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Summary

This master thesis is written by Kenneth Blanner Holleufer and Jesper Brix
Rosenkilde during the fall semester of 2009 at the Department of Computer
Science at Aalborg University. The subject of the thesis is generating executable
strategies synthesised by the tool UPPAAL TIGA.

The first chapter contains an introduction to various approaches to control
theory. First a general introduction is given for people unfamiliar with the
subject. Then we go in to a bit more detail with input-output modelling. This
is the clasical way to see control problems, which is as a system of differential
equations. This naturally leads to hybrid systems, which is the combination
of the way control people view the world, which is as continious systems, and
the way computer scientist se the world, which is as discrete systems. Finally
discrete event systems are introduced as the type of sytstem which we can
represent with timed automata.

The second chapter gives a quick introduction to timed automata and net-
works of them. Timed automata is the formalismen used in the UPPAAL-family
of model checkers, which we are using. Timed automata can be used to model
real-time systems. A thorough overview is given to syntax and sematics of timed
automata. Since timed automata are used to model systems with time, which
is defined over the positive real numbers, the state space for these models is
uncountably infinite. To remedy this region graphs and zones are introduced,
these contructions allow the infinite state space to be represented finitely by
using symbolic states. A symbolic state consists of a discrete part, the location
and variables, and a zone representing the clock valuations.

The third chapter takes the formalism from chapter two, and extends it to
enable control synthesis. This is done by introducing the notion of real-time
games. These are two player games, where a controller tries to reach or stay
within a set of safe states in a timed automata, while the environment tries to
prevent this. To facilitat this the transitions of the timed automata are divided
into two, the controllable and the uncontrollable. The controller makes its moves
according to a given strategy which, for the game to be winable, must ensure
that no matter what the oppont does at any time does not lead to any bad
states. The question is, how does one produce such a strategy, if it exist? This
is answered by giving an algorithm for, and discussing how it is implemented
in the tool UPPAAL TIGA. A common problem is strategies which produce
Zeno-runs, this where a process is forced to do an infinite number of discrete
transitions in a finite amount of time. A construction to avoid these types
of strategies, by changing the model, is given. Finally a prunning algorithm
which removes unreachable states in strategies generated by UPPAAL TIGA is
given. This problem can occur because TIGA uses a backpropagation algorithm,



and therefor all states in a strategy might not be reachable through forward
exploration under the strategy.

The fourth chapter is devoted to finding out what effect different modelling
tricks have on strategy size, generation time and state space size. The basis for
the tests is a model of a brick-sorter. The brick-sorter is build with LEGO, and
consists of a convyour belt which moves bricks along. At some point the bricks
colour is determined by a sensor, and further down the line the brick passes
a piston, which acts according to the bricks colour, by either pushing it of or
letting it pass. The first model of the system assumes that everything about
the system is known, for example precisely where every brick is at all time.
This is then refiend by abstracting away information leading to a model based
on partial observability. This model is then changed further into two models,
one using symetry reduction and another where cycles are removed. These two
models are then combined into a sequential and acyclic model. Finnally this
model is made discrete. All of these model are then compared to see which is
best in terms of states space size, generation time and strategy size.

In the fith chapter we implement a method for taking a strategy generated by
UPPAAL TIGA, and use it to controll the brick-sorter build with LEGO. To do
this a compact data structure is needed to hold a strategy. This is accomplished
using clock difference diagrams combined with binary decision diagrams. These
two things are combind in a way, which makes is possible to reasson about at
which times and locations, a specific action is to be taken. The brick-sorter is
controlled by a LEGO NXT brick, so we have made a Java program which is
able to hold a strategy and evaluate it. Finally to connect TIGA and the brick
we have written a parser/codegenerator, which takes the output from TIGA and
produceses the code needed to initialise a strategy on the brick. All this enables
us to take a model in UPPAAL TIGA, change the number of brick processes, or
even the property, and automatically have the brick-sorter execute the modelled
behaviour.
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Chapter 1

Introduction

Historically, scientists and engineers have concentrated on studying and harness-
ing natural phenomena which are well-modelled by the laws of gravity, classical
and non-classical mechanics, physical chemistry etc. Because of this the sys-
tems deal with quantities such as displacement, velocity, and acceleration of
particles and rigid bodies, or the pressure, temperature, and flow rates of fluids
and gases. These are “continuous variables” in the sense that they can take
on any real value as time itself “continuously” evolve. As a result the study
of ordinary and partial differential equations currently provides the main in-
frastructure for system analysis and control. However in the technological and
increasingly computer-dependent world, two things can be noted. First, many
of the quantities dealt with are “discrete” typically involving natural numbers.
(E.g., how many items are on a conveyor belt, how many telephone calls are
active). And second, what drives many of the processes we use and depend
on are instantaneous “events” such as a sensor registering that something has
passed it, pushing a button, or hitting a keyboard key. This typically make
such things as communication networks, manufacturing facilities or execution
of a computer program event-driven.

A most interesting scenario is controlling a system through a model. The
model describes the system, and some sort of strategy is applied to this, in order
exhibit the desired behaviour. This can be done by looking at the problem as
a game, where the environment and a controller are opponents, each trying to
defeat the other. For the controller to win, its strategy must ensure that the
proper behaviour is enforced, no matter what the environment does. The model
checking tool UPPAAL TIGA is able to synthesis strategies using exactly this
method and timed automata.

As an example, suppose we have a system that consists of a conveyor belt, a
colour sensor and a piston. Different coloured bricks travel down the belt, and
based on the colour that the sensor reads the brick is either pushed off the belt
or allowed to travel to the end of the belt. It is possible to model this system
and control it with strategy, which guarantees all black bricks are pushed off
the belt or similar. An implementation of the system, based on this strategy,
can then be produced. But what if we want to push all the white bricks off
the belt the next day. Ordinarily a new implementation is needed for the real-
world system, but in the model, only the property would need to be changed for
UPPAAL TIGA to output the new strategy. So the question is, is it possible
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CHAPTER 1. INTRODUCTION

to take these strategies and automatically transfer them to a real life system?
Such a function would allow easy reprogramming of complex systems and add
a high degree of flexibility.

1.1 Input-Output Modelling Process

We are interested in the control of a system, which should be based on well-
defined criteria. Therefore a model of an actual system is necessary. Intuitively,
a model is a construction that directly reflects the behaviour of the system itself.
Input-Output Modelling is a mathematical process to describe the behaviour of
the system. What follows is a short description of the traditional method of
modelling a system, namely with differential or difference equations. The rest
of this chapter is based on [CL08].

