

Master thesis
 by

Lasse Stissing Jensen
Jane Billestrup
Dan Kærvang

July 31th 2009

Canonical vs. Community

- an Outside Study

2

Aalborg University

Department of Computer Science

Information Systems

Selma Lagerlöfs Vej 300

DK-9220 Aalborg ø

http://www.cs.aau.dk

Title:
Canonical vs. Community

- an Outside Study

Theme:
Open Source Development

Project term:
February 1st to July 31st 2009

Project group:
d613a

Members:
Dan Kærvang
Jane Billestrup
Lasse Stissing Jensen

Supervisor:
Peter Axel Nielsen

Circulation: 5

Numbers of pages: 73

Appendix: 1 + CD

Finish date 31/07-2009

Synopsis:

This report is about the collaboration be-
tween a company and an open source com-
munity. We have examined what control
the company has over the community, and
what the relation is between the commu-
nity and a company with commercial inter-
ests. The open source distribution exam-
ined in this thesis, is Ubuntu and the com-
pany is Canonical. Our research method is
a case study, and our method for collect-
ing data is conducting qualitative research
interviews with both Canonical employees
and Ubuntu community members. Ad-
ditionally we have conducted an unstruc-
tured observation study at the Ubuntu De-
veloper Summit in Barcelona May 25th
to May 29th, 2009, to confirm our find-
ings from the interviews, and gathering fur-
ther empirical data. Our conslusion states
among others that Canonical has a great
deal of control with the Ubuntu releases,
even though they might try to give the vol-
unteer developers a chance to be heard. In
the end both sides have one major goal in
common: Making Ubuntu as great a dis-
tribution as possible.

This report is publicly available, but publication (with reference) may only happen in agree-

ment with the authors.

2

Preface

This report is our master’s thesis, which documents the result of our work
during the spring semester 2009. The topic of this thesis is about Ubuntu
and what control Canonical have over a commercial/volunteer open source
project, and what the relation is between the volunteer participant and
Canonical. This project marks the completion of a specialisation year in the
Information Systems research unit at the Department of Computer Science
at Aalborg University, Denmark. As a supplement for gathering our empir-
ical data, we went to the Ubuntu Developer Summit in Barcelona May 25th
to May 29th.

Acknowledgements: We would like to thank our supervisor, Professor
Peter Axel Nielsen, for providing valuable input and references. Addition-
ally, we would like to thank Mark Shuttleworth, the eight Canonical em-
ployees and eleven Ubuntu community members, who volunteered to being
interview for this project, without them this project would not have been
possible. A special thanks goes to the Canonical employees Soren Hansen,
James Westby, Daniel Holbach and Thierry Carrez for all their help and for
patiently answering every question we had during this process.

Lasse Stissing Jensen Jane Billestrup

Dan Kærvang

Aalborg, July 31th, 2009

i

ii

Summary

This report is the documentation of a master thesis in computer science.
The motivation for this thesis is an interest in open source software, which
is under going great changes in these years. Commercial interests in open
source software are growing, and businesses are forming around open source
software.

The focus of this study, is the examine the collaboration between a for-
profit company and an appurtenant volunteer open source community.

Our research questions are as follows:

• What control does a company have over a commercial/volunteer open
source software (OSS) project?

• What is the relation between volunteer participants and a company
with commercial interests?

As a basis for better understanding the the issues of opensource software,
literature studies were conducted of the history of open source, develop-
ment in open source and business in open source, respectively. To answer
our research question we conducted an explorative case study. The case
was the Linux distribution Ubuntu. This is an interesting case, because it
is one of the most popular Linux distribution among both users and con-
tributors. Furthermore the commercial backing by the company Canonical
and its involvement in Ubuntu to make it a viable business makes it a suit-
able case for this study. The case study was conducted by a total of 20
qualitative interviews with Canonical CEO Mark Shuttleworth, 8 Canoni-
cal employees and 11 volunteer contributers, respectively. Additionally we
have conducted an unstructured observation study at the Ubuntu Devel-
oper Summit in Barcelona May 25th to May 29th, 2009. This was done to
supplement the interview study, and gather further empirical data.

Our findings was devided into five pieces: “The Business Model of
Canonical”, “Ubuntu Culture”, “Champion and Canonical owner”, “The
Collaboration in Ubuntu” and “Open Source”, respectively. These findings
are the discussed in relation to the background material within the history,
development and busines of open source, respectively.

Our conslusion states among others that Canonical has a great deal of
control with the Ubuntu releases, even though they might try to give the
volunteer developers a chance to be heard. In the end both sides have one
major goal in common: Making Ubuntu as great a distribution as possible.

iii

iv

Contents

1 Introduction 3
1.1 Motivation and Background 3
1.2 Focus of This Study . 4
1.3 Report Outline . 4

2 The History of Open Source Software 5
2.1 The Beginning . 5
2.2 The Berkeley Software Distribution 6
2.3 The Free Software Foundation 6
2.4 Linux . 7
2.5 Apache . 7
2.6 Mozilla . 7
2.7 Open Source Software . 8
2.8 Summary . 8

3 Open Source Development 10
3.1 Development Practices . 10
3.2 Open Source Licenses . 11
3.3 Trademark . 12
3.4 Summary . 12

4 Open Source Business Models 13
4.1 The Business of Open Source 13
4.2 Organisational culture . 16
4.3 Summary . 17

5 Research Approach 18
5.1 Selection of Research Strategy 18
5.2 The Chosen Case . 20
5.3 Collecting the Data . 21
5.4 Research Design . 32

1

6 Analysis 34
6.1 The Business Model of Canonical 34
6.2 Ubuntu Culture . 39
6.3 Champion and Canonical owner 44
6.4 The Collaboration in Ubuntu 46
6.5 Open Source . 51

7 Discussion 54
7.1 Ubuntu as a Part of Open Source History 54
7.2 Development in Ubuntu . 54
7.3 Business in Ubuntu . 55
7.4 Canonical’s Control of Ubuntu 56
7.5 The Relation Between Employees and Volunteers 57

8 Conclusion 58

Bibliography 59

A Interview Guide 63

2

Chapter 1

Introduction

1.1 Motivation and Background

Almost since the beginning of software development, open source software
has been present in some form. In the early days of computing, sharing
source code was the common practice, since the main focus was to make code
that worked and not code that looked nice[FF02]. As software became more
business oriented, commercial interests pulled towards proprietary licences.
Keeping one’s source code secret became an important part of most software
businesses. In its more recent form, the open source movement has emerged
as an alternative to the proprietary software licensing model. It has its roots
in what is known as the hacker culture, where the right to modify software
and share information freely are central issues. This hacker culture, and
the software it has produced, provides much of the software infrastructure
in use today, and open source software has been expanding onto desktop
computers as well.

Open source software is still a minor part of the overall market for soft-
ware, but has a strong position in certain applications, such as web servers
and rendering farms [OSD]. In recent years there has been an increasing
commercial interest in open source software. The notion that open source
meant anti-commercial is no longer predominant. Not only have companies,
governments and municipalities begun adopting open source software, but
several companies are getting involved in the development of open source
software, some even make open source the core of their business — Com-
panies like Red Hat, Canonical or SugarCRM. The French government is
a pioneer in using open source software. At this point open source has or
will replace Microsoft in the near future in the French police departments,
governments and schools [Stac].

A very interesting phenomenon is the emergence of open source projects,
where a company spearheads a development effort, while a community of vol-
unteer contributors supplement the development. This constellation unions

3

potentially very different interests. A company can not base its business on
selling software licenses, but must find other ways to secure profits. Also
volunteer contributors have to accept the company’s commercial interest in
their work. Management becomes a balance between keeping participants
interested in the project, and allowing for some form of alignment.

How such a joining of open source and business takes place is of great
interest because it potentially leads to a significant new direction for software
development which will be a focus area of this study.

1.2 Focus of This Study

The subject of this study is development of open source software by cooper-
ation between a company and a volunteer community of contributors. The
collaboration established in a situation where the commercial interests of
a company and the multitude of interests of a participating community is
found very interesting. This study will examine how a large open source
project is organised across a software company and a contributing commu-
nity of volunteers. The central research questions are:

• What control does a company have over a commercial/volunteer open
source software (OSS) project?

• What is the relation between volunteer participants and a company
with commercial interests?

The work process, which forms the collaboration between company and
community, is also examined in order to understand how these two main
entities have adjusted to each other.

1.3 Report Outline

Chapter 2 presents an overview of the history of open source software. In
chapter 3, open source development practices and open source licensing. In
addition this chapter explains about trademarking. Chapter 4, presents the
theory about open source business models. In chapter 5 our research ap-
proach is described. This includes a short presentation of Ubuntu. Chapter
6 and 7 presents and discusses our findings in an analysis. Chapter 8 and 9
conclude the thesis and present possibilities for future work, respectively.

4

Chapter 2

The History of Open Source
Software

In this chapter we provide a historical overview of some of the most impor-
tant events in the history of open source development. Our main source for
this section is the book “Understanding open source Software Development”
by Brian Fitzgerald and Joseph Feller[FF02]. Where no other source is given
the source is this book.

2.1 The Beginning

In the 1940s the computer was primarily used for scientific problem solv-
ing. In the early 1950s computers began to spread beyond that of scientific
problem solving, addressing the area of business data processing.

At this time good programs were efficient rather than well-documented,
because of the limited memory capability. It was a major achievement to
get a program to run at all. Any working software was shared widely.

The PACT (Project for the Advancement of Coding Techniques) estab-
lished in 1953, was one of the earliest formalised examples of free sharing
of software between the military and aviation industries, who were in fact
competitors. The motivation was efficiency benefits, and the initiative for
the collaboration was taken by the programmers in both industries who
persuaded the management into this collaboration.

By 1960 the business data processing had overtaken the scientific one.
At that point the business use of computers accelerated. In the US the
number of computer installations increased more than twenty-fold between
1960 and 1970.

Another important event for ensuring the availability of free software,
was in 1956 where AT&T was forbidden to enter non-telephony markets,
such as computing. This meant that UNIX created at AT&T in 1969 could
not be sold commercially. Instead UNIX was distributed to universities and

5

other research institutions for a nominal fee. UNIX is an operating system
widely used in both servers and workstations.

2.2 The Berkeley Software Distribution

In 1977 the Berkeley Software Distribution (BSD) was established at the
Berkeley University in California. BSD was based on UNIX. The BSD
project was headed by Bill Joy, who later was a co-founder for SUN Mi-
crosystems. The BSD group modified and improved the UNIX system, then
redistributed it to others who then contributed their own enhancements,
making BSD even more powerful.

In 1984 AT&T sought to commercialise UNIX. This gave a court battle
between BSD and AT&T over copyright violations, resulting in claims and
counter-claims from both sides. It was resolved in the early 1990s in an
out-of-court settlement. The long uncertainty about the outcome resulted
in many volunteers choosing to contribute to Linux instead (which was pro-
tected by the GNU - General Public License) [Stad]. BSD later forked into
FreeBSD, OpenBSD and NetBSD. According to Feller and Fitzgerald, the
BSD initiative marked the beginning of a more ideological underpinning in
the free software history[FF02].

2.3 The Free Software Foundation

In 1985 the Free Software Foundation (FSF) was founded by Richard Stall-
man. This is one of the most significant milestones in the history of open
source.

The idealism around the FSF was, and continues to be, very strong. This
idealism puts forward the view that closed source software is considered
immoral, and they believe all software should be open source. Richard
Stallman devoted his attention to creating a suite of free software products,
called the GNU family. In the GNU manifesto [Stab] (1985) Stallman coined
the term “free software”, thus formalising a process that had been pretty ad
hoc in the past.

The ambiguity of the word “free”, meaning both “unfettered” and “gratis”,
later led to the coining of the term “open source”.

The strong ideological nature of the FSF and their licenses, is typified by
the common copyright phrase, copyright - all rights reserved to be copyleft
- all rights reversed. Under the copyleft concept, everyone has permission
to run, copy, modify or redistribute the software. The only clause is that it
is not allowed to add any restrictions to the modified code either. [Staa]

6

2.4 Linux

In 1991, at age 21 Linus Torvalds began the Linux operating system. He
modelled his system on Minix which is a Unix clone. Torvals’ goal with
Linux was to create an operating system for the IBM PC 386 series, and he
openly sought help for this project. Torvalds’ choice of name for his system
was Freax, from the words “free”, “freak” and an “x” for a consistency with
the naming of operating systems. But he was persuaded into changing the
name to Linux by Ari Lemke also from the University of Helsinki, who also
offered a sub-directory on the university’s’ FTP site for the system. The
name Linux was derived from the words “Linus” and UNIX.

Torvalds succeeded in attracting other developers for support. An esti-
mate suggests that more than a thousand developers worldwide have collab-
orated on the Linux kernel development.

2.5 Apache

In February 1995 came the next milestone in open source. It was the de-
velopment of the Apache HTTP Server, which is widely used all over the
world. The Apache server was based on a series of patches developed for
a web server developed by Rob McCool at the National Centre for Super-
computing Applications (NCSA). This server was very popular and many
individual webmasters developed extensions or patches. The development
was ceased when a key individual left (to form Netscape). At this point the
volunteers came together to coordinate the distribution of these patches,
and Brian Behlendorf provided hosting for the project.

