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Abstract:

I dette speciale fokuserer vi pa brugen
af Bayesianske netveerk til lgsning af
endelige to-personers nulsumsspil med
med een beslutning. Vi gar i de-
taljer med en iterativ lgsningsmetode
foreslaet af George W. Brown i 1949
og viser at den virker savel formelt
som i praksis. Vi efterviser desuden
at de lgsninger vi finder med Brown-
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lgse et spil ved at lade intelligent agen-
ter baserede pa de adaptive netvaerk
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distributioner vil da konvergere mod
Nash ligevagten for spillet.

Vi slutter af med at vise at Bayesianske
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bruge traeningsmetoder af samme prin-
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Preface

This thesis is the result of the work done by group DAT6-NOVTI in the spring
of 2000. We continue the work from DAT5 as described in [Jorgensen, 2000],
where we made some initial studies on the use of Bayesian networks in the
area of game theory.

The main subject of this report is solution of finite two-person zero-sum
games with adaptive Bayesian networks. As usually when working with game
theory, we describe the first player using male pronouns and the second play-
er using female pronouns. If a player is referred without role, we shall use
male pronouns.

The notation used in this thesis is mainly based on [Jensen, 1996] when con-

cerning Bayesian networks and [Robinson, 1951] when describing the sug-
gested solution procedure for the games.

This thesis has been typeset with XTEX.

We would like to thank HUGIN Expert A/S for providing us with a version
of the HUGIN Java API during the project period.

Thomas Jorgensen
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Chapter 1

Introduction

The purpose of this thesis is to continue the work from [Jgrgensen, 2000]
where we concluded that if we let intelligent agents based on adaptive Bayesian
networks play against each other, they converge against the same probability
distributions. From these distributions we can read out randomized strate-
gies describing the behavior of the agents during the series of games. In
[Jorgensen, 2000] we argued that the final strategies for the game of spoofing
”seemed” to reflect an intelligent and rational behavior.

In this thesis we would like to prove that intelligent agents based on adaptive
Bayesian networks actually converge against a set of randomized strategies
that is a solution of the game they are playing. Such a solution is what we
in [Jorgensen, 2000] described as a Nash equilibrium. To be able to actually
prove that the randomized strategies we end up with are a Nash equilibrium
we start out with some very simple games where we can pre-compute the
solutions. The games that are the subject of this thesis are finite two-person
Zero-sum games.

As a theoretic foundation for solution of such simple games we use the work
of George W. Brown and Julia Robinson as described in [Robinson, 1951]. In
this article Robinson is describing and proving an iterative solution procedure
for finite two-person zero-sum games. This procedure is initially suggested by
George W. Brown in 1949 in some unpublished work. In Chapter 2 we intro-
duce some general game theoretic concepts to ensure a clear understanding
of the theory behind zero-sum games, and we describe in detail the solution
procedure and the proof hereof.

In Chapter 3 we try to verify the iterative solution procedure by testing it on
a few simple games, before we in Chapter 4 introduce an integration of the
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solution procedure into Bayesian networks. We shall also verify that these
networks are capable of solving the simple games we consider in this work.

Finally, in Chapter 5 we move away from the type of games covered by the
iterative solution procedure suggested by Brown, to see if we can solve more
complex games with our new representation in adaptive Bayesian networks.
The results are summed up in Chapter 6 and a discussion of future work is
included in Chapter 7.



Chapter 2

Iterative Solution of Finite
Two-Person Zero-Sum Games

Much of the early work in the area of Game Theory was done on two-person
zero-sum games since those are the games that are easiest to model mathe-
matically. As work proceeded, the simplifying assumption of zero-sum, mean-
ing that ones gain is always the opponents loss, was found to prohibit the
modeling of more complex and realistic games, and the focus started turning
to non-zero-sum games. However, the theory of zero-sum games still contains
a lot of interesting aspects as we shall discover in the following sections.

One of the most active researchers in zero-sum games was John von Neuman-
n, which is also the father of the widely referred minimaz theorem of game
theory. As well as this theorem is widely referred it is also widely rewritten
and reproved, in this thesis we shall adopt the notion from recent works in
probability- and decision theory together with the most suitable notion for
the main task of this chapter.

Back in 1949, George W. Brown suggested a method for an iterative solu-
tion of finite two-person zero-sum games with one decision. In 1951 Julia
Robinson|[Robinson, 1951] proved the validity of the procedure suggested by
Brown. The purpose of this chapter is to highlight the results from Brown
and Robinson, and to do so we start looking at some of the earlier results to
ensure a clear understanding of the concepts. The definitions are given using
games with only pure strategies, but they can easily be extended to include
randomized play[Myerson, 1991], however, doing so would make them less
suitable to serve as a gentle introduction. Randomized play will be intro-
duced later on.

To represent the games we use the strategic form. To define a game in



10

Iterative Solution of Finite Two-Person Zero-Sum Games

strategic form we need to define a set of players, the set of strategies available
to the players and the pay-off they gain from the various strategies. In the
context of game theory a strategy is defined as follows

DEFINITION 1 (STRATEGY)
A strategy for a player is a prescription for what the player must do in any
possible decision situation that can happen.

and a strategic form game is defined as

DEFINITION 2 (STRATEGIC FORM GAME)
A strategic form game is any I' of the form

['= (N, (Cp)pens (Up)pen), where

N is the set of players, N # ()
C, is the set of strategies available to player p, where ¥p € N,C, # ()
u, : C — R is the utility pay-off function for player p, where C' = {Cp}yen

In our case where we consider only two-person zero-sum games we can use
the slightly simpler Definition 3.

DEFINITION 3 (TwWO PERSON ZERO-SUM GAME)
A two person zero-sum game in strategic form is any I' of the form

I'=({1,2},Cy, Cy, uq, uz)

such that
UZ(Zaj) = _ul(iaj); Vi € Cl) V] € 02

If we assume that C', and C, are finite sets, then in two-person games, it is
convenient to represent the utility function as a pay-off matrix

A:aij,ViECb‘v’j ECQ

If Playerl chooses the i® row and Player2 simultaneously chooses the j%
column, then Player2 pays a;; to Playerl.

The matrix representation of the utility function will work with randomized-
as well as with pure strategies. If we are using only pure strategies the utility
matrix alone can be used for finding optimal strategies. When speaking of an
optimal strategy we are referring to optimality in terms of expected winnings,
thus an optimal strategy is optimizing your winnings or minimizing your loss.
When using only pure strategies Definition 4 is used to define optimal strate-
gies.
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DEFINITION 4 (SADDLE POINT)
The strategy set (i',7') is called a saddle point for T iff

aijr < Qirjr < Ay, Vie C, V) e,

The value ayj is called the saddle value, and i' and j' are called optimal
strategies.

In other words, if Playerl plays the strategy i he is guaranteed to win at
least the saddle value a;; and Player2 following the strategy j' is guaranteed
not to loose more. If one of the players plays another strategy he can never
be better off, and most likely he will be worse off. Thus, i’ and j" are optimal
strategies in the way that they guarantee the maximal gain against an intel-
ligent, rational opponent. Which strategies are the best against suboptimal
opponents shall be unsaid.

In the previous section we italicized the saddle value. Note that there can be
more than one saddle point in the same game. In Figure 2.1 say that (', j)
and (7", 7") are saddle points, thus from Definition 4 we have that v’ is the
largest element in the row labelled i and furthermore the smallest element
in the column labelled j'. Similarly for i and j".

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.1: Value equivalence between several saddle points

Thus we can write

w<v <wuwandu <" <w

and then we have that if we have more than one saddle point in a game the
saddle value is the same for all of them.
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2.1 Rational Reasoning

Since we are assuming our opponent to be intelligent and rational we might
as well expect him to be playing his optimal strategies. In this section we
shall see how players should reason in search for optimal strategies.
Remember the basic property of zero-sum games

Ul(i, ]) = _U’Q(ia j) (21)

With this in mind it is easy to see that the task of maximizing your winnings is
equivalent to minimizing your opponents winnings. Since we expect rational
and intelligent opponents, a player should always assume that the opponent
plays the best possible strategy against optimal play. In other words, Playerl
should assume that Player2 is solving the problem

n G;j 2.2
7]7;%721 ;i (2.2)

Thus, Playerl must solve the problem

1= n 2.3
= g iy o) .
where V; is Playerl’s minimum winnings from the game. Similarly Player2
must minimize her loss, so she should solve the problem

Vo = min (mazx a;; 2.4
2 jeCs (iecl ”) ( )
where V5 is Player2’s maximum loss.

Since V; is the maximum possible loss of Player2 and the game is zero-sum,
it seems reasonable to state that no matter what strategy Playerl is using
he can not possible win more than V5, thus

Vi<V (2.5)

This leads to the following theorem

THEOREM 1
For finite two-person zero-sum games (as well as for any other matrix) the
following inequality is true

e ]



2.1 Rational Reasoning 13

PROOF:
For static i € C} and j' € Cs it is easy to see that

a/i’j, Z mln a/z"j, VZI S 017 vjl € 02
JEC>

By taking max on both sides we get

max a;; > max (min a;;), Vj' € Cy
i€Cy 1eCy jels

From here Theorem 1 follows.
QED

The way we got to Theorem 1 was by arguing how a player should behave
to ensure optimal play, therefore it seems reasonable to assume that there is
a relation with saddle points from Definition 4, actually the following is true

THEOREM 2
(¢',4") is a saddle point for I' = ({1, 2}, Cy, Co, uy, uy) iff

min a;; = mazx (min a;;) = min (Max a;;) = Max a;j
7€Cs 1eCq jeCs jeCs 1eCq 1eCq

PRrooOF:
Assume that (i, j') is a saddle point for I, then

Qg0 < Qg jr < a,ile’i e (C,Vjel,

and it follows that
max a;y < iy < MAN G

ieCy FEC,
and thus

min (max a;) < maz a;; < app < min ag; < max (main a;;)

jeC ieCy i€Cy jeCs i€Cy  jeCsr
combining this with Theorem 1 we get Theorem 2.
Now we assume that Theorem 2 is true, and we can write

e < MAT Q0 = MIN Qi < Qi
T =hea Y jeoy !

and now we have that

Max G = Qjrgr = MIN Qjr ;
icc, " R 1<'s N

From Definition 4 we see that (i, j') is a saddle point.
QED

This concludes the gentle introduction to the area of two-person finite zero-
sum games, and it is time to complicate things and introduce randomized
strategies.
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2.2 Equilibria in Randomized Strategies

With the introduction of randomized strategies it is possible for equilibria
to occur in games that have no equilibria in pure strategies. A randomized
strategy for Player p is any probability distribution over C,, and we let A(C})
denote the set of all possible randomized strategies for player p.