To carry out the modelling process, we define a set of measurable variables
associated with a given system. For example, particle positions and velocities,
or voltages and currents in an electrical circuit, which are all real numbers. By
measuring these variables over a period of time [t0, tf ] data may be collected.
Next a subset of these variables is selected, and it is assumed that they can be
varied over time. This defines a set of time functions which are called the input
variables,

{u1(t), . . . , up(t)}, t0 ≤ t ≤ tf .

Then another set of variables which can be directly measured while varying
the input variables, are selected. The resulting variables are called the output
variables,

{y1(t), . . . , ym(t)}, t0 ≤ t ≤ tf .

The output variables can be thought of as describing the “response” of the
“stimulus” provided by the selected input functions. Let u(t) and y(t) represent
the input and output variables as row vectors.

To complete the model, it is reasonable to postulate that there exists some
mathematical relationship between the input and output. Thus, there exist
functions mapping from one to the other:

y1(t) = g1(u1(t), . . . , up(t)), . . . , ym(t) = gm(u1(t), . . . , up(t)).

This gives the model of a system as:

y = g(u).

This is a very simple possible modelling process, and is illustrated in Fig-
ure 1.1 on the following page.
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1.2. STATES

SYSTEM

INPUT OUTPUT

MODELu(t) y = g(u)

Figure 1.1: Simple modelling process.

1.2 States

The state of a system at a time t should describe its behaviour at that instant
in some measurable way.

Definition 1.2.1 (State)
The state of a system at time t0 is the information required at t0 such that the
output y(t), for all t ≥ t0, is uniquely determined from this information and
from u(t), t ≥ t0.

Like the input u(t) and the output y(t), the state can be expressed as a
vector, s(t).

Definition 1.2.2 (State space)
The state space of a system, denoted by S, is the of all possible values that the
state may take (total number of different states in the system)

The state space can be either continuous or discrete. In continuous-state
models the state space S is a continuum consisting of all n-dimensional vectors
over real (or sometimes complex) numbers. The behaviour of the system can
then be described with a system of differential equations with u(t), s(t), y(t)
with t as variable. The model can then be studied by analysing these differential
equations.

In discrete models the state space is a discrete set. We usually represent a
single state in this set with s. The dynamic behaviour of discrete-state systems is
often simpler to visualise. This is because the transition mechanism is normally
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CHAPTER 1. INTRODUCTION

based on simple logical statements of the form “if something specific happens
and the current state is s, then the next state becomes s′.”

1.3 Hybrid systems and timed automata

A hybrid system is a modelling structure that consists of discrete states and
arbitrary continuous state variables with their own time dynamics. Let x rep-
resent a continuous state vector and let q be a discrete state. Thus the model
state is expressed as (q,x) where q ∈ Q and x ∈ X. The set of discrete states is
Q and the set of continuous states is X. The state x evolves according to time
driven dynamics which are usually described by some differential equation such
as x′ = f(x) with a given initial condition x0. Discrete state transitions can
occur when some condition in a state x(t) is satisfied.

Example 1.3.1
Let us model a simple thermostat. Let Q = {OFF,ON} represent the discrete
state of the thermostat. The continuous state is the scaler x ∈ R and it models
the temperature of the room. We want to control the thermostat to maintain
a room temperature between 20 and 25 degrees Celsius. Then the condition for
switching the thermostat OFF is x ≥ 25, and the condition for switching to
ON is x ≤ 20. This operation can be modelled though a hybrid automaton, as
shown in Figure 1.2. Each discrete state is accompanied by some time-driven
dynamics. When q = ON, we have x′ = −x + 30 indicating that the heating
system’s capacity is such that it can drive the room temperature up to 30 degrees
Celsius (when x = 30, we have x′ = 0). When q = OFF, we have x′ = −x+ 15
indicating that in the absence of any heating action the room temperature would
become 15 degrees. Specifying an initial condition (q0, x0) completes the model.

OFF

x′ = −x+ 15

ON

x′ = −x+ 30

x ≤ 20x ≥ 25

Figure 1.2: A simple thermostat as a hybrid system.

Going a step further away from continuous systems, timed automata consists
of finite number of discrete states and number of time driven clocks. If we let Q
represent the discrete states, also known as locations, and let v(x) represent the
value of the clock vector x. States are then expressed as (q, v(x)) where q ∈ Q.
Transitions of the automaton include conditions on the clock values known as
guards and resetting the clocks. Transitions between the discrete states can
only occur if the condition on the guard it met. The discrete states of the
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1.4. DISCRETE EVENT SYSTEMS

timed automaton can also include conditions on the clocks known as invariants.
Staying in a discrete state is only allowed if the condition on the invariant it
met.

Example 1.3.2
Since the continuous variables of a hybrid automata depends on time the desired
behaviour of the thermostat from example 1.3.1 can be modelled by a timed au-
tomata. Again, let Q = {OFF,ON} represent the discrete states. Furthermore
let ∆ be the time is takes to cool the room 5 degrees Celsius when the thermostat
is off, and ∇ is the time it takes to heat 5 degrees when it is on. Suppose the
room is 20 degrees when the thermostat is activated, then the initial state is
(ON, 0). The condition for switching off is then waiting exactly ∇ time units
no more and no less. This is expressed by the guard x = ∇ and the invari-
ant x ≤ ∇. Similarly, the condition for switching on is waiting ∆ time units,
expressed by x = ∆ and x ≤ ∆. The timed automaton can be seen in Figure 1.3

OFF

x ≤ ∆

ON

x ≤ ∇

x = ∆
x := 0

x := 0
x = ∇

Figure 1.3: A simple thermostat as a timed automata.

1.4 Discrete Event Systems

When the state space of a system can naturally be described by a discrete set,
and state transitions only occur at discrete points in time, and the state transi-
tions are then associated with “events”, then we can talk about a “discrete event
system”. An event or an action a, as we will call it through most of this report,
should be thought of as occurring instantaneously and causing transitions from
one state to another. An event may be identified with a specific action taken
(e.g., somebody pressing a button). It may be viewed as spontaneous occurrence
dictated by nature (e.g., a conveyor belt breaks down for whatever reason). Or
it might be the result of conditions, which are suddenly all met. The set of all
events in the system is Act.

