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Prefae
This thesis is the result of the work done by group DAT6-NOVI in the springof 2000. We ontinue the work from DAT5 as desribed in [J�rgensen, 2000℄,where we made some initial studies on the use of Bayesian networks in thearea of game theory.The main subjet of this report is solution of �nite two-person zero-sumgames with adaptive Bayesian networks. As usually when working with gametheory, we desribe the �rst player using male pronouns and the seond play-er using female pronouns. If a player is referred without role, we shall usemale pronouns.The notation used in this thesis is mainly based on [Jensen, 1996℄ when on-erning Bayesian networks and [Robinson, 1951℄ when desribing the sug-gested solution proedure for the games.This thesis has been typeset with LATEX.We would like to thank HUGIN Expert A/S for providing us with a versionof the HUGIN Java API during the projet period.

Thomas J�rgensen
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Chapter 1IntrodutionThe purpose of this thesis is to ontinue the work from [J�rgensen, 2000℄where we onluded that if we let intelligent agents based on adaptive Bayesiannetworks play against eah other, they onverge against the same probabilitydistributions. From these distributions we an read out randomized strate-gies desribing the behavior of the agents during the series of games. In[J�rgensen, 2000℄ we argued that the �nal strategies for the game of spoo�ng"seemed" to reet an intelligent and rational behavior.In this thesis we would like to prove that intelligent agents based on adaptiveBayesian networks atually onverge against a set of randomized strategiesthat is a solution of the game they are playing. Suh a solution is what wein [J�rgensen, 2000℄ desribed as a Nash equilibrium. To be able to atuallyprove that the randomized strategies we end up with are a Nash equilibriumwe start out with some very simple games where we an pre-ompute thesolutions. The games that are the subjet of this thesis are �nite two-personzero-sum games.As a theoreti foundation for solution of suh simple games we use the workof George W. Brown and Julia Robinson as desribed in [Robinson, 1951℄. Inthis artile Robinson is desribing and proving an iterative solution proedurefor �nite two-person zero-sum games. This proedure is initially suggested byGeorge W. Brown in 1949 in some unpublished work. In Chapter 2 we intro-due some general game theoreti onepts to ensure a lear understandingof the theory behind zero-sum games, and we desribe in detail the solutionproedure and the proof hereof.In Chapter 3 we try to verify the iterative solution proedure by testing it ona few simple games, before we in Chapter 4 introdue an integration of the



8 Introdutionsolution proedure into Bayesian networks. We shall also verify that thesenetworks are apable of solving the simple games we onsider in this work.Finally, in Chapter 5 we move away from the type of games overed by theiterative solution proedure suggested by Brown, to see if we an solve moreomplex games with our new representation in adaptive Bayesian networks.The results are summed up in Chapter 6 and a disussion of future work isinluded in Chapter 7.



Chapter 2Iterative Solution of FiniteTwo-Person Zero-Sum GamesMuh of the early work in the area of Game Theory was done on two-personzero-sum games sine those are the games that are easiest to model mathe-matially. As work proeeded, the simplifying assumption of zero-sum, mean-ing that ones gain is always the opponents loss, was found to prohibit themodeling of more omplex and realisti games, and the fous started turningto non-zero-sum games. However, the theory of zero-sum games still ontainsa lot of interesting aspets as we shall disover in the following setions.One of the most ative researhers in zero-sum games was John von Neuman-n, whih is also the father of the widely referred minimax theorem of gametheory. As well as this theorem is widely referred it is also widely rewrittenand reproved, in this thesis we shall adopt the notion from reent works inprobability- and deision theory together with the most suitable notion forthe main task of this hapter.Bak in 1949, George W. Brown suggested a method for an iterative solu-tion of �nite two-person zero-sum games with one deision. In 1951 JuliaRobinson[Robinson, 1951℄ proved the validity of the proedure suggested byBrown. The purpose of this hapter is to highlight the results from Brownand Robinson, and to do so we start looking at some of the earlier results toensure a lear understanding of the onepts. The de�nitions are given usinggames with only pure strategies, but they an easily be extended to inluderandomized play [Myerson, 1991℄, however, doing so would make them lesssuitable to serve as a gentle introdution. Randomized play will be intro-dued later on.To represent the games we use the strategi form. To de�ne a game in



10 Iterative Solution of Finite Two-Person Zero-Sum Gamesstrategi form we need to de�ne a set of players, the set of strategies availableto the players and the pay-o� they gain from the various strategies. In theontext of game theory a strategy is de�ned as followsDefinition 1 (Strategy)A strategy for a player is a presription for what the player must do in anypossible deision situation that an happen.and a strategi form game is de�ned asDefinition 2 (Strategi Form Game)A strategi form game is any � of the form� = (N; (Cp)p2N ; (up)p2N); whereN is the set of players, N 6= ;Cp is the set of strategies available to player p, where 8p 2 N;Cp 6= ;up : C ! R is the utility pay-o� funtion for player p, where C = fCpgp2NIn our ase where we onsider only two-person zero-sum games we an usethe slightly simpler De�nition 3.Definition 3 (Two Person Zero-Sum Game)A two person zero-sum game in strategi form is any � of the form� = (f1; 2g; C1; C2; u1; u2)suh that u2(i; j) = �u1(i; j), 8i 2 C1; 8j 2 C2If we assume that C1 and C2 are �nite sets, then in two-person games, it isonvenient to represent the utility funtion as a pay-o� matrixA = aij, 8i 2 C1, 8j 2 C2If Player1 hooses the ith row and Player2 simultaneously hooses the jtholumn, then Player2 pays aij to Player1.The matrix representation of the utility funtion will work with randomized-as well as with pure strategies. If we are using only pure strategies the utilitymatrix alone an be used for �nding optimal strategies. When speaking of anoptimal strategy we are referring to optimality in terms of expeted winnings,thus an optimal strategy is optimizing your winnings or minimizing your loss.When using only pure strategies De�nition 4 is used to de�ne optimal strate-gies.



11Definition 4 (Saddle Point)The strategy set (i0; j 0) is alled a saddle point for � i�aij0 � ai0j0 � ai0j, 8i 2 C1 8j 2 C2The value ai0j0 is alled the saddle value, and i0 and j 0 are alled optimalstrategies.In other words, if Player1 plays the strategy i0 he is guaranteed to win atleast the saddle value ai0j0 and Player2 following the strategy j 0 is guaranteednot to loose more. If one of the players plays another strategy he an neverbe better o�, and most likely he will be worse o�. Thus, i0 and j 0 are optimalstrategies in the way that they guarantee the maximal gain against an intel-ligent, rational opponent. Whih strategies are the best against suboptimalopponents shall be unsaid.In the previous setion we italiized the saddle value. Note that there an bemore than one saddle point in the same game. In Figure 2.1 say that (i0; j 0)and (i00; j 00) are saddle points, thus from De�nition 4 we have that v0 is thelargest element in the row labelled i0 and furthermore the smallest elementin the olumn labelled j 0. Similarly for i00 and j 00.
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Figure 2.1: Value equivalene between several saddle pointsThus we an write w � v0 � u and u � v00 � wand then we have that if we have more than one saddle point in a game thesaddle value is the same for all of them.



12 Iterative Solution of Finite Two-Person Zero-Sum Games2.1 Rational ReasoningSine we are assuming our opponent to be intelligent and rational we mightas well expet him to be playing his optimal strategies. In this setion weshall see how players should reason in searh for optimal strategies.Remember the basi property of zero-sum gamesu1(i; j) = �u2(i; j) (2.1)With this in mind it is easy to see that the task of maximizing your winnings isequivalent to minimizing your opponents winnings. Sine we expet rationaland intelligent opponents, a player should always assume that the opponentplays the best possible strategy against optimal play. In other words, Player1should assume that Player2 is solving the problemminj2C2 aij (2.2)Thus, Player1 must solve the problemV1 = maxi2C1 (minj2C2 aij) (2.3)where V1 is Player1's minimum winnings from the game. Similarly Player2must minimize her loss, so she should solve the problemV2 = minj2C2 (maxi2C1 aij) (2.4)where V2 is Player2's maximum loss.Sine V2 is the maximum possible loss of Player2 and the game is zero-sum,it seems reasonable to state that no matter what strategy Player1 is usinghe an not possible win more than V2, thusV1 � V2 (2.5)This leads to the following theoremTheorem 1For �nite two-person zero-sum games (as well as for any other matrix) thefollowing inequality is truemaxi2C1 (minj2C2 aij) � minj2C2 (maxi2C1 aij)



2.1 Rational Reasoning 13Proof:For stati i0 2 C1 and j 0 2 C2 it is easy to see thatai0j0 � minj2C2 ai0j, 8i0 2 C1, 8j 0 2 C2By taking max on both sides we getmaxi2C1 aij0 � maxi2C1 (minj2C2 aij), 8j 0 2 C2From here Theorem 1 follows. QEDThe way we got to Theorem 1 was by arguing how a player should behaveto ensure optimal play, therefore it seems reasonable to assume that there isa relation with saddle points from De�nition 4, atually the following is trueTheorem 2(i0; j 0) is a saddle point for � = (f1; 2g; C1; C2; u1; u2) i�minj2C2 ai0j = maxi2C1 (minj2C2 aij) = minj2C2 (maxi2C1 aij) = maxi2C1 aij0Proof:Assume that (i0; j 0) is a saddle point for �, thenaij0 � ai0j0 � ai0j8i 2 C1, 8j 2 C2and it follows that maxi2C1 aij0 � ai0j0 � minj2C2 ai0jand thusminj2C2 (maxi2C1 aij) � maxi2C1 aij0 � ai0j0 � minj2C2 ai0j � maxi2C1 (minj2C2 aij)ombining this with Theorem 1 we get Theorem 2.Now we assume that Theorem 2 is true, and we an writeai0j0 � maxi2C1 aij0 = minj2C2 ai0j � ai0j0and now we have that maxi2C1 aij0 = ai0j0 = minj2C2 ai0jFrom De�nition 4 we see that (i0; j 0) is a saddle point. QEDThis onludes the gentle introdution to the area of two-person �nite zero-sum games, and it is time to ompliate things and introdue randomizedstrategies.



