represents definitions of entity sets in
a conceptual schema. For an entity set, the name of the entity set is
stored.

49

Chapter 3 AWARE DESIGN ToOoOL Section 3.6

e The entity set Fact set represents definitions of fact sets in a conceptual
schema. For a fact set, the name of the fact set is stored.

e The entity set Relationship set represents definitions of relationship
sets in a conceptual schema. For a relationship set, the name of the
relationship set is stored along with data describing the cardinality of
the relationship.

e The entity set Membership set represents definitions of membership sets
in a conceptual schema. A membership set is defined on the entity set
which is the member of another entity set. For a membership set, it
is necessary to store the type (strict, complete or non-complete) and a
number to identify the membership set.

e The entity set Generalization/specialization set represent definitions of
generalizations/specialization sets in a conceptual schema. A general-
ization /specialization set is defined on the specialized entity set. For
each generalization/specialization set, it is necessary to store a number
that uniquely identifies the generalization/specialization set.

e The entity set Aggregation set represents definitions of aggregation sets
in a conceptual schema. An aggregation is specified on the entity set
which is a part of another entity set. For aggregation sets, a number is
stored to uniquely identify the aggregation sets.

e The entity set Attribute represents definitions of attributes in a con-
ceptual schema. For attributes, it is necessary to store the name of the
attribute along with data about the type (Stock, Flow, Value-per-unit
or regular attribute) and what key type (foreign, primary, or not a key)
the attribute is.

e The entity set Constraint represents constraint definitions in a concep-
tual schema. For constraints, it is necessary to store the definition of
the constraint. This defintion is unique because it contains the name
of the entity set or attribute it is defined upon.

Figure 3.16 shows the ER diagram of the Logical storage schema. As can be
seen in figure 3.16, the Logical storage schema is simpler than the Conceptual
storage schema. The Logical storage schema allows the Repository to store
data about logical schemas (Extended Snowflake schemas).

The elements in the Logical storage schema are described in the following.

20

Section 3.6 AWARE DESIGN TooL Chapter 3

Cnax value>
\
N N

has Attributes has
1 /1 \ Tmma> 1
Dimension ‘m
Chame> Fact
table table
N |1 @ 1 N
4
1 . 1
Constraint
definition
consist 1 Logical 1 @
of schema of

Figure 3.16: ER diagram of the Logical storage schema.

The entity set Logical schema represents the definition of a logical
schema (an Extended Snowflake schema). For logical schemas, it is
necessary to store the name of the schema. A logical schema consists
of Fact tables and Dimension tables.

The entity set Fact table represents definitions of fact tables in a logical
schema. For fact tables, it is necessary to store the name of the fact
table.

The entity set Dimension table represents dimension tables in a logical
schema. As with fact tables, it is necessary to store the name of the
dimension table. Both dimension and fact tables has Attributes defined
upon them.

The entity set Attributes represents definitions of attributes in a logical
schema. For attributes, it is necessary to store their name and data
about whether the attribute is a key (foreign or primary) or not a key.
In addition, it is necessary to store data about the domain (varchar,
integer etc.) of the attribute. Along with this data, it is necessary to
store data about the precision, number of decimals, min value and max

51

Chapter 3 AWARE DESIGN ToOoOL Section 3.6

value for the attribute.

e The entity set Constraint represents constraints defined on either Di-
mension tables, Fact tables or Attributes. For constraints, it is neces-
sary to store the definition. This definition contains the name of the
constraint, and is therefore sufficient as primary key for a constraint.

In this chapter, we have described the components in the AWARE DESIGN
TooL. It is our conclusion, that the architecture, as described in section
3.1, has proved to be an advantage when implementing the AWARE DESIGN
TooL, as it made the implementation of the sub-components of the AWARE
DEsiaN TooL easier. Regarding the communication among the components
in the architecture, we realize that the coupling between the GUI and other
components in the AWARE DESIGN TOOL is too strong. This makes the
GUI component inflexible regarding changes to the AWARE DESIGN TOOL.
We conclude that the metadata containers are very useful regarding com-
munication among components in the AWARE DESIGN TooL. The parsers
and generators, as described in section 3.4, are necessary in order to convert
graphical schemas to source code and vica versa. The translators are neces-
sary in order to support the methodology, as described in chapter 2, as they
make it possible to translate a schema from one design phase to the next.
We also conclude, that a database is suitable for storing data about schemas.
In the next chapter, we propose different expansions to the AWARE DESIGN
TooL.

52

Expanding the
Aware Design Tool

In this chapter, ideas for expanding the functionality of the AWARE DESIGN
TooL are presented. First we shortly describe how schemas are currently
maintained in the AWARE DESIGN TooOL, and we describe how they should
be maintained. Next we present our idea for a Controller. We describe
how the Controller can be used for maintaining constraints, and we give
an example of how the Controller should handle structural changes to a
schema. Then we present different ideas of how the Controller could be used
regarding the AWARE DESIGN ToOOL. These ideas include the description
of a conceptual query language, and how the Controller could be used to
implement a data security administration in the data warehouse design tool.

4.1 Maintaining Schemas

When explicit conceptual constraints (ACs, SACs and ECs) are defined in
a conceptual schema, an important issue is how these constraints are main-
tained in the logical schema. This issue also applies when constraints are
defined for a schema, either conceptual or logical, and the schema structure
is changed subsequently.

In the AWARE DESIGN TOOL, constraints are currently handled in a static
manner. This means that explicit conceptual constraints are translated into
constraint definitions in the logical schema (see appendix C for constraint

93

Chapter 4 AWARE DEsIGN TooL Section 4.2

translations). Moreover, if the structure of a schema is changed or if an ele-
ment in a schema is renamed, the changes are not reflected in the constraint
definitions. This is a problem, because when renaming occur, the constraints
must still be imposed on the elements upon which they were defined. In
order to overcome this problem, it must be possible to maintain constraints
in a dynamic manner. That is, when an element is renamed, any constraint
that is imposed, on the element being renamed, must be updated to reflect
the change.

