
Aalborg UniversityDepartment of Computer S
ien
e dFredrik Bajersvej 7E DK-9220 Aalborg � Phone: +45 96 35 80 80Title: Building a Temporal Cartridge for Ora
le8iPeriod: period('01-02-2000', '12-06-2000');
Proje
t members:Bo GundersenKim Thrys�eSupervisor:Kristian TorpCopies: 7Pages: 69
Completed: June 12th 2000

Abstra
t:A large number of appli
ations manage timevarying data most of them in an ad-ho
 manner,with all temporal logi
 stored in the appli
ationlayer. This is be
ause none of the major OR-DBMS vendors a
tively support management oftemporal data as proposed by resear
hers.This proje
t aims to migrate parts of thelarge amount of resear
h done on temporaldatabases into existing ORDBMS te
hnology.The prin
ipal goals of the proje
t is to examinetwo matters: One, if the task of managingtemporal data in
urrent ORDBMSs
an beeased by extending it with
ustom ADTs andpro
edures. Two, to examine if su
h an exten-sion
an support eÆ
ient exe
ution of knowntemporal queries. A pra
ti
al approa
h is takento these matters, and as a part of the answeran Ora
le
artridge is designed and implemented.The report is stru
tured in three parts. The�rst
on
erns the redu
tion of
ode
omplexity.The se
ond des
ribe implementation spe
i�
s.Finally, the third part
ontains performan
emeasurements and evaluations.The result shows that although it is possibleto obtain a substantial redu
tion in
ode
om-plexity, the maturity of database extensibilityfeatures prevent eÆ
ient exe
ution of temporalqueries, thus limiting the usefulness of a tempo-ral
artridge.
Copyright

 2000, Department of Computer S
ien
e, AAU.

ii

Aalborg UniversitetInsitut for Datalogi dFredrik Bajersvej 7E DK-9220 Aalborg � Tlf: +45 96 35 80 80Titel: Building a Temporal Cartridge for Ora
le8iPeriode: period('01-02-2000', '12-06-2000');
Projektdeltagere:Bo GundersenKim Thrys�eProjektvejleder:Kristian TorpOplag: 7Antal sider: 69
Dato: 12. juni 2000

Synopsis:Mange applikationer h�andterer data der variererover tid, de
este p�a en ad-ho
 m�ade, hvor dentemporale logik ligger i applikations laget. Detteer ikke overaskene, da ingen af de store OR-DBMS leverand�rer aktivt st�tter h�andteringenaf temporal data.M�alet med dette projekt er, at g�re dele af denstore m�ngde temporal forskning der er lavettilg�ngelig p�a eksisterende ORDBMS teknologi.I projektet unders�ger vi to ting, for det f�rsteom det er muligt at lette arbejdet med temporaldata i de nuv�rende ORDBMSer ved hj�lp afADTer og bruger de�nerede funktioner. Fordet andet, om s�adanne udvidelser underst�ttere�ektiv eksekvering af temporale forsp�rgsler. Iprojektet er der taget en praktisk tilgangsvinkeltil disse sp�rgsm�al, og et Ora
le
artridge erdesignet og implementeret.Rapporten er indelt i tre dele, den f�rste omhan-dler reduktion i kode kompleksiteten, den andenbeskriver implementations detaljer, den sidsteindeholder hastighedsm�alinger og evaluering.Resultaterne viser, at selvom det er muligt atopn�a en stor reduktion i antal linier kode, s�aforhindrer det lave modenhendsniveau af OR-DBMS udvidelses teknologien e�ektiv udf�relseaf temporale forsp�rgsler, og dermed mindskesbrugbarheden af et temporalt
artridge.
Copyright

 2000, Institut for Datalogi, AAU.

iv

Prefa
eThis report is the out
ome of a master thesis proje
t
arried out at the Department of ComputerS
ien
e at Aalborg University, Aalborg, Denmark.The themati
 frame for the thesis proje
t is database systems. Within this frame, it is
hosen totake a pra
ti
al approa
h to the integration of support for time-varying data in existing databasemanagement systems.The report is organized as follows. Chapter 1
ontains an introdu
tion to the initial problem of theproje
t along with a de�nition of goals and requirements for the proje
t. Chapter 1 also relatesthe work of developing a temporal
artridge to other topi
s from the temporal resear
h
ommunity.Chapter 2
ontains a dis
ussion of how to redu
e the expressional
omplexity of temporal queries. The
hapter presents two example databases and identi�es a number of interesting temporal query types,ea
h of whi
h are expressed for both example databases. The di�eren
e in query
ode
omplexityin the two databases is �nally shown. Chapter 3 dis
usses
on
rete implementation
onsiderationsin relation to the extensibility features of the Ora
le obje
t-relational database. Chapter 4 presentsthe results of a performan
e test
arried out for a subset of the features designed for the temporal
artridge. The test in
ludes methods for indexing periods and the exe
ution of the identi�ed temporalquery types. Finally, Chapter 5
on
ludes on the feasibility of designing a temporal
artridge. Thisevaluation is based on the goals and requirements de�ned in Chapter 1.Aalborg, June 12th, 2000
Bo Gundersen Kim Thrys�e

i

ii

Contents
1 Introdu
tion 11.1 Goals and Requirements . 21.2 Related work . 22 Expressing Temporal Queries 52.1 Temporal Query Types . 52.2 S
hema for TerraTele . 62.3 Temporal Queries . 92.3.1 Expressing Join . 92.3.2 Expressing Set Operations . 112.3.3 Expressing Coales
ing . 142.3.4 Expressing Time-sli
e . 162.3.5 Expressing Aggregation . 172.4 Evaluation of Code Complexity . 183 Cartridge Design 233.1 User-De�ned Obje
t Types . 233.1.1 Extensible Type System . 233.1.2 Limitations of the DBMS Extensible Type System 243.1.3 The New Obje
t Types . 243.2 Indexes . 263.2.1 Extensible Indexing . 263.2.2 Index S
ans . 263.2.3 MAP21 . 273.2.4 Hilbert Index . 313.3 Optimization . 333.3.1 Extensible Optimizer . 333.3.2 Use of Extensible Indexing . 354 Performan
e Test 374.1 Test Setup . 374.2 Index Tests . 374.2.1 Sear
h Depth of Hilbert Index . 384.2.2 Index Split of Hilbert and Map21-2 Indexes . 394.2.3 Length of Periods . 394.2.4 Now Relative Periods . 404.2.5 Query Area . 404.2.6 Amount of Tuples . 424.3 Query Tests . 424.3.1 Join . 434.3.2 Set-Di�eren
e . 434.3.3 Coales
ing . 434.3.4 Aggregation . 45iii

4.3.5 Time-Sli
e . 454.4 Evaluation of Performan
e . 465 Con
lusion 49A Semanti
s 51A.1 General Semanti
s . 51A.2 Data Types . 52A.2.1 Instant . 52A.2.2 Interval . 52A.2.3 Relative Instant . 53A.2.4 Period . 53A.2.5 Instant Container . 53A.2.6 Interval Container . 54A.2.7 Period Container . 54A.3 Basi
 Operations on Temporal Data Types . 54A.4 Operations of Temporal Types . 55A.4.1 Instant . 55A.4.2 Interval . 56A.4.3 Relative Instant . 56A.4.4 Period . 56A.4.5 Instant Container . 57A.4.6 Interval Container . 60A.4.7 Period Container . 63

iv

Chapter 1Introdu
tionA large number of appli
ations manage time-varying data. Often these appli
ations do not take advan-tage of the large amount of resear
h done in the area of temporal databases [RP92, WJW98℄. Appli
a-tions su
h as portfolio-management, �nan
ial appli
ations, personnel administration and s
heduling,e.g., travel booking, are prime examples of appli
ations managing time-varying data [Sno00℄.By de�nition databases store fa
ts about a modeled world. Resear
h suggests that two main timedimensions
an be asso
iated with these fa
ts [Sno00, Jen99℄: valid time and transa
tion time. Thevalid time asso
iated with fa
ts store information about when the fa
t is true in the modeled world.Valid time may span the past, present, and future and by de�nition all fa
ts have a valid time, whereasit is not ne
essary that this valid time is re
orded in the database. The database may have severalvalid times re
orded for ea
h fa
t. Transa
tion time re
ords when the fa
t is
urrent in the database.Transa
tion time
annot span into the future and may be interpreted as a subset of the valid timedimension. A database that re
ords both valid time and transa
tion time is
alled bi-temporal [Je98℄.A user-de�ned time dimension has also been suggested whi
h has no known semanti
s to the database.Valid time is the most general time dimension in temporal databases and is the fo
us in this paper.This fo
us is based on the fa
t that ideas from valid-time support
an be used to handle transa
tiontime, user-de�ned time, and bi-temporal timestamped data.In addition to �xed valid-time periods, it is also possible to spe
ify growing periods. These are
allednow-relative periods, be
ause their end time is the spe
ial temporal value now. now is not bound to aspe
i�
 time value until it is a

essed, where it evaluates to the time at that moment. A �xed periodis for example \05-05-2000 - 05-06-2000" and a now relative one is \05-05-2000 - now." These periodswill be equal when evaluated on June 5th, 2000.Without temporal support from the DBMS, developers of temporal appli
ations must express temporalqueries in standard non-temporal query languages. This results in two problems, namely that of
odewhi
h is (1) hard to understand by developers [Sno00℄, and (2)
omplex to exe
ute by the DBMS[BSS97, TGJ99, MLI99℄. As an example, a
onventional join query
an be written in three to fourlines of SQL92, whereas a temporal join query may require as mu
h as ten times as many lines ofSQL92 [Sno00℄.Although it must be expe
ted that the work of the temporal database resear
h
ommunity is gainingthe interest of
ommer
ial database management system (DBMS) and database appli
ation vendors,the resear
h results has not yet been integrated into any
ommer
ial produ
ts. If the resear
h intemporal databases is to gain general publi
 and
ommer
ial a

eptan
e, it has to be available for usewith the major obje
t-relational DBMSs (ORDBMS). The ongoing work to in
lude SQL/Temporal[Mel96℄ into the
oming SQL:1999 standard is an e�ort to make it so [ME00℄.In the light of the problem of transferring temporal support to DBMSs, we de�ne a number of re-quirements and goals for the proje
t. These requirements are the subje
t of the following se
tion.1

1.1 Goals and RequirementsThe overall goals with and s
ope of the present work is as follows.GOAL1: Examine the possibilities of easing the task of managing now-relative valid-time data in
ommer
ial ORDBMSsGOAL2: Provide a framework in the form of an extensibility module for eÆ
ient exe
ution of tem-poral statements.The fa
t that most temporal resear
h is related to relational data models and the widespread useof ORDBMSs in the industry is the reason that we fo
us on te
hnologies and
on
epts that
an bereadily implemented on these platforms. Te
hnologies in
lude extensibility te
hnologies su
h as the
artridge
on
ept used by Ora
le [RRM99℄, and the DataBlade
on
ept used by Informix [DLM97℄.Having de�ned the goals we now list �ve requirements for the temporal framework.REQ1: Existing
ommer
ially available te
hnology. The framework should use proven te
hnologies,a

epted by the industry, appli
ation developers, and major ORDBMS vendors.REQ2: Simple
ode. The framework must make it easy to express temporal queries, in the fa
t thatthe number of lines of sour
e
ode ne
essary and the
omplexity of it is redu
ed,
ompared toSQL92.REQ3: Fast exe
ution. Temporal queries that are expressed using the
onstru
ts of this work shouldexe
ute at least as fast as temporal SQL92 based queries.REQ4: Stru
tural platform independen
e. The major
omponents from whi
h the frame-work isbuild, should be portable to major ORDBMSs.REQ5: Horizontal support. The fun
tionality of the system developed should
over a wide spe
trumof temporal
on
epts and be generally useful.REQ1 ensures that the framework
an be used by developers with out mu
h
hange. REQ2 ensuresthat the
ode written using augmented SQL1 is less
omplex that the
ode written in SQL92. REQ3ensures that the performan
e of the augmented SQL should be at least as fast as the SQL92
ode.REQ4 ensures that although the implementation is done in the Ora
le ORDBMS, the design is portableto other ORDBMSs. REQ5 ensures that the framework developed
an be used to express a broadrange of temporal queries.Be
ause of REQ4, REQ5, and REQ1, Ora
le's
artridge te
hnology is
hosen as the basis for imple-menting the framework.1.2 Related workWhen adding temporal support to any system, four di�erent approa
hes
an be taken [B�oh95℄. Ea
hof these approa
hes has its advantages and disadvantages. The approa
hes are as follows.1. Appli
ation. In the appli
ation approa
h, the appli
ation itself has the responsibility of handlingthe temporal semanti
s. This is done on top of a
onventional DBMS [Sno00℄.1Augmented SQL is ORDBMS vendor spe
i�
 SQL implementations
ontaining obje
t relational
onstru
ts refer-en
ing the fun
tionality of the temporal
artridge developed in this proje
t.2

2. Layer. In the layered approa
h, systems implement a layer between the appli
ation and theDBMS. The layer translates from a temporal query language su
h as TSQL2 [Sno95℄ to standardSQL. This approa
h is des
ribed in [TJS98℄.3. ORDBMS. It is also possible to embed some temporal extensions in an ORDBMS, using ex-tensibility interfa
es. Not mu
h resear
h has been done in this area, but a
on
rete exampleof a proje
t that uses the embedding approa
h is TIP [YWY99℄, a temporal obje
t-model forInformix. This is also the approa
h taken in this proje
t.4. Core. An approa
h is to implement the handling of temporal semanti
s in the
ore of the DBMS.In this approa
h appli
ations use a temporal query language to query the database dire
tly. Thisis the approa
h taken in some versions of the Postgres DBMS [RS87℄.Various books [Sno95, Sno00, Jen99℄ and arti
les [BBS98, DSJ93, DS91℄
over the semanti
s of tem-poral data. Query languages have been suggested [BSS97, YC91, Sno95, BJ96℄ in
luding initiativesto add temporal support to the SQL:1999 standard [Mel96, ME00℄.Several stru
tures for indexing temporal data has been suggested, in
luding the use of B+-trees [ND98℄,GR-trees [BSSJ98℄, MVB trees [dBS96℄, and R-tree based stru
tures [BJSS98, SN98℄.Temporal algorithms in
lude
oales
ing [BSS97℄, di�eren
e [TGJ99℄, aggregation [KS95, MLI99℄, time-sli
e [TJS98℄, and join [PJ98℄.Temporal
on
epts have been implemented in various prototype database systems. Tiger [BBM+99℄is an implementation based on the temporal query language ATSQL [BJ96℄. TimeDB [BJSS95℄ is asimilar approa
h, also based on the temporal query language ATSQL. TIP [YWY99℄ uses a di�erentmethod, whi
h is very like the one taken in the work of this paper, namely to add temporal data typesto an existing ORDBMS using obje
t-relational extensibility features. In su
h an approa
h queriesare expressed using user-spe
i�ed operators. This is the subje
t of the next
hapter.

3

4

Chapter 2Expressing Temporal QueriesIn this se
tion we present a framework that makes temporal queries easier to express. The se
tion isaimed at REQ1 and REQ4, and is stru
tured as follows. First basi
 temporal query types are identi�ed,then two database designs in a running example from a �
titious tele
ommuni
ation
ompany
alledTerraTele is introdu
ed. The TerraTele example serves as an illustration in the se
tions to
ome. The�rst database (whi
h we will refer to as
onventional) is designed with temporal support as des
ribedin the literature [Sno00℄ while the other (
alled augmented) utilizes new temporal data types providedby the temporal
artridge designed in the proje
t.For ea
h of the temporal query types of interest, we des
ribe the query and point out what for andwhere the query may be used. Following this simple des
ription more thorough examples of thetemporal query, based on the
onventional and augmented TerraTele database, is dis
ussed.At the end of the se
tion we evaluate the improvements possible with the augmented SQL. Theevaluation is fo
used on the redu
tion in
omplexity of the queries, and is based on redu
tion in linesof
ode.The temporal type system later des
ribed (Chapter 3) supports now relative data. This is not the
asewith the SQL92 queries in the following se
tions, whi
h are expressed to work on non-now-relativedata only. The new, augmented queries in this
hapter
an thus support now-relative data, as thisfa
t does not
hange the way those queries are expressed.2.1 Temporal Query TypesTemporal queries
an be divided into three kinds: Current/time-sli
e queries, sequen
ed queries, andnon-sequen
ed queries [BSS97℄. Sequen
ed queries are the most
omplex of the three to express [Sno00℄and are the subje
t of this investigation. A sequen
ed query
an be viewed as a
onventional queryexe
uted sequentially at ea
h of the states of a temporal relation. Non-sequen
ed queries make no useof the fa
t that timestamps asso
iated with data have spe
ial semanti
s. This argues why we are notinterested in exploring non-sequen
ed queries.Ea
h of the relational operators sele
tion, proje
tion, join, di�eren
e, union, interse
tion, and aggre-gation [SKS97℄ has a temporal
ounterpart. Furthermore two spe
ial temporal relational operatorsexists, namely the
oales
e and the time-sli
e operators [Je98℄.Sequen
ed sele
tion and proje
tion are not
onsidered as they are simple to express in the fa
t thatthey are similar to the snapshot
ounterparts, ex
ept that they also referen
e the two extra attributes.This leaves us with the
oales
ing and time-sli
e operators and the following sequen
ed operators to
onsider in the present work : join, di�eren
e, union, interse
tion, and aggregation.5

In order to express examples of these queries we present two example databases.2.2 S
hema for TerraTeleTerraTele is a �
titious tele
ommuni
ation
ompany for whi
h the two databases are designed. Thedatabases
over the same modeled world, namely how persons subs
ribe to servi
es and pla
e telephone
alls. The one database is designed only with data types available in todays RDBMSs. This designis illustrated in the ER diagram in Figure 2.1. The other database is designed using the augmentedtemporal data types (for an introdu
tion to the new types see Se
tion 3.1.1). The se
ond design isshown in the ER diagram in Figure 2.2.
vtevtsvtevts vtevts vtevtsserv_idamounttype

desc.

