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Abstra
t:In this masters thesis we fo
us on theuse of Bayesian networks for solving �-nite two-person zero-sum games withone de
ision. We look into the detailsof an iterative solution pro
edure sug-gested by George W. Brown in 1949and veri�es it formally as well as inpra
ti
e. We show that the solutionsfound by Brown's pro
edure are Nashequilibria of the games we use as test-bed.We show that we 
an use the prin
i-ples from Brown's solution pro
edureto 
reate adaptive Bayesian networks
apable of solving a game by letting in-telligent agents based on the adaptivenetworks fa
e ea
h other. Their distri-butions will during the series of games
onverge against the Nash equilibriumfor the game.Finally we show that Bayesian net-works are 
apable of solving more 
om-plex games with more than one de
i-sion, by using training methods of thesame prin
iple as Brown's solution pro-
edure.
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Abstra
t:I dette spe
iale fokuserer vi p�a brugenaf Bayesianske netv�rk til l�sning afendelige to-personers nulsumsspil medmed een beslutning. Vi g�ar i de-taljer med en iterativ l�sningsmetodeforesl�aet af George W. Brown i 1949og viser at den virker s�avel formeltsom i praksis. Vi efterviser desudenat de l�sninger vi �nder med Brown-s l�sningsmetode er Nash ligev�gte forde spil de l�ser.Vi viser at vi kan bruge prin
ippernefra Browns l�sningmetode til at laveadaptive Bayesianske netv�rk der kanl�se et spil ved at lade intelligent agen-ter baserede p�a de adaptive netv�rkm�de hinanden i en serie af spil. Deresdistributioner vil da konvergere modNash ligev�gten for spillet.Vi slutter af med at vise at Bayesianskenetv�rk kan l�se mere kompli
eredespil med mere end en beslutning ved atbruge tr�ningsmetoder af samme prin-
ip som Brown's l�sningspro
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Prefa
e
This thesis is the result of the work done by group DAT6-NOVI in the springof 2000. We 
ontinue the work from DAT5 as des
ribed in [J�rgensen, 2000℄,where we made some initial studies on the use of Bayesian networks in thearea of game theory.The main subje
t of this report is solution of �nite two-person zero-sumgames with adaptive Bayesian networks. As usually when working with gametheory, we des
ribe the �rst player using male pronouns and the se
ond play-er using female pronouns. If a player is referred without role, we shall usemale pronouns.The notation used in this thesis is mainly based on [Jensen, 1996℄ when 
on-
erning Bayesian networks and [Robinson, 1951℄ when des
ribing the sug-gested solution pro
edure for the games.This thesis has been typeset with LATEX.We would like to thank HUGIN Expert A/S for providing us with a versionof the HUGIN Java API during the proje
t period.

Thomas J�rgensen
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Chapter 1Introdu
tionThe purpose of this thesis is to 
ontinue the work from [J�rgensen, 2000℄where we 
on
luded that if we let intelligent agents based on adaptive Bayesiannetworks play against ea
h other, they 
onverge against the same probabilitydistributions. From these distributions we 
an read out randomized strate-gies des
ribing the behavior of the agents during the series of games. In[J�rgensen, 2000℄ we argued that the �nal strategies for the game of spoo�ng"seemed" to re
e
t an intelligent and rational behavior.In this thesis we would like to prove that intelligent agents based on adaptiveBayesian networks a
tually 
onverge against a set of randomized strategiesthat is a solution of the game they are playing. Su
h a solution is what wein [J�rgensen, 2000℄ des
ribed as a Nash equilibrium. To be able to a
tuallyprove that the randomized strategies we end up with are a Nash equilibriumwe start out with some very simple games where we 
an pre-
ompute thesolutions. The games that are the subje
t of this thesis are �nite two-personzero-sum games.As a theoreti
 foundation for solution of su
h simple games we use the workof George W. Brown and Julia Robinson as des
ribed in [Robinson, 1951℄. Inthis arti
le Robinson is des
ribing and proving an iterative solution pro
edurefor �nite two-person zero-sum games. This pro
edure is initially suggested byGeorge W. Brown in 1949 in some unpublished work. In Chapter 2 we intro-du
e some general game theoreti
 
on
epts to ensure a 
lear understandingof the theory behind zero-sum games, and we des
ribe in detail the solutionpro
edure and the proof hereof.In Chapter 3 we try to verify the iterative solution pro
edure by testing it ona few simple games, before we in Chapter 4 introdu
e an integration of the



8 Introdu
tionsolution pro
edure into Bayesian networks. We shall also verify that thesenetworks are 
apable of solving the simple games we 
onsider in this work.Finally, in Chapter 5 we move away from the type of games 
overed by theiterative solution pro
edure suggested by Brown, to see if we 
an solve more
omplex games with our new representation in adaptive Bayesian networks.The results are summed up in Chapter 6 and a dis
ussion of future work isin
luded in Chapter 7.



Chapter 2Iterative Solution of FiniteTwo-Person Zero-Sum GamesMu
h of the early work in the area of Game Theory was done on two-personzero-sum games sin
e those are the games that are easiest to model mathe-mati
ally. As work pro
eeded, the simplifying assumption of zero-sum, mean-ing that ones gain is always the opponents loss, was found to prohibit themodeling of more 
omplex and realisti
 games, and the fo
us started turningto non-zero-sum games. However, the theory of zero-sum games still 
ontainsa lot of interesting aspe
ts as we shall dis
over in the following se
tions.One of the most a
tive resear
hers in zero-sum games was John von Neuman-n, whi
h is also the father of the widely referred minimax theorem of gametheory. As well as this theorem is widely referred it is also widely rewrittenand reproved, in this thesis we shall adopt the notion from re
ent works inprobability- and de
ision theory together with the most suitable notion forthe main task of this 
hapter.Ba
k in 1949, George W. Brown suggested a method for an iterative solu-tion of �nite two-person zero-sum games with one de
ision. In 1951 JuliaRobinson[Robinson, 1951℄ proved the validity of the pro
edure suggested byBrown. The purpose of this 
hapter is to highlight the results from Brownand Robinson, and to do so we start looking at some of the earlier results toensure a 
lear understanding of the 
on
epts. The de�nitions are given usinggames with only pure strategies, but they 
an easily be extended to in
luderandomized play [Myerson, 1991℄, however, doing so would make them lesssuitable to serve as a gentle introdu
tion. Randomized play will be intro-du
ed later on.To represent the games we use the strategi
 form. To de�ne a game in



10 Iterative Solution of Finite Two-Person Zero-Sum Gamesstrategi
 form we need to de�ne a set of players, the set of strategies availableto the players and the pay-o� they gain from the various strategies. In the
ontext of game theory a strategy is de�ned as followsDefinition 1 (Strategy)A strategy for a player is a pres
ription for what the player must do in anypossible de
ision situation that 
an happen.and a strategi
 form game is de�ned asDefinition 2 (Strategi
 Form Game)A strategi
 form game is any � of the form� = (N; (Cp)p2N ; (up)p2N); whereN is the set of players, N 6= ;Cp is the set of strategies available to player p, where 8p 2 N;Cp 6= ;up : C ! R is the utility pay-o� fun
tion for player p, where C = fCpgp2NIn our 
ase where we 
onsider only two-person zero-sum games we 
an usethe slightly simpler De�nition 3.Definition 3 (Two Person Zero-Sum Game)A two person zero-sum game in strategi
 form is any � of the form� = (f1; 2g; C1; C2; u1; u2)su
h that u2(i; j) = �u1(i; j), 8i 2 C1; 8j 2 C2If we assume that C1 and C2 are �nite sets, then in two-person games, it is
onvenient to represent the utility fun
tion as a pay-o� matrixA = aij, 8i 2 C1, 8j 2 C2If Player1 
hooses the ith row and Player2 simultaneously 
hooses the jth
olumn, then Player2 pays aij to Player1.The matrix representation of the utility fun
tion will work with randomized-as well as with pure strategies. If we are using only pure strategies the utilitymatrix alone 
an be used for �nding optimal strategies. When speaking of anoptimal strategy we are referring to optimality in terms of expe
ted winnings,thus an optimal strategy is optimizing your winnings or minimizing your loss.When using only pure strategies De�nition 4 is used to de�ne optimal strate-gies.



11Definition 4 (Saddle Point)The strategy set (i0; j 0) is 
alled a saddle point for � i�aij0 � ai0j0 � ai0j, 8i 2 C1 8j 2 C2The value ai0j0 is 
alled the saddle value, and i0 and j 0 are 
alled optimalstrategies.In other words, if Player1 plays the strategy i0 he is guaranteed to win atleast the saddle value ai0j0 and Player2 following the strategy j 0 is guaranteednot to loose more. If one of the players plays another strategy he 
an neverbe better o�, and most likely he will be worse o�. Thus, i0 and j 0 are optimalstrategies in the way that they guarantee the maximal gain against an intel-ligent, rational opponent. Whi
h strategies are the best against suboptimalopponents shall be unsaid.In the previous se
tion we itali
ized the saddle value. Note that there 
an bemore than one saddle point in the same game. In Figure 2.1 say that (i0; j 0)and (i00; j 00) are saddle points, thus from De�nition 4 we have that v0 is thelargest element in the row labelled i0 and furthermore the smallest elementin the 
olumn labelled j 0. Similarly for i00 and j 00.
j’ j’’

i’

i’’

v’

v’’u

w

Figure 2.1: Value equivalen
e between several saddle pointsThus we 
an write w � v0 � u and u � v00 � wand then we have that if we have more than one saddle point in a game thesaddle value is the same for all of them.



12 Iterative Solution of Finite Two-Person Zero-Sum Games2.1 Rational ReasoningSin
e we are assuming our opponent to be intelligent and rational we mightas well expe
t him to be playing his optimal strategies. In this se
tion weshall see how players should reason in sear
h for optimal strategies.Remember the basi
 property of zero-sum gamesu1(i; j) = �u2(i; j) (2.1)With this in mind it is easy to see that the task of maximizing your winnings isequivalent to minimizing your opponents winnings. Sin
e we expe
t rationaland intelligent opponents, a player should always assume that the opponentplays the best possible strategy against optimal play. In other words, Player1should assume that Player2 is solving the problemminj2C2 aij (2.2)Thus, Player1 must solve the problemV1 = maxi2C1 (minj2C2 aij) (2.3)where V1 is Player1's minimum winnings from the game. Similarly Player2must minimize her loss, so she should solve the problemV2 = minj2C2 (maxi2C1 aij) (2.4)where V2 is Player2's maximum loss.Sin
e V2 is the maximum possible loss of Player2 and the game is zero-sum,it seems reasonable to state that no matter what strategy Player1 is usinghe 
an not possible win more than V2, thusV1 � V2 (2.5)This leads to the following theoremTheorem 1For �nite two-person zero-sum games (as well as for any other matrix) thefollowing inequality is truemaxi2C1 (minj2C2 aij) � minj2C2 (maxi2C1 aij)



2.1 Rational Reasoning 13Proof:For stati
 i0 2 C1 and j 0 2 C2 it is easy to see thatai0j0 � minj2C2 ai0j, 8i0 2 C1, 8j 0 2 C2By taking max on both sides we getmaxi2C1 aij0 � maxi2C1 (minj2C2 aij), 8j 0 2 C2From here Theorem 1 follows. QEDThe way we got to Theorem 1 was by arguing how a player should behaveto ensure optimal play, therefore it seems reasonable to assume that there isa relation with saddle points from De�nition 4, a
tually the following is trueTheorem 2(i0; j 0) is a saddle point for � = (f1; 2g; C1; C2; u1; u2) i�minj2C2 ai0j = maxi2C1 (minj2C2 aij) = minj2C2 (maxi2C1 aij) = maxi2C1 aij0Proof:Assume that (i0; j 0) is a saddle point for �, thenaij0 � ai0j0 � ai0j8i 2 C1, 8j 2 C2and it follows that maxi2C1 aij0 � ai0j0 � minj2C2 ai0jand thusminj2C2 (maxi2C1 aij) � maxi2C1 aij0 � ai0j0 � minj2C2 ai0j � maxi2C1 (minj2C2 aij)
ombining this with Theorem 1 we get Theorem 2.Now we assume that Theorem 2 is true, and we 
an writeai0j0 � maxi2C1 aij0 = minj2C2 ai0j � ai0j0and now we have that maxi2C1 aij0 = ai0j0 = minj2C2 ai0jFrom De�nition 4 we see that (i0; j 0) is a saddle point. QEDThis 
on
ludes the gentle introdu
tion to the area of two-person �nite zero-sum games, and it is time to 
ompli
ate things and introdu
e randomizedstrategies.