Regarding constraint definitions, a problem occur if an attribute is referenced
in a constraint definition, and this attribute is either moved or renamed.
This is a problem because it would cause inconsistency within the constraint
definitions. Such changes must be reflected in the constraint definitions which
references the attribute. To overcome this problem, it should be possible
to handle structural changes in a dynamic manner. For example, when an
attribute is moved, all constraint references to this attribute must be changed.

Another problem is how to handle conceptual constraints when the concep-
tual schema has been translated into a logical schema. If a constraint is
imposed on either an entity set or an attribute, this constraint must be im-
posed on the corresponding table or attribute in the logical schema. For an
EC, this means that the table, corresponding to the entity set upon which
the EC was defined, cannot be deleted. That is, the entity set cannot be
deleted, as this would violate the EC definition from the conceptual design
phase that must be maintained in the logical design phase. Moreover, it
should not be possible to delete or move any attribute in this table. For ACs
and SACs, this means that the attribute in the logical schema corresponding
to the attribute upon which the AC or SAC was defined cannot be deleted.
In fact, we suggest that in a logical schema, no attribute which originates
from a conceptual schema can be deleted

In order to overcome the above described problems, we introduce the idea
of a Controller. The Controller must ensure that a schema is always con-
sistent regarding references. The Controller can achieve this by propagating
changes throughout a schema whenever they occur. The functionality and
the structure of the Controller is described in the next section.

4.2 The Controller

In order to overcome the problems listed in the previous section, we suggest
a Controller. First we define the notion of a Controller.

54

Section 4.2 AWARE DESIGN TooL Chapter 4

Controller: A component which enforces that constraints are maintained
dynamically in a schema.

The Controller should be integrated as the other components in the AWARE
DESIGN TooL architecture (see section 3.1). We suggest that the Controller
consists of three distinct sub-components (see figure 4.1). These are described
in the following.

GUI

Controller
Communicator

/N

Omniscient Propagator

Figure 4.1: Structure of the Controller

Propagator: A component that propagates changes throughout a schema.

The functionality of the Propagator can be achieved by letting the Propagator
use the metadata containers (see section 3.3) in order to maintain the schema
structure. When changes occur to the schema, the Propagator changes the
contents of the metadata containers where necessary, and thereby changing
the schema. This means that the GUI component must use the contents of
the metadata containers maintained by the Propagator to reflect the current
schema state.

Omniscient: A component that is used for determining whether a change
to a schema is allowed or not.

The Omniscient component holds information about which constraints are
imposed on a schema, whether it being explicit, implicit or inherent con-
straints, these constraints are described in [NLK99]. Also, the Omniscient
holds information about which implicit constraints can be deducted from the

%)

Chapter 4 AWARE DEsIGN TooL Section 4.2

definition of explicit constraints. This information is used to check whether a
change to a schema can be allowed or not. Because the Omniscient holds in-
formation about inherent constraints, this implies that the Omniscient, and
thereby the Controller, is dependent upon the used data model. Therefore,
a Controller must be implemented for each design phase supported in the
AWARE DESIGN ToOOL.

Communicator: A component that handles communication among the
sub-components in the Controller and the GUL

The purpose of the Communicator component is to send requests to the Om-
niscient and, if the request is granted, to inform the Propagator about which
changes must be made. If a request is not granted, then the Omniscient in-
forms the Communicator about this decision, and the Communicator returns
an error message to the GUI.

Logical schema presented by the GUI

Computer of Product
P b
crg&r:j':ri Ceé Product.p_number P p_number
Computer.p_number price
quantity

set constraint Minprice
for Computer.credit_price:
Product.price > 1000

Request: move the attribute price from
the table Product to the table of

Controller .
Communicator

Omniscient Propagator
Checks existing Does nothing yet
constraints to see
if the changeis
admissible.

Figure 4.2: The GUI request permission to make a change.

To clarify how the Controller handles changes to a schema structure, an
example from the Sales data warehouse logical schema is presented in figure
4.2 (see [KLNOO] for more information about the Sales case study). This
example describes how structural changes to the Product' dimension should

'Note that elements in the dimension has been left out since they are not of interest in
this example.

26

Section 4.2 AWARE DESIGN TooL Chapter 4

be handled dynamically by the Controller.

The changes we want to impose on the schema structure is complete denor-
malization of all dimensions. This means that the tables Product and Com-
puter should be collapsed into the of table. This change has effect on the
constraint Minprice, which references the attributes Computer.credit_price
and Product.price (see figure 4.2).

The most interesting step in this context is to move the attribute price from
the Product table into the of table. This results in a request being send to
the Communicator from the GUI (see figure 4.2). The Communicator pass
the request on to the Omniscient. The Omniscient checks if any constraint
definitions that would make the action impossible.

In this example, no such constraint is defined. Therefore, the Omniscient
concludes that the change is admissible and inform the Communicator about
this (see figure 4.3). The Communicator then prompts the Propagator to
make the necessary changes to the schema. The Propagator then traverses
the metadata containers and perform changes where ever they are necessary
in the schema. Finally, the Propagator orders the GUI to rebuild the schema
(see figure 4.3). Such action will be performed everytime the designer attemps
to make a change to the schema.

Result: The schema structure and constraints are changed

Computer of Product
P p_number
p_num Product.p_number P p_number
credit_price
Computer.p_number
quantity
Product.price
set constraint Minprice
for Computer.credit_price:

of .Product.price > 1000 A

Message: rebuild schema

Controller]
Communicator
Omniscient Propagator
Grantsthe Propagates changes
request throughout the schema

Figure 4.3: The request is granted.

57

Chapter 4 AWARE DEsIGN TooL Section 4.3

In the next section, we suggest to expand the AWARE DESIGN ToOOL, so it
is possible to administrate security at the conceptual design phase.

4.3 Data Security

Due to legislation regarding security for data registers and because companies
may not allow their data warehouse users to query upon all data in the data
warehouse, data security is needed for data warehouses. By data security,
we mean that it should be possible to hide data from certain user groups.
For example, sales managers should not be able to query about customers’
personal information (social security number, income etc.). We suggest that
security should be administrated at the conceptual design phase. This makes
it possible for a company manager to participate in the administration along
with the data warehouse designer, using concepts familiar to the manager.
In order to handle security administration in the AWARE DESIGN TOOL, we
suggest a Guardian.