price

vte

vts	

vtevts nameaddress SSN

prices subscribers

persons

services

pays_for

calls subs_to

phone

1

1

1
N N

N

1

Figure 2.1: ER Diagram Showing the Conventional TerraTele Database Design
vtvt

vt	

vtsserv_idamounttype desc.

price

vt	

vt nameaddress SSN

vt vt

prices subscribers

persons

services

pays_for

calls subs_to

phone

1

1

1
N N

N

1

Figure 2.2: ER Diagram Showing the TerraTele Database Design Using Augmented Data TypesThe temporal ER model shown in Figure 2.2 is not an example of temporal ER modeling, but is anattempt to stay as
lose to the
onventional ER model as possible, while still optimizing temporalqueries. This is done to ensure
ompatibility with REQ1. For a des
ription of temporal
on
eptualmodeling, see [GJ97℄.Ea
h entity in both s
hemas is de�ned with a primary key, but be
ause the databases
ontain temporaldata, the issue of primary keys are non-trivial. The semanti
s of the primary keys used are that oftemporal primary keys, and is des
ribed in [Sno00℄. The fun
tionality of temporal primary keys arenot implemented.The
onventional TerraTele Database is explained next, followed by a dis
ussion of how the enhan
eddatabase di�ers. 6

Conventional Database DesignThe ER model for the
onventional TerraTele database
ontains the following four entitiesEntity Attribute Des
riptionsubs
ribers phone Subs
riber telephone number.pri
es type Des
ription of the pri
e type.amount The amount of money the pri
e
ategory
osts.vts The date des
ribing when a pri
e
ategory
ame into e�e
t.vte The date des
ribing when the pri
e
ategoryno longer is in e�e
t.servi
es serv id Unique servi
e id.des
ription A textual des
ription of the servi
e.pri
e The pri
e of the servi
e.vts Point in time from whi
h the servi
e was avail-able.vte Point in time from whi
h the servi
e was nolonger available.persons SSN The persons so
ial se
urity number.name The persons name.address The persons address.vts The time from whi
h this person was a
us-tomer and registered in the database.vte The time from whi
h this person was no longera
ustomer.The entities are related by three relationships as follows.
alls The terteriary
alls relationship relates two subs
ribers and a pri
e with ea
h other to forma telephone
all. Ea
h subs
riber
an be asso
iated with any number of other subs
ribers andpri
es, but never with more than one at any point in time.pays for Pays for relates a subs
ription to spe
i�
 persons. At ea
h point in time, ea
h person mayappear as several subs
ribers whereas ea
h subs
riber is asso
iated with exa
tly one person.subs to Subs to relates subs
ribers to the servi
es they subs
ribe to. A subs
riber may subs
ribe toany number of servi
es and a servi
e
an be subs
ribed by any number of subs
ribers.The ER model gives rise to the seven tables listed in the table below.7

Table Attribute Des
riptionsubs
ribers phone The phone number asso
iated with this subs
ription.pays for phone Telephone number.SSN Subs
ribers asso
iation with a personvts The time from when a person is asso
iated with thesubs
riber.vte The time from when a person is no longer asso
iatedwith the subs
riber.pri
es type The type of pri
e,
an for example be \international
all."amount The pri
e of this type.vts The valid time start of this type of pri
e, i.e., from whenthis pri
e was e�e
tive.vte The valid time end, i.e. from when this pri
e was nolonger valid.
alls
aller The
alling subs
riber.
allee The subs
riber that re
eives the
all.vts The start time of the
all.vte The end time of the
all.persons SSN The so
ial se
urity number of the person.name The name of a person.address The address of the person.vts The time from when this person was valid.vte The time from when this person was no longer valid.subs to phone Foreign key to subs
riber. The subs
riber involved inthe subs
ription.serv id Foreign key to servi
es. The servi
e involved in thesubs
ription.vts The time from when this subs
riber subs
ribed to thisservi
e.vte The from when this subs
riber no longer subs
ribed tothis servi
e.servi
es serv id The servi
e identi�er.des
 Textual des
ription of the servi
e.pri
e The pri
e of this servi
e measured in amount permonth.vts From when this servi
e was valid.vte To when this servi
e was valid.Enhan
ed Database DesignThe enhan
ed database di�ers from the des
ription above, in the fa
t that the timestamps have beenrepla
ed with the data types spe
i�ed in the present work. The vts and vte timestamps have been
hanged in this way to Period attributes in the following entities and relationships: pri
es, persons,servi
es,
alls, subs to, and is a. The start and end points
an be a

essed as vt.s and vt.e.Modi�
ation of the DatabaseWhen working with temporal data, insert, delete and update operations are performed di�erentlythan when working with non-temporal data.Inserts into a valid-time table
an be done in two ways, either the tuple has a spe
i�ed valid-time orit is assigned a valid time. When inserting tuples with a spe
i�ed valid-time, it is possible to insert8

tuples that was valid in the past, or is valid in the future. The standard valid-time assigned to newlyinserted tuples are however from the
urrent time till now.When deleting tuples from a valid-time table, the tuple is not physi
al deleted. Instead the tuples\valid-time end" is
hanged from now, to the
urrent time.A temporal update is, mu
h like a non-temporal update,
on
eptually a temporal deletion followedby a temporal insertion.The semanti
s des
ribed above is a simpli�ed version of the temporal semanti
s des
ribed in [BJ97℄,whi
h
over the modi�
ation of temporal data in more detail.Inserting, updating, and deleting in the augmented database is performed in mu
h the same way asin the
onventional temporal database. Instead of updating the individual timestamps, the periodobje
t is
hanged a

ordingly.2.3 Temporal QueriesThis se
tion
ontains a des
ription of the join, set,
oales
ing, time-sli
e, and aggregation operators.2.3.1 Expressing JoinA join query
ombines information from two or more tables. In relational database design, informationis split between tables by the normal forms [SKS97℄. When querying the database for information,this distribution of data often results in the fa
t that the data wanted is stored in several tables.Therefore the query has to
ombine this information.Temporal joins have added
omplexity
ompared to non-temporal joins. In a non-temporal join, tuplesfrom ea
h table is
ompared only on the join predi
ate. In valid time temporal joins, they are also
ompared on valid time and only tuples with overlapping valid time are added to the result. The validtime of the resulting tuples, is
omputed as the interse
tion of the two sour
e tuples. For a formaldes
ription of the semanti
s of temporal joins see [BJ97℄.SQL92An example of a valid time temporal join query is written in Code Listing 1. The SQL92
ode inListing 1 returns the pri
e of ea
h
all that subs
riber X has made, in the Period Y. It
ombinesinformation from three tables, namely subs
ribers,
alls and pri
es.Expressing a valid time temporal join in standard SQL92, is written as four separate SELECT state-ments unioned together. The query is split into four parts based on how the valid time of the twosour
e tuples
an relate to ea
h other, and therefore what should be the valid time of the resultingtuple. Two su
h periods
an relate to ea
h other in six di�erent ways, two of whi
h are not interestingfor join be
ause they do not overlap. Figure 2.3 shows the remaining four ways a
all
an overlap apri
e. Lines 1 to 10 of Code Listing 1 mat
hes
ase 1, lines 11 to 21 mat
hes
ase 3, lines 22 to 31mat
hes
ase 2, and �nally lines 33 to 41 mat
hes
ase 4.
prices

calls

1
 2
 3

4
Figure 2.3: How the Valid Time of a Call
an Overlap the Valid Time of a Pri
e.9

Code Listing 1 - Temporal Join Written in SQL921 /� Cal l l e f t over laps Pri
es �/2 SELECT s . phone ,
 .
 a l l e e , (
 .VTE�p .VTS)� p . amount3 FROM Pr i
e s p , Cal l s
 , Subs
 r ibe r s s4 WHERE
 .VTS < p .VTS AND5
 .VTE > p .VTS AND6
 .VTE < p .VTE AND7
 .VTS >= Y.VTS AND8
 .VTS <= Y.VTE AND9 s . phone = X AND10
 .
 a l l e r = s . phone11 UNION ALL12 /� Cal l r i g h t over laps Pri
es �/13 SELECT s . phone ,
 .
 a l l e e , (p .VTE�
 . VTS)� p . amount14 FROM Pr i
e s p , Cal l s
 , Subs
 r ibe r s s15 WHERE
 .VTS > p .VTS AND16
 .VTS < p .VTE AND17
 .VTE > p .VTE AND18
 .VTS >= Y.VTS AND19
 .VTS <= Y.VTE AND20 s . phone = X AND21
 .
 a l l e r = s . phone22 UNION ALL23 /� Cal l i s wi th in Pri
es �/24 SELECT s . phone ,
 .
 a l l e e , (
 .VTE�
 . VTS)� p . amount25 FROM Pr i
e s p , Cal l s
 , Subs
 r ibe r s s26 WHERE
 .VTS > p .VTS AND27
 .VTE < p .VTE AND28
 .VTS >= Y.VTS AND29
 .VTS <= Y.VTE AND30 s . phone = X AND31
 .
 a l l e r = s . phone32 UNION ALL33 /� Cal l
ontains Pri
es �/34 SELECT s . phone ,
 .
 a l l e e , (p .VTE�p .VTS)� p . amount35 FROM Pr i
e s p , Cal l s
 , Subs
 r ibe r s s36 WHERE
 .VTS < p .VTS AND37
 .VTE > p .VTE AND38
 .VTS >= Y.VTS AND39
 .VTS <= Y.VTE AND40 s . phone = X AND41
 .
 a l l e r = s . phone

10

As we
an see from Code Listing 1, ea
h of the four parts returns a di�erent valid time. This is sobe
ause only the interse
tion of the two tuples serve as the valid time of the result tuple.Augmented SQLAs des
ribed the reason for splitting the query into four parts, was to return the interse
tion of thevalid time of the two sour
e tuples. This
an be done with the Interse
t method on the Period obje
t.The Interse
t methods returns a new Period obje
t, whi
h is the interse
tion between the two inputperiods.Another part of the query is to make sure that we only
onsider overlapping tuples, this
an be doneby using the Overlaps method as a predi
ate for the SELECT statement.By using the Interse
t and Overlaps methods, the join query from Code Listing 1
an be expressedas shown in Code Listing 2Code Listing 2 - Temporal join written in augmented SQL1 SELECT s . phone ,
 .
 a l l e e ,
 . vt . I n t e r s e
 t (p . vt)� p . amount2 FROM Subs
r ibe r s s , Cal l s
 , Pr i
 e s p3 WHERE
 . vt . Overlaps (p . vt) = 1 AND4
 . vt . Overlaps (Y) AND5 s . phone = X AND6
 .
 a l l e r = s . phone
2.3.2 Expressing Set OperationsApplying set operations (i.e. union, interse
tion, and di�eren
e) on temporal data is di�erent fromthe
ase of non-temporal data. The reason for this is that when expressing the temporal query itmust be taken into a

ount, that the valid time of a period must be inspe
ted and most often will be
hanged for the result. Temporal union
an be expressed as a query that either eliminates or retainstemporal dupli
ates [BSS97℄ in the result. The version where dupli
ates are retained is trivial, asit is simply expressed in the same way as a snapshot union. Temporal union where dupli
ates areeliminated
orrespond to
oales
ing the result of a snapshot union, and is therefore also, by itself,trivial to express in SQL92. The interse
tion operator may be expressed as either two set di�eren
esor as a sequen
ed equi-join with the equality predi
ate
overing all attributes.Set di�eren
e is
on
eptually quite simple, but diÆ
ult to express. The
on
ept is to subtra
t periodsof tuples with mat
hing expli
it attributes whose periods overlap or are adja
ent. Figure 2.4 illustratesthis, by showing one tuple from the servi
es table and two tuples from the subs to table. The bottomline shows the two tuples that result from subtra
ting the subs to tuples from the servi
es table.

services

subs_to

result
Figure 2.4: Illustration of the Set Di�eren
e OperatorCon
retely
onsider the following two examples of the servi
es and subs to tables respe
tively:11

servi
esserv id des
. pri
e vts vteMOBILE Mobile servi
e 10 2 12LONGDIS Long distan
e
all 20 2 10LONGDIS Long distan
e
all 30 11 15In this table we see two servi
es, MOBILE and LONGDIS. MOBILE
osts 10 from time 2 to 12, whileLONGDIS
osts 20 from time 2 to time 10 and then 30 from time 11 to 15. The table is
oales
edand therefore has no temporal dupli
ates. subs tophone serv id vts vte555-1 LONGDIS 5 10555-2 MOBILE 2 4555-3 MOBILE 2 3555-3 MOBILE 5 9The subs to table is also
oales
ed and
ontains the mapping from subs
ribers to servi
es. In this waywe
an see that 555-1 subs
ribed to LONGDIS from time 5 to 10. Subs
riber 555-2 subs
ribes to theMOBILE servi
e from time 2 to 4, and the last subs
riber, 555-3, subs
ribes to mobile from 2 to 3and again from time 5 to 9.The two tables are not union
ompatible, whi
h they have to be in order to use them in relationwith the set di�eren
e operator. After proje
ting the tables, the result of performing a set di�eren
eoperation on the subs to table and the servi
es table yields the following result.servi
es n subs toserv id vts vteMOBILE 10 12LONGDIS 2 4LONGDIS 11 15This result means that nobody subs
ribed to the MOBILE servi
e from time 10 to 12. From time 2to 4 the LONGDIS was not subs
ribed to whi
h was also the
ase from time 11 to 15.For a des
ription of the formal semanti
s of set di�eren
e, union, and interse
tion see [BJ97℄.SQL92Expressing set di�eren
e in SQL92
an be written as a four part statement [Sno00℄, an example ofsu
h a statement
an be seen in Code Listing 3.The four sub-queries represent the four ways that an output row
an be found. The �rst
ase, in lines1 to 7, is where a servi
e is never subs
ribed to, so the entire period is returned. In the se
ond
ase,in lines 9 to 18, the servi
e starts to exist before a subs
riber begins a subs
ription, i.e., the subs toperiod overlaps the servi
es period to the right. The output tuple will in this
ase have a period thatgoes from the servi
es period start to the start time of the subs
ription. In the third
ase, shown inlines 20 to 29, the subs
ription was for some reason terminated before the servi
e
eased to exist. Theresulting tuple will then go from the subs
ription end time to the servi
e end time. The fourth andlast
ase, shown in lines 31 to 45, handles holes in the subs
ription period. An example of su
h a hole,is the se
ond range of the result in Figure 2.4 12

Code Listing 3 - Set Di�eren
e Written in SQL921 SELECT p1 . s e r v i d , p1 . des
 , p1 .VTS, p1 .VTE2 FROM s e r v i
 e s p13WHERE NOT EXISTS (SELECT �4 FROM subs to s35 WHERE p1 . s e r v i d = s3 . s e r v i d AND6 p1 .VTS < s3 .VTE AND7 s3 . VTS < p1 .VTE)8 UNION ALL9 SELECT p1 . s e r v i d , p1 . des
 , p1 .VTS, s1 . VTS10 FROM s e r v i
 e s p1 , subs to s111WHERE p1 . s e r v i d = s1 . s e r v i d AND12 p1 .VTS < s1 . VTS AND13 s1 . VTS < p1 .VTE AND14 NOT EXISTS (SELECT �15 FROM subs to s316 WHERE p1 . s e r v i d = s3 . s e r v i d AND17 p1 .VTS < s3 .VTE AND18 s3 . VTS < s1 . VTS)19 UNION ALL20 SELECT p1 . s e r v i d , p1 . des
 , s1 .VTE, p1 .VTE21 FROM s e r v i
 e s p1 , subs to s122WHERE p1 . s e r v i d = s1 . s e r v i d AND23 s1 .VTE < p1 .VTE AND24 p1 .VTS < s1 .VTE AND25 NOT EXISTS (SELECT �26 FROM subs to s327 WHERE p1 . s e r v i d = s3 . s e r v i d AND28 s1 .VTE < s3 .VTE AND29 s3 . VTS < p1 .VTE)30 UNION ALL31 SELECT p1 . s e r v i d , p1 . des
 , s1 .VTE, s2 . VTS32 FROM s e r v i
 e s p1 , subs to s1 , subs to s233WHERE p1 . s e r v i d = s1 . s e r v i d AND34 s2 . s e r v i d = s1 . s e r v i d AND35 s2 . phone = s1 . phone AND36 s1 .VTE < s2 .VTS AND37 p1 .VTS < s1 .VTE AND38 s1 . VTS < p1 .VTE AND39 p1 .VTS < s2 .VTE AND40 s2 . VTS < p1 .VTE AND41 NOT EXISTS (SELECT �42 FROM subs to s343 WHERE p1 . s e r v i d = s3 . s e r v i d AND44 s1 .VTE < s3 .VTE AND45 s3 . VTS < s2 . VTS)
13