2.6 Mozilla

The Mozilla project is said to be one of the most important in the history
of open source Software. Beside the products it has produced it also had
a great impact promoting corporate and media awareness of the concept.
In January 1998, Netscape announced that the source code for their new
browser would be made available, and the name of the product would be
Mozilla. At this point Netscape had a market share of 13% and it was
decreasing in favour of Microsoft’s Internet Explorer. Netscape decided to
make the source code available with the product. They created a special
pair of licenses, The Mozilla Public License (MPL) and the Netscape Public
License (NPL) for the project. The MPL is OSI approved (Open Source
Initiative)[OSIa] but the NPL is not, since it contains a clause allowing
Netscape (and only Netscape) to re-license third-party Mozilla development
to create a proprietary product. The strategy worked, and by the end of
1998 the company was regaining market share with Mozilla, which is one of

7

the most popular Web browsers today. Netscape on the other hand died in
2008. The last updates was released in march 2008.

2.7 Open Source Software

Eric S. Raymond, who participated in the initiation of the Mozilla strat-
egy, discussed the need for a long-term strategy in relation to bringing Free
Software to a wider audience. In 1998, “open source” was coined as an al-
ternative term to “Free Software“. One of the people who took this decision
was Bruce Perens, who had produced the Debian Free Software Guidelines
[gui] for the Debian project which is a Linux distribution including mainly
GPL-licensed software. The founding of the Open Source Initiative (OSI)
[OSIa] was an extension of this activity. OSI is the organisation who made
the rules called The Open Source Definition [def], which is based on the
Debian Free Software guidelines. In 1998, Microsoft unintendedly became
a main cause in the promotion of open source. This happened when inter-
nal Microsoft memos named the Halloween Documents was leaked to the
OSS community. The document discusses the concerns of Microsoft and the
threat posed by Open source software in general, and Linux in particular.
This memo caused a very large increase of media interest in the open source
topic. On this topic, Eric S. Raymond is quoted saying “Wall Street finally
came to us” [FF02]

2.8 Summary

In this section we have provided a lot of information and a lot of years. To
sum up the most important event we have made a timeline, see Figure 2.1,
showing the most important events and years.

In the following section we will describe the development practices of
open source development, including a description af the open source License
GNU GPL (GNU - General Public Licenses), and trademarks.

8

Figure 2.1: Timeline

9

Chapter 3

Open Source Development

In this section we describe some important open source development prac-
tices. We will also give an overview of open source licenses and a description
of a trademark and what it means regarding open source software and its
use.

3.1 Development Practices

Open source software (OSS) is defined by the licence under which it is dis-
tributed. The open source initiative (OSI) have specified an open source
license. These are known as the open source definition [def]. Beyond its li-
cense, OSS is typically also characterised by a certain development practise.

Most open source projects start with a single person or a small group,
who begins developing software. For a project to grow larger, it must attract
more developers. A unique property of most open source software is this
possibility for any interested developer to participate. Even when a project
has attracted many participating developers, it is often a smaller group, who
does most of the work. This is seen in case studies of the Apache and Mozilla
projects [MFHA02], as well as in surveys among developers [Maa04]. This
leads to the notion of a “core group” responsible for the majority of the time
contributed to a project.

Open source development is also characterised by participants working
distributed, and without many of the coordination means of traditional soft-
ware development. Elaborate designs and time plans are often not used in
open source development. Development tends to be incremental. Discus-
sions about design are carried out through e-mail, online fora, IRC or Instant
Messenger. In this seemingly chaotic setup, the tools supporting such dis-
tributed work is considered very important. Holck and Jørgensen suggest,
that the use of version control tools, and the process surrounding them,
offsets the need for traditional means of coordination [HJ03].

Most large and successful open source projects have provided what is

10

characterised as infrastructure software [FF00], that is: operating systems,
browsers, web servers and data base management systems. In other words
software that provides a foundation for other applications. Such software is
general and generic, and that makes it easier for developers to gain a shared
understanding of how to build it.

A very important part of open source development is which open source
license the code is released under. In the following section we will describe
the GNU General Public License, which is a very widely used open source
license, and the concept of trademarks in the context of OSS.

3.2 Open Source Licenses

There are 66[OSIb] open source licenses approved by the Open Source Initia-
tive. To get a license approved it has to go through a license review process
[OSIc] to make sure that all software and licenses labeled Open Source, con-
forms to existing community norms and expectations.

GNU General Public License
The most well known open source license is the GNU General Public Li-
cense, also known as the GPL. Next a quote from the GPL to describe its
purpose:

“When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure
that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code
or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can
do these things.[Stad]”

This means that with software under this license, you can use it, change it,
sell it or what ever you wish, but you cannot make it closed source. The
source code must always be available giving others the same rights to your
software as you have to their software and your derived software must also
be under the GPL license.

There are two derived versions of the GPL license, the LGPL[LGP]
(Lesser General Public license) and the AGPL[AGP] (Affero General Public
License). The LGPL is a modified, more permissive version of the GPL.
It was originally intended to be used for some software libraries. Since the
LGPL is more permissive than the GPL it is allowed to redistribute soft-
ware under the LGPL, under the GPL, but the other way around is not
allowed. The greatest difference between publishing under the GPL and the
LGPL is that, if you combine something under the LGPL with something

11

else in a larger project not under the LGPL, you do not have to license
the whole software package under the LGPL. This is a contrast to using
software under the GPL, since this license is more strict than the LGPL
license. The AGPL license is a similar license, but focused on networking
server software. It is as strict as the GPL, the difference is that the AGPL
also covers the use of software over a computer network. This is done by
requiring that the complete source code is made available to any network
user of the AGPL-licensed work. For instance a web-application.

3.3 Trademark

To give an understanding about what is allowed to do with open source soft-
ware, it is also important to know what a trademark means. In this section
we will give a short and very simplified description of a trademark. A trade-
mark can typically be a name, word, phrase, logo, symbol, design, image,
or a combination of these elements. Having something under a trademark
means that no one else can use that name, word etc. without permission[tra].
There are three types of trademarks: unregistered trademark, unregistered
servicemark and registered trademark. We will only focus on the registered
trademark, because this is the only kind refered to in this thesis. When look-
ing at trademarks from an open source perspective, this means that even
though other people or companies might have the right to use, re-distribute
or sell others open source software, they do not have the right to use the
trademark of this product, without permission.

3.4 Summary

In this section we have given a description of the open source development
practices. Including how an open source community is formed and how
they communicate. We have given a description of the open source license
GPL and its derived versions. Also we have tried to give an understanding
of which rights follows a trademark, and which are free with open source
software. This section was mainly used to give the reader a broader un-
derstanding of some of the phrases used mostly in our analysis. We have
assessed that these terms are essential to the readers understanding of our
thesis. In the next chapter we will describe how businesses can use open
source, and how they can make money or save money on open source soft-
ware.

12

Chapter 4

Open Source Business
Models

When talking about open source “business models” we are essentially talking
about the

“why, how and what for a business to generate revenues and
achieve profit objectives” [Ber]

which means that we are talking about how a company expects to make
money. In this section we give descriptions of the business models used in
open source companies. The difference between open source companies and
proprietary software companies is that in an open source company the code
it self has no value, since everything is free and in the open. Therefore those
companies have to find other ways to make money.

4.1 The Business of Open Source

An interesting development in OSSD is the increasing involvement form cor-
porate entities. This is seen in empirical research of projects on the Source-
forge1 portal by Bonaccorsi et al., where 32.33% of the examined projects
had some form of firm participation[BLMR07]. Also, surveys of open source
communities have shown a significant minority of developers being paid
to contribute[LT03],[HO01]. Fitzgerald describes a development in open
source, towards something more commercially oriented. That is, the devel-
opment cycle of OSS is increasingly influenced by strategic consideration of
companies pursuing a broadening field of open source business strategies.
As open source spreads to more horizontal product domains,2 input from
companies with such domain knowledge is of growing importance[Fit06].

1An online portal hosting open source software projects.
2Domains characterised by highly specialised knowledge.

13

4.1.1 Reasons for Closing Source

Raymond describes the difference between the “use value” and the “sale
value” of a software product as follows:

The “use value” of a program is its economic value as a tool —
a productivity multiplier. “The sale value” of a program is its
value as a saleable commodity. [Rai01, 2]

When reading this citation it gets clear that according to Raymond, the
software that is made for internal use has no sale value, meaning that this
type of software is pure expenses. He also claims that more than 75% of
what programmers get paid to do is making software with “use value” and
no “sale value”[Rai01]. If this statement is correct, it means that about 75%
of all software could be made open source without companies losing money,
since it has no “sale value”, and also the company will gain on opening the
software since others can maintain, debug and extend the software without
cost to the original company. An argument often met against open source
is the fear of revealing something confidential. Raymond claims that such
arguments are not an argument against open source but against bad design,
which is a concern present in proprietary software as well. Another fear
against open source is the fear of crackers3 and intruders. He does not
see open source as a problem regarding crackers. He sees the use of bad
algorithms as the problem, and describes the solution as the following:

Security is an aspect of reliability; only algorithms and imple-
mentations that have been thoroughly peer-reviewed can possible
be trusted as secure[Rai01, 9].

4.1.2 Open Source Business Models

Raymond describes nine open source business models. These business mod-
els are all related to software with a “use value” and without a “sale value”,
because you do not lose anything by making “use value” software into open
source software. The nine business models will be explained in the following
sections.

4.1.3 Use-Value Funding models

The first two models Raymond define as Use-value Funding models are cost
sharing and risk spreading .

3The word ”cracker” is used to not confuse the use of the word ”hacker” within the
open source community. In the open source community a ”hacker” is a skilled programmer
and a ”cracker” is a computer criminal.

14

Cost sharing

If a company only needs some software for internal use and therefore the
product has no sale value, cost sharing is a good way to keep expenses down.
Eric S. Raymond used the Apache web server as an example, saying that
if someone need a web server they have three possibilities: Either buy a
proprietary web server, roll their own or join the Apache group. If choosing
to get a proprietary web server, it will cost money every time something
need to be added or updated. Building your own web server will provide
all the features you want and you can update it when you want, but you
will have to pay for it in development time -and the company might have
a problem if the developers leave. If choosing to join the Apache project,
there will be many hours saved in developer time, and the company will
gain some advantages as if they made their own web server, since it can be
shaped as the company wishes, and to that adding a debugging effect from
the community and the availability of skilled developers. In the end this
cost sharing model can give the company a better product for a lower cost,
as long as it is software without any “sale value”.

Risk spreading

As with the cost sharing model Risk spreading require that the software has
no “sale value”. Eric S. Raymond used Cisco as an example. The example is
that Cisco needed a print-spooling system. But since the developers would
not be at Cisco forever the system might get out of sync. Therefore they
argued to make the system open source. After doing this a community was
growing around the system, taking care of the maintenance of the system.

4.1.4 Indirect Sale-Value Models

The last seven models Raymond define as Indirect sale-value models.

Loss leader or market positioner

In this model the open source product does not give revenue directly, in-
stead it is used to created interest in other related proprietary software. An
example is that Netscape made Mozilla open source to regain market share
on the Internet browser market in the late 1990’s.

Widget frosting

Open Source software from hardware manufactures, like drivers, configu-
ration tools up to operating systems: The hardware manufacturer makes
no money on the software that support the hardware. The open source
community is there to enhance the product value of the hardware. Sun

15

Microsystems have several examples of products under this business model,
like Netbeans.

Give away the recipe, open a restaurant

In this model the open source software is used to create a market position
in selling services, around some open source product.

Accessorising

This is mostly a by-product for a company owning the trademark, like selling
t-shirts, books and magazines.

Free the future, sell the present

The software is sold as closed source, but has en expiration date. After this
date the product will be made open source. This model ensures costumers
that a product will be maintained even if the company behind it dies, and
it makes sure that the costumer can customise the product themselves after
a short period of time.

Free the software, sell the brand

Raymond sees this business model as a speculative one. A company is
speculating in others wanting to use their open source code to create another
product. Like when SUN open sourced some of the code of Star Office,
this was used to create OpenOffice. But SUN still had the rights for Star
Office. The original company is making money by offering validation tests
and statements.

Free the software, sell the content

This last business model Raymond also see as a speculative one, The software
is still free and open source but sell subscriptions to the content. An example
could be for instance an open source game where people could subscribe to
getting more levels.

4.2 Organisational culture

When looking into the collaboration, between a volunteer community and
a company working on the same project, there must be an organisational
culture within such a project. In order to be able to take this into consid-
eration, during our research we need to define organisational culture. For
this purpose we adapt Edgar H. Scheins formal definition on organizational
culture as

16

A pattern of shared basic assumptions that the group learned as
it solved its problems of external adoption and internal integra-
tion, that has worked well enough to be considered valid and,
therefore, to be taught to new members as the correct way to
perceive, think, and feel in relation to those problems. [Sch04]

4.3 Summary

This section gives a short description of when to, and when not to make
software open source, and gives a description of the nine business models
that Raymond defines for making money around open source software. We
will use these concepts later in the analysis of the business model. In the
following section we will describe what methods we are planning to use for
analysis in a later section.

17

Chapter 5

Research Approach

This chapter will cover the selection of our research approach and present the
chosen research approach in detail. In order to make the process transparent
such that it is clear how this research has been conducted, the techniques
used in the research will be described and discussed.

