Arnaud Germis

An Open Home Automation System
Analysis And Implementation of
New Solutions for HomePort

Master Thesis
Sept 2009 - May 2010

Department of Computer Science
Aalborg University

Selma Lagerlofs Vej 300
DK-9220 Aalborg @

DENMARK

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:

An Open Home Automation System -
Analysis And Implementation of
New Solutions for HomePort

PROJECT PERIOD:
SSE3-SSE4,
Sept 15t 2009 -
May 25" 2010

PROJECT GROUP: d623a

AUTHOR: Arnaud Germis

agermis@gmail.com

SUPERVISOR: Ulrik Nyman

NUMBER OF COPIES: 3
REPORT PAGES: 97
APPENDIX PAGES: 13
TOTAL PAGES: 110

iii

SYNOPSIS:

More and more devices of our daily life
are computer-based. The normal develop-
ment direction has turned from isolated and
purpose-specific devices to collaborative and
multi-purpose devices.

Many technologies were developed in paral-
lel. Furthermore, many categories of devices
have their own standards and means of com-
munication.

The objective of this work is to provide a
home-automation system. The system is
based on the design of the HomePort system.
It was designed to offer a distributed commu-
nicating architecture that provides an added
value. It is open to new vendor’s devices. It
uses a layered and service-oriented architec-
ture to fulfill its goals.

Thereafter, various solutions to problems
that were left for future work in the initial
HomePort architecture are described. So-
lutions include the automatic discovery and
configuration of the components of the sys-
tem.

Additionally, it includes the description of
different security mechanisms, at various
system levels, compatible with the rest of the
system. The diverse solutions are presented,
analyzed, and criticized according to the sys-
tem’s requirements.

Techniques to make the system redundant
and scalable are described.

Finally, these new facets are implemented to
be tested.

Preface

This master thesis is the final work in order to receive the Master of Science degree in
Software Systems Engineering. It was written at the research unit of Distributed Systems
and Semantics in the Department of Computer Science at Aalborg University, Denmark.
It is based on the earlier SSE3 report, “An Open Home Automation System Focused on
Automatic Configuration And Security”. However, chapters were enhanced and new one
were added to compose this thesis. Additionally, the implementation was largely extended
and further improved.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Ulrik Nyman, for his many useful and insightful
advices and for reading my (too often) poorly spelled drafts. In addition, I am grateful for
the help provided by Arne Skou to access the HomePort material and equipment needed for
the implementation.

Thank you to the few people who always believed in me in every situation, my parents of
course, but not only. If it were not for them, none of this would ever be possible. Concerning
the others, I was lucky enough to always ignore them.

Both the Université Libre de Bruxelles and Aalborg University gave me access to an
high-quality education. I acknowledge the chance that was given to me.

Finally, I would like to thank the many people who helped me during these two amazing
years in Aalborg. These years were extremely rich, both, from an academic and personal
perspective. Two years that changed me forever.

All this made me better prepared to start a new chapter of my life.

Thank you.

“What is now proved, was once only imagined.”
— William Blake

Contents

2 Background|

[2.1.1 Entertainment System|o oo oL

|2 i 2 Eullalng Automation System|
213 Definifion]. ¢ v v

4 D b A OyStems| e
2.4.1 eplication|
2.4.2 Scalabilityl

.5 eb Service (WS)| e e
2.5.1 Service-Oriented Architecture (SOA)
[2.5.2 Representational State Transfer (REST)

2.5.3 Simple Object Access Protocol (SOAP).

P54 Service DISCOVETY| v o v v it e e
2.6 Security|. e e e e e e

|2.6.1 Security Concepts| L 0 L

[2.6.4 Hypertext Transfer Protocol Secure|

|2.6.5 wg-gecurltﬂ

Glossary| e

|3.§.Z Usaﬁllltﬂ

B35 SECUMTEY. - « « o o e e e e e e e e 39

B3 Constraintsl. 41
8.3.1 Hardwarel. e 41

8.3.2 Kconomicall. 42

4 _Analysis and Design| 45
4.1 Layered Architecture|o 45
.................................... 45

4.1.2 DeviceLayer|. o 46

ridging Layer| 46

%i% Service Layer] 47
MI5 Composition Layer] 47

[2 TFacets Ofthe System| 48

4.2.1 Automatic Discovery and Configuration] 48

4,2.2 Communication| i e e e e e 53

4.2.3 Security|l. L 62

4.2.4 edundancy and Scalability|o L. 64

4.3 System Interactions|. 68

|§ Implementation| 73
5.1 Operating System| e 73
B2 Platforml o ot 74
B3 LAbraries] v v o v e e e e 74
5.4 Infrastructurel e 75
5.4.1 NSLU2| e 75

5.4.2 DHCP|. e e 75

[6.4.3 Web-Service Delivery|, 75

BE Services o . o o 76
5.5.1 Simple Discovery Protocoll 76

B52 Selector] o vt 76

5.5.3 REST Communication Architecturel 76

B.54 Notification]. o e 77

[5.56.5 Hypertext Transfer Protocol Secure| 78

6 Redund V| o e e e e e e e e e e e e e e 79
... 79

6 Performance Testin 81
6.1 ethodologyl e 81
6.2 Performance Of a Single Gateway|. 81
6.2.1 ypertext Transfer Protocol Secure| 82

6.2.2 Protocol Re_quests| 82

6.3 ateway-Discove rotocol|] 84
87

89

Bib phy! 96
Index| 97

viii

App 0 98

[A_TInterfaces| 98
A.1 Web Interface Of Gateways| 98
A2 Command-Line Interface For Clients| 105

B_Résumé 108

C_CD-Roml 110

List of Figures

3.1 Summary of the different requirements of a home automation system. 43
4.1 Overview of the architectural layers of the system.|. 46
4.2 Gateway discovery process with a sismple protocol.| 49

. xample of a bridge discovering gateways of the system.| 49

4.4 WS-Discovery protocol applied to a gateway.| 51
4.5 REST methods associated with the actions in the system]. 54

. -Eventing protocol applied to notify of changes in devices]. 58
4.7 Overview of the encryption protocols used between layers of the system. . . . 63
4.8 Overview of the collaboration between gateways B and C to pass requests |

[tofromthebridge A 66
[4.9 Overview of a setting that should ensure the reliability of the system for gate- |
[waysand bridges.| L L 67
4.70 Example of message communications in the different aspects of the system)|. 68
4.11 Bridges interactions with the system.| 70
4.12 Overview of the ways to combine the architectural layers of the system.|. . . 71
[5.1 Partial summary of the implementation.|. 80

6.1 Mean response time with HTTP and HTTPS GET requests with concurrent |

[requests] 82

[6.2 Mean response time with H11P and HTTPS GET requests with and without |

[“Keep-alive”| e 83

6.3 Mean response time to HI'TP GET, POST, and PUT requests.] 84

6.4 Load stress on a gateway wit an GET requests.|. 86

6.5 Mean response times of gateway-discovery requests followed by a HITP GET |
request with one or two gateways connected, and a a HTTP GET request ac-

cording to the number of concurrent connections.|. 87

[6.6 Mean times of concurrent updates of states and their notifications with one |

[ortwogateways.|. 88

|A.1 Display data aboutadevice| L o 99

ix

A.2 Display device search with the selector| 100

.3 Display results of the device selector.| 101
A 4 Display the state of the Thermometer-Kitchen device) 102
A5 Display error message when trying to create an invalid new state| 103

A.6 User view of the security mechanisms with a standard web-browser interface.| 104

List of Tables

2.1 Summary of the home network technologies.| 20
4.1 Summary of layer responsibilities of the system.| 48
4.2 Summary of technologies presented.| 67
4.3 Summary of the devices implementing the system layers|. 69
5.1 Last of commands with requests, arguments, and their actions.|. 78
6.1 Main time measurements (ms) ofrequests.| 85
7.1 Summary of the contributions and theirorigin.|. 91

Listings

4.1 WS-Discovery: Probemessage|., 51

. of the gateway group 1dentifiers and functionality dependencies|. . . . 53
4.3 ofthegateway|. 55
4.4 -Eventing: Subscribe message|.o 000000 59
4.5 -Eventing: Renew message]. 59
4.6 Basic XML representation of the stateofa device] 60
4.7 XML Metadataofadevicel 61
A.1 List of states of a device (with gateway discovery enabled)] 105
A.2 List of devices (with gateway discovery enabled)] 105

.3 Read the state of a device (with gateway discovery enabled), 106

4 ate the state of a device (with direct connection)|. 106
A.5 Delete the state of a device (with direct connection)] 106
|IA.6 Errors for requesting a unknown stateofadevice| 107

CHAPTER 1

INTRODUCTION

MOTIVATION

More and more devices of our daily life are computer based. This trend can be seen in
many different areas of home equipment. Most communication systems, including land-
line phones, cellphones, and -obviously- the Internet, are based on electronic components
that run specifically designed programs. In the entertainment area; music, movies, books,
and games are available in digital formats. In parallel, devices were adapted or new ones
were created to use these media. In the case of video games, a whole new industry was
created based on them and gaming consoles were developed. This pattern is true as well
for cars, kitchen appliances, and home heating systems that become increasingly electronic
and software-based.

Overall, electronic and computer-based devices are more reliable than purely mechani-
cal devices, based on equivalent functional-requirement complexity. Indeed, electronic com-
ponents are not subject to the same physical deterioration as mechanical ones. Additionally,
they offer unique and powerful possibilities. For example, it is possible to modify the behav-
ior of a device after it was build, by changing its firmware or software. It is also easier for
users to customize their devices to fit their needs. Contents of diverse kind can be copied
and exchanged in an efficient and cheap manner. Finally, these devices appear smarter to
the users.

The normal development direction has turned from isolated and purpose-specific devices
to collaborative and multi-purpose devices. Nowadays, most cellphones cannot only make
phone calls, but also surf the Internet, take pictures, interact with other devices (through
Bluetooth), run user applications, etc. They interact with the cellphone network, the In-
ternet, various wireless networks, and home computers. The same is true for computers,
gaming consoles, and media players.

All these devices need to interact with each other through various networks. Some
networks are specific for a segment of devices and others are general for heterogeneous
devices. Ultimately, the Internet became a global network to share content and information.

This trend to make daily-life devices digital happened in a disorganized manner. Many
technologies were developed in parallel. Furthermore, many categories of devices have
their own standards and means of communication. In addition, devices are diverse, and

11

they have different constraints and resources. In order to obtain truly collaborating devices,
a system that can handle various technologies is needed.

Such a system would help equipment to communicate, and act in an efficient and smarter
manner. Moreover, it has to be flexible enough to adapt to numerous devices and their
needs. The system can help to meet the new challenges that are low-energy consumption,
easy configuration, security and affordable price for such a complex system.

OBJECTIVE

The objective of this work is to provide a home-automation system. The system is based
on the design of the HomePort system. The HomePort system was designed to offer a dis-
tributed communicating architecture that provides an added value. It uses a layered and
service-oriented architecture.

The goal of the project is to analyze the different choices (and possible alternatives)
made during the design of the HomePort system. It suggests solutions to the problems left
for future work (security, automatic discovery, and setup) in the original work. Based on
the analysis, it suggests additional features useful in the context of home automation.

It emphasizes the automatic configuration, security aspects, scalability, and redundancy.
These different and related aspects are important in order to be simple and safe to use for
users. Finally, it implements a working solution and tests it.

CONTRIBUTION

The current work presents the context in which home-automation systems are used.
It describes and compares home-automation related technologies in general, and in the
specific case where a service-oriented approach is used. Moreover, different technologies to
enhance the original HomePort system are also presented.

As a starting point, the requirements of the system are defined from the existing home-
automation literature. Thereafter, various solutions to problems that were left for future
work in the initial HomePort architecture are described.

Solutions include the automatic discovery and configuration of the components of the
system. It applies the Devices Profile for Web Services to the system. In the case of the
event notification, it is compared with existing solutions. In order to reach acceptable user
requirements, it extends and defines new functionalities, such as the group and dependency
identifiers, and dynamic component discovery.

Additionally, it includes the description of different security mechanisms, at various sys-
tem levels, compatible with the rest of the system. It starts by defining a security perimeter
of the system. It explains the extend to which the system can protect the user, given the
constraints. It proposes different possible solutions to the threats.

Moreover, these solutions are implemented to be used and integrated with the HomePort
system. The implementation context is also described. Choices made for the implementa-
tion are described and possible alternative solutions are presented.

Finally, the performance of the implementation is measured and analyzed. It underlines
limitations of this implementation on the available hardware equipment. Additionally, the
consequences of the implementation based on the design are emphasized.

12

OVERVIEW

The current work follows a logical structure. It starts by introducing the problem and
the surrounding context in the present part.

Chapter [2| on page introduces the background significant for the present work. In
particular, it presents theoretical concepts and definitions, and relevant technologies. Many
references are used to document this part.

Subsequently, Chapter [3| on page |33| defines the requirements of the home-automation
system that is presented. Specifically, it states goals, features, and constraints generally
found for such a system. References and use case examples of the requirements are also
presented.

Based on the requirements of Chapter [3, Chapter |4] on page 45| analyzes the design of
the system. In addition, it describes and justify choices made. Many examples are inte-
grated in order to better understand the usage scenario. Chapter 5 on page[73|presents the
implementation of the designed system. Moreover, it details the working solution.

Chapter [6] on page [81] presents performance measurements of the implementation and
analyzes them. They could help deciding between design alternatives.

Finally, Chapter [7| on page [89|concludes the presented work by summarizing key find-
ings and results. It also presents future possible developments.

The Appendix contains interfaces of the system (Web browser and command-line), the
mandatory thesis résumé, and a CD-Rom with the current work.

13

CHAPTER 2

BACKGROUND

This part provides a theoretical background about the topics used for this work. Section 2.1
on this page introduces the vast concept of home automation. Furthermore, it gives exam-
ples of existing systems in homes. Section[2.2)on page[17]presents the different technologies
to connect home devices. It is subdivided in two parts. The first one is devoted to some of the
wired network types. The second one is about the main wireless technologies. Section[2.3]on
page[21]focuses on the protocols commonly used to connect heterogeneous devices. Different
concepts about distributed systems are described in Section on page Additionally,
Sections and on page [24] present architectural styles used to increase interop-
erability. Moreover, Section on page [27| contains methods to secure electronic systems.
Furthermore, Section on page [29| reviews proposals to facilitate systems’ interconnec-
tion. Finally, Section on page [30| defines terms used in this part.

2.1 HOME AUTOMATION

In the last 15 years, the entertainment equipment in homes were subject to radical
changes. It went from a system with mostly analogical devices and media contents to a
system mostly digital[10]. Nowadays, songs, pictures, books, newspapers, and movies are
available in digital formats. Television and radio shows are broadcast in digital formats as
well. Often, all these media are also available over the Internet.

2.1.1 ENTERTAINMENT SYSTEM

Devices to enjoy these contents evolved as well. New televisions can display high-
definition digital formats. Some radios use digital audio broadcasting (DAB)[51]. Home
and portable media players are essentially all-digita]ﬂ Computers and video game consoles
can store and use large quantities of digital formats. Cameras take pictures and movies in
digital formats. [9,[10]

There is also a trend to connect digital devices to the Internet. Computers in developed

1DVD and Blu-ray players, personal video recorders (PVR), home audio system, portable music players,...

15

countries almost always access the Internet with broadband connections. It is also not rare
to have cellphones, portable music devices, and video game consoles connected.

These types of equipment increasingly interact. In houses with multiple computers, the
Internet connection, files, or the printer are often shared over a network. It is possible to
play contents stored on a computer (movies, pictures, or songs) on a television. This is
part of the phenomena of ubiquitous computing. More and more objects of the everyday life
become computing devices that can collaborate with each other. All these devices have very
different characteristics, functionalities, and resources. [9]

All these technologies are part of modern homes and change users’ habits. It now seems
that revolution in the entertainment home system was only the beginning of a vaster revo-
lution in home systems.

2.1.2 BUILDING AUTOMATION SYSTEM

A building automation system (BAS) is a large concept that regroups all the systems
to control buildings’ environment. The first interest comes from large organization and it
is mainly used in industrial buildings (offices, factories, laboratories, shopping centers,...).

However, they are also used now in recent houses as part of a home automation system.
(211

2.1.2.1 Heating, ventilating, and air conditioning (HVAC) system

The heating, ventilating, and air conditioning (HVAC) system controls the climate (tem-
perature, humidity,...) inside a building. This system is made of sensors, switches, and
controllers. It is mainly used to reduce the building energy consumptiorﬂ HVAC control is
increasingly done on computers. It has the advantage that the different parts of the system
can coordinate. Therefore, they can be more efficient in their individual tasks. [21]

2.1.2.2 Lighting control system

The lighting control system is also part of the BAS family. I¢ is responsible of command-
ing when, where, and which lights are to be used. It can include (light and motion) sensors,
switches, dimmers, clocks, motorized blinds, and controllers. Such a system offers a bet-
ter management and control of the different lights. Additionally, it usually proposes new
functionalities. Finally, it helps controlling the energy consumption of the building. [21]]

2.1.2.3 Safety and security alarm system

The safety and security alarm system is another system belonging to the BAS category
and commonly found. It detects alarm conditions and pass it to appropriate alerting system
(local or remote alarms). Security system can include access control devices. It can include
(motion, glass break, smoke, gas,...) sensors, alarms, controllers. In case of an alarm, such
a system permits to coordinate policies between the various parts of the system. [21]]

2The interest for HVAC systems increased after oil price shocks of the 70’s.

16

2.1.3 DEFINITION

All these systems have very different constraints. They can be essential for the building
to work normally and have to follow safety regulations. However, they have in common
that they can increasingly be found in modern industrial and domestic buildings. Addi-
tionally, from an equipment perspective, they could share some devices (sensors, network,
controllers, ...).

In the last decade, much research was made to intensify the collaboration between these
subsystems. There are many examples of how the comfort, safety, or energy consumption
could be improved by making them work together. The collaboration between devices in-
creases the value of the overall system. In addition, other system can be integrated such
as houseplant watering, domestic robots, management of the house’s food and furniture, ...
Connecting, accessing, and controlling buildings’ subsystems in order to increase their use-
fulness and efficiency are key goals of the home automation. It is also sometimes referred to
as domotic systems. [9, 10}, 21]

2.2 NETWORK COMMUNICATION PROTOCOLS

This section introduces the most common network technologies that are used in houses.
Its goal is to present ways to connect the home subsystems described in Section [2.1] on
page The first subsection focuses on wired networks. The second one presents the
main wireless systems. At the end of the section, Table on page summarizes the
technologies.

Traditionally, networking technologies are described following an abstract model called
the open system interconnection reference model (OSI Reference Model or OSI Model).
This model contains 7 layers to describe a network architecture. From the highest to the
lowest, these layers are: the application, presentation, session, transport, network, data-
link, and physical layer. [18]

This section only focuses on technologies on the physical layer which describes electrical
and physical specifications between devices, and the local area network (LAN) data-link
layer which describes means to transfer data.

2.2.1 WIRED NETWORKS

Wired networking technologies offer a high bandwidth and a low interference rate. Ad-
ditionally, they can supply power to connected devices.