14 Iterative Solution of Finite Two-Person Zero-Sum Games2.2 Equilibria in Randomized StrategiesWith the introdution of randomized strategies it is possible for equilibriato our in games that have no equilibria in pure strategies. A randomizedstrategy for Player p is any probability distribution over Cp, and we let �(Cp)denote the set of all possible randomized strategies for player p.A randomized strategy pro�le is any vetor that spei�es one randomizedstrategy for eah player, so �p2N�(Cp) is the set of all randomized strategypro�les.To justify the searh for equilibria in �nite two-person zero-sum games, wegive, without the proof, the general existene theorem introdued by JohnNash in 1951[Myerson, 1991℄Theorem 3Given any �nite game � in strategi form, there exists at least one equilibriumin �p2N�(Cp)With this in mind we are ready to start looking at Brown's proedure for�nding suh equilibria. Remember that we represent our utility funtion asa matrix A = aij, 8i 2 C1, 8j 2 C2We let Player1 play the ith row with probability xi and similarly Player2play the jth olumn with probability yj, where xi � 0; yi � 0;P xi =1 and P yi = 1. We an alulate the expeted utility of Player1 asEU =Xi Xj aijxiyj (2.6)We have that minj Xi aijxi �Xi Xj aijxiyj � maxi Xj aijyj (2.7)to see why this is so, onsider the middle term asXj yjXi aijxi (2.8)Sine Pj yj = 1 we an onsider 2.8 as a weighted average over Pi aijxi, andtherefore it is true thatminj Xi aijxi �Xj yjXi aijxi



2.2 Equilibria in Randomized Strategies 15Similarly we an write the middle term of 2.7 asXi xiXj aijyjwhih is a weighted average over Pj aijyj and thusXi xiXj aijyj � maxi Xj aijyjFrom 2.7 it naturally follows thatminj Xi aijxi � maxi Xj aijyj (2.9)Looking at 2.9 we see that if the equality holds, it is somehow similar toTheorem 2, stating that minj2C2 ai0j = maxi2C1 aij0The di�erene is that 2.9 inludes randomized strategies whih is not the asein Theorem 2 sine the latter was kept simple to ensure a lear understandingof the onepts. However, they are both de�ning optimal strategies, Theorem2 is de�ning optimal pure strategies in opposition to 2.9 whih is de�ningoptimal randomized strategies over the pure strategies.In fat it is true, that even though there may be no equilibria in pure strate-gies, the equality in 2.9 holds for some set of probabilities X = (x1; :::; xm)and Y = (y1; :::; yn). This result is widely known as the minimax theorem ofgame theory and an be found in [von Neumann and Morgenstern, 1944℄.Suh a pair of probability sets, (X; Y ) is alled a solution or a Nash Equilib-rium of the game and the value, v, of the game is de�ned asv = minj Xi aijxi = maxi Xj aijyj (2.10)As in pure strategies, this value is the same for all equilibria. To see whythis is so, onsider the followingFrom 2.9 we have that minj Xi aijxi � maxi Xj aijyjwhih is true for all probability sets (X 0; Y 0)



16 Iterative Solution of Finite Two-Person Zero-Sum GamesSay we have two Nash equilibria of the same game, all them (S; T ) and (U;W ).Then we have from 2.10 thatminj Xi aijsi = maxi Xj aijtj = vand minj Xi aijui = maxi Xj aijwj = v0Now if we onsider (S; T ) and replae the T with W we know thatminj Xi aijsi � maxi Xj aijwjand get v � v0Similarly if we onsider (U;W ) and replae the W with T we get thatminj Xi aijui � maxi Xj aijtjand therefore have that v0 � vWe now see that v = v0In terms of rows and olumns in the pay-o� matrix, equation 2.9 an beviewed as minXi Ai�xi � maxXj A�jyj (2.11)Where A�i is the ith row of A and Aj� is the jth olumn of AWith the basi onepts de�ned we are now ready to move on to Brown'stheorem on vetor systems.2.3 Brown's TheoremBrown's proedure for solving games is based on reursive manipulation ofvetors resulting in what is referred to as a vetor system for A. A vetorsystem is de�ned as



2.3 Brown's Theorem 17Definition 5 (Vetor System)A system (U, V) onsisting of a sequene of n-dimensional vetors U(0); U(1); :::and a sequene of m-dimensional vetors V (0); V (1); ::: is a vetor system forA i� minU(0) = maxV (0)and U(t + 1) = U(t) + Ai�, V (t + 1) = V (t) + A�j;where i and j satisfy the onditionsvi(t) = maxV (t); uj(t) = minU(t)From De�nition 5 we an see that it is possible to reursively form a vetorsystem given any initial vetors U(0) and V (0). In [Robinson, 1951℄ the aseU(0) = V (0) = �!0is onsidered as a speial ase sine the de�nition is valid for all initial vetors.However, sine we are to use the proedure only as a way of solving �nite two-person zero-sum games, we shall not onsider ases where U(0) 6= V (0) 6= �!0 .We an now onsider U(t)t and V (t)t as a weighted average of the rows andolumns respetively, where the weighting fators are the number of timesthe row or olumn has been hosen divided by the number of iterations.Formally U(t)t = nit Ai� ,where ni is the number of times the ith row has been hosenSimilarly V (t)t = mjt A�j ,where mj is the number of times the jth olumn has been hosenSine U(t)t is a weighted average over the rows of A we have thatminU(t)t � maxi Xj aijyj (2.12)Similarly sine V (t)t is a weighted average over the olumns of A we have thatmaxV (t)t � minj Xi aijxi (2.13)



18 Iterative Solution of Finite Two-Person Zero-Sum GamesCombining 2.10, 2.12 and 2.13 we get for every t and t0minU(t)t � v � maxV (t0)t0 (2.14)Brown's result states that if for some t and t0 it is true thatminU(t)t = maxV (t0)t0 = vwe have a solution of the game. The solution, whih is an optimal randomizedstrategy, an be read out as the number of times the rows and olumns werehosen divided by the total number of iterations.Even if we never �nd an exat solution Brown states the following theoremwhih is the main result of his workTheorem 4If (U, V) is a vetor system for A, thenlimt!1minU(t)t = limt!1maxV (t)t = vThe proof of Theorem 4 will be divided into 4 lemmas.Lemma 1If (U, V) is a vetor system for A, thenlimt!1 inf maxV (t)�minU(t)t � 0Proof:Sine V (t) is onstruted as a weighted average over the olumns of A andwe made the assumption that U(0) = V (0) = �!0 , we have thatV (t) = tXj yjA�j, whereX yj = 1 and yj � 0, 8jSimilarly for U(t)U(t) = tXi xiAi�, whereXxi = 1 and xi � 0, 8iHowever, Theorem 4 is given for any vetor system so we might have a asewhere U(0) 6= V (0) 6= �!0 and therefore we have to onsider U(t) and V (t)as follows



2.3 Brown's Theorem 19V (t) = V (0) + tXj yjA�j, whereX yj = 1 and yj � 0, 8jU(t) = U(0) + tXi xiAi�, whereXxi = 1 and xi � 0, 8iBy hoosing the minimum value of V (0) we are sure that the following in-equality is true maxV (t) � minV (0) + t maxXj yjA�jIn the same way we get thatminU(t) � maxU(0) + t minXi xiAi�Hene,maxV (t)�minU(t) � minV (0)�maxU(0)+t�maxXj yjA�j�minXi xiAi��As limt!1 minU(0)�maxV (0)t = 0we get thatmaxV (t)�minU(t)t � maxXj yjA�j �min Xi xiAi�From 2.11 we get that maxV (t)�minU(t)t � 0whih yields the lemma. QEDFor the next Lemmas we need to introdue the onept of eligibility.Definition 6 (Eligibility)If (U, V) is a vetor system for A, we say that the ith row is eligible in theinterval (t, t') i� there exists a t1 suh thatt � t1 � t0



20 Iterative Solution of Finite Two-Person Zero-Sum Gamesand vi(t1) = maxV (t1)In the same way we say that the jth olumn is eligible in the interval (t, t')i� there exists a t2 suh that t � t2 � t0and uj(t2) = minU(t2)In words, an eligible row or olumn is one that an be hosen in the giveninterval during the iterative solution proedure. With this de�ned we areready to move on to the next lemma.Lemma 2If (U, V) is a vetor system for matrix A and all the rows and olumns of Aare eligible in the interval (s, s+t) we have thatmaxU(s + t)�minU(s + t) � 2atand maxV (s+ t)�minV (s+ t) � 2atwhere a = maxi; jjaijjProof:Choose j suh that uj(s+ t) = maxU(s + t)and as j is eligible we an hoose t0 suh that s � t0 � s+ t anduj(t0) = minU(t0)We know that a is the maximum possible hange per iteration, and thereforewe have that at is the maximum hange in t iterations.Thus, beause we hose t0 between s and s + t, we know that the di�erenebetween uj(s+ t) and uj(t0) an at most be at, we have thatuj(s+ t) � uj(t0) + at = minU(t0) + atand from the way we hose j we now have thatmaxU(s + t) � minU(t0) + at



2.3 Brown's Theorem 21whih an also be written asminU(t0) � maxU(s + t)� at (2.15)Again, by looking at the way we hose t0 and the maximum di�erene we anreah in t iterations, we getminU(s + t) � minU(t0)� at (2.16)By insertion of 2.15 in 2.16 we getminU(s + t) � maxU(s + t)� 2atwhih we an write asmaxU(s + t)�minU(s + t) � 2atIn the same way it an be shown thatmaxV (s+ t)�minV (s+ t) � 2at QEDLemma 3If (U, V) is a vetor system for matrix A, and all the rows and olumns ofA are eligible in the interval (s, s+t) it is true thatmaxV (s+ t)�minU(s + t) � 4atProof:From Lemma 2 we have that(maxU(s + t)�minU(s + t) + (maxV (s+ t)�minV (s+ t)) � 4atThis an as well be written asmaxV (s+ t)�minU(s + t) � 4at�maxU(s + t) +minV (s+ t)Thus, if we an show that minV (s+ t) � maxU(s+ t) the proof is omplete.To do so we start applying 2.11 to AT , the transpose of A, whih gives usminXj A�jyj � maxXi Ai�xi (2.17)given that xi � 0, Pxi = 1 and yj � 0, P yj = 1



22 Iterative Solution of Finite Two-Person Zero-Sum GamesWe hoose xi and yj suh thatU(s + t) = U(0) + (s + t)XAi�xiand V (s+ t) = V (0) + (s+ t)XA�jyjNow from the proof of Lemma 1 we have thatminV (s+ t) � maxV (0) + (s+ t)minXA�jyjombining 2.17 with the de�nition of a vetor system, stating thatminU(0) =maxV (0) we getminV (s+ t) � minU(0) + (s+ t)maxXAi�xi� maxU(s + t) QEDWe are now ready to omplete the proof by a �nal lemma.Lemma 4For every matrix A and " > 0 there exists a t0 suh that for any vetor system(U, V) it is true thatmaxV (t)�minU(t) < "t, for t � t0Proof:The proof goes by indution. It is easy to see that it holds for matries oforder 1 sine U(t) = V (t), 8tNow we assume that the theorem holds for all submatries of A, and thenshow that it holds for A.We hoose a t̂ suh that for any vetor system (U', V') for the submatrixA0 of A we havemaxV 0(t)�minU 0(t) < 12"t , whenever t � t̂We shall prove that in our given vetor system (U, V) for A, if some row orolumn is not eligible in the interval (s; s+ t̂) then it is true thatmaxV (s+ t̂)�minU(s + t̂) < maxV (s)�minU(s) + 12"t̂ (2.18)