5.1 Selection of Research Strategy

According to Robert K. Yin one of the most important steps when conduct-
ing research is to select a proper research strategy, which fits the research
question[Yin94]. The research questions can be categorised into different
types of questions: “who,” “what,” “where,” “how,” and “why.”. The dif-
ferent types of questions are reflected in the different types of data which
are needed to provide a satisfactory answer. As depicted in table 5.1, this
again affects which research approach is the most suitable choice.

Research questions in the “what” category can be of exploratory or quan-
tifiable character, i.e. “what are the means of making the lottery fun to
play?” is seeking an explanation, which can be used for shaping hypotheses
and suggestions for more extensive investigations. The question “what are
the effects of the new lottery rules?” is more of a “how much” question,
which can be used to list some criteria and measure them. For the second
kind of question, surveys or archival studies would be obvious choices, since
surveys can easily be designed to provide data on different influences and
their effect. Depending on the data available an archival might be able to
show changes in sales, revenue, profit and prices paid. Experiments or case
studies could be carried out as another solution, but the scale needed for
answering the question makes archival analysis or surveys the most prefer-
able strategy. Questions like “who” and “where” is somewhat similar to the
second type of “what” questions, and the obvious strategy here will often
rely on data which can be quantified. As opposed to questions favouring the
quantitative research strategies, research questions like “how” and “why”

18

strategy form of research
question

requires control
over behavioral
events?

focuses on
contemporary
events?

experiment how, why yes yes
survey who, what,

where, how
many, how
much

no yes

archival analy-
sis

who, what,
where, how
many, how
much

no yes/no

history how, why no no
case study how, why no yes

Table 5.1: Relevant Solutions for Different Research Strategies [Yin94]

are usually more interested in explaining phenomena and their context. I.e.
if you ask the question “why did the factory workers go on strike?”, a case
study will be more appropriate than a survey, as it allows for an under-
standing of the situation in a higher level of abstraction, and because it
can describe the context of workers culture, company leaders, union influ-
ence and political conditions. Yin states that case studies has an advantage
when:

“a “how” or “why” question is being asked about a contemporary
set of events, over which the investigator has little or no control.”
[Yin94]

As described in our research question in section 1.2, our focus of interest
with this study is to obtain a thorough understanding of what control a com-
pany has over a commercial/volunteer OSS project, and how the relationship
works between the volunteer community and a company with commercial
interests. Since both of our research questions are of the “what” type and
treats contemporary events, of which we have no control, a case study is the
most suitable research strategy for us. The selected approach corresponds to
what Cunningham classifies as an intensive case study [J97], which is suit-
able for understanding organisations through descriptions, interpretations,
experiences or events. Intensive case studies does not imply specific meth-
ods or techniques for gathering data, but relies on different evidences from
the case. More specifically the research has the characteristics of an inter-
pretative case, which in some terms will be a case example, demonstrating
different events and approaches from within the case.

Having stated our research question and decided the research strategy, we

19

need to select one or more suitable cases. We need one or more cases which
can give us valid and reliable data for our research. It would be interesting
to have more OSS projects within the scope of the research. However, the
combination of time and resources available for this project does not justify
such an extensive study. If we are able to select a case which is a good
representative of similar OSS projects we should be able to retrieve valid
data with only a minor loss of reliability. If we were to span over two, three
or more projects, we would only be able to scratch the surface and not gain
the necessary in-depth understanding needed to explain the mechanisms in
the collaboration to a satisfactory extent. As a result the scope is limited
to a more narrow but in-depth investigation of an OSS project which must
be able to provide a valid an reliable source of data.

5.2 The Chosen Case

Our choice fell on the Ubuntu project since it contains both a commercial
main contributor and a voluntary community providing contributions. The
Ubuntu distribution has since its first release rapidly grown to be among
the most popular Linux desktop distributions[BTL+09], and the Ubuntu
project, furthermore has been able to attract a substantial number of con-
tributors in short time. This makes the Ubuntu project a well suited case for
our study. This said, there are other well suited OSS projects, where open-
SUSE and Fedora probably are the OSS projects which resembles Ubuntu
the most.

5.2.1 History of Ubuntu

The Ubuntu project was started on initiative by the South African en-
trepreneur Mark Shuttleworth, and took shape in April 2004. It made its
first release in October 2004 [Ubu09]. From the beginning the project was
financed by the company Canonical, which Mark Shuttleworth established
especially for the Ubuntu project. Through Canonical he invested money
to hire developers, and establish an infrastructure to support the project.
An important part of the infrastructure provided for the projects is the
Launchpad platform for the collaboration with developing Ubuntu. In 2005
Canonical founded the Ubuntu foundation, which aim is to fund support of
Ubuntu in case Canonical would go bankrupt. This gives users a warranty
that their Ubuntu installation will be supported in the time announced.

Since the first release of Ubuntu 4.10 in 2004 there has been another
nine releases with an six month release cycle. The only release which did
not follow the six month cycle was the release of Ubuntu 6.06 which were
the first Long Term Support (LTS) release. The LTS release is a release
intended for enterprises promises three years updates on the desktop release
and five year on the server release. LTS versions of Ubuntu is released every

20

second year, making the next LTS release the Ubuntu 10.4 which should
arrive in April 2010. Prior to the undertaking of every new release Canonical
arrange the Ubuntu Developer Summit which is a week long conference with
employees and the top contributors from the voluntary community. UDS has
no entrance fee and everyone who is interested can attend.

In 2005 the Ubuntu community grew rapidly and started contributing
in various different ways. Today the increasingly number of users and con-
tributors has over time made it possible to release independent and self-
supporting distributions i.e. Kubuntu and Xubuntu. These release uses
Ubuntu as platform but using KDE or Xfce as the graphical desktop envi-
ronment instead of the default Gnome environment provided with Ubuntu.

The word “Ubuntu” is African and means “Humanity towards others”.
In the spirit of this name Ubuntu has a “code of conduct”[coc] with six
ground rules that everyone in the Ubuntu community have to follow. Those
rules are made to make sure that everyone feels welcome when joining the
Ubuntu community and to make sure that the atmosphere surrounding
Ubuntu is positive. The code of conduct has the following rules: “Be con-
siderate”, “be respectfull”, “be collaborative”, “when you disagree consult
others”, “when you are unsure, ask for help” and “step down considerately”.

5.3 Collecting the Data

With the selection of our case in place it is now time to select the most
suitable techniques for collecting the data. The data needed for our anal-
ysis must be able to provide us with a deeper understanding of the pro-
cesses involved in the development of Ubuntu and the collaboration between
Canonical and the community plus the business model of Canonical. Our
understanding of these topics are at this point rather limited and uncertain.
This makes quantitative surveys impractical to us. First due to the risk of
asking the wrong questions as a result or our limited insight and secondly
due to the little opportunity for the respondents to elaborate their answers.
The choice fell on interviews which provides the possibility to adapt our
questions in order to pursue interesting new topics that might appear dur-
ing an interview, and for the respondents to elaborate important subjects.
In between interviews it is possible to reflect over the conducted interviews
and adjust questions and topics to suit the new understanding. In this way
we are able to rapidly adapt, if there are indications that we have missed
something vital, or if our initial understanding of the project seems to be
far from what is experienced in the interviews. According to Järvinen this
overlap between data collection and analysis can give good opportunities to
adjust and speed up the process of collecting and analysing data in the start
phase of the data collection[Jä04].

Using qualitative techniques for data collecting often yields large amounts

21

of data, for which treatment cannot be automated on a computer, i.e. tran-
scribing qualitative interviews is unlikely to present the possibility of an
automated sorting or reduction of the data set. However, transcribing the
interviews can help achieving understanding of the subject, which is our
main goal. To reach that understanding based on the data and be able to
extract the essential information it is necessary to identify topics and cat-
egorise the data accordingly. In this section we will present our techniques
for collecting data. The data source in this study is a group of active par-
ticipants in the Ubuntu community. The participants are either employees
at Canonical or voluntary contributers. The data will be collected through
interviews and verified and extended through observation. This section will
discuss different types of interviews and outline the chosen technique. After
covering the subject of interviews we treat the observation technique used
at Ubuntu Developer Summit in Barcelona, May 2009 (UDS).

5.3.1 Research Interview

There are two types of research interviews. The qualitative and the quan-
titative research interview [KB08]. Even though the difference between the
two interview forms might seem quite significant, it mostly comes down to
the quantitative interview employing numerical measurement, where as the
qualitative does not [Bry08]. Going a bit deeper into the theory there are
further differences. Those are outlined in table 5.2. The three contrasts in
the table might be basic but are also fundamental.

Quantitative Qualitative
Principal orientation
to the role of theory in
relation to research

Deductive; testing of
theory

Inductive; generation
of theory

Epistemological orien-
tation

Natural science model,
in particular posi-
tivism

Interpretivism

Ontological orienta-
tion

Objectivism Constructionism

Table 5.2: Fundamental differences between quantitative and qualitative
research strategies [Bry08]

A quantitative research can be:

“constructed as a research strategy that emphasises quantifica-
tion in the collection and analysis of data and that:

• entails a deductive approach to the relationship between
theory and research, in which the accent is placed on the
testing of theories;

22

• has incorporated the practices and norms of the natural
scientific model and of positivism in particular; and

• embodies a view of social reality as an external, objective
reality”. [Bry08, page 22]

By contrast qualitative research can be:

“constructed as a research strategy that usually emphasises words
rather than quantification in the collection and analysis of data
and that:

• predominantly emphasises an inductive approach to the re-
lationship between theory and research, in which the em-
phasis is placed on the generation of theories;

• has rejected the practices and norms of the natural scientific
model and of positivism in particular in preference for an
emphasis on the ways in which individuals interpret their
social world; and

• embodies a view of social reality as a constantly shifting
emergent property of individuals’ creation”. [Bry08, page
22]

Even though table 5.2 makes the differences between qualitative and
quantitative research distinguishable, the reality is not that straight forward.
There are examples of qualitative research has been employed to test rather
than to generate theories [Bry08].

Since the purpose of our study is, to explore and understand the col-
laboration in the Ubuntu project, the use of qualitative research is chosen.
The focus is not numbers and frequencies, but descriptions of relations and
procedures. Because of that, the remaining will focus on the qualitative
research interview.

5.3.2 Qualitative Research Interview

The qualitative research interview has been conducted since the mid 1970s,
and has been a dominant strategy for conducting social research [Bry08].

The purpose of the qualitative research interview is “obtaining descrip-
tions of the life world of the interview person, with a view to interpret the
meaning of the described phenomenon”. [KB08]

According to Kvale and Brinkmann[KB08] an interview study consist
of seven stages: thematization, design, interview, transcription, analysis,
verification and reporting. The following pages will give an exposition of
these stages.

23

Thematization

Thematization is a clarification of concepts, a theoretical analysis of the
chosen theme and a formulation of the research questions. Central to the
structure of an interview are the words; What, why and how.

What is used to derive an understanding of the chosen subject.
Why should clarify the purpose of the study.
How will be used for locating the different types of interview and analysis

techniques, and decide which one is suitable.
It is important to choose the right method, but before this is possible,

the purpose has to be established. This means, that when designing the
interviews you have to know the content and aim of the study, to choose
the right method. Hence the questions what and why have to be answered
before how.

Design

At the design stage you plan and improve the methodical procedures, aiming
towards acquiring the desired knowledge. At this stage the number of test
persons and their representativity is chosen. All later stages should be taken
under consideration, since many of the problems and errors, that can occur
later in the process, can be avoided with a more elaborated design phase.
Also the quality of the interviews can be elevated, if the purpose and subject
is considered from the beginning. Ethical guidelines also has to be complied
at this stage. That is, the test persons have to give their consent, and
confidence has to be secured. Also it has to be considered, if the interview
situation can have any consequences for the person interviewed.

Interview

There are several types of professional interviews. Examples include: job
interview, judicial interrogations, therapeutic interviews or research inter-
views. The interview we will focus on, is a semi-structured research inter-
view, because this type of interview gives the interviewer the possibility, to
pursue answers and stories from the interviews.

It is important to remember, that an interview is not a conversation
between equal partners, since the interviewer is defining the situation, in-
troducing conversation subjects, and controlling the questions by the use of
further questions. The preparation is the most important factor to the qual-
ity of the interview. The central questions in an interview is, as mentioned
earlier, “what”, “how” “and why”.

Before conducting the interview, the interview technique and method
for analysis should be considered. An interview should always begin with a
briefing where the situation and context is defined to the interviewee. That
is, elaborating the aim of the interview, the recording device, and answering

24

any questions the interviewee may have. The interview should be followed
by a debriefing, where the interviewee can get more information about the
study. After every interview the interviewer should allot ten minutes for
reflecting, and recall what has been learned in the last interview.

An interview guide should be created. It can either contain subjects,
or precisely formulated questions for the interview. In a semi-structured
interview there will be a list of subjects and proposals for questions, but
it is not crucial that they are used during the interview. The interview
should proceed more or less as a conversation, but with a specific aim,
and a different structure. The questions should be short and simple. It is
important that the interviewer can sense the meaning of the spoken, and
that the interviewer has an interest is the subject.

There are different kind of questions to be used in a semi-structured
interview, those will be described next.