Guardian: A component that ensures that certain data in a data
warehouse s accessable to selected user groups only.

The Guardian must be able to create the necessary protection mechanisms
for the data in the data warehouse. In addition, the Guardian must be able
to assign user groups to parts of the data warehouse schema and to create
user groups.

Because the AWARE DESIGN TOOL permits the designer to change the struc-
ture of logical schemas (see chapter 2), the Guardian should be able to deal
with such changes dynamically. That is, the restrictions on user access to the
data in the data warehouse must be consistent regardless of the schema struc-
ture. The Controller, as proposed in section 4.2, handles schema changes
dynamically. Thus the Guardian should be notified about changes in the
schema by the Controller in order to provide the necessary functionality that
ensures that the restrictions of the user access will be consistent, even when
changes are made to the schema structure of the data warehouse.

Figure 4.4 shows how the GUI and the Controller should communicate with
the Guardian.

Handling administration of user groups in the AWARE DESIGN TOOL can
be achieved by using an administrative window in the GUI. In this window,
it should be possible to administrate user groups. This should be done in

o8

Section 4.3 AwWARE DESIGN TooOL Chapter 4

/ GUI
\

Controller

Guardian

Figure 4.4: The GUI and the Controller communicating with the Guardian.

a similar manner as Oracle Security Manager, which permits the database
administrator to maintain profiles (see [Ora99al).

To clarify how the Guardian should handle security administration, an exam-
ple from the Sales data warehouse is presented (see [KLLN0O] for elaboration
on the Sales case study). In this example, store managers should only be
able to query upon sales regarding the store they manage. The first step in
this example is to create a Store Manager user group. The next step is to
restrict the Store Manager user group by assigning elements in the schema
relevant to this user group (see figure 4.5).

Product

Marking relevant

elements \

= Group member |

|
U

Administration language construct

Figure 4.5: Restricting data access for Store Managers.

99

Chapter 4 AWARE DEsIGN TooL Section 4.3

In order to express how user groups can be restricted to certain parts of data
in the data warehouse, we suggest a conceptual administration language.
The Group member could be a construct in such a conceptual administration
language (see figure 4.5). The Group member construct is used to ensure that
the group members (Store Managers) are restricted to queries that involves
the store they manage. A conceptual administration language should also
include constructs that makes it possible to express other restrictions. For
example, it would be desirable to include a construction that can be used to
restrict user groups to query upon parts of the data. For example, the Store
Manager group should be restricted to only query upon products, where
product number equals 12.000.

Recall that when the conceptual schema has been designed, the conceptual
schema is translated into a logical schema which may be modified. When
the logical schema is modified, inconsistency in the user group restrictions
can occur. Therefore, when modifications are made to the logical schema,
the Controller must notify the Guardian about the changes. The Guardian
should then make the necessary changes in order to ensure that the user
group access rights are consistent with the current schema structure.

Finally, when the logical schema is translated into SQL statements, the
Guardian outputs an additional set of SQL statements. These SQL state-
ments are used to enforce the security restrictions in the underlying DBMS.

60

Section 4.4 AWARE DESIGN TooL Chapter 4

4.4 Conceptual Query Language

In this section, we provide a description of ideas for developing a conceptual
query language. This conceptual query language should make it possible
to specify queries at a conceptual level, based on the starER model as pre-
sented by [TBC99]. We propose a high-level graphical query language that
allows end-users to specify queries on a starER schema in an intuitive way.
This query language should make it possible for the end-users of the data
warehouse to extract and view data from the data warehouse graphically.

The AWARE DESIGN TOOL does not support a conceptual query language,
as this is not the purpose of this tool i.e, the AWARE DESIGN TOOL is used
only for designing data warehouses. Therefore, we propose that an additional
tool is developed, which makes data mining possible i.e., a data mining tool.
In the following, we refer to this tool as the Aware Query Tool. When a data
warehouse has been designed using the AWARE DESIGN TooOL, and data has
been loaded into the data warehouse, the Aware Query Tool should be used
for querying upon the data in the data warehouse.

In order to specify queries using the Aware Query Tool, the starER schemas
must be provided for the Aware Query Tool. These starER schemas are
available in the repository of the AWARE DESIGN ToOL (see 3.6). Thus,
the repository in the AWARE DESIGN ToOL should be accessible from the
Aware Query Tool. Note that the Aware Query Tool should not be allowed
to modify the schemas stored in the repository, as modifications to a data
warehouse schema is a design issue.

A query can be specified on a starER schema by selecting elements in the
schema. A selected element is an element that will participate in the query,
and is marked by a thick border around the element on the schema. If the
selected element is an attribute, this attribute will participate in the query.
If the selected element is an entity set, relationship set, or fact set, all of the
attributes defined on the selected element will participate in the query. Note
that it should be possible to select several attributes defined on the same
element individually.

It should be possible to constrain the values of a selected attribute that
participates in a query. This is achieved by defining a query constraint on
the selected attribute.

Query constraint: A condition that limits the query result.

A query constraint is specified on a schema by a dashed box that is connected

61

Chapter 4 AWARE DEsIGN TooL Section 4.4

to the selected attribute.

In the following, we provide an example of how a graphical query can be
specified on a conceptual schema. This example is based on the Sales data
warehouse as described in [KLNO0O]. Note that in order to keep this example
as simple as possible, only the Time and Product dimensions are considered.
In the example, we want to extract all sales for a specific range of products
in a specific year. More specific, we want to extract all sales in 1999 for
products that have a product number between 10.000 and 13.000. Figure
4.6 shows how such a query could be specified on a starER schema. In this
figure, the following elements are selected:

e The attribute year on the Year entity set in the Time dimension.

e The attribute p_number on the Product entity set in the Product di-
mension.

Figure 4.6: A conceptual query.