A randomized strategy profile is any vector that specifies one randomized
strategy for each player, so x,enyA(C,) is the set of all randomized strategy
profiles.

To justify the search for equilibria in finite two-person zero-sum games, we
give, without the proof, the general existence theorem introduced by John
Nash in 1951[Myerson, 1991]

THEOREM 3
Given any finite game I in strategic form, there exists at least one equilibrium

in XpeNA(Cp)

With this in mind we are ready to start looking at Brown’s procedure for
finding such equilibria. Remember that we represent our utility function as
a matrix

A:aij,ViECl,‘v’j ECQ

We let Playerl play the " row with probability x; and similarly Player2
play the j column with probability yj, where z; > 0,y;, > 0,> x; =
1 and > y; = 1. We can calculate the expected utility of Playerl as

EU = ZZaij:ciyj (2.6)
(]
We have that
mj@'nZaijxi < ZZaijxiyj < miaxZaijyj (2.7)
7 7 J J
to see why this is so, consider the middle term as

Zyjzaisz’ (2.8)

Since ) Jy; = 1 we can consider 2.8 as a weighted average over ) a;;z;, and
j i

J
therefore it is true that

mmE a;;x; < E ij i T4
N j ;
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Similarly we can write the middle term of 2.7 as
IS
i J

which is a weighted average over ) a;;y; and thus
J

inzaijyj < mzal'zaijyj
7 J

J

From 2.7 it naturally follows that
min E a;;x; < max g a;i;Y; (2.9)
i e i
i j

Looking at 2.9 we see that if the equality holds, it is somehow similar to
Theorem 2, stating that

The difference is that 2.9 includes randomized strategies which is not the case
in Theorem 2 since the latter was kept simple to ensure a clear understanding
of the concepts. However, they are both defining optimal strategies, Theorem
2 is defining optimal pure strategies in opposition to 2.9 which is defining
optimal randomized strategies over the pure strategies.

In fact it is true, that even though there may be no equilibria in pure strate-
gies, the equality in 2.9 holds for some set of probabilities X = (x1, ..., Z,)
and Y = (y1, ..., yn). This result is widely known as the minimax theorem of
game theory and can be found in [von Neumann and Morgenstern, 1944].
Such a pair of probability sets, (X,Y) is called a solution or a Nash Equilib-
rium of the game and the value, v, of the game is defined as

v = mjin;aijxi = miaxzj:aijyj (2.10)

As in pure strategies, this value is the same for all equilibria. To see why
this is so, consider the following
From 2.9 we have that

min E a;jr; < max g a;jYj
i~ i =
i j

which is true for all probability sets (X', Y”)
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Say we have two Nash equilibria of the same game, call them (S,7") and (U, W).
Then we have from 2.10 that

min E a;;S; = Max E a;jt; = v
2
i = I

and

mijaijui = mlaxz:aijwj =
i j
Now if we consider (S,T) and replace the 7" with W we know that

min g a;;s; < max g a;jW;
2
i = r

and get

v <

Similarly if we consider (U, W) and replace the W with 7" we get that
mj@'nZaijui < miaxZaijtj
i j

and therefore have that
v <w

We now see that v = ¢/
In terms of rows and columns in the pay-off matrix, equation 2.9 can be
viewed as

minZAi.xi < maxZA.jyj (2.11)
i J

Where A,; is the i row of A and A;. is the j” column of A
With the basic concepts defined we are now ready to move on to Brown’s
theorem on wector systems.

2.3 Brown’s Theorem

Brown’s procedure for solving games is based on recursive manipulation of
vectors resulting in what is referred to as a vector system for A. A wector
system is defined as
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DEFINITION 5 (VECTOR SYSTEM)

A system (U, V) consisting of a sequence of n-dimensional vectors U(0),U(1), ...

and a sequence of m-dimensional vectors V(0),V (1), ... is a vector system for
A iff

minU(0) = mazV (0)
and

Ult+1)=U(t)+ A;, V(it+1)=V(t)+ A,

where i and j satisfy the conditions
v;i(t) = mazxV (t), u;(t) = minU (1)

From Definition 5 we can see that it is possible to recursively form a vector
system given any initial vectors U(0) and V'(0). In [Robinson, 1951] the case

is considered as a special case since the definition is valid for all initial vectors.
However, since we are to use the procedure only as a way of solving finite two—
person zero-sum games, we shall not consider cases where U(0) # V(0) # 7.

We can now consider ( and —= t as a weighted average of the rows and
columns respectively, Where the We1ghting factors are the number of times
the row or column has been chosen divided by the number of iterations.
Formally

) _miy
t t

where n; is the number of times the i** row has been chosen

where m; is the number of times the 3% column has been chosen

U()

Since is a weighted average over the rows of A we have that

U (t
minU(t) < miaxZaijyj (2.12)
J

V()

Similarly since is a weighted average over the columns of A we have that

Vit
mazy ) > mmZaUa:Z (2.13)
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Combining 2.10, 2.12 and 2.13 we get for every t and ¢/

: ’
mth(t) << maxt‘,/(t)

Brown'’s result states that if for some ¢ and ¢’ it is true that

minU(t)  maxV (t')
¢t

(2.14)

we have a solution of the game. The solution, which is an optimal randomized
strategy, can be read out as the number of times the rows and columns were

chosen divided by the total number of iterations.

Even if we never find an exact solution Brown states the following theorem

which is the main result of his work

THEOREM 4
If (U, V) is a vector system for A, then

The proof of Theorem 4 will be divided into 4 lemmas.

LEMMA 1
If (U, V) is a vector system for A, then

lim mfmaa:V(t) — minU (t) >0

t—o0 t -

PROOF:

Since V(t) is constructed as a weighted average over the columns of A and

we made the assumption that U(0) = V(0) = ﬁ), we have that

V(t) = tZyjA.j, WhereZyj =1land y; >0, V)

J

Similarly for U(t)

U(t) = thiAi., Whereri =1land z; >0, Vi

However, Theorem 4 is gi}ven for any vector system so we might have a case
where U(0) # V(0) # 0" and therefore we have to consider U(t) and V()

as follows
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J

U(t) =U(0) + thiAi., Whereri =1and z; >0, Vs

By choosing the minimum value of V(0) we are sure that the following in-
equality is true

mazxV (t) > minV (0) + ¢ manyjA.j
J

In the same way we get that
minU(t) < mazU(0) 4+t mianiAi.
i
Hence,

maxV (t)—minU(t) > minV (0)—maxU(0)+t <max2yjA.j—mminAi.>
j i

As nU (0 V(0
Ly (0) — max ():0
t—00 t
we get that
maxV (t) — minU(t) ,
; > max ;yjA.j —min zzleAl

From 2.11 we get that

which yields the lemma.
QED
For the next Lemmas we need to introduce the concept of eligibility.

DEFINITION 6 (ELIGIBILITY)
If (U, V) is a vector system for A, we say that the i row is eligible in the
interval (t, t’) iff there exists a t, such that

t<t, <t
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and
vi(t1) = mazxV (t)

In the same way we say that the j™ column is eligible in the interval (t, t’)
ioff there exists a ty such that

t<ty <t

and
w;(t2) = minU (ty)

In words, an eligible row or column is one that can be chosen in the given
interval during the iterative solution procedure. With this defined we are
ready to move on to the next lemma.

LEMMA 2
If (U, V) is a vector system for matriz A and all the rows and columns of A
are eligible in the interval (s, s+t) we have that

mazU(s +t) —minU(s +t) < 2at

and
mazV (s +t) —minV (s +t) < 2at
where
a = max;, j|aij|
PROOF:

Choose j such that
u;(s +t) = maxU(s + 1)

and as j is eligible we can choose ¢’ such that s <t < s+t and
u;(t") = minU(t")

We know that a is the maximum possible change per iteration, and therefore
we have that at is the maximum change in ¢ iterations.

Thus, because we chose ¢’ between s and s + ¢, we know that the difference
between u;(s + t) and u;(t') can at most be at, we have that

u;(s +1t) < wuj(t') + at = minU(t') + at
and from the way we chose j we now have that

mazU(s +t) < minU(t') + at
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which can also be written as
minU(t') > mazU(s +t) — at (2.15)

Again, by looking at the way we chose ¢ and the maximum difference we can
reach in ¢ iterations, we get

minU(s + t) > minU(t") — at (2.16)
By insertion of 2.15 in 2.16 we get
minU(s +t) > maxU(s +t) — 2at
which we can write as
mazU (s +t) —minU(s +t) < 2at
In the same way it can be shown that
mazV (s +t) —minV (s + 1) < 2at

QED

LEmMA 3
If (U, V) is a vector system for matriz A, and all the rows and columns of
A are eligible in the interval (s, s+t) it is true that

mazV (s +t) —minU(s +t) < 4at

PROOF:
From Lemma 2 we have that

(mazU(s +t) —minU(s +t) + (mazV (s +t) — minV (s + t)) < 4at
This can as well be written as
mazV (s +t) —minU(s +t) < 4at — mazU(s +t) + minV (s + t)

Thus, if we can show that minV (s+t) < maxU (s+t) the proof is complete.
To do so we start applying 2.11 to AT, the transpose of A, which gives us

mmZA.jyj < maxZAi.a:i (2.17)
j i

given that ; > 0, Y o, =landy; >0, Y y; =1
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We choose z; and y; such that
U(s+t) =U0) + (s +1) Y Apa

and
V(s+t)=V(0)+ (s+1) Z Ay;

Now from the proof of Lemma 1 we have that
minV (s +t) < maxV(0) + (s + t)min Z Ay;

combining 2.17 with the definition of a vector system, stating that minU(0) =
mazxV (0) we get

minV (s +t) < minU(0) + (s + t)max Z A;x;
< mazU(s +t)

QED

We are now ready to complete the proof by a final lemma.

LEMMA 4

For every matriz A and e > 0 there exists a ty such that for any vector system
(U, V) it is true that

mazV (t) —minU(t) < et, fort > t,

PROOF:

The proof goes by induction. It is easy to see that it holds for matrices of
order 1 since U(t) = V (t), Vt

Now we assume that the theorem holds for all submatrices of A, and then
show that it holds for A.