2.3 Brown's Theorem 23Let us suppose that the kth row is not eligible in the interval (s; s+ t̂). Then itis possible to onstrut a vetor system (U 0; V 0) for the submatrix A0, whihis equivalent to A with the kth row deleted, in the following mannerU 0(t) = U(s+ t) + CV 0(t) = ProjkV (s+ t) for t = 0; 1; ::; t̂In the equations above, C is an n-dimensional vetor whereCi = maxV (s)�minU(s) for i = 1; 2; ::; nProjkV is the vetor obtained by removing the kth omponent from V . Weshall number the rows of A0 as 1; 2; ::; k � 1; k + 1; ::; m.If (U 0; V 0) is a vetor system, we know from De�nition 5 that minU 0(0) =maxV 0(0). From the onstrution proedure we have thatU 0(0) = U(s + 0) + C= [s1; ::; sn℄ + [maxV (s)�minU(s); ::; maxV (s)�minU(s)℄= [s1 +maxV (s)�minU(s); ::; sn +maxV (s)�minU(s)℄Sine all the omponents in U 0(0) is summed with the same number, it mustbe true that the minimum omponent of U 0(0) is the one where si = minU(s)and we an therefore see thatminU 0(0) = minU(s) +maxV (s)�minU(s) = maxV (s)Sine V 0(0) is a opy of V (s) with the kth omponent removed, we know thatmaxV 0(0) = maxV (s) sine the kth row was not eligible.Furthermore, for (U 0; V 0) to be a vetor system, ertain reursive restritionsfrom De�nition 5 must be satis�ed. It follows from the onstrution that ifU(s + t+ 1) = U(s + t) + Ai� and V (s+ t+ 1) = V (s+ t) + A�jand we know that kth row is not eligible we have thatU 0(t + 1) = U 0(t) + A0i� and V 0(t+ 1) = V 0(t) + A0�jWe an also see from the onstrution thatvi(s+ t) = maxV (s+ t) if and only if v0i(t) = maxV 0(t)and similarlyuj(s+ t) = minU(s + t) if and only if u0j(t) = minU 0(t) for 0 � t � t̂



24 Iterative Solution of Finite Two-Person Zero-Sum GamesHene we an onlude that U 0 and V 0 satis�es the reursive restritions ofa vetor system for 0 � t � t̂ sine U and V do.From the way we hose t̂ we have thatmaxV 0(t̂)�minU 0(t̂) < 12"t̂and from the onstrution of (U 0; V 0) we know that it is onstruted fromU(s) and V (s) and forward, so we an say thatmaxV (s+ t̂)�minU(s+ t̂) = maxV 0(t̂)�minU 0(t̂) +maxV (s)�minU(s)and sine maxV 0(t̂)�minU 0(t̂) < 12"t̂it must be true thatmaxV (s+ t̂)�minU(s + t̂) < maxV (s)�minU(s) + 12"t̂We are now ready to show that given any vetor system (U; V ) for A it istrue that maxV (t)�minU(t) < "t , for t � 8at̂"Consider t > t̂, hoose � 2 [0; 1℄ and q 2 N suh that t = (� + q)t̂. We shalldivide this proof into two ases.Case 1Suppose that there exists a positive integer s � q suh that all rows andolumns of A are eligible in the interval ((� + s � 1)t̂; (� + s)t̂), and hoosethe largest suh s.We have a situation as depited in Figure 2.2t̂(� + s� 1) t̂(� + s)t̂ t̂(� + q � 1) t = t̂(� + q)t̂ t̂ t̂ t̂
Figure 2.2: The intervalsThen we have that in eah of the intervals((� + r � 1)t̂; (� + r)t̂) , for r = s+ 1; ::; q



2.3 Brown's Theorem 25some row or olumn is not eligible. Thus, by repeated appliation of 2.18 wegetmaxV (t)�minU(t) � maxV ((� + s)t̂)�minU((� + s)t̂) + 12"(q � s)t̂(2.19)Remember we hose s suh that all rows are eligible in the interval ((�+ s�1)t̂; (� + s)t̂). From Lemma 3 we getmaxV ((� + s)t̂)�minU((� + s)t̂) � 4at̂ (2.20)By ombining 2.19 and 2.20 we getmaxV (t)�minU(t) � 4at̂+ 12"(q � s)t̂ < (4a+ 12"q)t̂Case 2If there exists no suh s then we know that in eah interval ((�+r�1)t̂; (�+r)t̂)we know that some row or olumn of A is not eligible, and then we have from2.18 thatmaxV (t)�minU(t) < maxV (�t̂)�minU(�t̂) + 12"qt̂ � 2a�t̂ + 12"qt̂Therefore we have that in either asemaxV (t)�minU(t) < (4a+ 12"q)t̂ � 4at̂ + 12"t < "t , for t � 8at̂" QEDNow we are ready to sum up the results from Lemmas 1 to 4.By ombining Lemma 1 with Lemma 4 we get thatlimt!1 maxV (t)�minU(t)t = 0From 2.9 we see that limt!1 supminU(t)t � vand limt!1 inf maxV (t)t � v



26 Iterative Solution of Finite Two-Person Zero-Sum GamesHene, we have that limt!1 minU(t)t = limt!1 maxV (t)t = vwhih ompletes the proof of Theorem 4.Having looked into the ore details of the work of Brown and Robinson weare ready to move on. As earlier mentioned, the many of the results outlinedin this hapter are based on [Robinson, 1951℄ whih again is based on theunpublished work of George W. Brown. However, we have not seen any ofthis work applied in pratie, whih is possibly due to the lak of omputerpower bak in 1949 - 1951 where this work is made. This makes it interestingfor us to apply the proposed onstrution proedure to a few simple games tosee how it performs. Furthermore, [Robinson, 1951℄ suggests an alternativereursive onstrution proedure and states that it "seems to be" faster interms of onvergene than the one we have given here. This ould of oursealso be interesting to verify. In the next hapter we shall try implementingthe suggested proedures.



Chapter 3Testing Brown's TheoremHaving looked into, and formally proved Brown's theorem, we �nd it relevantto arry out a few experiments. We intend to test the iterative solutionproedure on a few simple games, both symmetri and asymmetri to see ifonvergene appear.3.1 jIsolFor the purpose we have developed the program jIsol , where Isol standsfor Iterative Solution, and the j indiates that the program is developed inJava. To use jIsol, one needs only to speify the utility matrix, the rest isdone by the program. As output one an either get a plot of the bounds,minU(t)t and maxV (t)t to see a onvergene visualized, or it is possible to get adump of all the intermediate U(t) and V (t)-vetors to see how they hangeduring the proedure, and to see if exat solutions our.With these options it is possible to verify both parts of Brown's theorem.3.2 A Simple Symmetri GameWe hoose as a test-bed, the game of sissor-paper-stone whih is used to solvemany everyday onits. Personal experiene veri�es that it is extremelyuseful to deide who is to sit on the front seat in the ar when going �shingwith two pals. However, the original version of the game is designed in amanner suh that the best strategy is omplete random play. This fat hasmade us modify the game a bit for this experiment, so more ompliatedstrategies an be bene�ial.What we atually do is to modify the utility matrix suh that a vitory is notjust a vitory, but the possible amount of gambling units you win or loose is



28 Testing Brown's TheoremP1/P2 Sissor Paper StoneSissor 0 x -zPaper -x 0 yStone z -y 0Table 3.1: A general pay-o� matrixdependent on your hoie of hand.In Table 3.1 below we have inluded the utility table from Player1's point ofview. In the original game of sissor-paper-stone we have that x = y = z.In our version of the game we let x = 1; y = 2; z = 3 meaning that if youhoose "stone" you have a potential winning of 3 gambling units, but thenthe potential loss is equally high.With the rede�ned utility matrix it seems reasonable to assume that there isa better randomized strategy than �13 ; 13 ; 13	. Before we let jIsol searh forit, we try to �nd it by a theoretial approah.3.3 A Theoretial ApproahAs mentioned, the task is to solve the game by theoretial onsiderations.We are assuming that our opponent is intelligent and rational, so pure strate-gies will lead to loss in the long run. Hene, the task is to �nd an optimalrandomized strategy.First of all, let us �nd out what an optimal randomized strategy is. A strategyis optimal if our opponent is indi�erent about all of his possible hoies, orin other words, the best she an do is to play ompletely random. Sine thegame outlined above is symmetri and the utility of a draw is zero for bothplayers, the expeted utility in an equilibrium must be zero for all possiblehoies.Let us look at the expeted utilities from a players point of viewEU(sissor) = P (paper)x+ P (stone)(�z)EU(paper) = P (sissor)(�x) + P (stone)yEU(stone) = P (sissor)z + P (paper)(�y)Sine we just stated that the expeted utilities should be zero, we get



3.4 The Iterative Solution 29P (sissor) = yxP (stone)P (paper) = zxP (stone)P (stone) = x+ zy P (sissor)� P (paper)From our de�nition of the modi�ed version of the game we have thatx = 1; y = 2 and z = 3Inserting this into the formulas above we getP (sissor) = 2P (stone)P (paper) = 3P (stone)P (stone) = 2P (sissor)� P (paper)From fundamental probability theory we have thatP (sissor) + P (paper) + P (stone) = 1and taking this knowledge into aount we get2P (stone) + 3P (stone) + P (stone) = 1And thus, P (stone) = 16It follows that P (sissor) = 13 and P (paper) = 12Now we know that with the utilities de�ned in the beginning, the orrespond-ing probability distribution in an optimal strategy isP (hand) = �13 ; 12 ; 16�3.4 The Iterative SolutionSine we have just omputed the exat solution we start out searhing forthe exat solution with jIsol. We know that the value of the game is zerofor both players so we have a solution of for some t and t0 we have thatminU(t)t = 0 = maxV (t0)t0



30 Testing Brown's Theorem
Iteration 1 : argmaxV(0) = 2 ) U(1) = [ -1 0 2 ℄argminU(0) = 2 ) V(1) = [ 1 0 -2 ℄Iteration 2 : argmaxV(1) = 1 ) U(2) = [ -1 1 -1 ℄argminU(1) = 1 ) V(2) = [ 1 -1 1 ℄Iteration 3 : argmaxV(2) = 1 ) U(3) = [ -1 2 -4 ℄argminU(2) = 3 ) V(3) = [ -2 1 1 ℄Iteration 4 : argmaxV(3) = 2 ) U(4) = [ -2 2 -2 ℄argminU(3) = 3 ) V(4) = [ -5 3 1 ℄Iteration 5 : argmaxV(4) = 2 ) U(5) = [ -3 2 0 ℄argminU(4) = 1 ) V(5) = [ -5 2 4 ℄Iteration 6 : argmaxV(5) = 3 ) U(6) = [ 0 0 0 ℄argminU(5) = 1 ) V(6) = [ -5 1 7 ℄Iteration 7 : argmaxV(6) = 3 ) U(7) = [ 3 -2 0 ℄argminU(6) = 1 ) V(7) = [ -5 0 10 ℄Iteration 8 : argmaxV(7) = 3 ) U(8) = [ 6 -4 0 ℄argminU(7) = 2 ) V(8) = [ -4 0 8 ℄Iteration 9 : argmaxV(8) = 3 ) U(9) = [ 9 -6 0 ℄argminU(8) = 2 ) V(9) = [ -3 0 6 ℄Iteration 10 : argmaxV(9) = 3 ) U(10) = [ 12 -8 0 ℄argminU(9) = 2 ) V(10) = [ -2 0 4 ℄Iteration 11 : argmaxV(10) = 3 ) U(11) = [ 15 -10 0 ℄argminU(10) = 2 ) V(11) = [ -1 0 2 ℄Iteration 12 : argmaxV(11) = 3 ) U(12) = [ 18 -12 0 ℄argminU(11) = 2 ) V(12) = [ 0 0 0 ℄Iteration 13 : argmaxV(12) = 3 ) U(13) = [ 21 -14 0 ℄argminU(12) = 2 ) V(13) = [ 1 0 -2 ℄Iteration 14 : argmaxV(13) = 1 ) U(14) = [ 21 -13 -3 ℄argminU(13) = 2 ) V(14) = [ 2 0 -4 ℄Iteration 15 : argmaxV(14) = 1 ) U(15) = [ 21 -12 -6 ℄argminU(14) = 2 ) V(15) = [ 3 0 -6 ℄Table 3.2: The Searh for the Exat Solution



