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A large number of applications manage time
varying data most of them in an ad-hoc manner,
with all temporal logic stored in the application
layer. This is because none of the major OR-
DBMS vendors actively support management of
temporal data as proposed by researchers.

This project aims to migrate parts of the
large amount of research done on temporal
databases into existing ORDBMS technology.
The principal goals of the project is to examine
two matters: One, if the task of managing
temporal data in current ORDBMSs can be
eased by extending it with custom ADTs and
procedures. Two, to examine if such an exten-
sion can support efficient execution of known
temporal queries. A practical approach is taken
to these matters, and as a part of the answer
an Oracle cartridge is designed and implemented.

The report is structured in three parts. The
first concerns the reduction of code complexity.
The second describe implementation specifics.
Finally, the third part contains performance
measurements and evaluations.

The result shows that although it is possible
to obtain a substantial reduction in code com-
plexity, the maturity of database extensibility
features prevent efficient execution of temporal
queries, thus limiting the usefulness of a tempo-
ral cartridge.
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Mange applikationer handterer data der varierer
over tid, de fleste pa en ad-hoc made, hvor den
temporale logik ligger i applikations laget. Dette
er ikke overaskene, da ingen af de store OR-
DBMS leverandgrer aktivt stgtter handteringen
af temporal data.

Malet med dette projekt er, at ggre dele af den
store maengde temporal forskning der er lavet
tilgeengelig pa eksisterende ORDBMS teknologi.
I projektet undersgger vi to ting, for det forste
om det er muligt at lette arbejdet med temporal
data i de nuveerende ORDBMSer ved hjalp af
ADTer og bruger definerede funktioner. For
det andet, om sadanne udvidelser understgtter
effektiv eksekvering af temporale forspgrgsler. I
projektet er der taget en praktisk tilgangsvinkel
til disse spgrgsmal, og et Oracle cartridge er
designet og implementeret.

Rapporten er indelt i tre dele, den fgrste omhan-
dler reduktion i kode kompleksiteten, den anden
beskriver implementations detaljer, den sidste
indeholder hastighedsmalinger og evaluering.

Resultaterne viser, at selvom det er muligt at
opna en stor reduktion i antal linier kode, sa
forhindrer det lave modenhendsniveau af OR-
DBMS udvidelses teknologien effektiv udfgrelse
af temporale forspgrgsler, og dermed mindskes
brugbarheden af et temporalt cartridge.
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Preface

This report is the outcome of a master thesis project carried out at the Department of Computer
Science at Aalborg University, Aalborg, Denmark.

The thematic frame for the thesis project is database systems. Within this frame, it is chosen to
take a practical approach to the integration of support for time-varying data in existing database
management systems.

The report is organized as follows. Chapter 1 contains an introduction to the initial problem of the
project along with a definition of goals and requirements for the project. Chapter 1 also relates
the work of developing a temporal cartridge to other topics from the temporal research community.
Chapter 2 contains a discussion of how to reduce the expressional complexity of temporal queries. The
chapter presents two example databases and identifies a number of interesting temporal query types,
each of which are expressed for both example databases. The difference in query code complexity
in the two databases is finally shown. Chapter 3 discusses concrete implementation considerations
in relation to the extensibility features of the Oracle object-relational database. Chapter 4 presents
the results of a performance test carried out for a subset of the features designed for the temporal
cartridge. The test includes methods for indexing periods and the execution of the identified temporal
query types. Finally, Chapter 5 concludes on the feasibility of designing a temporal cartridge. This
evaluation is based on the goals and requirements defined in Chapter 1.

Aalborg, June 12" 2000

Bo Gundersen Kim Thrysge



ii



Contents

Introduction

1.1 Goals and Requirements . . . . . . . . . .. L

1.2 Related work . . . . . . . . e

Expressing Temporal Queries

2.1 Temporal Query Types. . . . . . . . . . e e e

2.2 Schema for TerraTele . . . . . . . . . . o o e

2.3 Temporal Queries . . . . . . . . . L
2.3.1 Expressing Join . . . . . . ..o
2.3.2 Expressing Set Operations . . . . . . . . . . . ... oo
2.3.3 Expressing Coalescing . . . . . . . . ... e
2.3.4 Expressing Time-slice . . . . . . . . ... L
2.3.5 Expressing Aggregation . . . . .. ... L

2.4 Evaluation of Code Complexity . . . . . . . . ... .

Cartridge Design

3.1 User-Defined Object Types . . . . . . . . . . . i
3.1.1 Extensible Type System . . . . . . . . . .. . L
3.1.2 Limitations of the DBMS Extensible Type System . . . ... ... .. ... ..
3.1.3 The New Object Types . . . . . . o ot e e

3.2 Indexes . . . . . . . . e e
3.2.1 Extensible Indexing . . . . . . ... Lo
322 Index Scans . . . . . . . . . e
3.2.3 MAP2L . . ..
3.24 Hilbert Index . . . . . . . . .

3.3 Optimization . . . . . .. . e e e e
3.3.1 Extensible Optimizer . . . . . . . . . .. ..
3.3.2 Use of Extensible Indexing . . . . . .. .. ... ... .. .

Performance Test

4.1 Test Setup . . . o o . e e e

4.2 Index Tests . . . . . . o o o e e
4.2.1 Search Depth of Hilbert Index . . . . . .. ... ... .. ... ... ......
4.2.2 Index Split of Hilbert and Map21-2 Indexes . . . . . . . ... ... ... ....
4.2.3 Length of Periods . . . ... . ... ... . . ..
4.24 Now Relative Periods . . . . . .. ... ... .
425 Query Area . . . . .
426 Amount of Tuples . . . . . . . . . .

4.3 Query Tests . . . . . . L e
4.3.1 Join . . ...
4.3.2 Set-Difference . . . . . . .. L
4.3.3 Coalescing . . . . . . . . o
434 Aggregation . . . . . ..

iii



4.3.5 Time-Slice . . . . . . . e 45

4.4 Evaluation of Performance . . . . . . . . . . . . . ..o 46
5 Conclusion 49
A Semantics 51

A.1 General Semantics . . . . . . . . e e e e e e 51

A2 Data Types . . . o o oo e e e e 52

A21 Instant . . . . . . . . 52
A2.2 Interval . . . . . . .o 52
A.23 Relative Instant . . . . . . . . ..o 53
A24 Period . . . . .. e e e 53
A.2.5 Instant Container. . . . . . . . . . . . . . e e e e 53
A.2.6 Interval Container . . . . . . . . . . . . . . . e e 54
A.2.7 Period Container . . . . . . . . . . ... 54
A.3 Basic Operations on Temporal Data Types . . . . .. . . . .. .. .. ... ...... 54
A.4 Operations of Temporal Types . . . . . . . . 0 ittt e e 55
A4l Instant . . . . . L e e e 55
A4.2 Interval . . . . . . e e e 56
A.4.3 Relative Instant . . . . . . . ..o 56
A44 Period . . . . ... 56
A.45 Instant Container. . . . . . . . . . . . . . ... 57
A.4.6 Interval Container . . . . . . . . . . . . . . e e e 60
A.4.7 Period Container . . . . . . . . . . e e e e 63

iv



Chapter 1

Introduction

A large number of applications manage time-varying data. Often these applications do not take advan-
tage of the large amount of research done in the area of temporal databases [RP92, WJW98]. Applica-
tions such as portfolio-management, financial applications, personnel administration and scheduling,
e.g., travel booking, are prime examples of applications managing time-varying data [Sno00].

By definition databases store facts about a modeled world. Research suggests that two main time
dimensions can be associated with these facts [Sno00, Jen99]: wvalid time and transaction time. The
valid time associated with facts store information about when the fact is true in the modeled world.
Valid time may span the past, present, and future and by definition all facts have a valid time, whereas
it is not necessary that this valid time is recorded in the database. The database may have several
valid times recorded for each fact. Transaction time records when the fact is current in the database.
Transaction time cannot span into the future and may be interpreted as a subset of the valid time
dimension. A database that records both valid time and transaction time is called bi-temporal [Je98].
A user-defined time dimension has also been suggested which has no known semantics to the database.
Valid time is the most general time dimension in temporal databases and is the focus in this paper.
This focus is based on the fact that ideas from valid-time support can be used to handle transaction
time, user-defined time, and bi-temporal timestamped data.

In addition to fixed valid-time periods, it is also possible to specify growing periods. These are called
now-relative periods, because their end time is the special temporal value now. now is not bound to a
specific time value until it is accessed, where it evaluates to the time at that moment. A fixed period
is for example “05-05-2000 - 05-06-2000” and a now relative one is “05-05-2000 - now.” These periods
will be equal when evaluated on June 5th, 2000.

Without temporal support from the DBMS, developers of temporal applications must express temporal
queries in standard non-temporal query languages. This results in two problems, namely that of code
which is (1) hard to understand by developers [Sno00], and (2) complex to execute by the DBMS
[BSS97, TGJ99, MLI99]. As an example, a conventional join query can be written in three to four
lines of SQL92, whereas a temporal join query may require as much as ten times as many lines of
SQL92 [Sno00].

Although it must be expected that the work of the temporal database research community is gaining
the interest of commercial database management system (DBMS) and database application vendors,
the research results has not yet been integrated into any commercial products. If the research in
temporal databases is to gain general public and commercial acceptance, it has to be available for use
with the major object-relational DBMSs (ORDBMS). The ongoing work to include SQL/Temporal
[Mel96] into the coming SQL:1999 standard is an effort to make it so [MEOO].

In the light of the problem of transferring temporal support to DBMSs, we define a number of re-
quirements and goals for the project. These requirements are the subject of the following section.



1.1 Goals and Requirements

The overall goals with and scope of the present work is as follows.

GOAL1: Examine the possibilities of easing the task of managing now-relative valid-time data in
commercial ORDBMSs

GOAL2: Provide a framework in the form of an extensibility module for efficient execution of tem-
poral statements.

The fact that most temporal research is related to relational data models and the widespread use
of ORDBMSs in the industry is the reason that we focus on technologies and concepts that can be
readily implemented on these platforms. Technologies include extensibility technologies such as the
cartridge concept used by Oracle [RRM99], and the DataBlade concept used by Informix [DLM97].

Having defined the goals we now list five requirements for the temporal framework.

REQ1: Existing commercially available technology. The framework should use proven technologies,
accepted by the industry, application developers, and major ORDBMS vendors.

REQ2: Simple code. The framework must make it easy to express temporal queries, in the fact that
the number of lines of source code necessary and the complexity of it is reduced, compared to
SQLI2.

REQ3: Fast execution. Temporal queries that are expressed using the constructs of this work should
execute at least as fast as temporal SQL92 based queries.

REQA4: Structural platform independence. The major components from which the frame-work is
build, should be portable to major ORDBMSs.

REQS5: Horizontal support. The functionality of the system developed should cover a wide spectrum
of temporal concepts and be generally useful.

REQ1 ensures that the framework can be used by developers with out much change. REQ2 ensures
that the code written using augmented SQL' is less complex that the code written in SQL92. REQ3
ensures that the performance of the augmented SQL should be at least as fast as the SQL92 code.
REQ4 ensures that although the implementation is done in the Oracle ORDBMS, the design is portable
to other ORDBMSs. REQ5 ensures that the framework developed can be used to express a broad
range of temporal queries.

Because of REQ4, REQ5, and REQ1, Oracle’s cartridge technology is chosen as the basis for imple-
menting the framework.

1.2 Related work

When adding temporal support to any system, four different approaches can be taken [B6h95]. Each
of these approaches has its advantages and disadvantages. The approaches are as follows.

1. Application. In the application approach, the application itself has the responsibility of handling
the temporal semantics. This is done on top of a conventional DBMS [Sno00].

LAugmented SQL is ORDBMS vendor specific SQL implementations containing object relational constructs refer-
encing the functionality of the temporal cartridge developed in this project.



2. Layer. In the layered approach, systems implement a layer between the application and the
DBMS. The layer translates from a temporal query language such as TSQL2 [Sno95] to standard
SQL. This approach is described in [TJS98§].

3. ORDBMS. It is also possible to embed some temporal extensions in an ORDBMS, using ex-
tensibility interfaces. Not much research has been done in this area, but a concrete example
of a project that uses the embedding approach is TIP [YWY99], a temporal object-model for
Informix. This is also the approach taken in this project.

4. Core. An approach is to implement the handling of temporal semantics in the core of the DBMS.
In this approach applications use a temporal query language to query the database directly. This
is the approach taken in some versions of the Postgres DBMS [RS87].

Various books [Sn095, Sno00, Jen99] and articles [BBS98, DSJ93, DS91] cover the semantics of tem-
poral data. Query languages have been suggested [BSS97, YC91, Sno95, BJ96] including initiatives
to add temporal support to the SQL:1999 standard [Mel96, MEQO].

Several structures for indexing temporal data has been suggested, including the use of B¥-trees [ND98],
GR-trees [BSSJ98], MVB trees [dBS96], and R-tree based structures [BJSS98, SN98].

Temporal algorithms include coalescing [BSS97], difference [TGJ99], aggregation [KS95, MLI99], time-
slice [TJS98], and join [PJ98].

Temporal concepts have been implemented in various prototype database systems. Tiger [BBM199]
is an implementation based on the temporal query language ATSQL [BJ96]. TimeDB [BJSS95] is a
similar approach, also based on the temporal query language ATSQL. TIP [YWY99] uses a different
method, which is very like the one taken in the work of this paper, namely to add temporal data types
to an existing ORDBMS using object-relational extensibility features. In such an approach queries
are expressed using user-specified operators. This is the subject of the next chapter.






Chapter 2

Expressing Temporal Queries

In this section we present a framework that makes temporal queries easier to express. The section is
aimed at REQ1 and REQ4, and is structured as follows. First basic temporal query types are identified,
then two database designs in a running example from a fictitious tele communication company called
TerraTele is introduced. The TerraTele example serves as an illustration in the sections to come. The
first database (which we will refer to as conventional) is designed with temporal support as described
in the literature [Sno00] while the other (called augmented) utilizes new temporal data types provided
by the temporal cartridge designed in the project.

For each of the temporal query types of interest, we describe the query and point out what for and
where the query may be used. Following this simple description more thorough examples of the
temporal query, based on the conventional and augmented TerraTele database, is discussed.

At the end of the section we evaluate the improvements possible with the augmented SQL. The
evaluation is focused on the reduction in complexity of the queries, and is based on reduction in lines
of code.

The temporal type system later described (Chapter 3) supports now relative data. This is not the case
with the SQL92 queries in the following sections, which are expressed to work on non-now-relative
data only. The new, augmented queries in this chapter can thus support now-relative data, as this
fact does not change the way those queries are expressed.