Preliminary questions: The opening question can set the agenda for
the rest of the interview. This question could be; “Try talking about”,
“Remember a situation where”, “Can you describe a situation like that”.

Follow up questions: These questions can be used to elaborate on the
interviewee’s answers. It can be a direct question from the interviewer, or a
nod, a “hmm” or simply silence. Also repeating the most important words,
can be a suggestion to the interviewee to keep talking or elaborating.

Probing questions: With a probing question the interviewer will pur-
sue answers from the interviewee, and then probe the content. An example
of a probing question could be “Can you tell me more about that?” or “Can
you give another example?”.

Specifying questions: This type of questions gives the interviewer the
possibility to use a more operationalized question, such as “What was your
thoughts about that?” or “Did you experience that yourself?”.

Direct questions: Direct questions will primarily be used later in an
interview. At a time when the interviewee has given his or her own descrip-
tions and important aspects related to the theme. An example could be
“When you talk about...”.

Indirect questions: An indirect question cannot be interpreted with-
out the use of further questions. An indirect question can both refer to the
position of others, but also to make the interviewee give his own opinion.
An example might be “How do you think others see...”.

Structured questions: It is the interviewer’s responsibility to maintain
the structure of the interview, and decide when a subject should be dropped.
This means, that the interviewer can interrupt the interviewee, if he or she is
talking about a subject, that is not relevant to the research. The interviewer
can interrupt by using a phrase as “And now I would like to talk about
another subject”.

Silence Not talking will give the interviewee time to think, and give
important information.

25

Interpretative questions Different kinds of interpretative questions
can be used. An answer can be rephrased: “You mean that...”. A question
can be clarifying: “Is it correct that you feel...?”. It can also be a direct
interpretation of what the interviewee is saying: “Is it correctly understood,
that your anxiety originates from...?”. Due the geographical distributed
location of interviewees we have have chosen to conduct the interviews via
VoIP 1. Prior to the interviews we have prepared a interview guide (appendix
A) to ensure that we will cover all the desired topics.

Transcription

In order to stick as close to the original interview during analysis it is impor-
tant to transcribe the interviews, so the risk of unconscious filtering of the
data is minimised. It is important to keep in mind, that transcriptions are
not original data, but artificial constructions of oral to written communica-
tion. Also if two people are transcribing the same passage, it will never be
the same, because of the difference in weighing of pauses, gestures etc. Also
emotional aspects as laughter, sighing, giggling and so on can be perceived
differently. This is also why it is important, that the people transcribing,
have made some common rules, to make the transcription as homogeneous
as possible.

Analysis

Analysing the data is almost as important as the collection of data itself, and
with the large amounts of rather unstructured data that qualitative methods
often produce. The goal here is understanding this is best achieved by find-
ing order and coherences[Jä04]. If the study covers several cases this would
typically involve write-ups for each case. Our study however only covers one
case, but with several different topics. We will use a procedure where each
of our initial topics are covered. The transcriptions will be traversed iden-
tifying statements regarding the various topics, and if other topics that we
were not initially aware of emerge, all of the transcriptions we go through
review once more looking for statements regarding that topic. The iden-
tified statements on the different topics will be combined into individual
documents and condensed into our understanding hereof. This gives us an
overview and understanding, which we can afterwards use to reach a more
complex understanding of the topics in correlation and summarise this into
our understanding of the case.

1Voice over IP/internettelefoni

26

Verification and Validation

Even though validation is described separately, it is actually an ongoing
process through all stages. This gives a continuous quality control, instead
of a detached inspection at the end of the process. In the following validation
questions for an interview study is described.

• Thematization - The validation depends on the study’s theoretical
preconditions.

• Design - If the design and applied methods are appropriate for the
purpose, the validity stands.

• Interview - The validity of the interview depends on the quality of
the interview and the credibility of the interviewee. It also depends
on the interviewer’s continuous control of the data gathered.

• Transcription - The validity depends on the linguistic configuration
of the transcription.

• Analysis - In the analysis the validation depends on the way the
questions are analysed, and if the interpretation is sound.

• Reporting - Validation in reporting depends on whether the final
report gives a valid exposition of the most important findings.

Reporting

The last sequence is about documenting the results in a sensible and credible
manner. The report is the end product of a longer process, and it should
document the main purpose, choice of method, results and implications.
The easiest way to make a report as readable as possible, is to take the
final reporting into consideration from day one. This is most easily done as
follows:

• Thematization - The end product has to be taken into consideration
from day one to make it easier to write the report.

• Design - Systematic documentation of the design procedure as a foun-
dation for writing about the applied method.

• Interview - Ideally the interview should be of a form, that can be
easily communicated to the readers of the report.

• Transcription - The readability of the interviews should be kept in
mind while the interviews are being transcribed.

• Analysis - The presentation of the results and the analysis of the
interviews should be embedded in the writing process.

27

• Verification - The decisive factor is how the study, will be reported.

• Reporting - Working towards the final report from day one, will
help in the process of making a readable report with well-documented
results.

As stated earlier we need ensure that our analysis and interpretations are
sound. this can be achieved through clarifying interviews and observations
where, if sound, the understanding should correspond to the observed reality.
Hence the next section will cover observation as a technique and how we have
used it to verify our results.

5.3.3 Observation

To verify our findings from the interviews and to gain further insight in
the processes in the Ubuntu project we will observe the Ubuntu Developer
Summit (UDS) in Barcelona, May 2009, where the road map of Ubuntu
9.10 is planned. This gives us the possibility to get first hand experiences
with the process of planning a new release and observe how the Canonical
employees and community members decide the changes and new features for
an upcoming release.

Observation Typologies

Observation is typically a phenomenological data collection technique. Ob-
servation works best if it is used with another methodical praxis i.e. con-
ducting interviews, and will often, like in our study, only be an integrated
part of a methodic praxis, meaning that it will not stand alone as the only
used technique [KK99, p. 45-46]. The typologies of observation studies can
be split into four different typologies; structured observation in an artificial
environment, unstructured observation in an artificial environment, struc-
tured observation in a natural environment, and unstructured observation
in a natural environment. These can be seen in table 5.3.

A laboratory test is defined as a test taking place in an artificial en-
vironment, where unpredictable incidents and unintended impacts on the
observed are being minimised. Observation in a natural environment on the
other hand takes place in a context that already existed before the observer
stepped in. In this type of research the observer is there on the terms of
the field. Which means that the observer is aware of the fact that unpre-
dictable and unintended incidents may occur. The line between a structured
and unstructured observation is much more blurry, than the line between
a laboratory test and an observation in a natural environment. Structured
and unstructured observations can better be described as two extremities,
where the structured observation will produce quantitative data. In the
unstructured observation the observer is not looking for something specific,

28

Table 5.3: Typologies of an observation study

but is looking more generally and exploratory in the field. Our observation
does clearly take place in the natural environment and we have chosen to
make an unstructured observation so that we remain open minded to new
impressions, however keeping our the result from the interviews in mind.
Notes are taken preserve the parts that we find important. Compared to
taking complete notes of everything this allows for freedom to participate
discussion and ask questions that can aid our goal.

Degree of Participation

Another thing to consider besides the typology, is the degree of participation
from the observer, the study will be conducted with[KK99, p. 99-111].

Figure 5.1: Classification of roles in field work

Figure 5.1 shows that there are four degrees of observation. One extreme
is total participation, and the other is total observer. In the case where the
observer is a total participant, the true purpose and identity of the observer

29

will not be known to the people that are being observed. The observer will
observe the subjects in their natural environments and act as an equal. In
this kind of observation the observer will be in an ethical dilemma toward
the unknowing participant. Which is also why this kind of observing should
be avoided unless it is the only option to obtain the wanted results.

When the observer act as a total observer, he will not have any interac-
tion with the subjects. Like in the case where the observer acts as a total
participant, the subjects will not know that they are being observed. In the
case of total observer there is no risk that the observer might “go native”
and get too involved with the subjects to remain objective[KK99]. There is,
however, a risk that the observer will reject the subjects’ views, and stick to
his own conviction. The observer could talk to the subjects at another time
to get them to explain a given behaviour, to give this kind of observation
substance. The next variation is the observer as a participant. In this case
the subjects are aware that they are being observed. The communication
between the observer and the subjects is often short and sporadic. There is a
risk that the observer misunderstands his subjects or the other way around.
The observer might not realise this before it is to late or not realise it at all.
Since the interaction is brief the observer might not really gain access to the
social interactions and structures of the group. Both the total observer and
the observer as a participant are seldom used in social studies, because the
observer is quite distanced from his subjects.

The last role an observer can assume, is participant as an observer. In
this case the subjects are aware that they are being observed. It is important
that the observer both interacts with the group, and bond with some of its
members, to gain accept and access to the group through those subjects,
called informants. The problem with this kind of observation, is that the
observer might not get access to all interesting members of the group, since
the informants choose who to introduce the observer to. This could mean
that the observer is being kept from some parts of the group.

We have chosen to undertake the role of being “The observer as a par-
ticipant”. This means that we have pay attention to opportunities get in
contact with new people.

The Stranger

Being both a participant and an observer at the same time, is a dilemma.
The dilemma could be that the observer might get so involved that he “goes
native” or end up distancing himself from the group. If we refer back to
figure 5.1 the distance might be an issue in the case where the observer is a
“total observer”, and proximity might be an issue when the observer use “to-
tal participation”. This dilemma should be handled by balancing proximity
and distance [KK99, p. 72]. To make sure to keep this balance between
proximity and distance it is suggested to take the role of “the stranger”

30

[KK99, p. 72]. According to Krogstrup, Georg Simmel has stated that to
obtain this balance, the observer should undertake the role of a stranger
when doing field work. “The stranger is ascribed to a specific form of inter-
action, but also an objectivity, related to the distinction between proximity
and distance” [KK99, p. 73-74]. Simmel describes this distinction as the
following:

“The stranger comes in random contact with all elements, but
is not organisational bound to establish a friendship, or to the
locality. The stranger is also not bound to specific rules or the
dispositions of the group. The stranger will meet this with a
distinct objective attitude, which does not acquire a lack of par-
ticipation, and also accommodate both proximity and distance,
indifference and participation. The objectivity is also defined
by freedom. The stranger is not bound in a way that may
make his perception, understanding and assessment of the data
biased.”[KK99, p. 73-74]

This should prevent the observer from “going native” which means loosing
the distance to the field, which could entail loosing objectivity of the study.

Our Study

In our study we have chosen to make an unstructured observation in a
natural environment. This was conducted at the Ubuntu developer sum-
mit(UDS) in Barcelona May 24th to May 29th 2009. This observation took
place after all interviews had been conducted. The observations at UDS
is used as a quantification of what we learned during the interviews. The
role we took was “participant as an observer”. Even before UDS we had
made contact with several people we knew would be at UDS. This gave us a
chance to be a part of the group and to gain further relations to the people
surrounding them. At the UDS there was approximately 300 people which
also made it easy to not go native, meaning that we could keep a distance to
the participants but still blending in. During the UDS we attended sessions,
but with up to fourteen simultaneous sessions we could not attend them all.
We made written notes when we discovered something of interest, but did
not write complete notes of everything in order the be more vigilant dur-
ing the sessions. We chose individually which tracks we wanted to follow,
meaning that we sometimes followed the same track. If there were sessions
of particular interest to the study we would attend those. At the UDS we
got a chance to see how the teams worked together, and how the commu-
nity worked together with the Canonical employees. Both the community
members present at the sessions and the community members participating
via online IRC2 and live audio streaming which were broadcasted live from

2Internet Relay Chat client

31

the sessions.

5.4 Research Design

5.4.1 Analysing Data

During the period of the interviews there is an ongoing evaluation of the
interviews where it is evaluated whether the interviews provides sufficient
information on the topics. If not, adjustments are needed in order to explore
newly identified topics or simply to elaborate more on topics of which we
have vague understanding. Prior to the analysis the interviews are tran-
scribed in order to ease the handling of the data. The process starts with
identifying categories of interest, and categorise statements regarding that
specific topic. The participation at UDS will be used to verify our findings
in the interviews and to extend our hypothesis where they are confirmed
and to abandon those which cannot be verified.

5.4.2 Initial Selection of Topics

Three main subjects inspired by literature review.

• Cooperation and management between Canonical, and the volunteers
in the Ubuntu Community

• Cooperation and management internally at Canonical

• Business model of Canonical

5.4.3 Topics After the Interviews

Having completed and transcribed the interviews we skimmed through the
data and brainstormed in order to search for new topics. This resulted in
the identification of several new and specific topics:

• Company culture

• Products and activities

• Business model

• Development model

• UDS

• Ubuntu collaboration

• Open source

32

• The product Ubuntu

• Mark Shuttleworth

5.4.4 Topics after Ubuntu Developer Summit

After going through our session notes from UDS we found no new topics,
but we got a better understanding of some topics - i.e. Mark Shuttleworth’s
role.

5.4.5 Achieving overview before the analysis

The transcriptions are divided into employee and volunteer interviews. All
statements and session notes regarding the defined topics are sorted into
topic-specific documents containing all the collected data on that topic.
Each topic-specific document summarises the different opinions and outlines
the main opinions and/or differences.