14 Iterative Solution of Finite Two-Person Zero-Sum Games2.2 Equilibria in Randomized StrategiesWith the introdu
tion of randomized strategies it is possible for equilibriato o

ur in games that have no equilibria in pure strategies. A randomizedstrategy for Player p is any probability distribution over Cp, and we let �(Cp)denote the set of all possible randomized strategies for player p.A randomized strategy pro�le is any ve
tor that spe
i�es one randomizedstrategy for ea
h player, so �p2N�(Cp) is the set of all randomized strategypro�les.To justify the sear
h for equilibria in �nite two-person zero-sum games, wegive, without the proof, the general existen
e theorem introdu
ed by JohnNash in 1951[Myerson, 1991℄Theorem 3Given any �nite game � in strategi
 form, there exists at least one equilibriumin �p2N�(Cp)With this in mind we are ready to start looking at Brown's pro
edure for�nding su
h equilibria. Remember that we represent our utility fun
tion asa matrix A = aij, 8i 2 C1, 8j 2 C2We let Player1 play the ith row with probability xi and similarly Player2play the jth 
olumn with probability yj, where xi � 0; yi � 0;P xi =1 and P yi = 1. We 
an 
al
ulate the expe
ted utility of Player1 asEU =Xi Xj aijxiyj (2.6)We have that minj Xi aijxi �Xi Xj aijxiyj � maxi Xj aijyj (2.7)to see why this is so, 
onsider the middle term asXj yjXi aijxi (2.8)Sin
e Pj yj = 1 we 
an 
onsider 2.8 as a weighted average over Pi aijxi, andtherefore it is true thatminj Xi aijxi �Xj yjXi aijxi



2.2 Equilibria in Randomized Strategies 15Similarly we 
an write the middle term of 2.7 asXi xiXj aijyjwhi
h is a weighted average over Pj aijyj and thusXi xiXj aijyj � maxi Xj aijyjFrom 2.7 it naturally follows thatminj Xi aijxi � maxi Xj aijyj (2.9)Looking at 2.9 we see that if the equality holds, it is somehow similar toTheorem 2, stating that minj2C2 ai0j = maxi2C1 aij0The di�eren
e is that 2.9 in
ludes randomized strategies whi
h is not the 
asein Theorem 2 sin
e the latter was kept simple to ensure a 
lear understandingof the 
on
epts. However, they are both de�ning optimal strategies, Theorem2 is de�ning optimal pure strategies in opposition to 2.9 whi
h is de�ningoptimal randomized strategies over the pure strategies.In fa
t it is true, that even though there may be no equilibria in pure strate-gies, the equality in 2.9 holds for some set of probabilities X = (x1; :::; xm)and Y = (y1; :::; yn). This result is widely known as the minimax theorem ofgame theory and 
an be found in [von Neumann and Morgenstern, 1944℄.Su
h a pair of probability sets, (X; Y ) is 
alled a solution or a Nash Equilib-rium of the game and the value, v, of the game is de�ned asv = minj Xi aijxi = maxi Xj aijyj (2.10)As in pure strategies, this value is the same for all equilibria. To see whythis is so, 
onsider the followingFrom 2.9 we have that minj Xi aijxi � maxi Xj aijyjwhi
h is true for all probability sets (X 0; Y 0)



16 Iterative Solution of Finite Two-Person Zero-Sum GamesSay we have two Nash equilibria of the same game, 
all them (S; T ) and (U;W ).Then we have from 2.10 thatminj Xi aijsi = maxi Xj aijtj = vand minj Xi aijui = maxi Xj aijwj = v0Now if we 
onsider (S; T ) and repla
e the T with W we know thatminj Xi aijsi � maxi Xj aijwjand get v � v0Similarly if we 
onsider (U;W ) and repla
e the W with T we get thatminj Xi aijui � maxi Xj aijtjand therefore have that v0 � vWe now see that v = v0In terms of rows and 
olumns in the pay-o� matrix, equation 2.9 
an beviewed as minXi Ai�xi � maxXj A�jyj (2.11)Where A�i is the ith row of A and Aj� is the jth 
olumn of AWith the basi
 
on
epts de�ned we are now ready to move on to Brown'stheorem on ve
tor systems.2.3 Brown's TheoremBrown's pro
edure for solving games is based on re
ursive manipulation ofve
tors resulting in what is referred to as a ve
tor system for A. A ve
torsystem is de�ned as



2.3 Brown's Theorem 17Definition 5 (Ve
tor System)A system (U, V) 
onsisting of a sequen
e of n-dimensional ve
tors U(0); U(1); :::and a sequen
e of m-dimensional ve
tors V (0); V (1); ::: is a ve
tor system forA i� minU(0) = maxV (0)and U(t + 1) = U(t) + Ai�, V (t + 1) = V (t) + A�j;where i and j satisfy the 
onditionsvi(t) = maxV (t); uj(t) = minU(t)From De�nition 5 we 
an see that it is possible to re
ursively form a ve
torsystem given any initial ve
tors U(0) and V (0). In [Robinson, 1951℄ the 
aseU(0) = V (0) = �!0is 
onsidered as a spe
ial 
ase sin
e the de�nition is valid for all initial ve
tors.However, sin
e we are to use the pro
edure only as a way of solving �nite two-person zero-sum games, we shall not 
onsider 
ases where U(0) 6= V (0) 6= �!0 .We 
an now 
onsider U(t)t and V (t)t as a weighted average of the rows and
olumns respe
tively, where the weighting fa
tors are the number of timesthe row or 
olumn has been 
hosen divided by the number of iterations.Formally U(t)t = nit Ai� ,where ni is the number of times the ith row has been 
hosenSimilarly V (t)t = mjt A�j ,where mj is the number of times the jth 
olumn has been 
hosenSin
e U(t)t is a weighted average over the rows of A we have thatminU(t)t � maxi Xj aijyj (2.12)Similarly sin
e V (t)t is a weighted average over the 
olumns of A we have thatmaxV (t)t � minj Xi aijxi (2.13)



18 Iterative Solution of Finite Two-Person Zero-Sum GamesCombining 2.10, 2.12 and 2.13 we get for every t and t0minU(t)t � v � maxV (t0)t0 (2.14)Brown's result states that if for some t and t0 it is true thatminU(t)t = maxV (t0)t0 = vwe have a solution of the game. The solution, whi
h is an optimal randomizedstrategy, 
an be read out as the number of times the rows and 
olumns were
hosen divided by the total number of iterations.Even if we never �nd an exa
t solution Brown states the following theoremwhi
h is the main result of his workTheorem 4If (U, V) is a ve
tor system for A, thenlimt!1minU(t)t = limt!1maxV (t)t = vThe proof of Theorem 4 will be divided into 4 lemmas.Lemma 1If (U, V) is a ve
tor system for A, thenlimt!1 inf maxV (t)�minU(t)t � 0Proof:Sin
e V (t) is 
onstru
ted as a weighted average over the 
olumns of A andwe made the assumption that U(0) = V (0) = �!0 , we have thatV (t) = tXj yjA�j, whereX yj = 1 and yj � 0, 8jSimilarly for U(t)U(t) = tXi xiAi�, whereXxi = 1 and xi � 0, 8iHowever, Theorem 4 is given for any ve
tor system so we might have a 
asewhere U(0) 6= V (0) 6= �!0 and therefore we have to 
onsider U(t) and V (t)as follows



2.3 Brown's Theorem 19V (t) = V (0) + tXj yjA�j, whereX yj = 1 and yj � 0, 8jU(t) = U(0) + tXi xiAi�, whereXxi = 1 and xi � 0, 8iBy 
hoosing the minimum value of V (0) we are sure that the following in-equality is true maxV (t) � minV (0) + t maxXj yjA�jIn the same way we get thatminU(t) � maxU(0) + t minXi xiAi�Hen
e,maxV (t)�minU(t) � minV (0)�maxU(0)+t�maxXj yjA�j�minXi xiAi��As limt!1 minU(0)�maxV (0)t = 0we get thatmaxV (t)�minU(t)t � maxXj yjA�j �min Xi xiAi�From 2.11 we get that maxV (t)�minU(t)t � 0whi
h yields the lemma. QEDFor the next Lemmas we need to introdu
e the 
on
ept of eligibility.Definition 6 (Eligibility)If (U, V) is a ve
tor system for A, we say that the ith row is eligible in theinterval (t, t') i� there exists a t1 su
h thatt � t1 � t0



20 Iterative Solution of Finite Two-Person Zero-Sum Gamesand vi(t1) = maxV (t1)In the same way we say that the jth 
olumn is eligible in the interval (t, t')i� there exists a t2 su
h that t � t2 � t0and uj(t2) = minU(t2)In words, an eligible row or 
olumn is one that 
an be 
hosen in the giveninterval during the iterative solution pro
edure. With this de�ned we areready to move on to the next lemma.Lemma 2If (U, V) is a ve
tor system for matrix A and all the rows and 
olumns of Aare eligible in the interval (s, s+t) we have thatmaxU(s + t)�minU(s + t) � 2atand maxV (s+ t)�minV (s+ t) � 2atwhere a = maxi; jjaijjProof:Choose j su
h that uj(s+ t) = maxU(s + t)and as j is eligible we 
an 
hoose t0 su
h that s � t0 � s+ t anduj(t0) = minU(t0)We know that a is the maximum possible 
hange per iteration, and thereforewe have that at is the maximum 
hange in t iterations.Thus, be
ause we 
hose t0 between s and s + t, we know that the di�eren
ebetween uj(s+ t) and uj(t0) 
an at most be at, we have thatuj(s+ t) � uj(t0) + at = minU(t0) + atand from the way we 
hose j we now have thatmaxU(s + t) � minU(t0) + at



2.3 Brown's Theorem 21whi
h 
an also be written asminU(t0) � maxU(s + t)� at (2.15)Again, by looking at the way we 
hose t0 and the maximum di�eren
e we 
anrea
h in t iterations, we getminU(s + t) � minU(t0)� at (2.16)By insertion of 2.15 in 2.16 we getminU(s + t) � maxU(s + t)� 2atwhi
h we 
an write asmaxU(s + t)�minU(s + t) � 2atIn the same way it 
an be shown thatmaxV (s+ t)�minV (s+ t) � 2at QEDLemma 3If (U, V) is a ve
tor system for matrix A, and all the rows and 
olumns ofA are eligible in the interval (s, s+t) it is true thatmaxV (s+ t)�minU(s + t) � 4atProof:From Lemma 2 we have that(maxU(s + t)�minU(s + t) + (maxV (s+ t)�minV (s+ t)) � 4atThis 
an as well be written asmaxV (s+ t)�minU(s + t) � 4at�maxU(s + t) +minV (s+ t)Thus, if we 
an show that minV (s+ t) � maxU(s+ t) the proof is 
omplete.To do so we start applying 2.11 to AT , the transpose of A, whi
h gives usminXj A�jyj � maxXi Ai�xi (2.17)given that xi � 0, Pxi = 1 and yj � 0, P yj = 1



22 Iterative Solution of Finite Two-Person Zero-Sum GamesWe 
hoose xi and yj su
h thatU(s + t) = U(0) + (s + t)XAi�xiand V (s+ t) = V (0) + (s+ t)XA�jyjNow from the proof of Lemma 1 we have thatminV (s+ t) � maxV (0) + (s+ t)minXA�jyj
ombining 2.17 with the de�nition of a ve
tor system, stating thatminU(0) =maxV (0) we getminV (s+ t) � minU(0) + (s+ t)maxXAi�xi� maxU(s + t) QEDWe are now ready to 
omplete the proof by a �nal lemma.Lemma 4For every matrix A and " > 0 there exists a t0 su
h that for any ve
tor system(U, V) it is true thatmaxV (t)�minU(t) < "t, for t � t0Proof:The proof goes by indu
tion. It is easy to see that it holds for matri
es oforder 1 sin
e U(t) = V (t), 8tNow we assume that the theorem holds for all submatri
es of A, and thenshow that it holds for A.We 
hoose a t̂ su
h that for any ve
tor system (U', V') for the submatrixA0 of A we havemaxV 0(t)�minU 0(t) < 12"t , whenever t � t̂We shall prove that in our given ve
tor system (U, V) for A, if some row or
olumn is not eligible in the interval (s; s+ t̂) then it is true thatmaxV (s+ t̂)�minU(s + t̂) < maxV (s)�minU(s) + 12"t̂ (2.18)