In order to specify that only sales from year 1999 must be considered in the
query, a query constraint is defined for the year attribute on the Year entity

62

Section 4.4 AWARE DESIGN TooL Chapter 4

set (see figure 4.6). This query constraint specifies that the value of the year
attribute must be equal to 1999. That is, an expression, "= 1999” is written
within the query constraint. Thus, the query is constrained to only return
values where the year attribute equals the value 1999.

Similarly, a query constraint is defined on the p_number, which is used for
specifying that only products with a product number (p_number) in the range
of 10.000 to 13.000 are considered in the query. In this case the expression,
”=10.000 to 13.000”, is written within the query constraint (see figure 4.6).

By marking elements using a color, it is possible to specify what elements
the query should return. In figure 4.6, the following elements are marked by
a color, and thus defines the result of the query:

e The summarizable attribute sales on the Sales fact set.

e The regular attribute p_number on the Product entity set in the Product
dimension.

The result of the query in the example is shown in table 4.1. This table
consists of two columns containing the values of the marked attributes in
tabel 4.1 i.e., the p_number and sales attributes.

Product.p_number | Sales.sales
10.000 2.710
10.001 5.117
10.002 7.589
12.998 4.165
12.999 3.584

Table 4.1: Sales of Product.p.number = 10.000 to 13.000 at Year.year =
1999.

Another aspect of a graphical query language is the ability to specify that
extracted data in a query must be aggregated. For example, we might want
to sum the sales of all the product numbers for 1999 returned by the query
shown in figure 4.1. This can be achieved by specifying a Sum function? for
the sales attribute on the Sales fact set using a dashed box as shown in figure
4.7. The result of using the Sum function in the query is shown in table 4.2.

2Note that the graphical query language should also support other aggregation func-
tions.

63

Chapter 4 AWARE DEsIGN TooL Section 4.4

Figure 4.7: Specifying an aggregation query.

We suggest that a conceptual query specified using the graphical query lan-
guage is translated into a SQL query at the logical level in the Aware Query
Tool. This SQL query should then be used for extracting data in the data
warehouse. In order to achieve the translation into a SQL query, the Aware
Query Tool must contain a query translator. This query translator must be
able to identify the query paths that exists among selected elements in a
query. That is, the query translator must be able to join the elements that

exists in a query path, in order to make the translation of the query into
SQL possible.

Summed Sales.sales
14.253.789

Table 4.2: Summed sales of Product.p_.number = 10.000 to 13.000 at
Year.year = 1999.

The query translator must have access to data regarding the mapping be-
tween the conceptual schema to the logical schema. This is a requirement, as
the elements and structure in the conceptual schema could be very different
from the resulting logical schema. That is, first the conceptual schema has
been translated into a logical schema by the AWARE DESIGN TOOL. Sec-
ondly, the structure of the logical schema, and the names of the elements in
this schema may have been changed during the logical design phase. Thus,
by accessing data regarding the mapping between the conceptual schema
and the resulting logical schema, the translator should be able to map the
conceptual query into a logical query, i.e. a SQL query.

In this chapter, we have described problems regarding schema changes. The
AWARE DESIGN ToOL does not handle these problems in the current im-
plementation. In order to overcome these problems, we have suggested a
Controller. A Controller is useful if the AWARE DESIGN ToOOL should be
able to dynamically handle changes to a schema. Also, a Controller compo-

64

Section 4.4 AWARE DESIGN TooL Chapter 4

nent is necessary in order to implement the proposed Guardian that should be
able to handle the administration of security at the conceptual design phase.
Finally, we have suggested to implement a conceptual query language.

65

Conclusion &
Future Work

In this chapter we conclude on the work described in this report, and we
suggest future research issues.

5.1 Conclusion

In this report, we have described a data warehouse design methodology.
It is our conclusion, that a design methodology provides the designer with
several advantages when designing a data warehouse. In order to utilize these
advantages, we have implemented the AWARE DESIGN TOOL to support the
methodology. We conclude that it is possible to implement a design tool that
supports such a methodology, and that the advantages of the methodology
are retained in the AWARE DESIGN TOOL.

Regarding the architecture of the AWARE DESIGN ToOOL, we can conclude
that defining this architecture has been an advantage. The architecture has
made it easy to split the actual implementation of the AWARE DESIGN ToOOL
into smaller parts. Moreover, the architecture has made it easy to test the
implementation of components in the architecture individually. Also, the ar-
chitecture provided makes it easy to replace any component when necessary,
as well as adding new components.

We conclude that the metadata containers implemented in the AWARE DE-
SIGN TooL has proven very useful to us. They are useful because they make

67

Chapter b AWARE DEsIGN TooL Section 5.2

the communication between the other components in the AWARE DESIGN
TooL easy. Also, the metadata containers can be utilized when expanding
the functionality of the AWARE DESIGN TooL. This is an advantage be-
cause it is possible to let a component maintain the metadata containers,
and make the GUI reflect the contents of the containers.

Regarding the schema translators, we conclude that these are necessary in
order to translate a schema from one design phase to the next automatically.
Furthermore, we conclude that it is necessary to perform the translation
of the schema elements in a specific order to ensure that the translation is
performed correctly.

An advantage of using a database for storing schemas in the repository is
that it is possible for other tools to utilize the schemas, and the schemas are
easily ported to other platforms.

5.2 Future Work

Regarding future work we suggest that the Controller, as described in section
4.2, is implemented in the AWARE DESIGN TooL. The Controller should
be an important part of the AWARE DESIGN TooL, but because of the
limited time at our disposal, there was not time enough to implement this
component.

When the Controller is implemented, we suggest that the areas of a concep-
tual query language and conceptual security administration are explored. A
conceptual query language should be implemented in a separate data mining
tool, but utilize the functionality of the Controller and the Repository of the
AWARE DESIGN TOOL.

Another suggestion for future work is the ability of specifying how data in
the data warehouse should be pre-aggregated. Such functionality should be
implemented at the logical design phase in the AWARE DESIGN TOOL.