Augmented SQLCode Listing 4, shows the query expressed using augmented SQL.Code Listing 4 - Set Di�eren
e Written in Augmented SQL1 SELECT p1 . s e r v i d , p1 . des
 ,
 r e a t e p e r i od (p1 . vt . s , p1 . vt . e)2 FROM s e r v i
 e s p13WHERE NOT EXISTS (SELECT �4 FROM subs to s35 WHERE p1 . s e r v i d = s3 . s e r v i d AND6 p1 . vt . over laps (s3 . vt) = 1)7 UNION ALL8 SELECT p1 . s e r v i d , p1 . des
 ,
 r e a t e p e r i od (p1 . vt . s , s1 . vt . s)9 FROM s e r v i
 e s p1 , subs to s110WHERE p1 . s e r v i d = s1 . s e r v i d AND11 s1 . vt . S t a r t s I n s i d e (p1 . vt) = 1 AND12 NOT EXISTS (SELECT �13 FROM subs to s314 WHERE p1 . s e r v i d = s3 . s e r v i d AND15 s3 . vt . over laps (
 r e a t e p e r i od (p1 . vt . s , s1 . vt . s)) = 1)16 UNION ALL17 SELECT p1 . s e r v i d , p1 . des
 ,
 r e a t e p e r i od (s1 . vt . e , p1 . vt . e)18 FROM s e r v i
 e s p1 , subs to s119WHERE p1 . s e r v i d = s1 . s e r v i d AND20 s1 . vt . EndsIndside (p1 . vt) = 1 AND21 NOT EXISTS (SELECT �22 FROM subs to s323 WHERE p1 . s e r v i d = s3 . s e r v i d AND24 s3 . vt . over laps (
 r e a t e p e r i od (s1 . vt . e , pe . vt . e)) = 1)25 UNION ALL26 SELECT p1 . s e r v i d , p1 . des
 ,
 r e a t e p e r i od (s1 .VTE, s2 .VTS)27 FROM s e r v i
 e s p1 , subs to s1 , subs to s228WHERE p1 . s e r v i d = s1 . s e r v i d AND29 s2 . s e r v i d = s1 . s e r v i d AND30 s2 . phone = s1 . phone AND31 s1 . vt . over laps (p1 . vt) = 1 AND32 s2 . vt . over laps (p1 . vt) = 1 AND33 s1 . vt . e < s2 . vt . s AND34 NOT EXISTS (SELECT �35 FROM subs to s336 WHERE p1 . s e r v i d = s3 . s e r v i d AND37 s3 . vt . over laps (
 r e a t e p e r i od (s1 . vt . e , s2 . vt . s)) = 1)The overall stru
ture of the augmented version is the same as the standard SQL92 version. This isbe
ause we still have to distinguish between the di�erent ways of overlapping in order to handle thespe
ial
ase of periods being split in two.The
reate period method is a fun
tion used as a
onstru
tor of periods. StartInside and EndInsideare fun
tions that spe
ify whether a period in question starts or ends inside another given period. Forthe semanti
s of these fun
tions see Appendix A.2.3.3 Expressing Coales
ingCoales
ing temporal data is similar in
on
ept to removing dupli
ates from
onventional data. The
on
ept being that tuples in a table with mat
hing expli
it attributes, and overlapping or adja
entvalid-times
ontains dupli
ate information. When
oales
ing a table, tuples with mat
hing expli
itattributes, and overlapping or adja
ent valid-times are
ombined into one tuple with a valid-time thatis the union of the sour
e tuple valid-times.As an example
onsider the following table, it is a small part of the subs to table.14

subs tophone serv id vts vte555-1 LONGDIS 1 4555-1 LONGDIS 5 10555-2 MOBILE 1 5555-2 MOBILE 4 8555-3 MOBILE 1 3555-3 MOBILE 5 9In the table we
an see that 555-1 subs
ribed to the LONGDIS produ
t from 1 to 4 and again from5 to 10, 555-2 subs
ribed to the MOBILE produ
t from 1 to 5 and from 4 to 8, and �nally that555-3 subs
ribed to the MOBILE produ
t from 1 to 3 and from 5 to 9. The table
ontains two kindsof un
oales
ed data, �rst 555-1's subs
ription to LONGDIS from 1 to 4 and again from 5 to 10 isadja
ent. Also 555-2's subs
ription to MOBILE is un
oales
ed be
ause of the overlap of periods 1 to5 and 4 to 8.If we
oales
e the table, the result is as follows.
oales
ed subs tophone serv id vts vte555-1 LONGDIS 1 10555-2 MOBILE 1 8555-3 MOBILE 1 3555-3 MOBILE 5 9For a detailed des
ription of the formal semanti
s of
oales
ing see [BJ97℄SQL92Expressing
oales
ing in SQL92
an be written as a three part statement [BSS97℄, an example of su
ha statement
an be seen in Code Listing 5.Code Listing 5 - Coales
ing Written in SQL921 SELECT DISTINCT f . phone , f . s e r v i d , f . vts , l . vte2 FROM subs to f , subs to l3 WHERE f . vts < l . vte AND4 f . phone = l . phone AND5 f . s e r v i d = l . s e r v i d AND6 NOT EXISTS (SELECT �7 FROM subs to m8 WHERE f . phone = m. phone AND9 f . s e r v i d = m. s e rv i d AND10 f . vts < m. vts AND11 m. vts < l . vte AND12 NOT EXISTS (SELECT �13 FROM subs to a114 WHERE f . phone = a1 . phone AND15 f . s e r v i d = a1 . s e r v i d AND16 a1 . vts < m. vts AND17 m. vts <= a1 . vte)) AND18 NOT EXISTS (SELECT �19 FROM subs to a220 WHERE f . phone = a2 . phone AND21 f . s e r v i d = a2 . s e r v i d AND22 (a2 . vts < f . vts AND f . vts <= a2 . vte OR23 a2 . vts <= l . vte AND l . vte < a2 . vte))15

The �rst part (lines 1 to 5) sele
ts two value-equivalent tuples, and uses them as start and end pointsof the resulting tuple. The se
ond part (lines 6 to 17) ensures that a
hain of value-equivalent tuples
over the entire valid-time between the start and end points sele
ted in the �rst part. The last part(lines 18 to 23) ensures that the start and end points sele
ted in the �rst part,
over the longestpossible period.Augmented SQLCode Listing 6, shows the query expressed using augmented SQL.Code Listing 6 - Coales
ing Written in Augmented SQL1 SELECT DISTINCT f . phone , f . s e r v i d , Create per iod (f . vt . s , l . vt . e)2 FROM subs to f , subs to l3 WHERE f . vt . s < l . vt . e AND4 f . phone = l . phone AND5 f . s e r v i d = l . s e r v i d AND6 NOT EXISTS (SELECT �7 FROM subs to m8 WHERE f . phone = m. phone AND9 f . s e r v i d = m. s e rv i d AND10 m. vt . LeftOverlap (f . vt . s , l . vt . e) AND11 NOT EXISTS (SELECT �12 FROM subs to a113 WHERE f . phone = a1 . phone AND14 f . s e r v i d = a1 . s e r v i d AND15 a1 . vt . LeftOverlap (m. vt) = 1)) AND16 NOT EXISTS (SELECT �17 FROM subs to a218 WHERE f . phone = a2 . phone AND19 f . s e r v i d = a2 . s e r v i d AND20 (a2 . vt . s < f . vt . s AND f . vt . s <= a2 . vt . e OR21 a2 . vt . s <= l . vt . e AND l . vt . e < a2 . vt . e))The stru
ture of the augmented version is the same as the standard SQL92 version, and the aug-mentations is not used mu
h. The size of the augmented version is 2 lines smaller than the standardversion. The LeftOverlaps fun
tion takes a period and returns true if it overlaps the end point of theperiod it is
ompared with.2.3.4 Expressing Time-sli
eThe time-sli
e query is a temporal query, used to sli
e the data in the database along a time-dimension,thereby viewing the data stored in the database at that time (transa
tion-time) or how the modeledworld looked at that time (valid-time).An example of a time-sli
e query is to �nd the
alls that where ongoing at a given time. The followingtable is an example of the data in the
alls table.
alls
aller
allee vts vte555-1 555-2 1 10555-3 555-4 2 4555-3 555-5 5 7From this table we
an see that 555-1
alled 555-2 from 1 to 10, and 555-3
alled 555-4 from 2 to 4and 555-1 from 5 to 7. If we time-sli
e the table at 6, we get the following table.16

alls time sli
ed
aller
allee555-1 555-2555-3 555-5SQL92The expression of a time-sli
e query in SQL92 is very straight forward, as seen in Code Listing 7.This query time-sli
es the
alls at the time point X.Code Listing 7 - Time-sli
e Written in SQL921 SELECT
 a l l e r ,
 a l l e e2 FROM Cal ls3 WHERE vts <= X AND4 vte >= X;Augmented SQLAs with SQL92 it is straight forward to express time-sli
e in augmented SQL, the only di�eren
e beingthat the predi
ate is
hanged to use an Overlaps method. The
ode for augmented SQL time-sli
e
an be seen in Code Listing 8.Code Listing 8 - Time-sli
e Written in Augmented SQL1 SELECT
 a l l e r ,
 a l l e e2 FROM Cal ls3 WHERE vt . Overlaps (X) = 1 ;2.3.5 Expressing AggregationAggregation queries summarizes data, and presents them in a more
ompa
t and informative way.They
an be simple as
ounting the number of employees or
al
ulating the average salary in theR&D department, or
omplex like showing the development in the number of
ustomers over time.The latter is an example of a temporal aggregation query, that summarizes over time.In the example from Se
tion 2.2 the data from the persons table
an be used to
ount the number of
ustomers related to the
ompany at any given time. The following table shows an example of thedate
ontained in the persons table. personsSSN name address vts vte1 John Wall Street 1 102 Jane Yonge Street 1 33 Joe El Camino Real 5 11From the table we
an see that John was a
ustomer from 1 to 10, Jane from 1 to 3 and Joe from 5to 11. Using this data to
al
ulate the number of
ustomers related to the
ompany would yield thefollowing result. 17

aggregated persons
ount from to2 1 31 4 42 5 101 11 11Figure 2.5 illustrates how the the aggregation result is found.
John

Jane

Joe

1 2 3 4 5 6 7 8 9 10 11

2 1 2 1

time

Figure 2.5: Aggregation of the Persons TableSQL92When expressing temporal aggregations, one very important part of the query is �nding
onstantregions. That is, regions where the information being aggregated did not
hange. As shown in CodeListings 9 and 10 the SQL
ode from line 3 in Listing 9 to line 52 in Listing 10 is responsible for�nding
onstant regions.When the
onstant regions are found, a
ount is made for ea
h
onstant region.Augmented SQLAlthough it is not possible to make generi
 table operators that is s
hema independent, it is possibleto make fun
tions with a table operator like fun
tionality with
ertain limitations [Thr00℄. It ispossible to make a fun
tion that, given a table name and a Period
olumn name,
an return the
onstant regions of that table. By using this fun
tion, the
ode shown in Code Listing 9 and 10
anbe expressed as shown in Code Listing 11.2.4 Evaluation of Code ComplexityThe idea with this Chapter is to evaluate the possibility of ful�lling REQ2 under the restraints imposedby the implementation environment. We have shown examples of the most
ommon queries, expressedboth in SQL92 and in the augmented SQL proposed in this work.To evaluate on the
omplexity of these queries, we
ompare the number of lines of
ode ne
essary toexpress the query in SQL92 and augmented SQL respe
tively. The following table
ontains a list ofqueries and the number of lines of
ode for both SQL92 and augmented SQL.18

Code Listing 9 - Aggregation Written in SQL92 (part 1 of 2)1 SELECT COUNT(Persons . SSN) , agg tab l e . vts AS vts , agg tab l e . vte AS vte2 FROM Persons , (3 /� No s t a r t or stop over lap of p1 �/4 SELECT p1 . vts AS vts , p1 . vte AS vte5 FROM Persons p16 WHERE NOT EXISTS (SELECT �7 FROM Persons p28 WHERE ((p1 . vts < p2 . vts AND9 p2 . vts < p1 . vte)10 OR11 (p1 . vts < p2 . vte AND12 p2 . vte < p1 . vte)))13 UNION14 /� Gap from p1 . vte to p2 . vts �/15 SELECT p1 . vte AS vts , p2 . vts AS vte16 FROM Persons p1 , Persons p217 WHERE p1 . vte < p2 . vts AND18 NOT EXISTS (SELECT �19 FROM Persons p320 WHERE ((p1 . vte < p3 . vts AND21 p3 . vts < p2 . vts)22 OR23 (p1 . vte < p3 . vte AND24 p3 . vte < p2 . vts)))25 UNION26 /� p2 l e f t over laps p1 : F i r s t �/27 SELECT p2 . vts AS vts , p1 . vts AS vte28 FROM Persons p1 , Persons p229 WHERE p2 . vts < p1 . vts AND30 p1 . vts < p2 . vte AND31 p2 . vte < p1 . vte AND32 NOT EXISTS (SELECT �33 FROM Persons p334 WHERE ((p2 . vts < p3 . vts AND35 p3 . vts < p1 . vts)36 OR37 (p2 . vts < p3 . vte AND38 p3 . vte < p1 . vts)))39 UNION40 /� p2 l e f t over laps p1 : Se
ond �/41 SELECT p1 . vts AS vts , p2 . vte AS vte42 FROM Persons p1 , Persons p243 WHERE p2 . vts < p1 . vts AND44 p1 . vts < p2 . vte AND45 p2 . vte < p1 . vte AND46 NOT EXISTS (SELECT �47 FROM Persons p348 WHERE ((p1 . vts < p3 . vts AND49 p3 . vts < p2 . vte)50 OR51 (p1 . vts < p3 . vte AND52 p3 . vte < p2 . vte)))53 UNION
19

Code Listing 10 - Aggregation Written in SQL92 (part 2 of 2)1 /� p2 l e f t over laps p1 : Third �/2 SELECT p2 . vte AS vts , p1 . vte AS vte3 FROM Persons p1 , Persons p24 WHERE p2 . vts < p1 . vts AND5 p1 . vts < p2 . vte AND6 p2 . vte < p1 . vte AND7 NOT EXISTS (SELECT �8 FROM Persons p39 WHERE ((p2 . vte < p3 . vts AND10 p3 . vts < p1 . vte)11 OR12 (p2 . vte < p3 . vte AND13 p3 . vte < p1 . vte)))14 UNION15 /� p1 in
 ludes p2 : F i r s t �/16 SELECT p1 . vts AS vts , p2 . vts AS vte17 FROM Persons p1 , Persons p218 WHERE p1 . vts < p2 . vts AND19 p2 . vte < p1 . vte AND20 NOT EXISTS (SELECT �21 FROM Persons p322 WHERE ((p1 . vts < p3 . vts AND23 p3 . vts < p2 . vts)24 OR25 (p1 . vts < p3 . vte AND26 p3 . vte < p2 . vts)))27 UNION28 /� p1 in
 ludes p2 : Se
ond �/29 SELECT p2 . vts AS vts , p2 . vte AS vte30 FROM Persons p1 , Persons p231 WHERE p1 . vts < p2 . vts AND32 p2 . vte < p1 . vte AND33 NOT EXISTS (SELECT �34 FROM Persons p335 WHERE ((p2 . vts < p3 . vts AND36 p3 . vts < p2 . vte)37 OR38 (p2 . vts < p3 . vte AND39 p3 . vte < p2 . vte)))40 UNION41 /� p1 in
 ludes p2 : Third �/42 SELECT p2 . vte AS vts , p1 . vte AS vte43 FROM Persons p1 , Persons p244 WHERE p1 . vts < p2 . vts AND45 p2 . vte < p1 . vte AND46 NOT EXISTS (SELECT �47 FROM Persons p348 WHERE ((p2 . vte < p3 . vts AND49 p3 . vts < p1 . vte)50 OR51 (p2 . vte < p3 . vte AND52 p3 . vte < p1 . vte)))) agg tab l e53 WHERE Persons . vts (+) < agg tab l e . vte AND54 agg tab l e . vts < Persons . vte (+)55 GROUP BY agg tab l e . vts , agg tab l e . vte ;Code Listing 11 - Aggregation Written in Augmented SQL1 SELECT COUNT(Persons . SSN) , agg tab l e . vt AS vt2 FROM Persons p ,3 TABLE(CAST(ConstantRegion ('Persons' , 'vt') AS ag tab)) agg tab l e4 WHERE p . vt . Overlaps (agg tab l e . vt) = 15 GROUP BY agg tab l e . vt ; 20

Query SQL92 Augmented SQL P
t. SavedJoin 41 6 85%Set-di�eren
e 45 37 18%Coales
ing 23 21 9%Time-sli
e 4 3 25%Aggregation 108 5 95%221 72 67%Not taking into a

ount the distribution of use among the di�erent query types, we
an see from thetable that temporal augmented queries on average is one third the size of temporal SQL92 queries.It is espe
ially join and aggregation queries that is optimized by the augmentation, but all queriesbene�t.This
on
ludes the dis
ussion of redu
ing query
omplexity using user-de�ned data types available ina
artridge. The matter of spe
ifying su
h data types and index support for them is the topi
 of thenext
hapter.