2.3 Brown's Theorem 23Let us suppose that the kth row is not eligible in the interval (s; s+ t̂). Then itis possible to 
onstru
t a ve
tor system (U 0; V 0) for the submatrix A0, whi
his equivalent to A with the kth row deleted, in the following mannerU 0(t) = U(s+ t) + CV 0(t) = ProjkV (s+ t) for t = 0; 1; ::; t̂In the equations above, C is an n-dimensional ve
tor whereCi = maxV (s)�minU(s) for i = 1; 2; ::; nProjkV is the ve
tor obtained by removing the kth 
omponent from V . Weshall number the rows of A0 as 1; 2; ::; k � 1; k + 1; ::; m.If (U 0; V 0) is a ve
tor system, we know from De�nition 5 that minU 0(0) =maxV 0(0). From the 
onstru
tion pro
edure we have thatU 0(0) = U(s + 0) + C= [s1; ::; sn℄ + [maxV (s)�minU(s); ::; maxV (s)�minU(s)℄= [s1 +maxV (s)�minU(s); ::; sn +maxV (s)�minU(s)℄Sin
e all the 
omponents in U 0(0) is summed with the same number, it mustbe true that the minimum 
omponent of U 0(0) is the one where si = minU(s)and we 
an therefore see thatminU 0(0) = minU(s) +maxV (s)�minU(s) = maxV (s)Sin
e V 0(0) is a 
opy of V (s) with the kth 
omponent removed, we know thatmaxV 0(0) = maxV (s) sin
e the kth row was not eligible.Furthermore, for (U 0; V 0) to be a ve
tor system, 
ertain re
ursive restri
tionsfrom De�nition 5 must be satis�ed. It follows from the 
onstru
tion that ifU(s + t+ 1) = U(s + t) + Ai� and V (s+ t+ 1) = V (s+ t) + A�jand we know that kth row is not eligible we have thatU 0(t + 1) = U 0(t) + A0i� and V 0(t+ 1) = V 0(t) + A0�jWe 
an also see from the 
onstru
tion thatvi(s+ t) = maxV (s+ t) if and only if v0i(t) = maxV 0(t)and similarlyuj(s+ t) = minU(s + t) if and only if u0j(t) = minU 0(t) for 0 � t � t̂



24 Iterative Solution of Finite Two-Person Zero-Sum GamesHen
e we 
an 
on
lude that U 0 and V 0 satis�es the re
ursive restri
tions ofa ve
tor system for 0 � t � t̂ sin
e U and V do.From the way we 
hose t̂ we have thatmaxV 0(t̂)�minU 0(t̂) < 12"t̂and from the 
onstru
tion of (U 0; V 0) we know that it is 
onstru
ted fromU(s) and V (s) and forward, so we 
an say thatmaxV (s+ t̂)�minU(s+ t̂) = maxV 0(t̂)�minU 0(t̂) +maxV (s)�minU(s)and sin
e maxV 0(t̂)�minU 0(t̂) < 12"t̂it must be true thatmaxV (s+ t̂)�minU(s + t̂) < maxV (s)�minU(s) + 12"t̂We are now ready to show that given any ve
tor system (U; V ) for A it istrue that maxV (t)�minU(t) < "t , for t � 8at̂"Consider t > t̂, 
hoose � 2 [0; 1℄ and q 2 N su
h that t = (� + q)t̂. We shalldivide this proof into two 
ases.Case 1Suppose that there exists a positive integer s � q su
h that all rows and
olumns of A are eligible in the interval ((� + s � 1)t̂; (� + s)t̂), and 
hoosethe largest su
h s.We have a situation as depi
ted in Figure 2.2t̂(� + s� 1) t̂(� + s)t̂ t̂(� + q � 1) t = t̂(� + q)t̂ t̂ t̂ t̂
Figure 2.2: The intervalsThen we have that in ea
h of the intervals((� + r � 1)t̂; (� + r)t̂) , for r = s+ 1; ::; q



2.3 Brown's Theorem 25some row or 
olumn is not eligible. Thus, by repeated appli
ation of 2.18 wegetmaxV (t)�minU(t) � maxV ((� + s)t̂)�minU((� + s)t̂) + 12"(q � s)t̂(2.19)Remember we 
hose s su
h that all rows are eligible in the interval ((�+ s�1)t̂; (� + s)t̂). From Lemma 3 we getmaxV ((� + s)t̂)�minU((� + s)t̂) � 4at̂ (2.20)By 
ombining 2.19 and 2.20 we getmaxV (t)�minU(t) � 4at̂+ 12"(q � s)t̂ < (4a+ 12"q)t̂Case 2If there exists no su
h s then we know that in ea
h interval ((�+r�1)t̂; (�+r)t̂)we know that some row or 
olumn of A is not eligible, and then we have from2.18 thatmaxV (t)�minU(t) < maxV (�t̂)�minU(�t̂) + 12"qt̂ � 2a�t̂ + 12"qt̂Therefore we have that in either 
asemaxV (t)�minU(t) < (4a+ 12"q)t̂ � 4at̂ + 12"t < "t , for t � 8at̂" QEDNow we are ready to sum up the results from Lemmas 1 to 4.By 
ombining Lemma 1 with Lemma 4 we get thatlimt!1 maxV (t)�minU(t)t = 0From 2.9 we see that limt!1 supminU(t)t � vand limt!1 inf maxV (t)t � v



26 Iterative Solution of Finite Two-Person Zero-Sum GamesHen
e, we have that limt!1 minU(t)t = limt!1 maxV (t)t = vwhi
h 
ompletes the proof of Theorem 4.Having looked into the 
ore details of the work of Brown and Robinson weare ready to move on. As earlier mentioned, the many of the results outlinedin this 
hapter are based on [Robinson, 1951℄ whi
h again is based on theunpublished work of George W. Brown. However, we have not seen any ofthis work applied in pra
ti
e, whi
h is possibly due to the la
k of 
omputerpower ba
k in 1949 - 1951 where this work is made. This makes it interestingfor us to apply the proposed 
onstru
tion pro
edure to a few simple games tosee how it performs. Furthermore, [Robinson, 1951℄ suggests an alternativere
ursive 
onstru
tion pro
edure and states that it "seems to be" faster interms of 
onvergen
e than the one we have given here. This 
ould of 
oursealso be interesting to verify. In the next 
hapter we shall try implementingthe suggested pro
edures.



Chapter 3Testing Brown's TheoremHaving looked into, and formally proved Brown's theorem, we �nd it relevantto 
arry out a few experiments. We intend to test the iterative solutionpro
edure on a few simple games, both symmetri
 and asymmetri
 to see if
onvergen
e appear.3.1 jIsolFor the purpose we have developed the program jIsol , where Isol standsfor Iterative Solution, and the j indi
ates that the program is developed inJava. To use jIsol, one needs only to spe
ify the utility matrix, the rest isdone by the program. As output one 
an either get a plot of the bounds,minU(t)t and maxV (t)t to see a 
onvergen
e visualized, or it is possible to get adump of all the intermediate U(t) and V (t)-ve
tors to see how they 
hangeduring the pro
edure, and to see if exa
t solutions o

ur.With these options it is possible to verify both parts of Brown's theorem.3.2 A Simple Symmetri
 GameWe 
hoose as a test-bed, the game of s
issor-paper-stone whi
h is used to solvemany everyday 
on
i
ts. Personal experien
e veri�es that it is extremelyuseful to de
ide who is to sit on the front seat in the 
ar when going �shingwith two pals. However, the original version of the game is designed in amanner su
h that the best strategy is 
omplete random play. This fa
t hasmade us modify the game a bit for this experiment, so more 
ompli
atedstrategies 
an be bene�
ial.What we a
tually do is to modify the utility matrix su
h that a vi
tory is notjust a vi
tory, but the possible amount of gambling units you win or loose is



28 Testing Brown's TheoremP1/P2 S
issor Paper StoneS
issor 0 x -zPaper -x 0 yStone z -y 0Table 3.1: A general pay-o� matrixdependent on your 
hoi
e of hand.In Table 3.1 below we have in
luded the utility table from Player1's point ofview. In the original game of s
issor-paper-stone we have that x = y = z.In our version of the game we let x = 1; y = 2; z = 3 meaning that if you
hoose "stone" you have a potential winning of 3 gambling units, but thenthe potential loss is equally high.With the rede�ned utility matrix it seems reasonable to assume that there isa better randomized strategy than �13 ; 13 ; 13	. Before we let jIsol sear
h forit, we try to �nd it by a theoreti
al approa
h.3.3 A Theoreti
al Approa
hAs mentioned, the task is to solve the game by theoreti
al 
onsiderations.We are assuming that our opponent is intelligent and rational, so pure strate-gies will lead to loss in the long run. Hen
e, the task is to �nd an optimalrandomized strategy.First of all, let us �nd out what an optimal randomized strategy is. A strategyis optimal if our opponent is indi�erent about all of his possible 
hoi
es, orin other words, the best she 
an do is to play 
ompletely random. Sin
e thegame outlined above is symmetri
 and the utility of a draw is zero for bothplayers, the expe
ted utility in an equilibrium must be zero for all possible
hoi
es.Let us look at the expe
ted utilities from a players point of viewEU(s
issor) = P (paper)x+ P (stone)(�z)EU(paper) = P (s
issor)(�x) + P (stone)yEU(stone) = P (s
issor)z + P (paper)(�y)Sin
e we just stated that the expe
ted utilities should be zero, we get



3.4 The Iterative Solution 29P (s
issor) = yxP (stone)P (paper) = zxP (stone)P (stone) = x+ zy P (s
issor)� P (paper)From our de�nition of the modi�ed version of the game we have thatx = 1; y = 2 and z = 3Inserting this into the formulas above we getP (s
issor) = 2P (stone)P (paper) = 3P (stone)P (stone) = 2P (s
issor)� P (paper)From fundamental probability theory we have thatP (s
issor) + P (paper) + P (stone) = 1and taking this knowledge into a

ount we get2P (stone) + 3P (stone) + P (stone) = 1And thus, P (stone) = 16It follows that P (s
issor) = 13 and P (paper) = 12Now we know that with the utilities de�ned in the beginning, the 
orrespond-ing probability distribution in an optimal strategy isP (hand) = �13 ; 12 ; 16�3.4 The Iterative SolutionSin
e we have just 
omputed the exa
t solution we start out sear
hing forthe exa
t solution with jIsol. We know that the value of the game is zerofor both players so we have a solution of for some t and t0 we have thatminU(t)t = 0 = maxV (t0)t0