We choose a t such that for any vector system (U’, V') for the submatrix
A’ of A we have

1 .
maxV'(t) — minU'(t) < et whenever ¢ > ¢

We shall prove that in our given vector system (U, V) for A, if some row or
column is not eligible in the interval (s, s 4+ ¢) then it is true that

N A 1 .
mazV (s +t) —minU(s +t) < maxV (s) — minU(s) + 5615 (2.18)
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Let us suppose that the & row is not eligible in the interval (s, s-+). Then it
is possible to construct a vector system (U’, V') for the submatrix A’, which
is equivalent to A with the k' row deleted, in the following manner

Uty=U(s+t)+C
V'(t) = Proj,V(s+1t) for t =0,1,..,%
In the equations above, C' is an n-dimensional vector where
C; = mazV (s) — minU(s) for i =1,2,..,n

Proj,V is the vector obtained by removing the £ component from V. We
shall number the rows of A’ as 1,2, ...k — 1,k +1,..,m.

If (U', V') is a vector system, we know from Definition 5 that minU’(0) =
maxV'(0). From the construction procedure we have that

U0)=U(s+0)+C
= [S1, -y Sp| + [mazV (s) — minU(s), .., maxV (s) — minU/(s)]
= [s1 + maxV (s) — minU(s), .., $p + maxV (s) — minU/(s)]

Since all the components in U’(0) is summed with the same number, it must
be true that the minimum component of U’(0) is the one where s; = minU (s)
and we can therefore see that

minU'(0) = minU(s) + mazV (s) — minU(s) = mazV (s)

Since V'(0) is a copy of V (s) with the &' component removed, we know that
mazV'(0) = maxV (s) since the k' row was not eligible.

Furthermore, for (U', V') to be a vector system, certain recursive restrictions
from Definition 5 must be satisfied. It follows from the construction that if

Uls+t+1)=U(s+t)+ A and V(s+t+1)=V(s+t)+ A,
and we know that £ row is not eligible we have that
U't+1)=U'(t) + A} and V'(t +1) = V'(t) + A
We can also see from the construction that
vi(s +t) = maxV (s +t) if and only if v}(t) = mazV'(¢)
and similarly

uj(s +1t) = minU(s + t) if and only if u;(t) = minU'(t) for 0 <t <t
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Hence we can conclude that U’ and V' satisfies the recursive restrictions of
a vector system for 0 <t <t since U and V do.
From the way we chose ¢ we have that

N A 1 .
maxV'(t) — minU'(t) < iet

and from the construction of (U, V') we know that it is constructed from
U(s) and V(s) and forward, so we can say that

maxV (s +t) — minU(s +t) = maxV'(t) — minU'(t) + maxV (s) — minU|(s)

and since

N A 1 .
maxV'(t) — minU'(t) < 3¢t
it must be true that

“ N 1 .
mazV (s +t) —minU(s +t) < maxV (s) — minU(s) + §5t

We are now ready to show that given any vector system (U, V') for A it is
true that

8at
mazxV (t) — minU(t) < et , for t > oat
€

Consider ¢ > #, choose 6 € [0;1] and ¢ € N such that ¢t = (6 + ¢)f. We shall
divide this proof into two cases.

Case 1

Suppose that there exists a positive integer s < ¢ such that all rows and
columns of A are eligible in the interval ((6 + s — 1)t, (§ + s)t), and choose
the largest such s.

We have a situation as depicted in Figure 2.2

)
~
o~
~

Figure 2.2: The intervals

Then we have that in each of the intervals

(@+r =1t @+7r)E), forr=5+1,..,¢q
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some row or column is not eligible. Thus, by repeated application of 2.18 we
get

mazV (t) — minU(t) < mazV ((0 + s)t) — minU((0 + s)t) + %S(q — s)t
(2.19)

Remember we chose s such that all rows are eligible in the interval ((0 + s —
1)t, (6 + s)t). From Lemma 3 we get

maxV (0 + s)t) — minU((0 + s)t) < 4at (2.20)
By combining 2.19 and 2.20 we get
. ~ 1 ~ 1 .
mazV (t) —minU(t) < 4at + 56((] —$)t < (4a + isq)t
Case 2
If there exists no such s then we know that in each interval ((0-+r—1)¢, (0+r)t)
we know that some row or column of A is not eligible, and then we have from
2.18 that
, . . ~ 1 ~ 1.
mazV (t) —minU(t) < maxV (0t) — minU(60t) + §6qt < 2a0t + §€qt
Therefore we have that in either case
, I | 8at
mazV (t) —minU(t) < (4a + isq)t < dat + 5615 <et, fort>—
£
QED

Now we are ready to sum up the results from Lemmas 1 to 4.

By combining Lemma 1 with Lemma 4 we get that

mazxV (t) — minU (t)

lim =0
t—00 t
From 2.9 we see that
, minU (t)
lim sup———= <w
t—00 t
and v
t
lim mf%() > v

t—00 t -
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Hence, we have that

which completes the proof of Theorem 4.

Having looked into the core details of the work of Brown and Robinson we
are ready to move on. As earlier mentioned, the many of the results outlined
in this chapter are based on [Robinson, 1951] which again is based on the
unpublished work of George W. Brown. However, we have not seen any of
this work applied in practice, which is possibly due to the lack of computer
power back in 1949 - 1951 where this work is made. This makes it interesting
for us to apply the proposed construction procedure to a few simple games to
see how it performs. Furthermore, [Robinson, 1951] suggests an alternative
recursive construction procedure and states that it "seems to be” faster in
terms of convergence than the one we have given here. This could of course
also be interesting to verify. In the next chapter we shall try implementing
the suggested procedures.



Chapter 3

Testing Brown’s Theorem

Having looked into, and formally proved Brown’s theorem, we find it relevant
to carry out a few experiments. We intend to test the iterative solution
procedure on a few simple games, both symmetric and asymmetric to see if
convergence appear.

3.1 jlIsol

For the purpose we have developed the program jIsol , where [sol stands
for Iterative Solution, and the j indicates that the program is developed in
Java. To use jIsol, one needs only to specify the utility matrix, the rest is
done by the program. As output one can either get a plot of the bounds,
minU (t) mazV (t) . . s .

—— and —— to see a convergence visualized, or it is possible to get a
dump of all the intermediate U(t) and V'(¢)-vectors to see how they change
during the procedure, and to see if exact solutions occur.

With these options it is possible to verify both parts of Brown’s theorem.

3.2 A Simple Symmetric Game

We choose as a test-bed, the game of scissor-paper-stone which is used to solve
many everyday conflicts. Personal experience verifies that it is extremely
useful to decide who is to sit on the front seat in the car when going fishing
with two pals. However, the original version of the game is designed in a
manner such that the best strategy is complete random play. This fact has
made us modify the game a bit for this experiment, so more complicated
strategies can be beneficial.

What we actually do is to modify the utility matrix such that a victory is not
just a victory, but the possible amount of gambling units you win or loose is
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P1/P2 | Scissor | Paper | Stone
Scissor 0 X N/
Paper -X 0 y
Stone z -y 0

Table 3.1: A general pay-off matrix

dependent on your choice of hand.

In Table 3.1 below we have included the utility table from Playerl’s point of
view. In the original game of scissor-paper-stone we have that r =y = z.
In our version of the game we let x = 1,y = 2,2 = 3 meaning that if you
choose ”stone” you have a potential winning of 3 gambling units, but then
the potential loss is equally high.

With the redefined utility matrix it seems reasonable to assume that there is
a better randomized strategy than {l L l}. Before we let jIsol search for

37373
it, we try to find it by a theoretical approach.

3.3 A Theoretical Approach

As mentioned, the task is to solve the game by theoretical considerations.
We are assuming that our opponent is intelligent and rational, so pure strate-
gies will lead to loss in the long run. Hence, the task is to find an optimal
randomized strategy.

First of all, let us find out what an optimal randomized strategy is. A strategy
is optimal if our opponent is indifferent about all of his possible choices, or
in other words, the best she can do is to play completely random. Since the
game outlined above is symmetric and the utility of a draw is zero for both
players, the expected utility in an equilibrium must be zero for all possible
choices.

Let us look at the expected utilities from a players point of view

EU (scissor) = P(paper)z + P(stone)(—z)
EU (paper) = P(scissor)(—x) + P(stone)y
EU (stone) = P(scissor)z + P(paper)(—y)

Since we just stated that the expected utilities should be zero, we get
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P(scissor) = gP(stone)

T
P(paper) = EP(stone)
T
P(stone) = v ZP(scissor) — P(paper)
Y

From our definition of the modified version of the game we have that
r=1,y=2and 2 =3
Inserting this into the formulas above we get

P(scissor) = 2P(stone)
P(paper) = 3P(stone)
P(stone) = 2P(scissor) — P(paper)

From fundamental probability theory we have that
P(scissor) + P(paper) + P(stone) =1
and taking this knowledge into account we get
2P (stone) + 3P(stone) + P(stone) = 1

And thus,
1
P(st = -
(stone) c
It follows that ) .
P(scissor) = 3 and P(paper) = 3

Now we know that with the utilities defined in the beginning, the correspond-
ing probability distribution in an optimal strategy is

P(hand) = {%, %, é}
3.4 The Iterative Solution

Since we have just computed the exact solution we start out searching for
the exact solution with jIsol. We know that the value of the game is zero
for both players so we have a solution of for some ¢ and ¢ we have that

minU(t) 0— mazV (t')
t
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Iteration 1 : argmaxV(0) =2 = UQ1) = [ -1 0 2 ]
argminU(0) =2 = V(1) [ 1 0 -2 ]
[teration 2 : argmaxV(l) =1 = U(2) [ -1 1 -1 ]
argminU(l) =1 = V(2) [ 1 -1 1 ]
[teration 3 : argmaxV(2) =1 = U(3) [ -1 2 -4 ]
argminU(2) =3 = V(3) [ -2 1 1 ]
Iteration 4 : argmaxV(3) =2 = U(4) [ -2 2 -2 ]
argminU(3) =3 = V(4) [ -5 3 1 ]
[teration 5 : argmaxV(4) =2 = U(H) [ -3 2 0 ]
argminU(4) =1 = V(5) [ -5 2 4 ]
Iteration 6 : argmaxV(5) =3 = U(6) [ 0 0 0 ]
argminU(5) =1 = V6) = [ -5 1 7 ]
[teration 7 : argmaxV(6) =3 = U7 = [ 3 -2 0 ]
argminU(6) =1 = V(1) = [ -5 0 10 ]
[teration 8 : argmaxV(7) =3 = U®B) =] 6 -4 0 |
argminU(7) =2 = V@ =[] 4 0 8 ]
[teration 9 : argmaxV(8) =3 = U(9) [ 9 6 0 |
argminU(8) =2 = V(9) [ -3 0 6 |
[teration 10 :  argmaxV(9) =3 = U(10) [ 12 -8 0 ]
argminU(9) =2 = V(10) [ -2 0 4 ]
[teration 11 :  argmaxV(10) =3 = U(11) [ 15 -10 0 ]
argminU(10) =2 = V(11) [ -1 0 2 |
Iteration 12 : argmaxV(1l) =3 = U(12) [ 18 -12 0 |
argminU(11) =2 = V(12) [ 0 0 0 ]
[teration 13 :  argmaxV(12) =3 = U(13) [ 21 -14 0 ]
argminU(12) =2 = V(13) [ 1 0 -2 ]
[teration 14 :  argmaxV(13) =1 = U(14) [ 21 -13 -3 ]
argminU(13) =2 = V(14) = [ 2 0 -4 |
[teration 15 :  argmaxV(14) =1 = U(l5) = [ 21 -12 -6 |
argminU(14) =2 = V(15 = [ 3 0 -6 ]

Table 3.2: The Search for the Exact Solution
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In Table 3.2 we have included a solution procedure for the simple game
described in Section 3.2

We can see from Table 3.2 that we find a solution for t = 6 and ¢’ = 12. We
can also see that we have chosen the first row 2 times, the second row 3 times
and the third row 1 time, up until and including the 6 iteration. Hence, we

have a solution as follows
231 (111
6'6’6J 1326

which is exactly the same we found by our theoretical consideration in Section
3.3.