After sorting the data it was decided to recategorise the topics to the
following:

• The business model of Canonical

• Ubuntu Culture

• Champion and Canonical owner

• The Collaboration in Ubuntu

• Open Source

Based on the summaries of the analysis and the treated literature we
will present and discuss our understanding of the treated topics in relation
to our research questions.

33

Chapter 6

Analysis

This chapter will cover the various processes we have been through in the
analysis of the collected data. From the first initial preliminary catego-
rysation to the in-depth traversing review of the interviews, to the final
summarising of the chosen subjects.
In the first part of the analysis we will look at Canonical’s business model.
This will be done both with the use of Raymonds theory about open source
business model combined with the data we have collected through the inter-
views with both Canonical employees and Ubuntu community members.

6.1 The Business Model of Canonical

6.1.1 Ubuntu is Free

The most noticeable thing about the business model of Canonical, is that
Ubuntu is free software. For Canonical this means, that there is a lot of
what they work on, that will never be profitable, since all the work they put
into making the distribution has no way of making money for Canonical. In
the community the question has been if Ubuntu would remain free in the
long run. Mark Shuttleworth, who is the founder of Ubuntu and the owner
of Canonical has made the following statement:

“Ubuntu is free and will always be free.” [Mark Shuttleworth]

As stated earlier the word “free” can refer both to the price and to the
freedom of open source. When Mark Shuttleworth is using the word “free”
we believe, that he is referring both to the price of Ubuntu and that Ubuntu
is open source. That means Ubuntu will always remain free of charge, and
with an open source code.

34

6.1.2 The Content of the Business Model

When looking at the business model into more detail, we can see that there
are many different aspects of the business model of Canonical.

“Well our business model it is very wide, but our main model is
providing service. [IP4]

Knowing Canonical will never be able to make money on the code itself,
it is interesting to find out how they do intend to make money. Based on
Raymond’s nine business models, we believe that Canonical is spreading
their business model over four of Raymond’s nine models. Those are: “risk
spreading”, “loss leader or market positioner”, “give away the recipe - open
a restaurant” and “accessorising”, respectively.

Risk Spreading

We believe that Launchpad is a good example of this business model. Launch-
pad is a code hosting and software collaboration platform. It is used to find
new tasks to solve, for the next Ubuntu distribution. Launchpad has been
closed source, but was recently released as open source. It is used by sev-
eral different open source projects. It was created for the development of
Ubuntu. We believe this is risk spreading because Canonical can share the
maintenance of Launchpad with a community after making it open source.

Loss Leader or Market Positioner

Ubuntu is the product that in this model is giving no direct revenue. Instead
it is used to sell software that works in Ubuntu. Canonical have created sev-
eral of this kind of software for Ubuntu. An example could be Landscape.
Landscape is a system management and monitoring service, which make it
possible to manage multiple Ubuntu machines through a web-based inter-
face. Ubuntu itself has no value for Canonical, the value comes with the
possibilities that Canonical get from Ubuntu, by selling related software.

Give Away the Recipe, Open a Restaurant

Ubuntu is also used by Canonical to sell services to especially other com-
panies that for instance want to get a costumized version of Ubuntu, with
support. Or just want to get support for Ubuntu. Canonical offers five
different types of services.

Custom Engineering Services
Canonical offers to make a customised version of Ubuntu, to make it fit to
a given company.

Support Services
Canonical offers support by phone, email or the web, both standard (9 to
5) or advanced (24/7).

35

Certification
Canonical offers certifications meaning that hardware manufacturers have
the possibility to make sure their hardware is fully compatible with Ubuntu.

Training
Canonical offers training in using Ubuntu. This can be value able for the
companies that wishes to switch from another desktop or server solution to
Ubuntu.

Application Packaging
Canonical offers to package software that someone else wishes to put into
Ubuntu.

Accessorising

Canonical offers a lot of different accessories in their online store. For in-
stance they offer wearables and other Ubuntu accessories, Ubuntu CDs,
DVDs and software.

6.1.3 The Interviewees Relationship to Canonicals Business
Model

Our experience from the interviews regarding the business model is that
answers differed between employees and community members. Even within
the group of employees the answers differed. Some employees knew a lot
about the business model of Canonical. This was the people who had to
do with it in their daily work. The employees who did not come in contact
with partners in any way did not know much about it. Except that they are
selling services. The following quote describes most of the answers we got
when asking employees about Canonicals business model:

“Well our business model it is very wide, but our main model is
providing service.” [IP4]

Most employees knew there was more to the business model than selling ser-
vices, but did not know exactly what. We believe that the reason employees
does not really care how Canonical is making money, except for the ones
working close to it, is mainly because of Mark Shuttleworth. It is widely
known that Mark has got a lot of money and is willing to spend a lot on
Ubuntu. One employee even stated that:

“Mark Shuttleworth is made of money” [IP7]

. This means that the employees do not have to care about whether Canon-
ical is making money or not, at this time at least.

On the community side most interviewees replied they did not really
know anything about Canonicals business model. If some of them did they
were mostly guessing. In the end the answers we got was close to this quote:

36

“Business model? I can’t really speak about that, at all.” [IP14]

Most community developers does not know much about Canonicals business
model. We interpret this as not important to them to know in their work
for Ubuntu. A community member mentions at one point that he found
out Canonical is not a public limited company, because he wanted to buy
some shares in Canonical. This means that the community members have
no reason for knowing Canonical’s business model. They cannot make any
money themselves on it, and at this point they do not need to fear that
Canonical will not be there for Ubuntu, in the near future. Especially be-
cause of the Ubuntu foundation mentioned in section 5.2, meaning that if
Canonical suddenly cannot support Ubuntu, an amount of 10 million dollars
will be released to make sure to keep Ubuntu going for several releases.

One interview subject describes that there are mostly two types of busi-
ness models in open source development. The old model that is, giving a
product for free and selling services and support for that project. The new
model on the other hand is about having some of the product open source
and other parts proprietary, like for instance Red Hat having Fedora as open
source and Red Hat Enterprise as a proprietary product. He believes that
Canonicals business model belong to the old kind as can be seen in the
following extract from the interview.

“Canonical is in the old model, which is mostly about capture
market share and giving all your products for free ... the very few
that will require support services or will pay for getting a cus-
tomised version. This is the ambitious model, something where
you invest a lot in the brand and you expect it to be successful
enough so with small amount of services you can still make the
company live.” [IP5]

If we compare this statement with Raymond’s theory about business models,
and our view on Canonical’s business model(s) through this, it is obvious
that we do not agree that Canonical only uses the old business model. What
we do believe is that Canonical originally sold services around Ubuntu, but
now have expanded their business model and lately have incorporated other
aspects like the ones this interviewee describes as “the new model”.

6.1.4 How the Business Model Affects the Employees

The business model affects the employees, when a costumer might be in-
volved. Means that what a paying costumer wants trumph what ever the
employee was working on at the time.

“well from time to time I get pulled away from my normal de-
velopment to work on or fix a bug that a paying customer has

37

reported in which case that usually trumph my daily whatever I
was working on for the day.” [IP8]

This means that the employees are under direct influence of the business
model, or Canonicals partners. Which also describes why the employees
know that the business model of Canonical is mostly about selling services.
Some experience this side of the business model pretty often.

6.1.5 How the Community Affects the Business Model of
Canonical

The community has an indirect influence on the business model:

“The community counts a lot because sometimes we have to
decline things for customers because its just not the Ubuntu
way to do things. For instance sometimes the costumer wants to
put something that breaks the GPL. And we could do that, but
we just say no. Because it is not the way Ubuntu works.” [IP4]

We can now establish that it does actually cost something, having a com-
munity. The price is that Canonical are bound by the rules of the GPL
and some unspoken rules from the community, to make the effort of keeping
the community happy. There are several examples of Canonical failing this,
but we will get back to that in the analysis of the collaboration between
Canonical and the community.

On the other hand the community does a lot of work for Canonical and
the business model:

“You have much more community members doing advocacy stuff,
doing install party’s, doing Ubuntu local user groups, than you
have developers. The community having this spirit, trying to
create this atmosphere of everyone is happy and we are great
and its very important in the business model.”[IP5]

This means that even though Canonical might make less money because
of the community they also gain a lot from it, especially when it comes to
publicity, and support to ordinary users.

6.1.6 Pros and Cons About Canonical’s Business Model

Especially the employees brings up some pros and cons with the business
model of Canonical. For one thing, even though the business model might
work well for Canonical, it is not a given that it will work well for other
companies. This might depend on whether another company is willing to
invest as much money as Mark Shuttleworth has invested into Ubuntu. The
business model also require acknowledgement from investors that this might
be a long term investment;

38

“It is a good business model, the only problem with this kind of
business model is it takes quite a long time to actually pick up.
So would be very hard for us to keep up this way if we hadn’t
Marks money to back us up.” [IP4]

We believe that the reason that Canonical is expanding their business model
to include some proprietary products like Landscape and Ubuntu One is to
make more revenue. Meaning that the business model about only provide
services, servers and support is not enough to make a company like Canonical
profitable on its own. But moving towards offering this kind of software
might give Canonical some problems with the community. An employee
stated the following:

“There wouldn’t be so much community members if we chose
another model. You cannot see so much community in projects,
that keep part of the product closed.” [IP5]

This statement is made from the fact that he believes that the business model
of Canonical is only about providing services for Ubuntu, but since it is not
this means that Canonical might run into the problems that this employee
is stating. The discussions about Ubuntu One has already been ongoing for
a couple of months now, mostly with community members speaking from
one side and Canonical employees speaking from the other.

6.1.7 Summary

Using the definitions by Raymond, the business of Canonical has been de-
scribed as four different models. The “Free the recipe, open a restaurant”
of selling services around Ubuntu, being the primary strategy.

The responses from interviewees on the business model of Canonical,
has been characterized and compared with Raymond’s models. Generally
few, both employees and volunteers, showed much knowledge of the busi-
ness side of things. Most volunteer focus entirely on their own partition of
Ubuntu, and within Canonical the business related activities are allocated
to specialized personel.

Furthermore it is described how certain Canonical employees’ daily work
can be directly affected by requests from important customers. The business
of Canonical is also adapted to take care of licences issues related using open
source licences like GPL, which restricts the types of agreements Canonical
can make.

6.2 Ubuntu Culture

This section will present our understanding of the organisational culture of
the Ubuntu project based on the interviewes and our observations at UDS.

39

6.2.1 Code of Conduct

One of the characteristics of Ubuntu is the code of conduct which is a set of
behavioural guidelines which both the community members and employees
are expected to respect. The aim of the code of conduct is to increase the
members awareness of how they communicate, and encourage them to be
considerate towards each other. We see this as a way of seeding a specific
culture, and ensuring that it remains as initially intended. It is a clear cut
example of a written set of norms. Most of the interviewees feelt that the
code of conduct made the Ubuntu community a nicer place to be, and several
interviewees had experience with being in other open source communities
before, where they did not experience the same open and positive attitude
as in the Ubuntu community. One of the interviewees expressed it as:

“We have the code of conduct, it rarely gets mentioned ... there
is a different tone in discussions, than I’ve been used to in many
different places within the open source world.”[IP 7]

The general opinion is that the vast majority of the community and the
employees appreciate the code of conduct.

6.2.2 Coordination and Communication

The Ubuntu project consists of participants scattered all around the globe,
with most of the developers working from home. This will be reflected in
the culture especially in terms of communication channels and coordina-
tion measures. The coordination of a large and geographically distributed
project as the Ubuntu project, requires a lot of communication. So how
is communication. carried out within the Ubuntu project? According the
interviewees the means of communicating are mostly:

• IRC

• Mailinglists

• VoIP

• Phone

According to the interviewees, most of the daily communication is done
via IRC or by mailing lists. In important cases, or when the members know
each other well, the communication might be by phone or VoIP. Physical
meetings are more rare, and some developers only, if at all, meet at the UDS.
Working with people located all over the world introduces some problems
due to the span across time zones, as expressed by interviewee number six:

40

“Scheduling calls for a global company is really difficult. Espe-
cially when you have to talk to someone on Munich, Singapore
and Chicago. To have a phone call, someone has to be up in the
middle of the night.[IP 6]”

In addition to this, several of the interviewees states that the development
at times can be quite stressful due to the odd work hours.

6.2.3 Ubuntu Developer Summit

The next aspect of the culture which we will focus on, is about the scheduling
of tasks and assignments in the Ubuntu project. According to the intervie-
wees there are not made formal estimations on the projects in terms of, for
instance, expected man hours, but the people involved in the project makes
a guesstimate, and has regular catch-up meetings during the development.
Is is pointed out, that the developer responsible for a project usually have a
good feeling of how much work is required, making it a qualified estimate.

Despite the seemingly absence of formal estimations of the projects, it is
discussed at the UDS, which features seems feasible during the next release,
and during most of the sessions, notes are taken using the Gobby collabo-
rative text editor, which enables all of the participants at a session, to take
notes in the same document during the session. During our observations
of the session at UDS, we noticed that it’s very different how important
the Gobby document is considered to be. The tendency is, that the docu-
ments get more attention at sessions lead by Canonical employees, than at
sessions run by volunteer community members. At some sessions lead be
community members, it took twenty minutes before the person running the
session, noticed that no document had been created, and hence no notes had
been taken. At another more informal session, it was considered whether a
document should be made or not.