21

22

Chapter 3Cartridge DesignIn this
hapter, we des
ribe the a
tual implementation of the temporal
artridge along with the Ora
le
on
epts used in the implementation. First we des
ribe the obje
t hierar
hy, then the index types,and �nally how it is possible to interfa
e with the query optimizer.As already mentioned the
hosen platform is Ora
le's ORDBMS. An other major ORDBMS
ould havebeen
hosen for the task. The three major databases, Ora
le8i, Informix Universal Server [DLM97℄,DB2 Universal Database [Dav00℄ all have an extensibility framework available whi
h enables thespe
i�
ation of user de�ned data types, indexes and
ost-based optimization.To experiment with the Ora
le extension interfa
e, we have implemented the following. The foursimple data types, instant, interval, relative instant, and period are implemented as UDOTs. Thethree indexes, map21, map21-2, and hilbert are implemented. The map21 index is based on a simplespa
e-�lling
urve te
hnique, the map21-2 extends this approa
h by partitioning the indexed periods,and �nally the hilbert index is based on the hilbert spa
e-�lling
urve.In total, and disregarding
omments, the
artridge
onsists of approximately 5.200 lines of PL/SQL
ode.3.1 User-De�ned Obje
t TypesThis se
tion des
ribes how the obje
t-relational extensibility interfa
es are used to de
lare new obje
ttypes that serve as a basis for the temporal
artridge.3.1.1 Extensible Type SystemTraditionally database appli
ations have been
on
erned with a

essing data whi
h is stored in tablesusing
onventional data types su
h as INTEGER, DATE, or CHAR. Today the trend is moving towardsexploiting obje
t-relational properties of ORDBMSs by moving data into user de�ned obje
t types(UDOT). Ora
le supports su
h UDOTs along with numerous other data types, su
h as
olle
tions(VARRAYS and nested tables), relationships (REF), large obje
ts (BLOB and CLOB), and external�les (BFILE) [RRM99℄.UDOTs are used to extend the modeling fa
ilities of the database and to impose stru
ture on the datastored in it. UDOTs are analogous to the
on
ept of
lasses in the world of obje
t orientation.In the following we examine the possibilities for spe
ifying UDOTs in the Ora
le ORDBMS1. User-1All
omments regarding the status of and limitation in the Ora
le DBMS is related to Ora
le 8.1.623

de�ned obje
t types
onsists of one or more attributes and optionally also a number of member andmap methods. Attributes may be any of Ora
les data types in
luding other UDOTs. Member methodsare pro
edures or fun
tions that
an manipulate the data
ontents of the obje
t. Map methods areused to
ompare and order obje
ts of the given type. The methods on an obje
t
an be implementedin PL/SQL or be linked to stored Java methods or external C fun
tions.SQL
onstru
ts are available in the DBMS extensibility interfa
es for de
laring, modifying and other-wise managing obje
ts and obje
t types. It is possible to store obje
ts in the
olumns of a table andto use obje
ts as parameters for fun
tions and pro
edures.3.1.2 Limitations of the DBMS Extensible Type SystemThe obje
t-relational te
hnology in the Ora
le ORDBMS has a number of limitations, some of whi
h
on
ern the temporal
artridge designed. Spe
i�
ally the following points have made an in
uen
e onhow we designed and implemented the
artridge.� For ea
h UDOT a
onstru
tor is impli
itly available. The
onstru
tor is named after the obje
tand takes as parameters the same types as the attributes listed in the obje
t spe
i�
ation. Noother
onstru
tors
an be de�ned ([FP97℄, page 616). This has for
ed us to
reate a set ofstand-alone obje
t
onstru
tor fun
tions and violates the obje
t oriented design of the obje
tframework.� A

ess to attributes and member methods
annot be restri
ted, whi
h violates obje
t-orientedprin
iples of data en
apsulation ([FP97℄, page 597). In spite of the fa
t that missing dataen
apsulation is not
ru
ial, it might en
ourage future users to bypass the available methodsand in stead rely on internal spe
i�
s.� It is not possible to use obje
t-oriented
onstru
ts su
h as inheritan
e and polymorphism([RCG+99℄ page 18-33). This means that an unne
essary large number of methods need tobe spe
i�ed.� In PL/SQL it is possible to immediately use an obje
t returned from a fun
tion, this is not possi-ble in SQL. This prevents
onstru
ts like the following \t1.vt.Move('10 days').Overlaps(t2.vt)",where Move returns a Period, whose vt has been moved 10 days [LO99℄.� Obje
ts
annot be used as keys ([LO99℄ page 7-359). This limits our index design as we have torevert to using dates in stead of relative instants (explained shortly) in our open ended tables(see Se
tion 3.2).� PL/SQL variables of user-de�ned types
annot be bound into dynami
 SQL statements as nativedata types
an ([FP97℄ page 949). This impa
ts the implementation of our indexes, as the dy-nami
ally generated internal queries
ontain periods that must be unfolded into its
onventionaldata type
onstituents.3.1.3 The New Obje
t TypesSeven temporal obje
t types are spe
i�ed for the
artridge. S
hemati
ally the obje
t types are orderedin a hierar
hy as shown in Figure 3.1. The basi
 types, instant and interval are pla
ed in the top ofthe �gure and is the basis of all other obje
t types. A relative instant is a spe
ialization (shown by thearrow in Figure 3.1) of an instant. In spite of the fa
t that the Ora
le DBMS does not support su
hspe
ializations, the
on
ept of a relative instant being a spe
ialization of an instant is still
on
eptuallytrue. The relative instant is also asso
iated (shown by a line in Figure 3.1) with an interval andan instant
ontainer. Periods are asso
iated with exa
tly two relative instants. Instant
ontainers,interval
ontainers, and period
ontainers may hold an arbitrary number of relative instants, intervals,and periods respe
tively. 24

period

instant

relative instant

period container

interval

2

*

*

*

*

1

interval container

*

*

instant container * *

Figure 3.1: Hierar
hy of Temporal Obje
t TypesThe following list
ontains a des
ription of the seven obje
t types. The list shows what data they
ontain, gives examples of them, and points out were they may be used.Instant Instants are used to model an
hored points in time. Examples of instants are \Mar
h 2000"or \2000-03-27 12:30:00" at granularities month and se
ond, respe
tively. An instant is imple-mented as a positive number whi
h represents an amount of granules that have passed sin
e someprede�ned point in time, and a granularity spe
ifying the type of granules. Instants may forexample be used to store temporal information about meteorologi
al samplings of temperatureor humidity at di�erent points in time.Interval Intervals are used to represent durations of time, that are not an
hored to the time line.Like instants, they are implemented as a
ount of granules and a granularity. Examples in
lude\1 month" and \3 pi
ose
onds". Intervals may be used to store how long a patients peni
illintreatment was.Relative instant Relative instants are mu
h like instants only that they
an be spe
i�ed relative tosome an
hored point in time or take on spe
ial values like now. They are implemented as a type,an optional instant obje
t and an optional interval serving as an o�-set. The type determinesif the spe
i�
 instant is a spe
ial value, or a
onventional relative instant. Examples are thus\Mar
h 2000 - 1 month" whi
h represents February, year 2000, or \now" whi
h represents thespe
ial temporal value. Relative instants are used in the same way as instants.Period A period is a duration of time whi
h is an
hored to the time line. Periods are implementedas two relative instants. Examples of periods are \June 2000 - August 2000" whi
h would be aperiod
ontaining the three summer months of the year 2000. Examples of the use of periodsin
lude when an employee was working for a
ompany, or when an apartment was va
ant.Instant Container An instant
ontainer is a multi set of (relative) instants and
an for example beused to register all days that an employee was absent from work.Interval Container Interval
ontainers are multi sets of intervals and may be used to store infor-mation about whi
h valid
ontra
t durations exists in a
ontra
ting organization.Period Container Period
ontainers are multi sets of periods and
an be used to store informationabout when a given fa
t was true.Ea
h data type
ontains a number of attributes and methods. The underlying semanti
 details ofthese attributes and methods are spe
i�ed in greater detail in Appendix A.25

3.2 IndexesThis se
tion des
ribes the index part of the temporal
artridge. First we des
ribe the domain indexinterfa
e of the Ora
le
artridge te
hnology [RRM99℄. Then we des
ribe two index types, both froma theoreti
al and from an implementation point of view.3.2.1 Extensible IndexingThrough the
artridge te
hnology, Ora
le provides an interfa
e for
reating
ustom index types forUDOTs. This interfa
e was spawned by a growing need to store more advan
ed data types, typesthat
ould not readily be indexed with standard tree stru
tures ([RRM99℄ page 7-3).Addition of a domain index to Ora
le is done by
reating a new UDOT whi
h has a prede�ned set ofmethods. When this UDOT is
reated, a CREATE INDEX TYPE statement is used to register the indexand whi
h operators it
an handle. The methods that Ora
le uses to
ontrol the index
an be dividedinto four se
tions.� De�nition: The de�nition methods are used to
reate, alter, trun
ate, and drop an indexinstant. These methods have no transa
tion restri
tions, and as su
h are free to use DML andDDL statements.� Maintenan
e: These methods are used to maintain the
ontent of an index instant, and in
ludemethods for inserting, updating, and deleting
ontent from an index instant. These methodsare only allowed to use DML statements and are not allowed to read or modify the base tableon whi
h the index is
reated.� S
an: The s
an methods are used to evaluate predi
ates using an index instant. Given apredi
ate with arguments, these methods return the ROWIDs of all rows where the predi
ateholds true. These methods are only allowed to exe
ute DML query statements.� Meta data: The meta data methods are used by the Ora
le export utility to retrieve informationabout the index, that
an later be used to restore the index.For a thorough des
ription of de�nition, maintenan
e and meta data methods see [RRM99℄. S
anmethods are essential elements in the fa
t that they serve as index-based implementations for evalu-ating predi
ates with operators. A des
ription of the s
an methods follows.3.2.2 Index S
ansWhen an index s
an is initiated by a user query, the �rst method
alled is ODCIIndexStart. Thearguments to this method is among others the predi
ate and arguments from the user query, and thename of the index being used. The ODCIIndexStart method initiates the index s
an, and readies theindex for in
rementally fet
hing the result.After ODCIIndexStart has �nished, ODCIIndexFet
h is
alled. This method in
rementally returnsparts of the result to the query engine of the DBMS. The result is the ROWIDs that mat
h thepredi
ate of the user query. The state of indexes is transfered betweenODCIIndexStart and subsequent
alls to ODCIIndexFet
h through an index type obje
t. This means that it is the
aller (DBMS queryengine) that has the responsibility of maintaining the index state rather than the index itself.When the entire result set has been returned to the DBMS, ODCIIndexClose is
alled. This method
leans up after ODCIIndexStart and ODCIIndexFet
h.26

3.2.3 MAP21The MAP21 index [ND98℄ is an index based on a spa
e-�lling
urve, and is used to index periods.The idea behind indexes based on spa
e-�lling
urves is to transform the two-dimensional points theyindex into one-dimensional values that
an be indexed by
onventional indexes.Transformation Fun
tionThe transformation fun
tion transforms a Period into a s
alar value that
an be indexed by a
on-ventional index. The MAP21 transformation fun
tion is as follows.T = ls(S;
) +EHere T is the s
alar value, and S and E are the start and end time-points of the Period respe
tively.
 is the maximum number of digits used to represent a time-point, and ls is a fun
tion that shift it'sargument
 digits to the left. The number of digits needed to store T is 2�
. If we transform thePeriod [2000-01-01, 2001-01-01℄ we get the following result.ls(0200001010; 8) + 20010101 =2000010100000000+ 20010101 =2000010120010101As shown in Figure 3.2, this transformation fun
tion results in a mapping where the two-dimensionallo
ality is poorly preserved. Even when two points are
lose in the one-dimensional mapping, there
an be a large distan
e between the two
orresponding points in the two-dimensional spa
e. Thereason for this is the large jumps in the MAP21 path, as seen with the jump from
ell 5 to
ell 6 inFigure 3.2Figure 3.2 shows a 5x5 two-dimensional spa
e whi
h is mapped to one dimension by a MAP21 spa
e-�lling
urve. Ea
h
ell in the two-dimensional spa
e is assigned a unique index determined by thepath, su
h that the �rst index is pla
ed in the origin of the path.The transformation of the spe
ial temporal value now is not handled by the general fun
tion, but istreated spe
ially and will be explained shortly.Query TranslationBe
ause of the information stored in the index, it is ne
essary to translate the predi
ates from Periodsto a range of MAP21 values before querying the index. The mapping from Periods to a range ofMAP21 values that need to be fet
hed from index is dependent of the predi
ate being evaluated. Thefollowing is a des
ription of how it is done for the overlaps predi
ate, similar mappings
an be madefor pre
edes, su

eeds,
ontains, and in
ludes [ND98℄.Code Listing 12 - Use of Overlaps Operator1 SELECT �2 FROM t13 WHERE t1 . vt . Overlaps ([2000�01�01 , 2001�01�01 ℄) ;Given a query as shown in Code Listing 12, it is ne
essary to translate the Period to a range ofMAP21 values before we
an query the index. The translation has to take into a

ount, that it shoulden
ompass all MAP21 values that
ould possible overlap with [2000-01-01, 2001-01-01℄. If nothing27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1
 2
 3
 4
 5

1

2

3

4

5

start

en
d

Figure 3.2: The Mapping Order of MAP21 Transformation Fun
tionwas known about the length of the periods being indexed, all periods starting before 2001-01-01
ouldpossible overlap. This
ase
an be avoided by keeping tra
k of the longest period being indexed (whi
hwe will
all �), with this knowledge the range of MAP21 values that
ould possible overlap is shownas a grey re
tangle in Figure 3.3.Only the area above the diagonal in Figure 3.3 is interesting, be
ause points below the diagonalrepresents invalid periods (that end before they begin).The periods that
ould possible overlap, are those starting between 2000-01-01 - � to 2001-01-01, andending between 2000-01-01 to 2001-01-01 + �. Translated into MAP21 values, we need to examinethe values between [2000-01-01 - �, 2000-01-01℄ to [2001-01-01, 2001-01-01 + �℄.Be
ause the previously mentioned region
overs all the periods that
ould possible overlap, it isne
essary to
he
k periods that either starts before S or ends after E for a
tual overlap.ImplementationThe implementation of the MAP21 index type uses one table for meta data and two other tables perindex instant, the meta data stored for ea
h index is as follows.tmpidx MAP21Name Des
riptionName The name of the index, in
luding s
hemaDest table The name of the base table on whi
h the index is
reatedMax length The length of the longest period being indexed28

s-∆

e+∆

s

es

e

start

en
d

Figure 3.3: Possible Overlapping Periods

29

For ea
h index we
reate two tables, one for now-relative periods, and one for non-now-relative periods.The table
ontaining the now-relative periods is an index-organized table [RCG+99℄ with the followings
hema. indexname oetName Des
riptionStart The start of the now-relative periodSeq A unique sequen
ed numberr The ROWID of the tuple
ontaining the periodBe
ause we know that all periods in the now-relative table ends now, it is only ne
essary to store thestart point of the periods. The start and sequen
ed number is used to de�ne a
omposite primary keyfor the now-relative table.The non-now-relative periods are also stored in an index-organized table, this table has the followings
hema. indexname pidName Des
riptionMAP21 The MAP21 value for the periodSeq A unique sequen
ed numberr The ROWID of the tuple
ontaining the periodThe MAP21 value and the sequen
ed number is used to de�ne a
omposite primary key.When an index s
an is initiated, the ODCIIndexStart method opens two
ursors. The SQL for thesetwo
ursors are shown in Code Listings 13 and 14.In Code Listing 13, X and Y refers to the MAP21 values of the lower left
orner and upper right
orner of the sear
h area respe
tively, as shown in Figure 3.3.Code Listing 13 - SQL Code For Querying Non-now-relative Table1 SELECT r2 FROM indexname pid3 WHERE map21 >= X AND4 map21 <= Y AND5 MAP21Overlaps ([sear
h per iod ℄ , map21) = 1Code Listing 14 - SQL Code For Querying Now-relative Table1 SELECT r2 FROM indexname oet3 WHERE [sear
h per iod ℄ . s ta r t <= SYSDATE AND4 s ta r t <= [sear
h per iod ℄ . endThe MAP21Overlaps fun
tion takes a period and a map21 value and
he
ks for overlap. The fun
tionis used to eliminate false hits.As shown in the previous se
tion, the length of the longest period in the index has a large impa
t onthe performan
e of the index. This has lead [ND98℄ to propose an alternative stru
ture of the index.The idea is to split the periods being indexed into three distin
t tables, one whi
h
ontains all theshort periods, one whi
h
ontains all the long periods, and one whi
h
ontains the now-relative data.This setup prevents the
ase where one long period impa
ts the sear
h performan
e of the whole index.In addition to the original implementation, where no partitioning on period durations is performed,we have implemented this alternative setup. This has been done by adding another non-now-relativetable of the same stru
ture as the present one (indexname pid), and by adding two extra
olumns to30

the meta data table, namely the maximum length of the new non-now-relative table and the lengthat whi
h periods are
onsidered long.3.2.4 Hilbert IndexThe Hilbert index is, like MAP21, based on a spa
e �lling
urve, and the stru
ture of the Hilbertindex type is also mu
h like that of the MAP21 index type.Transformation Fun
tionThe Hilbert transformation fun
tion has several properties that make it suitable for use in an index.First it is an optimal spa
e-�lling
urve, in the fa
t that it has the optimal preservation of lo
ality inthe mapping between two dimensions and one dimension [LKC99℄. Se
ondly, it has a tree stru
ture,making it possible to adjust the
omplexity of the query at the expense of a

ura
y.The Hilbert index type logi
ally divides the indexed domain into a quad-tree stru
ture [Sam84℄. Theidea is as follows, the domain is divided into four parts, ea
h of these parts again divided into fourparts. This division is
ontinued until ea
h of the parts has an appropriate size, the results of thisdivision is a grid of
ells
overing the entire spa
e. The Hilbert fun
tion is then used to de�ne anorder for these
ells, this order is shown in Figure 3.4.
1

0

2

3

5

4

3

0

6

7

2

1

9

8

13

14

10

11

12

15

21

20

19

16

22

23

18

17

25

24

29

30

26

27

28

31

15

14

1

0

12

13

2

3

11

8

7

4

10

9

6

5

37

36

35

32

38

39

34

33

41

40

45

46

42

43

44

47

53

54

57

58

52

55

56

59

51

50

61

60

48

49

62

63

(1) (2) (3)Figure 3.4: Hilbert Curves of levels 1 (1), 2 (2) and 3 (3)For a des
ription of the algorithm used to
al
ulate the pla
ement of a point within the Hilbert order,see [Gut99℄. The algorithm starts at the top level of the logi
 quad-tree stru
ture, and progresses downthe tree. At ea
h level the algorithm
al
ulates whi
h
ell
ontains the sear
h point, and progressesdown that path.Query TranslationBe
ause of the quad-tree stru
ture of the Hilbert index, it is possible to adjust the pre
ision of theindex query and thereby redu
e the
omplexity of the index s
an.As with the MAP21 index, ea
h query
an be translated into a query region, an example of su
h aquery region is shown in Figure 3.5. As the �gure shows, the Hilbert ordering
an enter and exit thequery region several times, ea
h of these visits results in a range of Hilbert values that is
ontainedin the query region. When all ranges are found, they are used to sear
h the index-organized table forperiods in the query region. 31