ETHERNET (IEEE 802.3)

Ethernet is a standardized technology (IEEE 802.3) used from around 1980 to nowadays.
It is the most common type of local area network (LAN). In addition, it works with twisted
copper wires or optical fibers. The maximum speed depends on the cable’s category. All the
cables of the devices can be connected together trough Ethernet hubs or switches. [44]

17

UNIVERSAL SERIAL BUs (USB)

Universal Serial Bus (USB) is the leading technolog)f’|to connect devices to computers. A
USB network is made of one host with, at least, one controller and one device. Controllers
have ports (or plugs) to which the devices connect with a specific cable. USB hubs can
be connected to a port to extend the total number of ports. Therefore, they form a tree
structure with maximum 5 levels. A maximum of 127 devices (including the hub(s)) can be
connected to a controller. [45]]

USB uses specified class codes to recognize the functionality of the devices. If a device
has more than one functionality (called a compound device), each of them is represented as
a separate USB device with its own class code. The class code enables the controller to load
drivers based on it. Furthermore, generic drivers can be written for a class. [45]]

Example:

A portable audio player can belong to the USB audio class but also to the
mass storage class to access its memory. When the player is connected,
its host automatically recognizes its two functionalities based on the two
classes.

NETWORKING OVER ELECTRICAL WIRES

The electrical wire network already exists in every house. The main disadvantage is that
the electrical power standards are different in many countries. Therefore, there is no uni-
versal standard for this technology. The two main coexistent (but incompatible) standards
are HomePlug and UPA Digital Home. [2,[7]

2.2.2 WIRELESS NETWORKS

Wireless networking technologies benefits from the lack of cable installation cost. More-
over, they are very useful in places where no wired network exists, and where it would
be cumbersome or impractical to use cables. Therefore, they fit well with needs of mobile
devices, in particular. In contrast, they are usually subject to shorter range and lower
bandwidth than wired counterparts. Additionally, they do not provide power supply. Wire-
less networks can work with a centralized access point that relays all the traffic, or in a
decentralized ad-hoc way.

WI-FI (IEEE 802.11)

Wi-Fi is a device certification delivered by the Wi-Fi Alliance[3)] based on the IEEE 802.11
standard. It was conceived as a “wireless Ethernet” solution. The standard contains many
different wireless related technologies that evolves over time. Therefore, it is subdivided
in different amendments that are referenced by a letter. When new wireless technologies
appear, a new amendment is defined to provide increased range and speed by using new
technologies. In this sense, amendments represent evolutions of the standard. The most

3There are 6 around billion USB devices and 2 billions are sold a year. [30]

18

common amendments in home network are 802.115, 802.11g, and 802.11n. The 802.11b
standard is the oldest and 802.11n is the most recent. Additionally, some amendments of
the standard define how to secure a wireless network using cryptography. [39), 3]

BLUETOOTH

Bluetooth is a specification to transfer data over a short distance (100 m) between resource-
limited devices. It is used by cellphones, remote controller (mouse, keyboard, remote con-
trol, ...), GPﬂﬂ and other highly portable devices. [38]

WIRELESS USB

Wireless USB is a specification for low-range high-bandwidth transfer of data. It was
conceived as a “cable-less USB” solution. In this sense, it offers similar functionalities
as USB. The maximum bandwidth depends on the distance between the communicating
devices. Up to three meters, the maximum bandwidth is 480 Mbit/s. Between three and
ten meters, it is 110 Mbit/s. [45]

Z1GBEE

ZigBee is a speciﬁcationﬂ similar to Bluetooth, but is intended to be simpler, cheaper, less
power consuming, and more secure. In contrast, it offers a lower range and bandwidth than
Bluetooth.

A ZigBee network contains three different kind of devices: ZigBee coordinator (ZC),
ZigBee Router (ZR), and ZigBee End Device (ZED). The ZC is the root of the network tree.
It stores the network and security related data. The ZR is in charge of relaying data from
and to other devices (ZC, ZR, and ZED). ZEDs only communicate with the ZC or ZRs. It
does not relay data. A ZED is designed to be cheap to manufacture. [5]

Z-WAVE

Z-Wave is a proprietary speciﬁcationﬁ designed to control devices in residential and com-
mercial buildings. It focuses on aspects such as low-power consumption, low-protocol over-
head, cheap manufacturing cost, and decreased interferences with the radio frequency net-
work. [4]

SUMMARY

Table on the following page presents a summary of all the home network technolo-
gies mentioned above. It provides names, network types, the medium used, transmission
speeds, and maximum distances.

4The Global Positioning System (GPS) is global navigation satellite system.
5The specification is only freely available for non-commercial use.
6The specification is only available under a non-disclosure agreement.

19

Name Type Medium Speed Distance
(max.)

Ethernet LAN Twisted 10 Mbit/s to | 100 m
pair 1 Gbit/s

USB PAN Specific 1,5, 12, or | 5m
twisted pair | 480 Mbit/s

HomePlug LAN Electrical 14 Mbit/s to | 200 m
wiring 200 Mbit/s

UPA Digital | LAN Electrical 200 Mbit/s 200 m

Home wiring

802.11b WLAN Radio fre- | 11 Mbit/s | (indoor)
quency max. 45 m

802.11g WLAN Radio fre- | 54 Mbit/s | (indoor)
quency max. 45 m

802.11n WLAN Radio fre- | 600 Mbit/s | (indoor)
quency max. 90 m

Bluetooth PAN Radio fre- | 1 Mbit/s to | 100 m
quency 10 Mbit/s

Wireless PAN Radio fre- | 110 Mbit/s | 10 m

USB quency to 480

Mbit/s

ZigBee PAN Radio fre- | 20 Kbit/s to | (outdoor)
quency 250 Kbit/s 75 m

Z-Wave PAN Radio fre- | 9,6 kbit/s to | (outdoor)
quency 40 kbit/s 30 m

Table 2.1: Summary of the home network technologies.

20

2.3 HIGH-LEVEL COMMUNICATION PROTOCOLS

This section presents communication protocols from the network layer to the application
layer. Section [2.3.1] on the current page exposes protocols commonly used on the Internet
(known as the Internet standards). However, the same protocols are used in all kind of net-
works. Section on the following page introduces a protocol to automatically discover
and configure devices on a network.

2.3.1 THE INTERNET STANDARDS

The following part describes various standards used over the Internet. These standards
help the communication between devices (and their users, at the end). They are presented
from the lowest level of abstraction to the highest. Additionally, they belong to different
architectural OSI layer. Therefore, they build upon each other to work.

2.3.1.1 Internet Protocol (IP)

The Internet Protocol is the most common protocol of the network layer in the OSI refer-
ence model (see Section[2.2]on page [17]for more details). It is the protocol at the heart of the
Internet. Most devices support it.

The protocol is connection-less. The data are fragmented in units called packets for effi-
ciency reasons. A packet is made of a header to route the packet over the network and the
data. The header contains the source and destination IP addresses, the source and destina-
tion ports, and other options. IP does not provide guaranteed delivery, duplicate avoidance,
integrity, or correct ordering of packets. These properties, if needed, are the responsibil-
ity of higher protocol layers (usually the transport layer with the Transmission Control
Protocol (T'CP)). Therefore, it belongs to the best effort of delivery protocols’ category. The
User Datagram Protocol (UDP) is a very light protocol that offer the same properties as
IP.

Additionally, UDP gives the possibility to send a packet to a set of devices (multicast),
or to every device (broadcast) in the network. These are efficient techniques when the
same packet has to be sent to many devices.

Currently, two versions of the IP are used: the fourth (IPv4) which is the most common
and sixth (IPv6) which offers more IP addresses besides other functionalities. IPv6 does
not implement the broadcast. However, a similar effect can be achieved by using multicast
alone.

2.3.1.2 Hypertext Transfer Protocol (HTTP)

The hypertext transfer Protocol (HTTP) belongs to the application layer in the OSI
reference model (see Section on page (17| for more details). It is a distributed state-less
protocol used to transfer hypermedia resources. It uses a request [response architecture. [40]

The client sends a request with a header and optionally a body to a server. A header
contains a request method, an URI, the version of the protocol, optionally client informa-
tion. A body is the representation of a resource transfered.

The server replies with a status line and optionally a body. The status line contains
the version of the protocol, a code describing the response’s type (success or type of errors),
and other response’s meta-information.

21

There are four request methods to manage a resource: GET, POST, PUT, and DELETE.
The GET method returns a representation of the requested resource. The POST method
submits data to be processed by the requested resource. The PUT method uploads a rep-
resentation of the requested resource. Finally, the DELETE method deletes the requested
resource. The GET, PUT, and DELETE methods are idempotent. It means that multiple iden-
tical requests do not change the resource. Additionally, the GET method never modifies the
resource on the server.

2.3.1.3 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a set of specifications to inter-operate, store,
and transfer data between systems. It is designed to be simple, generic, structured, human
and machine readable, and used over the Internet. It uses a textual data format with Uni-
code encoding}

XML documents are structured with elements. Elements are defined by tags. There are
two ways to define an element: with starting and ending tags that go by pair, or with empty-
element tag that does not contain any other element. The document’s hierarchical structure
comes from the fact that other elements can be defined between an element’s starting and
ending tag. Therefore, there is a multi-level hierarchy with elements (parents) containing
other elements (children). An element can also contain attributes. An attribute is a pair
(inside a starting or empty-element tag) defining a unique name and an associated value.

An XML schema is a document, written in some kind of definition language, that spec-
ifies the abstract content of one or more XML documents. It defines the mandatory and
optional elements and attributes. Moreover, it specifies the data interpretations.

Many other serialization formats exist, such JSON. JSON (for JavaScript Object Nota-
tion) is an open, language-independent, human-readable, data interchange standard. It is
derived from JavaScript and it is an alternative to XML.

2.3.2 UNIVERSAL PLUG AND PLAY (UPNP)

There are different standards to facilitate interactions between certain devices. One of
them is Universal Plug and Play (UPnP). It is a set of protocols developed by the Universal
Plug and Play Forum (UPnP Forum) and built upon Internet standards [34]. UPnP can
automatically and seamlessly discover and share devices that support the standard. The
problem is that UPnP relies heavily on Internet standards (IP, TCP/UDP, HTTP, XML,...).
Resource limited devices lack the capacity to handle these resource demanding protocols.
136l

2.4 DISTRIBUTED SYSTEMS

A distributed system consists of various, independent, possibly heterogeneous, comput-
ing nodes. These nodes collaborate together in order to achieve a goal (delivering content,
processing data, ...). They need to exchange data to achieve their goal. Just like regular
program run on a single computing node, they need input and output data, but additionally
they might need data to exchange their current state or synchronize with each other. This
is done by message passing.

7Unicode is an international character encoding standard supporting many writing symbols.

22

The nodes communicates according to a communication protocol over a medium (net-
work) (see Section [2.3]on page[21]for more details) to send messages. The network is subject
to latency and is limited to a maximum bandwidth. Additionally, it can suffer of failures
and transmission errors. All these issues are due to the physical limitations of equipment.

These network problems are naturally passed to communication protocols. Protocols of-
fer different services to solve or mitigate these limitations. These solutions include retrans-
mission of messages, message integrity checking, network redundancy, message ordering,
etc. Protocols offer a level of abstraction to the physical limitations of passing messages
between devices. [8]

Additionally, nodes are also subject to failures, memory corruptions, and computational
errors. However, one of the advantages of distributing the computation of a problem on dif-
ferent nodes is that it is possible to rely on the remaining nodes if some nodes fail. There-
fore, the system can tolerate some failures of individual nodes. See Section[2.4.1]on this page
for more details.

Another possible advantage is that the system can scale to the problem by integrating
new nodes in the system. Indeed, computation can be done in parallel on different nodes
and not an a single node. It enables the federation of resources (computational, memory,
storage, ...). However, there is an overhead to the use of distributed system that is due to
the message passing between nodes. See Section[2.4.2 on the current page for more details.

2.4.1 REPLICATION

In order for a distributed system to increase its reliability and to be fault-tolerant, it
needs to replicate data on different nodes. Indeed, if a piece of data is present on only one
node and the node fails or is unreachable, it is unavailable to the system. Therefore, the
system needs redundancy of its data by replication in order to offer reliability.

Another advantage of replicating data is the possibility to balance the load on different
nodes. Indeed, all nodes storing a piece of data can distribute it to the rest of the system.
That means that the load serving or processing data can be balanced on all the nodes where
the data is available.

Different strategies exist to replicate data. It usually involves that when a node changes
the state of the distributed system, it broadcasts the change to a set of other nodes. The
other nodes acknowledge the change and the new state is then committed. When a node
fails, the remaining nodes agree on a state that is represented by a set of values. The
algorithm to agree on these values is called a consensus algorithm (such as the famous
Paxos algorithm[22]).

This replication process can become inefficient because every time a change is made it
needs to be broadcast and acknowledged by a set of device. It generates communication
overhead and latency. One solution is to delay and group changes. However, the data is at
risk as long as it is not committed in the system. Another solution is to reduce the number
of replicates. However, it increases the chance that all the copies are unavailable.

2.4.2 SCALABILITY

The scalability is the capacity for a distributed system to handle a growing load by
adding new resources. A usual requirement for an optimal scalability is that the resources
added grow linearly (and not exponentially) to the capacity to handle load in the system. It
means that the time to solve a fixed problem is linear in the number of resources available

23

in the system. However, this is not always possible as not all operations can be executed in
parallel.

2.5 WEB SERVICE (WS)

Web services (WS) are applications that are executed on a server to fulfill client requests.
Transactions are transmitted between clients and servers through a network, such as the
Internet.

The distributed nature of WS make then unreliable and subject to concurrent access,
partial failure, and latency issues. Therefore, the exception handling is an essential part of
a WS design. [47, 201

WS are often described with the web services description language (WSDL). It is an
XML-based language that gives means to describe the different components of a WS: the
type; endpoint (typically a URI to contact the WS); operations (the input and output of a
defined transaction); interface (set of operations); and the binding (the protocol used for the
interface). [50] [20]

It typically uses HTTP (see Subsection on page [2I] for more details) to convey
transactions, XML (see Subsection [2.3.1.3| on page for more details) to serialize them,
and other Internet standards for interoperability.

WS often use service-oriented and REST architectures as described in Sections 2.5.1
and on this page. Both architectural styles fit the usual WS requirements. However,
they are optional and they can be used individually or jointly. Ways to discover WS are
presented in Section [2.5.4] on page [201

2.5.1 SERVICE-ORIENTED ARCHITECTURE (SOA)

A service-oriented architecture is a set of design concepts aimed at delivering software
functionalities independently. A functionality is a defined service which does only one (pos-
sibly elaborate) action.

This architectural style enables the collaboration between remote and heterogeneous
software. The software presents an abstract interface that hides the underlying complex-
ity and structure to the clients. Additionally, it follows different principles: modularity,
standard compliance, and functional autonomy.

2.5.2 REPRESENTATIONAL STATE TRANSFER (REST)

The representational state transfer (REST) is an architectural style for request/re-
sponse distributed protocols. It was developed in parallel with the HTTP which is the most
wide spread example of such a protocol. Moreover, it ensures desirable properties for a
service-oriented architecture. Therefore, the two concepts are complementary. [16]

Its goals include the generalness of interface, the device autonomy, the possibility to
seamlessly add intermediate devicesﬂ and the scalability to new and additional devices. To
achieve these goals, a RESTful protocol follows these principles [16]:

Client-Server It separates the concern of the client and the server. On one hand, the client
is responsible for the user representation of the data which improves the portability of

8Intermediate device can be added to enhance the response time or security without interfering with the exist-
ing devices, for example.

24

the user interface. On the other hand, the server is responsible for the storage of the
data which increases the server simplicity and scalability. Overall, it allows clients
and servers to evolve independently.

Stateless The protocol is stateless. A request contains all the necessary information to be
processed by the server. The server does not store any context. It increases the device
autonomy and the overall scalability.

Cache A response specifies if it can be cached. A cached response can be reuse by the
client or an intermediate device to respond to an equivalent request. It increases the
scalability and adds the possibility of having intermediate cache devices.

Uniform Interface A generic uniform interface is presented to all the protocol compo-
nents. Therefore, they can evolve independently and are always aware of protocol
transactions. This principle generates four constraints: identifiable resources (with a
URI as an example) (see Subsection F on page [21]for more details), manipulation
of resources through representations [’, self-descriptive transactions, and hypermedia
as the engine of application state (related external resources are identified).

Layered System A layered-client-server (also known as multi-tiered) architecture is used.
A transaction goes seamlessly through multiple layers. The possible intermediaries
are invisible to clients and servers. The layering reduces the overall coupling between
layers and enables intermediate-based load balancing, monitoring, or security check-
ing.

Code-On-Demand (Optional) The client’s functionalities can be extended by providing
codes or scripts to be run on the client. It reduces the client’s complexity and enables
evolvements.

Example:

Many web servers provide JavaScript code in their HTML pages that are
executed by the client’s web browser. It makes web pages more dynamic
with customized scripts without additional burden of the web server. The
client simply need a generic JavaScript interpreter instead of having nu-
merous complex functionalities.

2.5.3 SIMPLE OBJECT ACCESS PROTOCOL (SOAP)

In general, SOAP serves mainly as a tool for message exchanges and remote requests
(Remote Procedure Calls (RPC)). It was developed by two leading IT companies (IBM and
Microsoft). Originally the developers of SOAP intended to create it for more purposes [49],
two of them are:

1. Provide a standard object invocation protocol built on Internet standards, using HTTP
as the transport and XML for data encoding.

2. Create an extensible protocol and payload format that can evolve.

9The request information is enough. No state is needed on the server.

25

MESSAGE FORMAT

SOAP messages use the XML syntax which makes them readable for humans and eas-
ily processable by applications. Indeed, there are a lot of reliable XML handling utilities
(parsers, query processors, validators, ...). The message it-self is composed of a header and
a payload where the former is optional and might provide useful information for the SOAP
engine which processes it. The latter is compulsory and contains the data for the target
SOAP engine.

ANALYSIS

SOAP can be used as a reliable communication protocol between web services due to the
fact that it works perfectly on existing Internet infrastructures. Another advantage is that
SOAP is platform independent. It can run everywhere as long as it is possible to communi-
cate using the HTTP. Often, SOAP is criticized for its verbosity which is caused by the XML
message syntax. It is slower in comparison with other remote process call mechanisms, but
the speed was not the prime factor when SOAP was designed. It offers more flexibility for
the data encapsulation and the remote procedure call than REST. Indeed, web-service de-
signers can define new and arbitrary elements and request methods. However, by doing so,
it might decrease the interoperability and not take advantage of existing mechanisms.

2.5.4 SERVICE DISCOVERY

Before using a web service, the client has to know the existence of the service. WSDL
(see Section on page [24] for more details) describes a WS and the possible interactions.
However, the WSDL document has to be available to clients. The goal of the service discovery
is to find WS. Obviously, it is possible to manually encode the available services during the
client development. However, if new WS appear, the client does not benefit from them. [47]]

There are three approaches to automatically discover WS:

The registry A registry centrally stores the WS descriptions. The registry controls the
published WS.

The index An index points to external WS descriptions. It has no control over the descrip-
tion, but controlled the kind of descriptions indexed.

Peer-to-Peer (P2P) discovery At discovery time, the client requests the WS descriptions
know by its neighbors. The descriptions are not centralized.

These different approaches can be combined.

26

2.6 SECURITY

This section introduces security aspects and some protocol solutions. General security
concepts are briefly presented in the following Subsections. The following parts describe
various security protocols acting at different network layers.