In the systems we are interested in modelling, an event will at various time
instants announce that it is occurring. This means that every event defines a
distinct process through which the time instants, when the event occurs, are
determined. State transitions are the result of combining these asynchronous
and concurrent event processes. These processes need not be independent of
each other. This is called an event-driven system.
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CHAPTER 1. INTRODUCTION

Definition 1.4.1 (DES)
A Discrete Event System is a discrete-state, event-driven system, that is, its
state evolution depends entirely in the occurrence of asynchronous discrete
events/actions over discrete time.

Consider the following timed sequence of actions and the time of their oc-
currence in a model.

(a1, t1), (a2, t2), (a3, t3), (a4, t4), (a5, t5), (a6, t6), (a7, t7)

The first action is a1 and it occurs at time t1; the second action is a2 and
it occurs at time t2, and so forth. Suppose the initial state of this sequence is
s0, and the system is deterministic. Then, from such a sequence of actions, it is
possible to recover the state of the system at any point in time, in the sequence.

Consider the set of all timed sequences of actions, that a given system can
ever execute. This set is called the timed language model of the system, and is
denoted by L. It is a language because the set of actions Act, can be thought
of as an “alphabet” and the (finite) sequences of actions as “words”.

The timing of the sequences is interesting, in contrary to untimed sequences
where only actions are present, because it can answer questions such as: “How
much time does the system spend in a specific state?” or “How soon can a
particular state be reached?” These and related questions are often crucial
parts of design specifications.

A language may be thought of as an formal way describing the behaviour of
a DES. It specifies all admissible sequences of actions that the DES is capable
of “processing” or “generating”. A timed automata defines a language and can
be manipulated through well-defined operations, so it is possible to construct,
and subsequently manipulate and analyse languages. This is done by marking
the transitions of the automata with the set Act and saying that every possible
sequence through the automata generates the language. The language generated
by the timed automaton A is denoted L(A).

We will not dwell deeper into languages, other than make this connection
between discrete event systems, languages and timed automata.

The structure of the report is as follows. In Chapter 2 timed automata will
be fully explained and defined. In Chapter 3 we will look into how a timed game
automaton can be controlled with a strategy in order to ensure a given set of
specifications. Essentially we will find out how to synthesise a controller for a
system. In Chapter 4 we will present a model made in UPPAAL TIGA, and
several methods to reduce the size of the strategies. In Chapter 5 one of these
models will be used to compute strategies in UPPAAL TIGA. Lastly a tool for
taking the generated strategies and translating them into code which can run
on a LEGO NXT brick, and control a real life system.
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Chapter 2

Timed Automata

In discrete event systems the outcome of the actions can depend on their tim-
ing, as performing an action “now” or “later” might have completely different
consequences. To model such behaviour we can use timed automata.

Timed automata are nondeterministic finite automata equipped with a finite
number of real valued clocks whose values grow continuously. Transitions in a
timed automaton can be constrained with clock values and are also able to
reset clocks. Clock constraints on transitions are referred to as guards, whereas
constraints on locations are referred to as invariants. Most of this chapter is
based on [LAS07].

2.1 Syntax of timed automata

Let the finite set C = {x1, x2, . . . , xn} represent the clock names used in the
automaton.

Definition 2.1.1 (Clock constraint)
The set B(C) of clock constraints over the set of clocks C is defined by the
abstract syntax

g ::= x ./ n|x− y ./ n|g1 ∧ g2,

where x, y ∈ C is a clock, n ∈ N and ./∈ {≤, <,=, >≥}.

Each clock in C records the amount elapsed from the last reset. This is
expressed as a function v : C → R≥0, called a clock valuation. The value of a
clock is denoted by v(x). There are two operations used to manipulate clock
valuations, delay and reset. Let v be a clock valuation. The delay operation
v + d gives a clock valuation, where the value of every clock is increased by the
positive real number d.

12



CHAPTER 2. TIMED AUTOMATA

Definition 2.1.2 (Delay)
For each d ∈ R≥0, the valuation v + d is defined by

(v + d)(x) = v(x) + d,∀x ∈ C.

For a subset r of clocks, the reset operation v[r ← 0] gives a clock valuation,
where the values of clocks from r are set to zero and the other clocks remain
unchanged.

Definition 2.1.3 (Reset)
For each r ⊆ C, the valuation v[r ← 0] is defined by:

v[r ← 0](x) =

{
0, if x ∈ r,
v(x), otherwise.

Because of the notions of clock constraints and clock valuations, it is possible
to define when a clock constraint satisfies a given valuation.

Definition 2.1.4 (Constraint satisfaction)
Let g ∈ B(C) be a clock constraint for a given set of clocks C and let v : C →
R>0 be a clock valuation. Evaluation of clock constraints (v |= g) is defined on
the structure of g by:

v |= x ./ n⇔ v(x) ./ n
v |= x− y ./ n⇔ v(x)− v(y) ./ n

v |= g1 ∧ g2 ⇔ v |= g1 and v |= g2

where x, y ∈ C, n ∈ N, g1, g2 ∈ B(C) and ./∈ {≤, <,=, >,≥}.

With all of the above in place it is now possible to define a timed automaton.

Definition 2.1.5 (Timed automaton)
A timed automaton is a 6-tuple A = (Act, C, L, l0, δ, I) where:

• Act is a finite set of actions.

• C is a finite set of clocks.

• L is a finite set of locations.

• l0 is the initial location.

• δ ⊆ L×B(C)×Act× 2C × L is a finite set of transitions.

• I : L→ B(C) assigns invariants to locations.

13



2.2. SEMANTICS OF TIMED AUTOMATA

Instead of (l, g, a, r, l′) ∈ δ, transitions are written as l
g,a,r−−−→ l′, where l is

the source state, g is the guard, a is the action, r is the set of clocks to be reset
and l′ is the target location.

Example 2.1.1
Here is an example of a timed automaton. Figure 2.1 shows a model of an
item on a conveyor belt. In the initial state the item is placed on the belt and
moves to a sensor. This takes between 80 and 90 time units. Therefore there
is an transition with the guard x ≥ 80 and action move between the ON and SEN

locations. To force the item to the SEN location an invariant x ≤ 90 is placed on
the ON location. When the transition is taken the clock x is reset. At the sensor
three tings can happen: Either the sensor sees the item as red or blue and the
item immediately goes into the RED or BLU locations. The immediate transition
occurs because of the invariant x ≤ 0. Or, if an error occurs in the sensor the
item is immediately placed at the start of the belt and x is reset. In the location
RED the item moves to the end of the belt, which takes between 30 and 40 time
units. In the location BLU the item will reach a piston along the belt, and be
pushed off. This takes between 10 and 20 time units.