21

20

19

16

22

23

18

17

25

24

29

30

26

27

28

31

15

14

1

0

12

13

2

3

11

8

7

4

10

9

6

5

37

36

35

32

38

39

34

33

41

40

45

46

42

43

44

47

53

54

57

58

52

55

56

59

51

50

61

60

48

49

62

63

start

en
d

1
 2
 3
 4
 5
 6
 7
 8

1

2

3

4

5

6

7

8

Figure 3.5: Example of a Query Region over a Level 3 Hilbert Spa
eThe number of ranges in a query region is dependent on the size of the region and the size of the
ells. If the region gets too big, or the
ells too small, the number of ranges be
ome substantial. Itis possible to avoid this, by using the quad-tree stru
ture of the Hilbert ordering. As ea
h step ofthe re
ursive algorithm is used to re�ne the result, it is possible to stop before the algorithm hitsthe bottom of the logi
al quad-tree stru
ture. Thereby getting a result with fewer ranges, but whi
hin
ludes more Hilbert values than ne
essary. These super
uous values are eliminated by an extrapredi
ate (as shown in Code Listing 15 on the fa
ing page).ImplementationBe
ause the overall stru
ture of the MAP21 index type and the Hilbert index type is so mu
h alike,their implementations are also mu
h alike.Like MAP21, the Hilbert index type stores two types of data. One is the meta data asso
iated withan index, and the other is the a
tual index data. The meta data stored for a Hilbert index instant isas follows. tmpidx HilbertName Des
riptionName The name of the index, in
luding s
hemaDest table The name of the base table on whi
h the index is
reatedMax length The length of the longest period being indexed, used for determining sear
h areas.Min The lower point of the domain being indexedMax The upper point of the domain being indexedSdepth The sear
h depthTdepth The height of the logi
al quad-treeThe index data stored is similar to the MAP21 index data (indexname oet, indexname pid), ex
eptthat it is now Hilbert values that is stored instead of Map21 values. Now-relative Periods are alsohandled similarly to the MAP21 index, and will therefore not be des
ribed here.32

When an index is
reated, an upper and lower bound is de�ned for the indexed domain. These boundsare time points that de�ne the area of time
overed by the index. From these bounds, the height of thelogi
al quad-tree is
al
ulated. The
omputational
omplexity of the Hilbert fun
tion is dependent ofthe height of the tree, so it is advisable not to
hoose a larger index domain than ne
essary. A sear
hdepth is also de�ned for the index, this depth is used when
al
ulated overlapping ranges and de�nesat whi
h level the sear
h for ranges should be stopped.The
omputation of Hilbert values, is de�ned as one fun
tion. The arguments to this fun
tion is aquery region, the depth of the tree, the sear
h depth, and the maximum number of ranges that maybe returned. The fun
tion returns the list of ranges that are
ontained in the query region.When
al
ulating a Hilbert value for a Period being inserted into the index, the query region argumentis a point, and the fun
tion returns a single range
ontaining only one value, whi
h is the Hilbert valueof the spe
i�
 point.When performing an index s
an, the ranges returned from the Hilbert fun
tion is used to
ompose adynami
 SQL statement to query the index-organized table. An example of su
h an SQL statement
an be seen in Code Listing 15.Code Listing 15 - SQL Code For Querying Hilbert Index1 SELECT r2 FROM indexname pid3 WHERE ((h i l b e r t >= X AND h i l b e r t <= Y) OR4 (h i l b e r t >= G AND h i l b e r t <= H)) AND5 HILBOverlaps ([sear
h per iod ℄ , h i l b e r t) = 1The query in Code Listing 15 have two ranges, one from X to Y and another from G to H. hilbert isthe hilbert value stored in the meta data tables. The HILBOverlaps method takes as input a periodand the Hilbert value and
he
ks for overlap in order to eliminate false hits.3.3 OptimizationThis se
tion des
ribes the third and last part of the extensibility interfa
es used in the developmentof the temporal Cartridge, namely extensible query optimization.First Ora
le's extensible query optimization interfa
e is des
ribed followed by a brief dis
ussion ofhow this feature may be used in a temporal
artridge.Extensible optimization for the
artridge has only been examined brie
y2, and has not been in
ludedin the a
tual implementation. The fo
us of this se
tion is therefore on the extensibility interfa
e andnot a
on
rete implementation. The des
ription is based on Ora
le do
umentation in
luding [RRM99℄.3.3.1 Extensible OptimizerThe query optimizer is the part of a DBMS whi
h has the responsibility of
hoosing the most eÆ
ientway of exe
uting a query statement. Exe
ution, for example, depends on the order in whi
h tables andindexes are a

essed. An optimizer
an either use
ost-based optimization or rule-based optimization.A
ost-based optimizer
onsiders between di�erent a

ess paths by using statisti
s, e.g., in the form ofhistograms, about the involved database obje
ts. The Ora
le DBMS supports this kind of optimizationthrough SQL statements su
h as ANALYZE and COMPUTE STATISTICS. A rule-based optimizer on theother hand
hooses between a

ess paths by
onsidering the ranks of these a

ess paths.2A stand-alone prototype extensible optimizer was implemented for periods.33

Ora
le supports both
ost-based and rule-based optimization. A number of features
an however onlybe used by the
ost-based optimization strategy, in
luding extensible optimization.The extensible optimizer allows three kinds of fun
tions to be de�ned for user-de�ned fun
tions andindexes: statisti
s
olle
tion fun
tions, sele
tivity fun
tions, and
ost fun
tions.All extending of the optimizer is done by de
laring fun
tions that the optimizer
alls when appropriate.Su
h fun
tions are spe
i�ed in an obje
t implementing the ODCIStats interfa
e. This obje
t isregistered with the query exe
ution engine using the ASSOCIATE STATISTICS WITH
ommand. Ea
hof the three fun
tionalities in the extensible optimizer is explained below.Statisti
s Colle
tion Fun
tionsStatisti
s on database
olumns and indexes are
olle
ted using the ANALYZE
ommand. With theintrodu
tion of user-de�ned domain indexes the DBMS
annot, on its own,
olle
t statisti
s on su
hindexes, be
ause it does not know the internal stru
ture of the index.In the light of this problem the optimizer has been extended to let users de�ne and asso
iate
ustomstatisti
s
olle
tion fun
tions (SCF). SCFs
an be asso
iated with individual
olumns, obje
t types,index types, and domain indexes. The SCFs are
alled by the optimizer whenever a domain index or
olumn is analyzed. The statisti
s generated by the user-de�ned SCF is anonymous to the DBMS, inthe fa
t that it has no knowledge of its stru
ture, representation, or meaning. Any interpretation ofthe statisti
s is done in the user-de�ned query optimization fun
tions. In the
ase of table
olumnsand obje
t types SCFs are
alled whenever an appropriate
olumn is analyzed. If the data type of the
olumn is native to the DBMS, the statisti
s generated by the SCF is
olle
ted along with the
onven-tional statisti
s. Two fun
tions must be spe
i�ed in
onne
tion with the statisti
s gathering part ofthe extensible optimizer obje
t. The �rst, ODCIStatsColle
t,
olle
ts the statisti
s when the ANALYZE
ommand is issued. The other, ODCIStatsDelete, deletes the statisti
s when the ANALYZE DELETE
ommand is issued. Both ODCIStatsColle
t and ODCIStatsDelete are overloaded in order to workwith both table
olumns/obje
t types and with user-de�ned domain indexes.Sele
tivity Fun
tionsThe statisti
s gathered by the SCFs above are used to determine the sele
tivity of a given querypredi
ate. The sele
tivity is a measure for how many per
ent of the rows that are
hosen by thepredi
ate. This sele
tivity is in turn used to estimate the
ost of a parti
ular a

ess method.With extensible optimization it is possible to de�ne
ustom sele
tivity fun
tions (SF), whi
h
an beasso
iated with user-de�ned operators, stand-alone fun
tions, fun
tions in pa
kages and methods inobje
t types. The SF is
alled by the optimizer ea
h time it en
ounters a predi
ate with a user-de�ned operator, fun
tion, pa
kage fun
tion or obje
t method. If we, for example, have the obje
tmethod overlaps, asso
iated with a SF, this SF will we
alled when a query
ontains predi
ates su
has \overlaps(...) = 1". The entire predi
ate is passed to the SF as an argument.Only a single fun
tion, ODCIStatsSele
tivity, needs to be de
lared in the optimization obje
t in orderto make use of
ustom sele
tivity measures with the extensible optimizer.Cost Fun
tionsAs in the
ase of statisti
s and sele
tivity fun
tions the optimizer has no way of determining the
ostof a parti
ular user-de�ned domain index based a

ess method. The reason again being that theoptimizer has no knowledge of the internal stru
ture of the domain index.Therefore it is an option to spe
ify user-de�ned
ost fun
tions (CF) and asso
iate them with user-de�ned stand-alone fun
tions, pa
kage fun
tions and obje
t type methods. When the optimizer en-34

ounters a predi
ate involving a stand-alone fun
tion, pa
kage fun
tion or obje
t type method withwhi
h a CF has been asso
iated it initiates a
all to this CF. The same is possible with domain indexesand index types ex
ept now the predi
ate referen
es an operator, that
an be evaluated using su
h adomain index.A single fun
tion, ODCIStatsCost, is ne
essary to add
ustom
ost
al
ulations. This fun
tion takesas parameters a des
ription of the operator and the arguments to this operator. The fun
tion returnsa
ost,
onsisting of two
omponents, namely the CPU and I/O
osts. The ODCIStatsCost fun
tionis overridden in order to support both domain indexes and fun
tion operators.3.3.2 Use of Extensible IndexingTurning our attention to the parti
ular problem of developing the temporal
artridge, we have tospe
ify fun
tions for the three tasks of
olle
ting statisti
s, estimating sele
tivity, and
al
ulating
ost. Statisti
s
olle
tion and sele
tivity estimation are
losely linked in the fa
t that the statisti
sare used in the sele
tivity estimation pro
ess. Statisti
s and sele
tivity is likewise used to
al
ulate
ost.To our knowledge no-one has treated the topi
 of estimating statisti
s for temporal data dire
tly, but
on
epts of use
an be found in the spatial temporal resear
h [LKC99℄.Many approa
hes have been given for determining the sele
tivity of queries [MCS88℄, in
luding sam-pling, parametri
 te
hniques, and histograms, where input data is partitioned into a number of subsets
alled bu
kets. Resear
h distinguishes between sele
tivity estimations for 1-dimensional data and formulti-dimensional data [LKC99℄. A

ording to [LKC99℄ histograms are well suited for data with di-mensionality lower than three. Multi-dimensional sele
tivity estimation te
hniques in
lude Hilbertnumbering, multi-level grid �les [PI97℄. Neural networks have been suggested [LZ98℄ as a method forestimating sele
tivity on user-de�ned data types.This
on
ludes the dis
ussion of the Ora
le Extensibility Interfa
e in regards to de�ning user-de�nedobje
t types with the Extensible Type System and user-de�ned domain indexes in the ExtensibleIndexing feature and query optimization fun
tions with the Extensible Optimizer fun
tionality.

35

36

Chapter 4Performan
e TestIn this
hapter we evaluate the performan
e of the
artridge, this is to evaluated whether REQ3 isful�lled. The evaluation is divided into two parts, �rst an evaluation of the index performan
e, andse
ondly a performan
e evaluation of the queries des
ribed in Chapter 2. In the index evaluation, we
ompare the performan
e of the indexes to ea
h other, and to an implementation using native data-types indexed with a B+ tree. The query evaluation will
ompare the performan
e of the augmentedqueries to the performan
e of queries using native data-types, both with and without indexes.4.1 Test SetupThe tests are
ondu
ted on a Ora
le instant equipped with the TerraTele s
hema des
ribed in Chapter2. The software used for the evaluation is as follows.� Ora
le 8.1.6.1.0� SQL*Plus 8.1.6.1.0� Windows 2000 v5.00.2195The hardware used is as follows.� Pro
essor: 400Mhz Pentium II� Memory: 256MB� Disk: 10Gb 4400rpm ATAThe
on�guration of the Ora
le instant is not
hanged from default, whi
h is 14793 disk bu�ers of8192 bytes ea
h.Ea
h test is
ondu
ted �ve times, the fastest and slowest times are removed, and the result is
al
ulatedas the average of the remaining three times.4.2 Index TestsWe
hoose six tests to evaluate the performan
e of the implemented indexes. Two of these tests areaimed at tuning spe
i�
 index parameters on Hilbert and Map21-2, and four are aimed at testing37

the ability of ea
h index to handle di�erent types of data, e.g. long or now-relative Periods. For
omparison we have in
luded an implementation using native data types and B+ indexes.In ea
h measurement we have in
luded four indexes, namely a Hilbert index labeled \Hilbert", a Map21index labeled \Map21", a Map21 index with the Periods divided into a long and short table labeled\Map21-2" and �nally a query using
onventional data types and B+ indexes labeled \Conventional".For these tests we use a standard dataset
onsisting of 50000 tuples ea
h asso
iated with an Period,and uniformly distributed over a period of �ve years. 5 per
ent of the Periods are now-relative. 95per
ent of the remaining Periods have a length uniformly distributed between 10 to 100 days, and 5per
ent a length uniformly distributed between 100 to 1000 days. The size of the datasets are 3.9MBfor the augmented and 2.0MB for the
onventional.The query used for these tests, is a simple overlaps query that returns all Periods that overlap a givenPeriod. The Period used,
over 10 per
ent of the indexed time region.4.2.1 Sear
h Depth of Hilbert IndexOne of the parameters in the Hilbert index is the sear
h depth. This parameter
ontrols how deep asear
h should go down the tree, and thereby how pre
ise the initial sele
tion of Periods is. Adjustingthis parameter is a tradeo� between the
omplexity of
al
ulating sear
h ranges, and the
omplexityof eliminating false Periods.We have in
luded the Map21, Map21-2 and
onventional index in this test, only to serve as referen
emarks. They are not a�e
ted by the sear
h depth, and their performan
e are therefor
onstant.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

T
im

e
in

 s
ec

on
ds

Hilbert search depth

Hilbert
Map21

Map21-2
Conventional

Figure 4.1: Performan
e Relative to Sear
h Depth in the Hilbert IndexAs we
an see from �gure 4.1 the performan
e of the Map21, Map21-2 and Convention indexes remain
onstant, while the performan
e of the Hilbert index improves to a
ertain point, at whi
h is de
reasesrapidly. The in
rease in performan
e is due to fewer false tuples being in
luded in the Hilbert ranges,while the sudden de
rease is due to the time it takes to
al
ulate the Hilbert ranges. The followingtable shows how long it takes to
al
ulate Hilbert ranges at a given depth, and how many ranges arereturned. The table is
al
ulated using the same overlaps query as Figure 4.1.38

Sear
h Depth Ranges returned Time to
al
ulate (se
.)6 20 0,6517 30 1,7928 45 6,6599 95 26,00810 262 102,000We
an see from the table, that the time used to
al
ulate the Hilbert ranges is exponential. Thissuggest that it is better to
al
ulate too few ranges than too many, and that a large number of indexedPeriods is ne
essary to justify going deep into the tree.4.2.2 Index Split of Hilbert and Map21-2 IndexesAnother index tuning parameter is when to
onsider a Period long. This parameter determines thedistribution of Periods between the short period table and the long period table in the Map21-2 andHilbert index.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. of short periods

Hilbert
Map21

Map21-2
Conventional

Figure 4.2: Performan
e Relative to Index Split LimitThe x-axis of Figure 4.2, is the amount of Periods in the data-set that is
onsidered short, and thereforeis stored in the short period table in the Map21-2 and Hilbert indexes.As we
an see from Figure 4.2, this split has a huge e�e
t on the Map21-2, and is optimal when thesmall Periods
onstitute 95 per
ent. This is
onsistent with the distribution of data, where 95 per
entof the Periods is 10 to 100 days in length, and 5 per
ent is between 100 and 1000 days in length. Thesplit limit has very little in
uen
e on the performan
e of the Hilbert index, this may be due to thefa
t that most of the time spent in the Hilbert index is used to
al
ulate Hilbert ranges.4.2.3 Length of PeriodsLong Periods are often a problem with temporal indexes, be
ause they result in both an unevendistribution of Periods between the long Period and short Period tables, and an in
reasingly largesear
h area for querying the indexes. 39

The data used for this test
ontains progressively more long Periods, starting with no long Periodsand ending with only long Periods. Short Periods are between 10 and 100 days, and long Periods arebetween 100 and 1000 days.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. long periods

Hilbert
Map21

Map21-2
Conventional

Figure 4.3: Performan
e Relative to Length of Indexed PeriodsAs expe
ted, Figure 4.3 shows that the performan
e of Map21 degrades even with a small per
entageof long tuples. This is
onsistent with the fa
t that Map21 stores all Periods in one table, and a singlelong Period
an therefore alter the size of the sear
h area for all Periods. The other indexes also su�erfrom a large amount of long Periods, but this may be remedied by
hanging the split limit as theamount of long Periods rise.4.2.4 Now Relative PeriodsThe fourth test is designed to test the ability of the indexes in handling now-relative Periods. Ea
hof the indexes handle now-relative Periods similarly, namely by keeping them separate from the non-now-relative Periods.As we
an see from Figure 4.4, all indexes improve as the per
entage of now-relative Periods rise.This is be
ause querying and indexing now-relative Periods is simpler than non-now-relative Periods.Be
ause the end point of now-relative Periods is known, we only have to index the start point and noHilbert or Map21 translation is ne
essary, thereby making the query simpler. As shown, all augmentedindexes perform that same when indexing 100 per
ent now-relative Periods. This is expe
ted, as allindexes handle now-relative tuples in the same manner.4.2.5 Query AreaThe �fth test is designed to test the ability of ea
h index in handling di�erent size query areas.As Figure 4.5 shows, all indexes handle large query areas fairly well. Not surprisingly Map21 outper-forms both Map21-2 and Hilbert when the query area approximates 100 per
ent of the indexed area.This is be
ause the Map21 algorithm is simpler, but returns many false Periods. This is a problem40

0

5

10

15

20

25

30

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. now-relative periods

Hilbert
Map21

Map21-2
Conventional

Figure 4.4: Performan
e Relative to the Amount of Now-relative Periods in Index

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Size of query area in pct. of index domain

Hilbert
Map21

Map21-2
Conventional

Figure 4.5: Performan
e Relative to Size of Query Area
41

with small queries, but with large queries the amount of false Periods return is small
ompared to theamount of true Periods.4.2.6 Amount of TuplesThe last index test, test the ability of the index in handling large amounts of tuples.