2.6.1 SECURITY CONCEPTS

Information security regroups many different concepts. There exist many different mod-
els to describe security requirements. The most usual requirements to ensure a transac-
tion’s security (known as the CIA triad) are: [6]]

e Confidentiality: the transaction content is only disclosed to authorized parties.
e Integrity: the transaction is only emitted and modified by authorized parties.
e Availability: the system is available at all times.

To ensure the two first requirements different techniques were developed. The avail-
ability requirement mandates more abstract constraints such as the data and service re-
dundancy.

CRYPTOGRAPHY

In cryptography, the encryption process transforms the information into seemingly mean-
ingless data by using an algorithm and a key. The encrypted data can only be decrypted
with the key or by the extremely long process of testing all the possible keys. There are two
kinds of encryption algorithms: symmetric-key encryption and public-key encryption. [6]

Symmetric-Key Encryption

In the case of symmetric-key encryption, the same key is used to encrypt and decrypt data.
It is possible to use this method to ensure that the data are from a party knowing the secret
key. Additionally, the identity of a party can be assessed by parties sharing a common secret
key. [6

Example:

In computer systems, a specific example is when a user identifies it-self
(authenticate) with one of the many challenge/response protocols. The
client sends an authentication request to the server. The server replies
with a challenge to the client. The challenge is made in such a way that,
only a client knowing the shared-key can respond. A secret password is a
specific kind of key shared between the user that knows it and the system
that stores it.

27

Public-Key Encryption

In the case of public-key encryption, a pair of keys is used. One key is public and is used
to encrypt data. The other key is private and is used to decrypt the public-key encrypted
data. This method can also be used to sign data. Signing data ensure to anybody having
the public key that the data are from the party possessing the private key. Additionally, the
identity of a party can be assessed by proving that it can decrypt with its private key data
encrypted with its public key. [6]

2.6.2 AUTHENTICATION

There are different ways to authenticate a party. A common secret key can be exchanged,
as in the case of password or passphrase. Nowadays, it is the most common way to authen-
ticate a user. The main drawback is that the key has to have a high entropy and being long
enough. Otherwise, the key can be potentially guessed by trying all the possible keys. The
password authentication is supported by HTTP, but the sent password is not encrypted.
Therefore, this system provides very little security. [6]

Another way is to use public-key signatures. A model of trust has to be established with
this technique. The two most common are the web of trust and the certificate authority mod-
els. In the certificate authority model, the identity of the parties is assured by a trusted
third party that signs the public keys. Therefore, all parties can trust each other because the
public keys, that they use to sign transactions, are them-self signed by a common trusted
third party.

In such a system, trusted third-party public keys are stored in the device. One advan-
tage is that devices do not need prior knowledge of the other devices to authenticate them.
Another advantage is that the trust into a party can be revoked by the trusted third party.
(el

2.6.3 IPSEC

IPsec is a protocol (on top of IP) to ensure the confidentiality and integrity of IP packets
(see Subsection on page [21] for more details). IPv4 has an optional support of it. In
contrast, IPv6 requires the possibility to use IPsec. The packet content is encrypted and
verified by using a symmetric-key encryption algorithm. To the exception of the content
being encrypted, an IPsec packet is equivalent to regular IP packet. [42]

2.6.4 HYPERTEXT TRANSFER PROTOCOL SECURE

Hypertext Transfer Protocol Secure (HTTPS) is a protocol that provides, addition-
ally to the HTTP functionalities (see[2.3.1.2|for more details), confidentiality and integrity of
the transactions [41]]. This is done by using the transport layer security (T'LS) that ensures
the security of the transport layer [43].

The protocol can authenticate both the client and the server (mutual authentication) or
only one party.

In the server-authenticated mode, the client can still authenticate it-self by another
method such a login /password authentication. All data exchanged are encrypted.

28

HTTPS is commonly used to secure transactions on the Internet. Therefore, it is widely
supported by web browsers and network software libraries. Being a different protocol than
HTTP, it typically uses a different port (443).

2.6.5 WS-SECURITY

WS-Security is a protocol to ensure the confidentiality and integrity of WS transactions. It
has the advantage to ensure end-to-end security between the client and the WS application.
Intermediaries have no access to the exchanged data and caching is still possible at a lower
level. Additionally, there exists standards to sign and encrypt XML documents [46]. [47]

2.6.6 FIREWALL

A firewall is an intermediate network device that filters devices’ communication for secu-
rity reasons. Commonly, it is used to separate the home network from the Internet.

The transaction filtering is based on rules that define authorized communications. Of-
ten, the firewall acts at the IP level. Rules defines (source and destination) IP addresses
and ports that are authorized. See Subsection on page 21| for more details. It can
also work at higher levels by analyzing exchanged transactions.

2.7 INTERCONNECTION BETWEEN HETEROGE-
NEOUS SUBSYSTEMS

HOMEPORT

The HomePort system’s goal (defined in [13]]) is to connect different subsystems in houses
through an open architecture. These subsystems use different (and incompatible) protocols
to communicate with their devices.

HomePort has a service-oriented architecture (see Section [2.5.1] on page for more
details), and uses defined protocols and interfaces. In addition, it has the following archi-
tectural requirements:

e Modifiability: the addition of new devices or subsystems does not affect the already
existing components.

e Usability: an easy to use and configure system helps to reduce the acquisition costFE]

e Scalability: the system supports an significant number of devices spread over a large
building without affecting the performanceE-]

Furthermore, different business considerations are taken into account. The system sup-
ports partially closed protocols and it does not affect existing and future manufacturer’s
products.

The HomePort system has a four-layer architecture defined as followed:

10The goal is to lower the amount of time needed to configure the system by using automatic setup.
11 Performance measurements can be conducted on a system prototype by adding new devices.

29

. The device layer is responsible for communicating with a specific subsystem’s de-
vices. It is present in every device.

. The bridging layer is responsible for making the subsystem’s devices accessible over
the IP network. This layer is divided into two sub-layers. One that is subsystem spe-
cific and another that is bridging to the IP network using the heterogeneous network
protocol (h-net). The common network adaptor interface (CNAI) joins the two sub-
layers, and defines how to connect arbitrary subsystems to the IP network. This layer
is furnished by an equipment called bridge.

. The service layer is responsible for presenting in a subsystem independent man-
ner the devices’ functionalities, and controlling the access to the devices. To fulfill
its requirement, the system uses a REST architecture based on the HTTP (see Sub-
section [2.3.1.2) and Section on pages for more details). The access policy
requirements are not defined in the current system and it is left for future work.
Physically, the service layer is present in a piece of equipment called gateway.

. The composition layer is responsible for combining heterogeneous devices. The
HomePort control logic language (HCLL) defines these combinations. The HCLL ex-
plains the actions to take on a device based on states and events in the system. A
piece of equipment, called the controller, is responsible for delivering this layer.

Some architectural layers can be omitted or merged for economical reasons. The process by
which equipment discover each other is not defined in the current system and it is left for
future work. Moreover, the mobility of the devices has not been explored. Therefore, the
intermittent availability of devices is not handled.

30

Glossary

Authentication An authentication is the action of proving its identity to another party..
27, 28

Client A client is a party that requests a service over a network.. 21, 24, 26, 28, 29

Device A device is an electronic component with hardware, and software or firmware.. 15,
17

Distributed system A distributed system is made of independent devices that communi-
cate over a network in order to achieve a goal.. 24, 29

Exception An exception is an event that is not part of the normal flow of a program.. 24

Interface An interface defines how a program can request a service.. 24, 29

IP address An IP address identifies on an IP network a device with a unique address.. 21,
29

Local Area Network (LAN) A local area network (LLAN) is a network that covers a re-
duced area such as a house or an office.. 17, 20

Packet A packet is a block of data transmitted over a network.. 21, 28

Party A party is an entity that interact with a distributed system (e.g. a client or a server)..
27,28

Personal Area Network (PAN) A personal area network (PAN) is a small network that
covers the area around a user.. 20

Port A port identifies on an IP network a device’s process with a device unique number..
21, 28, 29

Protocol A protocol is a decription of a set of actions to communicate data between par-
ties.. 17, 19, 21, 22, 24, 27, 29

Request A request is the communication sent by a client to obtain a service from the
server.. 21, 24, 26

31

Response A response is the reply sent by the server to a request.. 21, 24

Serialization A serialization is the action to transform conceptual data into a form that
can be transmitted through a network.. 24

Server A server is a party that provides a distributed service on request over a network..
21, 24, 28

Transaction A transaction is a request or response.. 24, 27-29

Uniform Resource Identifier (URI) A uniform resource identifier (URI) identifies a re-
source on the Internet with a structured string of characters.. 21, 24

Wireless LAN (WLAN) A wireless LAN (WLAN) is a more specific LAN category that
does not require cables. It usually uses radio frequency technologies.. 20

32

CHAPTER 3

REQUIREMENTS

This part defines the multitude of requirements needed for a home-automation system. The
system has different stakeholders that share different requirements. These stakeholders
are the users, the device vendors, the subsystem architects, and system architects.

3.1 GOALS

The goal of the system is to connect different subsystems in houses through an open
architecture. These subsystems use different protocols to communicate with their devices.
The purpose of connecting these, otherwise independent, subsystems is to achieve:

¢ increased usefulness of the devices by combining them
e simplified use

e optimized energy usage

e advanced security

3.2 FEATURES

This section defines a list of desirable features for a home-automation system. Often,
they are abstract and difficult to quantify. Each feature is described and categorized. Fea-
tures belongs to different categories of responsibility that can only be achieved by mutual
collaboration of the stakeholders. Additionally, motivations, references and examples are
provided, whenever possible.

3.2.1 OPENNESS AND INTEROPERABILITY

VENDOR INDEPENDENT

Description: | The system is independent of any vendor (not vendor
specific).

Category: System design (abstract)

Motivation: | The value of the system increases if it is accessible to
all vendors. [24,[13]

Example: New vendors can decide to use the system for its

products.

LANGUAGE INDEPENDENT

Description: | The implementation of the system is independent of
any programming language.

Category: System design (concrete)

Motivation: | Limit constraints for the vendors. [24][13]

Example: Vendors can decide to write their implementation

with the programing language of their choice.

SUBSYSTEM INDEPENDENCE

Description: | Subsystems work by them-self (no subsystem is
needed for the others to work). This requirements
has to be fulfill by vendors.

Category: Vendor design (concrete)

Motivation: | Increase users’ freedom to chose the best subsystem
for their needs. [25] [13]

Example: Every subsystem should work even if the system is

made of one subsystem.

LEGACY DEVICES

Description: | The system has to be able to work with already ex-
isting equipment and devices.

Category: System design, vendor device

Motivation: | Reduce the total cost of the system. [20, [13]

Example: Bridges can exist to connect legacy devices with the

system.

DEFINED ABSTRACT INTERFACE

Description: | The system has defined generic interfaces available
to all vendors.

Category: System design (abstract)

Motivation: | Interoperability. [13]

Example: -

34

PROGRAMMATIC CONTROL

Description: | The subsystem available functionalities has to be
programmable by other subsystems.

Category: System design (concrete), vendor design (concrete)

Motivation: | Usability. [24]]

Example: A program on a computer could (following a protocol)

control the available functions of a subsystem.

GRAPHICAL INTERFACE INDEPENDENCE

Description:

The system does not rely on a specific graphical user
interface.

Category: System design (concrete)
Motivation: | Users’ freedom. [28]
Example: Vendors can propose their own centralized graphical

interface. Therefore, the user is free to use one or
more graphical interface to manage the system.

3.2.2 COMMUNICATION

PHYSICAL-LAYER INDEPENDENCE

Description:

The system should be independent of the underlay-
ing physical protocol.

Category: System design (concrete)
Motivation: | Ensure the system generality.
Example: -

SUBSYSTEM ADDRESSING

Description:

Each subsystem should be individually addressable.
Additionally, a subsystem has to offer the possibility
to communicate with devices that it controls.

Category: System design (concrete for subsystem), vendor de-
sign (concrete for devices)

Motivation: | Usability. [19] 20]

Example: -

DISCOVERY

Description: | A subsystem should be able to publicize its existence
and discover the other subsystems.

Category: System design (concrete)

Motivation: | Simplicity for users. [19,20]

Example: When a new subsystem is connected, it automati-

cally informs of its own existence and look for other
subsystems.

35

DESCRIPTION

Description: | A subsystem should be able to describe information
useful for the system.

Category: System design (abstract)

Motivation: | Interoperability. [19,20]

Example: When a new subsystem is connected, it sends its ver-
sion, devices, dependency information, group identi-
fiers, etc

CONTROL

Description: | It should be possible to control a subsystem. After-
wards, it should be possible to asses the new state of
the subsystem.

Category: System design (concrete)

Motivation: | Interoperability and usability. [19, 20]

Example: After the command to turn on a light is sent, it is
possible to check if the light is on.

EVENTING

Description: | It should be possible for other subsystems to know
when some selected events happen.

Category: System design (concrete)

Motivation: | Usability. [19, 20]

Example: When the alarm system detects an intrusion, the
event is sent to lightning and communication sys-
tems.

3.2.3 SCALABILITY, FLEXIBILITY, AND DYNAMISM

NEW DEVICES

Description: | It should be easy to add new devices to the system.
Category: System design (abstract)

Motivation: | Simplicity and interoperability. [26]

Example: -

NEW VENDOR SUBSYSTEMS

Description: | The system has to be generic enough to enable the
addition of new subsystems.

Category: System design (abstract)

Motivation: | Reduce constraints for vendors. [26] [12] [13]]

Example: -

36

NEW TECHNOLOGIES

Description:

The system has to be able to support new technolo-
gies by adding new devices and/or subsystem soft-
ware update.

Category: System design (abstract ability), vendor devices (con-
crete updates)

Motivation: | Interoperability. [12]

Example: -

AUTOMATIC CONFIGURATION

Description:

The system should use automatic setup as much as
possible. In particular, user interactions to configure
the system should be minimal.

Category: System design (abstract), vendor design
Motivation: | Simplicity. [19]
Example: -

DEPENDENCY INFORMATION

Description:

The subsystem should define available functionali-
ties to the rest of the system.

Category: System design (concrete)
Motivation: | Interoperability. [28]
Example: The subsystem publishes all its available functional-

ities.

GROUP IDENTIFIERS

Description: | Devices can be associated with different identifiers.
This enables devices to be addressed based on their
groups instead of individually.

Category: System design (concrete)

Motivation: | Ensure scalability with large scale systems and in-
teroperability.

Example: For example, a device could belong to the group:
“Kitchen” and “Lights”.

INHERITANCE

Description: | It should be possible to refine dependency informa-
tion and group identifiers.

Category: System design (concrete)

Motivation: | Ensure scalability with large scale systems and in-
teroperability.

Example: For example, the group identifier “Kitchen” could in-
herit from the group identifier “Room”.

37

3.2.4 USABILITY

SIMPLICITY
Description: | The system should be simple from a user perspective.
Category: System design (abstract)
Motivation: | Usability for users. [32, 13l
Example: -

SEAMLESS INTERACTIONS

Description: | The interaction process between the subsystems
should be seamless.

Category: System design (abstract)

Motivation: | Simplicity. [32][13]

Example: The user does not need to understand the interac-

tions between subsystems.

SUBSYSTEM BINDING

Description: | Once authorized (for security requirements), a new
subsystem should automatically bind to the system
to exchange information needed to work.

Category: System design (concrete)

Motivation: | Simplicity

Example: -

REMOTE CONTROL

Description: | The user should be able to control the system re-
motely, in particular over the Internet.

Category: System design (concrete)

Motivation: | Usability and increase the value of the system. [37]

Example: A user could turn on the heating system from the

Internet.

BROWSER CONTROL

Description: | It should be possible to control the system with a
browser. It offers a common, standardized, and
widely supported way to access information. There-
fore, the system has at least this user interface. The
user remains to use the interface of his/her choice.

Category: System design (concrete), vendor devices

Motivation: | Simplicity, interoperability, and usability. [24] [37]]

Example: -

38

EXTERNAL SOURCE OF INFORMATION

Description: | The system should be able to access available re-
sources external to the network.

Category: System design (concrete ability), vendor design (ab-
stract use)

Motivation: | Usability and increase the value of the system. [37]

Example: The system could access weather forecast or natural
disaster alerts on the Internet.

RELIABLE

Description: | The system’s reliability should be maximized by us-
ing opportunistic redundancy.

Category: System design (abstract)

Motivation: | Improve users’ experience and confidence.

Example: If two subsystems offer the same functionality and
one fails, the other should take over.

ACCEPTABLE DELAYS

Description: | In order to have a satisfiable user experience, com-
munications between devices should be efficient to
increase the speed.

Category: System design (abstract)

Motivation: | Improve users’ experience.

Example: A user should not be able to notice the transmission
delay between subsystems (to turn on a light for ex-
ample).

3.2.5 SECURITY

PREVENT UNDESIRED ACTIONS

Local
Description: | The system should be able to prevent actions that
are undesired for a subsystems devices.
Category: System design (concrete), vendor design (rules ab-
stract)
Motivation: | Safety. [52,[11]
Example: For example, turning on and off lights too rapidly.

39

Global

Description: | The system should be able to avoid undesired actions
due to subsystem interactions.

Category: System design (abstract)

Motivation: | Safety. [52, [11]]

Example: If all subsystems turn on all equipment at the same
time, it can generate problem in the electrical con-
sumption of the house.

Environmental

Description: | The system should take into consideration the exter-
nal environment.

Category: System design (concrete), vendor design (implemen-
tation)

Motivation: | Safety. [52, 11]]

Example: Forcing the system to shut the windows when there
is a pollution outside the house.

UNAVOIDABLE ISSUE DETECTION

Description: | If an issue cannot be automatically fixed, the system
should warn the user.

Category: System design (concrete ability), vendor design (de-
tection)

Motivation: | Users’ experience. [11]

Example: For example, a subsystem has a defect.

CONFIDENTIALITY

Description: | All data exchanged in the system should be consid-
ered confidential. The system should treat them ac-
cordingly.

Category: System design (abstract)

Motivation: | Safety. [11]

Example: Data exchanged between subsystems should be en-
crypted.

AUTHENTICITY

Description: | A subsystem should be able to asses the authenticity
and origin of data.

Category: System design (concrete verification), vendor design
(trust)

Motivation: | Safety. [11]

Example: The security system should be sure of the origin of a
transaction.

40

AUTHORIZATION

Description: | Only authorized subsystems should be part of the
system.

Category: System design (concrete)

Motivation: | Safety. [11]

Example: It is impossible for an intruder to add a subsystem to
the system.

INTEGRITY

Description: | A subsystem should be able to asses that data are
not tampered.

Category: System design (concrete)
Motivation: | Safety. [11]
Example: -

3.3 CONSTRAINTS

3.3.1 HARDWARE

The constraints defined hereafter come from hardware limitations.

LIMITED DEVICES

Home devices have important discrepancies. In some cases, they can have limited re-
sources. [11]

Bandwidth
Subsystems might have limited bandwidth with their devices. [33]
Energy

Devices might have limited energy supply. In particular, mobile devices are often sensi-
tive to power consumption.

Computational power and memory
Devices might have limited computational power and memory.
FAILURES

Subsystems are subject to unpredictable failures.

41

3.3.2 ECONOMICAL

Economical aspects of the system are not studied in depth. However, in order to be
adopted, it should respect economical constraints.