2.1 Temporal Query Types

Temporal queries can be divided into three kinds: Current/time-slice queries, sequenced queries, and
non-sequenced queries [BSS97]. Sequenced queries are the most complex of the three to express [Sno00]
and are the subject of this investigation. A sequenced query can be viewed as a conventional query
executed sequentially at each of the states of a temporal relation. Non-sequenced queries make no use
of the fact that timestamps associated with data have special semantics. This argues why we are not
interested in exploring non-sequenced queries.

Each of the relational operators selection, projection, join, difference, union, intersection, and aggre-
gation [SKS97] has a temporal counterpart. Furthermore two special temporal relational operators
exists, namely the coalesce and the time-slice operators [Je98].

Sequenced selection and projection are not considered as they are simple to express in the fact that
they are similar to the snapshot counterparts, except that they also reference the two extra attributes.
This leaves us with the coalescing and time-slice operators and the following sequenced operators to
consider in the present work : join, difference, union, intersection, and aggregation.



In order to express examples of these queries we present two example databases.

2.2 Schema for TerraTele

TerraTele is a fictitious tele communication company for which the two databases are designed. The
databases cover the same modeled world, namely how persons subscribe to services and place telephone
calls. The one database is designed only with data types available in todays RDBMSs. This design
is illustrated in the ER diagram in Figure 2.1. The other database is designed using the augmented
temporal data types (for an introduction to the new types see Section 3.1.1). The second design is
shown in the ER diagram in Figure 2.2.

persons

Figure 2.1: ER Diagram Showing the Conventional TerraTele Database Design

A N

:subs_w ),

services

Figure 2.2: ER Diagram Showing the TerraTele Database Design Using Augmented Data Types

The temporal ER model shown in Figure 2.2 is not an example of temporal ER modeling, but is an
attempt to stay as close to the conventional ER model as possible, while still optimizing temporal
queries. This is done to ensure compatibility with REQ1. For a description of temporal conceptual
modeling, see [GJ97].

Each entity in both schemas is defined with a primary key, but because the databases contain temporal
data, the issue of primary keys are non-trivial. The semantics of the primary keys used are that of
temporal primary keys, and is described in [Sno00]. The functionality of temporal primary keys are
not, implemented.

The conventional TerraTele Database is explained next, followed by a discussion of how the enhanced
database differs.



Conventional Database Design

The ER model for the conventional TerraTele database contains the following four entities

| Entity | Attribute Description
subscribers phone Subscriber telephone number.
type Description of the price type.
amount The amount of money the price category costs.
. vts The date describing when a price category
prices .
came into effect.
vte The date describing when the price category
no longer is in effect.
serv_id Unique service id.
description A textual description of the service.
price The price of the service.
services vts Point in time from which the service was avail-
able.
vte Point in time from which the service was no
longer available.
SSN The persons social security number.
name The persons name.
address The persons address.
persons vts The time from which this person was a cus-
tomer and registered in the database.
vte The time from which this person was no longer
a customer.

The entities are related by three relationships as follows.

calls The terteriary calls relationship relates two subscribers and a price with each other to form
a telephone call. Each subscriber can be associated with any number of other subscribers and

prices, but never with more than one at any point in time.

pays_for Pays_for relates a subscription to specific persons. At each point in time, each person may

appear as several subscribers whereas each subscriber is associated with exactly one person.

subs_to Subs_to relates subscribers to the services they subscribe to. A subscriber may subscribe to

any number of services and a service can be subscribed by any number of subscribers.

The ER model gives rise to the seven tables listed in the table below.




| Table | Attribute Description

subscribers phone The phone number associated with this subscription.
phone Telephone number.
SSN Subscribers association with a person
vts The time from when a person is associated with the
pays_for .
subscriber.
vte The time from when a person is no longer associated
with the subscriber.
type The type of price, can for example be “international
call.”
amount The price of this type.
prices vts The valid time start of this type of price, i.e., from when
this price was effective.
vte The valid time end, i.e. from when this price was no
longer valid.
caller The calling subscriber.
calls callee The subscriber that receives the call.
vts The start time of the call.
vte The end time of the call.
SSN The social security number of the person.
name The name of a person.
persons address The address of the person.
vts The time from when this person was valid.
vte The time from when this person was no longer valid.
phone Foreign key to subscriber. The subscriber involved in
the subscription.
serv_id Foreign key to services. The service involved in the
subscription.
subs_to . . . . .
vts The time from when this subscriber subscribed to this
service.
vte The from when this subscriber no longer subscribed to
this service.
serv_id The service identifier.
desc Textual description of the service.
. price The price of this service measured in amount per
services
month.
vts From when this service was valid.
vte To when this service was valid.

Enhanced Database Design

The enhanced database differs from the description above, in the fact that the timestamps have been
replaced with the data types specified in the present work. The vts and vte timestamps have been
changed in this way to Period attributes in the following entities and relationships: prices, persons,
services, calls, subs_to, and is_a. The start and end points can be accessed as vt.s and vt.e.

Modification of the Database
When working with temporal data, insert, delete and update operations are performed differently
than when working with non-temporal data.

Inserts into a valid-time table can be done in two ways, either the tuple has a specified valid-time or
it is assigned a valid time. When inserting tuples with a specified valid-time, it is possible to insert



tuples that was valid in the past, or is valid in the future. The standard valid-time assigned to newly
inserted tuples are however from the current time till now.

When deleting tuples from a valid-time table, the tuple is not physical deleted. Instead the tuples
“valid-time end” is changed from now, to the current time.

A temporal update is, much like a non-temporal update, conceptually a temporal deletion followed
by a temporal insertion.

The semantics described above is a simplified version of the temporal semantics described in [BJ97],
which cover the modification of temporal data in more detail.

Inserting, updating, and deleting in the augmented database is performed in much the same way as
in the conventional temporal database. Instead of updating the individual timestamps, the period
object is changed accordingly.

2.3 Temporal Queries

This section contains a description of the join, set, coalescing, time-slice, and aggregation operators.

2.3.1 Expressing Join

A join query combines information from two or more tables. In relational database design, information
is split between tables by the normal forms [SKS97]. When querying the database for information,
this distribution of data often results in the fact that the data wanted is stored in several tables.
Therefore the query has to combine this information.

Temporal joins have added complexity compared to non-temporal joins. In a non-temporal join, tuples
from each table is compared only on the join predicate. In valid time temporal joins, they are also
compared on valid time and only tuples with overlapping valid time are added to the result. The valid
time of the resulting tuples, is computed as the intersection of the two source tuples. For a formal
description of the semantics of temporal joins see [BJ97].

SQL92

An example of a valid time temporal join query is written in Code Listing 1. The SQL92 code in
Listing 1 returns the price of each call that subscriber X has made, in the Period Y. It combines
information from three tables, namely subscribers, calls and prices.

Expressing a valid time temporal join in standard SQL92, is written as four separate SELECT state-
ments unioned together. The query is split into four parts based on how the valid time of the two
source tuples can relate to each other, and therefore what should be the valid time of the resulting
tuple. Two such periods can relate to each other in six different ways, two of which are not interesting
for join because they do not overlap. Figure 2.3 shows the remaining four ways a call can overlap a
price. Lines 1 to 10 of Code Listing 1 matches case 1, lines 11 to 21 matches case 3, lines 22 to 31
matches case 2, and finally lines 33 to 41 matches case 4.

prices |——
2 2,3,
calls 4

Figure 2.3: How the Valid Time of a Call can Owverlap the Valid Time of a Price.
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Code Listing 1 - Temporal Join Written in SQL92

/% Call

SELECT s.phone, c.callee, (¢c.VIE—p.VTS)xp.amount

left overlaps Prices x/

FROM Prices p, Calls c,

WHERE c.VTS < p.VTS AND
c¢.VIE > p.VTS AND
c¢.VTE < p.VTE AND
c. VTS >=Y.VTS AND
c.VTS <= Y.VTE AND
s.phone = X AND
c.caller = s.phone

UNION ALL

/* Call

SELECT s.phone, c.callee, (p.VIE-c.VTS)*p.amount

Subscribers

right owverlaps Prices x/

FROM Prices p, Calls c,

WHERE c.

VTS > p.VTS AND

c¢.VTS < p.VTE AND

c.VTE > p.VTE AND
c¢.VTS >=Y.VTS AND
c¢.VTS <= Y.VTE AND
s.phone = X AND
c.caller = s.phone
UNION AL
/% Call is within Prices

SELECT s.phone, c.callee, (c.VIE-c.VTS)*p.amount

FROM Prices p, Calls c,

WHERE c.VTS > p.VTS AND
c¢.VTE < p.VTE AND
c.VTS >=Y.VTS AND
c.VTS <= Y.VTE AND
s.phone = X AND
c.caller = s.phone

UNION ALL

/% Call

SELECT s.phone, c.callee, (p.VIE-p.VTS)*p.amount

Subscribers

*/

Subscribers

contains Prices */

FROM Prices p, Calls c,

WHERE c .

o wmw o oo

VTS < p.VTS AND

.VIE > p.VTE AND
.VTS >= Y.VTS AND
. VTS <= Y.VTE AND
.phone = X AND
.caller = s.phone

Subscribers

S

S

S

S
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As we can see from Code Listing 1, each of the four parts returns a different valid time. This is so
because only the intersection of the two tuples serve as the valid time of the result tuple.

Augmented SQL

As described the reason for splitting the query into four parts, was to return the intersection of the
valid time of the two source tuples. This can be done with the Intersect method on the Period object.
The Intersect methods returns a new Period object, which is the intersection between the two input
periods.

Another part of the query is to make sure that we only consider overlapping tuples, this can be done
by using the Overlaps method as a predicate for the SELECT statement.

By using the Intersect and Owerlaps methods, the join query from Code Listing 1 can be expressed
as shown in Code Listing 2

Code Listing 2 - Temporal join written in augmented SQL

SELECT s.phone, c.callee, c.vt.Intersect (p.vt)*p.amount
FROM Subscribers s, Calls ¢, Prices p
WHERE c.vt.Overlaps(p.vt) = 1 AND

c.vt.Overlaps(Y) AND

s.phone = X AND

c.caller = s.phone

2.3.2 Expressing Set Operations

Applying set operations (i.e. union, intersection, and difference) on temporal data is different from
the case of non-temporal data. The reason for this is that when expressing the temporal query it
must be taken into account, that the valid time of a period must be inspected and most often will be
changed for the result. Temporal union can be expressed as a query that either eliminates or retains
temporal duplicates [BSS97] in the result. The version where duplicates are retained is trivial, as
it is simply expressed in the same way as a snapshot union. Temporal union where duplicates are
eliminated correspond to coalescing the result of a snapshot union, and is therefore also, by itself,
trivial to express in SQL92. The intersection operator may be expressed as either two set differences
or as a sequenced equi-join with the equality predicate covering all attributes.

Set difference is conceptually quite simple, but difficult to express. The concept, is to subtract periods
of tuples with matching explicit attributes whose periods overlap or are adjacent. Figure 2.4 illustrates
this, by showing one tuple from the services table and two tuples from the subs_to table. The bottom
line shows the two tuples that result from subtracting the subs_to tuples from the services table.

services
subs_to

result  +— —

Figure 2.4: Illustration of the Set Difference Operator

Concretely consider the following two examples of the services and subs_to tables respectively:
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| services |

serv_id desc. price | vts | vte
MOBILE Mobile service 10 2 12
LONGDIS | Long distance call 20 2 10
LONGDIS | Long distance call 30 11 15

In this table we see two services, MOBILE and LONGDIS. MOBILE costs 10 from time 2 to 12, while
LONGDIS costs 20 from time 2 to time 10 and then 30 from time 11 to 15. The table is coalesced
and therefore has no temporal duplicates.

| subs_to |
phone serv_id vts | vte
555-1 | LONGDIS | 5 10
555-2 MOBILE 2 4
555-3 MOBILE 2 3
555-3 MOBILE 5 9

The subs_to table is also coalesced and contains the mapping from subscribers to services. In this way
we can see that 555-1 subscribed to LONGDIS from time 5 to 10. Subscriber 555-2 subscribes to the
MOBILE service from time 2 to 4, and the last subscriber, 555-3, subscribes to mobile from 2 to 3
and again from time 5 to 9.

The two tables are not union compatible, which they have to be in order to use them in relation
with the set difference operator. After projecting the tables, the result of performing a set difference
operation on the subs_to table and the services table yields the following result.

| services \ subs_to ]

serv_id vts | vte
MOBILE 10 12
LONGDIS | 2 4
LONGDIS | 11 15

This result means that nobody subscribed to the MOBILE service from time 10 to 12. From time 2
to 4 the LONGDIS was not subscribed to which was also the case from time 11 to 15.

For a description of the formal semantics of set difference, union, and intersection see [BJ97].

SQLY2

Expressing set difference in SQL92 can be written as a four part statement [Sno00], an example of
such a statement can be seen in Code Listing 3.

The four sub-queries represent the four ways that an output row can be found. The first case, in lines
1 to 7, is where a service is never subscribed to, so the entire period is returned. In the second case,
in lines 9 to 18, the service starts to exist before a subscriber begins a subscription, i.e., the subs_to
period overlaps the services period to the right. The output tuple will in this case have a period that
goes from the services period start to the start time of the subscription. In the third case, shown in
lines 20 to 29, the subscription was for some reason terminated before the service ceased to exist. The
resulting tuple will then go from the subscription end time to the service end time. The fourth and
last case, shown in lines 31 to 45, handles holes in the subscription period. An example of such a hole,
is the second range of the result in Figure 2.4

12



Code Listing 3 - Set Difference Written in SQL92

1 SELECT pl.serv_id, pl.desc, pl.VTS, pl.VTE
2 FROM services pl
3 WHERE NOT EXISTS (SELECT =«

4
5
6
7
8 UNION ALL

FROM subs_to

s3

WHERE pl.serv_.id = s3.serv_id AND
pl.VTS < s3.VTE AND
$3.VTS < pl.VTE)

9 SELECT pl.serv_id, pl.desc, pl.VTS, sl1.VTS
10 FROM services pl, subs_to sl
11 WHERE pl.serv_id = sl.serv_id AND
pl.VTS < s1.VTS AND
s1.VTS < pl.VTE AND
NOT EXISTS (SELECT =«

18
19 UNION ALL

FROM
WHERE

20 SELECT pl.serv_id, pl.desc, sl
21 FROM services pl, subs_to sl
22 WHERE pl.serv_id = sl.serv_id AND
s1.VTE < pl.VTE AND
p1.VTS < s1.VTE AND
NOT EXISTS (SELECT =

FROM subs_to s3

23
24

29
30 UNION ALL

WHERE

31 SELECT pl.serv_id, pl.desc, sl
32 FROM services pl,subs_to sl, subs_to s2
33 WHERE pl.serv_id = sl.serv_id AND

34
35
36

82 .
s2.