6.2.4 Development Model

When we asked the interviewees, what development model. The majority of
the answers where that they don’t really follow any specific model, and that
it is mostly based on the agreements among the developers, and the progress
is monitored through regular status meetings. The closest we came to an
actual model, was that statements, that it would be an agile development
model. So in this case, it sounds like interviewee number four’s statement
on the topic, gives an indication:

“...it is quite controlled chaos.” [IP 4]

This said there are indications that the many stages of rapid alpha and
beta releases encourages to what could look like sprints, which is known
from the agile software developing approach Scrum.

41

6.2.5 Reputation

It was clear to us, that reputation of employees and community members
play a key role in the culture of Ubuntu. For instance Launchpad users get
karma points for their profile based on the work that they do. This system
is structured such that the more tasks you solve, and the more important
they are - the more points you get for you profile. Then the rest of the
community members can see how good you are. A contributors reputation in
the community is defined through what he does and how does it. Interviewee
number fourteen states precise and clearly:

“You are treated based on how you act and what you do.” [IP
14]

The reputational demands are the same whether you are a volunteer in the
community or a Canonical employee.

“you don’t get any special right from working for Canonical. You
still have to prove yourself.” [IP 3]

According to the interviewees, they work hard to achieve their reputation
there are volunteers doing up to 60 hours of Ubuntu related work a week.
Among the employees one developer has been working up to 90 hours a
week.

6.2.6 Employees and Volunteers

According to most of the interviewees, there is very little difference between
the volunteers and the employees, where the main difference is that em-
ployees has the possibility to dedicate more of their time to Ubuntu, which
makes it’s easier for them to know what it happening within the project.

Canonical Culture

More of the employees sees themselves as equals with the community mem-
bers, and Canonical employee and interviewee number three expresses it
with:

I03: “I think that most Ubuntu developers, that are Canonical
employees, participate within Ubuntu as any other developer...”

Community Culture

When it comes to the voluteer contributors, there is a slight difference in
the way, that they percieve their position. Whereas the employees position
themselves as equal to the volunteers, the volunteers refrain from positioning
themselves, but only concludes that it is difficult to tell who is an employee,

42

and who is a community member. An example is the following statement
from one of the volunteer contributors:

“it is not clear to me who works at Canonical and who doesn’t.
Its just all the people on the list, and everyone’s opinion seems
valid.” [IP 13]

The volunteers respect the opions of both voluteers and employees as equal,
and make no distinction.

One thing is the equality between the volunteer contributors and em-
ployees. Another is when it comes to Canonical as a company, were there
tends to be some scepticism from the community, against changes Canonical
pushes into Ubuntu without the endorsement of the community. Interviewee
number five states it as:

“Most people are doing obstruction, to whatever they perceive
that Canonical pushes, rather than something that should be
done in Ubuntu anyway.” [IP 05]

An example of such resistance against forced changes, is the notification
bubbles added in Ubuntu 9.04. The notification bubbles came in rather late
in the release cycle, and many community members felt that it was forced
by Canonical, and that it didn’t have the support of the community. This
leads us to our understanding of the organisational hierarchy of the Ubuntu
project, it’s different governing bodies, and how they resolves various dis-
putes.

Governing Bodies

At the top of the hierarchy, founder and owner, Mark Shuttleworth, has
the final say in every decision or dispute, if the the other instances can’t
reach an agreement. The ability to veto something, is however used very
seldomly. The way it often works is that Mark Shuttleworth present and
argues his view on the matter, and the other parties tends to accept his
view. Most disputes are solved by the involved parties themselves but if
they cannot reach an agreement, their dispute might reach the Technical
Board, the Community Council or the MOTU council depending on what
the dispute is about. As the name suggest, the Technical Board deals with
the technical decisions, such as package selection, library dependencies and
the like. The community council takes the social aspects of the community,
and ensures that the community members respects the code of conduct. The
community council is also the governing body, responsible for approving new
teams and projects. MOTU council is a bit different from the the technical
board and the community council, since it applies only to the MOTU part
of the community. In many ways, it serves many of the same purposes as the
community council, by resolving disputes in MOTU, and by the supervising

43

the MOTU community. In this way many decisions and disputes are handle
without ever being elevated to the top level.

6.2.7 Summary

The code of conduct is a document stating the desired way to interact in the
Ubuntu community. It asks community members to be considerate of how
they communicate. It is considered one of the reasons, that the Ubuntu
community is often characterized as a more welcoming community ,than
some other open source communities.

Communication within Ubuntu is mostly done by IRC, since everyone is
at home, without physical contact to other community members. In order to
have the community meet face to face, the Ubuntu developer summit is held
at the start of each new release cycle. Here both employed and volunteer
community members plan the next version of Ubuntu.

The Ubuntu community rewards effort by peer recognition. A system of
karma point is established to emphasise this.

6.3 Champion and Canonical owner

The Canonical CEO Mark Shuttleworth is the founder and owner of Canon-
ical. In the following the background of Ubuntu and Canonical is presented,
and the curent position of Mark Shuttleworth in Ubuntu is decribed.

6.3.1 History

While obtaining a Business Science degree in Finance and Information Sys-
tems at the University of Cape Town, Mark Shuttleworth got involved with
the open source projects Debian and Apache. Mark Shuttleworth later
started the certificate authority company “Thawte”, which he sold in 1999
to competitor Verisign.

After realising his dream of space travel, starting both a venture capi-
tal company and a non-profit foundation to improve education, Mark be-
gun planning what would become Ubuntu. In April 2004 he assembled
a group of open source developers to work on a new Linux distribution.
These first members of the Ubuntu community had all been hand picked
by Mark Shuttleworth, based on their previous work and reputation within
open source development. Mark Shuttleworth named the new Linux distri-
bution Ubuntu. It is a concept from South African culture, which has been
translated as “Humanity towards others”. It expresses a spirit of sharing
and collaborating, that is also found in the culture of open source software.

The company Canonical was founded in 2004 to employ and pay devel-
opers to work on Ubuntu. To hire the most qualified members of the global

44

open source community, Canonical became a virtual company, where the
employees work from their homes.[HHB09]

6.3.2 Position and Control

Mark Shuttleworth is the one person everyone seems to know within the
Ubuntu project. When asking about the organisation of Ubuntu, he is the
most frequently mentioned person. It is well known among all the intervie-
wees, that Mark Shuttleworth is the top figure of Ubuntu. This is also true
among those, who do not have a detailed understanding of the leadership of
Ubuntu.

“Mark Shuttleworth fly pretty much right at the top and then I
think there is a technical board of a few people around him and
then under that there’s the different teams” [IP19]

With many who know the name Mark Shuttleworth, but not much about
him, could have given him a special status in the community.

“I only know a little bit about him[Mark Shuttleworth] and some
of those Canonical stars” [IP12]

The size of the Ubuntu community, and the busy schedule of Mark Shut-
tleworth unavoidably creates a certain distance to a large part of the Ubuntu
community and the CEO of Canonical. That can make Mark Shuttleworth
appear as an illusive figure atop the Ubuntu community. In any way he is the
face of Canonical to external partners, as well as the volunteer contributors
within Ubuntu. To the interviewees from Canonical, Mark Shuttleworth is
still an authoritative figure, but he is not surprisingly described as a col-
league.

Mark is portrayed as the visionary of Ubuntu by both volunteer contrib-
utors and Canonical employees.

“He[Mark Shuttleworth] has got a really cool vision of what he
wants Ubuntu to be, and I think that’s inspiring” [IP8]

“Mark Shuttleworth he will state the name of the next Ubuntu
release. He will review the goals, that he wants to accomplish,
and after that, various developers starts making blueprints in
launchpad to try achieving those goals.” [IP14]

Mark Shuttleworth champions the issues he finds are important for the
next release. At the UDS in Barcelona he opened the first session on the
server track with his ideas for the coming release, and then left the room to
leave the server team to finish the session.

It is clear that Mark Shuttleworth have a great deal of influence on the
direction in which Ubuntu develops. Mark Shuttleworth is also the final

45

step in a chain of escalation of disputes. Issues that can not be resolved
otherwise can ultimately be decided by Mark Shuttleworth.

“We have Mark Shuttleworth, our big boss and chieftain, and if
he thinks something, well in principal he has the right to veto
everything, but Mark he is sly enough to know when to use that
right, and when best not to” [IP7]

The last part of that statement is an interesting example of the balancing act
to direct Ubuntu in a particular direction. At the UDS Mark Shuttleworth
referred to his stepping to end a discussion as a “heavy club to hit with”.
He further explained, that he often let things play out for a while to see if
something constructive would occur, and only when that does not seem to
happen will he take action ending the discussion. This did happen at the
Ubuntu Developer Summit at least one time, during a short session, where
the speaker made some statements the Ubuntu Community and employees
did not agree with. After a few minutes Mark ended the discussion by
saying:“this is not the right time or place to have this discussion”, which
people accepted, and the discussion was over.

Even though Mark has a lot of ideas himself and has got a great influence
on the features in Ubuntu, it takes a lot of people to keep Ubuntu up and
running, and going forward. Both Canonical employees and the volunteer
community are needed for achieving this, and especially that they manage
working together on Ubuntu.

6.3.3 Summary

Mark Shuttleworth is the visionary of Ubuntu. He is considered an inspi-
ration among many in the Ubuntu community. His opinion carries great
weight, but not all approves of his great influence, and leadership of Ubuntu
requires much balancing from Mark Shuttleworth.

6.4 The Collaboration in Ubuntu

A very important part of Ubuntu is that there are many people involved in
the making of Ubuntu. All these people come with very different interests
and agendas. This means that clashes can and will occur especially between
Canonical and the community.

6.4.1 The Relationship Between Canonical and the Commu-
nity

Its important realising that Canonical is into Ubuntu to make money on it.
Even the volunteers have different resons for contributing. Some are doing

46

it for the fun of it, and others are being paid by a company or are doing it
for their own company.

They [the community] have their own schedule and of course
they have their own set of priorities which in some in many you
know might be commercial more than community driven. [IP
15]

This means that there are many very different reasons for contributing, and
people sees Ubuntu from very different angles. This can give some problems
within the community. Canonical have to make sure that the distribution is
the best possible, even though the release management team have to approve
something for the next release after the release deadline.

Somethimes we have to rush some features in, we have to bend
the rules to get the features done. [IP 5]

This have given some trouble with the community. That Canonical can
break the rules when many others cannot. But according to several in-
terviewees some community members can also break the rules if they are
trusted community members. Canonical are working hard to not end in
situations where breaking the rules are necessary, because they know it will
make people from the community very unhappy. They also know that the
best way to avoid these situations is just not breaking the rules. It seems like
it is very different how community members are handling Canonical break-
ing the rules. Some community members, states that they do not think
Canonical would break the rules unless it was really necessary, but appa-
rantly others feel that Canonical have got to much power over Ubuntu, and
therefore really dont like when Canonical is breaking the rules.

Some people, even if they’re very involved in Ubuntu and stuff,
they think Ubuntu is good, but they don’t always think Canon-
ical is good. Because they have an idea that we are up to some-
thing. That we have a secret plan, which off course is evil, be-
cause such plans are always evil. [IP 7]

W believe that the reason some people are not that impressed by Canonicals
involvement in Ubuntu is because their view of open source is very idealistic,
in the way that open source should be free and there should be no money
involved at all. On the other side they might feel that Ubuntu is the best
distribution for them.

6.4.2 Recent Problems

In the latest Ubuntu release cycle version 9.04 released april 2009, Canonical
introduced a new team, the user experience team. This team brocke the

47

rules for the release schedule and released some new features pretty late
in the release cycle. The features were called notification bubbles. Both
the new features and the way they were introduced made a lot of people
especially from the community very unhappy. When askin about this exact
problem in our interviews, the joint oppinion from most interviewees was
that what people was really mad about probably had more to do with that
the community did not feel they had anything to say about the new features,
and less to do with the features it self.

Many people, especially Kubuntu users, were not too happy
about this, because we really were not able to express our opin-
ions about the notifications beforehand. And we pretty much
felt, that Canonical was using their power to get things done,
which many people dont like. [IP 14]

Even Canonical employees stated that they did not think this situation
was handled very well, and was not sure that implementing the notification
bubbles for this release was the right choice to make. The discussion about
the notifications ended when Mark Shuttleworth stated that the change was
final, and that it would not be changed back.

I don’t really like the change, but Mark says it is final and he
has some valid points for it, like Ubuntu should lead, not follow.
[IP 11]

Especially the point about Ubuntu should lead and not follow, might be the
reason that the notification bubbles did get implemented for this release.
Meaning that Canonical might have felt it was worth the heat from the
community, to get in front with this kind of features.

6.4.3 Distribution of Tasks Between Canonical Employees
and Community Members

Since Canonical is not the owner of Ubuntu, but a contributer though a
large contributer, this means that the tasks Canonical are choosing to work
on, regarding Ubuntu, are the feature they wish to get in the next release.
The Canonical employess does not have much say in what they are working
on, those decisions are made on the manager level. The community on the
other hand are free to take what ever tasks they want.