ONstart

x ≤ 90

SEN

x ≤ 0

RED

x ≤ 40

BLU

x ≤ 20

END

OFF

x ≥ 80,
move, x← 0

is.blue

is.red

error, x← 0

x ≥ 30, move

x ≥ 10, push.off

Figure 2.1: A model of an item being sorted.

2.2 Semantics of timed automata

A state of a timed automaton A is a pair (l, v), where l is the current location
the automaton is in, and v is the valuation determined by all the current clock
values. The state is legal only if the valuation v satisfies the invariant of l.
A transition is enabled, and can thus be taken, if its source location matches
the current location l and its guard is satisfied by the current valuation v. If
the transition is taken, the target location of the transition then becomes the
current, and all the clocks on the transition are reset. It is also possible to delay
in the current location by increasing the value of all the clocks by an amount of
time d. This does not change the location and is only possible if the invariant
of the current location is satisfied by the valuation v + d.
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CHAPTER 2. TIMED AUTOMATA

Thus a timed transition system generated by a given timed automaton A is
defined as:

Definition 2.2.1 (Timed transition system)
Let A = (Act, C, L, l0, δ, I) be a timed automaton. The timed transition system
T (A) generated by A is defined as T (A) = (S,Lab, { a−→ |a ∈ Lab}) where:

• S = {(l, v)|(l, v) ∈ L× (C → R≥0) and v |= I(l)} is the set of states.

• Lab = Act ∪ R≥0 is the set of labels.

• The transition relation is defined as:

– (l, v) a−→ (l′, v′)
if there is a transition (l

g,a,r−−−→ l′) ∈ δ, s.t. v |= g ∧ I(l), v′ = v[r ←
0] and v′ |= I(l′).

– (l, v) d−→ (l, v + d)
for all d′ where 0 ≤ d′ ≤ d and v + d′ |= I(l).

(l, v) a−→ (l′, v′) is called a discrete transition and (l, v) d−→ (l, v + d) is called a
timed transition. Let v0 denote the valuation such that v0(x) = 0 for all x ∈ C.
If v0 satisfies the invariant of the initial location l0, then (l0, v0) is called the
initial state of T (A).

a ∈ Act is said to be enabled in the state (l, v) if there exists another state,
(l′, v′), such that (l, v) a−→ (l′, v′). λ (a symbol used to express time elapsing) is
enabled in (l, v) if (l′, v′) exists and d > 0 such that (l, v) d−→ (l′, v′).

Example 2.2.1
Let A be the timed automaton in Figure 2.2 where there is one transition with
action a, guard x ≤ 1 and reset x← 0. The single location l0 has the invariant
x ≤ 2.

Figure 2.3 on the next page represents a small part of the transition system
T (A). From the state (l0, [x = 1.4]) it is not possible to perform a transition un-
der the action a, and the state (l0, [x = 2]) has, as the only available transition,
a time-elapsing transition with time delay 0.

l0start

x ≤ 2

x ≤ 1, a, x← 0

Figure 2.2: A simple model.
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(l0, [x = 0]) (l0, [x = 0.7]) (l0, [x = 1]) (l0, [x = 1.4]) (l0, [x = 2])

a

0.7

a

0.3

a

0.4 0.6

0

Figure 2.3: A timed transition system for Figure 2.2 on the preceding page.

2.3 Networks of timed automata

Many real-world systems consist of a number of independent components run-
ning in parallel and communicating whenever necessary. For example, a pro-
duction line may consist of a number of independent sensors and actuators,
for a single-purpose operation, that have to synchronise in order for the whole
production task to be completed. This behaviour is modelled with a number
of timed automata running in parallel, which are able to synchronise. Such a
model is called a network of timed automata.

A transition can be taken separately, or synchronised with another automa-
ton through channels, both results in a new state. Timed Automata are com-
posed into a network, over a common set of clocks and actions, consisting of n
timed automata Ai. The following definition gives the behaviour of a network
of timed automata.

Definition 2.3.1 (Networks of timed automata)
Let Ai = (Act, C, Li, l0i , δi, Ii) be a network of n timed automata. Li, l0i ,→i and
Ii is, for each automata in the network, the same as in ordinary automata.
The set of clocks C contains all the clocks in the network and the actions are
defined as follows:

Act = {c!|c ∈ Chan} ∪ {c?|c ∈ Chan} ∪N,

where N is a finite set of ordinary actions, and Chan is a finite set of channel
names.

The timed transition system is defined as 〈S, s0,→〉, where S = L1 × · · · ×
Ln × (C → R≥0) is the set of states, s0 = (l0, v0) is the initial state and
→⊆ S × S is the transition relation defined by:

• (l, v) → (l, v + d) for all d ∈ R≥0 such that v + d′ |= I(l) for each real
number d′ in the interval [0, d].

• (l, v)→ (l[l′i/li], v
′) if there exist (li

g,τ,r−−−→ l′i) such that v |= g, v′ = v[r ←
0], v′ |= I(l[l′i/li]) and τ ∈ N .

• (l, v)→ (l[l′j/lj , l
′
i/li], v

′) if there exist (li
gi,c?,ri−−−−−→ l′i) ∈ δi and (lj

gj ,c!,ri−−−−→
l′j) ∈ δj such that v |= gi ∧ gj, v′ = v[ri ← 0 ∪ rj ← 0] and v′ |=
I(l[l′j/lj , l

′
i/li]).
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Where l = (li, . . . , ln) is a location vector. l[l′i/li] is used to denote the vector
where the ith element li of l is replaced by l′i and

I(l) =
∧

i∈{1,...,n}

Ii(li)

is the invariant function over location vectors.

In Definition 2.3.1 on the preceding page the channel names end with either
! or ?. If an automaton has a channel that ends with !, e.g. a!, it means that
it can synchronise on the channel a with some other automaton, offering the
action a? in exchange. Intuitively, action a! can be thought of standing for an
“output on channel a”, whereas a? stands for an “input on channel a”. The
automaton can then communicate using hand-shake synchronisation. Moreover,
all channels are implicitly assumed to be restricted at the highest level; hence
the synchronisation in networks of timed automata is always forced.