Another expansion of the AWARE DESIGN ToOOL functionality could be to
allow associating data from external data sources with elements in the log-
ical schema. This could be used to semi-automatically create a data fetch-
ing/cleansing component.

Finally, It would be desirable to extend the AWARE DESIGN TOOL into a
CASE tool. This would require the functionality of e.g., project management,
and version control of schemas.

68

The StarLanguage
Syntax

This appendix provides the syntax of the StarLanguage using the Backus
Naur Form (BNF) notation [Guy00]. Keywords are written in boldface, and
terminals that consists of only one or two characters are surrounded by quotes

().

schema ::=
schema identifier is definition { definition } | { definition }

definition ::=
fact | entity | relationship | ec | ac | sac

fact ::=
fact identifier properties ”.”

entity ::=
entity identifier entity_spec ”.”;

entity_spec ::=
isa and properties | properties

isa ::= is is_spec

69

is_spec ::=
a identifier_list | part of identifier_list | membership_list

identifier_list ::=
identifier { ”,” [and | identifier }

membership_list ::=
membership { ”,” [and | membership }

membership ::=
membership_type membership_spec

membership_type ::=
complete | non-complete | strict

membership_spec ::=
member of identifier

relationship ::=
relationship identifier relationship_spec ”.”;

relationship_spec ::=
connections [and properties]

connections ::=
connects connection ”,” [and | connection_list

connection_list ::=
connection { ”,” [and | connection }

connection ::=
identifier [cardinality_spec |

cardinality_spec ::=
with cardinality cardinality

cardinality ::=
one | many

properties 1=
has attributes | and has position | | has position [and has attributes |

attributes ::=
attributes attribute { ”,” [and | attribute }

attribute ::=
identifier attribute_spec [at position |

attribute_spec ::=
as type attribute_type

attribute_type ::=
regular | key | stock | flow | value-per-unit

position 1=
position point

point 1=
» (77 Value » N Value ’7)”
ec := ec identifier 7:” expr
ac ::= ac attr_id ”:” domain_expr_list ”.”
sac 1= sac attr.id 7:=" aggr_expr_dim_list
expr =
log_expr | comp_expr | arit_expr | aggr_expr | value_expr | ”(” expr ”)”
log_expr 1=
not expr | expr and expr | expr or expr
comp_expr ::=
expr comp_op expr
arit_expr 1=
expr arit_op expr
aggr_expr =

aggr_op 2 ()7 eXpl" 7’))7

value_expr ::=

value | identifier | attr_id

domain_expr_list ::=
domain_expr { ”;” domain_expr }

domain_expr ::=

.9

[expr ”:” | domain

domain ::=
range { ”,” range }

range ::=
value [to value | | comp_expr

aggr_expr_dim_list ::=
aggr_expr [per identifier_list |

identifier ::=
single_word_id | quoted._id

attr_id :=
identifier 7.” identifier

value 1=

digit { digit } [”.” digit { digit }]

single_word_id ::=
letter { letter | digit }

quoted_id ::=
79999 { any_character } 79999
comp_op ::=
77:’7 | 77<>’7 | 2 <’7 | 2 >’7 | 77<:’7 77:>’7
arit_op =
77+’7 | »_ " | 77*’7 | 77/7’
ager_op =

sum | avg | min | max | count

The SnowLan-
guage Syntax

This appendix provides the syntax of the SnowLanguage using the Backus
Naur Form (BNF) notation [Guy00]. Keywords are written in boldface, and
terminals that consists of only one or two characters are surrounded by quotes

(77)‘
stmt_list ::=

[stmt { ”;” stmt_list } |
stmt ::= set set_stmt

set_stmt ::=
fact_table_stmt | dim_table_stmt | constr_stmt

fact_table_stmt ::=
facttable table_spec

dim_table_stmt ::=
dimtable table_spec

constr_stmt ::=
constraint identifier for (identifier | attr_id) ”:” (aggr_expr | ranges)

73

table_spec ::=
identifier attr_list and key_list at ”(” number ”,” number ”)”

attr_list ::=
with attr { ”)” [and | attr }

key_list ::=
primary_key_list { ”,” [and | key_list } | foreign_key_list { ”,” [and] key_list }

primary_key_list ::=
primary key_identifier_list

foreign_key _list ::=
foreign key _reference_list references identifier

key_identifier_list ::=
key 7{” identifier_list ”}” | key identifier

identifier_list ::=
identifier { ”,” [and | identifier }

key_reference_list ::=
key 7{” reference_list ”}” | key reference

reference_list ::=

reference { ”,” [and | reference }
attr ;1=
identifier as attr_type [not null |
attr_type ::=
integer | real | numeric ”(” integer ”,” integer ”)” | float 7 (” integer ”)” |
varchar ”(” integer ”7)” | date | time
expr =
log_expr | comp_expr | arit_expr | aggr_expr | value_expr | ”(” expr ”)”
ranges 1=

range_cond_opt { ”,” range_cond_opt }

log_expr 1=

not expr | expr and expr | expr or expr

comp_expr ;1=
expr comp_op expr

arit_expr ::=
expr arit_op expr

aggr_expr =
aggrop ”(” expr ”)” [dim_identifier_list]

value_expr ::=
number | identifier | attr_id

range_cond_opt 1=
range [if expr |

range =
number |

”_ "

number | | comp_expr

dim_identifier_list ::=
per "{” identifier list ”}” | per identifier

identifier ::=
single_word_id | quoted_id

reference ::=
identifier ”->” identifier | identifier

attr_id 1=
identifier 7.” identifier

integer ::=
digit { digit }

number 1=

integer [”.”

integer |

single_word_id ::=
letter { letter | digit }

quoted_id ::=
%N { any_character } %N
comp_op 1=
77:77 | 77<>77 | b <77 | 7 >77 | 77<:77 77>:77

arit_op 1=
b 7 b b 9L » /»
e R

aggrop =
sum | avg | min | max | count

Translation Rules

The translation rules are used for translating a starER schema into an Ex-
tended Snowflake schema. The translation rules ensure that all components
in a starER schema are translated properly into components in an Extended
Snowflake schema. Moreover, constraints that are defined in the starER
schema are translated into constraints in the the Extended Snowflake schema.