.VIE < s2.VTS AND
.VTS < s1.VTE AND
.VTS < pl.VTE AND
.VTS < s2.VTE AND
.VTS < pl1.VTE AND

subs_to s3

pl.serv_id = s3.serv._id AND
pl.VTS < s3.VTE AND

s3.VTS < s1.VTS)

.VIE, pl.VIE

pl.serv_id = s3.serv_id AND
s1.VTE < s3.VTE AND
s3.VTS < pl.VTE)

.VTE, s2.VTS

serv_id = sl.serv_id AND
phone = sl1.phone AND

NOT EXISTS (SELECT =«
FROM subs_to s3

WHERE

pl.serv_id = s3.serv_id AND
s1.VTE < s3.VTE AND
s3.VTS < s2.VTS)

13
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Augmented SQL

Code Listing 4, shows the query expressed using augmented SQL.

Code Listing 4 - Set Difference Written in Augmented SQL

SELECT pl.serv_id, pl.desc, create_period (pl.vt.s, pl.vt.e)
FROM services pl

3 WHERE NOT EXISTS (SELECT =

4
5
6
7
8
9

FROM subs_to s3
WHERE pl.serv_id = s3.serv_id AND
pl.vt.overlaps(s3.vt) = 1)
UNION ALL
SELECT pl.serv_id, pl.desc, create_period (pl.vt.s, sl.vt.s)
FROM services pl, subs_to sl

10 WHERE pl.serv_id = sl.serv_id AND

15
16
17
18

sl.vt.StartsInside (pl.vt) = 1 AND
NOT EXISTS (SELECT =«
FROM subs_to s3
WHERE pl.serv_.id = s3.serv_id AND
s3.vt.overlaps(create_period (pl.vt.s, sl.vt.s)) = 1)
UNION ALL

SELECT pl.serv_id, pl.desc, create_period (sl.vt.e, pl.vt.e)
FROM services pl, subs_to sl

19 WHERE pl.serv_id = sl.serv_id AND

20
21
22
23
24
25
26
27

sl.vt.EndsIndside (pl.vt) = 1 AND
NOT EXISTS (SELECT =«
FROM subs_to s3
WHERE pl.serv_.id = s3.serv_id AND
s3.vt.overlaps (create_period (sl.vt.e, pe.vt.e)) = 1)
UNION ALL
SELECT pl.serv_id, pl.desc, create_period (sl.VTE, s2.VTS)

FROM services pl,subs_to sl, subs_to s2

28 WHERE pl.serv_id = sl.serv_id AND

29

s2.serv_id = sl.serv_id AND
s2.phone = sl.phone AND
sl.vt.overlaps(pl.vt) = 1 AND
s2.vt.overlaps(pl.vt) = 1 AND
sl.vt.e < s2.vt.s AND
NOT EXISTS ( SELECT =«
FROM subs_to s3
WHERE pl.serv_id = s3.serv_id AND
s3.vt.overlaps(create_period (sl.vt.e, s2.vt.s)) = 1)

The overall structure of the augmented version is the same as the standard SQL92 version. This is
because we still have to distinguish between the different ways of overlapping in order to handle the
special case of periods being split in two.

The create_period method is a function used as a constructor of periods. StartInside and EndInside
are functions that specify whether a period in question starts or ends inside another given period. For
the semantics of these functions see Appendix A.

2.3.3 Expressing Coalescing

Coalescing temporal data is similar in concept to removing duplicates from conventional data. The
concept being that tuples in a table with matching explicit attributes, and overlapping or adjacent
valid-times contains duplicate information. When coalescing a table, tuples with matching explicit
attributes, and overlapping or adjacent valid-times are combined into one tuple with a valid-time that
is the union of the source tuple valid-times.

As an example consider the following table, it is a small part of the subs_to table.

14
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subs_to

phone serv_id vts | vte
555-1 | LONGDIS | 1 4
555-1 | LONGDIS | 5 10
555-2 MOBILE 1 5
555-2 MOBILE 4 8
555-3 MOBILE 1 3
555-3 MOBILE 5 9

In the table we can see that 555-1 subscribed to the LONGDIS product from 1 to 4 and again from
5 to 10, 555-2 subscribed to the MOBILE product from 1 to 5 and from 4 to 8, and finally that
555-3 subscribed to the MOBILE product from 1 to 3 and from 5 to 9. The table contains two kinds
of uncoalesced data, first 555-1’s subscription to LONGDIS from 1 to 4 and again from 5 to 10 is
adjacent. Also 555-2’s subscription to MOBILE is uncoalesced because of the overlap of periods 1 to

5 and 4 to 8.

If we coalesce the table, the result is as follows.

| coalesced subs_to

phone serv_id | vts | vte
555-1 | LONGDIS | 1 10
555-2 | MOBILE 1 8
555-3 | MOBILE 1 3
555-3 | MOBILE 5 9

For a detailed description of the formal semantics of coalescing see [BJ97]

SQL92

Expressing coalescing in SQL92 can be written as a three part statement [BSS97], an example of such

a statement can be seen in Code Listing 5.

Code Listing 5 - Coalescing Written in SQL92

SELECT DISTINCT f.phone, f.serv_id, f.vts,

FROM subs_to f, subs_to 1
WHERE f.vts < l.vte AND
f.phone = 1.phone AND
f.serv_.id = 1.serv_id AND
NOT EXISTS (SELECT =«

FROM subs_to m

1.vte

WHERE f . phone = m.phone AND

f.serv_id = m.serv_id AND

f.vts < m.vts AND

m. vts < 1

.vte AND

NOT EXISTS (SELECT =
FROM subs_to al

NOT EXISTS (SELECT =«
FROM subs_to a2

WHERE f. phone

= al.phone AND

f.serv_.id = al.serv_id AND
al.vts < m.vts AND
m. vts <= al.vte)) AND

WHERE f . phone = a2.phone AND
f.serv_id = a2.serv_id AND
(a2.vts < f.vts AND f.vts <= a2.vte OR

a2.vts <= 1.vte AND l.vte < a2.vte))

15
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The first part (lines 1 to 5) selects two value-equivalent tuples, and uses them as start and end points
of the resulting tuple. The second part (lines 6 to 17) ensures that a chain of value-equivalent tuples
cover the entire valid-time between the start and end points selected in the first part. The last part
(lines 18 to 23) ensures that the start and end points selected in the first part, cover the longest
possible period.

Augmented SQL

Code Listing 6, shows the query expressed using augmented SQL.

Code Listing 6 - Coalescing Written in Augmented SQL

SELECT DISTINCT f.phone, f.serv_id, Create_period(f.vt.s, l.vt.e)
FROM subs_to f, subs_to 1
WHERE f.vt.s < 1.vt.e AND
f.phone = 1.phone AND
f.serv_.id = 1l.serv_id AND
NOT EXISTS ( SELECT =«
FROM subs_to m
WHERE f . phone = m. phone AND
f.serv_id = m.serv_id AND
m. vt . LeftOverlap (f.vt.s, 1.vt.e) AND
NOT EXISTS ( SELECT =
FROM subs_to al
WHERE f . phone = al.phone AND
f.serv_.id = al.serv_id AND
al.vt.LeftOverlap (m.vt) = 1)) AND

NOT EXISTS (SELECT =
FROM subs_to a2
WHERE f . phone = a2.phone AND
f.serv_id = a2.serv_id AND
(a2.vt.s < f.vt.s AND f.vt.s <= a2.vt.e OR
a2.vt.s <=1.vt.e AND l.vt.e < a2.vt.e))

The structure of the augmented version is the same as the standard SQL92 version, and the aug-
mentations is not used much. The size of the augmented version is 2 lines smaller than the standard
version. The LeftOverlaps function takes a period and returns true if it overlaps the end point of the
period it is compared with.

2.3.4 Expressing Time-slice

The time-slice query is a temporal query, used to slice the data in the database along a time-dimension,
thereby viewing the data stored in the database at that time (transaction-time) or how the modeled
world looked at that time (valid-time).

An example of a time-slice query is to find the calls that where ongoing at a given time. The following
table is an example of the data in the calls table.

| calls |
caller | callee | vts | vte
555-1 | 555-2 1 10
555-3 | 555-4 2 4
555-3 | 555-5 5 7

From this table we can see that 555-1 called 555-2 from 1 to 10, and 555-3 called 555-4 from 2 to 4
and 555-1 from 5 to 7. If we time-slice the table at 6, we get the following table.

16



| calls time sliced |

caller | callee
555-1 555-2
555-3 555-5

SQL92

The expression of a time-slice query in SQL92 is very straight forward, as seen in Code Listing 7.
This query time-slices the calls at the time point X.

Code Listing 7 - Time-slice Written in SQL92

1 SELECT caller , callee
2 FROM Calls

3 WHERE vts <= X AND

4 vte >= X;

Augmented SQL

As with SQL92 it is straight forward to express time-slice in augmented SQL, the only difference being
that the predicate is changed to use an Owerlaps method. The code for augmented SQL time-slice

can be seen in Code Listing 8.

Code Listing 8 - Time-slice Written in Augmented SQL

1 SELECT caller , callee
2 FROM Calls
3 WHERE vt . Overlaps (X) = 1;

2.3.5 Expressing Aggregation

Aggregation queries summarizes data, and presents them in a more compact and informative way.
They can be simple as counting the number of employees or calculating the average salary in the
R&D department, or complex like showing the development in the number of customers over time.
The latter is an example of a temporal aggregation query, that summarizes over time.

In the example from Section 2.2 the data from the persons table can be used to count the number of
customers related to the company at any given time. The following table shows an example of the
date contained in the persons table.

| persons |
SSN | name address vts | vte
1 John Wall Street 1 10
2 Jane Yonge Street 1 3
3 Joe El Camino Real 5 11

From the table we can see that John was a customer from 1 to 10, Jane from 1 to 3 and Joe from 5
to 11. Using this data to calculate the number of customers related to the company would yield the
following result.

17



| aggregated persons |

count | from | to
2 1 3
1 4 4
2 5 10
1 11 11

Figure 2.5 illustrates how the the aggregation result is found.

tme 1 2 3 45 6 7 8 91011

John I |

Jane | E—

Joe | ]
H—NJH—/V
2 1 2 1

Figure 2.5: Aggregation of the Persons Table

SQLY2

When expressing temporal aggregations, one very important part of the query is finding constant
regions. That is, regions where the information being aggregated did not change. As shown in Code
Listings 9 and 10 the SQL code from line 3 in Listing 9 to line 52 in Listing 10 is responsible for
finding constant regions.

When the constant regions are found, a count is made for each constant region.

Augmented SQL

Although it is not possible to make generic table operators that is schema independent, it is possible
to make functions with a table operator like functionality with certain limitations [Thr00]. It is
possible to make a function that, given a table name and a Period column name, can return the
constant regions of that table. By using this function, the code shown in Code Listing 9 and 10 can
be expressed as shown in Code Listing 11.

2.4 Evaluation of Code Complexity

The idea with this Chapter is to evaluate the possibility of fulfilling REQ2 under the restraints imposed
by the implementation environment. We have shown examples of the most common queries, expressed
both in SQLI2 and in the augmented SQL proposed in this work.

To evaluate on the complexity of these queries, we compare the number of lines of code necessary to
express the query in SQL92 and augmented SQL respectively. The following table contains a list of
queries and the number of lines of code for both SQL92 and augmented SQL.
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Code Listing 9 - Aggregation Written in SQL92 (part 1 of 2)

SELECT COUNT(Persons.SSN), agg-table.vts AS vts,

FROM Persons, (
/* No start or stop overlap of pl x/
SELECT pl.vts AS vts, pl.vte AS vte
FROM Persons pl
WHERE NOT EXISTS (SELECT =«
FROM Persons p2

WHERE ((pl.vts < p2.vts AND
p2.vts < pl.vte)

OR

pl.vts < p2.vte
1 2 AND
p2.vte < pl.vte)))

UNION
/* Gap from pl.vte to p2.vts x/
SELECT pl.vte AS vts, p2.vts AS vte
FROM Persons pl, Persons p2
WHERE pl.vte < p2.vts AND
NOT EXISTS (SELECT =
FROM Persons p3

WHERE (( pl.vte < p3.vts AND
p3.vts < p2.vts)

OR

(pl.vte < p3.vte AND
p3.vte < p2.vts)))

UNION
/* p2 left owverlaps pl: First =/
SELECT p2.vts AS vts, pl.vts AS vte
FROM Persons pl, Persons p2
WHERE p2.vts < pl.vts AND

pl.vts < p2.vte AND

p2.vte < pl.vte AND

NOT EXISTS (SELECT =«

FROM Persons p3

WHERE (( p2.vts < p3.vts AND
p3.vts < pl.vts)

OR

(p2.vts < p3.vte AND
p3.vte < pl.vts)))

UNION
/* p2 left owverlaps pl: Second x/
SELECT pl.vts AS vts, p2.vte AS vte
FROM Persons pl, Persons p2
WHERE p2.vts < pl.vts AND

pl.vts < p2.vte AND

p2.vte < pl.vte AND

NOT EXISTS (SELECT =

FROM Persons p3

WHERE (( pl.vts < p3.vts AND
p3.vts < p2.vte)

OR

(pl.vts < p3.vte AND
p3.vte < p2.vte)))

UNION

agg-table.vte AS vte
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Code Listing 10 - Aggregation Written in SQL92 (part 2 of 2)

/* p2 left owverlaps pl: Third x/
SELECT p2.vte AS vts, pl.vte AS vte
FROM Persons pl, Persons p2

WHERE p2.vts < pl.vts AND
pl.vts < p2.vte AND
p2.vte < pl.vte AND

NOT EXISTS (SELECT =«

FROM Pe

rsons p3

WHERE (( p2.vte < p3.vts AND
p3.vts < pl.vte)
OR
(p2.vte < p3.vte AND
p3.vte < pl.vte)))

UNION

/* pl includes p2: First =/
SELECT pl.vts AS vts, p2.vts AS vte
FROM Persons pl, Persons p2

WHERE pl.vts < p2.vts AND
p2.vte < pl.vte AND

NOT EXISTS (SELECT =«

FROM Pe

rsons p3

WHERE (( pl.vts < p3.vts AND
p3.vts < p2.vts)
OR
(pl.vts < p3.vte AND
p3.vte < p2.vts)))

UNION
/% pl includes p2: Second

*/

SELECT p2.vts AS vts, p2.vte AS vte
FROM Persons pl, Persons p2

WHERE pl.vts < p2.vts AND
p2.vte < pl.vte AND

NOT EXISTS (SELECT =«

FROM Pe

rsons p3

WHERE (( p2.vts < p3.vts AND
p3.vts < p2.vte)
OR
(p2.vts < p3.vte AND
p3.vte < p2.vte)))

UNION

/% pl includes p2: Third x/
SELECT p2.vte AS vts, pl.vte AS vte
FROM Persons pl, Persons p2

WHERE pl.vts < p2.vts AND
p2.vte < pl.vte AND

NOT EXISTS (SELECT =

FROM Pe

rsons p3

WHERE (( p2.vte < p3.vts AND
p3.vts < pl.vte)
OR
(p2.vte < p3.vte AND

p3.vte < pl.vte)))) agg-table

WHERE Persons.vts (+) < agg-table.vte AND

agg-table .vts < Persons.vte (+)

GROUP BY agg_table.vts, agg

_table . vte;

Code Listing 11 - Aggregation Written in Augmented SQL

SELECT COUNT( Persons.SSN),
FROM Persons p,

TABLE(CAST( ConstantRegion ( ’Persons ’,

agg-table.vt AS vt

WHERE p. vt.Overlaps(agg-table.vt) = 1

GROUP BY agg-_table .vt;

’vt’) AS ag_tab))

agg_table
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Query SQL92 | Augmented SQL | Pct. Saved
Join 41 6 85%
Set-difference 45 37 18%
Coalescing 23 21 9%
Time-slice 4 3 25%
Aggregation 108 5 95%
221 72 67%

Not taking into account the distribution of use among the different query types, we can see from the
table that temporal augmented queries on average is one third the size of temporal SQL92 queries.
It is especially join and aggregation queries that is optimized by the augmentation, but all queries
benefit.