CosTs
Installation, maintenance, acquisition cost should be minimized. In order to be interest-

ing for users, the system has to be affordable. In particular, it should not require unrealistic
hardware. [36] [13]

BUSINESS MODEL

The system should enable vendors to sell new devices and software for the system. Ven-
dors have an interest in adopting the system. [13]]

CLOSED SUBSYSTEMS

Subsystems might only offer partial and/or restricted access to it. For example, subsys-
tems might use patented technologies or exert content restrictions. [26), [13]

SUMMARY

Figure [3.1 on the next page shows a mindmap of the different goals, features, and con-
straints.

42

simplicity

usefulness

energy
saving

Home
Automation
Requirements

security
openness

and inter-
security operability

Features

commu-
nication
usability

scalability,

flexibility,
and

dynamism

Figure 3.1: Summary of the different requirements of a home automation system.

43

CHAPTER 4

ANALYSIS AND DESIGN

The following design is based on the design of the HomePort system. (see Section on
page [29]for more details), various other home automation systems, and open Internet stan-
dards. Section|4.1|on the current page presents the different layers of the system and their
responsibilities. Afterwards, Section on page [48| explains how the layers fulfill the re-
quirements of the system (see Chapter |3| on page for more details). Finally, the layer
repartitioning on different device components is shown in Section |4.3| on page This
section also explains subsystem’s interactions with layers and message exchanges.

4.1 LAYERED ARCHITECTURE

The architecture of the system is divided into four different layers. The architectural
layering has sought properties:

e clear responsibilities for each layer

e low layer coupling

e simpler and smaller individual components

e standard layer-communication interface

¢ layer independence (from vendor, programming language, implementation, ...)
¢ alayer implementation can be seamlessly replaced by another one.

This is a traditional approach to building complex systems such as the OSI model (see
Section [2.2 on page [17]for more details).

4.1.1 OVERVIEW

The system has four layers. From the lowest level of abstraction to the highest, these
layers are: the device layer, bridging layer, service layer, and composition layer. Layers

45

Composition

Service

Bridging
e e e e e (C N A\ | e e e e
Device

Subsystem

Figure 4.1: Overview of the architectural layers of the system.

are spread from subsystems to the home automation system (the bridging layer being the
border between the two).

Figure on this page presents an overview of the different architectural layers of the
system. Moreover, it shows how the layers are partitioned between the subsystem and
system level.

4.1.2 DEVICE LAYER

The device layer is responsible for controlling devices from a specific subsystem. There-
fore, it is implemented at the subsystem level by its vendor. It contains a set of devices
connected between them by the subsystem protocols.

The design of the system makes no assumptions on the devices or the subsystem proto-
cols. However, the subsystem has to offer the possibility to communicate with it. It is the
vendor’s choice to decide how to pass messages from and to the bridging layer.

4.1.3 BRIDGING LAYER

The bridging layer is responsible for making available subsystem devices over an IP
network. In order to do so, it translates messages from the subsystem specific protocols
to TCP/IP or UDP/IP (see Subsection [2.3.1.1] on page [2I] for more details) from the service
layer, and vice-versa.

46

It has the advantage that it does not require substantial changes in the system. It
merely needs one more device component to interact with the other subsystem devices.
Besides, the translation is done at a low level and TCP/IP or UDP/IP have low resource
demands. However, it requires that the vendor produces an additional device with an Eth-
ernet network card to implement the layer.

The layer is it-self split in two. One sublayer that is subsystem dependent and another
that is generic for the LAN communication.

4.1.3.1 Subsystem

This sub-layer is responsible for translating messages from and to the subsystem de-
vices. Therefore, it has to intercept messages that are intended for devices outside the
subsystem control. Additionally, it injects messages coming from the service layer in the
device layer, as if they were coming from a subsystem device.

4.1.3.2 Heterogeneous Network Protocol

This sub-layer is responsible for communicating messages over Ethernet. It is only
made of generic and standard components. If necessary, it ensures bridging/service layer
discovery and configuration, and IP level security (see Section [2.6.3| on page for more
details).

4.1.3.3 Common Network Adaptor Interface (CNAI)

The common network adaptor interface (CNAI) is the interface that separates the two
bridging sublayers. It defines how they communicate. Moreover, it enables total translation
freedom at the subsystem level and the use of a generic heterogeneous network protocol.

4.1.4 SERVICE LAYER

The service layer is responsible for presenting devices in a uniform and subsystem in-
dependent manner. It exposes devices from the device layer as resources. Resources can
be manipulated using HTTP (see Subsection |2.3.1.2|on page[21]|for more details) through a
REST architecture (see Section on page |24|for more details). The layer enforce secu-
rity policies between subsystems on devices. In addition, it enables discovery of controlled
resources (see Section[2.5.4] on page [26]for more details) for the composition layer.

4.1.5 COMPOSITION LAYER

The composition layer is responsible for combining devices presented by the service
layer. Interactions between devices of different subsystems are programmed at this layer.
They can be hand-coded or programmed with a service composition language (such as HCLL
[13] or a finite-state machine based language).

47

Layer Responsibilities

Composition | interactions between devices (at the system level)

Service presentation and enforcement of security policies on the
devices (at the system level).

Bridging message passing and translation between the system
and the subsystems.

Device control of the devices (at subsystem level).

Table 4.1: Summary of layer responsibilities of the system.

SUMMARY OF LAYER RESPONSIBILITIES

Table on this page summarizes the responsibilities of the different architectural
layers of the system.

4.2 FACETS OF THE SYSTEM

This section explains how the system works in its three main aspects:

e the automatic discovery and configuration in Section on the current page
e the communication in Section on page

e the security in Section |4.2.3|on page

e the redundancy and scalability in Section [4.2.4 on page

4.2.1 AUTOMATIC DISCOVERY AND CONFIGURATION

The goal of the automatic discovery and configuration is to provide the information
needed for layers to work. The system layers can be implemented on different devices.
Furthermore, devices at the system level are connected between them by an Ethernet net-
work. Therefore, dependent layers need ways to contact each other.

It is assumed that devices of the system have their IP addresses already attributed.
There are well known ways to automatically assign IP addresses to devices of an Ethernet
network such as DHCP or ZeroConf.

4.2.1.1 Simple discovery protocol

The following is a simple protocol for devices implementing the bridging layer (bridges)
to discover the IP addresses of devices implementing the service layer (gateways).

1. A bridge multicasts an UDP/IP packet on a defined port to request devices implement-
ing the service layer. In order to allow new versions and functionalities, it should
request a minimal version number of the service layer in the message.

2. A gateway, implementing at least the version number requested, replies with its IP
address. The gateway can decide to reply only to the bridge that made the request or
by broadcast, in order to tell the other bridges that could be interested. In the reply,
the gateway should specify the version of the service layer that it implements.

48

Gatgway Clignt :

Annoucement
(multicast)

> >

Discovery request
(multicast)

Discovery reply
(unicast)

> o

Figure 4.2: Gateway discovery process with a simple protocol.

Gateway A Gateway B

Bridge B Bridge C

Figure 4.3: Example of a bridge discovering gateways of the system.

3. Finally, the bridge can select one (or more) gateways to communicate with. It can
decide based on the response time, the version number, or any adequate criteria.

Figure [:2] on the current page shows the process by which a gateway is discovered by
clients. Firstly, the gateway announces periodically its presence with a message. It is
similar to a discovery reply message, except than it is sent in multicast. Secondly, a client
sends a discovery request and the gateway replies.

49

Example:

Figure [4.3| on the preceding page shows an example of the protocol for
bridges to discover gateways in the system.
1. Bridge A broadcasts a request to all components connected to the
network.

2. The two gateways reply to Bridge A.
Bridge A can then interact with both gateways or select the one that fit
its needs the best.

This simple protocol leaves a maximum of freedom to bridges and gateways, while still
achieving its goal.

There exists alternative ways to carry out automatic gateway discovery, such as using a
DNS, the UPnP (Simple Service Discovery Protocol (SSDP)) protocol (see Section on
page [22] for more details), the Service Location Protocol (SLP) [23], ...

4.2.1.2 Devices Profile for Web Services

There are existing standards that meet many of the system requirements. One of them
is “Devices Profile for Web Services” (DPWS), a successor of UPnP. Its goals are: [29]

e sending secure messages to and from a web service

e automatically discovering a web service

e describing a web service

e subscribing to, and receiving events from, a web service

DPWS is more than merely an evolution of the UPnP standard. It uses the service-
oriented paradigm. To achieve its goals, it combines protocols introduced previously. It uses
HTTPS to send secure messages (see Section on page [28| for more details). To auto-
matically discover web services, it takes advantage of techniques presented in Section[2.5.4]
on page and in particular of WS-Discovery. Web services are described with WSDL
(see Section on page for more details). Finally, the eventing functionality enables
subsystems to subscribe to relevant events. This functionality is assured by WS-Eventing
[48].

WS-DISCOVERY

The WS-Discovery protocol supports two modes: ad hoc and managed. The system does
not make any supposition about explicit network management services (such as DHCP,
DNS, domain controllers, directories, ...). Therefore, the ad hoc mode is the most appro-
priate. In this mode, the client (a controller or a bridge) sends a multicast (see Subsec-
tion on page 21] for more details) probe to find a target service (the gateway service
layer). The gateway that matches the probe replies to the client. Finally, the client can lo-
cate the service by sending a multicast message resolve request. When the gateway leaves
the network, it tries to send a multicast bye message to inform clients. The protocol gen-
erates a lot of multicast messages. In order to minimize the amount of such messages,

50

Gateway Client :

Y

|
—L Hello —L
(multicast) -
Probe
(multicast) >
Probe match
(unicast) »
Resolve
(multicast) >
Resolve match
(unicast) »
Bye
(multicast) » >
T T T
|

Figure 4.4: WS-Discovery protocol applied to a gateway.

the gateway can send a multicast service announcement message that can be detected by
clients. This minimizes the total amount of multicast messages exchanged, by sending
announcements to possibly more than one client at the time.

Figure[4.4|on this page shows the WS-Discovery process for a gateway. It is a new service
added that did not exist in the initial HomePort system.

Probe

Listing [4.1] on the current page presents a probe message to discover services offered by
gateways.

Listing 4.1: WS-Discovery: Probe message

<s:Envelope ... >
<s:Header ... >
<a:Action ... >

http://docs.oasis—open.org/ws—dd/ns/discovery/2009/01/Probe
</a:Action>

<a:MessagelD ... >xs:anyURI</a:MessagelD>
[<a:ReplyTo ... >endpoint—reference</a:ReplyTo>]?
<a:To ... >xs:anyURI</a:To>

51

</s:Header>

<s:Body ... >
<d:Probe ... >
[<d:Types>list of xs:QName</d:Types>]?
[<d:Scopes [MatchBy="xs:anyURI"]1? ... >

list of xs:anyURI
</d:Scopes>]?

</d:Probe>
</s:Body>
</s:Envelope>

e /s:Envelope/s:Header/* contains metadata to process the message.

e /s:Envelope/s:Body/d:Probe/d: Types defines the type of target service requested.
The application defines a scheme. The following types could be used:

— wse:eventing: the event notification service
— gateway:device: the resource manipulation service

- gateway:selector: the group identifiers and functionality dependencies service

The system can be extended by defining new types.

4.2.1.3 Group identifiers and functionality dependencies

Devices can have group identifiers and functionality dependencies associated with them.
These identifiers and dependencies enables to select a set of devices. These selectors can be
defined for a device or an existing selector. See Section [3.2.3|on page [37]for more details.

It is possible to select the intersection, union, and the difference of a set of devices with
the AND, OR, NOT operators. The three operators form a complete set of logical connectives
(expressively adequate). Both kind of selector supports the single-inheritance principle.
Therefore, the inheritance can be represented as a tree data-structure. Once an element of
the tree is selected, all its children are also selected.

Finally, once devices are registered, a gateway can provide a list of devices based on
group identifiers and functionality dependencies associated with them.

Listing on the next page describes the WSDL interface of this service. It is a new
service added that did not exist in the initial HomePort system.

Example:

A device is registered with request such as:
https://gatewayl/register?identifier=0x23f0d9
&group=kitchen, light&functionality=dimmer

A request such as:

https://gatewayl/selector?group=kitchen AND light
&functionality=dimmer

would provide a list of registered devices belonging to the group identifiers
“kitchen” and “light”, and that have functionality dependency “dimmer”.

52

Listing 4.2: WSDL of the gateway group identifiers and functionality dependencies

<wsdl:binding name="DeviceServiceHttpBinding"
whttp:methodDefault="GET"
interface="gateway:Servicelnterface'
type="http://www.w3.org/ns/wsdl/http">
<wsdl:operation ref="gateway:getDevicesIdentifiers"
whttp:location="/list?identifier={identifier}">
<wsdl:outfault
ref="gateway:IdentifierNotFoundException"/>
</wsdl:operation>
<wsdl:operation ref="gateway:registerDevicesIdentifiers'
whttp:location="/register?identifier={identifier}&group={group}&
functionality={functionality}">
<wsdl:outfault
ref="gateway:IdentifierNotFoundException"/>
<wsdl:outfault
ref="gateway:GroupNotFoundException" />
<wsdl:outfault
ref="gateway:FunctionalityNotFoundException" />
</wsdl:operation>
<wsdl:operation ref="gateway:selectDevices"
whttp:location="/selector ?group={group}&functionality ={
functionality}">
<wsdl:outfault
ref="gateway:GroupNotFoundException"/>
<wsdl:outfault
ref="gateway:FunctionalityNotFoundException"/>
<wsdl:outfault
ref="gateway:LogicalOperatorsException"/>
</wsdl:operation>
<wsdl:fault ref="gateway:IdentifierNotFoundException"/>
<wsdl:fault ref="gateway:GroupNotFoundException"/>
<wsdl:fault ref="gateway:FunctionalityNotFoundException"/>
<wsdl:fault ref="gateway:LogicalOperatorsException"/>
</wsdl:binding>

4.2.2 COMMUNICATION

This part describes the different means available to the components of the system to
communicate. Subsection [4.2.2.1|on this page describes methods to manipulate devices. In
addition, Subsection[4.2.2.2]on page[56] presents the notification protocol for events. Finally,
Subsection on page[60] defines a data format to interact with devices.

4.2.2,1 REST architecture

A REST architecture style is enough for subsystems to communicate, as described in
the HomePort system (see Section on page [29|for more details). It is an efficient way to

53

Method

Action

GET /devices

get a list of resources devices.

GET /devices/identifier

show a representation of the resource identifier.

POST /devices

create a representation of the resource based on
the data posted.

PUT /devices/identifier

update a representation of the resource identifier
based on the data sent.

LISTEN /devices/identifier

subscribe to the simple event notification system
(from HomePort, not HTTP).

DELETE /devices/identifier

delete the resource identifier representing a de-
vice.

Figure 4.5: REST methods associated with the actions in the system.

increase the system generality and scalability, as described in Section on page

Subsystem devices are represented as resources. A subsystem can access information
about another subsystems’ devices by accessing the resources that represent them. More-
over, a subsystem can manage devices it controls by modifying resources that represent
them. All available devices can be listed with a link to the resource. Figure on the

current page describes REST-style HTTP methods of the system.
The service h-net sub-layer supports five request methods:

e GET: access the representation of a resource of the system (e.g. a device)

e POST: create a resource with a representation of a device

e PUT: update a resource with a representation of a device

e LISTEN: subscribe to the notification of the change of a resource.

e DELETE: delete a resource.

This interface respects the HomePort system interface. The subsystem sub-layer has to use

these general methods to translate subsystem commands.

Example:

The changes of a switch is monitored by sending a listen request to the
bridge or the switch. When a change happens, a token is sent to the client
and a get request is sent by the client to know the new state of the resource.
Based on the new state, a light can be turned on by sending a put request
to the bridge controlling the light.

GET and PUT requests enable to read and modify any kind of resource represented on
the gateway. They have the advantages of a REST architecture. In particular, they are easy

to implement and have low encapsulation overhead.

54

WSDL GATEWAY DESCRIPTION

The WSDL gateway description of the system (Listing on this page) defines how
clients can request the gateway resources. It is the first strict definition of the HomePort
interface.

Listing 4.3: WSDL of the gateway

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl"
targetNamespace="http://www. homeport.org/gateway/device/wsdl"
xmlns:gateway="http://www. homeport. org/gateway/device/wsdl"
xmlns:whttp="http: //www.w3.org/ns/wsdl/http"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msg="http://www. homeport.org/gateway/device/xsd">

<wsdl:binding name="DeviceServiceHttpBinding"
whttp:methodDefault="GET"
interface="gateway:Servicelnterface"
type="http://www.w3.org/ns/wsdl/http">

<wsdl:operation ref="gateway:getDevices"
whttp:location="devices/{identifier}">
<wsdl:outfault
ref="gateway:DeviceNotFoundException"/>
</wsdl:operation>
<wsdl:fault ref="gateway:ExistingDeviceException"/>
<wsdl:fault ref="gateway:InvalidDataException"/>
<wsdl:operation ref="gateway:updateDevice"
whttp:location="devices"
whttp:method="POST">
<wsdl:outfault
ref="gateway:DeviceNotFoundException"/>
</wsdl:operation>
<wsdl:fault ref="gateway:DeviceNotFoundException"/>
<wsdl:fault ref="gateway:InvalidDataException"/>
<wsdl:operation ref="gateway:updateDevice"
whttp:location="devices/{identifier}"
whttp:method="PUT">
<wsdl:outfault
ref="gateway:DeviceNotFoundException"/>
</wsdl:operation>
<wsdl:operation ref="gateway:listenDeviceEvent"
whttp:location="devices/{identifier}"
whttp:method="LISTEN" >
<wsdl:outfault
ref="gateway:DeviceNotFoundException"/>
</wsdl:operation>
<wsdl:operation ref="gateway:deleteDevice"
whttp:location="devices/{identifier}"
whttp:method="DELETE">

55

<wsdl:outfault
ref="gateway:DeviceNotFoundException"/>
<wsdl:outfault
ref="gateway:ExistingDeviceException"/>
<wsdl:outfault
ref="gateway:InvalidDataException"/>
</wsdl:operation>
<wsdl:operation ref="gateway:getDevices"
whttp:location="devices/"/>

</wsdl:binding>
</wsdl:description>

HTTP MECHANISMS

The HTTP contains many mechanisms that can be used for the system. It is developed
to enable caching, authentication, content compression, partial retrieval of content, content
integrity verification, ... In particular, in case of concurrent modification of a resource with
PUT methods, the content mismatch can be detected by the client with headers such as
If-Match or If-Unmodified-Since. Data transfer are also more efficient as the content is
downloaded only if it was modified since the last download.

Content negotiation

The HTTP allows parties to negotiate the content of a resource. Therefore, a resource
can have various representations. It enables clients to ask for the representation that fits
its need the best. For example, the gateway could provide an XML, plain text, and HTML
representation of a resource. The server does not have to keep the different representations.
It can store only one and dynamically transform it into another at the client request!]

4.2.2.2 Event notification

An event notification protocol is used to notify the components of the system of an event
happening on a resource (a device). Consequently of an event notification, the component
decides to take an action based on the change of the resource.