My manager can quite happily assign a task to me, because he’s
my manager, but he couldnt assign it to a community member.
[IP 2]

Canonical employees are working on what tasks that Canonical have decided
are important for them. Since the community members are volunteers no one

48

can make sure that they finish an important task before a deadline. This
means that if a community member takes on a task and for some reason
does not finish it, the feature will not make it into the next release. What
community members are often working on, are features they or maybe their
employer have a special interest in,

The community members have a clear preference in what they
want to do, they usually, especially community members in my
team, they are usually working for their own companies or they
have their own personal agenda, they need some features in
ubuntu, and they are working clearly on that. [IP 5]

If a community member does not have anything specific they want to work
on, they do have the possibility to pick up tasks or fixing bugs. These tasks
can be found on Launchpad.

6.4.4 Ubuntu Developer Summit

The Ubuntu Developer Summit (UDS) is the kick-off for a new release of
Ubuntu, and the primary means of planning and coordination. It takes place
about one month into each release cycle. Every second time it is located
in Europe or North America respectively. The latest was held in Barcelona
from May 25 to May 29.

Due to the distributed nature of Canonical as well as Ubuntu at large,
the UDS is one of the few times the Ubuntu community meets face to face.
The summit is open to everybody, who wish to take part in shaping the
next release of Ubuntu. Canonical employees are expected to participate,
and get all expenses covered by Canonical. Anyone can chose to participate
at their own expense, but Canonical will invite certain volunteer Ubuntu
contributors, and sponsor their stay.

The purpose of bringing all of those Ubuntu developers together, is to
discuss ideas for the upcoming release of Ubuntu. In preparation to the
summit, input from bug reports, users, developers and Canonical teams are
collected to see what everybody wish to see happen in the next release. The
suggestions are then arranged in a schedule for discussion at the UDS. The
Canonical employees attending the summit meet the week before the summit
to socialize and prepare. Sessions are often lead by a Canonical employee.
For practical reasons the summit is organised in a number of different tracks.
At the Barcelona UDS there were seven tracks divided among 14 rooms at
the same time. The tracks were “Community”, “Desktop”, “Foundations”,
“Kernel”, “Mobile”, “QA”1 and “Server”. In total there were 335 one hour
sessions throughout the week, and 20 short plenary sessions. The schedule
is adjusted during the summit, to allow for follow-up discussions of issues,

1Quality Assurance

49

which were not covered in a single session. In the same way some sessions
turns out to be less important, and are then removed from the schedule.

The sessions in each track are very different. Sessions in the commu-
nity track could be about how to best include newcomers in the Ubuntu
community, where sessions in the kernel track will often concern low level
discussions of hardware interaction. To help the participant at the summit
find others, who share their interest, the ID badges worn by all, could be
marked with colour coded labels, signaling ones interests.

In addition to the Ubuntu community, representatives from upstream
projects and Canonical partners also take part in the UDS. Since this is
one of the few times the developers of Ubuntu are together in one place,
this is a chance for everyone to expand their network in the community. A
few sessions were lead by Canonical partners discussing ways to collaborate
with the Ubuntu community. The UDS is also a great way to strengthen
the cohesion between Canonical employees and community members alike,
both through the sessions and social events.

The UDS is clearly an important event for Canonical, since it is one of
the few chances for its employees to socialize. It is however a very busy
week. The time is precious, because it is the only time the Canonical teams
and volunteer members of the community have this kind of opportunity, to
exchange opinions and ideas. The UDS is a vital part of the established
collaboration in Ubuntu. The blueprints created based on the discussion
forms the basis for the coordination of resources.

Even though UDS is an open event, practicality dictates, that only a
small subset of the Ubuntu community will be present. That means the
majority of the community is cut off from the direct access to participate in
setting goals for the next Ubuntu. This is not in compliance with the ideals
of open source development. To alleviate the issue, audio from all sessions,
and video from some, is streamed online. This creates a line of one-way
communication. In some sessions the chat service IRC was used to create a
return channel. It was however only in a few sessions this happened. The
outcome is that even with the audio or video streaming, influence at the
UDS is primarily attainable for those, who are physically present.

6.4.5 Summary

The different backgrounds and interest of the people forming the Ubuntu
community presents challenges in finding a common way to develop the dis-
tribution. A recent issue about the introduction af a notification system,
shows how Canonical’s interest to push Ubuntu in a certain direction on its
own terms, can lead to unhappiness in the community. Even though vol-
unteer and employed contributors often work under very similar conditions,
the difference will become apparent when business concerns requires action
from employees, or in the level of freedom a volunteer has to focus on a very

50

limited scope.
The Ubuntu developer summit is the main planning event for each ver-

sion of Ubuntu. It is a very complex and busy event, where a broad scope
of all that is Ubuntu is discussed. Despite great effort to make the event
available to the larges possible part of the community, the nature of event
limits the value of remote participation in this part of Ubuntu.

6.5 Open Source

Being an open source project, Ubuntu is set to exist under certain conditions.
Canonical does not own the software, and can only direct the focus of its own
employees, not the community at large. In principle all decisions are made
by consensus. Exceptions from this principal can jeopardise community
support for the project. Access to the source code means, that anyone can
take the software and customise it as they see fit. Furthermore the open
access to source code allows for open participation in a collective effort, to
work on Ubuntu as a common good. The open source nature of Ubuntu
becomes a frame for both control and participation in the project.

6.5.1 The Community’s View on Open Source

There is no indication of a strong ideological support for open source among
the interviewees, but there is a positive attitude towards open source. Open
Source is mentioned as a part of the positive feeling of taking part in a
shared effort.

“I contribute to it because I use it every day so I am happy just
to improve it for myself and other users” [IP12]

This feeling of goodwill from doing something, which can benefit others is
repeated by several others. So is the first part of the above statement. That
taking part in an open source project makes it possible to make improve-
ments to suit ones own needs. This is what is sometimes called “scratching
your own itch”. A property of open source development expressed in a
statement like the following:

“one of the most interesting things about open source is how,
you can get involved by your selfish desires, like you just wanna
fix something ... with other things something might annoy you,
but there’s nothing you can do about it” [IP19]

The ideology of open source is not important to the contributor, but the
practical consequences of open source development is.

When talking to volunteer community members about contributing to
Canonical’s business without compensation, many mention contributing to

51

an open source project, as a reason to accept this. Because the work is
contributed to a common good, Canonical’s possible earnings are not seen
as injustice.

6.5.2 Canonical’s view on open source

For Canonical as a commercial stakeholder in Ubuntu, its control is lim-
ited because Ubuntu is Open Source Software. Canonical does not have
ownership of Ubuntu, and most adapt its financial operation as described in
Section 6.1. The daily work routines are also adjusted to suit the distributed
and community oriented development practise as described in Section 6.4.
An interesting example of how Canonical participates in the open source
community, is that employees of Canonical have to earn their right to access
software repositories, as any other participant in the Ubuntu project.

This shows that Canonical takes the role of its employees as members
of the community seriously. They value the support of the community, and
wish to participate on equal terms. In that way the Ubuntu community
resembles other large open source communities, with the exception that
Canonical employees can work full time on Ubuntu.

Canonical is however not purely dedicated to open source. The coor-
dination tool, Launchpad, was developed by Canonical as a closed source
project. It is part of the infrastructure that is put in place to support the
development of Ubuntu, and has only recently been made open source after
requests from the community. Launchpad was created to be a single point
of coordination for all open source projects. Providing the source code could
result in the deployment of a large number of similar tools servicing different
projects in a fragmented manner. In the case of Launchpad, Canonical took
a pragmatic approach to achieve their goal. Ultimately releasing launchpad
as open source again shows a will to please the community, but only af-
ter launchpad had become an established tool for a number of open source
projects.

6.5.3 The Open Source Ecosystem

Ubuntu is part of a larger collection of open source projects. Much of the
software included in Ubuntu, is developed within other open source com-
munities. Such external development projects are referred to as upstream
development. The contributors working on Ubuntu integrates the upstream
software in their distribution. That helps the software, to be exposed to a
larger user base, which often means bug reports and feature requests be-
comes available in greater numbers. The increased testing and end user
input can help to improve the software. That way the Ubuntu project can
contribute something back to the other projects, which provide software
used by the users of Ubuntu.

52

Another Linux distribution called Debian is a very important upstream
contributor to Ubuntu. Each Ubuntu release is based on the current unstable
version of Debian at the time of each development cycle’s beginning. A
returning session at the UDS, is an evaluation of the relations with the
Debian community. At the Barcelona UDS the notion was, that previous
scepticism towards Ubuntu had declined, and experience from working with
Ubuntu is now viewed as positive in the Debian community. Because Debian
is a purely community driven project, the collaboration between Ubuntu and
Debian is largely based on personal relations among contributors.

The structure of Ubuntu further complicates the issue of control over
the project. Canonical can communicate directly with the people driving
upstream development, but have even less mandate in those projects, than
in the Ubuntu project.

6.5.4 Summary

As a fundamental factor in what Ubuntu is, its open source nature defines
the business, the possibility for participation and ultimately the community,
that is Ubuntu.

Canonical’s means for controlling Ubuntu are limited compared to a
traditional commercial software project, but enhanced by the committed
additions by the volunteer developers. The Ubuntu community is largely
driven by an intent to make Ubuntu better for one self and the community
at large. Canonical has committed to an open source strategy, and are
working to keep business and community together.

53

Chapter 7

Discussion

As stated in Chapter 1, the purpose of this study is to examine the ques-
tions: “What control does a company have over a commercial/volunteer
open source software (OSS) project?” and “What is the relation between
volunteer participants and a company with commercial interests?”Based on
the information obtained through the analysis, those question will now be
answered.

7.1 Ubuntu as a Part of Open Source History

As it has already been described in the literature, the trend for most success-
ful open source software, has been that it is so-called infrastructure software.
This is the case for much of the open source software describe previously
in this report. Ubuntu can be said to be part of a development in another
direction. Based on the heritage of the open source software, which today
make up vital parts of the Internet, which makes the distributed develop-
ment process of Ubuntu a possibility. The Ubuntu desktop at least is an
attempt to take open source software in to the mainstream use, with a focus
on end users and ease, which previous open source successes didn’t make a
priority.

7.2 Development in Ubuntu

The development effort in Ubuntu is similar to what is found in many open
source projects. Communications is based on Internet technologies. IRC
is the primary means of communication. What is interesting is that both
the volunteer and the employed developers work under similar condition,
since Canonical does not house its developers in a common office, but have
them working from home. Both employed and volunteer developers work in
a distributed environment. In that way the employees have access to the
same communication channels as any volunteer.

54

The leadership in Ubuntu is centered around Canonical and its employ-
ees. Canonical employees are organised in teams, which are responsible
certain functional parts of the Ubuntu distribution. These teams cover the
central and most critical parts of Ubuntu. The leadership provide by the
leads in the Canonical teams has a great influence on the direction in which
Ubuntu is developing. This can be seen as a more organised extension of
the core group found in many community driven projects. Each team is in
a way the core group within its domain. Volunteer developers can take part
in the work, but the main effort lies with the Canonical team. Mark Shut-
tleworth can be characterised as a so-called benevolent dictator. He is the
one with the final say. If conflicts can not be solved, he is the one who can
step in. Mark Shuttleworth is different from the leader of a non-commercial
community project. Mark Shuttleworth is involved with Ubuntu to make a
business. It is difficult to say for sure, but Mark Shuttleworth could have
strong finansual motives not to be benevolent.

Among the volunteer developers in open source communities, it is the
ones who commit and delivers good quality, who are trusted and rewarded
influence. The Ubuntu community is the same. Canonical makes its em-
ployees take part in the community on the same terms as any volunteer
developer. Only after having shown to be worthy employed developers earn
the privileges to change the code in Ubuntu. Once an employee have become
a part of Ubuntu, the dedication a full time effort allows for, is likely to help
them become among the most trusted and privileged. They will be further
aided in that effort by the extensive network, an employment at Canonical
provides.

The Ubuntu project is different from many others in the choice of tools.
The proprietary Lauchpad platform, developed in-house by Canonical, is
completely essential for the way Ubuntu works today. Canonical owns the
infrastructure, on which all Ubuntu development relies. The software and
the hardware.

The volunteer members of the Ubuntu community would appear very
similar to those of other communities. An emphasis on considered inter-
action through the code of conduct, seems to have a positive effect on the
comfort for the community. The Ubuntu community expresses a positive
attitude towards open source, and the spirit of collaboration and sharing.
In addition to the pleasant feel for opensource, there is also a very positive
attitude towards all things Ubuntu. The work by the Canonical community
team, could very well be a great part of that.

7.3 Business in Ubuntu

Examining Canonical’s business model shows a focus on selling services on
the basis of Ubuntu. The key for Canonical to make its service business

55

a success, is how popular Ubuntu can become. The demand for any of its
services, as well as for sale software products, is relative to the number of
potential clients, who runs or would like to run Ubuntu. Even without a
single Ubuntu user paying Canonical for anything, a large user base can help
convince hardware producers, that they need to be working with Canonical.
Looking at Raymond’s open source business models, the strategy Ubuntu
is following is not new. The large start-up capital available to Canonical
by Mark Shuttleworth is properly the most interesting aspect of Canonical
business operation, making it a unusual endeavor.