This concludes the discussion of reducing query complexity using user-defined data types available in
a cartridge. The matter of specifying such data types and index support for them is the topic of the
next chapter.
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Chapter 3

Cartridge Design

In this chapter, we describe the actual implementation of the temporal cartridge along with the Oracle
concepts used in the implementation. First we describe the object hierarchy, then the index types,
and finally how it is possible to interface with the query optimizer.

As already mentioned the chosen platform is Oracle’s ORDBMS. An other major ORDBMS could have
been chosen for the task. The three major databases, Oracle8i, Informix Universal Server [DLM97],
DB2 Universal Database [Dav00] all have an extensibility framework available which enables the
specification of user defined data types, indexes and cost-based optimization.

To experiment with the Oracle extension interface, we have implemented the following. The four
simple data types, instant, interval, relative instant, and period are implemented as UDOTs. The
three indexes, map21, map21-2, and hilbert are implemented. The map2! index is based on a simple
space-filling curve technique, the map21-2 extends this approach by partitioning the indexed periods,
and finally the hilbert index is based on the hilbert space-filling curve.

In total, and disregarding comments, the cartridge consists of approximately 5.200 lines of PL/SQL
code.

3.1 User-Defined Object Types

This section describes how the object-relational extensibility interfaces are used to declare new object
types that serve as a basis for the temporal cartridge.

3.1.1 Extensible Type System

Traditionally database applications have been concerned with accessing data which is stored in tables
using conventional data types such as INTEGER, DATE, or CHAR. Today the trend is moving towards
exploiting object-relational properties of ORDBMSs by moving data into user defined object types
(UDOT). Oracle supports such UDOTs along with numerous other data types, such as collections
(VARRAYS and nested tables), relationships (REF), large objects (BLOB and CLOB), and external
files (BFILE) [RRM99].

UDOTs are used to extend the modeling facilities of the database and to impose structure on the data
stored in it. UDOTs are analogous to the concept of classes in the world of object orientation.

In the following we examine the possibilities for specifying UDOTSs in the Oracle ORDBMS'. User-

LAll comments regarding the status of and limitation in the Oracle DBMS is related to Oracle 8.1.6
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defined object types consists of one or more attributes and optionally also a number of member and
map methods. Attributes may be any of Oracles data types including other UDOTs. Member methods
are procedures or functions that can manipulate the data contents of the object. Map methods are
used to compare and order objects of the given type. The methods on an object can be implemented
in PL/SQL or be linked to stored Java methods or external C functions.

SQL constructs are available in the DBMS extensibility interfaces for declaring, modifying and other-
wise managing objects and object types. It is possible to store objects in the columns of a table and
to use objects as parameters for functions and procedures.

3.1.2 Limitations of the DBMS Extensible Type System

The object-relational technology in the Oracle ORDBMS has a number of limitations, some of which
concern the temporal cartridge designed. Specifically the following points have made an influence on
how we designed and implemented the cartridge.

e For each UDOT a constructor is implicitly available. The constructor is named after the object
and takes as parameters the same types as the attributes listed in the object specification. No
other constructors can be defined ([FP97], page 616). This has forced us to create a set of
stand-alone object constructor functions and violates the object oriented design of the object
framework.

e Access to attributes and member methods cannot be restricted, which violates object-oriented
principles of data encapsulation ([FP97], page 597). In spite of the fact that missing data
encapsulation is not crucial, it might encourage future users to bypass the available methods
and in stead rely on internal specifics.

e It is not possible to use object-oriented constructs such as inheritance and polymorphism
([RCGT99] page 18-33). This means that an unnecessary large number of methods need to
be specified.

e In PL/SQL it is possible to immediately use an object returned from a function, this is not possi-
ble in SQL. This prevents constructs like the following “t1.vt.Move(’10 days’).Overlaps(t2.vt)”,
where Move returns a Period, whose vt has been moved 10 days [L0O99].

e Objects cannot be used as keys ([LO99] page 7-359). This limits our index design as we have to
revert to using dates in stead of relative instants (explained shortly) in our open ended tables
(see Section 3.2).

e PL/SQL variables of user-defined types cannot be bound into dynamic SQL statements as native
data types can ([FP97] page 949). This impacts the implementation of our indexes, as the dy-
namically generated internal queries contain periods that must be unfolded into its conventional
data type constituents.

3.1.3 The New Object Types

Seven temporal object types are specified for the cartridge. Schematically the object types are ordered
in a hierarchy as shown in Figure 3.1. The basic types, instant and interval are placed in the top of
the figure and is the basis of all other object types. A relative instant is a specialization (shown by the
arrow in Figure 3.1) of an instant. In spite of the fact that the Oracle DBMS does not support such
specializations, the concept of a relative instant being a specialization of an instant is still conceptually
true. The relative instant is also associated (shown by a line in Figure 3.1) with an interval and
an instant container. Periods are associated with exactly two relative instants. Instant containers,
interval containers, and period containers may hold an arbitrary number of relative instants, intervals,
and periods respectively.
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instant container relative instant interval container

period container

Figure 3.1: Hierarchy of Temporal Object Types

The following list contains a description of the seven object types. The list shows what data they
contain, gives examples of them, and points out were they may be used.

Instant Instants are used to model anchored points in time. Examples of instants are “March 2000”
or “2000-03-27 12:30:00” at granularities month and second, respectively. An instant is imple-
mented as a positive number which represents an amount of granules that have passed since some
predefined point in time, and a granularity specifying the type of granules. Instants may for
example be used to store temporal information about meteorological samplings of temperature
or humidity at different points in time.

Interval Intervals are used to represent durations of time, that are not anchored to the time line.
Like instants, they are implemented as a count of granules and a granularity. Examples include
“1 month” and “3 picoseconds”. Intervals may be used to store how long a patients penicillin
treatment was.

Relative instant Relative instants are much like instants only that they can be specified relative to
some anchored point in time or take on special values like now. They are implemented as a type,
an optional instant object and an optional interval serving as an off-set. The type determines
if the specific instant is a special value, or a conventional relative instant. Examples are thus
“March 2000 - 1 month” which represents February, year 2000, or “now” which represents the
special temporal value. Relative instants are used in the same way as instants.

Period A period is a duration of time which is anchored to the time line. Periods are implemented
as two relative instants. Examples of periods are “June 2000 - August 2000” which would be a
period containing the three summer months of the year 2000. Examples of the use of periods
include when an employee was working for a company, or when an apartment was vacant.

Instant Container An instant container is a multi set of (relative) instants and can for example be
used to register all days that an employee was absent from work.

Interval Container Interval containers are multi sets of intervals and may be used to store infor-
mation about which valid contract durations exists in a contracting organization.

Period Container Period containers are multi sets of periods and can be used to store information
about when a given fact was true.

Each data type contains a number of attributes and methods. The underlying semantic details of
these attributes and methods are specified in greater detail in Appendix A.
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3.2 Indexes

This section describes the index part of the temporal cartridge. First we describe the domain index
interface of the Oracle cartridge technology [RRM99]. Then we describe two index types, both from
a theoretical and from an implementation point of view.

3.2.1 Extensible Indexing

Through the cartridge technology, Oracle provides an interface for creating custom index types for
UDOTs. This interface was spawned by a growing need to store more advanced data types, types
that could not readily be indexed with standard tree structures ([RRM99] page 7-3).

Addition of a domain index to Oracle is done by creating a new UDOT which has a predefined set of
methods. When this UDOT is created, a CREATE INDEX TYPE statement is used to register the index
and which operators it can handle. The methods that Oracle uses to control the index can be divided
into four sections.

e Definition: The definition methods are used to create, alter, truncate, and drop an index
instant. These methods have no transaction restrictions, and as such are free to use DML and
DDL statements.

e Maintenance: These methods are used to maintain the content of an index instant, and include
methods for inserting, updating, and deleting content from an index instant. These methods
are only allowed to use DML statements and are not allowed to read or modify the base table
on which the index is created.

e Scan: The scan methods are used to evaluate predicates using an index instant. Given a
predicate with arguments, these methods return the ROWIDs of all rows where the predicate
holds true. These methods are only allowed to execute DML query statements.

e Meta data: The meta data methods are used by the Oracle export utility to retrieve information
about the index, that can later be used to restore the index.

For a thorough description of definition, maintenance and meta data methods see [RRM99]. Scan
methods are essential elements in the fact that they serve as index-based implementations for evalu-
ating predicates with operators. A description of the scan methods follows.

3.2.2 Index Scans

When an index scan is initiated by a user query, the first method called is ODCIIndexStart. The
arguments to this method is among others the predicate and arguments from the user query, and the
name of the index being used. The ODCIIndexStart method initiates the index scan, and readies the
index for incrementally fetching the result.

After ODClIIndexStart has finished, ODCIIndexFetch is called. This method incrementally returns
parts of the result to the query engine of the DBMS. The result is the ROWIDs that match the
predicate of the user query. The state of indexes is transfered between ODCIIndezStart and subsequent
calls to ODClIIndexFetch through an index type object. This means that it is the caller (DBMS query
engine) that has the responsibility of maintaining the index state rather than the index itself.

When the entire result set has been returned to the DBMS, ODCIIndexzClose is called. This method
cleans up after ODCIIndezStart and ODCIIndexFetch.
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3.2.3 MAP21

The MAP21 index [ND98] is an index based on a space-filling curve, and is used to index periods.
The idea behind indexes based on space-filling curves is to transform the two-dimensional points they
index into one-dimensional values that can be indexed by conventional indexes.

Transformation Function

The transformation function transforms a Period into a scalar value that can be indexed by a con-
ventional index. The MAP21 transformation function is as follows.

T =1s(S,7)+ FE

Here T is the scalar value, and S and E are the start and end time-points of the Period respectively.
v is the maximum number of digits used to represent a time-point, and [s is a function that shift it’s
argument, 7y digits to the left. The number of digits needed to store T' is 2 x 7. If we transform the
Period [2000-01-01, 2001-01-01] we get the following result.

1s('20000101',8) + 20010101 =
2000010100000000 + 20010101 =
2000010120010101

As shown in Figure 3.2, this transformation function results in a mapping where the two-dimensional
locality is poorly preserved. Even when two points are close in the one-dimensional mapping, there
can be a large distance between the two corresponding points in the two-dimensional space. The
reason for this is the large jumps in the MAP21 path, as seen with the jump from cell 5 to cell 6 in
Figure 3.2

Figure 3.2 shows a 5x5 two-dimensional space which is mapped to one dimension by a MAP21 space-
filling curve. Each cell in the two-dimensional space is assigned a unique index determined by the
path, such that the first index is placed in the origin of the path.

The transformation of the special temporal value now is not handled by the general function, but is
treated specially and will be explained shortly.

Query Translation

Because of the information stored in the index, it is necessary to translate the predicates from Periods
to a range of MAP21 values before querying the index. The mapping from Periods to a range of
MAP21 values that need to be fetched from index is dependent of the predicate being evaluated. The
following is a description of how it is done for the overlaps predicate, similar mappings can be made
for precedes, succeeds, contains, and includes [ND98].

Code Listing 12 - Use of Overlaps Operator

SELECT =
FROM t1
WHERE t1.vt.Overlaps ([ 2000—01—01, 2001—-01—01]);

Given a query as shown in Code Listing 12, it is necessary to translate the Period to a range of
MAP21 values before we can query the index. The translation has to take into account, that it should
encompass all MAP21 values that could possible overlap with [2000-01-01, 2001-01-01]. If nothing
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end

start

Figure 3.2: The Mapping Order of MAP21 Transformation Function

was known about the length of the periods being indexed, all periods starting before 2001-01-01 could
possible overlap. This case can be avoided by keeping track of the longest period being indexed (which
we will call A), with this knowledge the range of MAP21 values that could possible overlap is shown
as a grey rectangle in Figure 3.3.

Only the area above the diagonal in Figure 3.3 is interesting, because points below the diagonal
represents invalid periods (that end before they begin).

The periods that could possible overlap, are those starting between 2000-01-01 - A to 2001-01-01, and
ending between 2000-01-01 to 2001-01-01 + A. Translated into MAP21 values, we need to examine
the values between [2000-01-01 - A, 2000-01-01] to [2001-01-01, 2001-01-01 + A].

Because the previously mentioned region covers all the periods that could possible overlap, it is
necessary to check periods that either starts before S or ends after E for actual overlap.

Implementation

The implementation of the MAP21 index type uses one table for meta data and two other tables per
index instant, the meta data stored for each index is as follows.

| tmpidx_MAP21 |

Name | Description
Name | The name of the index, including schema
Dest_table | The name of the base table on which the index is created
Max_length | The length of the longest period being indexed
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Figure 3.3: Possible Qverlapping Periods
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For each index we create two tables, one for now-relative periods, and one for non-now-relative periods.
The table containing the now-relative periods is an index-organized table [RCG199] with the following
schema.

| indexname_oet |

Name | Description
Start | The start of the now-relative period
Seq | A unique sequenced number
r | The ROWID of the tuple containing the period

Because we know that all periods in the now-relative table ends now, it is only necessary to store the
start point of the periods. The start and sequenced number is used to define a composite primary key
for the now-relative table.

The non-now-relative periods are also stored in an index-organized table, this table has the following
schema.

| indexname_pid |

Name | Description
MAP21 | The MAP21 value for the period
Seq | A unique sequenced number
r | The ROWID of the tuple containing the period

The MAP21 value and the sequenced number is used to define a composite primary key.

When an index scan is initiated, the ODCIIndexStart method opens two cursors. The SQL for these
two cursors are shown in Code Listings 13 and 14.

In Code Listing 13, X and Y refers to the MAP21 values of the lower left corner and upper right
corner of the search area respectively, as shown in Figure 3.3.