0

50

100

150

200

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

T
im

e
in

 s
ec

on
ds

Number of tuples

Hilbert
Map21

Map21-2
Conventional

Figure 4.6: Performan
e Relative to Amount of TuplesFigure 4.6 shows, that all indexes handle large amounts of data almost equally. Map21 is faster thanboth Map21-2 and Hilbert at 100000 tuples, whereas Map21-2 and Hilbert perform equally throughoutthe range.4.3 Query TestsIn this se
tion we test the performan
e of the queries de�ned in Chapter 2. Both queries using
onventional data types and queries using augmented temporal data types are tested.Ea
h query was tested using a unique dataset without now-relative Periods. Now-relative Periodswas left out of the dataset be
ause none of the queries, based on
onventional data types, supportnow-relative Periods. The algorithm used for
reating the data-sets, is the same as des
ribed in se
tion4.2. The queries were tested using the TerraTele s
hema des
ribed in Chapter 2.In the following se
tions ea
h test
ontains six series. Four series with augmented data-types, namely\Augmented" whi
h is without any index de�ned, and \Map21", \Map21-2" and \Hilbert" for therespe
tive indexes. The last two series uses
onventional data-types, and are named \Conventional"for the one using
onventional data-types and no index, and \B+" for
onventional data-types withB+ indexes. 42

4.3.1 JoinThe data-set used to test the join query
ontains 1000 obje
ts in ea
h of the tables, and is designedas des
ribed in Se
tion 4.2.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.7: Performan
e of the Join QueryAs we
an see from Figure 4.7, the augmented query
annot
ompete with the query using
onventionaldata types. This is be
ause the RDBMS has no knowledge of the semanti
s of user de�ned methods(UDMs), and therefore have to
he
k ea
h Period from the Pri
es table with ea
h Period from theCalls table, resulting in a nested loop
omparison. This nested loop is not ne
essary with
onventionaldata types, be
ause nothing is hidden from the RDBMS, and it
an therefor optimize the query. Thisoptimization
onsists, among other things, of sorting the two tables and thereby only
omparingpossibly overlapping Periods.By adding an index, the nested loop
omparison is made a bit faster as ea
h Period in the Pri
es tableresults in an index s
an instead of a full table s
an. The sele
tivity of the index s
an is determinedby the length of the Periods in the Pri
es table, and is in this
ase roughly 3 per
ent.4.3.2 Set-Di�eren
eThe data-set used to test the set-di�eren
e query
ontains 1000 obje
ts in ea
h of the tables, and isdesigned as des
ribed in Se
tion 4.2.The SQL for the set-di�eren
e query using augmented data types is very similar in stru
ture to thequery using
onventional data types. This similarity
ombined with the added overhead in workingwith UDTs, makes the augmented set-di�eren
e query slower than the
onventional query.4.3.3 Coales
ingThe data-set used for testing the
oales
ing query
ontained 100 unique obje
ts, ea
h
onsisting of 1to 5 tuples, for a total of 311 tuples. This resulted in a
oales
ing fa
tor of 66%.43

0

5

10

15

20

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.8: Performan
e of the Set-Di�eren
e Query

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.9: Performan
e of the Coales
ing Query
44

As shown on Figure 4.9, the augmented index queries are several times faster than the non-indexedaugmented query. Within the augmented index queries, there are virtually no di�eren
e in performan
ebetween the di�erent indexes. This is be
ause the low number of tuples in the table, make theperforman
e di�eren
e of the indexes insigni�
ant. Although the augmented index queries are fasterthan the non-index augmented query, they are slower than the
onventional queries when the sele
tivitygoes up.The
onventional query with the B+ index are slower than the
onventional query without the index.This
ould be avoided by using the
ost based query optimizer, whi
h probably would have sele
tednot to use the index, thus making the indexed query at least as fast as the non-indexed query.4.3.4 AggregationThe data-set used to test the aggregation query
ontains 150 obje
ts, and is designed as des
ribed inSe
tion 4.2.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.10: Performan
e of the Aggregation QueryThe performan
e measurements for the aggregation query is shown on Figure 4.10, where we
an seethat all the augmented queries are equally fast, but the
onventional queries are faster.As expe
ted all the augmented queries are equally fast, this is be
ause the query does not use anyindex optimized operations, and therefore does not bene�t from the generated index.Even though the augmented aggregation query substantial fewer lines of
ode than the
onventionalquery, it is still slower. This is be
ause the query engine
alls the ConstantRegion fun
tion for ea
htuple in the master table, resulting in a full table s
an of the master table for ea
h tuple, resulting ina nested loop.4.3.5 Time-Sli
eThe dataset used to test the time-sli
e query
ontains 50000 obje
ts, and is designed as des
ribed inSe
tion 4.2. 45

0

50

100

150

200

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.11: Performan
e of the Time-Sli
e QueryThe timings for time-sli
e is shown in Figure 4.11, here we
an see that the
onventional query is
onsistently faster than the augmented queries. Among the augmented queries, there is little di�eren
eon Map21-2 and Hilbert, whi
h both are a bit faster than Map21. As the sele
tivity rises above 70per
ent, it be
omes faster to use full table s
ans that to use indexes.The augmented query without indexes takes the same amount of time, regardless of the sele
tivity.This is be
ause regardless of the sele
tivity, it has to do one full table s
an to retrieve the mat
hingtuples.4.4 Evaluation of Performan
eThe basis for this
hapter, was to evaluate the performan
e of the suggested temporal frame-work. The
hapter
ontained a test of the indexes
ompared to using
onventional data-types and B+ indexes,and a test of the queries suggested in Chapter 2. This performan
e evaluation is used, to de
idewhether the suggested frame-work ful�lls REQ3.The implemented temporal indexes was
onsistently slower than the
onventional B+ indexes, sometimes more than 150 times as slow. The temporal indexes did not s
ale as well as B+ indexes, andthe performan
e was more dependent on the stru
ture of the data than the B+ indexes.Based on redu
tion in lines of
ode, the queries tested in this
hapter
an be divided into three groups.The simple queries, the ones that did not bene�t from the augmented temporal data-types and �nallythe ones that did bene�t from the augmented data-types.The performan
e of the simple query, time-sli
e, did not bene�t from the augmentation. It is asimple query, both to express and to exe
ute, and there where little possibility for improvement byaugmentation.The queries that did not bene�t from the augmented data-types was
oales
ing and set-di�eren
e, thestru
ture of these queries did not
hange with the augmented temporal data-types. The performan
eof these queries where very slow
ompared to queries using
onventional data-types, this is probablybe
ause of the added overhead of using UDTs. 46

The last group of queries are those, that improved stru
turally by adding the augmented temporaldata-types, these are the join and aggregation queries. The join query, although simpler to express,was more
omplex to exe
ute. The Overlaps operator translated into a nested loop, where the RDBMSmakes an index sear
h for ea
h Period in the master table. This makes the augmented join slowerthan the
onventional join. The aggregation query su�ers from the same problem as the join query, itis exe
uted as a nested loop. The query was expressed as a join between the virtual table of
onstantregions and the master table. Unfortunately the RDBMS exe
utes the ContinuousRegion fun
tionfor ea
h period in the master table. This nested loop makes the augmented version slower than the
onventional.Based on the performan
e of the indexes and the performan
e of the expressed queries, we
an say thatthe frame-work des
ribed does not meet REQ3. Queries like aggregation
ould improve in performan
eif the RDBMS
he
ked the dependen
ies of the fun
tion before exe
ution, while others like join
ouldnot easily be improved in performan
e.

47

48

Chapter 5Con
lusionCon
luding on the work performed and dis
overies made in this proje
t we �rst list the
ontributionsof the proje
t. Following this, we dis
uss how the goals were met and requirements ful�lled. The testresults of Chapter 4 are summarized and related to the goals and requirements. Finally we dis
usswhat future work is relevant with regards to our task.The
ontributions of this proje
t in relation to the �eld of temporal databases are as follows.� We suggest a way of redu
ing the
omplexity of temporal queries with as mu
h as 95%
omparedto the existing SQL queries. On average the suggested method saves roughly two thirds of thequery measured in lines of
ode.� A hierar
hy of obje
t types
omplying with a

epted resear
h results from over 20 years ofresear
h a
tivities in temporal databases are designed. The obje
t hierar
hy is easily extendibleto en
ompass
on
epts su
h as
ustom
alendars, indetermina
y, and user de�ned granularitiesand time domains, whi
h have so far been limited to resear
h database prototypes.� Theoreti
ally des
ribed indexes are adapted to the new obje
t types, implemented and testedas an extension to a
ommer
ial ORDBMS platform.� The proje
t studies Ora
le's
artridge te
hnology in relation to the implementation of valid timetemporal data.Together all
ontributions serve as a demonstration of a framework for adding
omplex temporalfun
tionality to an existing ORDBMS by en
apsulating it in the database using existing extensibilityfeatures of the ORDBMS.GOAL1 was to examine the possibilities of easing the task of managing now-relative valid-time datain
ommer
ial ORDBMSs. It was shown that it is possible to redu
e the number of lines of
odene
essary to express a temporal query by a fa
tor three. This ful�lls REQ2 whi
h
on
erns simple
ode. The obje
tive is related to REQ4 and REQ5 in the fa
t that the database features needed forpursuing our goal of redu
ing
ode
omplexity via new obje
ts, in fa
t is met by major ORDBMSplatforms. However these features are still not mature enough for also supporting eÆ
ient use of thetemporal data types in queries.GOAL2 was to provide a framework for eÆ
ient exe
ution of temporal statements. It was shown thatit is not possible to a
hieve high performan
e of queries based on the temporal framework in todaysORDBMS platforms. Requirement REQ1 that deals with use of only existing te
hnology,
an thusnot be ful�lled along with REQ3. The performan
e tests indi
ate that the enhan
ed queries exe
uteseveral times slower than the original
ounterparts.49

Overall we
on
lude that while it is possible to redu
e the
omplexity of temporal
ode, the relatedperforman
e degradation is not a

eptable for most appli
ations. With little e�ort from the RDBMSvendors, queries like aggregation
ould be made faster, while others, like join, need a larger amountof work.We think that the
on
ept of a period might be too simple to justify being modeled as an obje
t,and believe that more
omplex obje
ts, su
h as temporal
ontainers, are more suitable. The temporal
ontainers have several bene�ts, among others they allow table operator like fun
tionality, and allowfor more obje
t oriented s
hema design.Future WorkIn this rapport we have des
ribed some of the
hallenges of working with temporal data in ORDBMSs,but before it is possible for
ompanies to use this te
hnology a number of tasks have to be done.We have
reated three indexes, all based on spa
e-�lling
urves. These are just one type of temporalindexes, and it might prove useful to explore other index types, e.g., the R-Tree
ontained in thespatial
artridge [Coo99℄.The user-de�ned obje
ts des
ribed in Chapter 3 is designed and implemented to support multiple
alendars. The
alendar system has not been implemented, but we feel that the added
omplexity ofdealing with user de�ned
alendars might justify the added overhead from the temporal
artridge.Several resear
hers, within both the temporal and spatial resear
h
ommunity, have worked withindeterminate data. The user-de�ned obje
ts de�ned here, would be able to en
apsulate this indeter-mina
y, thus making it almost transparent to the user.The
urrent implementation of the temporal
artridge is done
ompletely in PL/SQL, whi
h is onlyone of the languages supported by Ora
le. Be
ause some of the methods are pro
essor intensive weexpe
t that they are faster when implemented in C or Java.

50

Appendix ASemanti
sThis se
tion introdu
es the semanti
s for the temporal framework applied in the temporal
artridgedeveloped. The appendix has the following stru
ture: First it introdu
es the general semanti
s ofgranularities, operations on basi
 temporal data types, and the new
artridge obje
t types themselves. Then a more detailed semanti
s of the operators on the obje
t types are given.A.1 General Semanti
sA point in time
an be seen as a point on a
ontinuous time line [DELS98℄, beginning at the Big Bang[Wal92℄ and ending at the end of the universe. However, sin
e databases store dis
rete values, weadopt a dis
rete representation of time. This dis
rete representation of time is based on units
alledinstants and are related with the matter of granularity,
alendars and indetermina
y as explained inthe following.Temporal data types su
h as instants are asso
iated with a granularity whi
h spe
i�es to what pre
isionthe information
an be interpreted. A granule is a subset of the time domain and the granularity
anbe de�ned as a mapping G from the set of integers N to granules, su
h that the granules inside thegranularity are non-overlapping and totally ordered [DELS98℄.A relationship exists between granularities, in the fa
t that the granules of a given granularity
an beaggregated into new granules of a
oarser granularity. Similarly a granularity may be �ner than another. If a granularity is
oarser or �ner than an other granularity, we say that the two granularitiesare
omparable. The �ner-than and
oarser-than relationships have been des
ribed as follows.If G and H are two
omparable granularities we
an say that� H is
oarser than G (GEH)� G is �ner than H (GDH)if for ea
h granule h 2 H there exists a set of granules S � G su
hthat h = Sg2S gAn example of these relationships in
lude the fa
ts that a month is �ner than a year (month E year)and that an hour is
oarser than a minute (hour D minute), whereas a week is neither
oarser nor �nerthan a month. The reason for this is that a month is not
omposed of an integer number of weeks.Granularities are given with respe
t to
alendar. We leave the treatment of
alendars to others([SS94℄) ex
ept for the brief introdu
tion in this paragraph. The above mentioned granularities are,51

for example, those of the Gregorian
alendar. A
alendar is thus a partitioning of the underlyingtime line into granules [DS94℄. It provides a mapping between granules and
hara
ter strings andfun
tionality for handling su
h granularities.A.2 Data TypesAs outlined in Se
tion 3.1.1 seven obje
t types are de�ned for the system. S
hemati
ally the datatypes are ordered in a hierar
hy as previously shown in Figure 3.1 on page 25. Semanti
s for the sevenobje
t types are listed in the following paragraphs.A.2.1 InstantA time point is the a
tual moment an event o

urs and is modeled in the dis
rete framework by aninstant. Instants are either determinate or indeterminate. Indeterminate instants store un-pre
ise or\do-not-know-when" information, whereas determinate instants store pre
isely known information.All instants are
omposed of a sequen
e of granules, whi
h is
alled the support. The granules in thesupport are the granules g in granularity G during whi
h the time point of the given event may exist.If the lower granule of this support is equal to the upper granule (i.e. the support
onsists of exa
tlyone granule) it is a determinate instant, otherwise indeterminate.In the following we use the notation g = lG � uG for an instant g in granularity G. lG and uH arethe �rst and last granule of the support respe
tively. We thus have thatlG � uG = fg 2 G j l � g � ugIn the following, instants are referred to by the symbol \ins". An indeterminate instant a and andeterminate instant b is illustrated in Figure A.1 below.
...

ba

1g g g2 3 gnFigure A.1: Indeterminate Instants a and b in Granularity GIn the following instants (Ins) are determinate and
ontains the following:� Granule index i 2 N� Granularity G 2 G
al , where G
al is the set of granularities in
alendar
al.Instants (and other data types) are written with a subs
ript denoting their granularity, e.g. 2000yearsor 2000-15-03days. The following are examples of determinate instants.2000-01-01days The date 1 January year 2000.1976-10-26 09:20:00se
onds The 26 O
tober 1976 at 9:20am.1900years The year 1900.A.2.2 IntervalIntervals represent unan
hored periods of time. If asso
iated with a the valid-time of a fa
t, intervals
ontain only information about the length of time the fa
t was valid, but no information about whenit was. An interval
an be both forward and ba
kward pointing.52

Intervals are mu
h like instants, and
onsists of a granule
ount and a granularity. We de�ne intervalsas a signed number of granules in some granularity G.The determinate intervals (Inv) are referred to by the symbol \inv" in our semanti
s and
onsists of:� Granule
ount i 2 N� Granularity G 2 G
al , where G
al is the granularities in
alendar
al.The following are examples of determinate intervals.1weeks One week.7days 7 days forward from some instant.-8hours 8 hours ba
kward from some instant.A.2.3 Relative InstantA relative instants of granularity G
onsists of an interval and an instant both of granularity G.A relative instant may be of a spe
ial type, e.g., now, whi
h means that the instant is not bound to a timevalue until it is used.Relative instants (Ri)
ontain:� ins: Instant (i; G) 2 Ins� inv: Interval (i; G) 2 InvThe following are examples of relative instants.nowdays - 1days Yesterday.nowdays + 01-00days Same day next month.2000-01-01days - 7days 1999-12-25days.A.2.4 PeriodWe de�ne a period per of granularity G to be a
ontiguous subset of the time domain between two instants i1and i2 represented by granules g1 and g2 both belonging to G. I.e. a period is
omposed of the set of granulesbetween g1 and g2, given that g1 � g2. The granules i1 and i2 are represented by two relative instants.Con
retely periods (Per)
ontain:� ri� Start relative instant (ins; inv) 2 Ri� ri+ End relative instant (ins; inv) 2 RiThe following are examples of periods.[2000-01-01days, 2001-01-01days℄ The time between 2000-01-01 and 2001-01-01.[1988-01-01days, nowdays- 01-00-00days℄ The time from 1988-01-01 to one year ago.[1976-10-26days, nowdays℄ The time from 1976-10-26 until now.[nowweeks- 1weeks, nowweeks℄ The previous week.A.2.5 Instant ContainerThe instant
ontainer data type is a multi set, IC,
ontaining n instants fins1; ins2:::insng.53