3.4 The Iterative Solution 31In Table 3.2 we have inluded a solution proedure for the simple gamedesribed in Setion 3.2We an see from Table 3.2 that we �nd a solution for t = 6 and t0 = 12. Wean also see that we have hosen the �rst row 2 times, the seond row 3 timesand the third row 1 time, up until and inluding the 6th iteration. Hene, wehave a solution as follows �26 ; 36 ; 16� = �13 ; 12 ; 16�whih is exatly the same we found by our theoretial onsideration in Setion3.3.The same solution an be found by looking at the number of times eaholumn is hosen up until the 12th iteration.Note that the solution proedure inluded here is in no way unique, in fat,there is an in�nite number of solution proedures sine a random hoie ismade whenever there are more than one vi and uj satisfying the reursiverestritions of the de�nition of a vetor system. The solution proedure wehave inluded here is just the one we have found to have the shortest path toan exat solution for both U and V . Various experiments have shown thatspeial ases an our with more than 1.000 iterations over this same gamewithout an exat solution ours, and most of the times we need more than100 iterations before we an verify that minU(t)t = maxV (t0)t0 for some t and t0.As a �nal omment on exat solutions, we should mention that there is noguarantee that we will ever �nd an exat solution but still we an always �ndan approximate solution as we shall see in the following.3.4.1 Solution by ConvergeneNow let us look at the main result of Brown's theorem stating that if werepeat the iterative proedure again and again we are getting loser andloser to the solution of the game. That is, we an �nd an approximatesolution even if we fail to �nd an exat one. However, the theorem shouldstill be true if we sueed in �nding exat solutions during the reursiveproess.To verify this, we repeat the proedure 10.000 times and at eah iteration weplot minU(t)t and maxV (t)t . The result an be seen in Figure 3.1.From Figure 3.1 we see that both bounds are going against the value zero aswe would expet from the theorem. Studying the urves in detail we an seethat it looks like both of them are in zero some times and then moving awayagain. This is of ourse due to the nature of the solution proedure sinethere is no opportunity for stopping with an optimal randomized strategy,



32 Testing Brown's Theorem
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Figure 3.1: The iterative solution proedure with 10.000 iterationsnot even if it was possible to �nd suh ones at run-time. Again due to thenature of the proedure we also see that as t grows larger the osillations aregetting smaller and smaller.After 10.000 iterations we read out the following solutionsrow ountt = f0:3358; 0:4933; 0:1709gand olumn ountt = f0:3371; 0:5036; 0:1594gThe solutions we get are lose to the ones we omputed and found to bethe exat solutions of the game so we an onlude that Brown's theorem isworking as expeted for symmetri zero-sum games.As a �nal experiment to verify Brown's theorem on symmetri games let ustry looking into how the two solutions move in order to eah other duringthe reursive solution proedure. We see from the de�nition that the hoiesmade for the rows are dependent on the urrent distribution over the olumnsand vie versa. It therefore seems reasonable to assume that the temporarysolutions interat in some manner.



3.5 An Asynhronous Seletion Proedure 33To see the pattern we use the Eulidean distane between two probabilitydistributions, de�ned as distE(x; y) =Xi (xi � yi)2to see how lose they are to eah other during the onstrution.The result an be seen in Figure 3.2
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Figure 3.2: The eulidean distane between the temporary solutions over 10.000iterationsNote that the distane is very small all the way through, but in no wayonstant. It seems that they are moving loser to eah other, reah an equi-librium or at least get lose to one, and are then fored to move away fromeah other again. This veri�es the onlusion we made when studying howthe bounds are moving, stating that even though an equilibrium is reahed,the proedure is not stopped. Finally we should note that as t grows larger,the variane in the distane is getting smaller.3.5 An Asynhronous Seletion ProedureIn [Robinson, 1951℄ it is mentioned that there is another way of onstrutingvetor systems than the one we have desribed. Remember that the proe-



34 Testing Brown's Theoremdure that we are using are based on simultaneous updating of U(t) and V (t).However, it is possible to determine the vetors alternately by replaing theondition on j with the followinguj(t + 1) = minU(t + 1)The onstrution proedure is still reursive but when we have formed U(t+1)it is inluded in the onstrution of V (t+1) instead of inluding informationon U(t). It is mentioned without further omments that a vetor system ofthis new kind seems to onverge more rapidly.We have tried to verify this statement by plotting the two bounds from theold proedure together with the two bounds from the new proedure to seeif faster onvergene seems to happen. The result is inluded in Figure 3.3

-0.4

-0.2

0

0.2

0.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

maxV(t)/t alternately
maxV(t)/t simultaneously

minU(t)/t alternately
minU(t)/t simultaneously

Figure 3.3: Testing the speed of onvergeneAs an be seen it is true that onvergene happens faster with the newproedure, whih is plotted with dotted lines in Figure 3.3. But this is notthe only interesting thing to note. We an also see that the �rst proedureresults in more osillations where the latter is staying muh loser to thevalue of the game - in this ase zero. Therefore it seems like a good idea touse the latter proedure if the task is to get a solution of the game as quiklyas possible.



3.6 An Asymmetri Game 353.6 An Asymmetri GameUntil now we have only tested Brown's theorem on a symmetri zero-sumgame or in other words a game with the value zero. Now we intend to modifythe game we have used as test bed so far, one again.This time we let our utility matrix be as followsA = 24 1 1 �3�1 �2 23 �2 1 35Note that it is now possible to bene�t from a draw. Say that the matrix aswe have it here is from Player1's point of view so that if both players hooseto play "Paper", he will loose two gambling units, whih he of ourse muhpay to Player2.Sine this game is asymmetri it will have a di�erent value for Player1 thanfor Player2, in fat we have thatvP1 = �vP2With the symmetri game we knew that the value was zero for both players,and we ould therefore easily ompute the optimal strategies beforehand.This time we shall do it the other way around - let jIsol suggest a solutionand see if we an verify it as a set of optimal randomized strategies or inother words, a Nash equilibrium.Again we see lear tendenies of onvergene, apparently entered around thevalue �12 , indiating that Player1 an expet to loose �ve gambling units forevery ten games. The pattern is lear, but it seems that even as we approah10.000 iterations we still see large osillations where both the upper and thelower bound is moving away from what seems to be the value of the game.In other words we ould say that apparently the system fails to onvergeompletely.To prove or disprove this tendeny we try to inrease the number of iterationsto 40.000. The result an be seen in Figure 3.5As we an see the osillations are getting smaller, but not muh. It seemsthat we are dealing with a game where the onvergene is extremely slow.Sine we know of an other onstrution proedure where we have shown thatonvergene is not only faster, but also avoiding the osillations where thebounds are moving away from the value, it ould be interesting to see how itperforms in this ase. The result an be seen in Figure 3.6As an be seen the osillations are almost ompletely gone already after10.000 iterations with the asynhronous solution proedure, where they were
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Figure 3.4: The iterative solution applied to an asymmetri game
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Figure 3.5: Inreased number of iterations
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Figure 3.6: The asynhronous proedure on an asymmetri gamestill signi�ant after 40.000 iterations with simultaneous seletion.3.6.1 The SolutionNow we have said enough about the speed of onvergene and it is time toread out the solutions. We get the solutions from the �rst test - that is, theresults are made with simultaneous seletion and 10.000 iterations. We getthe following row ountt = f0:5028; 0:4972; 0gand olumn ountt = f0; 0:6220; 0:3780gLet us see if we an verify this result as a Nash equilibrium.The results we read out are approximate solutions, but it seems that theyare onverging against �12 ; 12 ; 0� and �0; 58 ; 38�



38 Testing Brown's TheoremLet us look at the situation from Player1's point of view. If he knows thatPlayer2 is playing f0; 58 ; 38g the situation isEU(sissor) = 58 � 3 � 38 = �12EU(paper) = �2 � 58 + 2 � 38 = �12EU(stone) = �2 � 58 + 38 = �78Therefore he will never hoose to play stone sine he will always be worse o�by doing so.From Player2's point of view we have the following situation if we know thatPlayer1 is playing f12 ; 12 ; 0gEU(sissor) = 12 � 12 = 0EU(paper) = 12 � 2 � 12 = �12EU(stone) = �3 � 12 + 2 � 12 = �12Thus, sine the task of Player2 is to minimize the pay-o� to Player1, sheshould never play sissor. At a �rst glane it an seem a bit odd that Play-er2 is preferring paper over stone sine the give the same expeted pay-o�.However there is a reason for this, sine the weights between them as theyare in this solution is solving the task of letting the best strategy of Player1be randomized play. In other words, if Player2 played a di�erent random-ized strategy over paper and stone, Player1 ould bene�t from hanging hisstrategy. Thus, the strategies found are a Nash equilibrium of the game.3.7 Solving a Game During PlayWe an now onlude that Brown's theorem works in pratie for solving agame. However, for several reasons, the solution proedure is only suitablefor solution of a game before the game begins, and not for �nding an optimalsolution during the play against an opponent. First of all, if we were to usethis proedure to �nd run-time solutions of games, we would not be ableto use the asynhronous seletion proedure sine this would mean that we



3.7 Solving a Game During Play 39would have to ask our opponent to tell us what deision she made before wemake our own, but sine she is assumed to be both intelligent and rationalshe would probably �nd that to be a bad idea.Seondly, Brown's iterative solution proedure is based on seletion from amaximum riterion or in other words, selet what seems best and nothingelse. However, we have from [Myerson, 1991℄ that in order to reah optimalplay, one must follow an optimal randomized strategy, and make a weightedseletion over the expeted utilities to avoid that a ounting opponent willknow your deterministi strategy. The term ounting opponent might need abit explanation. If we during a game always made the deision giving us themaximum expeted pay-o�, an intelligent opponent would be able to keeptrak of what deision is giving us the maximum expeted pay-o� at anytime and therefore use this knowledge in his deision.Brown probably never intended his method to be suitable for implementingwhat today is known as intelligent agents, but it would surely be interestingif we ould use the idea behind the iterative solution proedure to implementsuh an agent. Brown's theorem is only designed to solve games with onedeision so in the following hapter we shall try implementing intelligentagents for one-deision two-player zero-sum games.
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Chapter 4Learning One-DeisionBayesian NetworksHaving veri�ed Brown's theorem both in theory and pratie, it is time to seeif we an apply the ideas in other areas of deision theory. Espeially we areinterested in implementing intelligent agents with the ability to �nd optimalstrategies for any �nite zero-sum game they are set to play. Sine Brown'sproedure provides us with the ability to solve a game it is natural to see ifwe an integrate it into a sheme upon whih we an implement intelligentagents.One of the most promising tehnologies of today when talking deision sup-port systems is Bayesian networks as de�ned in [Jensen, 1996℄, so our maintask shall be to �nd out if we an integrate Brown's solution proedure intoBayesian networks.4.1 Training ShemeTo introdue the iterative solution proedure into Bayesian networks we needa training sheme orresponding to Brown's method of ounting ases.From [J�rgensen, 2000℄ we get the de�nition of the training sheme alledfrational updating, also used and extended with the onept of fading in[Olesen et al., 1992℄.To ensure a lear understanding of frational updating let us look at a simpleexample where we apply the ideas. Say we have three variables A;B and Ceah with three states, where B and C are parents of A. We assume loal-as well as global independene in this network and we an therefore onsiderP (Ajbi; j) = (x1; x2; x3)