The translation is performed in 11 steps. The first 8 steps are used for
translating all components in a starER schema, i.e., fact sets, entity set,
relationship sets etc. The last 3 steps are used for translating constraint
definitions in the starER schema. The translation rules must be followed step
by step in the order they are presented in order to obtain a valid Extended
Snowflake schema.

A primary key must be present in all the dimension tables in an Extended
Snowflake schema. This is necessary as all dimension tables in the Extended
Snowflake Schema must be referenced to by another dimension or fact table.
Thus, if no primary key is provided for a dimension table it is necessary for
the translation rules to provide a primary key for the dimension table.

Relationship sets are handled in two separate steps. First one-to-many rela-
tionship sets are handled. Secondly, many-to-many and high-order relation-
ship sets are handled. The two steps are required in order to translate fact
sets properly. Fact sets in a starER schema are translated into fact tables
for the Extended Snowflake schema. In order to translate a many-to-many
or high-order relationship set between a fact set and an entity set, a pri-
mary key must exist on the fact table in the Extended Snowflake schema
corresponding to the fact set in the starER schema. The primary key of a
fact table is composed entirely of all its foreign keys. Thus, these foreign

77

keys must first be included into the fact table before the many-to-many and
high-order relationship sets can be properly translated. This is achieved in
the translation step for the one-to-many relationship set. This translation
step includes foreign keys in fact tables.

Summarizable attributes are handled in a separate step, as all summariz-
able attributes on entity sets and relationship sets are translated into fact
tables [NLK99]. However, this is not the case for summarizable attributes
defined on fact sets. Summarizable attributes defined on fact sets in the
starER schema are included in the corresponding fact table in the Extended
Snowflake schema.

During the translation of a starER schema into an Extended Snowflake
schema, it can be necessary to rename an attribute that is about to be in-
cluded in a table in the Extended Snowflake schema. This is necessary only
if an attribute already exists in the table, which has the same name as the
attribute that is about to be included in the table.

In the following subsections, the translation steps are described.

Fact Sets

In this initial step a new fact table is created in the Extended Snowflake
schema for each fact set that exists in the starER schema. All regular and
summarizable attributes on the fact set in the starER schema are included
in the corresponding fact table in the Extended Snowflake schema.

Translation Rule:

For each fact set F' in the starER schema, create a new fact table T in the
Extended Snowflake schema.

e Include regular and summarizable attributes of F' as attributes of 1.

Entity Sets

In this step, entity sets from the starER schema are translated into dimension
tables for the Extended Snowflake schema, except for entity sets that are a
subpart in an aggregation set. Entity sets that are a subpart in an aggrega-
tion set are handled separately in the step used for translating aggregation
sets.

All regular attributes on an entity set in the starER schema must be included
in the corresponding dimension table in the Extended Snowflake schema.
Note that summarizable attributes are not included in the dimension tables,
as these are handled separately in the step used for translating summarizable
attributes.

If a primary key is defined on an entity set in the starER schema, this key is
used as the primary key in the corresponding dimension table in the Extended
Snowflake schema. If no primary key is defined on the entity set, then a
primary key must be provided for the corresponding dimension table in order
to ensure that the dimension table has a primary key.

Translation Rule:

For each entity set E in the starER schema that is not a subpart of an
aggregation set, create a new dimension table T in the Extended Snowflake
schema.

e Include all regular attributes of F as attributes of T%.

e [f a primary key K is specified on E, then K becomes the primary key
of Tg; else create a new primary key K and include this key in table
Tk.

Aggregation Sets

No dimension table should be created in the Extended Snowflake schema
for entity sets in the starER schema that are subparts of an aggregation.
Instead, all regular attributes from these entity sets (subparts) are included
in the dimension table in the Extended Snowflake schema that corresponds
to the aggregated entity set in the starER schema. At this point of the
translation, this dimension table has already been created in the step used
for translating entity sets.

Translation Rule:

For each aggregated entity set A in the starER schema, identify the corre-
sponding dimension table T4 in the Extended Snowflake schema, and identify
all entity sets F1, Es, ... , E, that are subparts of A in the starER schema.

e Include all regular attributes from each entity set E; into T'4.

One-to-many Relationship Sets

No dimension table is created in the Extended Snowflake schema in order to
represent a one-to-many relationship set from the starER schema. Instead
the table in the Extended Snowflake schema corresponding to an entity set
or fact set at the many-side of a relationship set in the starER schema is used
for representing the one-to-many relationship set. In this table the primary
key of the table at the one-side of the relationship set is included as a foreign
key. If the relationship set has regular attributes, these are included in the
table that is used for representing the relationship set.

Translation Rule:

For each one-to-many relationship set R in the schema, identify the table Ty,
in the Extended Snowflake schema that corresponds to the entity set or fact
set, at the many-side of the relationship set. Let the table in the Extended
Snowflake schema that corresponds to the entity set on the one-side in the
starER schema be 7. If the one-to-many relationship set has a generalized
entity set at the many-side in the starER schema, then identify the dimension
tables tg,, ts,, ... ,tg, that corresponds to the specialized entity sets of this
generalized entity set.

e Include the primary keys of T}, tg,,ts,, ... ,tg, as foreign keys in T,.

e If the relationship set R has regular attributes then include these in
T

Many-to-many and High-order Relationship Sets

In order to represent a many-to-many or high-order relationship set from
the starER schema, a new dimension table must be created in the Extended
Snowflake schema. The primary keys of all the related tables in the Snowflake
schema corresponding to the related entity sets and/or fact sets in the starER,
schema are included in this dimension table as foreign keys. If the relationship
set has regular attributes, these are included in the dimension table that
represents the relationship set.