Example 2.3.1
To see how networks and channels can be used, let us revisit the item-sorter
model. Suppose that we want to model a piston as a separate entity that, based
on the sensor output can decide to push the item of the conveyor belt or do
nothing and let the item pass. There are two automata in the network, and
three different channels. The two automata are obvious the item model and
the piston model and the channels are is.red, is.blue and push.off. The
network can be seen in Figure 2.4 on the following page

The piston can only push blue items off the belt, so whenever it synchronises
through the red channel it just loops back into the active (ACT) location. However
if the sensor sends is.blue!, the piston will immediately go into the push (PUS)
location with the action is.blue? while resetting its own internal clock y. In
the PUS location it will use the clock y to send the push.off! action to the item
when y is in the interval [10, 20].

2.4 Region graphs and Zones

The problem with timed automata is that all, but the simplest ones, will gen-
erate a timed transition systems with infinitely many reachable states. This is
because the states of a timed automata contain not only locations but also par-
ticular clock valuations. Even with only a single clock there will be uncountably
many clock valuations, unless all transitions are guarded by x ≤ 0 and all loca-
tions have the invariant x ≤ 0, as the clock can take any value in a non-empty
interval, belonging to R≥0.

Definition 2.4.1 (Real decomposition)
Let d ∈ R≥0 be a real number. bdc is the integer part of d and frac(d) is the
fractional part of d. Any d ∈ R≥0 can then be written as d = bdc+ frac(d).
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ONstart

x ≤ 90

SEN

x ≤ 0

REDx ≤ 40

BLUx ≤ 40

END

END

OFF

OFF

ACTstart PUS y ≤ 20

is.red?

is.blue?, y ← 0

y ≥ 10, push.off!

x ≥ 80,
move, x← 0

is.blue!

is.red!

error, x← 0

x ≥ 30, move

push.off?

x ≥ 30, move

push.off?

Figure 2.4: Two networked timed automata.

A way to represent infinitely many clock valuations, finitely, is to use region
graphs. Region graphs partition the collection of valuations, for a given timed
automaton, into finitely many equivalence classes. The partitioning must be
done in a way, such that valuations from the same class does not create any
difference in the behaviour of the system, with respect to reachability of states.
That is, if a set of states, which share their locations, and their associated clock
valuations are located in the same region, then these configurations can reach
the same regions.

Definition 2.4.2 (Clock valuations equivalence)
Let A be a timed automaton and let cx denote the largest constant, which the
clock x ∈ C is ever compared with either in the guards or invariants of A.
We say that the two clock valuations v and v′ are called equivalent, and write
v ≡ v′, iff.
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l0start l1 l2
x = 1, a y = 1, b

Figure 2.5: A timed automaton with two clocks.

1. For each x ∈ C, it holds that either both v(x) and v′(x) are greater than
cx or

bv(x)c = bv′(x)c

2. For each x ∈ C such that v(x) ≤ cx we have

frac(v(x)) = 0⇔ frac(v′(x)) = 0

3. For all x, y ∈ C such that v(x) ≤ cx and v(y) ≤ cy we have.

frac(v(x)) ≤ frac(v(y))⇔ frac(v′(x)) ≤ frac(v′(y)).

In part 1 of Definition 2.4.2 on the preceding page, the valuations v(x) and
v′(x) are compared to the greatest clock constant x is ever compared to. If they
both are greater, it means that they can only leave their region if they both are
reset. This implies that they have the exact same behaviour and can therefore
be put in the same equivalence class. Continuing in part 1, since clocks are only
compared to values in N on guards and invariants, the fractional part of a clock
valuation can be ignored. So if two valuations share the same integer part, they
can be put in the same equivalence class. As an example suppose, in a location
l, there is a transition with the guard x ≤ 1 and another with x ≤ 2. From the
two states (l, [x = 1.2]) and (l, [x = 1.4]) it is only possible to take the second
transition, so the valuations are in the same equivalence class. From the states
(l, [x = 0.4]) and (l, [x = 0.9]) it is possible to take both transitions, so these
two evaluations are together in another equivalence class.

Part 2 of Definition 2.4.2 on the facing page takes care of the special case
when the fractional part equals zero. The valuations [x = 1] and [x = 1.4] in
the previous example are not equivalent, because the first one could take both
transitions, while the second cannot. Therefor two valuations, where one has
a zero fractional part, can only be equivalent if the other one also has a zero
fractional part.

Part 3 of Definition 2.4.2 on the preceding page deals with the ordering of
the fractional parts between two different clocks. For the timed automaton seen
in Figure 2.5 imagine the valuations v1 = [x = 0.8, y = 0.3] and v2 = [x =
0.5, y = 0.9].

Both requirements from part 1 and 2 of Definition 2.4.2 on the preceding
page are met, but the states (l0, v1) and (l0, v2) can lead to different behaviours.
State (l0, v1) can delay 0.2 time units, take transition a, delay 0.5 units again,
and take b. The state (l0, v2) cannot match this, because it would first have to
delay 0.5 to take a resulting in y growing to 1.4 and disabling b.
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It can be showed that the equivalence ≡ on clock valuations have a number
of closure properties, which leads to the following theorem:

Theorem 2.4.1 (Finite regions and untimed bisimilarity)
[LAS07] (Thm 11.3, page 209)

Let A be a timed automaton. The equivalence relation ≡ partitions the clock
valuations of A into finitely many equivalence classes. Moreover, whenever v
and v′ are in the same equivalence class (v ≡ v′ holds) then, for any location
l of A, the states (l, v) and (l, v′) are untimed bisimilar.

What this theorems says, is that: whenever (l1, v1) ≡ (l2, v2) and (l1, v1) a−→
(l′1, v

′
1) with a ∈ Act, then there exists (l2, v2) a−→ (l′2, v

′
2) such that (l′1, v

′
1) ≡

(l′2, v
′
2); if (l1, v1) ≡ (l2, v2) and (l1, v1) d1−→ (l′1, v

′
1) for some d1 > 0, then there

exist d2 > 0 such that (l2, v2) d2−→ (l′2, v
′
2) and (l′1, v

′
1) ≡ (l′2, v

′
2).

Each clock valuation v can be represented by an equivalence class, denoted
by [v]≡, also called a region. Each region consists of a finite collection of clock
constraints that it satisfies. For instance, consider the valuation v over two
clocks x, y such that v(x) =

√
2 and v(y) = 1.3. If both cx and cy are equal to

2, then each valuation v′ that is equivalent to v satisfies the constraint 1 < y <
x < 2 and [1 < y < x < 2]≡ is used to denote the region [v]≡.