7.4 Canonical’s Control of Ubuntu

Ubuntu is, as many other open source projects, characterised by a system,
where influence is rewarded to those who show commitment and quality
in the work they contribute. The more time a contributor is willing to
spend working on Ubuntu, the better are the condition for establishing a
network, being able to keep taps on the activities in the community and
make a name for one self. Because the employees at Canonical are paid to
work on Ubuntu full time, they are more likely to be the ones, who has the
most time available to contribute to Ubuntu. Furthermore the Canonical
employees work as part of a team, which means they are likely in a better
position to establish a network among Ubuntu developers, and they will be
known names to other Canonical employees.

To ensure that critical work for each release is taken care of, employees of
Canonical are typically assigned those tasks. They can be considered more
reliable, since they are on contract to dedicate time to Ubuntu development.
This also means, that volunteer contributors are rarely the ones working on
critical new additions. Volunteer developers are generally driven by their
own interest. Interest can vary, and the volunteer developers have been
described as having a more narrow scope in their contributions, compared
to the employed developers, who need to be more focused on entire solutions.

Because of the time invested, an established identity in the community
and a spot on a Canonical team, it is the employees, who become leaders in
most efforts in Ubuntu. Canonical provides the infrastructure, which makes
the applied work processes possible. By doing so, they are an important
part of determining the rules of how work is done, and by who.

This leads to a situation, where the most influentially, best known and
most valued contributors are on Canonical contracts. Depending on exactly
what degree of independence the individual employee have in how to interact
with the community, this is a situation in which Canonical have a great
deal more influence, than one might assume a company, not owning its
core product, would have. This is influence to drive new initiatives, and
it is not necessarily at they expense of volunteer contributors change to

56

drive their initiatives. The establishment of several software repositories,
where some are under the supervision of volunteer community members,
allows Canonical to dominate the parts of the distribution, which they find
important. At the same time initiatives from volunteer developers can live
their own lives in less restricted repositories.

7.5 The Relation Between Employees and Volun-
teers

57

Chapter 8

Conclusion

The purpose of this study was to get answers to the two following questions
about open source development:

• What control does a company have over a commercial/volunteer open
source software (OSS) project?

• What is the relation between volunteer participants and a company
with commercial interests?

To be able to answer these questions we conducted a case study with the
use of the data gathering method qualitative research interview, and addi-
tionally an unstructured observation study conducted at the UDS. We have
interviewed 20 people, nine people from Canonical including Mark Shuttle-
worth and eight volunteer contributors. After conducting the interviews and
observing at the UDS, by means of a brainstorm, we ended with five bases
on which we would analyse our data.

We believe that Canonical has a lot of control over the Ubuntu release.
They host the developer summits and they decide which volunteer contrib-
utors will get sponsored for these summits. The first month of a new release
cycle Canonical employees are planning what features they and Mark Shut-
tleworth would like to see in the next release. After UDS, Canonical employ-
ees will work on the tasks that Canonical found was important features for
the next release, and only a few volunteer contributors are working directly
with the developing teams on the Canonical tasks. Most volunteer contrib-
utors will work on fixing bugs etc. or will be working on something set by
their own agenda. The Canonical employees and most volunteer contribu-
tors acknowledge that Canonical runs most of the show about Ubuntu. Only
a few open source idealists sees this as a problem, as long as Canonical is not
breaking the rules surrounding the Ubuntu release cycle. When Canonical is
breaking those rules a lot of people are not happy, and the discussions seems
endless. This might result in a statement from Mark Shuttleworth saying
that a change is final, and then the discussions dies or get more quiet. In

58

the end we do believe Canonical is running the show. But they do try to set
up a more democratic environment around the volunteer contributors, and
only use their power if it seems like the best solution for Canonical. The
volunteer contributors and Canonical have one major interest in common:
Making Ubuntu as successful as possible. The volunteer contributors must
feel there is a reason for staying and contributing to Ubuntu, otherwise they
probably would have left already. A very important factor is Mark Shuttle-
worth. He is an icon, and a star, even though he is also the one who can
veto everything. He is playing a very important part, trying to make sure
that his and Canonicals interests are nurtured but also remaining popular
with the community.

59

Bibliography

[AGP] URL: http://www.opensource.org/licenses/agpl-v3.html.
Available at 22/07-2009.

[Ber] URL: http://www.mkbergman.com/?p=115. Available at 22/07-
2009.

[BLMR07] Andrea Bonaccorsi, Dario Lorenzi, Monica Merito, and Cristina
Rossi. Business firms’ engagement in community projects. em-
pirical evidence and further developments of the research. In
FLOSS ’07: Proceedings of the First International Workshop on
Emerging Trends in FLOSS Research and Development, page 13,
Washington, DC, USA, 2007. IEEE Computer Society.

[Bry08] Alan Bryman. Social Research Methods. Oxford, third edition,
2008.

[BTL+09] Ladislav Bodnar, Dr Zhu Wen Tao, Susan Linton, Chris Smart,
and Robert Storey. http://distrowatch.org. web-page, June 15th
2009.

[coc] URL: http://www.ubuntu.com/community/conduct. Available
at 30/07-2009.

[def] Open source definition. URL: http://www.opensource.org/
docs/osd. Available at 06/03-2009.

[FF00] Joseph Feller and Brian Fitzgerald. A framework analysis of the
open source software development paradigm. In Proceedings of
the twenty first international conference on Information systems.
Association for Information Systems, 2000.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source
Software Development. Addison Wesley, 1 edition, 2002.

[Fit06] Brian Fitzgerald. The transformation of open source software.
MIS Quarterly, 30(3), 2006.

60

http://www.opensource.org/licenses/agpl-v3.html
http://www.mkbergman.com/?p=115
http://www.ubuntu.com/community/conduct
http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd

[gui] Debian social guidelines. URL: http://www.debian.org/
social_contract#guidelines. Available at 06/03-2009.

[HHB09] Benjamin Mako Hill, Matthew Helmke, and Corey Burger. The
Official Ubuntu Book. Prentice Hall, fourth edition, 2009.

[HJ03] Jesper Holck and Niels Jørgensen. Open source development:
Coordination by means of continuous integration. In 12th In-
ternational Conference on Information Systems Development:
Constructing the Infrastructure for the Knowledge Economy,
2003.

[HO01] Alexander Hars and Shaosong Ou. Working for free? - motiva-
tions of participating in open source projects. In 34th Hawaii In-
ternational Conference on System Science. University of South-
ern California, 2001.

[J97] Barton Cunningham J. Case study principles for different types
of cases. Quality and Quantity, 31(4), 1997.

[Jä04] Pertti Järvinen. On Research Methods. Openpajan, Finland,
2004.

[KB08] Steiner Kvale and Svend Brinkmann. InterViews: Learning the
Craft of Qualitative Research Interviewing. Sage Publications,
2008.

[KK99] Søren Kristiansen and Hanne Kathrine Krogstrup. Deltagende
observation - introduktion til en forskningsmetodik. Hans Re-
itzels Forlag, first edition, 1999.

[LGP] URL: http://www.opensource.org/licenses/
lgpl-license.php. Available at 22/07-2009.

[LT03] Josh Lerner and Jean Tirole. Some simple economics of open
source. The Journal of Industrial Economics, 50(2), 2003.

[Maa04] Wolfgang Maass. Inside an open source software community:
Empirical analysis on individual and group level. In 4th Work-
shop on Open Source Software Engineering at 26th International
Conference on Software Engineering (ICSE04). University of St
Gallen, 2004.

[MFHA02] Audris Mockus, Roy T Fielding, James D Herbsleb, and De-
velopment Apache. Two case studies of open source software,
2002.

61

http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://www.opensource.org/licenses/lgpl-license.php
http://www.opensource.org/licenses/lgpl-license.php

[OSD] Linux at the movies - keynote at open source days,
2008. URL: http://www.opensourcedays.org/2008/agenda/
sessions/GabriellePantera_and_RobinRowe.shtml. Avail-
able at 03/10-2008.

[OSIa] URL: http://www.opensource.org. Available at 06/03-2009.

[OSIb] URL: http://www.opensource.org/licenses/alphabetical.
Available at 22/07-2009.

[OSIc] URL: http://www.opensource.org/approval. Available at
22/07-2009.

[Rai01] Eric S. Raimond. The magic cauldron. In The Cathedral & the
Bazaar - Musings on Linux and Open Source by an Accidental
Revolutionary, 2001.

[Sch04] Edgar H. Schein. Organizational culture and leadership. Jossey-
Bass, third edition, 2004.

[Staa] Richard Stallman. Copyleft. URL: http://www.gnu.org/
copyleft/copyleft.html, note = Available at 06/03-2009.

[Stab] Richard Stallman. Gnu manifesto. URL: http://www.gnu.org/
gnu/manifesto.html, note = Available at 06/03-2009.

[Stac] Richard Stallman. Gnu public li-
cense. URL: http://news.cnet.com/
French-parliament-dumping-Windows-for-Linux/
2100-7344_3-6138372.html. Available at 27/07-2009.

[Stad] Richard Stallman. Gnu public license. URL: http://www.gnu.
org/copyleft/copyleft/gpl.html. Available at 06/03-2009.

[tra] URL: http://en.wikipedia.org/wiki/Trademark. Available
at 23/07-2009.

[Ubu09] http://www.ubuntu.com/community/ubuntustory. web-page,
june 30th 2009.

[Yin94] Robert K. Yin. Case study research: design and methods. Sage
Publications, second edition, 1994.

62

http://www.opensourcedays.org/2008/agenda/sessions/GabriellePantera_and_RobinRowe.shtml
http://www.opensourcedays.org/2008/agenda/sessions/GabriellePantera_and_RobinRowe.shtml
http://www.opensource.org
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/approval
http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/gnu/manifesto.html
http://news.cnet.com/French-parliament-dumping-Windows-for-Linux/2100-7344_3-6138372.html
http://news.cnet.com/French-parliament-dumping-Windows-for-Linux/2100-7344_3-6138372.html
http://news.cnet.com/French-parliament-dumping-Windows-for-Linux/2100-7344_3-6138372.html
http://www.gnu.org/copyleft/copyleft/gpl.html
http://www.gnu.org/copyleft/copyleft/gpl.html
http://en.wikipedia.org/wiki/Trademark

Appendix A

Interview Guide

63

General questions
● What is your name?

● What is your education?

● How many years of experience do you have working in software development?

○ How many years working with open source development?

● Where do you work? At home(country?)/Canonical?

● How long have you been working at Canonical?

● What is your position at Canonical? - department and primary function

Cooperation and management between Canonical, and the volunteers in the Ubuntu
Community.

● How are the roadmap of Ubuntu made? What influence does Canonical have in this matter?

○ Could you give one or more examples of how suggestions or changes are evaluated
before being accepted or rejected in the roadmap?

○ How is it decided which tasks are developed and which aren't?

● How are tasks estimated and prioritised after the roadmap is made?

○ Who are involved in this process?

● How are tasks distributed between the developers?

○ How is it decided which tasks the volunteers of the community should solve and which
the Canonical employees should solve?

● How is it ensured that tasks are solved at the scheduled deadline?

○ How is it handled if a task can't make the deadline?

● What development model would you say is used in the development of Ubuntu?

● Can you think of any differences in the way employees and volunteers participates in the
development?

● Have you experienced any problems in the collaboration with the volunteer community?

○ What was done to resolve those problems?

○ (Have you heard of any problems between employed developers and the community?)

Cooperation and management internally at Canonical

● How is the Ubuntu project structured in terms of organisational units?

○ How do Canonical employees fit into this organisation?

● Who do you cooperate with in Canonical and the community, and by which means?

○ How many people do you frequently communicate with? From which departments and
on which topics?

● Please, give some examples of the daily decision process. What decisions do you make, and
who else are involved?

○ Are there any general guidelines for decision processes?

Business model of Canonical

● How would you describe the business model of Canonical?

○ How does the volunteer community fit in this business model?

● How would you say that the business model affects your daily work?

○ Is the economic prospect of Canonical something you consider in your daily work

○ Have you experienced, that decisions in your daily work, are made to suit the business
model?

(Er der specielle hensyn at tage til communitiet pga. Forretningsmodellen, og omvendt.)

● How does Canonicals collaboration with the Ubuntu community influence the business
model?

● What influence do you think the business model has on the community?

● If any influence – could you give one or more examples?

● Can you think of any major differences or similarities in the business models of Canonicals
collaboration with the Ubuntu community compared to other similar Open Source Projects?

Finishing questions

● Do you have anything further you would like to say?

● Do you have any questions about our study?

	Introduction
	Motivation and Background
	Focus of This Study
	Report Outline

	The History of Open Source Software
	The Beginning
	The Berkeley Software Distribution
	The Free Software Foundation
	Linux
	Apache
	Mozilla
	Open Source Software
	Summary

	Open Source Development
	Development Practices
	Open Source Licenses
	Trademark
	Summary

	Open Source Business Models
	The Business of Open Source
	Organisational culture
	Summary

	Research Approach
	Selection of Research Strategy
	The Chosen Case
	Collecting the Data
	Research Design

	Analysis
	The Business Model of Canonical
	Ubuntu Culture
	Champion and Canonical owner
	The Collaboration in Ubuntu
	Open Source

	Discussion
	Ubuntu as a Part of Open Source History
	Development in Ubuntu
	Business in Ubuntu
	Canonical's Control of Ubuntu
	The Relation Between Employees and Volunteers

	Conclusion
	Bibliography
	Interview Guide