The same solution can be found by looking at the number of times each
column is chosen up until the 12 iteration.

Note that the solution procedure included here is in no way unique, in fact,
there is an infinite number of solution procedures since a random choice is
made whenever there are more than one v; and wu; satisfying the recursive
restrictions of the definition of a vector system. The solution procedure we
have included here is just the one we have found to have the shortest path to
an exact solution for both U and V. Various experiments have shown that
special cases can occur with more than 1.000 iterations over this same game
without an exact solution occurs, and most of the times we need more than
100 iterations before we can verify that mintU(t) = maxt‘,/(t,) for some t and t'.
As a final comment on exact solutions, we should mention that there is no
guarantee that we will ever find an exact solution but still we can always find

an approximate solution as we shall see in the following.

3.4.1 Solution by Convergence

Now let us look at the main result of Brown’s theorem stating that if we
repeat the iterative procedure again and again we are getting closer and
closer to the solution of the game. That is, we can find an approximate
solution even if we fail to find an exact one. However, the theorem should
still be true if we succeed in finding exact solutions during the recursive
process.

To verify this, we repeat the procedure 10.000 times and at each iteration we
plot mme(t) and %V(t) The result can be seen in Figure 3.1.

From Figure 3.1 we see that both bounds are going against the value zero as
we would expect from the theorem. Studying the curves in detail we can see
that it looks like both of them are in zero some times and then moving away
again. This is of course due to the nature of the solution procedure since
there is no opportunity for stopping with an optimal randomized strategy,
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I ma\xV(t)/tI
minU(t)/t ----——-

05 | .

-05 B

_1 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t

Figure 3.1: The iterative solution procedure with 10.000 iterations

not even if it was possible to find such ones at run-time. Again due to the
nature of the procedure we also see that as ¢ grows larger the oscillations are
getting smaller and smaller.

After 10.000 iterations we read out the following solutions

row count

; = {0.3358,0.4933,0.1709}

and
column count

t
The solutions we get are close to the ones we computed and found to be
the exact solutions of the game so we can conclude that Brown’s theorem is
working as expected for symmetric zero-sum games.

= {0.3371,0.5036,0.1594}

As a final experiment to verify Brown’s theorem on symmetric games let us
try looking into how the two solutions move in order to each other during
the recursive solution procedure. We see from the definition that the choices
made for the rows are dependent on the current distribution over the columns
and vice versa. It therefore seems reasonable to assume that the temporary
solutions interact in some manner.
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To see the pattern we use the Fuclidean distance between two probability
distributions, defined as

distp(x,y) = Z(xz — i)
to see how close they are to each other during the construction.
The result can be seen in Figure 3.2

0.05 T T T T T T T —T— T
Eucledian Distance
0.045 |- B
0.04 i B
0.035 B
0.03 | B
0.025 | 4
0.02 B
0.015 B
0.01 B
0.005 B
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

t

Figure 3.2: The euclidean distance between the temporary solutions over 10.000
iterations

Note that the distance is very small all the way through, but in no way
constant. It seems that they are moving closer to each other, reach an equi-
librium or at least get close to one, and are then forced to move away from
each other again. This verifies the conclusion we made when studying how
the bounds are moving, stating that even though an equilibrium is reached,
the procedure is not stopped. Finally we should note that as ¢t grows larger,
the variance in the distance is getting smaller.

3.5 An Asynchronous Selection Procedure

In [Robinson, 1951] it is mentioned that there is another way of constructing
vector systems than the one we have described. Remember that the proce-
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dure that we are using are based on simultaneous updating of U(t) and V'(¢).
However, it is possible to determine the vectors alternately by replacing the
condition on j with the following

w;(t+1) = minU(t + 1)

The construction procedure is still recursive but when we have formed U (¢t+1)
it is included in the construction of V(¢4 1) instead of including information
on U(t). It is mentioned without further comments that a vector system of
this new kind seems to converge more rapidly.

We have tried to verify this statement by plotting the two bounds from the
old procedure together with the two bounds from the new procedure to see
if faster convergence seems to happen. The result is included in Figure 3.3

T T T
maxV(t)/t alternately -—----—
maxV(t)/t simultaneously

0.4 minU(t)/t alternately ------- 4
’ minU(t)/t simultaneously

-0.4 .

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 3.3: Testing the speed of convergence

As can be seen it is true that convergence happens faster with the new
procedure, which is plotted with dotted lines in Figure 3.3. But this is not
the only interesting thing to note. We can also see that the first procedure
results in more oscillations where the latter is staying much closer to the
value of the game - in this case zero. Therefore it seems like a good idea to
use the latter procedure if the task is to get a solution of the game as quickly
as possible.
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3.6 An Asymmetric Game

Until now we have only tested Brown’s theorem on a symmetric zero-sum
game or in other words a game with the value zero. Now we intend to modify
the game we have used as test bed so far, once again.

This time we let our utility matrix be as follows

1 1 -3
A=1|-1 =2 2
3 =2 1

Note that it is now possible to benefit from a draw. Say that the matrix as
we have it here is from Playerl’s point of view so that if both players choose
to play ”Paper”, he will loose two gambling units, which he of course much
pay to Player2.

Since this game is asymmetric it will have a different value for Playerl than
for Player2, in fact we have that

Up1 = —Up2

With the symmetric game we knew that the value was zero for both players,
and we could therefore easily compute the optimal strategies beforehand.
This time we shall do it the other way around - let jIsol suggest a solution
and see if we can verify it as a set of optimal randomized strategies or in
other words, a Nash equilibrium.

Again we see clear tendencies of convergence, apparently centered around the
value —%, indicating that Playerl can expect to loose five gambling units for
every ten games. The pattern is clear, but it seems that even as we approach
10.000 iterations we still see large oscillations where both the upper and the
lower bound is moving away from what seems to be the value of the game.
In other words we could say that apparently the system fails to converge
completely.

To prove or disprove this tendency we try to increase the number of iterations
to 40.000. The result can be seen in Figure 3.5

As we can see the oscillations are getting smaller, but not much. It seems
that we are dealing with a game where the convergence is extremely slow.
Since we know of an other construction procedure where we have shown that
convergence is not only faster, but also avoiding the oscillations where the
bounds are moving away from the value, it could be interesting to see how it
performs in this case. The result can be seen in Figure 3.6

As can be seen the oscillations are almost completely gone already after
10.000 iterations with the asynchronous solution procedure, where they were
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Figure 3.4: The iterative solution applied to an asymmetric game
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Figure 3.5: Increased number of iterations
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I ma\xV(t)/tI
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Figure 3.6: The asynchronous procedure on an asymmetric game

still significant after 40.000 iterations with simultaneous selection.

3.6.1 The Solution

Now we have said enough about the speed of convergence and it is time to
read out the solutions. We get the solutions from the first test - that is, the
results are made with simultaneous selection and 10.000 iterations. We get
the following

t
w = {0.5028,0.4972,0}
and

column count
t

Let us see if we can verify this result as a Nash equilibrium.
The results we read out are approximate solutions, but it seems that they

are converging against
11 5 3
{5,5,0} and {0,§,§}

= {0,0.6220, 0.3780}



38

Testing Brown’s Theorem

Let us look at the situation from Playerl’s point of view. If he knows that

Player2 is playing {0, 2,2} the situation is
) 3 1
EU(scissor) = - —3- 2 = —=
(scissor) 3 3 5
5) 3 1
EU — 9.2 49.2_ =
(paper) 3 + g 5
5> 3 7
EU(stone) = 2.2 + 2 =L
(stone) 3 + g g

Therefore he will never choose to play stone since he will always be worse off
by doing so.

From Player2’s point of view we have the following situation if we know that
Playerl is playing {3, 1,0}

1 1
(scissor) 57 3
1 1 1
EU (paper) = 5_2.5 =3
1 1 1
EU(stone) = —3 - 3 +2- 5 =3

Thus, since the task of Player2 is to minimize the pay-off to Playerl, she
should never play scissor. At a first glance it can seem a bit odd that Play-
er2 is preferring paper over stone since the give the same expected pay-off.
However there is a reason for this, since the weights between them as they
are in this solution is solving the task of letting the best strategy of Playerl
be randomized play. In other words, if Player2 played a different random-
ized strategy over paper and stone, Playerl could benefit from changing his
strategy. Thus, the strategies found are a Nash equilibrium of the game.

3.7 Solving a Game During Play

We can now conclude that Brown’s theorem works in practice for solving a
game. However, for several reasons, the solution procedure is only suitable
for solution of a game before the game begins, and not for finding an optimal
solution during the play against an opponent. First of all, if we were to use
this procedure to find run-time solutions of games, we would not be able
to use the asynchronous selection procedure since this would mean that we
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would have to ask our opponent to tell us what decision she made before we
make our own, but since she is assumed to be both intelligent and rational
she would probably find that to be a bad idea.

Secondly, Brown’s iterative solution procedure is based on selection from a
maximum criterion or in other words, select what seems best and nothing
else. However, we have from [Myerson, 1991] that in order to reach optimal
play, one must follow an optimal randomized strategy, and make a weighted
selection over the expected utilities to avoid that a counting opponent will
know your deterministic strategy. The term counting opponent might need a
bit explanation. If we during a game always made the decision giving us the
maximum expected pay-off, an intelligent opponent would be able to keep
track of what decision is giving us the maximum expected pay-off at any
time and therefore use this knowledge in his decision.