SIMPLE HOMEPORT NOTIFICATION

The LISTEN request is more advanced than the GET or PUT requests. Indeed, the event
notification is a complex task in a distributed system. The current HomePort system does
not take into account the following cases:

e unsubscribe to the event notification
e the failure of the bridge sending the notifications

e subscribe to events on behalf of another bridge

IXSLT is a language that can transform XML documents into any text-based representations, such as another
XML format, HTML, plain text, etc.

56

e have selective event notificationd?

The advantage of the current system is that it is simple to implement as it ignores some
cases. It also offers the possibility to broadcast a UDP notification (see Subsection
on page [2]1] for more details) of an event. However, in order to have a rich and efficient
system, such cases might need to be handled.

WS-EVENTING

WS-Eventing is a standard protocol for web services to subscribe to events and to send
notifications. It offers the possibility to solve cases neglected by the current LISTEN noti-
fication system. It is a new service added that did not exist in the initial HomePort system.
It uses SOAP (see Section on page [25| for more details) to fulfill its objectives. WS-
Eventing supports the following subscription messages:

e Subscribe

Renew

GetStatus

Unsubscribe

SubscriptionEnd

The event sources are naturally the bridges. The gateway is the subscription manager.
Finally, every components of the system can subscribe to events (in particular bridges).
The protocol does not specify the notification. It can be any kind of message.

Figure on the next page shows the WS-Eventing process to notify of changes in
devices controlled by a bridge (the source).

Subscribe

To create a subscription, a subscriber sends a request message to an event source (a
bridge). Listing [4.4] on page 59| defines the form of such a message. [48]

e /s:Envelope/s:Header/wsa:Action is an URI to bind SOAP.

e /s:Envelope/s:Body/*/wse:EndTo describes where to send the SubscriptionEnd
message.

/s:Envelope/s:Body/*/wse:Delivery gives the delivery destination and mode.

/s:Envelope/s:Body/*/wse:Expires defines the expiration time of the subscrip-
tion.

/s:Envelope/s:Body/*/wse:Filter filters an event source in a defined dialectﬂ

2In order, to have targeted and efficient notifications.
3A dialect is a language to filter events (e.g. XPath describes a path in XML document).

57

Gateway Client Source

1
|
—L

1

Subscrib
%« ubscribe

GetStatus
<

>
Renew

- >
< . . Event

Notification >

Fail
%< ailure |]
SubscriptionEnd

T T

Figure 4.6: WS-Eventing protocol applied to notify of changes in devices.

58

Listing 4.4: WS-Eventing: Subscribe message

<s:Envelope ...>
<s:Header ...>
<wsa:Action>
http://gateway/event/Subscribe
</wsa:Action>

</s:Header>
<s:Body ...>
<wse:Subscribe ...>
<wse:EndTo>endpoint—reference</wse:EndTo> ?
<wse:Delivery Mode="xs:anyURI"? >xs:any</wse:Delivery>
<wse:Expires>[xs:dateTime | xs:duration]</wse:Expires> ?
<wse:Filter Dialect="xs:anyURI"? > xs:any </wse:Filter> ?

</wse:Subscribe>
</s:Body>
</s:Envelope>

Renew

The Renew message is used to extend an expiring subscription. Listing on the cur-
rent page defines the form of such a message. [48]

Listing 4.5: WS-Eventing: Renew message

<s:Envelope ...>
<s:Header ...>
<wsa:Action>
http://gateway/event/Renew
</wsa:Action>

</s:Header>
<s:Body ...>
<wse:Renew ...>
<wse:Expires>[xs:dateTime | xs:duration]</wse:Expires> ?

</wse:Renew>
</s:Body>
</s:Envelope>

e /s:Envelope/s:Header/wsa:Action is an URI to bind SOAP.

e /s:Envelope/s:Body/+/wse:Expires defines the new expiration time of the sub-
scription.

GetStatus

The GetStatus is used to receive the status of the subscription. The subscriber sends
a request to the subscription manager (the gateway).

59

Unsubscribe

Even if subscriptions end, a subscriber might want to unsubscribe earlier to an event.
The Unsubscribe message provides this possibility. After the message is received, the
subscriber will not receive notifications for the specified event.

SubscriptionEnd

If the subscription source (a bridge) fails, the subscriber is notifier by the subscription
manager with a SubscriptionEnd message. Therefore, it has the possibility to react ac-
cordingly.

4.2.2.3 Data exchange format

This part proposes basic XML representations of resources that contains accessible data
about devices. Other representations could be offered to clients by the virtues of the HTTP
content-negotiation and XML transformation-language mechanisms. It is a conventional
format that did not exist in the initial HomePort system.

STATE

Listing on this page presents a basic XML representation of the state of a device.
The content of the device that is accessible to the system is represented in this resource. It
can then be manipulated with the request methods of the REST architecture of the system.

Listing 4.6: Basic XML representation of the state of a device.

<states type="array">

[<state>
<name> . .. </name>
[<read—only—state type="boolean">truel false</read—only—state>]
<state—type>..</state—type>
[<description>[...]</description>]
<value encoding="xs:any">...</value>
[<created—at type="xs:any">[...]</created—at>]
[<updated—at type="xs:any">[...]</updated—at>]

</state>]

[...]

</states>

e /states/* represents all states of the device.
e /states/statex represents the state of the device.

e /states/state/name/ defines a unique name for the content.

/states/state/readonly/ defines if the content can be modified (false by default).

/states/state/state-type/ defines how to interpret the content.

/states/state/description/ describes the content.

60

/states/state/value/ is the current value of the content.

/states/state/value/Q@encoding defines how the value is encoded.

/states/state/created-at/ is the time representation when the state was cre-
ated.

/states/state/updated-at/ is the time representation when the state was last
updated.

The content is customizable for vendors by defining new types. In particular, the value
of the content can store any kind of data (text, XML, base-64 encoding, ...).

METADATA

Listing[4.7]on the current page defines metadata that do not change as often as the state
of the device. It is separated to make state transfer faster.

Listing 4.7: XML Metadata of a device.

<device>
<identifier>...</identifier>
[<comment> [. ..]</comment>]
[<status>[...]</status>]
[<created—at type="xs:any">[...]</created—at>]
[<updated—at type="xs:any">[...]</updated—at>]
<states type="array">
[<state>
<name> . .. </name>
<state—type>...</state—type>
</state>]
[...]
</states>
</device>

e /device/identifier/ is a unique device identifier.

e /device/comment/ describes the device.

e /device/status/ describes the current status of the the device.

e /device/created-at/ is the time representation when the device was created.

e /device/updated-at/ is the time representation when the device was last updated.

e /device/states/~* is the list of states of the device with its name and state-type
(see data exchange format for state).

61

4.2,.3 SECURITY

This part describes different security aspects of the system. First, it defines the security
perimeter of the system. The following two sub-parts present, layer by layer, the security
techniques to ensure confidentiality and integrity, and authentication and authorization.
Finally, the last part analyzes and suggests solutions to ensure the availability of the sys-
tem.

4.2.3.1 Security perimeter

The system enforces security where it controls the information exchanged.

Therefore, it does not offer any kind of security at the subsystem level. Most subsystems
have mechanisms to control the inclusion of new devices in the subsystem, such as Blue-
tooth with the pairing or Wi-Fi with WPA (see Section [2.2.2|on page [18]for more details).

Depending on the technology used and the kind of information exchanged, the subsys-
tem encrypts data exchanged with its devices or not. If the subsystem does not provide
any confidentiality and integrity mechanisms, it does not make sense to use cryptographic
techniques to communicate with this subsystem. Indeed, messages encrypted at the sys-
tem level could be easily intercepted or manipulated at the subsystem level. Therefore, a
subsystem can decide not to use encryption in the system. However, messages coming from
a secure subsystem can not be transmitted to another insecure subsystem.

The service layer enforces the access control between subsystems on the devices. There-
fore, the lower bridging layer only provides data confidentiality and integrity.

4.2.3.2 Confidentiality and integrity

SUBSYSTEM AND BRIDGE

Many solutions exists to ensure the confidentiality and integrity of messages exchanged
between the subsystem and the bridge.

IPsec offers a low level and well supported solution (see Section[2.6.3|on page[28|for more
details). It enables to secure the communications from end-to-end between subsystems and
bridges. IPsec is merely an additional layer. Therefore, it does not add any constraints on
the communication protocol between the subsystem and the bridge. The addition of the
security layer is transparent for upper layers. Finally, if the bridge is directly integrated in
the subsystem, this security layer might not be needed.

BRIDGE, GATEWAY, AND CONTROLLER

One of the goals of the gateway is to enforce security policies. In order to achieve this
requirement, it is necessary for the gateway to trust the content of transactions. The con-
fidentiality and integrity ensure that transactions remain secret and unmodified. This is
possible by using IPsec in the same way as between the subsystem and the bridge. However,
in order to treat trust as a whole, a security layer acting at an upper level is needed. HTTPS
offers such a layer. It integrates well with web services, as described by WS-Security (see
Section [2.6.5|on page [29|for more details). Although, it is independent from this standard.

By using certificates for bridges, gateways, and controllers, secure channels can be es-
tablished between parties.

62

Composition

Service

Bridging

Device
Subsystem

Figure 4.7: Overview of the encryption protocols used between layers of the system.

4.2.3.3 Authentication and authorization

As explained previously, the trust between the various components of the system is only
assured from the service layer to the composition layer.

SUBSYSTEM AND BRIDGE

The bridge authenticates communications coming from the subsystem that it is pro-
grammed to collaborate with. The Internet Key Exchange (IKE or IKEv2) protocol, which
is part of IPsec, permits this authentication. It can be done with a shared key between the
subsystem and the bridge or with public keys. This does not require any interaction from
the user. As for the confidentiality and integrity part, it might not be required if the bridge
is directly integrated in the subsystem.

BRIDGE, GATEWAY, AND CONTROLLER

For the higher layers, the identity of the components of the system is verified by cer-
tificates. Each component (bridges, gateways, and controllers) has a certificate signed by a
trusted third party. In order to keep the system open to all vendors, users are free to modify
the list of trusted third parties.

At this point, the user has to interact with the system to authorize new components
in the system. Even if the component is validated by a trusted third party, the genuine
user might not want a component to be added to his system. Indeed, if it was not the
case, an intruder could buy a validated component that the intruder controls and add it

63

seamlessly to the system without the genuine user’s knowledge. Therefore, it could control
the devices of the system. To avoid this situation, the user has to authorize, through the
gateway, components to be added. The gateway could present to the user the serial number
or hashed value of the component certificate. The user could then possibly compare it to a
number printed on the component. This interaction can be done through a web interface on
the gateway, a customized graphical user interface, or a physical interface (such as a touch
screen).

The gateway keeps a list of system components validated by the user. Thereafter, these
components with valid certificate are trusted. The user is free to modify the list of trusted
components.

4.2.3.4 Availability

The gateway is a critical part of the system. Indeed, it stores essential data about
the whole system. In contrast, the bridge controls only a particular subsystem and the
controller composes only part of the system logic. More than one gateway can be present in
the system. However, something has to be done for a gateway to take over in case of failure.

A simple scenario would be for bridges and controllers to discover new gateways when
the original one is not responding after a certain time. Consequently, bridges can register
their devices and controllers can combine them, based on the information stored on the new
gateway. Such a scenario might seem cumbersome and resource consuming, but the failure
of a gateway is a rare event. Additionally, bridges and controllers can collaborate with all
available gateways. Therefore, in case of the failure of a gateway, no additional steps has to
be taken.

In order to avoid denial of service attacks, the gateway should ignore messages com-
ing from untrusted components. In consequence, the amount of resource needed to treat
untrusted requests is greatly reduced. Ergo, it limits the impact of such an attack.

Section on the current page presents a more advanced scenario to ensure the avail-
ability of the system through mechanisms of redundancy and scalability.

4.2.4 REDUNDANCY AND SCALABILITY

In order to ensure the redundancy and scalability of the system, many aspects have to
be taken into consideration. Obviously, the direct communication between devices of dif-
ferent subsystems has to scale to the size of the system (see Section on page [23| for
more details). Additionally, redundancy mechanisms have to be provided in the systemDS-
Redundancy. However, other aspects have to be considered. The discovery and notification
services have also to offer the same abilities. Indeed, without those services the ability to
communicate between devices is not useful. In particular, the services offered by the gate-
way have to be distributed on different physical devices in order to offer the possibility to
scale to the size of the system and offer higher availability. These possibilities are described
in Subsection [4.2.4.1|on the current page. Additionally, failures at the bridge level have to
be handled properly. This is described in Subsection on the facing page.

4.2.4.1 Gateway

In order for the service layer to be able to scale and having redundancy, the services
provided by the layer have to be distributed over more than one gateway. Therefore, it

64

is necessary to define a protocol for the gateways to communicate and keep a coherent
representation of the system, in particular in case of failures.

When a bridge connects to the system, it selects a gateway to communicate with, at
the end of the discovery protocol. The selected gateway will be responsible for the future
communications with that subsystem. A bridge is free to use any non-static method to
select its gatewayﬂ Additionally, it advertises to the other gateway it is responsible for the
devices of the subsystem’}

The responsible gateway communicates with the bridge to know the current state of the
devices controlled by the bridge. At the end of this step, the gateway can present the devices
with the REST interface (see Subsection on page [53| for more details) to the rest of
the system.

At this point, one could suggest to keep a distributed high-consistency state of the de-
vices on the gateways of the system. In case of failure, the state could be recovered and
a new responsible gateway be elected. However, this approach is communication-wise ex-
pensive. In particular, in the case of small or frequent changes in the state of a device, the
communication overhead between gateways is high. Therefore, this solution scales poorly.

The failure of a gateway is detected when a subsystem for which it is responsible or the
other gateways fail to communicate with the gateway. This is known as lazy or on-demand
state reaggregation. When a subsystem detects the failure of its gateway, it selects a new
responsible gateway with the discovery mechanisms. In the second case, when another
gateway detects the failure of the responsible gateway, it has to wait until the bridge also
detects the failure. Indeed, at this point, the bridge is the only one to know the state of
the devices that it controls and there is no way to contact it as the IP address of the bridge
is stored in the failed gateway. This downtime can be minimized by “pinging” the gateway
when no communication happens for a certain interval of time between the bridge and its
gateway. Ergo, the bridge can discover the failure of its gateway.

When a gateway receives a request for a device for which it is not responsible it passes
the request the responsible gateway. This gateway receiving the request can be seen as an
intermediate device in a REST scenario (see Section[2.5.2|on page[24]for more details). This
is totally transparent for the bridge that initiated the request by taking advantage of the
REST architecture of the system.

This whole approach has the advantage of being simple: it does not require additional
protocols and works transparently with the other services of the system.

Figure [4.8|on the following page shows the different steps of the collaboration between
gateways pass requests to/from a bridge.

4.2.4.2 Bridge

When a bridge fails the communication with the devices of the subsystem that it controls
is physically impossible. Once the gateway responsible for that subsystem tries to send a
message to it, it will detect the failure.

Additionally, devices can fail or be unreachable independently. The bridge controlling
these devices can detect it and send a DELETE request to the gateway for the devices con-
cerned.

4A bridge can select the first gateway to reply, randomly select gateway that replied, etc. However, it cannot
the load on gateways has to be fairly distributed.

5This can be done with WS-Discovery (see Section on page for more details).

5The failure can also be detected by “pinging” the bridge as previously explained.

65

3. B anounces that it

is responsible for A
Gateway B 4. C relays requests Gateway C

for A trough B/
B relays requests
for C from A

1. Aselects B

with WS-Discovery 2. B stores the state of the devices

of A
5. A and B exchange requests to
modify the state of devices

Bridge A

Figure 4.8: Overview of the collaboration between gateways B and C to pass requests
to/from the bridge A.

When a device or a set of them is unreachable, they are removed from the services
offered by the gateway (equivalent to a DELETE request). Additionally, the subscription
notification is ended for these devices (see Subsection [4.2.2.2 on page [56] for more details).
Any request for them to a gateway would return an unavailable status response to the
request (see Subsection [2.3.1.2]on page [21] for more details).

Example:

A switch in one subsystem is turned on to activate a light in another sub-
system. Lets assume that the two subsystems are registered on two differ-
ent gateways, in order to generalize this example. The bridge of the switch
sends a request to its gateway. The gateway relays the request to the gate-
way of the light. The light gateway communicates with its bridge to turn
on the light. At this point, the bridge detects that the light is unavailable
and informs its gateway. The gateway generates an unavailable status re-
sponse to the initial request that is relayed to the switch. The bridge of the
light sends a DELETE request to its gateway to address any future request
concerning this light. Additionally, any notification request concerning the
light is revoked.

Figure |4.9 on the next page shows the minimal setting to ensure the reliability of the
communication between the bridge A and B.

SUMMARY

Table [4.2) on the facing page summarizes technologies presented, their purpose, and
alternatives. Alternatives are other technologies that were described as possible solutions
to the problem.

66

Gateway A

Gateway B

Bridge A

Bridge B

Figure 4.9: Overview of a setting that should ensure the reliability of the system for gate-
ways and bridges.

Purpose Technology Alternative(s)
Attribute IP addresses DHCP DNS, ZeroConf, ...
Automatically discover the IP ad- | Simple Discov- | -
dress of components ery Protocol, WS-

Discovery

Dynamically and automatically dis-
cover components

WS-Discovery

Select sets of devices based on group | Selector -

identifiers and functionality depen-

dencies

Interact with layers of the system REST architecture SOAP, RPC, ...

Provide content-negotiated represen- | HTTP mechanisms (any other transfer

tations of resources protocol with content

negotiation)

Notify an event Simple HomePort | (Custom distributed
Notification, WS- | notification protocol)
Eventing

Representation of a resource REST, Data exchange | (SOAP, any other
format XML scheme)

Integrity and confidentiality of data

IPsec (IKE), HTTPS

WS-Security, ...

Table 4.2: Summary of technologies presented with their purpose and different alterna-
tives.

67

Bridge A Gateway B Gateway C

1
Broadcast e

Discovery >

D —

Communication

Failure || 7Tl -

Communication

Figure 4.10: Example of message communications in the different aspects of the system.

Example:

Figure [4.10| on the current page shows a scenario of the possible steps
between a bridge and and two gateways in the discovery, communication,
and failure-detection and recovery phase. In this scenario, the Bridge A
starts by sending a broadcast message to select a gateway. Gateway B
replies to the request. It is selected as the responsible gateway for A. In the
communication phase, A and B exchange messages to modify the state of
the devices controlled by the bridge A. Gateway C registered previously to
B to be notified of some modification of devices controlled by A. Therefore,
gateway B sends a notification to C when such an event happens. It also
passes to A messages coming from C. Periodically, A sends a “ping” to B to
verify its availability. In the last phase, the scenario shows how A discovers
the failure of B by sending a “ping”. Once the failure is detected, A starts
a new discovery phase and the communication with C can resume.

4.3 SYSTEM INTERACTIONS

After having discovered available gateways (see Subsection [4.2.1.1|on page [48| for more
details), the bridge has to select the gateways with which to register its devices. It provides
data about the devices to the selected gateways. Based on the device descriptions, the
gateway presents them appropriately to the rest of the system.

68

Layer Imple- Description
menting
device
Composition | Controllers | is connected to the LAN and stores the com-
position programmed.

Service Gateways is connected to the LAN.
Bridging Bridges has access to the subsystem media and the
LAN.
Device Subsystem controls the subsystem devices and makes
devices interactions possible.

Table 4.3: Summary of the devices implementing the system layers.