Code Listing 13 - SQL Code For Querying Non-now-relative Table

SELECT r
FROM indexname_pid
WHERE map21 >= X AND
map2l <=Y AND
MAP21Overlaps ([ search period |, map2l) = 1

Code Listing 14 - SQL Code For Querying Now-relative Table

SELECT r

FROM indexname_oet

WHERE [ search period]. start <= SYSDATE AND
start <= [search period]. end

The MAP210verlaps function takes a period and a map21 value and checks for overlap. The function
is used to eliminate false hits.

As shown in the previous section, the length of the longest period in the index has a large impact on
the performance of the index. This has lead [ND98] to propose an alternative structure of the index.
The idea is to split the periods being indexed into three distinct tables, one which contains all the
short periods, one which contains all the long periods, and one which contains the now-relative data.
This setup prevents the case where one long period impacts the search performance of the whole index.
In addition to the original implementation, where no partitioning on period durations is performed,
we have implemented this alternative setup. This has been done by adding another non-now-relative
table of the same structure as the present one (indexname_pid), and by adding two extra columns to
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the meta data table, namely the maximum length of the new non-now-relative table and the length
at which periods are considered long.

3.2.4 Hilbert Index

The Hilbert index is, like MAP21, based on a space filling curve, and the structure of the Hilbert
index type is also much like that of the MAP21 index type.

Transformation Function

The Hilbert transformation function has several properties that make it suitable for use in an index.
First it is an optimal space-filling curve, in the fact that it has the optimal preservation of locality in
the mapping between two dimensions and one dimension [LKC99]. Secondly, it has a tree structure,
making it possible to adjust the complexity of the query at the expense of accuracy.

The Hilbert index type logically divides the indexed domain into a quad-tree structure [Sam84]. The
idea is as follows, the domain is divided into four parts, each of these parts again divided into four
parts. This division is continued until each of the parts has an appropriate size, the results of this
division is a grid of cells covering the entire space. The Hilbert function is then used to define an
order for these cells, this order is shown in Figure 3.4.

@ @ ®)

Figure 3.4: Hilbert Curves of levels 1 (1), 2 (2) and 3 (3)

For a description of the algorithm used to calculate the placement of a point within the Hilbert order,
see [Gut99]. The algorithm starts at the top level of the logic quad-tree structure, and progresses down
the tree. At each level the algorithm calculates which cell contains the search point, and progresses
down that path.

Query Translation

Because of the quad-tree structure of the Hilbert index, it is possible to adjust the precision of the
index query and thereby reduce the complexity of the index scan.

As with the MAP21 index, each query can be translated into a query region, an example of such a
query region is shown in Figure 3.5. As the figure shows, the Hilbert ordering can enter and exit the
query region several times, each of these visits results in a range of Hilbert values that is contained
in the query region. When all ranges are found, they are used to search the index-organized table for
periods in the query region.

31



end

PN W A U O N
.E-I
;
T
T
P
-

start

123456738

Figure 3.5: Ezample of a Query Region over a Level 8 Hilbert Space

The number of ranges in a query region is dependent on the size of the region and the size of the
cells. If the region gets too big, or the cells too small, the number of ranges become substantial. It
is possible to avoid this, by using the quad-tree structure of the Hilbert ordering. As each step of
the recursive algorithm is used to refine the result, it is possible to stop before the algorithm hits
the bottom of the logical quad-tree structure. Thereby getting a result with fewer ranges, but which
includes more Hilbert values than necessary. These superfluous values are eliminated by an extra
predicate (as shown in Code Listing 15 on the facing page).

Implementation

Because the overall structure of the MAP21 index type and the Hilbert index type is so much alike,
their implementations are also much alike.

Like MAP21, the Hilbert index type stores two types of data. One is the meta data associated with
an index, and the other is the actual index data. The meta data stored for a Hilbert index instant is
as follows.

| tmpidx_Hilbert

Name | Description
Name | The name of the index, including schema
Dest_table | The name of the base table on which the index is created
Max_length | The length of the longest period being indexed, used for determining search areas.

Min | The lower point of the domain being indexed
Max | The upper point of the domain being indexed

Sdepth | The search depth

Tdepth | The height of the logical quad-tree

The index data stored is similar to the MAP21 index data (indexname_oet, indexname_pid), except
that it is now Hilbert values that is stored instead of Map21 values. Now-relative Periods are also
handled similarly to the MAP21 index, and will therefore not be described here.
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When an index is created, an upper and lower bound is defined for the indexed domain. These bounds
are time points that define the area of time covered by the index. From these bounds, the height of the
logical quad-tree is calculated. The computational complexity of the Hilbert function is dependent of
the height of the tree, so it is advisable not to choose a larger index domain than necessary. A search
depth is also defined for the index, this depth is used when calculated overlapping ranges and defines
at which level the search for ranges should be stopped.

The computation of Hilbert values, is defined as one function. The arguments to this function is a
query region, the depth of the tree, the search depth, and the maximum number of ranges that may
be returned. The function returns the list of ranges that are contained in the query region.

When calculating a Hilbert value for a Period being inserted into the index, the query region argument
is a point, and the function returns a single range containing only one value, which is the Hilbert value
of the specific point.

When performing an index scan, the ranges returned from the Hilbert function is used to compose a
dynamic SQL statement to query the index-organized table. An example of such an SQL statement
can be seen in Code Listing 15.

Code Listing 15 - SQL Code For Querying Hilbert Index

SELECT r

FROM indexname_pid

WHERE (( hilbert >= X AND hilbert <=7Y) OR
( hilbert >= G AND hilbert <= H)) AND
HILBOverlaps ([ search period], hilbert) = 1

The query in Code Listing 15 have two ranges, one from X to Y and another from G to H. hilbert is
the hilbert value stored in the meta data tables. The HILBOverlaps method takes as input a period
and the Hilbert value and checks for overlap in order to eliminate false hits.

3.3 Optimization

This section describes the third and last part of the extensibility interfaces used in the development
of the temporal Cartridge, namely extensible query optimization.

First Oracle’s extensible query optimization interface is described followed by a brief discussion of
how this feature may be used in a temporal cartridge.

Extensible optimization for the cartridge has only been examined briefly?, and has not been included
in the actual implementation. The focus of this section is therefore on the extensibility interface and
not a concrete implementation. The description is based on Oracle documentation including [RRM99].

3.3.1 Extensible Optimizer

The query optimizer is the part of a DBMS which has the responsibility of choosing the most efficient
way of executing a query statement. Execution, for example, depends on the order in which tables and
indexes are accessed. An optimizer can either use cost-based optimization or rule-based optimization.

A cost-based optimizer considers between different access paths by using statistics, e.g., in the form of
histograms, about the involved database objects. The Oracle DBMS supports this kind of optimization
through SQL statements such as ANALYZE and COMPUTE STATISTICS. A rule-based optimizer on the
other hand chooses between access paths by considering the ranks of these access paths.

2 A stand-alone prototype extensible optimizer was implemented for periods.
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Oracle supports both cost-based and rule-based optimization. A number of features can however only
be used by the cost-based optimization strategy, including extensible optimization.

The extensible optimizer allows three kinds of functions to be defined for user-defined functions and
indexes: statistics collection functions, selectivity functions, and cost functions.

All extending of the optimizer is done by declaring functions that the optimizer calls when appropriate.
Such functions are specified in an object implementing the ODCIStats interface. This object is
registered with the query execution engine using the ASSOCIATE STATISTICS WITH command. Each
of the three functionalities in the extensible optimizer is explained below.

Statistics Collection Functions

Statistics on database columns and indexes are collected using the ANALYZE command. With the
introduction of user-defined domain indexes the DBMS cannot, on its own, collect statistics on such
indexes, because it does not know the internal structure of the index.

In the light of this problem the optimizer has been extended to let users define and associate custom
statistics collection functions (SCF). SCFs can be associated with individual columns, object types,
index types, and domain indexes. The SCFs are called by the optimizer whenever a domain index or
column is analyzed. The statistics generated by the user-defined SCF is anonymous to the DBMS, in
the fact that it has no knowledge of its structure, representation, or meaning. Any interpretation of
the statistics is done in the user-defined query optimization functions. In the case of table columns
and object types SCFs are called whenever an appropriate column is analyzed. If the data type of the
column is native to the DBMS, the statistics generated by the SCF is collected along with the conven-
tional statistics. Two functions must be specified in connection with the statistics gathering part of
the extensible optimizer object. The first, ODCIStatsCollect, collects the statistics when the ANALYZE
command is issued. The other, ODCIStatsDelete, deletes the statistics when the ANALYZE DELETE
command is issued. Both ODCIStatsCollect and ODCIStatsDelete are overloaded in order to work
with both table columns/object types and with user-defined domain indexes.

Selectivity Functions

The statistics gathered by the SCFs above are used to determine the selectivity of a given query
predicate. The selectivity is a measure for how many percent of the rows that are chosen by the
predicate. This selectivity is in turn used to estimate the cost of a particular access method.

With extensible optimization it is possible to define custom selectivity functions (SF), which can be
associated with user-defined operators, stand-alone functions, functions in packages and methods in
object types. The SF is called by the optimizer each time it encounters a predicate with a user-
defined operator, function, package function or object method. If we, for example, have the object
method overlaps, associated with a SF, this SF will we called when a query contains predicates such
as “overlaps(...) = 1”. The entire predicate is passed to the SF as an argument.

Only a single function, ODCIStatsSelectivity, needs to be declared in the optimization object in order
to make use of custom selectivity measures with the extensible optimizer.

Cost Functions

As in the case of statistics and selectivity functions the optimizer has no way of determining the cost
of a particular user-defined domain index based access method. The reason again being that the
optimizer has no knowledge of the internal structure of the domain index.

Therefore it is an option to specify user-defined cost functions (CF) and associate them with user-
defined stand-alone functions, package functions and object type methods. When the optimizer en-
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counters a predicate involving a stand-alone function, package function or object type method with
which a CF has been associated it initiates a call to this CF. The same is possible with domain indexes
and index types except now the predicate references an operator, that can be evaluated using such a
domain index.

A single function, ODCIStatsCost, is necessary to add custom cost calculations. This function takes
as parameters a description of the operator and the arguments to this operator. The function returns
a cost, consisting of two components, namely the CPU and I/0 costs. The ODCIStatsCost function
is overridden in order to support both domain indexes and function operators.

3.3.2 Use of Extensible Indexing

Turning our attention to the particular problem of developing the temporal cartridge, we have to
specify functions for the three tasks of collecting statistics, estimating selectivity, and calculating
cost. Statistics collection and selectivity estimation are closely linked in the fact that the statistics
are used in the selectivity estimation process. Statistics and selectivity is likewise used to calculate
cost.

To our knowledge no-one has treated the topic of estimating statistics for temporal data directly, but
concepts of use can be found in the spatial temporal research [LKC99].

Many approaches have been given for determining the selectivity of queries [MCS88], including sam-
pling, parametric techniques, and histograms, where input data is partitioned into a number of subsets
called buckets. Research distinguishes between selectivity estimations for 1-dimensional data and for
multi-dimensional data [LKC99]. According to [LKC99] histograms are well suited for data with di-
mensionality lower than three. Multi-dimensional selectivity estimation techniques include Hilbert
numbering, multi-level grid files [P197]. Neural networks have been suggested [L.Z98] as a method for
estimating selectivity on user-defined data types.

This concludes the discussion of the Oracle Extensibility Interface in regards to defining user-defined
object types with the Extensible Type System and user-defined domain indexes in the Extensible
Indexing feature and query optimization functions with the Extensible Optimizer functionality.
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Chapter 4

Performance Test

In this chapter we evaluate the performance of the cartridge, this is to evaluated whether REQ3 is
fulfilled. The evaluation is divided into two parts, first an evaluation of the index performance, and
secondly a performance evaluation of the queries described in Chapter 2. In the index evaluation, we
compare the performance of the indexes to each other, and to an implementation using native data-
types indexed with a Bt tree. The query evaluation will compare the performance of the augmented
queries to the performance of queries using native data-types, both with and without indexes.

4.1 Test Setup

The tests are conducted on a Oracle instant equipped with the TerraTele schema described in Chapter
2. The software used for the evaluation is as follows.

e Oracle 8.1.6.1.0
e SQL*Plus 8.1.6.1.0
e Windows 2000 v5.00.2195

The hardware used is as follows.

e Processor: 400Mhz Pentium II
e Memory: 256MB
e Disk: 10Gb 4400rpm ATA

The configuration of the Oracle instant is not changed from default, which is 14793 disk buffers of
8192 bytes each.

Each test is conducted five times, the fastest and slowest times are removed, and the result is calculated
as the average of the remaining three times.

4.2 Index Tests

We choose six tests to evaluate the performance of the implemented indexes. Two of these tests are
aimed at tuning specific index parameters on Hilbert and Map21-2, and four are aimed at testing
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the ability of each index to handle different types of data, e.g. long or now-relative Periods. For
comparison we have included an implementation using native data types and Bt indexes.

In each measurement we have included four indexes, namely a Hilbert index labeled “Hilbert”, a Map21
index labeled “Map21”, a Map21 index with the Periods divided into a long and short table labeled
“Map21-2” and finally a query using conventional data types and B indexes labeled “Conventional”.

For these tests we use a standard dataset consisting of 50000 tuples each associated with an Period,
and uniformly distributed over a period of five years. 5 percent of the Periods are now-relative. 95
percent of the remaining Periods have a length uniformly distributed between 10 to 100 days, and 5
percent a length uniformly distributed between 100 to 1000 days. The size of the datasets are 3.9MB
for the augmented and 2.0MB for the conventional.

The query used for these tests, is a simple overlaps query that returns all Periods that overlap a given
Period. The Period used, cover 10 percent of the indexed time region.

4.2.1 Search Depth of Hilbert Index

One of the parameters in the Hilbert index is the search depth. This parameter controls how deep a
search should go down the tree, and thereby how precise the initial selection of Periods is. Adjusting
this parameter is a tradeoff between the complexity of calculating search ranges, and the complexity
of eliminating false Periods.

We have included the Map21, Map21-2 and conventional index in this test, only to serve as reference
marks. They are not affected by the search depth, and their performance are therefor constant.
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Figure 4.1: Performance Relative to Search Depth in the Hilbert Index

As we can see from figure 4.1 the performance of the Map21, Map21-2 and Convention indexes remain
constant, while the performance of the Hilbert index improves to a certain point, at which is decreases
rapidly. The increase in performance is due to fewer false tuples being included in the Hilbert ranges,
while the sudden decrease is due to the time it takes to calculate the Hilbert ranges. The following
table shows how long it takes to calculate Hilbert ranges at a given depth, and how many ranges are
returned. The table is calculated using the same overlaps query as Figure 4.1.
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Search Depth | Ranges returned | Time to calculate (sec.)
6 20 0,651
7 30 1,792
8 45 6,659
9 95 26,008
10 262 102,000

We can see from the table, that the time used to calculate the Hilbert ranges is exponential. This
suggest that it is better to calculate too few ranges than too many, and that a large number of indexed
Periods is necessary to justify going deep into the tree.