Example 2.4.1
Consider a timed automaton with only one clock x such that cx = 3. In this
automaton there are exactly 8 regions, consisting of 4 corner points, 3 closed
line segments and 1 open line segment

• [x = 0]≡, [x = 1]≡, [x = 2]≡, [x = 3]≡,

• [0 < x < 1]≡, [1 < x < 2]≡, [2 < x < 3]≡ and

• [3 < x]≡.

The regions can be illustrated as follows:

0 1 2 3 x

Example 2.4.2
Consider the timed automaton with two clocks x and y such that cx = 2 and
cy = 1. These two clocks give exactly 28 regions depicted graphically as follows:
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0 1 2 3 x

0

1

2

3

y

In general each region of a timed automaton A can be uniquely represented
by specifying the following items of information:

• For each clock x, one constraint from the set

{x = n|n ∈ {0, 1, . . . , cx}}∪{n < x < n+1|n ∈ {0, 1, . . . , cx−1}}∪{cx < x};

• For each pair of clocks x and y, where n < cx and m < cy. If these clocks
satisfy constraints of the form n < x < n + 1 and m < y < m + 1, there
must be an indication, for each valuation v in that region, if frac(v(x)) <
frac(v(y)) or frac(v(y)) < frac(v(x)).

A state of the form (l, v) can be replaced by a symbolic state (l, [v]≡) in the
region graph, where [v]≡ is the region to where v belongs. When there is a delay
or discrete transition between two states, there is also a transition between the
corresponding symbolic states.

Definition 2.4.3 (Region graph)
The region graph of a timed automaton A over a set of clocks C and actions
Act is a labelled transition system

Tr(A) = (S,Act ∪ {ε}, { a⇒ |a ∈ Act ∪ {ε}),

where:

• S = {(l, [v]≡)|l ∈ L, v : C → R≥0} are symbolic states.

• ⇒ on symbolic states is defined as following:

– For each action a ∈ Act,
(l, [v]≡) a⇒ (l′, [v′]≡)⇔ (l, v) a−→ (l′, v′).

– (l, [v]≡) ε⇒ (l, [v′]≡)⇔ (l, v) d−→ (l, v′), for some d ∈ R≥0.
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Region graphs provide a finite representation of the infinite timed transition
systems generated by timed automata, however the state space might still be
very large. The state-space explosion is exponential in the number of clocks
and in the maximal constants appearing in the guards [AD94]. A more efficient
representation of the configuration space is to use zones. Zones are convex
unions of regions and give a coarser and more compact representation of the
state space.

Definition 2.4.4 (Zone)
A zone Z is the set of clock valuations described by an clock constraint gz ∈
B(C):

Z = {v|v |= gz}.

A symbolic state is now a pair (l, Z), where l is a state and Z is a zone. Like
clock valuations there are three operations used to manipulate zones.

Definition 2.4.5 (Delay, reset and intersection of zones)
Let Z and Z ′ be zones and r a set of clocks. Then

• Z↑ = {v + d|v ∈ Z ∧ d ∈ R≥o}.

• Z[r] = {v[r]|v ∈ Z}.

• Z ∧ Z ′ = {v|v ∈ Z ∧ v ∈ Z ′}

Zones are closed under the three operations [LPY95], which is to say that
whenever Z1 and Z2 is described by a clock constraint g1 and g2 then there are
clock constraints g′1, g′′1 and g12 describing Z↑1 , Z1[r] and Z1 ∧ Z2. The inter-
section operator can be used to constrain zones. For example, if the transition
system is in zone Z and there is a guard g describing Z ′ on an outgoing transi-
tion a. We can intersect Z with Z ′ to create the zone Z ′′ where the transition
a is enabled.

Symbolic transitions between symbolic states describe sets of corresponding
concrete transitions.

Definition 2.4.6 (Symbolic transition relation)
The symbolic transition relation  over symbolic states is defined as follows:

• (l, Z) (l, Z↑ ∧ I(l)).

• (l, Z) (l′, (Z ∧ g)[r] ∧ I(l′)) if l
g.a.r−−−→ l′.

In Definition 2.4.6, the first clause corresponds to simultaneously perform-
ing delay transitions from all the concrete states corresponding to (l, Z). The
resulting target zone consists of all the valuations in the future of Z that satisfy
the invariant of location l. The second clause corresponds to simultaneously
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performing the discrete action corresponding to the transition l
g,a,r−−−→ l′. The

resulting target zone consists of all the valuations that satisfy the invariant of
location l′, and it may be obtained by resetting the clocks in r for valuations in
the zone Z that meet the guard g.

Example 2.4.3
For example, consider the simple timed automaton in Figure 2.6. The following
sequence of symbolic transitions, with zones illustrated in Figure 2.7 on the
following page shows how to reach the location l1:

(l0, x = y = 0) (l0, x− y = 0)
 (l0, y = 0 ∧ x ≤ 2)
 (l0, 0 ≤ x− y ∧ x− y ≤ 2)
 (l0, y = 0 ∧ x ≤ 4)
 (l0, 0 ≤ x− y ∧ x− y ≤ 4)
 (l1, y ≤ 2 ∧ 4 ≤ x ∧ x− y ≤ 4).

The shaded areas in Figure 2.7 on the next page represent the futures of the
zones described by the solid lines. The darker grey area in (a) and (b) describes
when the action a is enabled and in (c) when the action c is enabled and the
location l1 can be reached.

l0start l1

x ≤ 2, b, x← 0

y ≤ 2, a, y ← 0

y ≤ 2 ∧ x ≥ 4, c

Figure 2.6: A timed automaton.