DEVICE COMPONENTS

Each layer is conceived to be implemented on specific device components of the system.
Although, for economical reasons, some layers can be implemented in the same device.
Table on the current page shows the distribution of the implementation of the system
layers on the devices.

Device components of the system can be combined in the following manner:

e Device and bridge integrated at the device layer.
e Bridge and gateway with the possibility for other bridges to use the gateway.

e Gateway and controller with the possibility for other controllers to use the gateway.

BRIDGING LAYER

During the subsystem binding, a bridge sends a list of devices controlled by its subsys-
tem to a gateway. Afterwards, it translates and relays messages intended for or coming
from its subsystem. In the event that it detects that a device is disconnected from the
subsystem, it warns the gateways.

Example:

Figure [4.11] on the following page shows an example of bridges interac-
tions with the system. In this scenario, the device 1 of the subsystem
A wants to communicate with the device n ofthe subsystem B. We sup-
pose that both subsystems have registered their devices. The bridge A
contacts the common gateway on behalf of the subsystem A. The gate-
way replies with the needed information. These two transactions are
shown by the message 1. Consequently, the two devices are able to com-
municate as shown by the message 2.

69

Gateway

Subsystem A Subsystem B

Figure 4.11: Bridges interactions with the system.

SERVICE LAYER

The gateway receives data about devices from the bridges (trough the h-net protocol).
Additionally, it publicized its existence and web service description with WS-discovery. It
also provides representations of device resources for the composition layer. If a controller
registered with WS-Eventing for an event, the gateway delivers the event to the controller.

COMPOSITION LAYER

As part of the Devices Profile for Web Services (DPWS), WS-Eventing provides for com-
position web services the possibility to subscribe to particular events happening on the
gateway web service. The controllers retrieves representations of device resources from
gateways. These representations detail devices for controllers to combine them.

Example:

A controller composing devices that manages lights can be interested in
the addition of new devices. Consequently, it subscribes to gateways to
receive events concerning the creation of new resources in the “light” cat-
egory. When such an event happens, it can request the representation of
the resource to assess its interest. Based on the decision, it can decide to
integrate the new device to the light control.

SUMMARY

Figure [4.12| on the next page shows graphically how the different layers of the system
can be combined (from HomePort [[13]).

70

Composition Layer

Service Layer

Bridging Layer

Device Layer

Figure 4.12: Overview of the ways to combine the architectural layers of the system. [13]

CHAPTER 5

IMPLEMENTATION

This chapter describes the implementation of protocols and functionalities defined in Chap-
ter[don page[d5] It starts by presenting (in Section[5.1on the current page, and Sections[5.2)
and on the following page) the context in which the system was developed and the rea-
soning behind the choices made. Thereafter, it details the implementation in Section [5.5.1
on page It is worth noting that many of the choices made for the implementation are
subjective and partially arbitrary. They do not influence deeply the overall functionality of
the system.

5.1 OPERATING SYSTEM

Vendors developing a device for a system face four main choices when it comes to run
the software or firmware program of the device.

The first and simplest choice is to develop a firmware program that runs directly on
the CPU of the device, without an operating system (OS). If the application is simple and
mono-task, it can be an efficient choice. However, it requires the firmware to directly deal
with the device resources. Additionally, it does not benefit from any level of abstraction or
external libraries. The application might run faster because of the lack of overhead, but it
will be harder to port to another device architecture.

A second option is for the vendor to develop an in-house custom OS. OS offer different
levels of abstraction. Additionally, it can also be used for other (future) applications. If
devices are very specific, it can be an interesting choice because the OS can be tuned for
these specific needs. Finally, it offers a high-level of control over the behavior and features
of the OS.

The third choice is to buy an OS made by another company. Many operating systems ex-
ist for embedded devices. It eliminates the burden of developing an OS in-house. However,
it has a cost and it might not support all the needed features.

The last option is to use an open-source OS. The most common one is Linux[31], but
others exist. It runs on many platforms, but because it is a generic OS (not specially de-
veloped for embedded devices), it usually requires more resources. However, there exist
different GNU/Linux distributions that are tuned for limited-resource devices. It is free

73

and it can be adapted to the specific needs of the vendor.

The original HomePort implementation was developed for Linux. Therefore, it was a logi-
cal choice to develop the new features of the implementation on this OS. It has the advantage
of running on many device architectures. In particular, many general purpose device run
with this OS, including the NSLUZ (see Section [5.4.1|on the facing page for more details).

Different Linux distributions are available for the device. They offer different function-
alities. In order to test the implementation, most of them are usable.

5.2 PLATFORM

Linux distributions offer many libraries to facilitate the development of applications.
The software can be developed as a script (written in Python or Perl, for example), a exe-
cutable binary (written in C/C++, for example), or an intermediate language that runs in
a virtual machine (such as the Java Virtual Machine (JVM)).

All these options provide rich libraries. Usually, a compiled piece of software is the
hardest to port as it needs to be compiled for a specific architecture. Although, libraries
provide different levels of architecture-independent abstractions. Scripts are usually slower
as they need to be interpreted every time that they are executed. Virtual machines are
generally offer a compromise. Languages designed to run in a virtual machine are compiled
in an intermediate executable form (called bytecode) and then translated by the virtual
machine to the specific architecture of the end-user.

Some language can be run in an interpreter as a script or in a virtual machine, such as
Ruby.

Programs written for the JVM are OS and architecture independent and they take
advantage of caching and just-in-time compilation (although it is also possible for some
scripting language). Additionally, it offers the object-oriented paradigm, rich libraries (es-
pecially for web services), and JVMs specially tuned for resource-limited architecture (such
as Squawk).

It was decided to use Ruby[15] for most of the development process. It is a general pur-
pose, fully oriented-object language. Additionally, it is intended to maximize developers
productivity, and rich web-service libraries exist for it. As mentioned before, it is possible to
compile a Ruby source code to run on the JVM (with JRuby), or to execute it as a script.

However, the initial HomePort program is written in Python. It is an older general-
purpose programing language by which Ruby was inspired.

5.3 LIBRARIES

There exists many web-service (WS) frameworks or libraries for Ruby (such as Camping,
Nitro, Sinatra, ...). Ruby on Rails (RoR or simply Rails)[1] is one of these web application
framework. It is open source and intended for rapid development. It offers RESTful web
services. WS can easily provide HTML, XML, or JSON output format. See Section [2.3.1|on
page [21|for more details.

Rails uses a Model-View-Controller (MVC) architecture pattern. In this architecture
pattern, the model stores a domain-specific representation of the data; the view renders the
model (for example in HTML or XML); the controller is the glue-logic dealing with requests
and responses and calling models. The goal of the MVC is to decrease the coupling between
the model and the views, and therefore reduce the complexity and increase maintainability.

74

Additionally, Rails provides scripts to generate skeleton of models, views, and con-
trollers. Moreover, easy mapping between model objects and a relational database is possi-
ble with ActiveRecord. It promotes the use of conventions to minimize configuration (Con-
vention over Configuration) or coding.

5.4 INFRASTRUCTURE

This section describes the infrastructure with which the implementation works. How-
ever, other setups of this infrastructure are possible without major changes.

5.4.1 NSLU2

The NSLUZ2[14] is a relatively small device with two USB ports and an Ethernet plug. It
was initially developed as a Network-Attached Storage (NAS) to access USB mass storage
devices from an Ethernet home network by Linksys. It was introduced in 2004 and discon-
tinued in 2008 to be replaced by new products. It can be easily customized and is being used
for many other applications. It is the reason why it was used to test the implementation.

The equipment has limited resources. It has an ARM-compatible Intel XScale IXP420
CPU with 32MB of SDRAM, and 8MB of Flash memory. The CPU was initially under-
clocked at 133MHz, but NSLUZ2s released after 2006 use the full 266MHz capacity. Addi-
tionally, it is equipped with a 100Mbit/s Ethernet network connection and two USB 2.0
ports. See Section on page [17]for more details.

5.4.2 DHCP

The NSLU?Z server has an IP address dynamically attributed by the DHCP. The com-
puter has different IP addresses to simulate commands coming from different subsystems.
The Ethernet network uses IPv4, but it should be possible to use IPv6. There is no IP ad-
dress coded in the source code of the software, as the system relies on service discovery. See
Section [4.2.1 on page [48|for more details.

The NSLUZ2s acting as gateways provide non-conflicting ranges of IP addresses through
DHCP servers. It enables a bridge to obtain an IP address valid on the whole network in
a simple and redundant manner. As long as there is at least one gateway connected to the
network, IP addresses can be delivered to clients. Additionally, defining a non-conflicting
range of IP addresses for a gateway to manage permits to use the simple DHCP redundancy
mechanism. This technique is often used in an organizational environment where DHCP
redundancy is critical.

5.4.3 WEB-SERVICE DELIVERY

Web services (WS) run on a web server. There exist many general-purpose web servers
running on Linux. The most common one is Apache HTTP Server (commonly Apache). It
offers many features and can be extended with compiled modules. It provides support for
HTTPS, Ruby, caching, content negotiation, compression, etc.

Other general-purpose web server exist, such as lighttpd or nginx. They aimed at pro-
viding a light and fast web server. For example, they both solve the “C10k problem” which
consist of handling 10 000 connections simultaneously. They offer many of the same fea-

75

tures as Apache. This implementation uses nginx[27] as it seemed to be the most used
between the two. However, this choice is subjective and does not have a major influence on
the rest of the implementation.

Additionally, another module is needed to interpret the Ruby web-service implemen-
tation. Again, many possibilities exist. The most common are Mongrel, WEBrick, and
Phusion Passenger. Any of the three work perfectly to run the implementation with any of
the above three general-purpose web servers.

5.5 SERVICES

This section presents the implementation of the services provided by the system. The
implementation follows the design provided in Section 4.2/ on page

5.5.1 SIMPLE DISCOVERY PROTOCOL

The protocol follows strictly the description in Subsection |4.2.1.1] on page The pro-
gram implementing the service sends periodic announcement packets. The time period and
the port number to send packets can be defined. The packets are UDP multicast packets.
They contain the string: “sbp:”, the version number of the protocol (“1.0”), and the IP
address of the gateway (e.g. “192.168.1.107). It also possible to send a host name, if DNS
resolution is available on the network.

The service is implemented as a daemon written in Ruby running on gateways. It listens
for incoming multicast packets on the port 21.95E] (by default) sent by a bridge. The reply is
sent on the port 2196.

5.5.2 SELECTOR

The selector is implemented as a simple HTTP web service. It parses the “identifier”
and “functionality” parameters provided in the request. This is done in a RESTful manner.
It follows the logic specified in Subsection |4.2.1.3| on page [52| to find the set of devices re-
quested. The group identifiers and functionality dependencies associated with devices are
saved. When a valid set is requested, an HTML, XML, or JSON list of devices is returned
to the client. In case of invalid requests, exceptions are returned as defined in Listing [4.2]
on page[53]

Groups can be defined for devices with the resource “/groups”. Afterward, groups of
devices can be selected with the resource “/selector”. It authorizes the use of logical oper-
ator (NOT, AND, OR). A request such as “http://192.168.1.10/selector.xml?group=
groupl+AND+group2” returns an XML list of devices that are in the group “groupl” and
“group2”.

5.5.3 REST COMMUNICATION ARCHITECTURE

This part of the implementation uses intensively the Rails framework. It is inspired by
the Python implementation that was written during the initial HomePort design.

IPort numbers 2195 and 2196 are officially unassigned by the Internet Assigned Numbers Authority (IANA) in
charge of maintaining the official assignments of port numbers.

76

There is a resource named “/devices”. It is associated with a model that render gen-
eral data about a device (see Subsection on page [60] for more details), except its
state. Data requests are rendered by views in HTML, XML, and JSON. Requests and re-
sponses are managed by a controller. It supports requests described in Subsection [4.2.2.1
on page[53]

Two additional views were generated to enable the creation and update of device in
HTML with a web browser. These views are simple HTML forms that send requests the reg-
ular REST manipulation interface of a gateway. For example, “https://192.168.1.10
/devices/device-id/edit” provides an HTML form to edit the device “device-id”.

Data exchange format

The XML data exchange format follows the description given in Subsection on
page It is used as the default format to represent states of devices for the bridge.
Additionally, the JSON format is available to facilitate JavaScript interactions with AJAX.
Finally, it can be displayed in standard HTML for being used in a web browser. Internally,
the representation is saved by the framework in a relational SQL database. In case of
invalid requests, exceptions are returned as defined in Listing[4.3]on page

BRIDGE

The bridge is implemented in the form of a library and a command-line interface (CLI)
tool that uses the library. It is written in Ruby. It works by sending XML GET, POST, PUT,
and DELETE requests to a gateway.

The bridge CLI tool follows this syntax: http[s]://gateway—-address|— [:port]
commands. Table on the following page shows the possible commands and their actions.
Where:
gateway-address is the address of the gateway to interact with.

- if a “-” is provided instead the address of the gateway, the automatic gateway discovery is

used.
port is the port to use to connect to the server, if omitted the standard port is used.
device-id is a valid identifier for a device.
state-name is a valid name for a state.

DeviceFile.xml is a valid path to an XML file describing a device (see Subsection [4.2.2.3
on page [60|for more details).

StateFile.xml is a valid path to an XML file describing a state of a device (see Subsec-
tion [4.2.2.3| on page [60]for more details).

5.5.4 NOTIFICATION

The notification service is implemented with a daemon following the WS-Eventing stan-
dard and is intended to run on on the gateways. It uses the Ruby SOAP library to imple-
ment a WS-Eventing-compliant service. It provides the functionality needed to notify when
a state is modified (see Subsection [4.2.2.2| on page [56] for more details).

77

Request | Argument1 | Argument 2 | Argument 3 | Action
list - - - Display of all devices
with their states
list device-id - - Display the device with
all its states
list device-id state-name - Display the state of the
device
add DeviceFile.xml - Add the device with the
data in the file
add device-id StateFile.xml - Add the state to the de-
vice with the data in the
file
update device-id DeviceFile.xml - Update the device with
the data in the file
update device-id state-name StateFile.xml | Update the state of the
device with the data in
the file
delete device-id - - Remove the device
delete device-id state-name - Remove the state of the
device

Table 5.1: List of commands with requests, arguments, and their actions.

Ruby on Rails provides an additional abstraction level with another interface. This
interface is RESTful and makes it easier to manage the notification. However, it simply
passes requests to the WS-Eventing SOAP daemon.

When a change happens in the state of a device, the device communication service no-
tifies the change to the notification daemon. At that point, the daemon notifies possible
subscribers of the event-notification of the state. The notification message is sent as de-
scribed during the event notification subscription. Generally, this means sending the new
state to the client.

5.5.5 HYPERTEXT TRANSFER PROTOCOL SECURE

The security of the web services (see Section[4.2.3|on page[62|for more details) is assured
by using HTTPS connections between the equipment. The client has the choice to decide
between regular non-secure HTTP connections and slower HTTPS connections. nginx sup-
ports both options in the implementation. It is possible to force the use of the HTTPS
connections. Every equipment possesses an SSL certificate. A certificate authority (CA)
was created for the system. It can generates SSL server certificates for gateways and SSL
client certificates for bridges. It enables the encryption and authentication of both parties,
if required.

The CA and the certificates were generated using OpenSSL[35]]. It was used because
it is common and efficient implementation of SSL. However, any other tool could be used,
as it follows the SSL and X509 standards. The equipment possesses a list of CA that they
trust (see Section on page [28| for more details).

78

5.5.6 REDUNDANCY

GATEWAY

When a gateway is designated to be responsible for a bridge, it sends a multicast mes-
sage with the IP address of the bridge and its own to the other gateways (port 2188). It
is also possible to ask which gateway is responsible for a particular device by sending a
multicast message with the identifier of the device (port 2189).

When a multicast message is sent to designate a new responsible gateway or the com-
munication with the bridge fails, the current responsible gateway removes its internal data
about devices of that bridge.

Each daemon has two mapping lists. One that matches identifiers of devices with a
bridge, and another one that matches a bridge with a gateway.

Based on these lists, the gateway receiving a request relays it to the responsible gateway.

BRIDGE

When selecting a gateway, the bridge simply creates (POST requests) the devices that it
controls with their states. It is the normal procedure for a bridge. Indeed, the redundancy
is transparent for bridges.

The bridge periodically sends ping messages to its responsible gateway to detect eventual
failures (every 3 seconds on the port 2194, by default).

5.6 PROCESS

ENVIRONMENT

The development and implementation is done on an NSLU2 with Linux installed on it.
It is used as a server hosting the different services. Commands coming from devices trough
the device layer are simulated by sending messages that devices could send. A testing
program written in Ruby on a computer sends the simulated commands on the Ethernet
network that connects the NSLUZ2. Most of the development was done locally on a virtual
machine similar the NSLUZ2 production environment. It enables faster development and
can easily be ported to the NSLU2 when ready for production.

CORRECTNESS TESTING

During the development process, the web-service were tested in 3 different manners:
unit tests, functional tests, and integration tests.

The unit test verifies the model. They are the smallest testable part of the service. It
is done validating individual methods. Each method has to pass a set of assertions to be
validated. It controls the correctness of outputs given various inputs.

The functional test verifies the controller (see Section[5.3|and Figure[5.1]on pages 80)
for more details). They verify incoming requests and responses of the rendering views. By
validating the web service behavior, they verify that it follows its requirements. They test
parts of the service as if it was a black box as they test it behavior, not its internal design.

The integration test verifies the integration between controllers. They test the work flow

79

HTML, JS, CSS, Image

Web browser HTTP(S)

XML, JSON

Clients

Gateway

Multicast

HTTP(S)

Forward to Ruby interpreter

Validation

Render

Ruby on Rails

Figure 5.1: Partial summary of the implementation.

between them. For example, there are important relations between the device controller
and the state controller. Therefore, it is important to test their integration. By validating
groups of individual controllers of a service, they validate the service requirements as a
whole.

SUMMARY
Figure [5.1] on this page partially summarizes the implementation of the HomePort sys-

tem. It shows the DHCP server, the discovery server, and the web server. It details the
web-service implementation with the Rails framework and its different components.

80

CHAPTER 6

PERFORMANCE TESTING

6.1 METHODOLOGY

Many tools exist that can measure the response time of web services given different
conditions. Indeed, it is interesting to know how a distributed system reacts given a cer-
tain number of concurrent connections, certain conditions, or certain requests. It validates
theoretical models and emphasizes key performance elements.

Apache HTTP server benchmarking tool (“ab”) [17] was used for measuring time re-
sponses in different scenarios. It is a simple, yet rich tool to measure and simulate connec-
tion loads. It offers rich outputs and the possibility to plot the results with other tools.

In order to have measurements as accurate as possible, they were repeated numerous
times. However, many factors can influence the measured results. For example, if a con-
nection is reset after a timeout expires (because of a high load), it greatly influence the
mean. Additionally, requesting pseudo-randomly selected resources on different gateways
influence the measured time because of the various caches (database, requests, interpreter,
memory, ...) and the variable size of the content exchanged.

Section on the current page presents measures of experiments designed to test the
performances of services running on a single gateway. Section [6.3| on page tests the
performances of the discovery protocol with two gateways.