4.2.2 Index Split of Hilbert and Map21-2 Indexes

Another index tuning parameter is when to consider a Period long. This parameter determines the
distribution of Periods between the short period table and the long period table in the Map21-2 and
Hilbert index.
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Figure 4.2: Performance Relative to Index Split Limit

The x-axis of Figure 4.2, is the amount of Periods in the data-set that is considered short, and therefore
is stored in the short period table in the Map21-2 and Hilbert indexes.

As we can see from Figure 4.2, this split has a huge effect on the Map21-2, and is optimal when the
small Periods constitute 95 percent. This is consistent with the distribution of data, where 95 percent
of the Periods is 10 to 100 days in length, and 5 percent is between 100 and 1000 days in length. The
split limit has very little influence on the performance of the Hilbert index, this may be due to the
fact that most of the time spent in the Hilbert index is used to calculate Hilbert ranges.

4.2.3 Length of Periods

Long Periods are often a problem with temporal indexes, because they result in both an uneven
distribution of Periods between the long Period and short Period tables, and an increasingly large
search area for querying the indexes.
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The data used for this test contains progressively more long Periods, starting with no long Periods
and ending with only long Periods. Short Periods are between 10 and 100 days, and long Periods are
between 100 and 1000 days.
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Figure 4.3: Performance Relative to Length of Indezed Periods

As expected, Figure 4.3 shows that the performance of Map21 degrades even with a small percentage
of long tuples. This is consistent with the fact that Map21 stores all Periods in one table, and a single
long Period can therefore alter the size of the search area for all Periods. The other indexes also suffer
from a large amount of long Periods, but this may be remedied by changing the split limit as the
amount of long Periods rise.

4.2.4 Now Relative Periods

The fourth test is designed to test the ability of the indexes in handling now-relative Periods. Each
of the indexes handle now-relative Periods similarly, namely by keeping them separate from the non-
now-relative Periods.

As we can see from Figure 4.4, all indexes improve as the percentage of now-relative Periods rise.
This is because querying and indexing now-relative Periods is simpler than non-now-relative Periods.
Because the end point of now-relative Periods is known, we only have to index the start point and no
Hilbert or Map21 translation is necessary, thereby making the query simpler. As shown, all augmented
indexes perform that same when indexing 100 percent now-relative Periods. This is expected, as all
indexes handle now-relative tuples in the same manner.

4.2.5 Query Area

The fifth test is designed to test the ability of each index in handling different size query areas.

As Figure 4.5 shows, all indexes handle large query areas fairly well. Not surprisingly Map21 outper-
forms both Map21-2 and Hilbert when the query area approximates 100 percent of the indexed area.
This is because the Map21 algorithm is simpler, but returns many false Periods. This is a problem
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with small queries, but with large queries the amount of false Periods return is small compared to the
amount of true Periods.

4.2.6 Amount of Tuples

The last index test, test the ability of the index in handling large amounts of tuples.
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Figure 4.6: Performance Relative to Amount of Tuples

Figure 4.6 shows, that all indexes handle large amounts of data almost equally. Map21 is faster than
both Map21-2 and Hilbert at 100000 tuples, whereas Map21-2 and Hilbert perform equally throughout
the range.

4.3 Query Tests

In this section we test the performance of the queries defined in Chapter 2. Both queries using
conventional data types and queries using augmented temporal data types are tested.

Each query was tested using a unique dataset without now-relative Periods. Now-relative Periods
was left out of the dataset because none of the queries, based on conventional data types, support
now-relative Periods. The algorithm used for creating the data-sets, is the same as described in section
4.2. The queries were tested using the TerraTele schema described in Chapter 2.

In the following sections each test contains six series. Four series with augmented data-types, namely
“Augmented” which is without any index defined, and “Map21”, “Map21-2” and “Hilbert” for the
respective indexes. The last two series uses conventional data-types, and are named “Conventional”
for the one using conventional data-types and no index, and “B+” for conventional data-types with
B* indexes.
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4.3.1 Join

The data-set used to test the join query contains 1000 objects in each of the tables, and is designed

as described in Section 4.2.
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Figure 4.7: Performance of the Join Query

As we can see from Figure 4.7, the augmented query cannot compete with the query using conventional
data types. This is because the RDBMS has no knowledge of the semantics of user defined methods
(UDMs), and therefore have to check each Period from the Prices table with each Period from the
Cllls table, resulting in a nested loop comparison. This nested loop is not necessary with conventional
data types, because nothing is hidden from the RDBMS, and it can therefor optimize the query. This
optimization consists, among other things, of sorting the two tables and thereby only comparing
possibly overlapping Periods.

By adding an index, the nested loop comparison is made a bit faster as each Period in the Prices table
results in an index scan instead of a full table scan. The selectivity of the index scan is determined
by the length of the Periods in the Prices table, and is in this case roughly 3 percent.

4.3.2 Set-Difference

The data-set used to test the set-difference query contains 1000 objects in each of the tables, and is
designed as described in Section 4.2.

The SQL for the set-difference query using augmented data types is very similar in structure to the
query using conventional data types. This similarity combined with the added overhead in working
with UDTs, makes the augmented set-difference query slower than the conventional query.

4.3.3 Coalescing

The data-set used for testing the coalescing query contained 100 unique objects, each consisting of 1
to 5 tuples, for a total of 311 tuples. This resulted in a coalescing factor of 66%.
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Figure 4.8: Performance of the Set-Difference Query
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Figure 4.9: Performance of the Coalescing Query
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As shown on Figure 4.9, the augmented index queries are several times faster than the non-indexed
augmented query. Within the augmented index queries, there are virtually no difference in performance
between the different indexes. This is because the low number of tuples in the table, make the
performance difference of the indexes insignificant. Although the augmented index queries are faster
than the non-index augmented query, they are slower than the conventional queries when the selectivity
goes up.

The conventional query with the Bt index are slower than the conventional query without the index.
This could be avoided by using the cost based query optimizer, which probably would have selected
not to use the index, thus making the indexed query at least as fast as the non-indexed query.

4.3.4 Aggregation

The data-set used to test the aggregation query contains 150 objects, and is designed as described in
Section 4.2.
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Figure 4.10: Performance of the Aggregation Query

The performance measurements for the aggregation query is shown on Figure 4.10, where we can see
that all the augmented queries are equally fast, but the conventional queries are faster.

As expected all the augmented queries are equally fast, this is because the query does not use any
index optimized operations, and therefore does not benefit from the generated index.

Even though the augmented aggregation query substantial fewer lines of code than the conventional
query, it is still slower. This is because the query engine calls the ConstantRegion function for each
tuple in the master table, resulting in a full table scan of the master table for each tuple, resulting in
a nested loop.

4.3.5 Time-Slice

The dataset used to test the time-slice query contains 50000 objects, and is designed as described in
Section 4.2.
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Figure 4.11: Performance of the Time-Slice Query

The timings for time-slice is shown in Figure 4.11, here we can see that the conventional query is
consistently faster than the augmented queries. Among the augmented queries, there is little difference
on Map21-2 and Hilbert, which both are a bit faster than Map21. As the selectivity rises above 70
percent, it becomes faster to use full table scans that to use indexes.

The augmented query without indexes takes the same amount of time, regardless of the selectivity.
This is because regardless of the selectivity, it has to do one full table scan to retrieve the matching
tuples.

4.4 Evaluation of Performance

The basis for this chapter, was to evaluate the performance of the suggested temporal frame-work. The
chapter contained a test of the indexes compared to using conventional data-types and BT indexes,
and a test of the queries suggested in Chapter 2. This performance evaluation is used, to decide
whether the suggested frame-work fulfills REQ3.

The implemented temporal indexes was consistently slower than the conventional B¥ indexes, some
times more than 150 times as slow. The temporal indexes did not scale as well as BT indexes, and
the performance was more dependent on the structure of the data than the BT indexes.

Based on reduction in lines of code, the queries tested in this chapter can be divided into three groups.
The simple queries, the ones that did not benefit from the augmented temporal data-types and finally
the ones that did benefit from the augmented data-types.

The performance of the simple query, time-slice, did not benefit from the augmentation. It is a
simple query, both to express and to execute, and there where little possibility for improvement by
augmentation.

The queries that did not benefit from the augmented data-types was coalescing and set-difference, the
structure of these queries did not change with the augmented temporal data-types. The performance
of these queries where very slow compared to queries using conventional data-types, this is probably
because of the added overhead of using UDTs.
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The last group of queries are those, that improved structurally by adding the augmented temporal
data-types, these are the join and aggregation queries. The join query, although simpler to express,
was more complex to execute. The Overlaps operator translated into a nested loop, where the RDBMS
makes an index search for each Period in the master table. This makes the augmented join slower
than the conventional join. The aggregation query suffers from the same problem as the join query, it
is executed as a nested loop. The query was expressed as a join between the virtual table of constant
regions and the master table. Unfortunately the RDBMS executes the ContinuousRegion function
for each period in the master table. This nested loop makes the augmented version slower than the
conventional.

Based on the performance of the indexes and the performance of the expressed queries, we can say that
the frame-work described does not meet REQ3. Queries like aggregation could improve in performance
if the RDBMS checked the dependencies of the function before execution, while others like join could
not easily be improved in performance.
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Chapter 5

Conclusion

Concluding on the work performed and discoveries made in this project we first list the contributions
of the project. Following this, we discuss how the goals were met and requirements fulfilled. The test
results of Chapter 4 are summarized and related to the goals and requirements. Finally we discuss
what future work is relevant with regards to our task.

The contributions of this project in relation to the field of temporal databases are as follows.

e We suggest a way of reducing the complexity of temporal queries with as much as 95% compared
to the existing SQL queries. On average the suggested method saves roughly two thirds of the
query measured in lines of code.

e A hierarchy of object types complying with accepted research results from over 20 years of
research activities in temporal databases are designed. The object hierarchy is easily extendible
to encompass concepts such as custom calendars, indeterminacy, and user defined granularities
and time domains, which have so far been limited to research database prototypes.

e Theoretically described indexes are adapted to the new object types, implemented and tested
as an extension to a commercial ORDBMS platform.

e The project studies Oracle’s cartridge technology in relation to the implementation of valid time
temporal data.

Together all contributions serve as a demonstration of a framework for adding complex temporal
functionality to an existing ORDBMS by encapsulating it in the database using existing extensibility
features of the ORDBMS.

GOAL1 was to examine the possibilities of easing the task of managing now-relative valid-time data
in commercial ORDBMSs. It was shown that it is possible to reduce the number of lines of code
necessary to express a temporal query by a factor three. This fulfills REQ2 which concerns simple
code. The objective is related to REQ4 and REQ5 in the fact that the database features needed for
pursuing our goal of reducing code complexity via new objects, in fact is met by major ORDBMS
platforms. However these features are still not mature enough for also supporting efficient use of the
temporal data types in queries.

GOAL?2 was to provide a framework for efficient execution of temporal statements. It was shown that
it is not possible to achieve high performance of queries based on the temporal framework in todays
ORDBMS platforms. Requirement REQ1 that deals with use of only existing technology, can thus
not be fulfilled along with REQ3. The performance tests indicate that the enhanced queries execute
several times slower than the original counterparts.
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Overall we conclude that while it is possible to reduce the complexity of temporal code, the related
performance degradation is not acceptable for most applications. With little effort from the RDBMS
vendors, queries like aggregation could be made faster, while others, like join, need a larger amount
of work.

We think that the concept of a period might be too simple to justify being modeled as an object,
and believe that more complex objects, such as temporal containers, are more suitable. The temporal
containers have several benefits, among others they allow table operator like functionality, and allow
for more object oriented schema design.

Future Work

In this rapport we have described some of the challenges of working with temporal data in ORDBMSs,
but before it is possible for companies to use this technology a number of tasks have to be done.

We have created three indexes, all based on space-filling curves. These are just one type of temporal
indexes, and it might prove useful to explore other index types, e.g., the R-Tree contained in the
spatial cartridge [C0099].

The user-defined objects described in Chapter 3 is designed and implemented to support multiple
calendars. The calendar system has not been implemented, but we feel that the added complexity of
dealing with user defined calendars might justify the added overhead from the temporal cartridge.

Several researchers, within both the temporal and spatial research community, have worked with
indeterminate data. The user-defined objects defined here, would be able to encapsulate this indeter-
minacy, thus making it almost transparent to the user.

The current implementation of the temporal cartridge is done completely in PL/SQL, which is only
one of the languages supported by Oracle. Because some of the methods are processor intensive we
expect that they are faster when implemented in C or Java.
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Appendix A

Semantics

This section introduces the semantics for the temporal framework applied in the temporal cartridge
developed. The appendix has the following structure: First it introduces the general semantics of
granularities, operations on basic temporal data types, and the new cartridge object types them
selves. Then a more detailed semantics of the operators on the object types are given.

A.1 General Semantics

A point in time can be seen as a point on a continuous time line [DELS98], beginning at the Big Bang
[Wal92] and ending at the end of the universe. However, since databases store discrete values, we
adopt a discrete representation of time. This discrete representation of time is based on units called
instants and are related with the matter of granularity, calendars and indeterminacy as explained in
the following.

Temporal data types such as instants are associated with a granularity which specifies to what precision
the information can be interpreted. A granule is a subset of the time domain and the granularity can
be defined as a mapping G from the set of integers N to granules, such that the granules inside the
granularity are non-overlapping and totally ordered [DELS98].

A relationship exists between granularities, in the fact that the granules of a given granularity can be
aggregated into new granules of a coarser granularity. Similarly a granularity may be finer than an
other. If a granularity is coarser or finer than an other granularity, we say that the two granularities
are comparable. The finer-than and coarser-than relationships have been described as follows.

If G and H are two comparable granularities we can say that
e H is coarser than G (G < H)

e G is finer than H (G> H)

if for each granule h € H there exists a set, of granules S C G such
that h = cq9

An example of these relationships include the facts that a month is finer than a year (month < year)
and that an hour is coarser than a minute (hour > minute), whereas a week is neither coarser nor finer
than a month. The reason for this is that a month is not composed of an integer number of weeks.

Granularities are given with respect to calendar. We leave the treatment of calendars to others
([SS94]) except for the brief introduction in this paragraph. The above mentioned granularities are,
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for example, those of the Gregorian calendar. A calendar is thus a partitioning of the underlying
time line into granules [DS94]. Tt provides a mapping between granules and character strings and
functionality for handling such granularities.

A.2 Data Types

As outlined in Section 3.1.1 seven object types are defined for the system. Schematically the data
types are ordered in a hierarchy as previously shown in Figure 3.1 on page 25. Semantics for the seven
object types are listed in the following paragraphs.