A.2.6 Interval ContainerInterval
ontainers, IV C,
ontain n intervals finv1; inv2:::invng.A.2.7 Period ContainerFinally period
ontainers, PC
ontain n periods fper1; per2:::perng.A.3 Basi
 Operations on Temporal Data TypesFour semanti
s are possible for operations on temporal data of non-equal granularities and in all
ases it maybe ne
essary to
onvert between granularities. In the present semanti
 spe
i�
ation we leave it as an option touse any of the four semanti
s whi
h are des
ribed shortly. For
onverting between granularities two operationsare suggested [DELS98℄ : s
ale and
ast. The two di�er in the fa
t that s
ale may return indeterminate data,whereas
ast always returns determinate data. The s
ale and
ast operators are de�ned as follows:s
ale(g;H) The s
ale operator takes as input an instant g = lG � uG in granularity G and another granularityH. It returns an instant h = lH � uH in granularity H su
h that lG � uG � lH � uH . If no su
hinstant exist an error is returned.
ast(g;H) The
ast operator is the determinate version of s
ale and is parameterized with an instant g =lG � uG in granularity G and a granularity H. Cast returns an instant h = lH � uH in H wherelH 2 min(s
ale(lG; H)) and uH 2 min(s
ale(uG; H)). h is thus determinate if input g is determinate.The min fun
tion returns the smallest granule of the (possibly indeterminate) interval given.Examples of the s
ale and
ast fun
tions for instants ares
ale(2000years, months) 2000� 01months � 2000� 12months
ast(2000years, months) 2000� 01monthss
ale(
ast(2000days, months)) 2000� 01monthsSimilar semanti
s
an be given for s
aling and
asting intervals, where an unan
hored interval
an be s
aledto the indeterminate interval in a
oarser granularity. Examples in
ludes
ale(1days, years) 0years � 1years
ast(1days, months) 0monthsGiven two operands o1 and o2 from the set fIns[Invg , a binary operator/predi
ate � 2 f>;<;=;+;�;�g,and two granularities F and C that are �ner respe
tively minimally
oarser than G, we
an express foursemanti
s for operators:Coarser semanti
s o1 � o28><>:s
ale(o1; Go2):i� o2:i if Go1 EGo2o1:i� s
ale(o2; Go1):i if Go1 DGo2s
ale(o1; C):i� s
ale(o2; C):i otherwiseFiner semanti
s o1 � o28><>:o2:i� s
ale(o2; Go1):i if Go1 EGo2s
ale(o1; Go2):i� o2:i if Go1 DGo2s
ale(o1; F):i� s
ale(o2; F):i otherwiseRight operand semanti
s o1 � o2 = s
ale(o1; Go2):i� o2:iLeft operand semanti
s o1 � o2 = o1:i� s
ale(o2; Go1):i54

In the
ase of
oarser semanti
s we s
ale the operand with the �nest granularity to that of the other. Ifthe granularities are not dire
tly
omparable we s
ale to a granularity that is minimally
oarser than bothoperand-granularities (e.g. weeks and months will be s
aled to year).In the
ase of �ner semanti
s the opposite is the
ase. Here we round the
oarsest operand down to that ofthe �nest or one that is �ner than both.Right (left) operand semanti
s s
ales the left (right) operand to that of the right (left) one.Constru
ting and Converting the Data TypesWhen a fun
tion returns a result, the data type is
onstru
ted using the appropriate
onstru
tor operator.For our purpose of spe
ifying a semanti
s it is suÆ
ient to use a simple notation for su
h
onstru
tors. Thenotation is a tuple
ontaining the elements of the data type in question. We add a subs
ript for ea
h tuplefor readability. The notation
an be illustrated as follows.Data type Notationinstant (i; G)insinterval (i; G)invrelative instant (ins; inv)riperiod (ri; ri)perinstant
ontainer (ins1; ins2; : : : ; insn)i
interval
ontainer (inv1; inv2; : : : ; invn)iv
period
ontainer (per1; per2; : : : ; pern)p
Routines for
onverting between data types are spe
i�ed with the pre�x \to ", e.g. ri:to ins(), whi
h
reatesan instant from a relative instant.A.4 Operations of Temporal TypesThis se
tion
ontains a des
ription of all operations available on the seven datatypes introdu
ed above.Notation is based on that mentioned in the previous se
tion, su
h that for example \ins > per:ri+" wouldmean ins
ompared to the end instant of per using either of the
omparison semanti
s.A.4.1 InstantAn instant
onsists of the following operators.We assume that ri�; ri+; ri 2 Ri; G 2 G
al ; ins 2 Ins, and inv 2 InvSyntax Ret Semanti
sins:Granularity() gran ins:Gins1:Smaller(ins2) bool ins1 < ins2ins:Smaller(per) bool ins < per:ri�ins1:Greater(ins2) bool ins1 > ins2ins:Greater(per) bool ins > per:ri+ins1:Equal(ins2) bool ins1 = ins2ins1:T otalyEqual(ins1) bool ins1 = ins2 ^ ins1:G = ins2:Gins:Add(inv) ins ins+ invins:Add(per) ins ins+ per:Duration()ins:Sub(inv) ins ins� invins:Sub(per) ins ins� per:Duration()ins:Cast(G) ins
ast(ins; G)ri:to ins() ins (ri:ins:Add(ri:inv); ri:ins:G)ins55

A.4.2 IntervalAn interval has the following operators.We assume that G 2 G
al ; inv 2 Inv; and i 2 NSyntax Ret Semanti
sinv1:Granularity() gran inv1:�inv1:Smaller(inv2) bool inv1 < inv2inv:Smaller(per) bool inv < per:Duration()inv1:Greater(inv2) bool inv1 > inv2inv1:Equal(inv2) bool inv1 = inv2inv1:T otalyEqual(inv2) bool inv1 = inv2 ^ inv1:� = inv2:�inv:Neg() inv �inv:iinv1:Abs() inv (inv1 inv1:i > 0inv1:Neg() Otherwise:inv1:Sub(inv2) inv inv1 � inv2inv:Sub(per) inv inv � per:Duration()inv1:Add(inv2) inv inv1 + inv2inv:Add(per) inv inv + per:Duration()inv1:Div(inv2) inv inv1inv2inv:Div(per) inv invper:Duration()inv:Cast(G) inv
ast(inv; G)A.4.3 Relative InstantAssuming G 2 G
al ; inv 2 Inv; ri�; ri+; ri 2 Ri; ins 2 Ins; and per 2 Per we spe
ify the operators ofrelative instants below.Syntax Ret Semanti
sri:Granularity() gran ri:ins:Granularity()ri1:Smaller(ri2) bool ri1:to ins():Smaller(ri2:to ins())ri:Smaller(ins) bool ri:to ins():Smaller(ins)ri:Smaller(per) bool ri:to ins():Smaller(per:ri�)ri1:Greater(ri2) bool ri1:to ins():Greater(ri2:to ins())ri:Greater(ins) bool ri:to ins():Greater(ins)ri:Greater(per) bool ri:to ins():Greater(per:ri+)ri1:Equal(ri2) bool ri1:to ins():Equal(ri2:to ins())ri:Equal(ins) bool ri:to ins():Equal(ins)ri1:T otalEqual(ri2) bool ri1:to ins():T otalEqual(ri2:to ins()) ^ ri1:inv(TotalEqual(ri2:inv)ri:Add(inv) ins (ins; ri:inv:Add(inv))riri:Sub(inv) ins (ins; ri:inv:Sub(inv))riri:Add(per) ins (ins; ri:inv:Add(per:Duration())riri:Sub(per) ins (ins; ri:inv:Sub(per:Duration())riri:to ins() ins (ins if ri is of type normal(
urrent system time)ins if ri is of type nowri:Cast(G) ins (ins:Cast(G); inv:Cast(G))riA.4.4 PeriodThe operators of the period data type is as follows:We assume that G 2 G
al ; ins 2 Ins; inv 2 Inv; ri�; ri+; ri 2 Ri; and per 2 Per56

Syntax Ret Semanti
sper:Granularity() gran per:ri�:Gper1:T otalEqual(per2) bool per1:ri�:T otalEqual(per2:ri�) ^ per1:ri+:T otalEqual(per2:ri+)per:Add(inv) per (ri�; ri+:Add(inv))perper1:Add(per2) per per1:Add(per2:Duration())per:Sub(inv) per (ri�; ri+:Sub(inv))perper1:Sub(per2) per per1:Sub(per2:Duration())per:Move(inv) per (ri�:Add(inv); ri+:Add(inv))perper:Move(per) per (ri�:Add(per); ri+:Add(per))perper:Duration() inv per:ri+:Sub(per:ri�)per:Smaller(inv) bool per:Duration():Smaller(inv)per:Greater(inv) bool per:Duration():Greater(inv)per:Equal(inv) bool per:Duration():Equal(inv)per1:Equal(per2) bool per1:ri+:Equals(per2:ri+) ^ per1:ri�:Equals(per2:ri�)per1:Interse
t(per2) per (max(per1:ri�; per2:ri�); min(per1:ri+; per2:ri+))perper1:Contains(per2) bool per2:ri�:Greater(per1:ri�) ^ per2:ri+:Smaller(per1:ri+)per:Contains(ins) bool per:ri�:Smaller(ins) ^ per2:ri+:Greater(ins)per:Contains(ri) bool per:ri�:Smaller(ri:to ins()) ^ per2:ri+:Greater(ri:to ins())per1:RightOverlaps(per2) bool per1:ri+:Greater(per2:ri+) _ per1:ri�:Smaller(per2:ri+)per1:LeftOverlaps(per2) bool per1:ri+:Greater(per2:ri�) _ per1:ri�:Smaller(per2:ri�)per1:StartsInside(per2) bool per1:ri�:Greater(per2:ri�) _ per1:ri�:Smaller(per2:ri+)per1:EndsInside(per2) bool per1:ri+:Greater(per2:ri�) _ per1:ri+:Smaller(per2:ri+)per1:Overlaps(per2) bool per1:ri+:Greater(per2:ri�) _ per1:ri�:Smaller(per2:ri+)per:Overlaps(ins) bool per:ri�:Smaller(ins) ^ per2:ri+:Greater(ins)per:Overlaps(ri) bool per:ri�:Smaller(ri:to ins()) ^ per2:ri+:Grater(ri:to ins())per1:Meets(per2) bool per1:ri�:Equal(per2:ri+) _ per1:ri+:Equal(per2:ri�)per:Meets(ins) bool per:ri�:Equal(ins) _ per:ri+:Equal(ins)per:Meets(ri) bool per:ri�:Equal(ri:to ins()) _ per:ri+:Equal(ri:to ins())per1:P re
edes(per2) bool per1:ri+:Smaller(per2:ri�)per:Pre
edes(ins) bool per1:ri+:Smaller(ins)per:Pre
edes(ri) df bool per1:ri+:Smaller(ri:to ins())per1:Su

edes(per2) bool per1:ri�:Greater(per2:ri+)per:Su

edes(ins) bool per1:ri�:Greater(ins)per:Su

edes(ri) bool per1:ri�:Greater(ri:to ins())per:Cast(G) per (per1:ri�:Cast(G); per1:ri+:Cast(G)perA.4.5 Instant ContainerThe semanti
s of the available operators on instant
ontainers are listed below. First operators whi
h are alsofound on the instant data type is listed. Following, set operators appli
able to instant
ontainers are listed.G 2 G
al , ins 2 Ins, inv 2 Inv, ri�; ri+; ri 2 Ri, per 2 Per, n 2 N

57

Instant Container Semanti
sSyntax Ret Semanti
sIC:Granularity() gran 8<:ins:Granularity()where ins 2 PC if granularity is homoge-neous in the
ontainererror otherwiseIC1:Smaller(IC2) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(IC:Smallest())gIC:Smaller(ins) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(ins)gIC:Smaller(ri) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(to ins(ri))gIC:Smaller(per) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(per:ri�)gIC1:Greater(IC2) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(IC:Greatest())gIC:Greater(ins) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(ins)gIC:Greater(ri) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(to ins(ri))gIC:Greater(per) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(per:ri+)gIC1:Equal(IC2) IC fins0 j IC1:Contains(ins0) ^ IC2:Contains(ins0)gIC:Equal(ins) IC fins0 j IC1:Contains(ins0) ^ ins0:Equal(ins)gIC:Equal(ri) IC fins0 j IC1:Contains(ins0) ^ ins0:Equal(to ins(ri))gIC1:T otalEqual(IC2) bool 8ins0(ins0 2 IC2 ^ IC1:Contains(ins0)) ^8ins(ins 2 IC1 ^ IC2:Contains(ins))IC:Add(ins) IC (ins1:Add(ins); ins2:Add(ins); : : : ; insn:Add(ins))ICIC:Add(per) IC (ins1:Add(per); ins2:Add(per); : : : ; insn:Add(per))ICIC:Sub(ins) IC (ins1:Sub(ins); ins2:Sub(ins); : : : ; insn:Sub(ins))ICIC:Sub(inv) IC (ins1:Sub(inv); ins2:Sub(inv); : : : ; insn:Sub(inv))ICIC:Sub(per) IC (ins1:Sub(per); ins2:Sub(per); : : : ; insn:Sub(per))ICIC1:Interse
t(IC2) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Interse
t(ins) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Interse
t(ri) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Interse
t(per) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Contains(IC2) bool 8ins0(IC2:Contains(ins0) ^ IC1:Contains(ins0))IC:Contains:(ins) bool 9ins0(IC:Contains(ins0) ^ ins:Equal(ins0))IC:Contains(ri) bool 9ins0(IC:Contains(ins0) ^ to ins(ri):Equal(ins0))IC:Contains(per) bool 9ins0(IC:Contains(ins0) ^ per:Contains(ins0))IC1:Overlaps(IC2) bool IC1:Contains(IC2)IC:Overlaps(ins) bool IC1:Contains(ins)IC:Overlaps(ri) bool IC1:Contains(ri)IC:Overlaps(per) bool IC1:Contains(per)IC:Greatest() ins fins j ins 2 IC ^ :9ins0(IC:Contains(ins0) ^ ins0:Smaller(ins))IC:Smallest() ins fins j ins 2 IC ^ :9ins0(IC:Contains(ins0) ^ ins0:Greater(ins))IC:Count() num nIC:Dupli
ates() bool 9ins9ins0(IC:Contains(ins) ^ IC:Contains(ins0) ^ ins:Equal(ins0))

58

Instant Container Semanti
sIC:Coales
e() IC Returns the
oales
ed version of IC, i.e. where du-pli
ate instan
es have been
ombined into just oneinstant.IC:Cast(G) IC (ins1:Cast(G); ins2:Cast(G); : : : ; insn:Cast(G))ICIC:AddInstant(ins) IC fins0 j IC:Contains(ins0) _ ins0:Equals(ins)gIC:AddInstant(ri) IC fins0 j IC:Contains(ins0) _ ins0:Equals(to ins(ri))gIC:RemoveInstant(ins) IC fins0 j IC:Contains(ins0) ^ :ins0:Equals(ins)gIC:RemoveInstant(ri) IC fins0 j IC:Contains(ins0) ^ :ins0:Equals(to ins(ri))g

59

A.4.6 Interval ContainerThe semanti
s of various operations on interval
ontainers is given below. As in the
ase of instant
ontainersabove, we �rst spe
ify operations inherited from intervals, then set and other operations.Given G 2 G
al ; inv 2 Inv; per 2 Per; and n 2 N we have the following operations on interval
ontainers.

60

Interval Container Semanti
sSyntax Ret Semanti
sIV C:Granularity() gran 8<:inv:Granularity()where inv 2 IV C if granularity is homoge-neous in the
ontainererror otherwiseIV C1:Smaller(IV C2) IVC finv0 j IV C:Contains(inv0) ^ ins0:Smaller(IV C:Smallest())gIV C:Smaller(inv) IVC finv0 j IV C:Contains(inv0) ^ ins0:Smaller(inv))gIV C:Smaller(per) IVC finv0 j IV C:Contains(inv0) ^ ins0:Smaller(per:Duration()))gIV C1:Greater(IV C2) IVC finv0 j IV C:Contains(inv0) ^ ins0:Greater(IV C:Greatest())gIV C:Greater(inv) IVC finv0 j IV C:Contains(inv0) ^ ins0:Greater(inv))gIV C:Greater(per) IVC finv0 j IV C:Contains(inv0) ^ ins0:Greater(per:Duration()))gIV C1:Equal(IV C2) IVC finv0 j IV C1:Contains(inv0) ^ IV C2:Contains(inv0)gIV C:Equal(inv) IVC finv0 j IV C1:Contains(inv0) ^ ins0:Equal(inv)gIV C:Equal(per) IVC finv0 j IV C1:Contains(inv0) ^ ins0:Equal(per:Duration())gIV C1:T otalEqual(IV C2) bool 8inv0(IV C2:Contains(inv0)) IV C1:Contains(inv0)) ^8inv(IV C1:Contains(inv)) IV C2:Contains(inv))IV C:Sub(inv) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Sub(inv):Equals(inv0))gIV C:Sub(per) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Sub(per):Equals(inv0))gIV C:Add(inv) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Add(inv):Equals(inv0))gIV C:Add(per) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Add(per):Equals(inv0))gIV C:Div(inv) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Div(inv):Equals(inv0))gIV C:Div(per) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Div(per):Equals(inv0))gIV C:Neg() IVC finv0 j 9inv(IV C:Contains(inv) ^ inv0:Equals(inv:Neg()))gIV C:Abs() IVC finv0 j 9inv(IV C:Contains(inv) ^ inv0:Equals(inv:Abs()))gIV C2:Interse
t(IV C2) IVC finv0 j IV C1:Contains(inv0) ^ IV C2:Contains(inv0)gIV C:Interse
t(inv) IVC IV C:Equal(inv)IV C:Interse
t(per) IVC IV C:Equal(per)IV C1:Contains(IV C2) bool 8inv0(IV C1:Contains(inv0) ^ IV C2:Contains(inv0))IV C:Contains(inv) bool 9inv0(IV C:Contains(inv0) ^ inv:Equal(inv0))IV C:Contains(per) bool 9inv0(IV C:Contains(inv0) ^ per:Duration():Equal(inv0))IV C1:Overlaps(IV C2) bool IV C1:Contains(IV C2)IV C:Overlaps(inv) bool IV C1:Contains(inv)IV C:Overlaps(per) bool IV C1:Contains(per)IV C:Greatest() inv finv j IV C:Contains(inv) ^ :9inv0(IV C:Contains(inv0) ^ inv0:Greater(inv))gIV C:Smallest() inv finv j IV C:Contains(inv) ^ :9inv0(IV C:Contains(inv0) ^ inv0:Smaller(inv))gIV C:Count() num nIV C:Dupli
ates() bool 9inv; inv0(IV C:Contains(inv) ^ IV C:Contains(inv0) ^ inv:Equals(inv0))

61

Interval Container Semanti
sIC:Coales
e() IC Returns the
oales
ed version of IVC, i.e. wheredupli
ate instan
es have been
ombined into justone interval of the given size and granularity.IV C:Cast(G) IVC (inv1:Cast(G); inv2:Cast(G); : : : ; invn:Cast(G))IV CIV C:AddInterval(inv) IVC finv0 j IV C:Contains(inv0) _ inv0:Equals(inv)gIV C:AddInterval(per) IVC finv0 j IV C:Contains(inv0) _ inv0:Equals(per:Duration())gIV C:RemoveInterval(inv) IVC finv0 j IV C:Contains(inv0) ^ :inv0:Equals(inv)gIV C:RemoveInterval(per) IVC finv0 j IV C:Contains(inv0) ^ :inv0:Equals(per:Duration())g

62

A.4.7 Period ContainerThe semanti
s of a period
ontainer is listed below, on
e again with period operations �rst, then set operations.Given G 2 G
al ; ins 2 Ins; inv 2 Inv; ri�; ri+; ri 2 Ri; per 2 Per; and n 2 N we spe
ify the followingoperations.