Brown probably never intended his method to be suitable for implementing
what today is known as intelligent agents, but it would surely be interesting
if we could use the idea behind the iterative solution procedure to implement
such an agent. Brown’s theorem is only designed to solve games with one
decision so in the following chapter we shall try implementing intelligent
agents for one-decision two-player zero-sum games.
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Chapter 4

Learning One-Decision
Bayesian Networks

Having verified Brown’s theorem both in theory and practice, it is time to see
if we can apply the ideas in other areas of decision theory. Especially we are
interested in implementing intelligent agents with the ability to find optimal
strategies for any finite zero-sum game they are set to play. Since Brown’s
procedure provides us with the ability to solve a game it is natural to see if
we can integrate it into a scheme upon which we can implement intelligent
agents.

One of the most promising technologies of today when talking decision sup-
port systems is Bayesian networks as defined in [Jensen, 1996], so our main
task shall be to find out if we can integrate Brown’s solution procedure into
Bayesian networks.

4.1 Training Scheme

To introduce the iterative solution procedure into Bayesian networks we need
a training scheme corresponding to Brown’s method of counting cases.
From [Jorgensen, 2000] we get the definition of the training scheme called
fractional updating, also used and extended with the concept of fading in
[Olesen et al., 1992].

To ensure a clear understanding of fractional updating let us look at a simple
example where we apply the ideas. Say we have three variables A, B and C'
each with three states, where B and C are parents of A. We assume local-
as well as global independence in this network and we can therefore consider

P(Albi, ¢j) = (21, 22, x3)
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as a distribution we have reached by observing several cases where (B, C)
were in the state (b;, ¢;).

Now we have to express our certainty of this distribution by what is called a
sample size.

We include the sample size, s in a table

n= (n17n27n3) = (Sx178x278x3)

where nqy +no +n3 = s

Thus, we can say that n; is the number of times we have seen A in state 1,
eg if we choose s = 30 and have that v, = x5 = x5 = % we can say that we
have observed A in each state ten times. As can be seen, the larger sample
size, the larger certainty of the initial distribution.

Now when we see a new case, say the case where A is in state 2, and (B, C)

is in state (b;, c;) we count up s and no, yielding the new distribution

+ o4 ) ny 7’L2+1 ns
(.’L’l,.’L‘2,.’E3) <8+178+175—|—1>

As mentioned, [Olesen et al., 1992] introduced the concept of fading in Bayesian
networks, which we also used in [Jorgensen, 2000]. The purpose of fading is
to make the networks ”forget” what they have learned in the past so they
can easily adapt to a new context if this changes. To do so, a fading factor
q € [0 : 1] is introduced. This value is multiplied onto the sample size to
keep it from growing into extreme values.

In practice this means that when we run a case the new sample size is ¢s+1,
and running n cases yields a sample size of

q's+ 1—¢
Note that . . .
lim (q"s—l—i_q ) =
n—00 l—q (1—q)

This means that when running several cases so n grows large, the effective
sample size can be computed as 1/(1 —q). So if ¢ = 0.95 we have an effective
sample size of 20.

4.2 The MYELIN tool-box

In [Jorgensen, 2000] we developed a general tool-box, MYELIN, for working
with adaptive Bayesian networks. All tests concerning Bayesian networks in
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this thesis is created using a new version of MYELIN which is developed in
Java to work with the newly released HUGIN Java API. The new version of
MYELIN contains all of the old methods for performing probability updating
with and without fading and making decisions based on the modified prob-
abilities. Furthermore we have included methods for computing distances
between probability distributions, dumping expected utilities at any time
and various tools to simulate dices and coins.

Decision making in MYELIN can be performed in different ways, so we can
always do what is most suitable for the tests we need to perform. That is,
we have included methods for playing only on the maximum expected utility,
to be used in search of solutions, as well as we have methods making decisions
over all the expected utilities to avoid deterministic play.

Whether or not to use fading can be determined per experiment. Since fading
is a concept developed for adapting into changing contexts, we shall not use
it in the tests made for verifying Brown’s solution procedure in Bayesian
networks. However, we intend to carry out a single experiment to see if the
idea behind Brown’s theorem still holds, extended with the concept of fading,
making it even more suitable for adaptive behavior in games.

4.3 Experiments

As earlier mentioned the main purpose of this chapter is to find out if it is
possible to integrate Brown’s solution concept into Bayesian networks. We
know that Brown’s theorem corresponds to counting cases as is also the case
in fractional updating. In other words the task is to verify that intelligent
agents bases on adaptive Bayesian networks using fractional updating are
able to find a solution of the game they are set to play.

We have decided to use the same simple game as we did in the previous
chapter, namely the game of scissor-paper-stone with various modified utility
functions.

4.3.1 The Set-Up

In Figure 4.1 the Bayesian network used for this test is shown. As can be
seen it is very simple, the only things to say about it is that the node labelled
7 Utility” reflects the utility matrix which we will vary a few times during the
tests. In the initial probability distribution for the node ”"Opponent”, the
probability is % for both scissor, paper and stone.
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-

Figure 4.1: The Bayesian network used for Scissor-Paper-Stone

Utilities
In the first experiment we want to test a symmetric version of the game, so

we use the same utility matrix as in Section 3.4.
For convenience we have included the utility matrix here

ac i 7

_[3 —2 OJ

With these utilities we have already computed a Nash equilibrium in Section
3.3 and verified it in practice in Section 3.4 so we expect the outcome of this

experiment to be a situation where we have our ”Opponent” distribution to
be 111
P(Opponent) =< =, =, =
(Opponent) = { 3.5}
for both players.

For training purposes we use fractional updating to update the probability
distribution of the node ”Opponent”. Both players are allowed to adapt at
the same time, so the interesting question is whether they will converge a-
gainst the same final probability distribution when the game is symmetric,
and if they do so, is this distribution a Nash equilibrium ?

For decision making we follow Brown’s idea and let the players choose only
the decision with maximum expected utility. From [Myerson, 1991] we know
that this is not the optimal way of playing since it is possible for our opponent
to predict our strategies at any time by keeping track of the same data
as we do. However, we showed in [Jorgensen, 2000] that is does not make
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significant influence on the final distributions if we play only on the one with
the maximum expected utility or if we use the expected utilities to weigh the
possible choices.

We let the players face each other 50.000 times which should be more than
sufficient for a convergence to appear. The outcome of the games is that
Playerl has lost 94 gambling units to Player2. Since a difference of 94 gam-
bling units out of 50.000 games is sufficient close to zero, this verifies the fact
that the game in this test was symmetric and the value therefore is zero for
both players.

4.3.2 Results

Now let us look at the final probability distributions for the players. Playerl
ends up with the following

Opponent = {0.3304, 0.5038, 0.1659}

Similarly we include the final distribution for Player2

Opponent = {0.3295, 0.5069, 0.1636}

As can be seen, the players end up with distributions that are very much
alike. The Euclidean distance between the results is calculated to be

distp(P1, P2) = 1.5912 x 10°

This verifies that we can use adaptive Bayesian networks with the train-
ing scheme of fractional updating to implement adaptive agents for zero-
sum games with one decision since both agents converged against the pre-
computed Nash equilibrium.

To see how this looks from a players point of view we try to dump the
expected utilities for Playerl at the end of the series of games. These are
shown below

Me = {0.0062, 0.0014, -0.0165}

The interesting thing is that they are close to zero - the value of the game -
for all possible choices, meaning that when the opponent is using the strategy
shown above, the player facing him is indifferent about what choice to make.
In other words, it is not more beneficial to choose one over another.
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4.3.3 Another Utility Function

To verify this interesting tendency we try to change the utility function and
repeat the experiment once again. The utility matrix used for this second
experiment can be seen below.

0o 3 =3
A=1|-3 0 2
3 =2 0

As before we repeat the game 50.000 times and the results turn out as shown
below.
From Player1’s point of view the final distribution is as follows

Opponent = {0.2513, 0.3750, 0.3737}

And from Player2 we get

Opponent = {0.2527, 0.3737, 0.3736}

By using the formulas from Section 3.3 we find the solution to be

133
P(hand):{z,g,g}

So again we get a confirmation that adaptive Bayesian networks can solve
the same problems as Brown’s procedure, and even solve them while playing.
As in Brown’s solution we can also read out an approximate value of the
game by calculating the average winnings for a player.

The Euclidean distance between the two players probability distributions
after this experiment is

distp(P1, P2) = 3.7084 x 10°°

which smaller than in the first experiment. However, observations during
the games show us that the distance is varying all the time, so this does
not say anything like ” There is even more convergence in this version of the
game, since the final distance is smaller”. More likely we should conclude
that the game ended at a moment where the distance was small in the latter
experiment.
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Oscillations in Distance

To see how the distance between the probability distributions is varying
during the experiment, we try starting the players out with two completely
different distributions to get a high distance in the beginning. Playerl gets
the following

Opponent = {1, 0, 0}

while Player2 is started out with

Opponent = {0, 0, 1}

We repeat the game 10.000 times and get the variation pattern included in
Figure 4.2

0.01 T T T T T T T - T T
Euclidean distance
0.008 E
0.006 E
0.004 E
0.002 E
0 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 4.2: The Euclidean distance during the games

As can be seen we get a pattern similar to the one we saw in Section 3.4 where
the players are moving in order to each other all the time which results in
some tiny oscillations around a distance of zero.
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4.3.4 Asymmetric Games in Bayesian Networks

We ended our experiments with Brown’s solution procedure with a verifi-
cation of it working on asymmetric games as well as symmetric. We shall
in the following see if we can use adaptive Bayesian networks for solution of
asymmetric games. This is done to see if the implemented agents are capable
of finding their own optimal strategies when they are different from those of
their opponent.

We use the same utility function as we used to verify Brown’s procedure,
meaning that our utility matrix is as follows for Playerl

11 =3
Ap1 = -1 =2 2
3 -2 1
and for Player2 we have
-1 1 -3
Ap2 =|-1 2 2
3 -2 -1

The reason for including two utility matrices in this experiment is that it
is not possible to represent asymmetric games in a single Bayesian network
as it is with symmetric games. Thus we have two versions of the Bayesian
network in Figure 4.1 but they only differ on the utilities.

We repeat the game 10.000 times which have shown in the other test to be
more than sufficient for a convergence to appear

Playerl ends up with the following distribution

Opponent = {0.0007, 0.6252, 0.3741}

and Player2 ends with
Opponent = {0.5044, 0.4931, 0.0026}
Note the Playerl’s distribution is reflecting the behavior of Player2. There-

fore the solution we can read out here is that the randomized strategy of
Playerl is approximately

11
P(hand)m = {5, 5,0}
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and for Player2 we have

5 3
P(hand)ps = 40,2, 2
(CLTL )PZ {07878}

which we showed in Section 3.6 is a Nash equilibrium.