Translation Rule:

For each many-to-many or high-order relationship set R in the starER schema
that relates the entity sets or fact sets Xy, X, ... , X, in the starER schema,
create a dimension table T in the Extended Snowflake schema. If the rela-
tionship set is related to one or more generalized entity sets in the starER
schema, then identify the dimension tables tg,,ts,, ... , S, that corresponds
to the specialized entity sets of the generalized entity sets.

e Include the primary keys K7, Ky, ... , K, of the entity sets or fact sets
X, Xo, ... , X, as foreign keys in the dimension table T%.
e Include the primary keys of tg,,tg,, ... ,1S, as foreign keys in T.

e The primary key of Tx is the combination of all the included foreign
keys.

o [f the relationship set R has regular attributes then include these in
Tk.

Specializations

When translating entity sets that are specializations of a generalized entity
set in the starER schema, the dimension table corresponding to the gener-
alized entity set and each dimension table corresponding to the specialized
entity sets in the Extended Snowflake schema must be identified. All the at-
tributes and foreign keys that are defined on the dimension table correspond-
ing to the generalized entity set, must be included in each of the dimension
tables that corresponds to the specialized entity sets.

In the step used for translating entity sets, a primary key has already been
provided for all dimension tables that have been created in the Extended
Snowflake schema. A specialized entity set in the starER schema inher-
its the primary key from its super classes (generalized entity sets). Thus,
the primary key of the dimension tables in the Extended Snowflake schema
corresponding to specialized entity sets in the starER schema must be re-
placed with a new primary key. This new primary key is composed of all the
primary keys from the dimension tables in the Extended Snowflake schema
corresponding the specialized entity set’s super classes in the starER schema.

Translation Rule:

For each specialized entity set S in the starER schema, identify the dimension
tables T, , Ta,, - - - , T, in the Extended Snowflake schema that corresponds
to the super classes of entity set S in the starER schema.

e Include all the regular attributes from 7¢,,T¢q,, ... ,1¢g, as new at-
tributes of S.

e Include all the foreign keys from T¢;,, Tq,, - .. , T, as new foreign keys
of S.

e Replace the primary key of S with a new primary key that is composed
of all the primary keys from T¢,,Tq,, ... ,1¢

n

Membership Sets

In this step, dimension tables in the Extended Snowflake schema that corre-
sponds to entity sets that take part in membership sets in the starER schema
are handled. This is achieved by identifying the dimension table correspond-
ing to the entity set of finer granularity, and then including the primary
key of this table into the dimension table corresponding to the entity set of
coarser granularity as a foreign key.

Translation Rule:

For each membership set M in the starER schema, identify the dimension
tables T, and Tf, that takes part in M, which corresponds to the member
entity set F; of coarser granularity and the member entity set E; of finer
granularity from the starER schema.

e Include the primary key Kp, of T, as a new foreign key in the dimen-
sion table TFg;.

Summarizable Attributes

A summarizable attribute on an entity set or relationship set in the starER
schema is translated into a fact table in the Extended Snowflake schema.
The primary key of the dimension table corresponding to the entity set or

relationship set on which the summarizable attribute is defined, must be
included as a foreign key in this fact table.

A summarizable attributes is aggregated over one or more hierarchies. This is
specified on the summarizable attribute by an aggregation expression. The
aggregation expression specifies an entity set from each of the hierarchies,
that the summarizable attribute is aggregated over. Each of the specified
entity sets from the hierarchies are used for defining the granularity of the
aggregation over a specific hierarchy. Thus, the primary key of each of the
dimension tables corresponding to an entity set from the specified hierarchies
must be included as foreign keys in the fact table, which have been created
for the summarizable attribute.

By default a summarizable attribute will use the granularities of the entity
set, or relationship set in the starER schema, which has the summarizable at-
tribute. However, if a Summarizable Attribute Constraint (SAC) is specified
for the summarizable attribute, which specifies other granularities, then the
summarizable attribute must use these granularities instead.

Translation Rule:

For each entity set or relationship set X in the starER schema that has a
summarizable attribute A, identify the corresponding dimension table T’x in
the Extended Snowflake schema.

Create a new aggregate fact table T4 for the summarizable attribute
A.

The primary key Ky of Tx is included in T4 as a foreign key.

Include the primary keys Ky, Ks, ... , K, as foreign keys in T4 from
the dimension tables T, T5, ... , T, corresponding to the member entity
sets in the starER schema, which specifies the granularities of A.

The primary key of T4 is composed of all foreign keys of T'4.

Entity Constraints (ECs)

An Entity Constraint (EC) definition in the StarLanguage is translated into
a set constraint statement for the Extended Snowflake schema. An EC defi-
nition is specified on an entity set, and its condition is expressed using regular

and /or summarizable attributes. The entity set and the attributes, which are
specified in the EC definition have been translated into tables and attributes
for the Extended Snowflake schema by the previous translation rules. Thus,
when an EC definition is translated into a set constraint statement, this
statement must specify the translated tables and attributes in the Extended
Snowflake schema, which corresponds to the entity set and attributes from
the starER schema that is specified in the EC definition.

Translation Rule:

An EC definition for a starER schema is defined using the following Star-
Language syntax:

9 .9

ec identifier 7" expr

The identifier is used for identifying the entity set in the starER schema
which the constraint definition is specified on. The ezpr is the expression
used for specifying the condition of the constraint definition.

An EC definition is translated into a set constraint statement using the fol-
lowing SnowLanguage syntax:

9,9

set constraint constraint_id for table_id ”:" expr”;

The constraint_id is used to identify the constraint definition in the Extended
Snowflake schema. The table_id is used to indentify the table in the Extended
Snowflake schema which this constraint definition is specified on. The expris
the expression used for specifying the condition of the constraint definition.

For each EC definition that is defined in the starER schema, create a set con-
straint statement for the Extended Snowflake schema and translate according
to the following:

e Create an unique constraint_id for identifying the constraint definition
in the Extended Snowflake schema.

e Identify the table in the Extended Snowflake schema that corresponds
to the translated entity set from the starER schema that is specified
by the identifier in the EC definition. Set the table_id of the constraint
definition to identify this table.

e Translate the expression of the EC definition from the starER schema
into a corresponding expression for the Extended Snowflake schema.