63

Period Container Semanti
sSyntax Ret Semanti
sPC:Granularity() gran 8<:per:Granularity()where per 2 PC if granularity is homoge-neous in the
ontainererror otherwisePC1:Smaller(PC2) PC fper0 j PC1:Contains(per0) ^ per0:Duration():Smaller(PC2:Smallest():Duration())gPC:Smaller(inv) PC fper0 j PC:Contains(per0) ^ per0:Duration():Smaller(inv)gPC1:Greater(PC2) PC fper0 j PC1:Contains(per0) ^ per0:Duration():Greater():(PC2:Greatest():Duration())gPC:Greater(inv) PC fper0 j PC:Contains(per0) ^ per0:Duration():Greater(inv)gPC1:Equal(PC2) PC fper0 j PC1:Contains(per0) ^ PC2:Contains(per0)gPC:Equal(inv) PC fper0 j PC1:Contains(per0) ^ per0:Duration():Equal(inv)gPC:Equal(per) PC fper0 j PC1:Contains(per0) ^ per0:Equal(per)gPC1:T otalEqual(PC2) bool 8per0(PC2:Contains(per0) ^9per00(PC1:Contains(per00) ^per00:Equals(per0))) ^ 8 per(PC1:Contains(per) ^9per000(PC1:Contains(per000) ^ per000:Equals(per))PC:Sub(inv) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Sub(inv):Equals(per0)gPC:Sub(per) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Sub(per):Equals(per0)gPC:Add(inv) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Add(inv):Equals(per0)gPC:Add(per) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Add(per):Equals(per0)gPC:Durations() IVC finv0 j 9per(PC:Contains(per)^ per:Duration:Equals(inv0))gPC:Move(inv) PC fper0 j 9per(PC:Contains(per)^ per:Move(inv):Equals(per0))gPC:Move(per) PC fper0 j 9per(PC:Contains(per)^ per:Move(per):Equals(per0))gPC1:Overlaps(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Overlaps(per0))PC:Overlaps(per) bool 9per0(PC1:Contains(per0) ^ per0:Overlaps(per))PC:Overlaps(ins) bool 9per0(PC1:Contains(per0) ^ per0:Overlaps(ins))PC:Overlaps(ri) bool 9per0(PC1:Contains(per0) ^ per0:Overlaps(ri))PC1:Meets(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Meets(per0))PC:Meets(per) bool 9per0(PC1:Contains(per0) ^ per0:Meets(per))PC:Meets(ins) bool 9per0(PC1:Contains(per0) ^ per0:Meets(ins))PC:Meets(ri) bool 9per0(PC1:Contains(per0) ^ per0:Meets(ri))PC1:P re
edes(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Pre
edes(per0))PC:Pre
edes(per) bool 9per0(PC1:Contains(per0) ^ per0:P re
edes(per))PC:Pre
edes(ins) bool 9per0(PC1:Contains(per0) ^ per0:P re
edes(ins))PC:Pre
edes(ri) bool 9per0(PC1:Contains(per0) ^ per0:P re
edes(ri))PC1:Su

eeds(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Su

eeds(per0))PC:Su

eeds(per) bool 9per0(PC1:Contains(per0) ^ per0:Su

eeds(per))PC:Su

eeds(ins) bool 9per0(PC1:Contains(per0) ^ per0:Su

eeds(ins))PC:Su

eeds(ri) bool 9per0(PC1:Contains(per0) ^ per0:Su

eeds(ri))

64

Period Container Semanti
sPC:Cast(G) PC (per1:Cast(G); per2:Cast(G); : : : ; pern:Cast(G))PCPC:Remove(inv) PC fper0 j PC:Contains(per0) ^ :per0:Equals(per)gPC:Remove(per) PC fper0 j PC:Contains(per0) ^ :per0:Equals(per)gPC1:Contains(PC2) bool 8per0(PC2:Contains(per0) ^ PC1:Contains(per0))PC:Contains(per) bool 9per0(PC:Contains(per0) ^ per0:Equals(per))PC:Contains(inv) bool 9inv0(PC:Contains(per0) ^ inv0:Duration():Equals(inv))PC2:Interse
t(PC2) PC fper j PC1:Contains(per) ^ PC2:Contains(per)gPC1:Union(PC2) PC fper j PC1:Contains(per) _ PC2:Contains(per)gPC:Largest() PC fper j PC:Contains(per) ^ :9per0(PC:Contains(per0) ^ per0:Su

edes(per))gPC:Smallest() PC fper j PC:Contains(per) ^ :9per0(PC:Contains(per0) ^ per0:P re
edes(per))gPC:Count() num nPC:Dupli
ates() bool 9per9per0(PC:Contains(per) ^ PC:Contains(per0) ^ per:Equals(per0))PC:Coales
e() PC Returns PC0 whi
h is the
oales
ed version of PC, i.e. all du-pli
ates have been merged into just one single periodPC:T imeSli
e(ins) bool 9per(PC:Contains(per)^ per:Contains(ins))PC:T imeSli
e(per) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Overlaps(per)^ per0:Equals(per:Interse
t(per00)))gPC:Cover() per (PC:Smallest:ri�; PC:Largest():ri+)per65

66

Bibliography[BBM+99℄ M. B�ohlen, L. Bukauskas, R. Marti, R. T. Snodgrass, and C. S. Jensen. Tiger, 1999. Implementa-tion of Tiger
an be downloaded from the Tiger web pages at URL: http://www.
s.au
.dk/ tiger.[BBS98℄ M. B�ohlen, R. Busatto, and C. S.Jensen. Point versus Interval-based Temporal Data Models.Te
hni
al report, TimeCenter, January 1998.[BJ96℄ M. H. B�ohlen and C. S. Jensen. A Seamless Integration of Time into SQL. Te
hni
al report, Te
h-ni
al Report R-96{2049, Aalborg University, Department of Computer S
ien
e, Frederik BajersVej 7E, DK{9220 Aalborg �st, Denmark, De
ember 1996.[BJ97℄ M. H. B�ohlen and C. . Jensen. Temporal Statement Modi�ers. Available viahttp://www.
s.au
.dk/resear
h/DBS/tea
hing/DAT5E99/tdb2.ps.gz, 1997.[BJSS95℄ M. B�ohlen, C. S. Jensen, A. Steiner, and R. Snodgrass. Implementation of TimeDB
an be down-loaded at URL: http://www.iesd.au
.dk/general/DBS/tdb/TimeCenter/Software/TimeDB.tar.gz,1995.[BJSS98℄ R. Bliujute, C. S. Jensen, S. Saltenis, and G. Slivinskas. Light-Weight Indexing of General Bitem-poral Data. Te
hni
al report, TimeCenter, September 1998.[B�oh95℄ M. B�ohlen. Temporal Database System Implementations. ACM SIGMOD Re
ord, 24(4), De
ember1995.[BSS97℄ M. B�ohlen, R. T. Snodgrass, and M. D. Soo. Coales
ing in Temporal Databases. Te
hni
al report,TimeCenter, April 1997.[BSSJ98℄ R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. Developing a DataBlade for a New Index.Te
hni
al report, TimeCenter, September 1998.[Coo99℄ Ora
le Coorporation. Ora
le8i Spatial. http://te
hnet.ora
le.
om/do
.pdf/inter.815/a67295.pdf,February 1999.[Dav00℄ Judith R. Davis. Ibm db2 universal database : Building extensible, s
alable business solutions.IBM Coorporation, http://www-4.ibm.
om/software/data/pubs/papers/db2udb/db2udb.pdf, Feb2000.[dBS96℄ Jo
hen Van den Ber
ken and Bernhard Seeger. Query pro
essing te
hniques for multiversion a

essmethods. In T. M. Vijayaraman, Alejandro P. Bu
hmann, C. Mohan, and Nandlal L. Sarda, editors,VLDB'96, Pro
eedings of 22th International Conferen
e on Very Large Data Bases, September 3-6,1996, Mumbai (Bombay), India, pages 168{179. Morgan Kaufmann, 1996.[DELS98℄ C. E. Dyreson, W. S. Evans, H. Lin, and R. T. Snodgrass. EÆ
iently Supporting TemporalGranularities. Te
hni
al report, TimeCenter, 1998.[DLM97℄ B. Daniell, J. Leland, and D. Maneval. INFORMIX Universal Server,DataBlade API Programmer's manual, June 1997. Available online fromhttp://www.informix.
om/answers/english/do
s/912ius/4115.pdf.[DS91℄ C. E. Dyreson and R. T. Snodgrass. Temporal Indetermina
y. Te
hni
al Report TR 91-30,University of Arizona Department of Computer S
ien
e, De
ember 1991.[DS94℄ C. E. Dyreson and R. T. Snodgrass. Temporal Granularity and Indetermina
y: Two Sides of theSame Coin. Te
hni
al Report TR 94-06, uaz
sd, Feb. 1994.[DSJ93℄ C. E. Dyreson, R. T. Snodgrass, and C. S. Jensen. On the Semanti
s of \Now" in TemporalDatabases. TempIS Te
hni
al Report 42, University of Arizona Department of Computer S
ien
e,April 1993. 67

[FP97℄ S. Feuerstein and B. Pribyl. Ora
le PL/SQL programming. O'Reilly & Asso
iates, In
., se
ondedition, 1997.[GJ97℄ H. Gregersen and C. S. Jensen. Temporal Entity-Relationship Models - a Survey. Te
hni
al report,TimeCenter, January 1997.[Gut99℄ R. Gutman. Spa
e-Filling Curves in Geospatial Appli
ations. Dr. Dobbs Journal, July 1999.[Je98℄ C. S. Jensen and C. E. Dyreson [eds℄. A Consensus Glossary of Temporal Database Con
epts.In Temporal Databases: Resear
h and Pra
ti
e. (the book grow out of a Dagstuhl Seminar, June23-27, 1997), number 1, pages 367{405. Springer, February 1998.[Jen99℄ C. S. Jensen. Temporal Database Management. August 1999. http://www.
s.au
.dk/~
sj/Thesis/.[KS95℄ N. Kline and R.T. Snodgrass. Computing Temporal Aggregates. In Pro
eedings of the IEEEInternational Conferen
e on Database Engineering, 1995, Tapei, Taiwan, Mar
h 1995.[LKC99℄ J. Lee, D. Kim, and C. Chung. Multi-dimensional Sele
tivity Estimation Using Compressed His-togram Information. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD 1999,Pro
eedings ACM SIGMOD International Conferen
e on Management of Data, June 1-3, 1999,Philadephia, Pennsylvania, USA, pages 205{214. ACM Press, 1999.[LO99℄ D. Lorentz and D. Oertel. Ora
le8i SQL Referen
e, release 8.1.5. Ora
le Coorporation, February1999.[LZ98℄ M. S. Lakshmi and S. Zhou. Sele
tivity Estimation in Extensible Databases - A Neural NetworkApproa
h. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB'98, Pro
eedings of 24rdInternational Conferen
e on Very Large Data Bases, August 24-27, 1998, New York City, NewYork, USA, pages 623{627. Morgan Kaufmann, 1998.[MCS88℄ M. V. Mannino, P. Chu, and T. Sager. Statisti
al Pro�le Estimation in Database Systems. Com-puting Surveys, 20(3):191{221, 1988.[ME00℄ J. Melton and A. Eisenberg. SQL Standardization: The Next Steps. SIGMOD Re
ord, 29(1),Mar
h 2000.[Mel96℄ J. Melton. SQL/Temporal. ISO/IEC JTC1/SC 21/WG 3 DBL-MCI-0012, July 1996.[MLI99℄ B. Moon, I. F. V. L�opez, and V. Immanuel. S
alable Algorithms for Large Temporal Aggregation.In Pro
eedings of the 15th International Conferen
e on Data Engineering, 23-26 Mar
h 1999,Sydney, Austrialia. IEEE Computer So
iety, 1999.[ND98℄ M. A. Nas
imento and M. H. Dunham. Indexing Valid Time Databases Via B+-trees - The MAP21Approa
h. Te
hni
al report, TimeCenter, Mar
h 1998.[PI97℄ Viswanath Poosala and Yannis E. Ioannidis. Sele
tivity estimation without the attribute valueindependen
e assumption. In Matthias Jarke, Mi
hael J. Carey, Klaus R. Dittri
h, Frederi
k H.Lo
hovsky, Peri
les Lou
opoulos, and Manfred A. Jeusfeld, editors, VLDB'97, Pro
eedings of 23rdInternational Conferen
e on Very Large Data Bases, August 25-29, 1997, Athens, Gree
e, pages486{495. Morgan Kaufmann, 1997.[PJ98℄ D. Pfoser and C. S. Jensen. In
remental Join of Time-Oriented Data. Te
hni
al report, Time-Center, September 1998.[RCG+99℄ D. Raphaely, M. Cyran, J. Gibb, V. Krishnamurthy, M. Krishnaprasad, J. Melni
k, and R. UrbanoR. Smith. Appli
ation Developer's Guide - Fundamentals. Ora
le Coorporation, release 8.1.5edition, Feburay 1999.[RP92℄ J. F. Roddi
k and J. D. Patri
k. Temporal Semanti
s in Information Systems { A Survey. Infor-mation Systems, 17(3):249{267, O
tober 1992.[RRM99℄ D. Raphaely, J. Rawles, and C. Murray. Ora
le8i Data Cartridge Developer's guide. Ora
leCoorporation, release 2 (8.1.6) edition, De
ember 1999.[RS87℄ L. Rowe and M. Stonebraker. The postgres papers. Te
hni
al Report UCB/ERL M86/85, Uni-versity of California, Berkeley, CA, June 1987.[Sam84℄ Hanan Samet. The quadtree and related hierar
hi
al data stru
tures. Computing Surveys,16(2):187{260, 1984.[SKS97℄ A. Silbers
hatz, H. F. Korth, and S. Sudarsahn. Database System Con
epts. M
Graw-Hill, thirdedition, 1997. 68

[SN98℄ J. R. O. Silva and M. A. Nas
imento. An In
remental Index for Bitemporal Databases. Te
hni
alreport, TimeCenter, November 1998.[Sno95℄ R. T. Snodgrass. The TSQL2 Temporal Query Language. Number 0-7923-9614-6. Kluwer A
ademi
Publishers, 1995.[Sno00℄ R. Snodgrass. Developing Time-Oriented Appli
ations in SQL. Morgan Kaufmann, 2000.[SS94℄ R. T. Snodgrass and M. Soo. Supporting Multiple Calendars in TSQL2: An Overview.
ommen-tary, TSQL2 Design Committee, September 1994.[TGJ99℄ K. Thrys�e, B. Gundersen, and T. J�rgensen. Optimizing Algorithms for Temporal Set Di�eren
e.May 1999.[Thr00℄ K. Thrys�e. Extending the Ora
le8i ORDBMS for Temporal Data. PostS
ript available fromhttp://www.
s.au
.dk/~suaq/extendingOra
le.ps, January 2000.[TJS98℄ K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum Approa
hes to Temporal DBMS Imple-menations. In Jianhua Shao Barry Eaglestone, Bipin C. Desai, editor, Pro
eedings of the 1998International Database Engineering and Appli
ations Symposium, Cardi�, Wales, U.K., July 8-10, 1998, pages 4{13. IEEE Computer So
iety, 1998.[Wal92℄ R. M. Wald. Spa
e, Time and Gravity: the Theory of the Big Bang and Bla
k Holes. Universityof Chi
ago, 2nd edition, 1992.[WJW98℄ Y. Wu, S. Jajodia, and X. S. Wang. Temporal Database Bibliography Update. In TemporalDatabases: Resear
h and Pra
ti
e. (the book grow out of a Dagstuhl Seminar, June 23-27, 1997),pages 338{366. Springer, 1998.[YC91℄ C. Yau and G. S. W. Chat. TempSQL { A Language Interfa
e to a Temporal Relational Model.Information S
. & Te
h., pages 44{60, O
tober 1991.[YWY99℄ J. Yang, J. Widom, and H. C. Ying. TIP: A Temporal Extension to Informix. Available viahttp://www-db.stanford.edu/pub/papers/yyw-tipdemp.ps. Demonstration des
ription., O
tober1999.

69