This chapter has presented time automata and extensions that allow multiple
timed automata in a network, together with structures that represent the infinite
state space of timed automata in an finite way. What comes next, is how to
control a timed automaton such that certain properties are upheld. Because
timed automata can model discrete event systems this is equivalent to synthesise
a control program for such a system.
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y = 0 ∧ x ≤ 2

y = 0 ∧ x ≤ 4

1 2 3 4

1
2
3
4

x

y

1 2 3 4

1
2
3
4

x

y

x− y = 0

x = y = 0

0 ≤ x− y ∧ x− y ≤ 2

1 2 3 4

1
2
3
4

x

y

0 ≤ x− y ∧ x− y ≤ 4

y ≤ 2 ∧ 4 ≤ x∧
x− y ≤ 4

(a) (b)

(c)

Figure 2.7: Symbolic exploration of the timed automaton in Figure 2.6 on the
previous page.
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Chapter 3

Games and strategy
synthesis

An approach to program synthesis, is to view the interaction between the con-
troller one wants to design and the environment, in which it is supposed to
operate, as a two player games. The two players are the controller and the
environment respectively, and the objective of the game is simply for one of the
players to win, by forcing a state which is bad for the opponent. There is are
two different game types, reachability and safety. A reachability game, is when
the controller tries to reach a specific set of winning states, and the environment
tries to prevent reaching them. In a safety game, the controller tries to stay
within a set of safe states, and the environment tries to force the system of
these, into the bad states. If the environment is able to do this the controller
loses, and thus the system cannot be controlled. Conversely if the controller
wins, its strategy will enable it to control the system.

A strategy for a given game is a function of actions and delays that tell the
controller what to do in any given state of the game. A strategy is a winning
strategy if the controller always wins no matter what the environment does.
This chapter is based on [MPS95] and [BC06].

3.1 Real-time Games

There are several formulations of the control problem [BC06]. As we have
already written, it can be defined as a game between a controller and a envi-
ronment. Of special interest is asymmetric games where the environment has
precedence over the controller. This means that if the environment decides to
do an action or delay it will happen even though the controller wants to do an
action at the same point in time. This behaviour reflects reality closely. For
example: in a production line, if a piston breaks down just as the controller
issues a command to use it, nothing will happen; or if a button on a keyboard
is pushed just as a computer loses power, the push will not be registered.

To model this kind of behaviour we take a timed automaton, and give it two
sets of actions, the actions the controller is able execute and the actions that
occur in the environment.
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Definition 3.1.1 (Timed game automaton)
A timed game automaton is a timed automaton A = (Act,B(C), L, l0, δ, I)
where the actions in Act are partitioned into two subsets:

• Actc is the set of controllable actions.

• Actu is the set of uncontrollable actions.

Intuitively, the controller will be able to perform the controllable actions,
whereas the environment will be able to perform the uncontrollable actions.

Example 3.1.1
Let us go back to the item sorter example. Suppose we want a controller that
makes sure that all blue items are pushed off the conveyor belt. The controller
does not have any control over when the item is on the belt, when the item
arrives at the sensor, what the sensor registers, or when the item arrives at the
end of belt. Therefore all these actions are uncontrollable. The controller can
only decide to push or not to push the item off, if the item is within the time
interval of the piston. This makes the action push.off the only controllable
action in the model. Let all the uncontrollable edges be represented with dotted
lines. The revised model can be seen in Figure 3.1 An obvious strategy for the
controller is to wait until the item is in location BLU and then push off the item
when the clock x is within the interval [10, 20], or if the item ends in location
RED do nothing and let it reach the end of the belt.

ONstart

x ≤ 90

SEN

x ≤ 0

REDx ≤ 40

BLUx ≤ 40

END

END

OFF

OFF

x ≥ 80,
move, x← 0

is.blue!

is.red!

x ≥ 30, move

x ≥ 10 ∧ x ≤ 20,
push.off?

x ≥ 30, move

x ≥ 10 ∧ x ≤ 20,
push.off?

(a)

push.off!

is.blue?is.red?(b)

Figure 3.1: a: The item-sorter model with controllable and uncontrollable tran-
sitions. b: The controller for a.
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In order to use real-time games to synthesise a strategy for a timed game
automaton, we introduce runs and steps in an automaton.

Definition 3.1.2 (Runs and steps)
A run of an automaton A starting in (l0, v0) is a finite or infinite sequence

β = (l0, v0) d0−→ (l1, v1) a0−→ (l2, v2) d1−→ (l3, v3) a1−→ (l4, v4) d2−→ (l5, v5) a2−→ . . . ,

of alternating time and discrete transitions, where li = li+1 between time tran-
sitions. A pair of states (li, vi), (li+1, vi+1) with a time or discrete transition
between them is called a step.

Definition 3.1.2 covers all possible runs in an automaton. For two discrete
transitions in a row set the time transition between to zero, and for two time
transition set the action between them to empty.

A run is non-Zeno, if it has infinitely many delay-transitions and the sum of
the corresponding delays diverges. Recall that the symbol λ represents elapsing
time. Let the set of all non-Zeno runs that A can generate be denoted by LZ(A).

Strategies that leads to Zeno runs are problematic, as these are unimple-
mentable in reality. Since it is infeasible to do an infinite amount of actions in
a finite amount of time. Zeno runs are not a problem with strategies synthe-
sised for reachability games, as the runs in these will always be finite, as the
goal states must be reached in a finite number of steps. Safety games however
can generate Zeno-runs, as there is nothing that prevents infinite runs in these
strategies. This can be avoided by making sure the model forces time to elapse,
thus avoiding the whole problem.

Definition 3.1.3 (Real-time Strategy)
A simple real-time strategy is a function C : L × (C → R≥0) → Actc ∪ {λ}.
The action must be enabled in the particular state for the strategy to be correct.

According to this function, the strategy commands at any state, (l, v),
whether to issue some enabled transition c ∈ Actc or to do a delay transi-
tion d. The strategy bases its selection of the next command by the last visited
automaton state. Therefore the strategy need only observe the current state of
the timed game automaton, and only requires a finite amount of memory.

Definition 3.1.4 (Controlled Runs)
Given a simple strategy C, a pair ((l, v), (l′, v′)) of states is a C-step if it is
either

• An u step, where u ∈ Actu.

• A c step such that C(l, v) = c ∈ Actc.

• A d step for some d ∈ R≥0 such that ∀d′, d′ ∈ [0, d), C(l, v + d′) = λ.
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A C-run is a run consisting of C-steps, and the set of C-runs of A is
denoted by LC(A).

Clearly, every C-run is a run and LC(A) ⊆ LZ(A).
Now, as mentioned before we want the strategy ensure a property, which is

to say that we want the set of runs which guarantee the property. For every
infinite run α ∈ LZ(A), let V is(α) denote the set of all states appearing in α
and let L × V denote the complete state space (L × (C → R≥0)) of a timed
game automaton.