42 Learning One-Deision Bayesian Networksas a distribution we have reahed by observing several ases where (B;C)were in the state (bi; j).Now we have to express our ertainty of this distribution by what is alled asample size.We inlude the sample size, s in a tablen = (n1; n2; n3) = (sx1; sx2; sx3)where n1 + n2 + n3 = sThus, we an say that ni is the number of times we have seen A in state i,eg if we hoose s = 30 and have that x1 = x2 = x3 = 13 we an say that wehave observed A in eah state ten times. As an be seen, the larger samplesize, the larger ertainty of the initial distribution.Now when we see a new ase, say the ase where A is in state 2, and (B;C)is in state (bi; j) we ount up s and n2, yielding the new distribution(x+1 ; x+2 ; x+3 ) = � n1s+ 1 ; n2 + 1s+ 1 ; n3s+ 1�As mentioned, [Olesen et al., 1992℄ introdued the onept of fading in Bayesiannetworks, whih we also used in [J�rgensen, 2000℄. The purpose of fading isto make the networks "forget" what they have learned in the past so theyan easily adapt to a new ontext if this hanges. To do so, a fading fatorq 2 [0 : 1℄ is introdued. This value is multiplied onto the sample size tokeep it from growing into extreme values.In pratie this means that when we run a ase the new sample size is qs+1,and running n ases yields a sample size ofqns+ 1� qn1� qNote that limn!1�qns+ 1� qn1� q � = 1(1� q)This means that when running several ases so n grows large, the e�etivesample size an be omputed as 1=(1� q). So if q = 0:95 we have an e�etivesample size of 20.4.2 The MYELIN tool-boxIn [J�rgensen, 2000℄ we developed a general tool-box, MYELIN, for workingwith adaptive Bayesian networks. All tests onerning Bayesian networks in



4.3 Experiments 43this thesis is reated using a new version of MYELIN whih is developed inJava to work with the newly released HUGIN Java API. The new version ofMYELIN ontains all of the old methods for performing probability updatingwith and without fading and making deisions based on the modi�ed prob-abilities. Furthermore we have inluded methods for omputing distanesbetween probability distributions, dumping expeted utilities at any timeand various tools to simulate dies and oins.Deision making in MYELIN an be performed in di�erent ways, so we analways do what is most suitable for the tests we need to perform. That is,we have inluded methods for playing only on the maximum expeted utility,to be used in searh of solutions, as well as we have methods making deisionsover all the expeted utilities to avoid deterministi play.Whether or not to use fading an be determined per experiment. Sine fadingis a onept developed for adapting into hanging ontexts, we shall not useit in the tests made for verifying Brown's solution proedure in Bayesiannetworks. However, we intend to arry out a single experiment to see if theidea behind Brown's theorem still holds, extended with the onept of fading,making it even more suitable for adaptive behavior in games.4.3 ExperimentsAs earlier mentioned the main purpose of this hapter is to �nd out if it ispossible to integrate Brown's solution onept into Bayesian networks. Weknow that Brown's theorem orresponds to ounting ases as is also the asein frational updating. In other words the task is to verify that intelligentagents bases on adaptive Bayesian networks using frational updating areable to �nd a solution of the game they are set to play.We have deided to use the same simple game as we did in the previoushapter, namely the game of sissor-paper-stone with various modi�ed utilityfuntions.4.3.1 The Set-UpIn Figure 4.1 the Bayesian network used for this test is shown. As an beseen it is very simple, the only things to say about it is that the node labelled"Utility" reets the utility matrix whih we will vary a few times during thetests. In the initial probability distribution for the node "Opponent", theprobability is 13 for both sissor, paper and stone.



44 Learning One-Deision Bayesian Networks
Me Opponent

UtilityFigure 4.1: The Bayesian network used for Sissor-Paper-StoneUtilitiesIn the �rst experiment we want to test a symmetri version of the game, sowe use the same utility matrix as in Setion 3.4.For onveniene we have inluded the utility matrix hereA = 24 0 1 �3�1 0 23 �2 0 35With these utilities we have already omputed a Nash equilibrium in Setion3.3 and veri�ed it in pratie in Setion 3.4 so we expet the outome of thisexperiment to be a situation where we have our "Opponent" distribution tobe P (Opponent) = �13 ; 12 ; 16�for both players.For training purposes we use frational updating to update the probabilitydistribution of the node "Opponent". Both players are allowed to adapt atthe same time, so the interesting question is whether they will onverge a-gainst the same �nal probability distribution when the game is symmetri,and if they do so, is this distribution a Nash equilibrium ?For deision making we follow Brown's idea and let the players hoose onlythe deision with maximum expeted utility. From [Myerson, 1991℄ we knowthat this is not the optimal way of playing sine it is possible for our opponentto predit our strategies at any time by keeping trak of the same dataas we do. However, we showed in [J�rgensen, 2000℄ that is does not make



4.3 Experiments 45signi�ant inuene on the �nal distributions if we play only on the one withthe maximum expeted utility or if we use the expeted utilities to weigh thepossible hoies.We let the players fae eah other 50.000 times whih should be more thansuÆient for a onvergene to appear. The outome of the games is thatPlayer1 has lost 94 gambling units to Player2. Sine a di�erene of 94 gam-bling units out of 50.000 games is suÆient lose to zero, this veri�es the fatthat the game in this test was symmetri and the value therefore is zero forboth players.4.3.2 ResultsNow let us look at the �nal probability distributions for the players. Player1ends up with the followingOpponent = f0.3304, 0.5038, 0.1659gSimilarly we inlude the �nal distribution for Player2Opponent = f0.3295, 0.5069, 0.1636gAs an be seen, the players end up with distributions that are very muhalike. The Eulidean distane between the results is alulated to bedistE(P1; P2) = 1:5912� 10�5This veri�es that we an use adaptive Bayesian networks with the train-ing sheme of frational updating to implement adaptive agents for zero-sum games with one deision sine both agents onverged against the pre-omputed Nash equilibrium.To see how this looks from a players point of view we try to dump theexpeted utilities for Player1 at the end of the series of games. These areshown belowMe = f0.0062, 0.0014, -0.0165gThe interesting thing is that they are lose to zero - the value of the game -for all possible hoies, meaning that when the opponent is using the strategyshown above, the player faing him is indi�erent about what hoie to make.In other words, it is not more bene�ial to hoose one over another.



46 Learning One-Deision Bayesian Networks4.3.3 Another Utility FuntionTo verify this interesting tendeny we try to hange the utility funtion andrepeat the experiment one again. The utility matrix used for this seondexperiment an be seen below.A = 24 0 3 �3�3 0 23 �2 0 35As before we repeat the game 50.000 times and the results turn out as shownbelow.From Player1's point of view the �nal distribution is as followsOpponent = f0.2513, 0.3750, 0.3737gAnd from Player2 we getOpponent = f0.2527, 0.3737, 0.3736gBy using the formulas from Setion 3.3 we �nd the solution to beP (hand) = �14 ; 38 ; 38�So again we get a on�rmation that adaptive Bayesian networks an solvethe same problems as Brown's proedure, and even solve them while playing.As in Brown's solution we an also read out an approximate value of thegame by alulating the average winnings for a player.The Eulidean distane between the two players probability distributionsafter this experiment isdistE(P1; P2) = 3:7084� 10�6whih smaller than in the �rst experiment. However, observations duringthe games show us that the distane is varying all the time, so this doesnot say anything like "There is even more onvergene in this version of thegame, sine the �nal distane is smaller". More likely we should onludethat the game ended at a moment where the distane was small in the latterexperiment.



4.3 Experiments 47Osillations in DistaneTo see how the distane between the probability distributions is varyingduring the experiment, we try starting the players out with two ompletelydi�erent distributions to get a high distane in the beginning. Player1 getsthe followingOpponent = f1, 0, 0gwhile Player2 is started out withOpponent = f0, 0, 1gWe repeat the game 10.000 times and get the variation pattern inluded inFigure 4.2
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Figure 4.2: The Eulidean distane during the gamesAs an be seen we get a pattern similar to the one we saw in Setion 3.4 wherethe players are moving in order to eah other all the time whih results insome tiny osillations around a distane of zero.



48 Learning One-Deision Bayesian Networks4.3.4 Asymmetri Games in Bayesian NetworksWe ended our experiments with Brown's solution proedure with a veri�-ation of it working on asymmetri games as well as symmetri. We shallin the following see if we an use adaptive Bayesian networks for solution ofasymmetri games. This is done to see if the implemented agents are apableof �nding their own optimal strategies when they are di�erent from those oftheir opponent.We use the same utility funtion as we used to verify Brown's proedure,meaning that our utility matrix is as follows for Player1AP1 = 24 1 1 �3�1 �2 23 �2 1 35and for Player2 we have AP2 = 24�1 1 �3�1 2 23 �2 �135The reason for inluding two utility matries in this experiment is that itis not possible to represent asymmetri games in a single Bayesian networkas it is with symmetri games. Thus we have two versions of the Bayesiannetwork in Figure 4.1 but they only di�er on the utilities.We repeat the game 10.000 times whih have shown in the other test to bemore than suÆient for a onvergene to appearPlayer1 ends up with the following distributionOpponent = f0.0007, 0.6252, 0.3741gand Player2 ends withOpponent = f0.5044, 0.4931, 0.0026gNote the Player1's distribution is reeting the behavior of Player2. There-fore the solution we an read out here is that the randomized strategy ofPlayer1 is approximately P (hand)P1 = �12 ; 12 ; 0�



4.3 Experiments 49and for Player2 we have P (hand)P2 = �0; 58 ; 38�whih we showed in Setion 3.6 is a Nash equilibrium.In an asymmetri game we an of ourse not expet the distane between thetwo distributions to be zero sine the players must use di�erent strategies, butwe an still expet the distane to be anhored around the distane betweenthe two exat solutions. We ompute this distane to bedistE(P1exat; P2exat) =Xi (xi � yi)2exat = 122 + 182 + 382 = 1332In Figure 4.3 we have plotted the distane varying over the games togetherwith the value we just omputed. This experiment is arried out to verifythat even if the game is asymmetri, the behavioral pattern for the playersis the same.We see from the �gure that the distane is atually osillating around thepre-omputed value and the pattern is the same as in Setion 3.6 wherethe osillations almost fails to fade out. However, Brown's theorem is notmentioning anything about the speed of onvergene so this is not a problem.4.3.5 FadingAs a �nal experiment with the integration of Brown's method into one-deision Bayesian networks we try extending the training sheme with fading.This is done to verify that intelligent agents using fading are still apable ofsolving the games they are set to play, even though they are using fading.The reason that we are interested in suh an experiment is that if we anverify this, we have agents that an solve a game as suggested by Brown,but furthermore they are able to adapt to a new behavior if the opponent ishanging his strategy.Again we use the symmetri version of the game. We set the fading fatorto be q = 0:99 yielding an e�etive sample size of 100. The game is repeated10.000 times and the �nal distributions are as followsPlayer1 has found Player2 to be playingOpponent = f0.3246, 0.4915, 0.1839g
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Figure 4.3: The Eulidean distane during the gamesand Player2 has found Player1 to be playingOpponent = f0.3247, 0.5120, 0.1634gSo we get a on�rmation of Brown's solution proedure integrated in Bayesiannetworks is still valid if we use the onept of fading.4.3.6 SummaryWe have now shown that adaptive Bayesian networks an be used for solutionof �nite two-person zero-sum games with one deision. This is interesting inthe area of intelligent agents sine you an plae an agent based on thistehnology in any two-person zero-sum game and he will be able to �nd theoptimal randomized strategy for this game.We mentioned earlier that this optimal strategy is optimal only when the op-ponent is intelligent and rational. Thus, if we fae an opponent playing thesame stati strategy in all the games we ould bene�t from playing a strat-egy that is maximizing our pay-o� against this speial opponent. Brown'ssolution proedure is naturally unable to exploit potential weaknesses of op-ponents, but we have shown in [J�rgensen, 2000℄ that when using frational



4.3 Experiments 51updating for adaptive Bayesian networks we get agents that are able to adaptto the strategy that is optimal against any opponent they are faing.Furthermore, we have veri�ed that we an extend Brown's solution proe-dure with the onept of fading and it is still valid. Thus, we get intelligentagents that an adapt to a hanging strategy of the opponent, and therebyalso exploit potential weaknesses.It seems so far that Bayesian networks as foundation for intelligent agentsfor two-person zero-sum games is a very good set-up. If we ould apply theseideas to more omplex games we would have a very strong representation ofadaptive intelligent agents. In the following hapter we shall try doing so.
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Chapter 5Learning Two-DeisionBayesian NetworksThe main task of this hapter is to �nd out if we an apply the ideas from theprevious hapters to more omplex games. Brown's theorem is only valid forgames with one deision but having applied the idea into adaptive Bayesiannetworks it seems reasonable to assume that we an use it for more omplexgames, for example a game with more than one deision.To verify this assumption we have designed a game, two-person high/low forthe purpose.5.1 The Rules for Two-Person High/Low� Both players have two "3-sided" dies with numbers 1 to 3� Both players pay 1 gambling unit to partiipate� The game starts with both players throwing both dies without showingthe result to the opponent� After having viewed the result, both players must hoose a die whihthey will show to the opponent� Finally the players must make their bids. Eah player has to guess ifthe sum of his dies is higher or lower than the sum of his opponents� If one player is playing "Low" and the other is playing "High" the gameis a draw� If the sums are equal the game is a draw



54 Learning Two-Deision Bayesian Networks� The winner is the one with the orret bid� The winner takes the potAs an be seen the game has lots of possibilities for ending with a draw, andtherefore it is probably not a game suitable for settling who is to buy thenext round of beer or so. However, this does not matter in our ase, sine thegame is designed spei�ally to be suitable for verifying simple game theoretionepts in a more omplex set-up. Even though the game seems simple at a�rst glane, it is atually pretty omplex in theoretial terms sine the gameinludes both more than one deision per player and private information -atually the players an hoose what part of their information they want tokeep private. So after all the game seems omplex enough to ful�ll its task,namely being a omplex test bed for adaptive behavior in games.Unfortunately, the game being so omplex makes it very diÆult to pre-ompute a Nash equilibrium of the game, so we will instead have to see ifwe an verify the results as being a Nash equilibrium by arguing that thestrategies reet intelligent and rational behavior.5.2 Bayesian ModelWith the basi rules outlined in the previous setion we see that the game issymmetri, and sine both players are to make their bids simultaneously weneed only a single Bayesian network whih both players an share. Of oursethey get their own private instant of the network in whih they an performprobability updating.The network we use an be seen in Figure 5.1A few notes about the network design might be needed.The nodes MyDie1, MyDie2, OppDie1 and OppDie2 are used to enterthe value of the dies we get from MYELIN. MyHand and OppHand are usedto transform the two dies into a hand type whih an be one of the following:"1-1", "1-2", "1-3", "2-2", "2-3" or "3-3"The reason for performing this translation from the two dies into a handtype is to save states in the table where we perform probability updatingsine there is no reason to make a distintion between the ase where Die1is "1" and Die2 is "2" and the ase where Die1 is "2" and Die2 is "1". Theleftmost utility node is prohibiting a player from showing a die he does nothave, and the deision nodes Show, OppShow, MyBid and OppBid shouldbe self explaining.
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MyDice1 MyDice2 OppDice1 OppDice2
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Figure 5.1: The Bayesian network used for two-person high/lowThe utility node in the middle is used to represent the utility funtion asde�ned in the rules of the game.5.3 Experiments and ResultsHaving designed a Bayesian network representing the game, we are now readyto implement two intelligent agents based on this network. As usual we useMYELIN in order to perform the probability updating, omputing distanesand printing the results.The adaptive nodes are OppShow and OppBid whih we update aording tothe observations during the game. We have deided to use perfet hindsightmeaning that both players have to show their hidden die after eah game.With the simpler games we found that 10.000 iterations of the game wasmore than suÆient for a onvergene to appear. However, sine we anexpet a slower onvergene now when we have two adaptive nodes at thesame time, we raise the number of experiments to 50.000.As a �nal note before looking at the results we mention that we atually use aseletion proedure a little di�erent from the one Brown suggested for gameswith one deision. Instead of always seleting the node with the maximumexpeted utility, we use a weighted seletion proedure. Why this is donewill be disussed in the end of this hapter where we have introdued theproblems foring us to use this new proedure.



56 Learning Two-Deision Bayesian Networks5.3.1 Final PotentialsAfter the 50.000 games we �rst note that Player1 has won 4953 gamblingunits and Player2 has won 4872. Sine they have won them from eah otherwe an also say that Player1 has won 81 gambling units from Player2. Sine81 out of 50.000 is suÆiently lose to zero, we take this as a on�rmationof the game being symmetri. Furthermore we should note that it is onlyapproximately 20% of the games where a winner is found, the rest of thegames are draws. This is also expeted sine the game is designed in a waysuh that draw games easily our.Now let us look at the �nal potentials for eah of the players. Player1'spotential over whih die Player2 is showing given a hand type is shown inFigure 5.2 and the same potential from Player2 is shown in Figure 5.3.A short note on how to read the �gures might be needed. We have the parentstate in the rightmost olumn telling us whih hand type our opponent had,and the three data olumns in the distribution tells us whih die she willtend to show in this parent situation. The states are "1", "2" and "3".potential (OppShow | OppHand)fdata = (( 1 0 0 ) % 1-1( 0.000792098 0.999208 0 ) % 1-2( 0.50015 0 0.49985 ) % 1-3( 0 1 0 ) % 2-2( 0 0.999248 0.000751614 ) % 2-3( 0 0 1 )); % 3-3g Figure 5.2: Player1's distribution over Player2's hoie of die to showpotential (OppShow | OppHand)fdata = (( 1 0 0 ) % 1-1( 0.00105013 0.99895 0 ) % 1-2( 0.499776 0 0.500224 ) % 1-3( 0 1 0 ) % 2-2( 0 0.999068 0.000931842 ) % 2-3( 0 0 1 )); % 3-3g Figure 5.3: Player2's distribution over Player1's hoie of die to show



5.3 Experiments and Results 57First of all we see that the two potentials show the same overall pattern. Weshall look further into the distane between the �nal distributions later on,but for now we onlude that they are alike.We have three trivial hand types, "1-1", "2-2" and "3-3" where there is noatual hoie of whih die to show, as an be seen these are updated orret.Next we an see that if one of the agents have a hand with a die showing"2", this die is shown to the opponent. This is a rational behavior sine theopponent will have no lue whether the hand is "High" or "Low", sine itan be either of type "1-2", "2-2" or "2-3".The last possible hand is "1-3" and we an see that the agents are playinga randomized strategy, f12 ; 12g . This is also what we ould expet sine theutility funtion is symmetri and there is no bene�t of trying to win on ahigh hand ompared to try winning on a low. Therefore there is no reasonto prefer showing "1" over "3" or the other way around.Now let us try looking at the distribution of the other adaptive node, namelyOppBid. It is a bit more ompliated to read data out from this one so anexample might be neededpotential (OppBid | Show OppHand OppShow)fdata = (((( 0.00224215 0.997758 ) % 1 1-1 1(( 0.5 0.5 ) % 1 1-2 1... Figure 5.4: ExampleIf we look at Figure 5.4 it must be read in the following way: The �rst dataline tells us that in the situation where we have showed our opponent a "1",she has got a hand of type "1-1" and she has shown us "1" she will mostlikely bid on "Low". That is, the �rst number is the probability that she isplaying "High" and the seond number is the probability that she is playing"Low".The �nal distributions over OppBid from the two players are inluded inFigures 5.5 and 5.6.Note that we have trimmed all the impossible on�gurations away from the�gures, eg the ones where the opponent is showing a die she does not have,like for example the situation "1 1-1 2". Due to the nature of the Bayesiannetwork these are represented when running the test, but sine they are neverhosen and therefore not ounted up, we have removed them from the �guresto save some spae.