30 Testing Brown's Theorem
Iteration 1 : argmaxV(0) = 2 ) U(1) = [ -1 0 2 ℄argminU(0) = 2 ) V(1) = [ 1 0 -2 ℄Iteration 2 : argmaxV(1) = 1 ) U(2) = [ -1 1 -1 ℄argminU(1) = 1 ) V(2) = [ 1 -1 1 ℄Iteration 3 : argmaxV(2) = 1 ) U(3) = [ -1 2 -4 ℄argminU(2) = 3 ) V(3) = [ -2 1 1 ℄Iteration 4 : argmaxV(3) = 2 ) U(4) = [ -2 2 -2 ℄argminU(3) = 3 ) V(4) = [ -5 3 1 ℄Iteration 5 : argmaxV(4) = 2 ) U(5) = [ -3 2 0 ℄argminU(4) = 1 ) V(5) = [ -5 2 4 ℄Iteration 6 : argmaxV(5) = 3 ) U(6) = [ 0 0 0 ℄argminU(5) = 1 ) V(6) = [ -5 1 7 ℄Iteration 7 : argmaxV(6) = 3 ) U(7) = [ 3 -2 0 ℄argminU(6) = 1 ) V(7) = [ -5 0 10 ℄Iteration 8 : argmaxV(7) = 3 ) U(8) = [ 6 -4 0 ℄argminU(7) = 2 ) V(8) = [ -4 0 8 ℄Iteration 9 : argmaxV(8) = 3 ) U(9) = [ 9 -6 0 ℄argminU(8) = 2 ) V(9) = [ -3 0 6 ℄Iteration 10 : argmaxV(9) = 3 ) U(10) = [ 12 -8 0 ℄argminU(9) = 2 ) V(10) = [ -2 0 4 ℄Iteration 11 : argmaxV(10) = 3 ) U(11) = [ 15 -10 0 ℄argminU(10) = 2 ) V(11) = [ -1 0 2 ℄Iteration 12 : argmaxV(11) = 3 ) U(12) = [ 18 -12 0 ℄argminU(11) = 2 ) V(12) = [ 0 0 0 ℄Iteration 13 : argmaxV(12) = 3 ) U(13) = [ 21 -14 0 ℄argminU(12) = 2 ) V(13) = [ 1 0 -2 ℄Iteration 14 : argmaxV(13) = 1 ) U(14) = [ 21 -13 -3 ℄argminU(13) = 2 ) V(14) = [ 2 0 -4 ℄Iteration 15 : argmaxV(14) = 1 ) U(15) = [ 21 -12 -6 ℄argminU(14) = 2 ) V(15) = [ 3 0 -6 ℄Table 3.2: The Sear
h for the Exa
t Solution



3.4 The Iterative Solution 31In Table 3.2 we have in
luded a solution pro
edure for the simple gamedes
ribed in Se
tion 3.2We 
an see from Table 3.2 that we �nd a solution for t = 6 and t0 = 12. We
an also see that we have 
hosen the �rst row 2 times, the se
ond row 3 timesand the third row 1 time, up until and in
luding the 6th iteration. Hen
e, wehave a solution as follows �26 ; 36 ; 16� = �13 ; 12 ; 16�whi
h is exa
tly the same we found by our theoreti
al 
onsideration in Se
tion3.3.The same solution 
an be found by looking at the number of times ea
h
olumn is 
hosen up until the 12th iteration.Note that the solution pro
edure in
luded here is in no way unique, in fa
t,there is an in�nite number of solution pro
edures sin
e a random 
hoi
e ismade whenever there are more than one vi and uj satisfying the re
ursiverestri
tions of the de�nition of a ve
tor system. The solution pro
edure wehave in
luded here is just the one we have found to have the shortest path toan exa
t solution for both U and V . Various experiments have shown thatspe
ial 
ases 
an o

ur with more than 1.000 iterations over this same gamewithout an exa
t solution o

urs, and most of the times we need more than100 iterations before we 
an verify that minU(t)t = maxV (t0)t0 for some t and t0.As a �nal 
omment on exa
t solutions, we should mention that there is noguarantee that we will ever �nd an exa
t solution but still we 
an always �ndan approximate solution as we shall see in the following.3.4.1 Solution by Convergen
eNow let us look at the main result of Brown's theorem stating that if werepeat the iterative pro
edure again and again we are getting 
loser and
loser to the solution of the game. That is, we 
an �nd an approximatesolution even if we fail to �nd an exa
t one. However, the theorem shouldstill be true if we su

eed in �nding exa
t solutions during the re
ursivepro
ess.To verify this, we repeat the pro
edure 10.000 times and at ea
h iteration weplot minU(t)t and maxV (t)t . The result 
an be seen in Figure 3.1.From Figure 3.1 we see that both bounds are going against the value zero aswe would expe
t from the theorem. Studying the 
urves in detail we 
an seethat it looks like both of them are in zero some times and then moving awayagain. This is of 
ourse due to the nature of the solution pro
edure sin
ethere is no opportunity for stopping with an optimal randomized strategy,
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Figure 3.1: The iterative solution pro
edure with 10.000 iterationsnot even if it was possible to �nd su
h ones at run-time. Again due to thenature of the pro
edure we also see that as t grows larger the os
illations aregetting smaller and smaller.After 10.000 iterations we read out the following solutionsrow 
ountt = f0:3358; 0:4933; 0:1709gand 
olumn 
ountt = f0:3371; 0:5036; 0:1594gThe solutions we get are 
lose to the ones we 
omputed and found to bethe exa
t solutions of the game so we 
an 
on
lude that Brown's theorem isworking as expe
ted for symmetri
 zero-sum games.As a �nal experiment to verify Brown's theorem on symmetri
 games let ustry looking into how the two solutions move in order to ea
h other duringthe re
ursive solution pro
edure. We see from the de�nition that the 
hoi
esmade for the rows are dependent on the 
urrent distribution over the 
olumnsand vi
e versa. It therefore seems reasonable to assume that the temporarysolutions intera
t in some manner.



3.5 An Asyn
hronous Sele
tion Pro
edure 33To see the pattern we use the Eu
lidean distan
e between two probabilitydistributions, de�ned as distE(x; y) =Xi (xi � yi)2to see how 
lose they are to ea
h other during the 
onstru
tion.The result 
an be seen in Figure 3.2
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Figure 3.2: The eu
lidean distan
e between the temporary solutions over 10.000iterationsNote that the distan
e is very small all the way through, but in no way
onstant. It seems that they are moving 
loser to ea
h other, rea
h an equi-librium or at least get 
lose to one, and are then for
ed to move away fromea
h other again. This veri�es the 
on
lusion we made when studying howthe bounds are moving, stating that even though an equilibrium is rea
hed,the pro
edure is not stopped. Finally we should note that as t grows larger,the varian
e in the distan
e is getting smaller.3.5 An Asyn
hronous Sele
tion Pro
edureIn [Robinson, 1951℄ it is mentioned that there is another way of 
onstru
tingve
tor systems than the one we have des
ribed. Remember that the pro
e-



34 Testing Brown's Theoremdure that we are using are based on simultaneous updating of U(t) and V (t).However, it is possible to determine the ve
tors alternately by repla
ing the
ondition on j with the followinguj(t + 1) = minU(t + 1)The 
onstru
tion pro
edure is still re
ursive but when we have formed U(t+1)it is in
luded in the 
onstru
tion of V (t+1) instead of in
luding informationon U(t). It is mentioned without further 
omments that a ve
tor system ofthis new kind seems to 
onverge more rapidly.We have tried to verify this statement by plotting the two bounds from theold pro
edure together with the two bounds from the new pro
edure to seeif faster 
onvergen
e seems to happen. The result is in
luded in Figure 3.3
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Figure 3.3: Testing the speed of 
onvergen
eAs 
an be seen it is true that 
onvergen
e happens faster with the newpro
edure, whi
h is plotted with dotted lines in Figure 3.3. But this is notthe only interesting thing to note. We 
an also see that the �rst pro
edureresults in more os
illations where the latter is staying mu
h 
loser to thevalue of the game - in this 
ase zero. Therefore it seems like a good idea touse the latter pro
edure if the task is to get a solution of the game as qui
klyas possible.



3.6 An Asymmetri
 Game 353.6 An Asymmetri
 GameUntil now we have only tested Brown's theorem on a symmetri
 zero-sumgame or in other words a game with the value zero. Now we intend to modifythe game we have used as test bed so far, on
e again.This time we let our utility matrix be as followsA = 24 1 1 �3�1 �2 23 �2 1 35Note that it is now possible to bene�t from a draw. Say that the matrix aswe have it here is from Player1's point of view so that if both players 
hooseto play "Paper", he will loose two gambling units, whi
h he of 
ourse mu
hpay to Player2.Sin
e this game is asymmetri
 it will have a di�erent value for Player1 thanfor Player2, in fa
t we have thatvP1 = �vP2With the symmetri
 game we knew that the value was zero for both players,and we 
ould therefore easily 
ompute the optimal strategies beforehand.This time we shall do it the other way around - let jIsol suggest a solutionand see if we 
an verify it as a set of optimal randomized strategies or inother words, a Nash equilibrium.Again we see 
lear tenden
ies of 
onvergen
e, apparently 
entered around thevalue �12 , indi
ating that Player1 
an expe
t to loose �ve gambling units forevery ten games. The pattern is 
lear, but it seems that even as we approa
h10.000 iterations we still see large os
illations where both the upper and thelower bound is moving away from what seems to be the value of the game.In other words we 
ould say that apparently the system fails to 
onverge
ompletely.To prove or disprove this tenden
y we try to in
rease the number of iterationsto 40.000. The result 
an be seen in Figure 3.5As we 
an see the os
illations are getting smaller, but not mu
h. It seemsthat we are dealing with a game where the 
onvergen
e is extremely slow.Sin
e we know of an other 
onstru
tion pro
edure where we have shown that
onvergen
e is not only faster, but also avoiding the os
illations where thebounds are moving away from the value, it 
ould be interesting to see how itperforms in this 
ase. The result 
an be seen in Figure 3.6As 
an be seen the os
illations are almost 
ompletely gone already after10.000 iterations with the asyn
hronous solution pro
edure, where they were
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Figure 3.4: The iterative solution applied to an asymmetri
 game
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Figure 3.6: The asyn
hronous pro
edure on an asymmetri
 gamestill signi�
ant after 40.000 iterations with simultaneous sele
tion.3.6.1 The SolutionNow we have said enough about the speed of 
onvergen
e and it is time toread out the solutions. We get the solutions from the �rst test - that is, theresults are made with simultaneous sele
tion and 10.000 iterations. We getthe following row 
ountt = f0:5028; 0:4972; 0gand 
olumn 
ountt = f0; 0:6220; 0:3780gLet us see if we 
an verify this result as a Nash equilibrium.The results we read out are approximate solutions, but it seems that theyare 
onverging against �12 ; 12 ; 0� and �0; 58 ; 38�



38 Testing Brown's TheoremLet us look at the situation from Player1's point of view. If he knows thatPlayer2 is playing f0; 58 ; 38g the situation isEU(s
issor) = 58 � 3 � 38 = �12EU(paper) = �2 � 58 + 2 � 38 = �12EU(stone) = �2 � 58 + 38 = �78Therefore he will never 
hoose to play stone sin
e he will always be worse o�by doing so.From Player2's point of view we have the following situation if we know thatPlayer1 is playing f12 ; 12 ; 0gEU(s
issor) = 12 � 12 = 0EU(paper) = 12 � 2 � 12 = �12EU(stone) = �3 � 12 + 2 � 12 = �12Thus, sin
e the task of Player2 is to minimize the pay-o� to Player1, sheshould never play s
issor. At a �rst glan
e it 
an seem a bit odd that Play-er2 is preferring paper over stone sin
e the give the same expe
ted pay-o�.However there is a reason for this, sin
e the weights between them as theyare in this solution is solving the task of letting the best strategy of Player1be randomized play. In other words, if Player2 played a di�erent random-ized strategy over paper and stone, Player1 
ould bene�t from 
hanging hisstrategy. Thus, the strategies found are a Nash equilibrium of the game.3.7 Solving a Game During PlayWe 
an now 
on
lude that Brown's theorem works in pra
ti
e for solving agame. However, for several reasons, the solution pro
edure is only suitablefor solution of a game before the game begins, and not for �nding an optimalsolution during the play against an opponent. First of all, if we were to usethis pro
edure to �nd run-time solutions of games, we would not be ableto use the asyn
hronous sele
tion pro
edure sin
e this would mean that we