6.2 PERFORMANCE OF A SINGLE GATEWAY

The following results were calculated on a single gateway running on the NSLUZ2 en-
vironment. The NSLUZ2 was responsible for 50 devices each with 25 states. Concurrent
requests are independent connections to the web service run in parallel. The requested
state of a device is selected pseudo-randomly. A new connection is established for every
request. HTTP 1.1 features such as keep-alive, compression, or caching are disabled (see
Subsection [2.3.1.2] on page for more details) to test the implementation itself. They
simulate connections from clients (e.g. bridges).

81

3500

I
HTTPS GET
HTTP GET

3000
X/ g
2500

)

2000

1500
F

el
500 //.f

V//' WWW

0 10 20 30 40 50

Number of concurrent requests

Mean response time (ms)

0

Figure 6.1: Mean response time with HTTP and HTTPS GET requests with concurrent
requests.

6.2.1 HYPERTEXT TRANSFER PROTOCOL SECURE

Figure on this page shows the difference between the mean response time between
regular HTTP GET requests and secure HTTPS GET requests. The mean was calculated
on 100 measurement of concurrent GET request on the XML list of devices managed by
the gateway. The response time increases fast with concurrent HTTPS requests. Indeed, a
new HTTPS session has to be established for every connection which is resource consum-
ing. In practice, the session can be used to request more than an resource. Maintaining the
session avoids generating a new session key every time and the slow asymmetric-key oper-
ations during the session initialization from being repeated. This can be seen on Figure[6.2
on the next page. The HTTPS protocol uses the following parameters: TLSv1/SSLv3,
AES256-SHA, 1024, 256. See Section[2.6.4]on page [28|for more details.

It clearly shows that HTTPS sessions have an high cost and limit the number of concur-
rent requests that can be handled by a single gateway.

6.2.2 PROTOCOL REQUESTS

Figure [6.3| on page shows the mean response time between GET, POST, and PUT
requests over the HTTP protocol. GET requests are the fastest because the request does not
modify the state of the device. Additionally, the request does not contain any data and can

82

2500 I I I I I
HTTPS GET wighout Keep-alive
HTTPS GET with Keep-alive
HTTP/GET with Keep-alive
2000
m
é 1500
0]
E
=)
(0]
[%)]
cC
(@]
o
%]
g
c 1000
©
9]
=
500
—
//
]
—
_———
//
=
_—|
0
5 10 15 20 25 30 35 40 45 50

Number of requests

Figure 6.2: Mean response time with HTTP and HTTPS GET requests with and without
“Keep-alive”.

83

1200

|
HTTP PUT —+—

HTTP POST i
HTTP GET
1000 N/f

m /
£ 800 S
[0}
£ //
3 AZI/
2 600 i
o
o
wn
o
C
S 400 £
= K
200 v,
0
0 10 20 30 40 50

Number of concurrent requests

Figure 6.3: Mean response time to HTTP GET, POST, and PUT requests.

be cached. POST and PUT requests have similar performances. The slight difference can be
explained by the fact that the previous state can be discarded in the case of a POST request,
but not always in the case of PUT request (for which partial updates are possible). Both
requests require storing a new the state of the device.

Table on the facing page shows the minimum, mean, median, and maximum times
(in ms) measured for different number of concurrent connections. The measurement are
done on 100 repetitions. Mean and median values are closed.

Figure [6.4] on page is a load test of a gateway. It shows an approximation of the
number of concurrent GET requests that a gateway can handle with the HTTP and HTTPS
protocol. The number of concurrent connection is incremented by 10 between each mea-
surements. The mean is calculated on 50 measurements. In both cases, the response time
is linear until the gateway reaches its maximum load. The maximum loads are around 260
concurrent connections with the HTTP protocol and 130 concurrent connections with the
HTTPS protocol. However, a lower number of concurrent connections is needed in order to
have an acceptable response time from the gateway.

6.3 GATEWAY-DISCOVERY PROTOCOL

Figure on page [87| shows the performance of the gateway-discovery protocol under
different concurrent connection loads. The measurement were realized according to the
following scenario: a set of concurrent bridges sends gateway-discovery requests. Each

84

Concurrent requests | Min | Mean | Median | Max

HTTP GET
1 10 13 12 79
10 10 75 48 | 306
20 10 150 151 | 515
30 10 213 222 528
40 10 277 254 | 804
50 10 362 391 | 774
60 10 437 456 | 1059
70 10 545 599 | 1256
80 38 580 621 | 1070
90 10 669 596 | 6696
100 97 734 749 | 3875
HTTPS GET
1 75 87 85| 174
5 106 349 348 | 498
10 396 701 698 | 962
15 411 1050 1053 | 1324
20 725 1401 1406 | 1675
30 402 2099 2106 | 2303
40 406 | 2798 2806 | 3070
50 423 3495 3510 | 3786
HTTP POST
1 19 27 22 | 102
10 18 200 98 | 745
20 18 374 354 | 956
30 18 589 544 | 1620
40 18 793 831 | 1570
50 18 | 1009 1053 | 2290
HTTP PUT
1 21 34 31| 100
10 19 218 224 | 896
20 20 433 350 | 1278
30 20 667 639 | 1730
40 20 920 962 | 1818
50 20 1127 1245 | 2347
Concurrent requests | Min | Mean | Median | Max

Table 6.1: Main time measurements (ms) of requests.

85

10000

8000 /
6000 /

T
HTTPS GET —+—
HTTP GET —x—

4000
/

Mean response time (ms)

2000
e
X
MW
0 L]
0 50 100 150 200 250 300

Number of concurrent requests

Figure 6.4: Load stress on a gateway with HTTP and HTTPS GET requests.

86

600

T T T
One-gateway discovery + HTTP GET —+—

Regular HTTP GET —x—
Two-gateway discovery + HTTP GET —x—| 1

1

m
£
[}
£
8

< 300
o
o
n
g
c

® 200
=

100

0

0 20 40 60 80 100

Number of concurrent requests

Figure 6.5: Mean response times of gateway-discovery requests followed by a HTTP GET
request with one or two gateways connected, and a a HTTP GET request according to the
number of concurrent connections.

individual bridge select the gateway that first responds to request. Finally, the bridge
use the response of the gateway to request a resource on that gateway. The results are
measured with one and two gateways connected to the network.

The discovery protocol overhead can clearly be seen when comparing a regular HTTP GET
with a discovery request followed by a HTTP GET. The experience proves that the discovery
protocol balances fairly well the charge between the two gateways. This can be seen when
comparing mean response times between one and two gateways. It is logical consequence
of the fact that when one gateway is loaded, it answers more slowly to discovery requests.
Therefore, the charge goes to the other gateway.

The results are calculated with 20 measurements.

6.4 NOTIFICATION PROTOCOL

Figure on the next page shows the time it takes for clients to modify states of devices
(with a HTTP PUT request) and the other clients interested on modified states to be notified.
The measurements are done with one and two gateways in the system. Both measurements
are quite linear.

When a random request to update a state arrives to a gateway, it might need to relay
it to the other gateway. Indeed, if the gateway is not responsible for that device, it passes

87

1100

1000

900

800

700

600

500

400

Mean elapsed time (ms)

300

200

100

Figure 6.6: Mean times of concurrent updates of states and their notifications with one or

two gateways.

the request to the responsible gateway (see Subsection [£.2.4.1) on page [64] for more details).

T T T T
State update + notification with two gateways ——

State update + notification with one gateway7-

"

el

s

el

e

Pl

el

&

//(f

-

5

10

15 20

2

5 30

Number of concurrent updates and notifications

This is why measurements with two gateways is more chaotic than with only one.

The reaction time is quite slow in both cases which shows that the implementation could
be improved. However, the progression is linear in both case which is a good case for the
scalability of the system (see Section on page [23| for more details). This means that
by tuning the implementation or adding more powerful gateways the performance can be

improved.

The results are calculated with 100 measurements.

88

CHAPTER 7

CONCLUSION

This last chapter sums up the various main points of the work, as well as the elements for
future work.

SUMMARY

The present work started by presenting the current technologies available for home au-
tomation systems. It presented network types used in modern home. Afterward, many
standards related to web services were described. Indeed, the design of the original Home-
Port system, also presented, and many other modern domotic systems, heavily rely on these
Internet technologies. This is an essential part to understand already existing systems and
their possibilities. From this part, it is clear that already existing web-service standards
can be applied to the field of domotics. In particular, much research was made about dis-
covery, event notification, security, scalability, and reliability.

Afterwards, special care was taken to define sets of requirements for the system. It is
mostly based on review of the domotic literature and discussions on the subject. It defines
goals to achieve, commonly found features, and constraints of the system.

The third part of the work analyzes possible solutions based on the goals, requirements,
constraints, and existing technologies. It clearly defines two protocols to enable automatic
discovery of components of the system. The first protocol is simple and lightweight. It
uses the possibility to broadcast packets on an Ethernet network in order to resolve IP
addresses of components of the system. The second protocol takes advantages of the rich
and numerous features of WS-Discovery. It requires more resources to use it, but offers
more functionalities. Both protocols assume that components have an IP address on the
network. IP addresses can be attributed with various other protocols presented.

Commands available in the system are clearly defined. They are REST-style methods
largely based on the initial HomePort design. The definition of these methods with WSDL,
combined with WS-Discovery, enables dynamic use of the provided commands. Properties
of this architecture are expressed and analyzed. Additionally, there is a new service that
enables to select sets of devices based on their functionalities or group identifiers. It facili-
tates the management of large or complex domotic systems.

A new event-notification feature is introduced. It enables more possibilities than the

89

initial simple HomePort notification mechanism. It uses the principles of the WS-Eventing
standard. Parts that are not specified in this standard were implemented such as the SOAP
notification. This protocol enables new functionalities in the system such as selective noti-
fications. However, it is still possible to use the original HomePort notification mechanism.

The security perimeter defines the security responsibilities of the system. It shows as-
pects to be protected by the system and by subsystems. This part also uses security stan-
dards to protect the different links between device components.

The redundancy and scalability of the architecture is studied.

Finally, the implementation of this new system is presented. It is mainly implemented
using Ruby and it relies on existing libraries for web services. It is inspired from the initial
HomePort piece of software that was written in Python.

Table on the facing page summarizes contributions and their origin to the best of the
author’s knowledge.

FUTURE WORK

Many new features and functionalities were introduced in the present work. It would
be interesting to analyze how they integrate with real vendor subsystems. Different
practical aspects when it comes to integrate and manufacture the system should also be
considered. Extensive and large-scale testing is needed.

The mobility of devices (both inside and outside the house) was not considered at
all in the original design of the HomePort system, nor in this work. However, it should
be facilitated by automatic discovery and configuration features. Advanced features might
be interesting for these particular devices, such as having different behavior depending on
their localization in the system. This would require further work and new features.

In parallel, a lot of work is done at the composition layer of the system. Efficient and
practical solutions have to be developed to combine the different subsystem devices.

Formal analysis with verification tools of the protocols between equipment would en-
sure the safety of the architecture.

Finally, for the system to be ever used by companies, a final set of choices has to be
defined in a standard. In order to do so, meetings and alliances with companies are nec-
essary. Indeed alternatives are numerous and conventions are needed in order to inter-
operate.

There is a great interest from vendors for open home-automation solutions. In this
context, the HomePort system has a real potential.

90

Name Origin
Analysis of the different technological aspects of HomePort Author
Define requirements for goals HomePort

Define requirements for features

Author (partially based
on HomePort and re-
search)

Define requirements for constraints

HomePort (mostly)

Layered architecture HomePort
Service oriented approach HomePort
Automatic discovery and configuration Author
Simple discovery protocol (design, implementation, and test- | Author
ing)

WS-Discovery (analysis and use) Author
Devices Profile for Web Services (analysis and use) Author
Simple HomePort notification (“LISTEN”) HomePort
WS-Event (analysis, use, and implementation) Author
REST architecture HomePort
WSDL of services Author
Multi formats data representation (analysis and use) HomePort
XML format definition Author
Multi formats data representation through content negotia- | Author
tion (HTML, text, XML, and JSON) (implementation and test-

ing)

Group and dependency identifiers (“selector”) Author
Security perimeter (analysis) Author
HTTPS (TLS) to authenticate servers and clients (analysis, | Author
use, implementation, and testing)

Availability (analysis) Author

Multiple gateways (analysis, implementation, and testing)

Author (suggested by
HomePort)

Synchronization of gateways (analysis, implementation, and
testing)

Author

Scalability of requests from clients to gateways

Author (based on Home-
Port design)

Implementation design on NSLU2

Author (inspired from
HomePort implementa-
tion)

Implementation of services on NSLU2 Author
Implementation testing Author
Web interface Author
Command-line interface Author
Performance testing of different requests with different loads | Author

Table 7.1: Summary of the contributions and their origin.

91

Bibliography

[1] 37Signals. Ruby on rails. http://rubyonrails.org/, May 2010.

[2] HomePlug Powerline Alliance. Homeplug av white paper. http://www.homeplug.
org/products/whitepapers/HPAV-White-Paper_050818.pdf, Dec. 2005.

[3] Wi-Fi Alliance. Wi-fi certified makes it wi-fi: An overview of the wi-fi alliance
approach to certification. |http://www.wi—fi.org/files/WFA_Certification_
Overview_WP_en.pdfl, Sept. 2006.

[4] Z-Wave Alliance. Z-wave: The new standard in wireless remote control. http://www.
z-wave.com/modules/AboutZ—-Wave/, Oct. 2009.

[5] ZigBee Alliance. Zigbee white papers. http://www.zigbee.org/LearnMore/
WhitePapers/tabid/257/Default.aspx, Oct. 2009.

[6] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley, 1 edition, January 2001.

[7] Universal Powerline Association. Upa digital home specification v1.0. http://www.
upaplc.org/, Feb. 2006.

[8] Ozalp Babaoglu and Keith Marzullo. Consistent global states of distributed systems:
Fundamental concepts and mechanisms. Technical report, 1993.

[9] Changseok Bae, Jinho Yoo, Kyuchang Kang, Yoonsik Choe, and Jeunwoo Lee. Home
server for home digital service environments. Consumer Electronics, IEEE Transac-
tions on, 49(4):1129-1135, Nov. 2003.

[10] Gordon Bell and Jim Gemmell. A call for the home media network. Commun. ACM,
45(7):71-75, 2002.

[11] Peter Bergstrom, Kevin Driscoll, and John Kimball. Making home automation com-
munications secure. Computer, 34(10):50-56, 2001.

[12] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and C. Marin. A dynamic-soa home
control gateway. In Services Computing, 2006. SCC °06. IEEE International Conference
on, pages 463-470, Sept. 2006.

93

http://rubyonrails.org/
http://www.homeplug.org/products/whitepapers/HPAV-White-Paper_050818.pdf
http://www.homeplug.org/products/whitepapers/HPAV-White-Paper_050818.pdf
http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf
http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf
http://www.z-wave.com/modules/AboutZ-Wave/
http://www.z-wave.com/modules/AboutZ-Wave/
http://www.zigbee.org/LearnMore/WhitePapers/tabid/257/Default.aspx
http://www.zigbee.org/LearnMore/WhitePapers/tabid/257/Default.aspx
http://www.upaplc.org/
http://www.upaplc.org/

[13] Jeppe Brgnsted, Per Printz Madsen, Arne Skou, and Rune Torbesen. The home-
port system. In 2010 IEEE Consumer Communications and Networking Conference
(CCNC), Jan. 2010.

[14] Inc. Cisco Systems. Nslu2. http://homesupport.cisco.com/en-us/wireless/
1bc/NSLU2, May 2010.

[15] Ruby Community. Ruby. http://www.ruby-lang.org/, May 2010.

[16] Roy Thomas Fielding. Chapter 5: Representational state transfer (rest). http:
//www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm,

2000.

[17] The Apache Software Foundation. Apache http server benchmarking tool. http:
//httpd.apache.org/docs/2.3/programs/ab.html, May 2010

[18] ITU. X.200 : Information technology - open systems interconnection - basic reference
model: The basic model. http://www.itu.int/rec/T-REC-X.200-199407-1/en)
Jul. 1994.

[19] F. Jammes, A. Mensch, and H. Smit. Service-oriented device communications using the
devices profile for web services. In Advanced Information Networking and Applications
Workshops, 2007, AINAW °07. 21st International Conference on, volume 1, pages 947—
955, May 2007.

[20] F. Jammes and H. Smit. Service-oriented architectures for devices - the sirena view.
In Industrial Informatics, 2005. INDIN °05. 2005 3rd IEEE International Conference
on, pages 140-147, Aug. 2005.

[21] W. Kastner, G. Neugschwandtner, S. Soucek, and H.M. Newmann. Communication
systems for building automation and control. Proceedings of the IEEE, 93(6):1178—
1203, June 2005.

[22] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18-25, December
2001.

[23] Robert E. McGrath. Discovery and its discontents: Discovery protocols for ubiquitous
computing. Technical report, Champaign, IL, USA, 2000.

[24] B.A. Miller, T. Nixon, C. Tai, and M.D. Wood. Home networking with universal plug
and play. Communications Magazine, IEEE, 39(12):104-109, Dec 2001.

[25] Almut Herzog Nahid and Nahid Shahmehri. Towards secure e-services: Risk analysis
of a home automation service. In In Proceedings of the 6 th Nordic Workshop on Secure
IT Systems (NordSec, pages 18-26, 2001.

[26] M. Nakamura, Y. Fukuoka, H. Igaki, and K.-i. Matsumoto. Implementing multi-
vendor home network system with vendor-neutral services and dynamic service bind-
ing. In Services Computing, 2008. SCC ’08. IEEE International Conference on, vol-
ume 2, pages 275-282, July 2008.

[27] nginx. nginx. http://nginx.org/, May 2010.

94

http://homesupport.cisco.com/en-us/wireless/lbc/NSLU2
http://homesupport.cisco.com/en-us/wireless/lbc/NSLU2
http://www.ruby-lang.org/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://httpd.apache.org/docs/2.3/programs/ab.html
http://httpd.apache.org/docs/2.3/programs/ab.html
http://www.itu.int/rec/T-REC-X.200-199407-I/en
http://nginx.org/

[28] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K. Harris,
Roni Rosenfeld, and Mathilde Pignol. Generating remote control interfaces for complex
appliances. pages 161-170. ACM Press, 2002.

[29] OASIS. Devices profile for web services version 1.1. |http://docs.oasis-open.
org/ws—-dd/dpws/1.1/0s/wsdd-dpws—1.1-spec-os.html, Jul. 2009.

[30] Melissa J. Perenson of PC World. Superspeed usb 3.0: More details
emerge. http://www.pcworld.com/article/156494/superspeed_usb_30_]
more_details_emerge.html, Jan. 2009.

[31] Linux Online. The linux home page. http://www.linux.org/, May 2010.

[32] Paolo Pellegrino, Dario Bonino, and Fulvio Corno. Domotic house gateway. In SAC "06:
Proceedings of the 2006 ACM symposium on Applied computing, pages 1915-1920,
New York, NY, USA, 2006. ACM.

[33] J. Plonnigs, M. Neugebauer, and K. Kabitzsch. A traffic model for networked devices
in the building automation. In Factory Communication Systems, 2004. Proceedings.
2004 IEEE International Workshop on, pages 137-145, 2004.

[34] Universal Plug and Play Forum. Upnp ressources. http://www.upnp.org/
resources/default.asp, Sept. 2009.

[35] The OpenSSL Project. Openssl. http://www.openssl.org/, May 2010.

[36] B. Rose. Home networks: a standards perspective. Communications Magazine, IEEE,
39(12):78-85, Dec 2001.