58 Learning Two-Deision Bayesian Networks
potential (OppBid | Show OppHand OppShow)fdata = (((( 0.00224215 0.997758 ) % 1 1-1 1(( 0.5 0.5 ) % 1 1-2 1( 0.502936 0.497064 ) % 1 1-2 2(( 0.997554 0.00244618 ) % 1 1-3 1( 0.998013 0.00198728 )) % 1 1-3 3( 0.99774 0.0022604 ) % 1 2-2 2( 0.998901 0.0010989 ) % 1 2-3 2( 0.583333 0.416667 )) % 1 2-3 3( 0.997852 0.00214777 ))) % 1 3-3 3((( 0.000832501 0.999167 ) % 2 1-1 1(( 0.5 0.5 ) % 2 1-2 1( 0.000412337 0.999588 ) % 2 1-2 2(( 0.484292 0.515708 ) % 2 1-3 1( 0.508264 0.491736 )) % 2 1-3 3( 0.482741 0.517259 ) % 2 2-2 2( 0.999593 0.000406901 ) % 2 2-3 2( 0.6875 0.3125 )) % 2 2-3 3( 0.999209 0.000791139 ))) % 2 3-3 3((( 0.00186986 0.99813 ) % 3 1-1 1(( 0.416667 0.583333 ) % 3 1-2 1( 0.000942685 0.999057 ) % 3 1-2 2(( 0.00196232 0.998038 ) % 3 1-3 1( 0.00157928 0.998421 )) % 3 1-3 3( 0.00184094 0.998159 ) % 3 2-2 2( 0.497269 0.502731 ) % 3 2-3 2( 0.611111 0.388889 )) % 3 2-3 3( 0.998285 0.00171468 )))); % 3 3-3 3g Figure 5.5: Player1's view of Player2
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potential (OppBid | Show OppHand OppShow)fdata = (((( 0.00222618 0.997774 ) % 1 1-1 1(( 0.5 0.5 ) % 1 1-2 1( 0.496226 0.503774 ) % 1 1-2 2(( 0.99753 0.00247036 ) % 1 1-3 1( 0.998192 0.00180766 )) % 1 1-3 3( 0.997736 0.00226449 ) % 1 2-2 2( 0.99891 0.0010898 ) % 1 2-3 2( 0.5 0.5 )) % 1 2-3 3( 0.997966 0.00203417 ))) % 1 3-3 3((( 0.000807754 0.999192 ) % 2 1-1 1(( 0.5 0.5 ) % 2 1-2 1( 0.000421017 0.999579 ) % 2 1-2 2(( 0.490782 0.509218 ) % 2 1-3 1( 0.492478 0.507522 )) % 2 1-3 3( 0.500167 0.499833 ) % 2 2-2 2( 0.999603 0.00039733 ) % 2 2-3 2( 0.5 0.5 )) % 2 2-3 3( 0.999192 0.000807754 ))) % 2 3-3 3((( 0.00182749 0.998173 ) % 3 1-1 1(( 0.416667 0.583333 ) % 3 1-2 1( 0.000938086 0.999062 ) % 3 1-2 2(( 0.00237192 0.997628 ) % 3 1-3 1( 0.00150602 0.998494 )) % 3 1-3 3( 0.00185874 0.998141 ) % 3 2-2 2( 0.502625 0.497375 ) % 3 2-3 2( 0.583333 0.416667 )) % 3 2-3 3( 0.998194 0.00180636 )))); % 3 3-3 3g Figure 5.6: Player2's view of Player1



60 Learning Two-Deision Bayesian NetworksBy looking at the �gures we see that they share the same overall pattern orin other words, they are onverging against the same randomized strategies.Again, we shall return to onsiderations about the distane later on.In the following we shall see if we an verify the strategies in Figures 5.5 and5.6 as a Nash equilibrium.5.3.2 PollutionNotie that in some situations the agents seems to have been playing by dif-ferent randomized strategies, eg a situation like "2 2-3 3". Does this indiatethat they have onverged against di�erent randomized strategies or an we�nd a better explanation ?We shall refer to this phenomenon as pollution. It ours due to the ini-tial distribution where the probabilities for all possible hoies are equal.Therefore it an happen that if you have a hand of type "2-3" you hooseto show the "3" sine you have not yet disovered that it is bene�ial toalways show the "2". Of ourse your opponent will take these ases intoaount, and ount up his probability distributions aording to what he isobserving. Unfortunately, it turns out that all strategies where you have a"2" and does not show it are dominated and therefore these on�gurationsare never played again so the probabilities remain unhanged. For examplein the situation "2 2-3 x", Player1 is only showing "3" three times duringthe 50.000 games, in ontradition to showing "2" 6144 times.We onlude that we an not expet on�gurations based on dominated s-trategies in a parent node to have a reasonable distribution, and we refer tothis phenomenon as pollution.5.3.3 The StrategiesAs a �rst step in verifying the �nal distributions as a Nash equilibrium weshall try looking at some of the on�gurations and see if we an explain thesuggested strategies as reeting intelligent and rational behavior.The �rst on�guration we look at is also the �rst in Figure 5.5.We see that in the situations "x 1-1 1" both players are onsequently playing"Low". Is this rational ?If your hand is "1-1" you an never loose by playing "Low" and you an neverwin by playing "High" so it seems reasonable that you would only want toplay "Low". Furthermore, if your opponent realizes that you are playing



5.3 Experiments and Results 61deterministially in this on�guration she annot use this to win sine shean never have a lower hand. One ould argue that she ould just play "High"to ensure a draw, but she have no hane of knowing if the "1" we showedher indiates that we have a hand of type "1-1" and "1-3" so there is a riskinvolved in playing "High" for some hand types, and still it an never leadto a winning.Reverse arguments an of ourse be used for situations of the kind "x 3-3 3".The most interesting situations our when a "2" is showed sine this intro-dues the most unertainty for the opponent.We try looking at the situation "2 1-3 1" whih indiates that we have showed"2" to our opponent, she has a hand of type "1-3" and she has shown the"1" to us. From the �gures we see that she is indi�erent between playing"High" and "Low" whih is also the ase if she has shown her "3" to us. Isthis rational ?Sine we showed her a "2" she does not know whether we have "1-2", "2-2"or "2-3", so all she an onlude is that the sum of our hand is either onesmaller than, the same as, or one larger than her hand. Furthermore, theprobabilities for our hand being smaller or larger are the same, and it is lessprobable that we have a hand of type "2-2". The expeted utility of us hav-ing the same sum is zero, so this di�erene in probability is removed, and wean therefore onlude that it is rational to be indi�erent between "High"and "Low".The same kinds of arguments as we have seen here an be used to explainthe rationality of all the remaining unpolluted on�gurations, so still it seemsthat the strategies from the �nal potentials are satisfying what it takes tobe optimal strategies. As a further veri�ation we shall try looking into theexpeted utilities a player has when he has observed these �nal strategies asbeing the behavior of his opponent.5.3.4 Expeted UtilitiesIn this subsetion we shall look into what the �nal potentials means for theexpeted utilities for the players. We know from earlier hapters that ifwe have an equilibrium the players must be indi�erent about their possiblehoies. However, in this game the players have some private information, soa player might know that he an never win by playing on "Low" in a givensituation, and this will of ourse inuene on his expeted utilities.



62 Learning Two-Deision Bayesian NetworksShowFirst we try looking at what die we should show in any situation. As earliermentioned the ases "1-1", "2-2" and "3-3" are trivial in terms of whih dieto show, so we shall not onsider them here. We shall onsider ourselves asPlayer1 and we shall disuss the situations from our own point of view.In the situation where we have a hand of type "1-2" our expeted utilitiesare as follows1-2 : Show = f-0.1095, 0.0586, -4.6663gWe see that we should show "2" whih we argued in the previous setion isa rational behavior.For the situation "1-3" we are indi�erent between "1" and "3" as an be seenhere 1-3 : Show = f-0.1094, -5.2216, -0.1097gwhih again veri�es our earlier argumentation.Finally we look at the situation "2-3"2-3 : Show = f-4.6663, 0.0531, -0.1098gand we see the symmetry with the situation "1-2" where we have the sameexpeted utility of showing "2", and the same expeted utility of showing"1" as we have for showing "3" in this situation.Note that the expeted utility varies with the hand type. If we get a handof type "1-3" our expeted utility of showing "1" or "3" is smaller than theexpeted utility of showing "2" given the hand types "1-2" and "2-3". Thisis reasonable sine "1-3" sums to four whih is the "mean" value of the gameand therefore it is hard to know whether to play on "High" or "Low" at thismoment when we have not seen any indiation of our opponents hand. Forompleteness sake, we inlude the expeted utilities for showing "1" given"1-1", "2" given "2-2" and "3" given "3-3"EU(1|1-1) = 0.1118EU(2|2-2) = -0.2215EU(3|3-3) = 0.1116



5.3 Experiments and Results 63and one again we see the symmetry between "1-1" and "3-3".By looking at all these expeted utilities we see that we an expet the highestwinning by getting one of the extreme hand types "1-1" or "3-3" whih arealso the hardest to get.MyBidNow we turn the fous to the expeted utilities for MyBid. There are toomany ases to onsider them all but we shall try seleting a few of them,overing some of the interesting aspets.Case 1 - IndiffereneAs earlier mentioned, in an equilibrium of a game, the expeted utility of allpossible hoies must be the same. As also mentioned, in this game bothplayers have private information so we an not always ount on this to betrue. However, situations still our where we have no hane of using thisinformation as insurane against loss and in these situations our expetedutilities should be the same for both our hoies.We onsider the situation where we have a hand of type "1-2", have shownour opponent the "2" and she has shown us a "1". Then our expeted utilitiesare as followsMyHand : 1-2, Show : 2, OppShow : 1MyBid = f-0.2416, -0.2414gAs an be seen, we are indi�erent between playing "High" or "Low" in thissituation whih indiates that the �nal distributions are in an equilibrium.If we had shown our opponent the "1" the situation would have beenMyHand : 1-2, Show : 1, OppShow : 1MyBid = f-0.4973, -0.4971gbut we are still indi�erent about the hoies, even though the expeted utilityhere is smaller due to the fat that we showed "1" in a situation where wehad a "2".Case 2 - SymmetryAs earlier desribed, the game has a symmetri nature meaning that we anexpet the same situations to our in the low and the high end.



64 Learning Two-Deision Bayesian NetworksLet us onsider the ase where we have a hand of type "1-2". We follow ourstrategy and show the "2" to our opponent, she is also showing a "2" to us.This leads to the following expeted utilitiesMyHand : 1-2, Show : 2, OppShow : 2MyBid = f-0.4964, 0.1037gWe see that we have a positive expeted utility by playing "Low". Due tothe symmetri nature of the game, the expeted utility of playing "Low" inthis situation should be the same as the expeted utility of playing "High"in the high end of the game.We onsider the situation where we have "2-3", have showed the "2" to ouropponent and have seen a "2". Then we have the following expeted utilitiesMyHand : 2-3, Show : 2, OppShow : 2MyBid = f0.0968, -0.5033gAs we an see, the expeted utility of playing "High" in this situation isalmost the same as the expeted utility of playing "Low" in the previoussituation, so this veri�es the symmetri nature.Case 3 - Indifferene and SymmetryHere we try looking at a ase where we have a hand of type "2-2", or in otherwords a ase that sums to four - the mean of the game. Thus, we are in asituation where our hoie is ompletely dependent on our opponent.First, if she is showing us a "1" the situation is as followsMyHand : 2-2, Show : 2, OppShow : 1MyBid = f0.0008, -0.4995gAs we an see we shall then play on "High". This seems very reasonablesine the maximum sum that she an have is if her other die is "3", andthen her sum is four - the same as our own. Thus, we an never loose byplaying "High".If instead our opponent had shown us a "2" we would have this situation