In an asymmetric game we can of course not expect the distance between the
two distributions to be zero since the players must use different strategies, but
we can still expect the distance to be anchored around the distance between
the two exact solutions. We compute this distance to be

distp(P1 P2epact) = Z(x — Yi) 2 raet = 12 + 12 + §2 _ 18
exact, exact i 7 v/ exact 2 8 8 32
In Figure 4.3 we have plotted the distance varying over the games together
with the value we just computed. This experiment is carried out to verify
that even if the game is asymmetric, the behavioral pattern for the players
is the same.
We see from the figure that the distance is actually oscillating around the
pre-computed value and the pattern is the same as in Section 3.6 where
the oscillations almost fails to fade out. However, Brown’s theorem is not

mentioning anything about the speed of convergence so this is not a problem.

4.3.5 Fading

As a final experiment with the integration of Brown’s method into one-
decision Bayesian networks we try extending the training scheme with fading.
This is done to verify that intelligent agents using fading are still capable of
solving the games they are set to play, even though they are using fading.
The reason that we are interested in such an experiment is that if we can
verify this, we have agents that can solve a game as suggested by Brown,
but furthermore they are able to adapt to a new behavior if the opponent is
changing his strategy.

Again we use the symmetric version of the game. We set the fading factor
to be ¢ = 0.99 yielding an effective sample size of 100. The game is repeated
10.000 times and the final distributions are as follows

Playerl has found Player2 to be playing

Opponent = {0.3246, 0.4915, 0.1839}
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Figure 4.3: The Euclidean distance during the games

and Player2 has found Playerl to be playing

Opponent = {0.3247, 0.5120, 0.1634}

So we get a confirmation of Brown’s solution procedure integrated in Bayesian
networks is still valid if we use the concept of fading.

4.3.6 Summary

We have now shown that adaptive Bayesian networks can be used for solution
of finite two-person zero-sum games with one decision. This is interesting in
the area of intelligent agents since you can place an agent based on this
technology in any two-person zero-sum game and he will be able to find the
optimal randomized strategy for this game.

We mentioned earlier that this optimal strategy is optimal only when the op-
ponent is intelligent and rational. Thus, if we face an opponent playing the
same static strategy in all the games we could benefit from playing a strat-
egy that is maximizing our pay-off against this special opponent. Brown’s
solution procedure is naturally unable to exploit potential weaknesses of op-
ponents, but we have shown in [Jorgensen, 2000 that when using fractional
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updating for adaptive Bayesian networks we get agents that are able to adapt
to the strategy that is optimal against any opponent they are facing.
Furthermore, we have verified that we can extend Brown’s solution proce-
dure with the concept of fading and it is still valid. Thus, we get intelligent
agents that can adapt to a changing strategy of the opponent, and thereby
also exploit potential weaknesses.

It seems so far that Bayesian networks as foundation for intelligent agents
for two-person zero-sum games is a very good set-up. If we could apply these
ideas to more complex games we would have a very strong representation of
adaptive intelligent agents. In the following chapter we shall try doing so.
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Chapter 5

Learning Two-Decision
Bayesian Networks

The main task of this chapter is to find out if we can apply the ideas from the
previous chapters to more complex games. Brown’s theorem is only valid for
games with one decision but having applied the idea into adaptive Bayesian
networks it seems reasonable to assume that we can use it for more complex
games, for example a game with more than one decision.

To verify this assumption we have designed a game, two-person high/low for
the purpose.

5.1 The Rules for Two-Person High/Low

e Both players have two ”3-sided” dices with numbers 1 to 3
e Both players pay 1 gambling unit to participate

e The game starts with both players throwing both dices without showing
the result to the opponent

e After having viewed the result, both players must choose a dice which
they will show to the opponent

e Finally the players must make their bids. Each player has to guess if
the sum of his dices is higher or lower than the sum of his opponents

e If one player is playing ”Low” and the other is playing ”High” the game
is a draw

e If the sums are equal the game is a draw
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e The winner is the one with the correct bid
e The winner takes the pot

As can be seen the game has lots of possibilities for ending with a draw, and
therefore it is probably not a game suitable for settling who is to buy the
next round of beer or so. However, this does not matter in our case, since the
game is designed specifically to be suitable for verifying simple game theoretic
concepts in a more complex set-up. Even though the game seems simple at a
first glance, it is actually pretty complex in theoretical terms since the game
includes both more than one decision per player and private information -
actually the players can choose what part of their information they want to
keep private. So after all the game seems complex enough to fulfill its task,
namely being a complex test bed for adaptive behavior in games.
Unfortunately, the game being so complex makes it very difficult to pre-
compute a Nash equilibrium of the game, so we will instead have to see if
we can verify the results as being a Nash equilibrium by arguing that the
strategies reflect intelligent and rational behavior.

5.2 Bayesian Model

With the basic rules outlined in the previous section we see that the game is
symmetric, and since both players are to make their bids simultaneously we
need only a single Bayesian network which both players can share. Of course
they get their own private instant of the network in which they can perform
probability updating.

The network we use can be seen in Figure 5.1

A few notes about the network design might be needed.

The nodes MyDicel, MyDice2, OppDicel and OppDice2 are used to enter
the value of the dices we get from MYELIN. MyHand and OppHand are used
to transform the two dices into a hand type which can be one of the following:

7 1_177 , ” 1_277 , 7 1_377 , ” 2_277 , ” 2_377 or 7 3_377

The reason for performing this translation from the two dices into a hand
type is to save states in the table where we perform probability updating
since there is no reason to make a distinction between the case where Dicel
is 71”7 and Dice2 is ”2” and the case where Dicel is ”2” and Dice2 is ”1”. The
leftmost utility node is prohibiting a player from showing a dice he does not
have, and the decision nodes Show, OppShow, MyBid and OppBid should
be self explaining.
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Utility

Figure 5.1: The Bayesian network used for two-person high/low

The utility node in the middle is used to represent the utility function as
defined in the rules of the game.

5.3 Experiments and Results

Having designed a Bayesian network representing the game, we are now ready
to implement two intelligent agents based on this network. As usual we use
MYELIN in order to perform the probability updating, computing distances
and printing the results.

The adaptive nodes are OppShow and OppBid which we update according to
the observations during the game. We have decided to use perfect hindsight
meaning that both players have to show their hidden dice after each game.
With the simpler games we found that 10.000 iterations of the game was
more than sufficient for a convergence to appear. However, since we can
expect a slower convergence now when we have two adaptive nodes at the
same time, we raise the number of experiments to 50.000.

As a final note before looking at the results we mention that we actually use a
selection procedure a little different from the one Brown suggested for games
with one decision. Instead of always selecting the node with the maximum
expected utility, we use a weighted selection procedure. Why this is done
will be discussed in the end of this chapter where we have introduced the
problems forcing us to use this new procedure.
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5.3.1 Final Potentials

After the 50.000 games we first note that Playerl has won 4953 gambling
units and Player2 has won 4872. Since they have won them from each other
we can also say that Playerl has won 81 gambling units from Player2. Since
81 out of 50.000 is sufficiently close to zero, we take this as a confirmation
of the game being symmetric. Furthermore we should note that it is only
approximately 20% of the games where a winner is found, the rest of the
games are draws. This is also expected since the game is designed in a way
such that draw games easily occur.

Now let us look at the final potentials for each of the players. Playerl’s
potential over which dice Player2 is showing given a hand type is shown in
Figure 5.2 and the same potential from Player2 is shown in Figure 5.3.

A short note on how to read the figures might be needed. We have the parent
state in the rightmost column telling us which hand type our opponent had,
and the three data columns in the distribution tells us which dice she will
tend to show in this parent situation. The states are 717, 72” and ”3”.

potential (OppShow | OppHand)

{
data = ((100) % 1-1
( 0.000792098 0.999208 0 ) % 1-2
( 0.50015 0 0.49985 ) % 1-3
(010) %h 2-2
( 0 0.999248 0.000751614 ) % 2-3
(001)); % 3-3

}

Figure 5.2: Player!’s distribution over Player2’s choice of dice to show

potential (OppShow | OppHand)

{
data = ((100) % 1-1
( 0.00105013 0.99895 0 ) % 1-2
( 0.499776 0 0.500224 ) % 1-3
(010) %h 2-2
( 0 0.999068 0.000931842 ) % 2-3
(001)); % 3-3

}

Figure 5.3: Player2’s distribution over Playerl’s choice of dice to show
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First of all we see that the two potentials show the same overall pattern. We
shall look further into the distance between the final distributions later on,
but for now we conclude that they are alike.

We have three trivial hand types, 71-17, 72-2” and ”3-3” where there is no
actual choice of which dice to show, as can be seen these are updated correct.
Next we can see that if one of the agents have a hand with a dice showing
727 this dice is shown to the opponent. This is a rational behavior since the
opponent will have no clue whether the hand is "High” or ”Low”, since it
can be either of type 71-2”, 72-2” or 72-3”.

The last possible hand is ”1-3” and we can see that the agents are playing
a randomized strategy, {%, %} . This is also what we could expect since the
utility function is symmetric and there is no benefit of trying to win on a
high hand compared to try winning on a low. Therefore there is no reason
to prefer showing ”1” over ”3” or the other way around.

Now let us try looking at the distribution of the other adaptive node, namely
OppBid. It is a bit more complicated to read data out from this one so an
example might be needed

potential (OppBid | Show OppHand OppShow)

data = (((( 0.00224215 0.997758 ) % 1
(C 0.5 0.5) % 1

Figure 5.4: Ezample

If we look at Figure 5.4 it must be read in the following way: The first data
line tells us that in the situation where we have showed our opponent a 717,
she has got a hand of type ”1-1” and she has shown us ”1” she will most
likely bid on ”Low”. That is, the first number is the probability that she is
playing ”High” and the second number is the probability that she is playing
" Low”.

The final distributions over OppBid from the two players are included in
Figures 5.5 and 5.6.