[37] U. Saif, D. Gordon, and D. Greaves. Internet access to a home area network. Internet
Computing, IEEE, 5(1):54-63, Jan/Feb 2001.

[38] Bluetooth Special Interest Group (SIG). Bluetooth. https://www.bluetooth.org/
apps/content /), Sept. 2009.

[39] TEEE Computer Society. 802.11 part 11: Wireless lan medium access control (mac) and
physical layer (phy) specifications. |http://standards.ieee.org/getieee802/
download/802.11-2007.pdf, June 2007.

[40] The Internet Society. Hypertext transfer protocol — http/1.1 (rfc 2616). http:
//tools.ietf.org/html/rfc2616, June 1999.

[41] The Internet Society. Http over tls (rfc 2818). |http://tools.ietf.org/html/
rfc2818l, May 2000.

[42] The Internet Society. Security architecture for the internet protocol (rfc 4301). http:
//tools.ietf.org/html/rfc4301, Dec. 2005.

[43] The Internet Society. The transport layer security (tls) protocol version 1.2 (rfc 5246).
http://tools.ietf.org/html/rfc5246, Aug. 2008.

[44] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical Refer-
ence, 2002.

[45] USB Implementers Forum (USB-IF). Universal serial bus. http://www.usb.org/,
Sept. 2009.

95

http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html
http://www.pcworld.com/article/156494/superspeed_usb_30_more_details_emerge.html
http://www.pcworld.com/article/156494/superspeed_usb_30_more_details_emerge.html
http://www.linux.org/
http://www.upnp.org/resources/default.asp
http://www.upnp.org/resources/default.asp
http://www.openssl.org/
https://www.bluetooth.org/apps/content/
https://www.bluetooth.org/apps/content/
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc5246
http://www.usb.org/

[46] W3C. (extensible markup language) xml-signature syntax and processing (rfc 3275).
http://tools.ietf.org/html/rfc3275, March 2002.

[47] W3C. Web services architecture. http://www.w3.0rg/TR/2004/
NOTE-ws—arch—-20040211/, Feb. 2004.

[48] W3C. Web services eventing (ws-eventing). http://www.w3.org/Submission/
2006/SUBM-WS—Eventing—20060315/, March 2006.

[49] W3C. Soap version 1.2 part 1: Messaging framework (second edition). http://www.
w3.0rg/TR/2007/REC—soapl2-part1-20070427/, April 2007.

[50] W3C. Web services description language (wsdl) version 2.0 part 2: Adjuncts. http:
//www.w3.0rg/TR/2007/REC-wsdl20-adjuncts—20070626/, June 2007.

[51] Thomas Lauterbach Wolfgang Hoeg. Digital audio broadcasting: principles and appli-
cations of digital radio. John Wiley and Sons, 2003.

[52] Ben Yan, Masahide Nakamura, Lydie du Bousquet, and Ken ichi Matsumoto. Validat-
ing safety for the integrated services of the home network system using jml. Journal
of Information Processing, 16:38—49, 2008.

96

http://tools.ietf.org/html/rfc3275
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626/
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626/

Index

Authentication,
Availability,

Certificate Authority (CA),[28 [62] 63} [78} [82]
Common Network Adaptor Interface (CNAI),
Condentlahty,

Confidentiality, [27] [40] [62]

Cryptography, 2729 [62]

Entertainment system, [15]

Ethernet, [17,[75] [79]
Extensible Markup Language (XML), [22]

[56 160} [74} [76}[77]
Firewall, [29]

Heating, ventilating, and air conditioning sys-
tem, [16]

Home Automation Constraints,

Home Automation Features,

Home Automation Goals,

HomePort,

Hypertext Transfer Protocol (HTTP), 21} [24]

[25, [28, [0} 47} 52} (53} [56} [60), 75} [76]
Hypertext Transfer Protocol Secure (HTTPS),

28,50} 62 [78)

Integrity,
Internet Protocol (IP),

IPsec, [28] . 62 [63]

JavaScript Object Notation,

Lighting control system, [16]

Model-View-Controller,

Redundancy, [22] 23] 27 [64] [75] [79} [87]
Representational State Transfer (REST),
30} 47, [63} 54} [60} [74 [76]

Safety and security alarm system, [16]

Scalability,

Security perimeter,

Selector,
Service discovery, [26] [38] [48 [77] [34]

Service-Oriented Architecture (SOA), [24] [29]
Simple Object Access Protocol (SOAP),

¥l
State of a device,

[10oH107]

Universal Plug and Play (UPnP),
Universal Serial Bus (USB),

Web Service (WS),
[79, 8]

Web Services Description Language (WSDL),

24} 26, (50} 51} [53 [55} [59]
Wi-Fi, [18] [62]

Z-Wave, [1
ZigBee, @

97

APPENDIX A

INTERFACES

A.1 WEB INTERFACE OF GATEWAYS

This section contains screen shots with a few of the views in the web-browser interface
of the implementation.

= auog
SajEls sheuel | {oeg | 1P

"o as[el waasapuedu qng Wb gwbn
ug as[e] waasapueaul qing b zwbn
ug as[e] waasapueau qing b Twkn
anpep Aluo peay uonduasaqg adf) alwep
£ 1[ej0L

salels

usyauy a3 jo Wb uEn
JUAWIWo D

a|e[eny SRS
ureIN-uaYI-IYBIT S4a1HIuap]

0Z T'BOT Z6T ABMBEIED ‘HOJBLIOH

4= |"'9T'Z6T Aemalen - moys 1saolnag (9 [

o ale| (A wew-usyow-ybryseanep/oz T'esT zeT/isdny BEAEEEGRe] B M D -~ 4 D
a_mﬂ s|jodl syleluyoog AOEIH Maln p3 =g

X0Ja1Y B||IZ0J - HOdIWOoH - 07 T 29T £6T AEMIIED - MOYS 532n3(Q = @

1ce.

Display data about a dev

Figure A.1

99

[http://192.168.1.20(...

&~ C M | ¥% httpy/192.168.1.20/selector?group=Kitchen+AND+Light+0OR+Switch B * O~ &~
Selector
|Kitchen AMD Light OR Switch Search

Group(s): Kitchen, Light, Switch
Devices:

e Light-Kitchen-Main
o Switch-Kitchen-1

Figure A.2: Display device search with the selector.

100

<=S32TASP/>

<B2TASP/>
<}e-pelepdn/>7g5:82:/1181-50-0102=<,8W1lalep,==sdhy 1e-psiepdn=
<Sn1e1s/=81Qe] IeAY<SN1ElS>
<JBTJTIUSPT/>T-Usaydl Iy -2l IMS<Ja T} TIUSp =
<pt1-dnoJb/>g=<,sse12 N,=2dA1 p1-dnoJb=
<pl-22TA8p/>Z=<,5SE1D]1IN.~==2dk1 pI-aoTAep=
<}E-pa1esdd/>7gS 82 /1181 -0 -010Z<,3WTlalep,=2dhy 3e-pajeald>
<1UBWWOD,/><] UsWLWo =

<80TASp>

<32TASP/>
<ie-palepdn/>Z6F:12: /1181 -50-010Z=<,3WTl1alep,=2dhy 3e-pajepdn=
<SN1E15/>870e] TEAY<SN1E]S>
<JBT}TIUSpT/>UTEW -Usyd1 Ty -1YBTI<d8 T} TIUSp =
<pT-dnodb/>g<,s5872] IN,=2dA] pT-dnoub=
<pT1-82TASP/=1<,SSB]D]1IN.==2dA1 pI-saTAsp=
<1E-p81esJd/=>Z6F 12 /1181 -S0-010Z<,8WTlslep,=sdfy 1e-psiesuo=
<lUsWWod/=uayd1Ty 8yl jo IYbHT] uTep<luswwod=

<80TABp>

<, Aedde,=adf1 saoTAsp=

0z
&1
=18
ths
a1t
=1
¥
El
£l

-~of

-G

£

4 Youms+yHo+yBr+any+usyouy=dnelb;|wncio010s|a5/0g T 89T 26T/ dly sainos-main | 21 t Es]

Display XML results of the device selector.

Figure A.3

101

[} Devices: show -... =

- C || M | ¥ 182.168.1.10/devices/Thermometer-Kitchen = B * O~

y

©HomePort: Gateway 192.168.1.10

Identifier: Thermometer-Kitchen
Status: Availahle

Comment:
Thermometer in the kitchen

States
Total: 1

Name Type Description Read only Value
Temperature Sensor_temperature true Celsius:19.4

Edit | Back | Manage states

Figure A.4: Display the state of the Thermometer-Kitchen device.

102

[states: create of Lig... =

e C | M | §% httpy/192.168.1.20/devices/Light-Kitchen-Mainfstates | B O F-
©Homeport: Gateway 192.168.1.20
New state

3 errors prohibited this state from being saved

There were problems with the following fields:
= Mame can'tbe blank

= Mame is too short (minimum is 4 characters)
= Value can'tbe blank

=

State type |Light_Bulb_Incandescent ¥ |

Description

Figure A.5: Display error message when trying to create an invalid new state.

103

General| Details
This certificate has been verified for the following uses:
SSL Client Certificate
SSL Server Certificate
Email Signer Certificate

Email Recipient Certificate

Issued To

Commen Name (CN) 192.168.1.10

organization (0) HomePort

Organizational Unit (OU) Gateway

Serial Number 00:9A

Issued By

Common Name (CN) HomePort CA

Organization (O] HomePort

Organizational Unit (OU) Certificate Authority

Validity

Issued On 05/18/2010

Expires On 05/18/2011

Fingerprints

SHAL Fingerprint 18:50:7A2B:73:31:1B:08:F4:26.E4:DO:DC 55 FAB1:46:9C:09:82
MDS Fingerprint 4B:C5:06:65:58:B4:2E:6B:5C:3A:95:E0:B4.6E:CC.D3

Figure A.6: User view of the security mechanisms with a standard web-browser interface.

104

A.2 COMMAND-LINE INTERFACE FOR CLIENTS

This section provides listing of different commands and their outputs of the command-
line interface tool. The following listings start with the command (“$”) executed in a termi-
nal (see Section [5.5.3| on page[77|for more details), followed by the output from the tool.

Listing A.1: List of states of a device (with gateway discovery enabled)

$ device — list Thermometer—Kitchen
Automatically discovering gateway...
Discovered gateway: http://192.168.1.20

Response:

<?xml version="1.0" encoding="UTF-8"?>
<device>
<comment>Thermometer in the kitchen</comment>
<created—at type="datetime">2010-05—-18T17:29:54Z</created—at>
<identifier>Thermometer—Kitchen</identifier>
<status>Available</status>
<updated—at type="datetime">2010—05-18T17:29:54Z</updated—at>
<states type="array">
<state>
<name>Temperature</name>
<state—type>Sensor_temperature</state—type>
</state>
</states>
</device>

Listing A.2: List of devices (with gateway discovery enabled)

$ device — list
Automatically discovering gateway...
Discovered gateway: http://192.168.1.10

Response:

<?xml version="1.0" encoding="UTF-8"?>
<devices type="array">
<device>
<comment>Main light of the kitchen</comment>
<created—at type="datetime">2010—05-18T17:21:49Z</created—at>
<identifier>Light—Kitchen—Main</identifier>
<status>Available</status>
<updated—at type="datetime">2010-05—-18T17:21:49Z</updated—at>
</device>
<device>
<comment></comment>

105

<created—at type="datetime">2010—05-18T17:28:52Z</created—at>
<identifier>Switch—Kitchen—1</identifier>
<status>Available</status>
<updated—at type="datetime">2010—-05—-18T17:28:52Z</updated—at>
</device>
<device>
<comment>Thermometer in the kitchen</comment>
<created—at type="datetime">2010-05—-18T17:29:54Z</created—at>
<identifier>Thermometer—Kitchen</identifier>
<status>Available</status>
<updated—at type="datetime">2010—05-18T17:29:54Z</updated—at>
</device>
</devices>

Listing A.3: Read the state of a device (with gateway discovery enabled)

$ device — list Thermometer—Kitchen Temperature
Automatically discovering gateway...
Discovered gateway: http://192.168.1.10

Response:

<?xml version="1.0" encoding="UTF-8"?>

<state>
<created—at type="datetime">2010—05-18T17:32:18Z</created—at>
<description></description>
<name>Temperature</name>
<read—only—state type="boolean">true</read—only—state>
<updated—at type="datetime">2010—-05—-18T17:32:18Z</updated—at>
<value type="celsius">19.4</value>
<state—type>Sensor_temperature</state—type>

</state>

Listing A.4: Update the state of a device (with direct connection)

$ device https://192.168.1.20 update Switch—Kitchen—1 Position
NewPosition .xml

/devices/Switch—Kitchen —1/states/Position .xml

#<Net::HTTPOK:0x7f9ab780db68>

Listing A.5: Delete the state of a device (with direct connection)

$ device https://192.168.1.20 delete Switch—Kitchen—1 Position
/devices/Switch—Kitchen —1/states/Position .xml
#<Net::HTTPOK:0x7fa3b29fbbd8>

106

Listing A.6: Errors for requesting a unknown state of a device

$ device https://192.168.1.20 list Switch—Kitchen—1 XXX
<?xml version="1.0" encoding="UTF-8"?>
<errors>
<error>Name does not exist</error>
</errors>

107

APPENDIX B

RESUME

More and more devices of our daily life are computer based. This trend can be seen in many
different areas of home equipment. Most communication systems are based on electronic
components that run specifically designed programs.

Overall, electronic and computer-based devices are more reliable than purely mechani-
cal devices, based on equivalent functional-requirement complexity. Indeed, electronic com-
ponents are not subject to the same physical deterioration as mechanical ones. Additionally,
they offer unique and powerful possibilities. For example, it is possible to modify the behav-
ior of a device after it was build, by changing its firmware or software. It is also easier for
users to customize their devices to fit their needs. Contents of diverse kind can be copied
and exchanged in an efficient and cheap manner. Finally, these devices appear smarter to
the users.

The normal development direction has turned from isolated and purpose-specific devices
to collaborative and multi-purpose devices. Nowadays, most cellphones cannot only make
phone calls, but also surf the Internet, take pictures, interact with other devices (through
Bluetooth), run user applications, etc. They interact with the cellphone network, the In-
ternet, various wireless networks, and home computers. The same is true for computers,
gaming consoles, and media players.

All these devices need to interact with each other through various networks. Some
networks are specific for a segment of devices and others are general for heterogeneous
devices.

This trend to make daily-life devices digital happened in a disorganized manner. Many
technologies were developed in parallel. Furthermore, many categories of devices have
their own standards and means of communication. In addition, devices are diverse, and
they have different constraints and resources. In order to obtain truly collaborating devices,
a system that can handle various technologies is needed.

Such a system would help equipment to communicate, and act in an efficient and smarter
manner. Moreover, it has to be flexible enough to adapt to numerous devices and their
needs. The system can help to meet the new challenges that are low-energy consumption,
easy configuration, security and affordable price for such a complex system.

The objective of this work is to provide an home-automation system. The system is
based on the design of the HomePort system. The HomePort system was designed to offer

108

a distributed communicating architecture that provides an added value. It uses a layered
and service-oriented architecture.

The current work presents the context in which home-automation systems are used.
It describes and compares home-automation related technologies in general, and in the
specific case where a service-oriented approach is used. Moreover, different technologies to
enhance the original HomePort system are also presented.

As a starting point, the requirements of the system are defined from the existing home-
automation literature. Thereafter, various solutions to problems that were left for future
work in the initial HomePort architecture are described.

Solutions include the automatic discovery and configuration of the components of the
system. It applies the Devices Profile for Web Services to the system. It clearly defines two
protocols to enable automatic discovery of components of the system. The first protocol is
simple and lightweight. It uses the possibility to broadcast packets on an Ethernet net-
work in order to resolve IP addresses of components of the system. The second protocol
takes advantages of the rich and numerous features of WS-Discovery. It requires more re-
sources to use it, but offers more functionalities. Both protocols assume that components
have an IP address on the network. IP addresses can be attributed with various other pro-
tocols presented. In order to reach acceptable user requirements, it extends and defines
new functionalities, such as the group and dependency identifiers, and dynamic component
discovery.

Commands available in the system are clearly defined. They are REST-style methods
largely based on the initial HomePort design. The definition of these methods with WSDL,
combined with WS-Discovery, enables dynamic use of the provided commands. Properties
of this architecture are expressed and analyzed. Additionally, there is a new service that
enables to select sets of devices based on their functionalities or group identifiers. It facili-
tates the management of large or complex domotic systems.

A new event-notification feature is introduced. It enables more possibilities than the
initial simple HomePort notification mechanism. It uses the principles of the WS-Eventing
standard. Parts that are not specified in this standard were implemented such as the SOAP
notification. This protocol enables new functionalities in the system such as selective noti-
fications. However, it is still possible to use the original HomePort notification mechanism.

Additionally, it includes the description of different security mechanisms, at various sys-
tem levels, compatible with the rest of the system. It starts by defining a security perimeter
of the system. It explains the extend to which the system can protect the user, given the
constraints. It proposes different possible solutions to the threats.

Moreover, these solutions are implemented to be used and integrated with the HomePort
system. The implementation context is also described. Choices made for the implementa-
tion are described and possible alternative solutions are presented.

Finally, the performance of the implementation is measured and analyzed. It underlines
limitations of this implementation on the available hardware equipment. Additionally, the
consequences of the implementation based on the design are emphasized.

109

APPENDIX C

CD-RoMm

Here is a CD-Rom containing the implementation source code, tools, XML
files, raw-data measurements, and interface screen shots.

110

	Introduction
	Background
	Home Automation
	Entertainment System
	Building Automation System
	Definition

	Network Communication Protocols
	Wired Networks
	Wireless Networks

	High-Level Communication Protocols
	The Internet Standards
	Universal Plug and Play (UPnP)

	Distributed Systems
	Replication
	Scalability

	Web Service (WS)
	Service-Oriented Architecture (SOA)
	Representational State Transfer (REST)
	Simple Object Access Protocol (SOAP)
	Service Discovery

	Security
	Security Concepts
	Authentication
	IPsec
	Hypertext Transfer Protocol Secure
	WS-Security
	Firewall

	Interconnection Between Heterogeneous Subsystems
	Glossary

	Requirements
	Goals
	Features
	Openness and Interoperability
	Communication
	Scalability, flexibility, and dynamism
	Usability
	Security

	Constraints
	Hardware
	Economical

	Analysis and Design
	Layered Architecture
	Overview
	Device Layer
	Bridging Layer
	Service Layer
	Composition Layer

	Facets Of the System
	Automatic Discovery and Configuration
	Communication
	Security
	Redundancy and Scalability

	System Interactions

	Implementation
	Operating System
	Platform
	Libraries
	Infrastructure
	NSLU2
	DHCP
	Web-Service Delivery

	Services
	Simple Discovery Protocol
	Selector
	REST Communication Architecture
	Notification
	Hypertext Transfer Protocol Secure
	Redundancy

	Process

	Performance Testing
	Methodology
	Performance Of a Single Gateway
	Hypertext Transfer Protocol Secure
	Protocol Requests

	Gateway-Discovery Protocol
	Notification Protocol

	Conclusion
	Bibliography
	Index
	Appendices
	Interfaces
	Web Interface Of Gateways
	Command-Line Interface For Clients

	Résumé
	CD-Rom