Attribute Constraints (ACs)

An Attribute Constraint (AC) definition for an attribute is translated into
a set constraint statement in the Extended Snowflake schema. An AC defi-
nition is specified for an attribute, and its condition is expressed using reg-
ular and/or summarizable attributes. The attributes which are specified in
the AC definition have been translated into attributes on tables for the Ex-
tended Snowflake schema by the previous translation rules. Thus, when an
AC definition is translated into a set constraint statement, this statement
must specify the translated tables and attributes in the Extended Snowflake
schema that corresponds to the entity sets, fact sets and atributes from the
starER schema, which are specified in the AC definition.

Translation Rule:

An AC definition for a starER schema is defined using the following Star-
Language syntax:

ac attr_id ”:" expr

The attr_id is used for identifying the attribute in the starER schema, which
the constraint definition is specified on. The ezpr is the expression used for
specifying the condition of the constraint definition.

An AC definition from a starER schema must be translated into a set con-
straint statement for the Extended Snowflake schema using the following
SnowlLanguage syntax:

IR

set constraint constraint_id for attr_id ”:” expr”;

The constraint_id is for identifying the constraint definition in the Extended
Snowflake schema. The attr_id is used for indentifying the attribute for which
this constraint definition is specified on. The expr is the expression used for
specifying the condition of the constraint definition.

For each AC definition that is defined in the starER schema, create a set con-
straint statement for the Extended Snowflake schema and translate according
to the following:

e Create a unique constraint_id for identifying the constraint definition
in the Extended Snowflake schema.

e Identify the attribute in the Extended Snowflake schema, which cor-
responds to the translated attribute from the starER schema that is
specified by the attr_id in the AC definition. Set the attr_id of the con-
straint definition for the Extended Snowflake schema to identify this
attribute and the table it is defined on.

e Translate the expression of the AC definition from the starER schema
into a corresponding expression for the Extended Snowflake schema.

Summariable Attribute Constraints (SACs)

A Summarizable Attribute Constraint (SAC) definition expressed in the Star-
Language for a summarizable attribute is translated into a set constraint
statement from the SnowlLanguage for the Extended Snowflake schema. A
SAC definition is specified for a summarizable attribute, and its condition
is expressed using regular attributes and/or other summarizable attributes.
The attributes which are specified in the SAC definition have been translated
into attributes in the Extended Snowflake schema by the previous translation
rules. Thus, when an SAC definition is translated into a set constraint state-
ment, this statement must specify the translated tables and attributes in the
Extended Snowflake schema, which corresponds to the entity sets, fact sets
and atributes from the starER schema that is specified in the SAC definition.

Translation Rule:
An SAC definition for a starER schema is defined using the following Star-

Language syntax:

sac sum_attr_id ”:=" aggr_expr

The sum_attr_id is used for identifying the summarizable attribute in the
starER schema, which the constraint definition is specified on. The aggr_ezpr

is the aggregation expression used for specifying how the summarizable at-
tribute must be aggregated.

An SAC definition from a starER schema must be translated into a set con-
straint statement for the Extended Snowflake schema using the following
SnowlLanguage syntax:

.99

set constraint constraint_id for attr_id ”:” aggr_expr”;

The constraint_id is for identifying the constraint definition in the Extended
Snowflake schema. The attr_id is used for indentifying the attribute in the
Extended Snowflake schema which this constraint definition is specified on.
The expris the expression used for specifying the condition of the constraint
definition.

For each SAC definition that is defined in the starER schema, create a set
constraint statement for the Extended Snowflake schema and translate ac-
cording to the following:

e Create a unique constraint_id for identifying the constraint definition
in the Extended Snowflake schema.

e [dentify the attribute in the Extended Snowflake schema, which corre-
sponds to the summarizable attribute from the starER schema that is
specified by the sum_attr_id in the SAC definition. Set the attr_id of
the constraint definition for the Extended Snowflake schema to identify
this attribute and the table it is defined on.

e Translate the expression of the SAC definition from the starER schema
into a corresponding expression for the Extended Snowflake schema.

Bibliography

[BCN92] Carlo Batini, Stefano Ceri, and Shamkant B. Navathe. Con-
ceptual Database Design. The Benjamin/Cummings Publishing
Company, inc., 1992.

[EN94] Ramez Elmasri and Shamnkant B. Navathe. Fundamentals
of Database Systems. The Benjamin/Cummings Publishing
Company, inc., second edition, 1994.

[Guy00] J. Guyot. What is bnf notation? http://cui.unige.ch/db-
research /Enseignement /analyseinfo/AboutBNF.html, ~ May
21st 2000.

[Kel99] Thomas J. Kelly. Dimensional data modeling. Available on-

line at:http://www.gatel.com/solutions/whitepapers/sybase/
syb_dim_data_mod.html, 27th october 1999.

[KLNOO] Peter S. Kristiansen, Flemming N. Larsen, and Carsten
Nielsen. The aware design tool, a user guide. Master’s the-
sis, Aalborg University, 2000.

[Mat96] Rob Mattison. Data Warehousing. McGraw-Hill, 1996.

[MMMNS97] Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen,
and Jan Stage. Object Orienteret Analyse og Design. Forlaget
Marko Aps, 1997.

[INLK99] Carsten Nielsen, Flemming N. Larsen, and Peter S. Kris-
tiansen. Aware design tool, a data warehouse design tool. Dath
report, CS department Aalborg University, 1999.

[Ora99a] Oracle. Oracle warehouse builder. Available on-line at
http://www.oracle.com/datawarehouse/products/builder /index.html,
12th November 1999.

89

[Ora99b]

[SKS97]

[TBC99]

Oracle Corporation. Oracle Lite SQL Reference,
release 4.0 edition, 1999. Available on-line at
http://technet.oracle.com/docs/products/8i_lite/doc_index.htm.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan.
Database System Concepts. McGraw-Hill, third edition, 1997.

Nectaria Tryfona, Frank Busborg, and Jens G. Borch Chris-
tiansen. starer: A conceptual model for data warehouse design.
Proceedings of DOLAP’99, 1999.