A.2.1 Instant

A time point is the actual moment an event occurs and is modeled in the discrete framework by an
instant. Instants are either determinate or indeterminate. Indeterminate instants store un-precise or
“do-not-know-when” information, whereas determinate instants store precisely known information.

All instants are composed of a sequence of granules, which is called the support. The granules in the
support are the granules g in granularity G during which the time point of the given event may exist.
If the lower granule of this support is equal to the upper granule (i.e. the support consists of exactly
one granule) it is a determinate instant, otherwise indeterminate.

In the following we use the notation g = lg ~ ug for an instant g in granularity G. lg and ug are
the first and last granule of the support respectively. We thus have that

lg ~ug ={g€G|l<g<u}

»

In the following, instants are referred to by the symbol “ins”.
determinate instant b is illustrated in Figure A.1 below.

An indeterminate instant a and an

—— 2
\gl\gz\%\. T T T \%\

Figure A.1: Indeterminate Instants a and b in Granularity G
In the following instants (Ims) are determinate and contains the following:

e Granule index i € N

e Granularity G € Gy, where G, is the set of granularities in calendar cal.

Instants (and other data types) are written with a subscript denoting their granularity, e.g. 2000, ¢q7s
or 2000-15-0344ys. The following are examples of determinate instants.

2000-01-0144ys The date 1 January year 2000.
1976-10-26 09:20:005¢conds The 26 October 1976 at 9:20am.
1900ycars The year 1900.

A.2.2 Interval

Intervals represent unanchored periods of time. If associated with a the valid-time of a fact, intervals
contain only information about the length of time the fact was valid, but no information about when
it was. An interval can be both forward and backward pointing.
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Intervals are much like instants, and consists of a granule count and a granularity. We define intervals
as a signed number of granules in some granularity G.

The determinate intervals (Inwv) are referred to by the symbol “inv” in our semantics and consists of:

e Granule count 7 € N

e Granularity G € G4, where Gy is the granularities in calendar cal.

The following are examples of determinate intervals.

]-week's One week.
Tdays 7 days forward from some instant.
-8hours 8 hours backward from some instant.

A.2.3 Relative Instant

A relative instants of granularity G consists of an interval and an instant both of granularity G.

A relative instant may be of a special type, e.g., now, which means that the instant is not bound to a time
value until it is used.

Relative instants (R%) contain:

e ins: Instant (i,G) € Ins

e inv: Interval (i,G) € Inv

The following are examples of relative instants.

NO0Wdays - ]-days Yesterday.
NO0Wdays + Ol‘oodays Same day next month.
2000-01-0140ys - Tdays 1999-12-25, ..

A.2.4 Period

We define a period per of granularity G to be a contiguous subset of the time domain between two instants i;
and 4o represented by granules g; and g» both belonging to G. L.e. a period is composed of the set of granules
between g and g», given that g1 < g». The granules 71 and i» are represented by two relative instants.

Concretely periods (Per) contain:

e ri~ Start relative instant (ins,inv) € Ri

e rit End relative instant (ins,inv) € R4

The following are examples of periods.

[2000-01-01days, 200]—'01'01days] The time between 2000-01-01 and 2001-01-01.
[1988-01-01days, NO0Wdays- 01—00—00day5] The time from 1988-01-01 to one year ago.
[1976-10-264ays, NOWdays] The time from 1976-10-26 until now.
[nowyeeks- lweeks, NOWyeeks] The previous week.

A.2.5 Instant Container

The instant container data type is a multi set, IC, containing n instants {ins;,ins,...ins, }.
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A.2.6 Interval Container

Interval containers, IV C, contain n intervals {invy,invs...inv, }.

A.2.7 Period Container

Finally period containers, PC contain n periods {peri, pers...per, }.

A.3 Basic Operations on Temporal Data Types

Four semantics are possible for operations on temporal data of non-equal granularities and in all cases it may
be necessary to convert between granularities. In the present semantic specification we leave it as an option to
use any of the four semantics which are described shortly. For converting between granularities two operations
are suggested [DELS98] : scale and cast. The two differ in the fact that scale may return indeterminate data,
whereas cast always returns determinate data. The scale and cast operators are defined as follows:

scale(g, H) The scale operator takes as input an instant ¢ = l¢ ~ u¢ in granularity G and another granularity
H. It returns an instant h = lg ~ wgy in granularity H such that lg ~ ug C lg ~ upm. If no such
instant exist an error is returned.

cast(g, H) The cast operator is the determinate version of scale and is parameterized with an instant g =
lg ~ ug in granularity G and a granularity H. Cast returns an instant h = lg ~ ug in H where
lg € min(scale(lg, H)) and ug € min(scale(uq, H)). h is thus determinate if input g is determinate.
The min function returns the smallest granule of the (possibly indeterminate) interval given.

Examples of the scale and cast functions for instants are

scale(2000ycqrs, months) 2000 — 01,months ~ 2000 — 12,0 ths
cast(2000yeqrs, months) 2000 — 01 ,months
scale(cast(200044ys, months)) 2000 — 01,0nths

Similar semantics can be given for scaling and casting intervals, where an unanchored interval can be scaled
to the indeterminate interval in a coarser granularity. Examples include

scale(ldays, years) Oyears ~ ]-years
cast(ldays, months)  Omonths

Given two operands o1 and o2 from the set {InsUInwv} , a binary operator/predicate ® € {>,<,=,+, —, +},
and two granularities F' and C that are finer respectively minimally coarser than G, we can express four
semantics for operators:

Coarser semantics

scale(01, Goy )1 ® 02.4 if Go, 1 Go,
01 ® 02§ 01.i © scale(o2,Go, ).i if Go, > Go,

scale(o1,C).i © scale(oz,C).i otherwise

Finer semantics

02.1 © scale(02,Go, ) i if Go, 1 Go,
01 ® 02 § scale(o1,Go,).i © 020 if Go, > Go,

scale(o1, F).i ® scale(o2, F).i otherwise
Right operand semantics
01 ® 02 = scale(01,Goy).1 ® 02.1
Left operand semantics

01 ® 02 = 01.i © scale(o2,Go, ).i
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In the case of coarser semantics we scale the operand with the finest granularity to that of the other. If
the granularities are not directly comparable we scale to a granularity that is minimally coarser than both
operand-granularities (e.g. weeks and months will be scaled to year).

In the case of finer semantics the opposite is the case. Here we round the coarsest operand down to that of
the finest or one that is finer than both.

Right (left) operand semantics scales the left (right) operand to that of the right (left) one.
Constructing and Converting the Data Types

When a function returns a result, the data type is constructed using the appropriate constructor operator.
For our purpose of specifying a semantics it is sufficient to use a simple notation for such constructors. The
notation is a tuple containing the elements of the data type in question. We add a subscript for each tuple
for readability. The notation can be illustrated as follows.

Data type Notation
instant (7, G)ins
interval (7, @)inv
relative instant (ins, inv)r;
period (ri, ri)per
instant container (ins1,insa, ... ,iNSy )ic
interval container | (invi,invs,... ,iNV )ive
period container (per1,pera, ... ,peTn)pe

Routines for converting between data types are specified with the prefix “to_”, e.g. ri.to_ins(), which creates
an instant from a relative instant.

A.4 Operations of Temporal Types

This section contains a description of all operations available on the seven datatypes introduced above.

+»

Notation is based on that mentioned in the previous section, such that for example “ins > per.ri™” would

mean ins compared to the end instant of per using either of the comparison semantics.

A.4.1 Instant

An instant consists of the following operators.

We assume that ri~,ri", ri € Ri; G € Geq; ins € Ins, and inv € Inv

Syntax Ret | Semantics

ins.Granularity() gran | ins.G

ins1.Smaller(inss2) bool | ins1 < inss

ins.Smaller(per) bool | ins < per.ri”
insi1.Greater(inss2) bool | ins1 > inss

ins.Greater(per) bool | ins > per.rit
ins1.Equal(inss) bool | ins; = insa
ins1.TotalyEqual(insi) | bool | insi = ins2 A insi1.G = ins>.G
ins.Add(inv) ins | ins+inv

ins.Add(per) ins | ins + per.Duration()
ins.Sub(inv) ins | ins —inv

ins.Sub(per) ins | ins — per.Duration()
ins.Cast(Q) ins | cast(ins, G)

ri.to-ins() ins | (ré.ins.Add(ri.inv), ri.ins.G);ns
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A.4.2 Interval

An interval has the following operators.

We assume that G € Geqi; tnv € Imw; and i € N

Syntax Ret | Semantics
inv1.Granularity() gran | invi.\
invi.Smaller(inva) bool | invi < invs
inv.Smaller(per) bool | inv < per.Duration()
inv1.Greater(invs) bool | invi > invs
1. Equal (invs) bool | invi = invs
invi.TotalyEqual(inv2) | bool | invi = inva A invi A = inv2.\
imv.Neg() inv | —inv.e
invy.Abs() inv {Z_m)l o > 0
invy.Neg() Otherwise.

inv1.Sub(invs) inv | invy — inve
1nv.Sub(per) inv | inv — per.Duration()
inw1.Add(invs) inv | invi + invs
inv. Add(per) inv | inv + per.Duration()
1nv1.Div(invs) iny | YL

invy
tnv.Div(per) inv o

per.Duration()
inmv.Cast(Q) inv | cast(inv, G)

A.4.3 Relative Instant

Assuming G € Gear; inv € Inw; ri~,rit,ri € Ri; ins € Ins; and per € Per we specify the operators of
relative instants below.

Syntax Ret | Semantics
ri.Granularity() gran | ri.ins.Granularity()
riy.Smaller(riz) bool | rii.to_ins().Smaller(riz.to_ins())
ri.Smaller(ins) bool | ri.to_ins().Smaller(ins)
ri.Smaller(per) bool | ri.to-ins().Smaller(per.ri™)
riy.Greater(riz) bool | rii.to_ins().Greater(riz.to_ins())
ri.Greater(ins) bool | ri.to_ins().Greater(ins)
ri.Greater(per) bool | ri.to_ins().Greater(per.rit)
ri1.Equal(riz) bool | rii.to-ins().Equal(riz.to—ins())
ri.Equal(ins) bool | ri.to—ins().Equal(ins)
ri1.Total Equal(riz) | bool | ri1.to_ins().Total Equal(riz.to-ins()) A rii.inv(Total Equal(riz.inv)
ri.Add(inv) ins | (ins, ri.inv.Add(inv))y;
ri.Sub(inv) ins | (ins, ri.inv.Sub(inv)).;
ri.Add(per) ins | (ins, ri.inv.Add(per.Duration())r;
ri.Sub(per) ins | (ins, ri.inv.Sub(per.Duration())ri

L. . ins if ri is of type normal
ri.to_ins() ins . .

(current system time);,s if ri is of type now

ri.Cast(G) ins | (ins.Cast(G), inv.Cast(G))ri

A.4.4 Period

The operators of the period data type is as follows:

We assume that G € Gear; ins € Ins; inv € Inv; ri”,rit,ri € Ri; and per € Per
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Syntax Ret | Semantics

per.Granularity() gran | per.ri”.G

per1.Total Equal(pers) bool | peri.ri™.Total Equal(pers.ri”) A peri.ri™.Total Equal(pers.ri™)
per.Add(inv) per | (ri~,rit.Add(inv))per

per1.Add(per2) per | peri.Add(pers.Duration())

per.Sub(inv) per | (ri™,rit.Sub(inv))per

pery.Sub(pers) per | peri.Sub(pers.Duration())

per.Move(inv) per | (ri”.Add(inv), rit.Add(inv))per

per.Move(per) per | (ri”.Add(per), rit.Add(per))per

per.Duration() inv | perxit.Sub(per.xri™)

per.Smaller(inv) bool | per.Duration().Smaller(inv)

per.Greater(inv) bool | per.Duration().Greater(inv)

per.Equal(inv) bool | per.Duration().Equal(inv)

per1.Equal(pers) bool | peri.rit.Equals(pers.xi™) A peri.ri™.Equals(perz.ri™)
peri.Intersect(pers) per | (max(peri.ri”, pers.ri”), min(peri.rit, pera.rit))per
peri.Contains(pers) bool | pers.ri”.Greater(peri.ri”) A perg.ri*.S’maller(perl.rﬁ)
per.Contains(ins) bool | per.ri”.Smaller(ins) A pers.ri™.Greater(ins)
per.Contains(ri) bool | per.ri” .Smaller(ri.to-@'ns()) A pera.rit.Greater(ri.to_ins())
per1.RightOverlaps(pers) | bool | peri.rit.Greater(pers.rit) V pery.ri”.Smaller(pers.ri™)
peri.LeftOverlaps(perz) bool | peri.rit.Greater(pers.ri™) V peri.ri”.Smaller(pers.ri™)
peri.StartsInside(pers) bool | peri.ri™.Greater(pers.ri™) V perl.ri_.Smaller(perz.ri"")
peri.EndsInside(pers) bool perl.ri+.Greater(per2 ri) Vpe’r‘l.ri*.Smaller(pem.ri*)
per1.Qverlaps(pers) bool | peri.rit.Greater(pers.ri™) V peri.ri”.Smaller(pers.rit)
per.Overlaps(ins) bool | per.ri™.Smaller(ins) A pers.rit.Greater(ins)
per.Overlaps(ri) bool | per.ri”.Smaller(ri.to_ins()) A pers.rit.Grater(ri.to_ins())
peri.Meets(per2) bool | peri.ri”.Equal(pers.ri™) V peri.riT. Equal (pers.ri™)
per.Meets(ins) bool | per.ri™.Equal(ins) V per.rit.Equal(ins)

per.Meets(ri) bool | per.ri”.Equal(ri.to_ins()) V per.ri*. Equal(ri.to_ins())
peri.Precedes(pers) bool | peri.rit.Smaller(per».ri™)

per.Precedes(ins) bool | peri.rit.Smaller(ins)

per.Precedes(ri) df bool | peri.rit.Smaller(ri.to_ ms())

peri.Succedes(perz) bool | peri.ri”.Greater(pers.rit)

per.Succedes(ins) bool | per;i.ri”.Greater(ins)

per.Succedes(ri) bool | peri.ri”.Greater(ri.to_ins())

per.Cast(Q) per | (peri.ri”.Cast(@), peri.rit.Cast(G)per

A.4.5 Instant Container

The semantics of the available operators on instant containers are listed below. First operators which are also
found on the instant data type is listed. Following, set operators applicable to instant containers are listed.