3.7 Solving a Game During Play 39would have to ask our opponent to tell us what de
ision she made before wemake our own, but sin
e she is assumed to be both intelligent and rationalshe would probably �nd that to be a bad idea.Se
ondly, Brown's iterative solution pro
edure is based on sele
tion from amaximum 
riterion or in other words, sele
t what seems best and nothingelse. However, we have from [Myerson, 1991℄ that in order to rea
h optimalplay, one must follow an optimal randomized strategy, and make a weightedsele
tion over the expe
ted utilities to avoid that a 
ounting opponent willknow your deterministi
 strategy. The term 
ounting opponent might need abit explanation. If we during a game always made the de
ision giving us themaximum expe
ted pay-o�, an intelligent opponent would be able to keeptra
k of what de
ision is giving us the maximum expe
ted pay-o� at anytime and therefore use this knowledge in his de
ision.Brown probably never intended his method to be suitable for implementingwhat today is known as intelligent agents, but it would surely be interestingif we 
ould use the idea behind the iterative solution pro
edure to implementsu
h an agent. Brown's theorem is only designed to solve games with onede
ision so in the following 
hapter we shall try implementing intelligentagents for one-de
ision two-player zero-sum games.
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Chapter 4Learning One-De
isionBayesian NetworksHaving veri�ed Brown's theorem both in theory and pra
ti
e, it is time to seeif we 
an apply the ideas in other areas of de
ision theory. Espe
ially we areinterested in implementing intelligent agents with the ability to �nd optimalstrategies for any �nite zero-sum game they are set to play. Sin
e Brown'spro
edure provides us with the ability to solve a game it is natural to see ifwe 
an integrate it into a s
heme upon whi
h we 
an implement intelligentagents.One of the most promising te
hnologies of today when talking de
ision sup-port systems is Bayesian networks as de�ned in [Jensen, 1996℄, so our maintask shall be to �nd out if we 
an integrate Brown's solution pro
edure intoBayesian networks.4.1 Training S
hemeTo introdu
e the iterative solution pro
edure into Bayesian networks we needa training s
heme 
orresponding to Brown's method of 
ounting 
ases.From [J�rgensen, 2000℄ we get the de�nition of the training s
heme 
alledfra
tional updating, also used and extended with the 
on
ept of fading in[Olesen et al., 1992℄.To ensure a 
lear understanding of fra
tional updating let us look at a simpleexample where we apply the ideas. Say we have three variables A;B and Cea
h with three states, where B and C are parents of A. We assume lo
al-as well as global independen
e in this network and we 
an therefore 
onsiderP (Ajbi; 
j) = (x1; x2; x3)
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ision Bayesian Networksas a distribution we have rea
hed by observing several 
ases where (B;C)were in the state (bi; 
j).Now we have to express our 
ertainty of this distribution by what is 
alled asample size.We in
lude the sample size, s in a tablen = (n1; n2; n3) = (sx1; sx2; sx3)where n1 + n2 + n3 = sThus, we 
an say that ni is the number of times we have seen A in state i,eg if we 
hoose s = 30 and have that x1 = x2 = x3 = 13 we 
an say that wehave observed A in ea
h state ten times. As 
an be seen, the larger samplesize, the larger 
ertainty of the initial distribution.Now when we see a new 
ase, say the 
ase where A is in state 2, and (B;C)is in state (bi; 
j) we 
ount up s and n2, yielding the new distribution(x+1 ; x+2 ; x+3 ) = � n1s+ 1 ; n2 + 1s+ 1 ; n3s+ 1�As mentioned, [Olesen et al., 1992℄ introdu
ed the 
on
ept of fading in Bayesiannetworks, whi
h we also used in [J�rgensen, 2000℄. The purpose of fading isto make the networks "forget" what they have learned in the past so they
an easily adapt to a new 
ontext if this 
hanges. To do so, a fading fa
torq 2 [0 : 1℄ is introdu
ed. This value is multiplied onto the sample size tokeep it from growing into extreme values.In pra
ti
e this means that when we run a 
ase the new sample size is qs+1,and running n 
ases yields a sample size ofqns+ 1� qn1� qNote that limn!1�qns+ 1� qn1� q � = 1(1� q)This means that when running several 
ases so n grows large, the e�e
tivesample size 
an be 
omputed as 1=(1� q). So if q = 0:95 we have an e�e
tivesample size of 20.4.2 The MYELIN tool-boxIn [J�rgensen, 2000℄ we developed a general tool-box, MYELIN, for workingwith adaptive Bayesian networks. All tests 
on
erning Bayesian networks in



4.3 Experiments 43this thesis is 
reated using a new version of MYELIN whi
h is developed inJava to work with the newly released HUGIN Java API. The new version ofMYELIN 
ontains all of the old methods for performing probability updatingwith and without fading and making de
isions based on the modi�ed prob-abilities. Furthermore we have in
luded methods for 
omputing distan
esbetween probability distributions, dumping expe
ted utilities at any timeand various tools to simulate di
es and 
oins.De
ision making in MYELIN 
an be performed in di�erent ways, so we 
analways do what is most suitable for the tests we need to perform. That is,we have in
luded methods for playing only on the maximum expe
ted utility,to be used in sear
h of solutions, as well as we have methods making de
isionsover all the expe
ted utilities to avoid deterministi
 play.Whether or not to use fading 
an be determined per experiment. Sin
e fadingis a 
on
ept developed for adapting into 
hanging 
ontexts, we shall not useit in the tests made for verifying Brown's solution pro
edure in Bayesiannetworks. However, we intend to 
arry out a single experiment to see if theidea behind Brown's theorem still holds, extended with the 
on
ept of fading,making it even more suitable for adaptive behavior in games.4.3 ExperimentsAs earlier mentioned the main purpose of this 
hapter is to �nd out if it ispossible to integrate Brown's solution 
on
ept into Bayesian networks. Weknow that Brown's theorem 
orresponds to 
ounting 
ases as is also the 
asein fra
tional updating. In other words the task is to verify that intelligentagents bases on adaptive Bayesian networks using fra
tional updating areable to �nd a solution of the game they are set to play.We have de
ided to use the same simple game as we did in the previous
hapter, namely the game of s
issor-paper-stone with various modi�ed utilityfun
tions.4.3.1 The Set-UpIn Figure 4.1 the Bayesian network used for this test is shown. As 
an beseen it is very simple, the only things to say about it is that the node labelled"Utility" re
e
ts the utility matrix whi
h we will vary a few times during thetests. In the initial probability distribution for the node "Opponent", theprobability is 13 for both s
issor, paper and stone.
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Me Opponent

UtilityFigure 4.1: The Bayesian network used for S
issor-Paper-StoneUtilitiesIn the �rst experiment we want to test a symmetri
 version of the game, sowe use the same utility matrix as in Se
tion 3.4.For 
onvenien
e we have in
luded the utility matrix hereA = 24 0 1 �3�1 0 23 �2 0 35With these utilities we have already 
omputed a Nash equilibrium in Se
tion3.3 and veri�ed it in pra
ti
e in Se
tion 3.4 so we expe
t the out
ome of thisexperiment to be a situation where we have our "Opponent" distribution tobe P (Opponent) = �13 ; 12 ; 16�for both players.For training purposes we use fra
tional updating to update the probabilitydistribution of the node "Opponent". Both players are allowed to adapt atthe same time, so the interesting question is whether they will 
onverge a-gainst the same �nal probability distribution when the game is symmetri
,and if they do so, is this distribution a Nash equilibrium ?For de
ision making we follow Brown's idea and let the players 
hoose onlythe de
ision with maximum expe
ted utility. From [Myerson, 1991℄ we knowthat this is not the optimal way of playing sin
e it is possible for our opponentto predi
t our strategies at any time by keeping tra
k of the same dataas we do. However, we showed in [J�rgensen, 2000℄ that is does not make
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ant in
uen
e on the �nal distributions if we play only on the one withthe maximum expe
ted utility or if we use the expe
ted utilities to weigh thepossible 
hoi
es.We let the players fa
e ea
h other 50.000 times whi
h should be more thansuÆ
ient for a 
onvergen
e to appear. The out
ome of the games is thatPlayer1 has lost 94 gambling units to Player2. Sin
e a di�eren
e of 94 gam-bling units out of 50.000 games is suÆ
ient 
lose to zero, this veri�es the fa
tthat the game in this test was symmetri
 and the value therefore is zero forboth players.4.3.2 ResultsNow let us look at the �nal probability distributions for the players. Player1ends up with the followingOpponent = f0.3304, 0.5038, 0.1659gSimilarly we in
lude the �nal distribution for Player2Opponent = f0.3295, 0.5069, 0.1636gAs 
an be seen, the players end up with distributions that are very mu
halike. The Eu
lidean distan
e between the results is 
al
ulated to bedistE(P1; P2) = 1:5912� 10�5This veri�es that we 
an use adaptive Bayesian networks with the train-ing s
heme of fra
tional updating to implement adaptive agents for zero-sum games with one de
ision sin
e both agents 
onverged against the pre-
omputed Nash equilibrium.To see how this looks from a players point of view we try to dump theexpe
ted utilities for Player1 at the end of the series of games. These areshown belowMe = f0.0062, 0.0014, -0.0165gThe interesting thing is that they are 
lose to zero - the value of the game -for all possible 
hoi
es, meaning that when the opponent is using the strategyshown above, the player fa
ing him is indi�erent about what 
hoi
e to make.In other words, it is not more bene�
ial to 
hoose one over another.
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ision Bayesian Networks4.3.3 Another Utility Fun
tionTo verify this interesting tenden
y we try to 
hange the utility fun
tion andrepeat the experiment on
e again. The utility matrix used for this se
ondexperiment 
an be seen below.A = 24 0 3 �3�3 0 23 �2 0 35As before we repeat the game 50.000 times and the results turn out as shownbelow.From Player1's point of view the �nal distribution is as followsOpponent = f0.2513, 0.3750, 0.3737gAnd from Player2 we getOpponent = f0.2527, 0.3737, 0.3736gBy using the formulas from Se
tion 3.3 we �nd the solution to beP (hand) = �14 ; 38 ; 38�So again we get a 
on�rmation that adaptive Bayesian networks 
an solvethe same problems as Brown's pro
edure, and even solve them while playing.As in Brown's solution we 
an also read out an approximate value of thegame by 
al
ulating the average winnings for a player.The Eu
lidean distan
e between the two players probability distributionsafter this experiment isdistE(P1; P2) = 3:7084� 10�6whi
h smaller than in the �rst experiment. However, observations duringthe games show us that the distan
e is varying all the time, so this doesnot say anything like "There is even more 
onvergen
e in this version of thegame, sin
e the �nal distan
e is smaller". More likely we should 
on
ludethat the game ended at a moment where the distan
e was small in the latterexperiment.
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illations in Distan
eTo see how the distan
e between the probability distributions is varyingduring the experiment, we try starting the players out with two 
ompletelydi�erent distributions to get a high distan
e in the beginning. Player1 getsthe followingOpponent = f1, 0, 0gwhile Player2 is started out withOpponent = f0, 0, 1gWe repeat the game 10.000 times and get the variation pattern in
luded inFigure 4.2
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Figure 4.2: The Eu
lidean distan
e during the gamesAs 
an be seen we get a pattern similar to the one we saw in Se
tion 3.4 wherethe players are moving in order to ea
h other all the time whi
h results insome tiny os
illations around a distan
e of zero.
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ision Bayesian Networks4.3.4 Asymmetri
 Games in Bayesian NetworksWe ended our experiments with Brown's solution pro
edure with a veri�-
ation of it working on asymmetri
 games as well as symmetri
. We shallin the following see if we 
an use adaptive Bayesian networks for solution ofasymmetri
 games. This is done to see if the implemented agents are 
apableof �nding their own optimal strategies when they are di�erent from those oftheir opponent.We use the same utility fun
tion as we used to verify Brown's pro
edure,meaning that our utility matrix is as follows for Player1AP1 = 24 1 1 �3�1 �2 23 �2 1 35and for Player2 we have AP2 = 24�1 1 �3�1 2 23 �2 �135The reason for in
luding two utility matri
es in this experiment is that itis not possible to represent asymmetri
 games in a single Bayesian networkas it is with symmetri
 games. Thus we have two versions of the Bayesiannetwork in Figure 4.1 but they only di�er on the utilities.We repeat the game 10.000 times whi
h have shown in the other test to bemore than suÆ
ient for a 
onvergen
e to appearPlayer1 ends up with the following distributionOpponent = f0.0007, 0.6252, 0.3741gand Player2 ends withOpponent = f0.5044, 0.4931, 0.0026gNote the Player1's distribution is re
e
ting the behavior of Player2. There-fore the solution we 
an read out here is that the randomized strategy ofPlayer1 is approximately P (hand)P1 = �12 ; 12 ; 0�



4.3 Experiments 49and for Player2 we have P (hand)P2 = �0; 58 ; 38�whi
h we showed in Se
tion 3.6 is a Nash equilibrium.In an asymmetri
 game we 
an of 
ourse not expe
t the distan
e between thetwo distributions to be zero sin
e the players must use di�erent strategies, butwe 
an still expe
t the distan
e to be an
hored around the distan
e betweenthe two exa
t solutions. We 
ompute this distan
e to bedistE(P1exa
t; P2exa
t) =Xi (xi � yi)2exa
t = 122 + 182 + 382 = 1332In Figure 4.3 we have plotted the distan
e varying over the games togetherwith the value we just 
omputed. This experiment is 
arried out to verifythat even if the game is asymmetri
, the behavioral pattern for the playersis the same.We see from the �gure that the distan
e is a
tually os
illating around thepre-
omputed value and the pattern is the same as in Se
tion 3.6 wherethe os
illations almost fails to fade out. However, Brown's theorem is notmentioning anything about the speed of 
onvergen
e so this is not a problem.4.3.5 FadingAs a �nal experiment with the integration of Brown's method into one-de
ision Bayesian networks we try extending the training s
heme with fading.This is done to verify that intelligent agents using fading are still 
apable ofsolving the games they are set to play, even though they are using fading.The reason that we are interested in su
h an experiment is that if we 
anverify this, we have agents that 
an solve a game as suggested by Brown,but furthermore they are able to adapt to a new behavior if the opponent is
hanging his strategy.Again we use the symmetri
 version of the game. We set the fading fa
torto be q = 0:99 yielding an e�e
tive sample size of 100. The game is repeated10.000 times and the �nal distributions are as followsPlayer1 has found Player2 to be playingOpponent = f0.3246, 0.4915, 0.1839g
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Figure 4.3: The Eu
lidean distan
e during the gamesand Player2 has found Player1 to be playingOpponent = f0.3247, 0.5120, 0.1634gSo we get a 
on�rmation of Brown's solution pro
edure integrated in Bayesiannetworks is still valid if we use the 
on
ept of fading.4.3.6 SummaryWe have now shown that adaptive Bayesian networks 
an be used for solutionof �nite two-person zero-sum games with one de
ision. This is interesting inthe area of intelligent agents sin
e you 
an pla
e an agent based on thiste
hnology in any two-person zero-sum game and he will be able to �nd theoptimal randomized strategy for this game.We mentioned earlier that this optimal strategy is optimal only when the op-ponent is intelligent and rational. Thus, if we fa
e an opponent playing thesame stati
 strategy in all the games we 
ould bene�t from playing a strat-egy that is maximizing our pay-o� against this spe
ial opponent. Brown'ssolution pro
edure is naturally unable to exploit potential weaknesses of op-ponents, but we have shown in [J�rgensen, 2000℄ that when using fra
tional



4.3 Experiments 51updating for adaptive Bayesian networks we get agents that are able to adaptto the strategy that is optimal against any opponent they are fa
ing.Furthermore, we have veri�ed that we 
an extend Brown's solution pro
e-dure with the 
on
ept of fading and it is still valid. Thus, we get intelligentagents that 
an adapt to a 
hanging strategy of the opponent, and therebyalso exploit potential weaknesses.It seems so far that Bayesian networks as foundation for intelligent agentsfor two-person zero-sum games is a very good set-up. If we 
ould apply theseideas to more 
omplex games we would have a very strong representation ofadaptive intelligent agents. In the following 
hapter we shall try doing so.
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Chapter 5Learning Two-De
isionBayesian NetworksThe main task of this 
hapter is to �nd out if we 
an apply the ideas from theprevious 
hapters to more 
omplex games. Brown's theorem is only valid forgames with one de
ision but having applied the idea into adaptive Bayesiannetworks it seems reasonable to assume that we 
an use it for more 
omplexgames, for example a game with more than one de
ision.To verify this assumption we have designed a game, two-person high/low forthe purpose.5.1 The Rules for Two-Person High/Low� Both players have two "3-sided" di
es with numbers 1 to 3� Both players pay 1 gambling unit to parti
ipate� The game starts with both players throwing both di
es without showingthe result to the opponent� After having viewed the result, both players must 
hoose a di
e whi
hthey will show to the opponent� Finally the players must make their bids. Ea
h player has to guess ifthe sum of his di
es is higher or lower than the sum of his opponents� If one player is playing "Low" and the other is playing "High" the gameis a draw� If the sums are equal the game is a draw
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ision Bayesian Networks� The winner is the one with the 
orre
t bid� The winner takes the potAs 
an be seen the game has lots of possibilities for ending with a draw, andtherefore it is probably not a game suitable for settling who is to buy thenext round of beer or so. However, this does not matter in our 
ase, sin
e thegame is designed spe
i�
ally to be suitable for verifying simple game theoreti

on
epts in a more 
omplex set-up. Even though the game seems simple at a�rst glan
e, it is a
tually pretty 
omplex in theoreti
al terms sin
e the gamein
ludes both more than one de
ision per player and private information -a
tually the players 
an 
hoose what part of their information they want tokeep private. So after all the game seems 
omplex enough to ful�ll its task,namely being a 
omplex test bed for adaptive behavior in games.Unfortunately, the game being so 
omplex makes it very diÆ
ult to pre-
ompute a Nash equilibrium of the game, so we will instead have to see ifwe 
an verify the results as being a Nash equilibrium by arguing that thestrategies re
e
t intelligent and rational behavior.5.2 Bayesian ModelWith the basi
 rules outlined in the previous se
tion we see that the game issymmetri
, and sin
e both players are to make their bids simultaneously weneed only a single Bayesian network whi
h both players 
an share. Of 
oursethey get their own private instant of the network in whi
h they 
an performprobability updating.The network we use 
an be seen in Figure 5.1A few notes about the network design might be needed.The nodes MyDi
e1, MyDi
e2, OppDi
e1 and OppDi
e2 are used to enterthe value of the di
es we get from MYELIN. MyHand and OppHand are usedto transform the two di
es into a hand type whi
h 
an be one of the following:"1-1", "1-2", "1-3", "2-2", "2-3" or "3-3"The reason for performing this translation from the two di
es into a handtype is to save states in the table where we perform probability updatingsin
e there is no reason to make a distin
tion between the 
ase where Di
e1is "1" and Di
e2 is "2" and the 
ase where Di
e1 is "2" and Di
e2 is "1". Theleftmost utility node is prohibiting a player from showing a di
e he does nothave, and the de
ision nodes Show, OppShow, MyBid and OppBid shouldbe self explaining.
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MyDice1 MyDice2 OppDice1 OppDice2

OppHand

OppBid

OppShowMyBid

Utility

Show

MyHand
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Figure 5.1: The Bayesian network used for two-person high/lowThe utility node in the middle is used to represent the utility fun
tion asde�ned in the rules of the game.5.3 Experiments and ResultsHaving designed a Bayesian network representing the game, we are now readyto implement two intelligent agents based on this network. As usual we useMYELIN in order to perform the probability updating, 
omputing distan
esand printing the results.The adaptive nodes are OppShow and OppBid whi
h we update a

ording tothe observations during the game. We have de
ided to use perfe
t hindsightmeaning that both players have to show their hidden di
e after ea
h game.With the simpler games we found that 10.000 iterations of the game wasmore than suÆ
ient for a 
onvergen
e to appear. However, sin
e we 
anexpe
t a slower 
onvergen
e now when we have two adaptive nodes at thesame time, we raise the number of experiments to 50.000.As a �nal note before looking at the results we mention that we a
tually use asele
tion pro
edure a little di�erent from the one Brown suggested for gameswith one de
ision. Instead of always sele
ting the node with the maximumexpe
ted utility, we use a weighted sele
tion pro
edure. Why this is donewill be dis
ussed in the end of this 
hapter where we have introdu
ed theproblems for
ing us to use this new pro
edure.
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ision Bayesian Networks5.3.1 Final PotentialsAfter the 50.000 games we �rst note that Player1 has won 4953 gamblingunits and Player2 has won 4872. Sin
e they have won them from ea
h otherwe 
an also say that Player1 has won 81 gambling units from Player2. Sin
e81 out of 50.000 is suÆ
iently 
lose to zero, we take this as a 
on�rmationof the game being symmetri
. Furthermore we should note that it is onlyapproximately 20% of the games where a winner is found, the rest of thegames are draws. This is also expe
ted sin
e the game is designed in a waysu
h that draw games easily o

ur.Now let us look at the �nal potentials for ea
h of the players. Player1'spotential over whi
h di
e Player2 is showing given a hand type is shown inFigure 5.2 and the same potential from Player2 is shown in Figure 5.3.A short note on how to read the �gures might be needed. We have the parentstate in the rightmost 
olumn telling us whi
h hand type our opponent had,and the three data 
olumns in the distribution tells us whi
h di
e she willtend to show in this parent situation. The states are "1", "2" and "3".potential (OppShow | OppHand)fdata = (( 1 0 0 ) % 1-1( 0.000792098 0.999208 0 ) % 1-2( 0.50015 0 0.49985 ) % 1-3( 0 1 0 ) % 2-2( 0 0.999248 0.000751614 ) % 2-3( 0 0 1 )); % 3-3g Figure 5.2: Player1's distribution over Player2's 
hoi
e of di
e to showpotential (OppShow | OppHand)fdata = (( 1 0 0 ) % 1-1( 0.00105013 0.99895 0 ) % 1-2( 0.499776 0 0.500224 ) % 1-3( 0 1 0 ) % 2-2( 0 0.999068 0.000931842 ) % 2-3( 0 0 1 )); % 3-3g Figure 5.3: Player2's distribution over Player1's 
hoi
e of di
e to show