5.3 Experiments and Results 65MyHand : 2-2, Show : 2, OppShow : 2MyBid = f-0.3996, -0.3996gwhere we an see that we are indi�erent between "High" and "Low". Thisis again an indiation of the strategies being an equilibrium, sine in thesituation where we are maximum unertain, the behavior we have seen fromour opponent does that we remain indi�erent between our possible hoies.And �nally if our opponent had shown us a "3" we would have the followingsituationMyHand : 2-2, Show : 2, OppShow : 3MyBid = f-0.4998, 0.0006gwhih is the opposite of where she showed us "1". Again a on�rmation ofthe symmetry being kept.Case 4 - Extreme hand typesAs a �nal experiment with the expeted utilities we try looking at the situa-tion where we have got one of the extreme hands "1-1" or "3-3" - they showthe same tendenies so we shall only look at "1-1".Of ourse we an only show "1" so we the fator we vary is what we see fromour opponent.If she is showing us a "1" we get the following expeted utilitiesMyHand : 1-1, Show : 1, OppShow : 1MyBid = f-0.4989, 0.0018gWe see that our expeted utility of playing "Low" is approximately zero, in-diating that we an expet a draw. This seems reasonable beause the fatthat our opponent showed us a "1" indiated that she must have either "1-1", whih leads to a draw, or "1-3" whih will make her play "High" in thissituation where she has seen a "1". Thus, in both ases we an expet a draw.If she is showing us a "2" the situation is like this



66 Learning Two-Deision Bayesian NetworksMyHand : 1-1, Show : 1, OppShow : 2MyBid = f-0.8003, 0.1997gWe see that we have a positive expeted utility on playing "Low". We knowthat we an never loose by playing "Low" and having "1-1", and we knowthat when our opponent has "1-2", shows the "2" and sees a "1", she isindi�erent about playing "High" or "Low".Furthermore, when she is showing "2" we know that she has either "1-2","2-2" or "2-3". From the nature of the game (and the behavior we assumefrom a 3-sided die, without ever having seen one in ation) we know thatit is twie as probable getting "1-2" or "2-3" as it is getting "2-2". So thehane of our opponent having a "1-2" is 25 , and if so, there is 50% hanethat she is playing "Low". This explains that the expeted utility of playing"Low" is approximately 15 .Finally, if she is showing "3" the situation isMyHand : 1-1, Show : 1, OppShow : 3MyBid = f-0.9976, 0.0024gWe see that we an expet a draw by playing "Low", and are sure to loose ifwe are playing "High".This onludes the examination of the expeted utilities we get when usingthe networks we have from the intelligent agents. As promised, we now moveon to examining the distane between the �nal distributions.5.3.5 DistaneAs a �nal experiment with the game "two-person high/low" we shall tryobserving the Eulidean distane between the distributions of OppShow andOppBid during the games. We have done this for all the other games, andseen that the distanes are always going against zero.The distane is plotted in Figure 5.7.As an be seen the distane between the two distributions over OppShow isapproahing zero, but is never reahing it during the 50.000 games.We an also see that the distane between the two distributions over OppBidis onverging, but apparently not against zero, but a value around 0:09. Inthe game sissor-paper-stone we saw that the distane was reahing zero,
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Figure 5.7: The distanemeaning the exat same distributions several times during the games. Thatit is onverging against a value other than zero is an indiation of the po-tentials being polluted. The dominated on�gurations that are modi�ed inthe beginning and never touhed again are introduing a onstant pollutionfator that the distane annot get below, so with this in mind it is not aproblem that the distane is onverging against a value larger than zero.Furthermore, the nodes have several more states than in sissor-paper-stone,so to ompensate for the number of states in the nodes when looking atthe distane, we introdue a more fair distane measure for this purpose, theaverage Eulidean distane during the games divided by the number of statesmodi�ed by the adaptation. We then get the following distanesSissor-Paper-Stone:distE(P1Opponent; P2Opponent) = 8� 10�5High/Low : distE(P1OppShow; P2OppShow) = 1� 10�4distE(P1OppBid; P2OppBid) = 1� 10�3



68 Learning Two-Deision Bayesian NetworksSo we have that even though the distanes in Figure 5.7 are not getting aslose to zero as in the game sissor-paper-stone, we an explain why this is so,and when omputing average distanes, the distane between the unpollutedpotentials over OppShow is getting almost as lose to zero as the distanebetween the Opponent potentials in sissor-paper-stone.5.4 Summary and DisussionIn this hapter we have explained the rationality of several strategies, se-leted to be overing the interesting ases, and we have still not found anyindiations that the �nal distributions should not be a Nash equilibrium.Furthermore, by looking at the expeted utilities, we have found that thesymmetry of the game is kept intat and that in the situations with maxi-mum unertainty, the �nal distributions represent randomized strategies thatmake random play the best strategy of an opponent.Therefore we onlude that the �nal distributions are a Nash equilibrium ofthe game "Two-person high/low".As mentioned in the beginning of the hapter, we were fored to use a newseletion proedure in this experiment. The reason we had to do so is pollu-tion in the dominated on�gurations. This is a problem beause even thoughthe on�gurations are dominated, the probability of them being hosen is n-ever zero, only very lose to zero. This fat ombined with pollution doesthat the polluted values are taken into aount when omputing the expetedutilities, meaning that a value very lose to zero is added to the some of theexpeted utilities. Imagine that this happens in a situation with a hoiebetween two deisions that should have the same expeted utility, and oneof the hoies is added a polluted result and the other added an unpolluted.Then we have that the expeted utility of one of the deisions is slightly largeror smaller than the other, so Brown's maximum seletion riterion will re-sult in deterministi play where a random seletion was supposed to be made.There are more than one solution to this problem. The solution we hose is touse a seletion proedure similar to one of those we tested in [J�rgensen, 2000℄.The idea is that as follows� Utilities that are loser to zero than some threshold are set to zero� If you have a hoie between deisions with both positive and negativeexpeted utilities, make a weighted seletion over only the positive



5.4 Summary and Disussion 69� If all the expeted utilities are positive, make a weighted seletion overall of them� If all the expeted utilities are negative, make a weighted seletion overall of themIn [J�rgensen, 2000℄ we showed that suh a seletion proedure is giving thesame results as when always seleting the one deision with highest expetedutility.Another solution ould be to introdue an interval around the expeted util-ities in whih variane is said to does not matter. In this way two expetedutilities varying only in this interval would be treated as equalWhat we have atually shown in this hapter is that we an make a slightmodi�ation to Brown's solution proedure for �nite two-person zero-sumgames with one deision, making it apable of solving �nite two-person zero-sum games with more than one deision.



70 Learning Two-Deision Bayesian Networks



Chapter 6ConlusionThe intention with this thesis was to ontinue the work from [J�rgensen, 2000℄where we made the initial experiments, indiating that it is possible toimplement intelligent agents for games based on Bayesian networks. In[J�rgensen, 2000℄ we found that for the game of spoo�ng whih we usedas a test-bed, the intelligent agents onverged against the same randomizedstrategies, and furthermore we were able to verify these strategies as reet-ing intelligent and rational behavior.However, we were not able to verify these strategies as being the solutions ora Nash equilibrium of the game, so one of the main purposes of this thesiswas to atually prove that intelligent agents based on Bayesian networks areapable of solving any �nite two-person zero-sum game.To do so, we have looked deep into the work of George W. Brown and JuliaRobinson whom have respetively suggested and proven a reursive solutionproedure for �nite two-person zero-sum games with one deision. We havein detail studied and desribed as well the proedure as the proof hereof,and even made various experiments to verify that the proedure is apableof �nding the desired solutions.The next step was the integration of this solution proedure into Bayesiannetworks. We found that it was similar to the training sheme, frationalupdating, as also used in [J�rgensen, 2000℄.We have shown that intelligent agents based on adaptive Bayesian networksare apable of �nding the same solutions as Brown's reursive solution pro-edure. We have also veri�ed these solutions as being Nash equilibria of thegames we have used as test-beds. Furthermore, we have shown that we anextend the sheme of frational updating with the onept of fading and stillimplement agents able of �nding the solutions.



72 ConlusionThus, we have found a way to inorporate Brown's solution proedure intointelligent agents whih then are not only apable of solving any �nite two-person zero-sum game with one deision, these agents are also apable ofexploiting potential weaknesses of their opponents. The latter follows fromthe fat that agents using fading are able to adapt to any ontext they areplaed in, or in other words they are able to disover sub-optimal play ofan opponent and take advantage of it. Brown's original proedure is onlydesigned for �nding optimal strategies against intelligent and rational oppo-nents and therefore it is not apable of �nding strategies that are optimalagainst sub-optimal play.After having shown that we are able to inorporate Brown's solution proe-dure into intelligent agents that are able to �nd optimal strategies of �nitetwo-person zero-sum games with one deision against any opponent they arefaing, and able to �nd Nash equilibria of the same games by letting themfae themselves, we deided to move on to more omplex games.Our motivation for doing so was that we hoped we would be able to showthat our implementation of Brown's solution proedure as intelligent agentsis able to solve even more omplex games than the ones it is designed for.Our idea was to solve a �nite two-person zero-sum games with more thanone deision.For the purpose we designed the game "two-person high/low" whih not onlyintrodues more than one deision, but also private information. Unfortu-nately the solution spae for this game was too huge for us to ompute, sothe intention was to read out the suggested solutions, if any, and try verifyingthem as a Nash equilibrium of the game.Due to what we de�ned as pollution aused by dominated strategies, we hadto modify the seletion riterion from Brown's solution proedure.With the new seletion riterion we showed that intelligent agents based onBrown's solution proedure integrated in Bayesian networks are onvergingagainst the same randomized strategies when set to play against eah other.Furthermore, we examined the suggested solutions in detail, and to the bestof our knowledge, we have veri�ed them as being Nash equilibria of the game"two-person high/low".Thus, we have shown that intelligent agents based on Bayesian networks areapable of solving �nite two-person zero-sum games.



Chapter 7Future WorksAs the �nal words in this thesis, we outline some aspets that we still have notovered in our work and whih we �nd so interesting enough to be mentioned.All the games we have onsidered until now have been of the type two-personzero-sum games, so it ould be interesting to see how well the ideas from thisthesis apply to other kinds of games. Furthermore we have not yet onsidereda game without perfet hindsight whih for sure would introdue some inter-esting problems and onsiderations. One ould easily imagine that methodsof Brown's priniple will fail to solve the games as soon as perfet hindsightis not present.Another interesting subjet when talking new game types is game with morethan two partiipants. We an easily imagine games with for example threepartiipants where our training methods still will work orret. However, wewill need to ompliate our model, so problems with veri�ation of suggestedsolutions will have to be taken are of, whih leads to the next point.As soon as the games get more omplex we have a hard time verifying thesolutions we an read out as atually being solutions. More e�ort has to beput into omputing the exat solutions of the games we onsider so we anformally verify our results.The problems we had with the seletion riterion in Brown's theorem need tobe worked with. We know that we must play randomized strategies over ourpossible hoies based on a set of weights. However, we have a problem whenwe have both positive and negative expeted utilities at the same time, whihwe will have to weigh aording to eah other. The solutions we proposedwhen we disussed the problems are for sure subjet to optimization.



74 Future WorksBy experiments and disussion alone, we have shown that the priniples fromBrown's solution proedure an be used to solve games with more than onedeision. A formal proof of this result would be desired.
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