G € Geay, ins € Ins, inv € Inv, ri~,ri™, ri € Ri, per € Per, n € N
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Syntax Ret | Semantics

ins.Granularity() if granularity is homoge-
IC.Granularity() gran { where ins € PC neous in the container

error otherwise
IC,.Smaller(IC5) IC | {ins' | IC.Contains(ins') A ins'.Smaller(IC.Smallest())}
I1C.Smaller(ins) IC | {ins' | IC.Contains(ins') A ins'.Smaller(ins)}
IC.Smaller(ri) IC | {ins' | IC.Contains(ins’) A ins'.Smaller(to-ins(ri))}
IC.Smaller(per) IC | {ins' | IC.Contains(ins') A ins'.Smaller(per.ri”)}
I1C:1.Greater(IC5) IC | {ins' | IC.Contains(ins') A ins'.Greater(IC.Greatest())}
IC.Greater(ins) IC | {ins' | IC.Contains(ins') A ins'.Greater(ins)}
IC.Greater(ri) IC | {ins' | IC.Contains(ins') A ins'.Greater(to_ins(ri))}
I1C.Greater(per) IC | {ins' | IC.Contains(ins') A ins' .Greater(perrit)}
IC,.Equal(ICs) IC | {ins' | IC,.Contains(ins') A ICy.Contains(ins')}
IC.Equal(ins) IC | {ins' | IC,.Contains(ins') A ins'.Equal(ins)}
I1C.Equal(ri) IC | {ins' | ICy.Contains(ins') A ins'.Equal(to-ins(ri))}

IC,.Total Equal(IC2) bool | Vins'(ins’ € IC> A IC:.Contains(ins')) A
Vins(ins € IC1 A IC:.Contains(ins))

IC.Add(ins) IC | (ins1.Add(ins),ins2.Add(ins),. .. ,insy.Add(ins))ic
IC.Add(per) IC | (ins1.Add(per),inss.Add(per), ... ,ins,.Add(per))rc
I1C.Sub(ins) IC | (ins1.Sub(ins),ins2.Sub(ins), ... ,ins,.Sub(ins))rc

I1C.Sub(inv) IC | (ins1.Sub(inv),ins2.Sub(inv), ... ,ins,.Sub(inv))ic
IC.Sub(per) IC | (ins1.Sub(per),insa.Sub(per),... ,ins,.Sub(per)):c

I1C: . Intersect(I1C2) IC | {ins | IC,.Contains(ins) A ICy.Contains(ins)}

I1C: . Intersect(ins) IC | {ins | IC,.Contains(ins) A ICy.Contains(ins)}
IC;.Intersect(ri IC | {ins | IC:.Contains(ins) A IC3.Contains(ins)}

I1C: . Intersect(per) IC | {ins | IC,.Contains(ins) A ICy.Contains(ins)}
I1C:.Contains(I1C>) bool | Vins'(IC2.Contains(ins’) A IC:.Contains(ins'))
IC.Contains.(ins) bool | Jins'(IC.Contains(ins’) A ins.Equal(ins'))

IC.Contains(ri) bool | Jins'(IC.Contains(ins') A to-ins(ri).Equal(ins’))
1C.Contains(per) bool | Jins'(IC.Contains(ins') A per.Contains(ins'))
IC1.Overlaps(IC3) bool | IC;.Contains(IC2)

I1C.Overlaps(ins) bool | IC:.Contains(ins)

1C.Overlaps(ri) bool | IC:.Contains(ri)

IC.Overlaps(per) bool | IC;.Contains(per)

I1C.Greatest() ins | {ins|ins € IC A =Fins' (IC.Contains(ins') A ins’.Smaller(ins))
I1C.Smallest() ins | {ins|ins € IC A =Tins'(IC.Contains(ins') A ins'.Greater(ins))
IC.Count() num | n

IC.Duplicates() bool | JinsTJins'(IC.Contains(ins) A IC.Contains(ins') A ins.Equal(ins'))
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IC.Coalesce()

IC.Cast(G)
I1C.AddInstant(ins)
I1C.AddInstant(ri)
IC.Removelnstant(ins)
I1C.RemovelInstant(ri)

IC

IC
IC
IC
IC
IC

Returns the coalesced version of IC, i.e. where du-
plicate instances have been combined into just one
instant.

(ins1.Cast(G), ins2.Cast(G), ... ,ins,.Cast(G))ic
{ins' | IC.Contains(ins') V ins'.Equals(ins)}

{ins' | IC.Contains(ins') V ins'.Equals(toins(ri))}
{ins' | IC.Contains(ins') A —ins'.Equals(ins)}

{ins' | IC.Contains(ins') A —ins'.Equals(to-ins(ri))}

!

~—

A
A




A.4.6 Interval Container

The semantics of various operations on interval containers is given below. As in the case of instant containers
above, we first specify operations inherited from intervals, then set and other operations.

Given G € Geqr; inv € Imw; per € Per; and n € N we have the following operations on interval containers.
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Syntax Ret | Semantics

tnv.Granularity() if granularity is homoge-
IVC.Granularity() gran where inv € IVC neous in the container

error otherwise
IV Cy.Smaller(IVCs) IVC | {inv' | IVC.Contains(inv') A ins'.Smaller(IVC.Smallest())}
IV C.Smaller(inv) IVC | {inv' | IVC.Contains(inv') A ins'.Smaller(inv))}
IV C.Smaller(per) IVC | {inv' | IVC.Contains(inv') A ins'.Smaller(per.Duration()))}
IV, .Greater(IVCy) IVC | {inv' | IVC.Contains(inv') A ins' .Greater(IVC.Greatest())}
IV C.Greater(inv) IVC | {inv' | IVC.Contains(inv') A ins' .Greater(inv))}
IV C.Greater(per) IVC | {inv' | IVC.Contains(inv') A ins'.Greater(per.Duration()))}
IV Cy.Equal(IVCsy) IVC | {inv' | IVC:.Contains(inv') A IV C>.Contains(inv')}
IV C.Equal(inv) IVC | {inv' | IVCi.Contains(inv') A ins'.Equal(inv)}
IV C.Equal(per) IVC | {inv' | IVC:i.Contains(inv') A ins'.Equal(per.Duration())}

IV Cy.Total Equal(IV C5) bool | Vinv' (IVC>.Contains(inv') = IVCy.Contains(inv')) A
Vinv(IV C:.Contains(inv) = IV Cy.Contains(inv))

IV C.Sub(inv) IVC | {inv' | Jinv" (IVC.Contains(inv') A inv” .Sub(inv).Equals(inv'))}

IV C.Sub(per) IVC | {inv' | Finv" (IVC.Contains(inv') A inv" .Sub(per).Equals(inv'))}

IV C.Add(inv) IVC | {inv' | Finv" (IVC.Contains(inv') A inv"” . Add(inv). Equals(inv'))}

IV C.Add(per) IVC | {inv' | Jinv" (IVC.Contains(inv') A inv" . Add(per).Equals(inv'))}

1V C.Div(inv) IVC | {inv' | Jind' (IVC.C’ontains(inv”) A inv”.Div(inv).Equals(inv'))}

IV C.Div(per) IVC | {inv' | Finv" (IVC.Contains(inv') A inv .Div(per).Equals(inv’))}

IVC.Neg() IVC | {inv' | Finv(IV C.Contains(inv) A inv'.Equals(inv.Neg()))}

IVC.Abs() IVC | {inv' | Jinv(IV C.Contains(inv) A inv'.Equals(inv.Abs()))}

IV . Intersect(IVCy) IVC | {inv' | IVCi.Contains(inv') A IV Cs.Contains(inv')}

IV C.Intersect(inv) IVC | IVC.Equal(inv)

IV C.Intersect(per) IVC | IVC.Equal(per)

IV Ch.Contains(I1V Cs) bool | Vinv' (IVCi.Contains(inv') A IVCs.Contains(inv'))

IV C.Contains(inv) bool | Jinv' (IVC.Contains(inv') A inv.Equal(inv’))

1V C.Contains(per) bool | Jinv' (IVC.Contains(inv') A per.Duration().Equal(inv'))

IV Ci.Overlaps(1V Cs) bool | IVC,.Contains(IVCs)

IV C.Overlaps(inv) bool | IVC:.Contains(inv)

IV C.Overlaps(per) bool | IVC,.Contains(per)

IV C.Greatest() inv | {inv | IVC.Contains(inv) A =Jinv' (IVC.Contains(inv') A inv' .Greater(inv))}
IVC.Smallest() inv | {inv | IVC.Contains(inv) A =Jinv' (IVC.Contains(inv') A inv'.Smaller(inv))}
IV C.Count() num | n

IV C.Duplicates() bool | Jinv,inv' (IVC.Contains(inv) A IVC.Contains(inv') A inv.Equals(inv'))
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IC.Coalesce()

IVC.Cast(Q)

IV C.AddInterval(inv)

1V C.AddInterval(per)

1V C.Removelnterval(inv)
IV C.Removelnterval(per)

IC

IvC
IvC
IvC
IvC
IvC

Returns the coalesced version of IVC, i.e. where

duplicate instances have been combined into just

one interval of the given size and granularity.
(inv1.Cast(G), invs.Cast(G), ... ,inv,.Cast(G))rve

{inv' | IVC.Contains(inv') V inv'. Equals(inv) }

{inv' | IVC.Contains(inv') V inv'. Equals(per. Duration()) }
{inv' | IVC.Contains(inv') A —inv'.Equals(inv)}
(

v) A
{inv' | IVC.Contains(inv') A —~inv'.Equals(per.Duration())}




A.4.7 Period Container

The semantics of a period container is listed below, once again with period operations first, then set operations.

Given G € Gear; ins € Ins; inv € Inv; ri ,rit,ri € Ri; per € Per; and n € N we specify the following
operations.
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Syntax Ret | Semantics
per.Granularity() if granularity is homoge-
PC.Granularity() gran { where per € PC neous in the container
error otherwise
PC,.Smaller(PC>) PC | {per’ | PCy.Contains(per') A per'.Duration().Smaller(PC3.Smallest(). Duration())}
PC.Smaller(inv) PC | {per’ | PC.Contains(per') A per'.Duration().Smaller(inv)}
PC.Greater(PCs) PC | {per’ | PCy.Contains(per’) A per'.Duration().Greater().(PC2.Greatest().Duration())}
PC.Greater(inv) PC | {per’' | PC.Contains(per’) A per'.Duration().Greater(inv)}
PC:.Equal(PC5) PC | {per’' | PCy.Contains(per') A PC>.Contains(per’)}
PC.Equal(inv) PC | {per’ | PCy.Contains(per') A per’.Duration().Equal(inv)}
PC.Equal(per) PC | {per’ | PCy.Contains(per’) A per'.Equal(per)}
PCy.Total Equal(PC5) | bool | Vper'(PCy.Contains(per’) A
Iper” (PC1.Contains(per”) A
per” .Equals(per'))) A VY per(PCy.Contains(per) A

n

Jper”’ (PC1.Contains(per”') A per"'.Equals(per))

PC.Sub(inv) PC | {per’ | Iper” (PC.Contains(per") A per” .Sub(inv).Equals(per’)}
PC.Sub(per) PC | {per’ | 3per" (PC.Contains(per") A per" .Sub(per).Equals(per’)}
PC.Add(inv) PC | {per’ | Iper” (PC.Contains(per") A per” . Add(inv).Equals(per')}
PC.Add(per) PC | {per’ | 3per" (PC.Contains(per") A per" . Add(per).Equals(per')}
PC.Durations() IVC | {inv' | Iper(PC.Contains(per) A per.Duration.Equals(inv'))}
PC.Move(inv) PC | {per’ | 3per(PC.Contains(per) A per.Move(inv).Equals(per'))}
PC.Move(per) PC | {per’ | 3per(PC.Contains(per) A per.Move(per).Equals(per’))}
PC1.Overlaps(PC-) bool | VperVper'(PCy.Contains(per) A PCs.Contains(per') A per.Overlaps(per’))
PC.Overlaps(per) bool | Jper’ (PC:.Contains(per’) A per’.Overlaps(per))
PC.Overlaps(ins) bool | Jper'(PCy.Contains(per’) A per’.Overlaps(ins))
PC.Overlaps(ri) bool | Jper' (PCy.Contains(per’) A per’ .Overlaps(ri))
PCy.Meets(PC») bool | VperVper'(PC1.Contains(per) A PCs.Contains(per’) A per.Meets(per'))
PC.Meets(per) bool | Jper'(PCy.Contains(per') A per'.Meets(per))
PC.Meets(ins) bool | Jper' (PC1.Contains(per’) A per'.Meets(ins))
PC.Meets(ri) bool | Jper’ (PC:.Contains(per’) A per'.Meets(ri))
PC,.Precedes(PC?) bool | VperVper' (PCy.Contains(per) A PC>.Contains(per') A per.Precedes(per'))
PC.Precedes(per) bool | Jper' (PC1.Contains(per’) A per'.Precedes(per))
PC.Precedes(ins) bool | Fper’ (PC1.Contains(per’) A per'.Precedes(ins))
PC.Precedes(ri) bool | Jper'(PCy.Contains(per') A per'.Precedes(ri))
PC.Succeeds(PCs) bool | VperVper' (PC1.Contains(per) A PCs.Contains(per') A per.Succeeds(per’))
PC.Succeeds(per) bool | Fper’ (PC1.Contains(per’) A per'.Succeeds(per))
PC.Succeeds(ins) bool | Jper'(PCy.Contains(per') A per'.Succeeds(ins))

)

(
PC.Succeeds(ri) bool | Jper' (PC1.Contains(per’) A per'.Succeeds(ri))
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PC.Cast(Q)
PC.Remove(inv)
PC.Remove(per)
PC,.Contains(PC?2)
PC.Contains(per)
PC.Contains(inv)
PCs.Intersect(PC2)
PC,.Union(PCs)
PC.Largest()
PC.Smallest()
PC.Count()
PC.Duplicates()
PC.Coalesce()

PC.TimeSlice(ins)
PC.TimeSlice(per)
PC.Cover()

PC
PC
PC
bool
bool
bool
PC
PC
PC
PC
num
bool
PC

bool
PC
per

(per1.Cast(G), perz.Cast
{per’ | PC.Contains(per’
{per’ | PC.Contains(per
Vper' (PC>.Contains(per’) A PC1.Contains(per'))

Iper’ (PC.Contains(per’) A per’.Equals(per))

Jinv' (PC.Contains(per’) A inv'.Duration().Equals(inv))

{per | PC:.Contains(per) N PCs.Contains(per)}

{per | PC:.Contains(per) V PCs.Contains(per)}

{per | PC.Contains(per) A =3per' (PC.Contains(per') A per’.Succedes(per))}
{per | PC.Contains(per) A —Iper' (PC.Contains(per') A per'.Precedes(per))}
n

Jperdper’ (PC.Contains(per) A PC.Contains(per') A per.Equals(per'))
Returns PC’ which is the coalesced version of PC, i.e. all du-

plicates have been merged into just one single period
Jper(PC.Contains(per) A per.Contains(ins))

—~~

G),...,pern.Cast(G))pc
A —per’.Equals(per)}
A —per'.Equals(per)}

!

/

{per’ | Iper” (PC.Contains(per”) A per” .Overlaps(per) A per’.Equals(per.Intersect(per”)))}

(PC.Smallestxi”, PC.Largest().ri)pe,
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