5.3 Experiments and Results 57First of all we see that the two potentials show the same overall pattern. Weshall look further into the distan
e between the �nal distributions later on,but for now we 
on
lude that they are alike.We have three trivial hand types, "1-1", "2-2" and "3-3" where there is noa
tual 
hoi
e of whi
h di
e to show, as 
an be seen these are updated 
orre
t.Next we 
an see that if one of the agents have a hand with a di
e showing"2", this di
e is shown to the opponent. This is a rational behavior sin
e theopponent will have no 
lue whether the hand is "High" or "Low", sin
e it
an be either of type "1-2", "2-2" or "2-3".The last possible hand is "1-3" and we 
an see that the agents are playinga randomized strategy, f12 ; 12g . This is also what we 
ould expe
t sin
e theutility fun
tion is symmetri
 and there is no bene�t of trying to win on ahigh hand 
ompared to try winning on a low. Therefore there is no reasonto prefer showing "1" over "3" or the other way around.Now let us try looking at the distribution of the other adaptive node, namelyOppBid. It is a bit more 
ompli
ated to read data out from this one so anexample might be neededpotential (OppBid | Show OppHand OppShow)fdata = (((( 0.00224215 0.997758 ) % 1 1-1 1(( 0.5 0.5 ) % 1 1-2 1... Figure 5.4: ExampleIf we look at Figure 5.4 it must be read in the following way: The �rst dataline tells us that in the situation where we have showed our opponent a "1",she has got a hand of type "1-1" and she has shown us "1" she will mostlikely bid on "Low". That is, the �rst number is the probability that she isplaying "High" and the se
ond number is the probability that she is playing"Low".The �nal distributions over OppBid from the two players are in
luded inFigures 5.5 and 5.6.Note that we have trimmed all the impossible 
on�gurations away from the�gures, eg the ones where the opponent is showing a di
e she does not have,like for example the situation "1 1-1 2". Due to the nature of the Bayesiannetwork these are represented when running the test, but sin
e they are never
hosen and therefore not 
ounted up, we have removed them from the �guresto save some spa
e.
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potential (OppBid | Show OppHand OppShow)fdata = (((( 0.00224215 0.997758 ) % 1 1-1 1(( 0.5 0.5 ) % 1 1-2 1( 0.502936 0.497064 ) % 1 1-2 2(( 0.997554 0.00244618 ) % 1 1-3 1( 0.998013 0.00198728 )) % 1 1-3 3( 0.99774 0.0022604 ) % 1 2-2 2( 0.998901 0.0010989 ) % 1 2-3 2( 0.583333 0.416667 )) % 1 2-3 3( 0.997852 0.00214777 ))) % 1 3-3 3((( 0.000832501 0.999167 ) % 2 1-1 1(( 0.5 0.5 ) % 2 1-2 1( 0.000412337 0.999588 ) % 2 1-2 2(( 0.484292 0.515708 ) % 2 1-3 1( 0.508264 0.491736 )) % 2 1-3 3( 0.482741 0.517259 ) % 2 2-2 2( 0.999593 0.000406901 ) % 2 2-3 2( 0.6875 0.3125 )) % 2 2-3 3( 0.999209 0.000791139 ))) % 2 3-3 3((( 0.00186986 0.99813 ) % 3 1-1 1(( 0.416667 0.583333 ) % 3 1-2 1( 0.000942685 0.999057 ) % 3 1-2 2(( 0.00196232 0.998038 ) % 3 1-3 1( 0.00157928 0.998421 )) % 3 1-3 3( 0.00184094 0.998159 ) % 3 2-2 2( 0.497269 0.502731 ) % 3 2-3 2( 0.611111 0.388889 )) % 3 2-3 3( 0.998285 0.00171468 )))); % 3 3-3 3g Figure 5.5: Player1's view of Player2
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potential (OppBid | Show OppHand OppShow)fdata = (((( 0.00222618 0.997774 ) % 1 1-1 1(( 0.5 0.5 ) % 1 1-2 1( 0.496226 0.503774 ) % 1 1-2 2(( 0.99753 0.00247036 ) % 1 1-3 1( 0.998192 0.00180766 )) % 1 1-3 3( 0.997736 0.00226449 ) % 1 2-2 2( 0.99891 0.0010898 ) % 1 2-3 2( 0.5 0.5 )) % 1 2-3 3( 0.997966 0.00203417 ))) % 1 3-3 3((( 0.000807754 0.999192 ) % 2 1-1 1(( 0.5 0.5 ) % 2 1-2 1( 0.000421017 0.999579 ) % 2 1-2 2(( 0.490782 0.509218 ) % 2 1-3 1( 0.492478 0.507522 )) % 2 1-3 3( 0.500167 0.499833 ) % 2 2-2 2( 0.999603 0.00039733 ) % 2 2-3 2( 0.5 0.5 )) % 2 2-3 3( 0.999192 0.000807754 ))) % 2 3-3 3((( 0.00182749 0.998173 ) % 3 1-1 1(( 0.416667 0.583333 ) % 3 1-2 1( 0.000938086 0.999062 ) % 3 1-2 2(( 0.00237192 0.997628 ) % 3 1-3 1( 0.00150602 0.998494 )) % 3 1-3 3( 0.00185874 0.998141 ) % 3 2-2 2( 0.502625 0.497375 ) % 3 2-3 2( 0.583333 0.416667 )) % 3 2-3 3( 0.998194 0.00180636 )))); % 3 3-3 3g Figure 5.6: Player2's view of Player1
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ision Bayesian NetworksBy looking at the �gures we see that they share the same overall pattern orin other words, they are 
onverging against the same randomized strategies.Again, we shall return to 
onsiderations about the distan
e later on.In the following we shall see if we 
an verify the strategies in Figures 5.5 and5.6 as a Nash equilibrium.5.3.2 PollutionNoti
e that in some situations the agents seems to have been playing by dif-ferent randomized strategies, eg a situation like "2 2-3 3". Does this indi
atethat they have 
onverged against di�erent randomized strategies or 
an we�nd a better explanation ?We shall refer to this phenomenon as pollution. It o

urs due to the ini-tial distribution where the probabilities for all possible 
hoi
es are equal.Therefore it 
an happen that if you have a hand of type "2-3" you 
hooseto show the "3" sin
e you have not yet dis
overed that it is bene�
ial toalways show the "2". Of 
ourse your opponent will take these 
ases intoa

ount, and 
ount up his probability distributions a

ording to what he isobserving. Unfortunately, it turns out that all strategies where you have a"2" and does not show it are dominated and therefore these 
on�gurationsare never played again so the probabilities remain un
hanged. For examplein the situation "2 2-3 x", Player1 is only showing "3" three times duringthe 50.000 games, in 
ontradi
tion to showing "2" 6144 times.We 
on
lude that we 
an not expe
t 
on�gurations based on dominated s-trategies in a parent node to have a reasonable distribution, and we refer tothis phenomenon as pollution.5.3.3 The StrategiesAs a �rst step in verifying the �nal distributions as a Nash equilibrium weshall try looking at some of the 
on�gurations and see if we 
an explain thesuggested strategies as re
e
ting intelligent and rational behavior.The �rst 
on�guration we look at is also the �rst in Figure 5.5.We see that in the situations "x 1-1 1" both players are 
onsequently playing"Low". Is this rational ?If your hand is "1-1" you 
an never loose by playing "Low" and you 
an neverwin by playing "High" so it seems reasonable that you would only want toplay "Low". Furthermore, if your opponent realizes that you are playing
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ally in this 
on�guration she 
annot use this to win sin
e she
an never have a lower hand. One 
ould argue that she 
ould just play "High"to ensure a draw, but she have no 
han
e of knowing if the "1" we showedher indi
ates that we have a hand of type "1-1" and "1-3" so there is a riskinvolved in playing "High" for some hand types, and still it 
an never leadto a winning.Reverse arguments 
an of 
ourse be used for situations of the kind "x 3-3 3".The most interesting situations o

ur when a "2" is showed sin
e this intro-du
es the most un
ertainty for the opponent.We try looking at the situation "2 1-3 1" whi
h indi
ates that we have showed"2" to our opponent, she has a hand of type "1-3" and she has shown the"1" to us. From the �gures we see that she is indi�erent between playing"High" and "Low" whi
h is also the 
ase if she has shown her "3" to us. Isthis rational ?Sin
e we showed her a "2" she does not know whether we have "1-2", "2-2"or "2-3", so all she 
an 
on
lude is that the sum of our hand is either onesmaller than, the same as, or one larger than her hand. Furthermore, theprobabilities for our hand being smaller or larger are the same, and it is lessprobable that we have a hand of type "2-2". The expe
ted utility of us hav-ing the same sum is zero, so this di�eren
e in probability is removed, and we
an therefore 
on
lude that it is rational to be indi�erent between "High"and "Low".The same kinds of arguments as we have seen here 
an be used to explainthe rationality of all the remaining unpolluted 
on�gurations, so still it seemsthat the strategies from the �nal potentials are satisfying what it takes tobe optimal strategies. As a further veri�
ation we shall try looking into theexpe
ted utilities a player has when he has observed these �nal strategies asbeing the behavior of his opponent.5.3.4 Expe
ted UtilitiesIn this subse
tion we shall look into what the �nal potentials means for theexpe
ted utilities for the players. We know from earlier 
hapters that ifwe have an equilibrium the players must be indi�erent about their possible
hoi
es. However, in this game the players have some private information, soa player might know that he 
an never win by playing on "Low" in a givensituation, and this will of 
ourse in
uen
e on his expe
ted utilities.
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ision Bayesian NetworksShowFirst we try looking at what di
e we should show in any situation. As earliermentioned the 
ases "1-1", "2-2" and "3-3" are trivial in terms of whi
h di
eto show, so we shall not 
onsider them here. We shall 
onsider ourselves asPlayer1 and we shall dis
uss the situations from our own point of view.In the situation where we have a hand of type "1-2" our expe
ted utilitiesare as follows1-2 : Show = f-0.1095, 0.0586, -4.6663gWe see that we should show "2" whi
h we argued in the previous se
tion isa rational behavior.For the situation "1-3" we are indi�erent between "1" and "3" as 
an be seenhere 1-3 : Show = f-0.1094, -5.2216, -0.1097gwhi
h again veri�es our earlier argumentation.Finally we look at the situation "2-3"2-3 : Show = f-4.6663, 0.0531, -0.1098gand we see the symmetry with the situation "1-2" where we have the sameexpe
ted utility of showing "2", and the same expe
ted utility of showing"1" as we have for showing "3" in this situation.Note that the expe
ted utility varies with the hand type. If we get a handof type "1-3" our expe
ted utility of showing "1" or "3" is smaller than theexpe
ted utility of showing "2" given the hand types "1-2" and "2-3". Thisis reasonable sin
e "1-3" sums to four whi
h is the "mean" value of the gameand therefore it is hard to know whether to play on "High" or "Low" at thismoment when we have not seen any indi
ation of our opponents hand. For
ompleteness sake, we in
lude the expe
ted utilities for showing "1" given"1-1", "2" given "2-2" and "3" given "3-3"EU(1|1-1) = 0.1118EU(2|2-2) = -0.2215EU(3|3-3) = 0.1116
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e again we see the symmetry between "1-1" and "3-3".By looking at all these expe
ted utilities we see that we 
an expe
t the highestwinning by getting one of the extreme hand types "1-1" or "3-3" whi
h arealso the hardest to get.MyBidNow we turn the fo
us to the expe
ted utilities for MyBid. There are toomany 
ases to 
onsider them all but we shall try sele
ting a few of them,
overing some of the interesting aspe
ts.Case 1 - Indifferen
eAs earlier mentioned, in an equilibrium of a game, the expe
ted utility of allpossible 
hoi
es must be the same. As also mentioned, in this game bothplayers have private information so we 
an not always 
ount on this to betrue. However, situations still o

ur where we have no 
han
e of using thisinformation as insuran
e against loss and in these situations our expe
tedutilities should be the same for both our 
hoi
es.We 
onsider the situation where we have a hand of type "1-2", have shownour opponent the "2" and she has shown us a "1". Then our expe
ted utilitiesare as followsMyHand : 1-2, Show : 2, OppShow : 1MyBid = f-0.2416, -0.2414gAs 
an be seen, we are indi�erent between playing "High" or "Low" in thissituation whi
h indi
ates that the �nal distributions are in an equilibrium.If we had shown our opponent the "1" the situation would have beenMyHand : 1-2, Show : 1, OppShow : 1MyBid = f-0.4973, -0.4971gbut we are still indi�erent about the 
hoi
es, even though the expe
ted utilityhere is smaller due to the fa
t that we showed "1" in a situation where wehad a "2".Case 2 - SymmetryAs earlier des
ribed, the game has a symmetri
 nature meaning that we 
anexpe
t the same situations to o

ur in the low and the high end.
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ision Bayesian NetworksLet us 
onsider the 
ase where we have a hand of type "1-2". We follow ourstrategy and show the "2" to our opponent, she is also showing a "2" to us.This leads to the following expe
ted utilitiesMyHand : 1-2, Show : 2, OppShow : 2MyBid = f-0.4964, 0.1037gWe see that we have a positive expe
ted utility by playing "Low". Due tothe symmetri
 nature of the game, the expe
ted utility of playing "Low" inthis situation should be the same as the expe
ted utility of playing "High"in the high end of the game.We 
onsider the situation where we have "2-3", have showed the "2" to ouropponent and have seen a "2". Then we have the following expe
ted utilitiesMyHand : 2-3, Show : 2, OppShow : 2MyBid = f0.0968, -0.5033gAs we 
an see, the expe
ted utility of playing "High" in this situation isalmost the same as the expe
ted utility of playing "Low" in the previoussituation, so this veri�es the symmetri
 nature.Case 3 - Indifferen
e and SymmetryHere we try looking at a 
ase where we have a hand of type "2-2", or in otherwords a 
ase that sums to four - the mean of the game. Thus, we are in asituation where our 
hoi
e is 
ompletely dependent on our opponent.First, if she is showing us a "1" the situation is as followsMyHand : 2-2, Show : 2, OppShow : 1MyBid = f0.0008, -0.4995gAs we 
an see we shall then play on "High". This seems very reasonablesin
e the maximum sum that she 
an have is if her other di
e is "3", andthen her sum is four - the same as our own. Thus, we 
an never loose byplaying "High".If instead our opponent had shown us a "2" we would have this situation