Note that we have trimmed all the impossible configurations away from the
figures, eg the ones where the opponent is showing a dice she does not have,
like for example the situation ”1 1-1 2”. Due to the nature of the Bayesian
network these are represented when running the test, but since they are never
chosen and therefore not counted up, we have removed them from the figures
to save some space.
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potential (OppBid | Show OppHand OppShow)

data = ((((
((
(

((

[eNeNeoNelNolNoNoNoNeoNooNeoRoRoNoNooBoNoNoRoNoReo R oo Ro o]

.00224215 0.997758 )
.5 0.5 )

.502936 0.497064 )
.997554 0.00244618 )
.998013 0.00198728 ))
.99774 0.0022604 )
.998901 0.0010989 )
.583333 0.416667 ))
.997852 0.00214777 )))
.000832501 0.999167 )
.5 0.5 )

.000412337 0.999588 )
.484292 0.515708 )
.508264 0.491736 ))
.482741 0.517259 )
.999593 0.000406901 )
.6875 0.3125 ))
.999209 0.000791139 )))
.00186986 0.99813 )
.416667 0.583333 )
.000942685 0.999057 )
.00196232 0.998038 )
.00157928 0.998421 ))
.00184094 0.998159 )
.497269 0.502731 )
.611111 0.388889 ))
.998285 0.00171468 ))));

Figure 5.5: Player1’s view of Player2
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potential (OppBid | Show OppHand OppShow)

€qq
q¢

(

€4

data =

[eNeNeoNelNolNolNoNoNoNooReoRoRoNoNoloBoNoNeoRoNoReo R oo ool

.00222618 0.997774 )
.5 0.5 )

.496226 0.503774 )
.99753 0.00247036 )
.998192 0.00180766 ))
.997736 0.00226449 )
.99891 0.0010898 )

.5 0.5 ))

.997966 0.00203417 )))
.000807754 0.999192 )
.5 0.5 )

.000421017 0.999579 )
.490782 0.509218 )
.492478 0.507522 ))
.500167 0.499833 )
.999603 0.00039733 )
.5 0.5 ))

.999192 0.000807754 )))
.00182749 0.998173 )
.416667 0.583333 )
.000938086 0.999062 )
.00237192 0.997628 )
.00150602 0.998494 ))
.00185874 0.998141 )
.502625 0.497375 )
.583333 0.416667 ))
.998194 0.00180636 ))));

Figure 5.6: Player2’s view of Playerl
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By looking at the figures we see that they share the same overall pattern or
in other words, they are converging against the same randomized strategies.
Again, we shall return to considerations about the distance later on.

In the following we shall see if we can verify the strategies in Figures 5.5 and
5.6 as a Nash equilibrium.

5.3.2 Pollution

Notice that in some situations the agents seems to have been playing by dif-
ferent randomized strategies, eg a situation like 72 2-3 3”. Does this indicate
that they have converged against different randomized strategies or can we
find a better explanation ?

We shall refer to this phenomenon as pollution. It occurs due to the ini-
tial distribution where the probabilities for all possible choices are equal.
Therefore it can happen that if you have a hand of type ”2-3” you choose
to show the ”3” since you have not yet discovered that it is beneficial to
always show the 72”7. Of course your opponent will take these cases into
account, and count up his probability distributions according to what he is
observing. Unfortunately, it turns out that all strategies where you have a
727 and does not show it are dominated and therefore these configurations
are never played again so the probabilities remain unchanged. For example
in the situation "2 2-3 x”, Playerl is only showing ”3” three times during
the 50.000 games, in contradiction to showing ”2” 6144 times.

We conclude that we can not expect configurations based on dominated s-
trategies in a parent node to have a reasonable distribution, and we refer to
this phenomenon as pollution.

5.3.3 The Strategies

As a first step in verifying the final distributions as a Nash equilibrium we
shall try looking at some of the configurations and see if we can explain the
suggested strategies as reflecting intelligent and rational behavior.

The first configuration we look at is also the first in Figure 5.5.

We see that in the situations "x 1-1 1”7 both players are consequently playing
"Low”. Is this rational ?

If your hand is ”1-1” you can never loose by playing "Low” and you can never
win by playing "High” so it seems reasonable that you would only want to
play "Low”. Furthermore, if your opponent realizes that you are playing
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deterministically in this configuration she cannot use this to win since she
can never have a lower hand. One could argue that she could just play ”High”
to ensure a draw, but she have no chance of knowing if the 717 we showed
her indicates that we have a hand of type ”1-1” and ”1-3” so there is a risk
involved in playing "High” for some hand types, and still it can never lead
to a winning.

Reverse arguments can of course be used for situations of the kind ”x 3-3 3”.

The most interesting situations occur when a ”2” is showed since this intro-
duces the most uncertainty for the opponent.

We try looking at the situation ”2 1-3 1”7 which indicates that we have showed
72" to our opponent, she has a hand of type ”1-3” and she has shown the
”1” to us. From the figures we see that she is indifferent between playing
"High” and "Low” which is also the case if she has shown her ”3” to us. Is
this rational 7

Since we showed her a 72" she does not know whether we have ”71-2”7, 72-2”
or 72-3”, so all she can conclude is that the sum of our hand is either one
smaller than, the same as, or one larger than her hand. Furthermore, the
probabilities for our hand being smaller or larger are the same, and it is less
probable that we have a hand of type 72-2”. The expected utility of us hav-
ing the same sum is zero, so this difference in probability is removed, and we
can therefore conclude that it is rational to be indifferent between ”High”
and ”Low”.

The same kinds of arguments as we have seen here can be used to explain
the rationality of all the remaining unpolluted configurations, so still it seems
that the strategies from the final potentials are satisfying what it takes to
be optimal strategies. As a further verification we shall try looking into the
expected utilities a player has when he has observed these final strategies as
being the behavior of his opponent.

5.3.4 Expected Utilities

In this subsection we shall look into what the final potentials means for the
expected utilities for the players. We know from earlier chapters that if
we have an equilibrium the players must be indifferent about their possible
choices. However, in this game the players have some private information, so
a player might know that he can never win by playing on "Low” in a given
situation, and this will of course influence on his expected utilities.
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Show

First we try looking at what dice we should show in any situation. As earlier
mentioned the cases ”1-17, 72-2” and ”3-3” are trivial in terms of which dice
to show, so we shall not consider them here. We shall consider ourselves as
Playerl and we shall discuss the situations from our own point of view.

In the situation where we have a hand of type ”1-2” our expected utilities
are as follows

1-2 : Show = {-0.1095, 0.0586, -4.6663}

We see that we should show ”2” which we argued in the previous section is
a rational behavior.

For the situation ”71-3” we are indifferent between 71”7 and ”3” as can be seen
here

1-3 : Show = {-0.1094, -5.2216, -0.1097}

which again verifies our earlier argumentation.
Finally we look at the situation ”2-3”

2-3 : Show = {-4.6663, 0.0531, -0.1098}

and we see the symmetry with the situation ”1-2” where we have the same
expected utility of showing ”2”, and the same expected utility of showing
”1” as we have for showing ”3” in this situation.

Note that the expected utility varies with the hand type. If we get a hand
of type 71-3” our expected utility of showing ”1” or ”3” is smaller than the
expected utility of showing ”2” given the hand types ”1-2” and ”2-3”. This
is reasonable since ”1-3” sums to four which is the "mean” value of the game
and therefore it is hard to know whether to play on "High” or ”Low” at this
moment when we have not seen any indication of our opponents hand. For
completeness sake, we include the expected utilities for showing ”1” given
71-17,72” given ”2-2” and ”3” given ”3-3”

EU(1]1-1) = 0.1118
EU(2]2-2) = -0.2215
EU(313-3) = 0.1116
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and once again we see the symmetry between ”1-17 and ”3-3”.

By looking at all these expected utilities we see that we can expect the highest
winning by getting one of the extreme hand types ”1-1” or ”3-3” which are
also the hardest to get.

MyBid

Now we turn the focus to the expected utilities for MyBid. There are too
many cases to consider them all but we shall try selecting a few of them,
covering some of the interesting aspects.

Case 1 - Indifference

As earlier mentioned, in an equilibrium of a game, the expected utility of all
possible choices must be the same. As also mentioned, in this game both
players have private information so we can not always count on this to be
true. However, situations still occur where we have no chance of using this
information as insurance against loss and in these situations our expected
utilities should be the same for both our choices.

We consider the situation where we have a hand of type ”1-2”, have shown
our opponent the ”2” and she has shown us a”1”. Then our expected utilities
are as follows

MyHand : 1-2, Show : 2, OppShow : 1

MyBid = {-0.2416, -0.2414}

As can be seen, we are indifferent between playing ”High” or ”Low” in this
situation which indicates that the final distributions are in an equilibrium.

If we had shown our opponent the ”1” the situation would have been

MyHand : 1-2, Show : 1, OppShow : 1

MyBid = {-0.4973, -0.4971}

but we are still indifferent about the choices, even though the expected utility

here is smaller due to the fact that we showed ”1” in a situation where we
had a 72”.

Case 2 - Symmetry
As earlier described, the game has a symmetric nature meaning that we can
expect the same situations to occur in the low and the high end.
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Let us consider the case where we have a hand of type 71-2”. We follow our
strategy and show the ”2” to our opponent, she is also showing a ”2” to us.
This leads to the following expected utilities

MyHand : 1-2, Show : 2, OppShow : 2

MyBid = {-0.4964, 0.1037}

We see that we have a positive expected utility by playing "Low”. Due to
the symmetric nature of the game, the expected utility of playing ”Low” in
this situation should be the same as the expected utility of playing ”High”
in the high end of the game.

We consider the situation where we have ”2-3”, have showed the ”2” to our
opponent and have seen a ”2”. Then we have the following expected utilities

MyHand : 2-3, Show : 2, OppShow : 2

MyBid = {0.0968, -0.5033}

As we can see, the expected utility of playing ”"High” in this situation is
almost the same as the expected utility of playing "Low” in the previous
situation, so this verifies the symmetric nature.

Case 3 - Indifference and Symmetry

Here we try looking at a case where we have a hand of type ”2-2”, or in other
words a case that sums to four - the mean of the game. Thus, we are in a
situation where our choice is completely dependent on our opponent.

First, if she is showing us a ”1” the situation is as follows

MyHand : 2-2, Show : 2, OppShow : 1

MyBid = {0.0008, -0.4995}
As we can see we shall then play on "High”. This seems very reasonable
since the maximum sum that she can have is if her other dice is 73", and

then her sum is four - the same as our own. Thus, we can never loose by
playing ”High”.

If instead our opponent had shown us a ”2” we would have this situation
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MyHand : 2-2, Show : 2, OppShow : 2

MyBid = {-0.3996, -0.3996}

where we can see that we are indifferent between ”High” and ”Low”. This
is again an indication of the strategies being an equilibrium, since in the
situation where we are maximum uncertain, the behavior we have seen from
our opponent does that we remain indifferent between our possible choices.