5.3 Experiments and Results 65MyHand : 2-2, Show : 2, OppShow : 2MyBid = f-0.3996, -0.3996gwhere we 
an see that we are indi�erent between "High" and "Low". Thisis again an indi
ation of the strategies being an equilibrium, sin
e in thesituation where we are maximum un
ertain, the behavior we have seen fromour opponent does that we remain indi�erent between our possible 
hoi
es.And �nally if our opponent had shown us a "3" we would have the followingsituationMyHand : 2-2, Show : 2, OppShow : 3MyBid = f-0.4998, 0.0006gwhi
h is the opposite of where she showed us "1". Again a 
on�rmation ofthe symmetry being kept.Case 4 - Extreme hand typesAs a �nal experiment with the expe
ted utilities we try looking at the situa-tion where we have got one of the extreme hands "1-1" or "3-3" - they showthe same tenden
ies so we shall only look at "1-1".Of 
ourse we 
an only show "1" so we the fa
tor we vary is what we see fromour opponent.If she is showing us a "1" we get the following expe
ted utilitiesMyHand : 1-1, Show : 1, OppShow : 1MyBid = f-0.4989, 0.0018gWe see that our expe
ted utility of playing "Low" is approximately zero, in-di
ating that we 
an expe
t a draw. This seems reasonable be
ause the fa
tthat our opponent showed us a "1" indi
ated that she must have either "1-1", whi
h leads to a draw, or "1-3" whi
h will make her play "High" in thissituation where she has seen a "1". Thus, in both 
ases we 
an expe
t a draw.If she is showing us a "2" the situation is like this
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ision Bayesian NetworksMyHand : 1-1, Show : 1, OppShow : 2MyBid = f-0.8003, 0.1997gWe see that we have a positive expe
ted utility on playing "Low". We knowthat we 
an never loose by playing "Low" and having "1-1", and we knowthat when our opponent has "1-2", shows the "2" and sees a "1", she isindi�erent about playing "High" or "Low".Furthermore, when she is showing "2" we know that she has either "1-2","2-2" or "2-3". From the nature of the game (and the behavior we assumefrom a 3-sided di
e, without ever having seen one in a
tion) we know thatit is twi
e as probable getting "1-2" or "2-3" as it is getting "2-2". So the
han
e of our opponent having a "1-2" is 25 , and if so, there is 50% 
han
ethat she is playing "Low". This explains that the expe
ted utility of playing"Low" is approximately 15 .Finally, if she is showing "3" the situation isMyHand : 1-1, Show : 1, OppShow : 3MyBid = f-0.9976, 0.0024gWe see that we 
an expe
t a draw by playing "Low", and are sure to loose ifwe are playing "High".This 
on
ludes the examination of the expe
ted utilities we get when usingthe networks we have from the intelligent agents. As promised, we now moveon to examining the distan
e between the �nal distributions.5.3.5 Distan
eAs a �nal experiment with the game "two-person high/low" we shall tryobserving the Eu
lidean distan
e between the distributions of OppShow andOppBid during the games. We have done this for all the other games, andseen that the distan
es are always going against zero.The distan
e is plotted in Figure 5.7.As 
an be seen the distan
e between the two distributions over OppShow isapproa
hing zero, but is never rea
hing it during the 50.000 games.We 
an also see that the distan
e between the two distributions over OppBidis 
onverging, but apparently not against zero, but a value around 0:09. Inthe game s
issor-paper-stone we saw that the distan
e was rea
hing zero,
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Figure 5.7: The distan
emeaning the exa
t same distributions several times during the games. Thatit is 
onverging against a value other than zero is an indi
ation of the po-tentials being polluted. The dominated 
on�gurations that are modi�ed inthe beginning and never tou
hed again are introdu
ing a 
onstant pollutionfa
tor that the distan
e 
annot get below, so with this in mind it is not aproblem that the distan
e is 
onverging against a value larger than zero.Furthermore, the nodes have several more states than in s
issor-paper-stone,so to 
ompensate for the number of states in the nodes when looking atthe distan
e, we introdu
e a more fair distan
e measure for this purpose, theaverage Eu
lidean distan
e during the games divided by the number of statesmodi�ed by the adaptation. We then get the following distan
esS
issor-Paper-Stone:distE(P1Opponent; P2Opponent) = 8� 10�5High/Low : distE(P1OppShow; P2OppShow) = 1� 10�4distE(P1OppBid; P2OppBid) = 1� 10�3
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ision Bayesian NetworksSo we have that even though the distan
es in Figure 5.7 are not getting as
lose to zero as in the game s
issor-paper-stone, we 
an explain why this is so,and when 
omputing average distan
es, the distan
e between the unpollutedpotentials over OppShow is getting almost as 
lose to zero as the distan
ebetween the Opponent potentials in s
issor-paper-stone.5.4 Summary and Dis
ussionIn this 
hapter we have explained the rationality of several strategies, se-le
ted to be 
overing the interesting 
ases, and we have still not found anyindi
ations that the �nal distributions should not be a Nash equilibrium.Furthermore, by looking at the expe
ted utilities, we have found that thesymmetry of the game is kept inta
t and that in the situations with maxi-mum un
ertainty, the �nal distributions represent randomized strategies thatmake random play the best strategy of an opponent.Therefore we 
on
lude that the �nal distributions are a Nash equilibrium ofthe game "Two-person high/low".As mentioned in the beginning of the 
hapter, we were for
ed to use a newsele
tion pro
edure in this experiment. The reason we had to do so is pollu-tion in the dominated 
on�gurations. This is a problem be
ause even thoughthe 
on�gurations are dominated, the probability of them being 
hosen is n-ever zero, only very 
lose to zero. This fa
t 
ombined with pollution doesthat the polluted values are taken into a

ount when 
omputing the expe
tedutilities, meaning that a value very 
lose to zero is added to the some of theexpe
ted utilities. Imagine that this happens in a situation with a 
hoi
ebetween two de
isions that should have the same expe
ted utility, and oneof the 
hoi
es is added a polluted result and the other added an unpolluted.Then we have that the expe
ted utility of one of the de
isions is slightly largeror smaller than the other, so Brown's maximum sele
tion 
riterion will re-sult in deterministi
 play where a random sele
tion was supposed to be made.There are more than one solution to this problem. The solution we 
hose is touse a sele
tion pro
edure similar to one of those we tested in [J�rgensen, 2000℄.The idea is that as follows� Utilities that are 
loser to zero than some threshold are set to zero� If you have a 
hoi
e between de
isions with both positive and negativeexpe
ted utilities, make a weighted sele
tion over only the positive
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ussion 69� If all the expe
ted utilities are positive, make a weighted sele
tion overall of them� If all the expe
ted utilities are negative, make a weighted sele
tion overall of themIn [J�rgensen, 2000℄ we showed that su
h a sele
tion pro
edure is giving thesame results as when always sele
ting the one de
ision with highest expe
tedutility.Another solution 
ould be to introdu
e an interval around the expe
ted util-ities in whi
h varian
e is said to does not matter. In this way two expe
tedutilities varying only in this interval would be treated as equalWhat we have a
tually shown in this 
hapter is that we 
an make a slightmodi�
ation to Brown's solution pro
edure for �nite two-person zero-sumgames with one de
ision, making it 
apable of solving �nite two-person zero-sum games with more than one de
ision.
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Chapter 6Con
lusionThe intention with this thesis was to 
ontinue the work from [J�rgensen, 2000℄where we made the initial experiments, indi
ating that it is possible toimplement intelligent agents for games based on Bayesian networks. In[J�rgensen, 2000℄ we found that for the game of spoo�ng whi
h we usedas a test-bed, the intelligent agents 
onverged against the same randomizedstrategies, and furthermore we were able to verify these strategies as re
e
t-ing intelligent and rational behavior.However, we were not able to verify these strategies as being the solutions ora Nash equilibrium of the game, so one of the main purposes of this thesiswas to a
tually prove that intelligent agents based on Bayesian networks are
apable of solving any �nite two-person zero-sum game.To do so, we have looked deep into the work of George W. Brown and JuliaRobinson whom have respe
tively suggested and proven a re
ursive solutionpro
edure for �nite two-person zero-sum games with one de
ision. We havein detail studied and des
ribed as well the pro
edure as the proof hereof,and even made various experiments to verify that the pro
edure is 
apableof �nding the desired solutions.The next step was the integration of this solution pro
edure into Bayesiannetworks. We found that it was similar to the training s
heme, fra
tionalupdating, as also used in [J�rgensen, 2000℄.We have shown that intelligent agents based on adaptive Bayesian networksare 
apable of �nding the same solutions as Brown's re
ursive solution pro-
edure. We have also veri�ed these solutions as being Nash equilibria of thegames we have used as test-beds. Furthermore, we have shown that we 
anextend the s
heme of fra
tional updating with the 
on
ept of fading and stillimplement agents able of �nding the solutions.
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lusionThus, we have found a way to in
orporate Brown's solution pro
edure intointelligent agents whi
h then are not only 
apable of solving any �nite two-person zero-sum game with one de
ision, these agents are also 
apable ofexploiting potential weaknesses of their opponents. The latter follows fromthe fa
t that agents using fading are able to adapt to any 
ontext they arepla
ed in, or in other words they are able to dis
over sub-optimal play ofan opponent and take advantage of it. Brown's original pro
edure is onlydesigned for �nding optimal strategies against intelligent and rational oppo-nents and therefore it is not 
apable of �nding strategies that are optimalagainst sub-optimal play.After having shown that we are able to in
orporate Brown's solution pro
e-dure into intelligent agents that are able to �nd optimal strategies of �nitetwo-person zero-sum games with one de
ision against any opponent they arefa
ing, and able to �nd Nash equilibria of the same games by letting themfa
e themselves, we de
ided to move on to more 
omplex games.Our motivation for doing so was that we hoped we would be able to showthat our implementation of Brown's solution pro
edure as intelligent agentsis able to solve even more 
omplex games than the ones it is designed for.Our idea was to solve a �nite two-person zero-sum games with more thanone de
ision.For the purpose we designed the game "two-person high/low" whi
h not onlyintrodu
es more than one de
ision, but also private information. Unfortu-nately the solution spa
e for this game was too huge for us to 
ompute, sothe intention was to read out the suggested solutions, if any, and try verifyingthem as a Nash equilibrium of the game.Due to what we de�ned as pollution 
aused by dominated strategies, we hadto modify the sele
tion 
riterion from Brown's solution pro
edure.With the new sele
tion 
riterion we showed that intelligent agents based onBrown's solution pro
edure integrated in Bayesian networks are 
onvergingagainst the same randomized strategies when set to play against ea
h other.Furthermore, we examined the suggested solutions in detail, and to the bestof our knowledge, we have veri�ed them as being Nash equilibria of the game"two-person high/low".Thus, we have shown that intelligent agents based on Bayesian networks are
apable of solving �nite two-person zero-sum games.



Chapter 7Future WorksAs the �nal words in this thesis, we outline some aspe
ts that we still have not
overed in our work and whi
h we �nd so interesting enough to be mentioned.All the games we have 
onsidered until now have been of the type two-personzero-sum games, so it 
ould be interesting to see how well the ideas from thisthesis apply to other kinds of games. Furthermore we have not yet 
onsidereda game without perfe
t hindsight whi
h for sure would introdu
e some inter-esting problems and 
onsiderations. One 
ould easily imagine that methodsof Brown's prin
iple will fail to solve the games as soon as perfe
t hindsightis not present.Another interesting subje
t when talking new game types is game with morethan two parti
ipants. We 
an easily imagine games with for example threeparti
ipants where our training methods still will work 
orre
t. However, wewill need to 
ompli
ate our model, so problems with veri�
ation of suggestedsolutions will have to be taken 
are of, whi
h leads to the next point.As soon as the games get more 
omplex we have a hard time verifying thesolutions we 
an read out as a
tually being solutions. More e�ort has to beput into 
omputing the exa
t solutions of the games we 
onsider so we 
anformally verify our results.The problems we had with the sele
tion 
riterion in Brown's theorem need tobe worked with. We know that we must play randomized strategies over ourpossible 
hoi
es based on a set of weights. However, we have a problem whenwe have both positive and negative expe
ted utilities at the same time, whi
hwe will have to weigh a

ording to ea
h other. The solutions we proposedwhen we dis
ussed the problems are for sure subje
t to optimization.



74 Future WorksBy experiments and dis
ussion alone, we have shown that the prin
iples fromBrown's solution pro
edure 
an be used to solve games with more than onede
ision. A formal proof of this result would be desired.
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