And finally if our opponent had shown us a ”3” we would have the following
situation

MyHand : 2-2, Show : 2, OppShow : 3

MyBid = {-0.4998, 0.0006}

which is the opposite of where she showed us ”1”. Again a confirmation of
the symmetry being kept.

Case 4 - Extreme hand types

As a final experiment with the expected utilities we try looking at the situa-
tion where we have got one of the extreme hands ”1-1”7 or ”3-3” - they show
the same tendencies so we shall only look at 71-1".

Of course we can only show 71" so we the factor we vary is what we see from
our opponent.

If she is showing us a ”1” we get the following expected utilities

MyHand : 1-1, Show : 1, OppShow : 1

MyBid = {-0.4989, 0.0018}
We see that our expected utility of playing ”Low” is approximately zero, in-
dicating that we can expect a draw. This seems reasonable because the fact
that our opponent showed us a ”1” indicated that she must have either ”1-

1”7, which leads to a draw, or ”1-3” which will make her play "High” in this
situation where she has seen a ”1”. Thus, in both cases we can expect a draw.

If she is showing us a ”2” the situation is like this
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MyHand : 1-1, Show : 1, OppShow : 2

MyBid = {-0.8003, 0.1997}

We see that we have a positive expected utility on playing ”Low”. We know
that we can never loose by playing ”Low” and having ”1-1”, and we know
that when our opponent has ”1-2”, shows the ”2” and sees a 7”1”7, she is
indifferent about playing ”High” or ”Low”.

Furthermore, when she is showing ”2” we know that she has either ”1-2”,
72-2” or 72-3”. From the nature of the game (and the behavior we assume
from a 3-sided dice, without ever having seen one in action) we know that
it is twice as probable getting ”71-2” or 72-3” as it is getting ”2-2”. So the
chance of our opponent having a ”71-2” is %, and if so, there is 50% chance
that she is playing ”Low”. This explains that the expected utility of playing
"Low” is approximately é

Finally, if she is showing ”3” the situation is

MyHand : 1-1, Show : 1, OppShow : 3

MyBid = {-0.9976, 0.0024}

We see that we can expect a draw by playing ”Low”, and are sure to loose if
we are playing ”High”.

This concludes the examination of the expected utilities we get when using
the networks we have from the intelligent agents. As promised, we now move
on to examining the distance between the final distributions.

5.3.5 Distance

As a final experiment with the game ”two-person high/low” we shall try
observing the Euclidean distance between the distributions of OppShow and
OppBid during the games. We have done this for all the other games, and
seen that the distances are always going against zero.

The distance is plotted in Figure 5.7.

As can be seen the distance between the two distributions over OppShow is
approaching zero, but is never reaching it during the 50.000 games.

We can also see that the distance between the two distributions over OppBid
is converging, but apparently not against zero, but a value around 0.09. In
the game scissor-paper-stone we saw that the distance was reaching zero,
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Figure 5.7: The distance

meaning the exact same distributions several times during the games. That
it is converging against a value other than zero is an indication of the po-
tentials being polluted. The dominated configurations that are modified in
the beginning and never touched again are introducing a constant pollution
factor that the distance cannot get below, so with this in mind it is not a
problem that the distance is converging against a value larger than zero.
Furthermore, the nodes have several more states than in scissor-paper-stone,
so to compensate for the number of states in the nodes when looking at
the distance, we introduce a more fair distance measure for this purpose, the
average Euclidean distance during the games divided by the number of states
modified by the adaptation. We then get the following distances
Scissor-Paper-Stone:

diStE(PlOpponenta PQOpponent) =8 X 1075
High/Low:

diStE(PlOppShowaPQOppShow) =1x 1074
diStE(PIOppBid; P2OppBid) =1x 10_3
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So we have that even though the distances in Figure 5.7 are not getting as
close to zero as in the game scissor-paper-stone, we can explain why this is so,
and when computing average distances, the distance between the unpolluted
potentials over OppShow is getting almost as close to zero as the distance
between the Opponent potentials in scissor-paper-stone.

5.4 Summary and Discussion

In this chapter we have explained the rationality of several strategies, se-
lected to be covering the interesting cases, and we have still not found any
indications that the final distributions should not be a Nash equilibrium.
Furthermore, by looking at the expected utilities, we have found that the
symmetry of the game is kept intact and that in the situations with maxi-
mum uncertainty, the final distributions represent randomized strategies that
make random play the best strategy of an opponent.

Therefore we conclude that the final distributions are a Nash equilibrium of
the game ” Two-person high/low”.

As mentioned in the beginning of the chapter, we were forced to use a new
selection procedure in this experiment. The reason we had to do so is pollu-
tion in the dominated configurations. This is a problem because even though
the configurations are dominated, the probability of them being chosen is n-
ever zero, only very close to zero. This fact combined with pollution does
that the polluted values are taken into account when computing the expected
utilities, meaning that a value very close to zero is added to the some of the
expected utilities. Imagine that this happens in a situation with a choice
between two decisions that should have the same expected utility, and one
of the choices is added a polluted result and the other added an unpolluted.
Then we have that the expected utility of one of the decisions is slightly larger
or smaller than the other, so Brown’s maximum selection criterion will re-
sult in deterministic play where a random selection was supposed to be made.

There are more than one solution to this problem. The solution we chose is to
use a selection procedure similar to one of those we tested in [Jgrgensen, 2000].
The idea is that as follows

e Utilities that are closer to zero than some threshold are set to zero

e If you have a choice between decisions with both positive and negative
expected utilities, make a weighted selection over only the positive
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e If all the expected utilities are positive, make a weighted selection over
all of them

e If all the expected utilities are negative, make a weighted selection over
all of them

In [Jorgensen, 2000] we showed that such a selection procedure is giving the
same results as when always selecting the one decision with highest expected
utility.

Another solution could be to introduce an interval around the expected util-
ities in which variance is said to does not matter. In this way two expected
utilities varying only in this interval would be treated as equal

What we have actually shown in this chapter is that we can make a slight
modification to Brown’s solution procedure for finite two-person zero-sum
games with one decision, making it capable of solving finite two-person zero-
sum games with more than one decision.
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Chapter 6

Conclusion

The intention with this thesis was to continue the work from [Jgrgensen, 2000]
where we made the initial experiments, indicating that it is possible to
implement intelligent agents for games based on Bayesian networks. In
[Jorgensen, 2000] we found that for the game of spoofing which we used
as a test-bed, the intelligent agents converged against the same randomized
strategies, and furthermore we were able to verify these strategies as reflect-
ing intelligent and rational behavior.

However, we were not able to verify these strategies as being the solutions or
a Nash equilibrium of the game, so one of the main purposes of this thesis
was to actually prove that intelligent agents based on Bayesian networks are
capable of solving any finite two-person zero-sum game.

To do so, we have looked deep into the work of George W. Brown and Julia
Robinson whom have respectively suggested and proven a recursive solution
procedure for finite two-person zero-sum games with one decision. We have
in detail studied and described as well the procedure as the proof hereof,
and even made various experiments to verify that the procedure is capable
of finding the desired solutions.

The next step was the integration of this solution procedure into Bayesian
networks. We found that it was similar to the training scheme, fractional
updating, as also used in [Jorgensen, 2000].

We have shown that intelligent agents based on adaptive Bayesian networks
are capable of finding the same solutions as Brown’s recursive solution pro-
cedure. We have also verified these solutions as being Nash equilibria of the
games we have used as test-beds. Furthermore, we have shown that we can
extend the scheme of fractional updating with the concept of fading and still
implement agents able of finding the solutions.
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Thus, we have found a way to incorporate Brown’s solution procedure into
intelligent agents which then are not only capable of solving any finite two-
person zero-sum game with one decision, these agents are also capable of
exploiting potential weaknesses of their opponents. The latter follows from
the fact that agents using fading are able to adapt to any context they are
placed in, or in other words they are able to discover sub-optimal play of
an opponent and take advantage of it. Brown’s original procedure is only
designed for finding optimal strategies against intelligent and rational oppo-
nents and therefore it is not capable of finding strategies that are optimal
against sub-optimal play.

After having shown that we are able to incorporate Brown’s solution proce-
dure into intelligent agents that are able to find optimal strategies of finite
two-person zero-sum games with one decision against any opponent they are
facing, and able to find Nash equilibria of the same games by letting them
face themselves, we decided to move on to more complex games.

Our motivation for doing so was that we hoped we would be able to show
that our implementation of Brown’s solution procedure as intelligent agents
is able to solve even more complex games than the ones it is designed for.
Our idea was to solve a finite two-person zero-sum games with more than
one decision.

For the purpose we designed the game ”two-person high /low” which not only
introduces more than one decision, but also private information. Unfortu-
nately the solution space for this game was too huge for us to compute, so
the intention was to read out the suggested solutions, if any, and try verifying
them as a Nash equilibrium of the game.

Due to what we defined as pollution caused by dominated strategies, we had
to modify the selection criterion from Brown’s solution procedure.

With the new selection criterion we showed that intelligent agents based on
Brown’s solution procedure integrated in Bayesian networks are converging
against the same randomized strategies when set to play against each other.
Furthermore, we examined the suggested solutions in detail, and to the best
of our knowledge, we have verified them as being Nash equilibria of the game
”two-person high /low”.

Thus, we have shown that intelligent agents based on Bayesian networks are
capable of solving finite two-person zero-sum games.



Chapter 7

Future Works

As the final words in this thesis, we outline some aspects that we still have not
covered in our work and which we find so interesting enough to be mentioned.

All the games we have considered until now have been of the type two-person
zero-sum games, so it could be interesting to see how well the ideas from this
thesis apply to other kinds of games. Furthermore we have not yet considered
a game without perfect hindsight which for sure would introduce some inter-
esting problems and considerations. One could easily imagine that methods
of Brown’s principle will fail to solve the games as soon as perfect hindsight
is not present.

Another interesting subject when talking new game types is game with more
than two participants. We can easily imagine games with for example three
participants where our training methods still will work correct. However, we
will need to complicate our model, so problems with verification of suggested
solutions will have to be taken care of, which leads to the next point.

As soon as the games get more complex we have a hard time verifying the
solutions we can read out as actually being solutions. More effort has to be
put into computing the exact solutions of the games we consider so we can
formally verify our results.

The problems we had with the selection criterion in Brown’s theorem need to
be worked with. We know that we must play randomized strategies over our
possible choices based on a set of weights. However, we have a problem when
we have both positive and negative expected utilities at the same time, which
we will have to weigh according to each other. The solutions we proposed
when we discussed the problems are for sure subject to optimization.
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By experiments and discussion alone, we have shown that the principles from
Brown’s solution procedure can be used to solve games with more than one
decision. A formal proof of this result would be desired.
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