Definition 3.1.5 (Winning Objective)
Let A be a timed game automaton. A winning objective for A is

Ω ∈ {(F,∀♦), (F,∀�), ((F1, F2),∀U), ((F1, F2),∀W)}.

where F, F1, F2 are subsets of L× V and referred to as the winning states.The
set of runs that are winning according to Ω are defined as follows:
L(A, (F1, F2),∀U) {α ∈ L(A)| (V is(α) \ F2) ⊆ F1

∧ V is(α) ∩ F2 6= ∅}
α always remains
in F1 until it vis-
its F2

L(A, (F1, F2),∀W) {α ∈ L(A)| (V is(α) \ F2) ⊆ F1

∧ (V is(α) ∩ F2 6= ∅
∨ V is(α) ∩ F2 = ∅)}

α always remains
in F1 until it may
visit F2

L(A, F, ∀�) {α ∈ L(A)| V is(α) ⊆ F} α always remains
in F

L(A, F, ∀♦) {α ∈ L(A)| V is(α) ∩ F 6= ∅} α always eventu-
ally visits F

In CTL U is denoted as the until operator and the syntax for writing a prop-
erty is ∀(F1 U F2), likewise with the weak-until operator W which is written
∀(F1 W F2). ♦ is the eventually operator and specifies properties with syntax
∀♦ F . Such properties are called reachability-properties. � is the always oper-
ator written ∀� F and specifies safety-properties. We will not look further in
the until and weak-until operators, but instead focus on the safety and reacha-
bility properties. Note that the eventually operator is a special case of the until
operator, namely ∀♦F = ∀((L × V ) U F ). Similarly, the always operator is a
special case of the weak-until operator, namely ∀�F = ∀(F W ∅). Let L(A,Ω)
denote all the runs which uphold an winning objective. Interested readers may
refer to [BK08], for further information on CTL.

Definition 3.1.6 (Real-Time Strategy Synthesis [MPS95])
Given a timed game automaton A and an winning objective Ω, the problem
RT-Synth(A,Ω) is: Construct a real-time strategy C such that LC(A) ⊆
L(A,Ω).
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3.2 Synthesising the Strategy

In order to tackle the real-time strategy synthesis problem we introduce the
following definition.

Definition 3.2.1 (Controllable/uncontrollable discrete predecessors)
Let A be a timed game automaton. The controllable and uncontrollable discrete
predecessors of a set of states A ⊆ L× V as follows:

• πDc (A) =

(l, v) ∈ L× V
∃c ∈ Actc, c is enabled in (l, v),
and ∀(l′, v′) ∈ L× V,
(l, v) c−→ (l′, v′)⇒ (l′, v′) ∈ A


• πDu (A) =

(l, v) ∈ L× V
∃u ∈ Actu, u is enabled in (l, v),
and ∃(l′, v′) ∈ L× V s.t.
(l, v) u−→ (l′, v′) and (l′, v′) ∈ A


The set πDc is the set of states from which we can enforce a state of A by

doing a controllable action. The set πDu is the set of states from which the
environment can do an uncontrollable action which leads to a configuration
in A. Because we are dealing with timed systems we need to define a timed
predecessor function πT (A).

A state (l, v) must be in πT (A) if and only if it is possible to let d time
units elapse for some d ∈ R≥0 and use a controllable action to reach A and no
uncontrollable action played before or at d leads outside A; or A can be reached
by just letting time elapse and no uncontrollable action leads outside A. This
is a crucial feature of the game, as there are no “turns” and the adversary need
not wait for the player’s next move.

Definition 3.2.2 (Timed controllable predecessor)
The timed controllable predecessor function is defined as:

πT (A) =

(l, v) ∈ L× V

∃d (l, v) d−→ (l′, v′), (l′, v′) ∈ πDc (A)
∧P[0,d](l, v) ∩ πDu (A) = ∅;

or ∃d P[d,+∞)(l, v) ⊆ A
∧P[0,+∞)(l, v) ∩ πDu (A) = ∅

 ,

where PInt(l, v) = {(l, v + d) ∈ I(l)|d ∈ Int} with the interval Int ⊆ R≥0.

The timed controllable predecessor function is used to calculate the set of
winning states W , namely the set of states from which a strategy can enforce
good behaviours according to the property Ω. They can be characterised by the
following fixed-point expressions:

∀� : >W
(
F ∩ πT (W )

)
∀♦ : ⊥W (F ∪ πT (W ))

29



3.2. SYNTHESISING THE STRATEGY

Above > denotes the greatest fixed point operator and ⊥ the least fixed point
operator. The model is controllable iff (l0, v0) ∈W . The sets W for each of the
cases can be calculated by the following iterative algorithms:

∀♦-Strategy()
1 W0 := ∅
2 for i = 0, 1, . . . , do
3 Wi+1 := F ∪ πT (Wi)
4 if Wi+1 = Wi then
5 Return

∀�-Strategy()
1 W0 := L× V
2 for i = 0, 1, . . . , do
3 Wi+1 := F ∩ πT (Wi)
4 if Wi+1 = Wi then
5 Return

In the ∀♦-case, each Wi contains the states from which a visit to F can be
enforced after at most i steps and in the ∀�-case, it consists of the states from
which the timed game automaton can be kept in F for at least i steps.

The algorithms shown works, as there is a finite set of regions, and also
because regions are closed under the timed predecessor function (Chapter 2
and [MPS95, BC06]), which is to say that whenever Wi is a union of regions
then πT (Wi) is a union of regions. This implies that every Wi is an element of a
finite set, and thus, by monotonicity, a fixed point is eventually reached within
a finite number of iterations.

A strategy is constructed in the following manner: Whenever a state (l, v)
is added to W it is due to either waiting d ∈ [d1 = 0, d2] and issuing a c ∈ Actc
or waiting d′ ∈ [d1, d2 = +∞) will lead to a winning position. Therefore by
letting C(l, v) = λ when d1 > 0 and C(l, v) = c when d1 = 0 a strategy is
constructed. Care should be taken in avoiding to keep adding winning states
that loops around and ends in themselves, even though a fix point will eventually
be reached it will result in a lot of unnecessary computations.

Example 3.2.1
Here is an example to show how the time controllable predecessor function and
one of the fixed point algorithms work. Assume the following timed game au-
tomaton in Figure 3.2 on the facing page with Actc = {c}, Actu = {u}, x, y ∈ C
and F = {(l3, (x, y))|x ≥ 0 and y ≥ 0}. Let the winning objective be (F,∀♦):

W1 = F

W2 = W1 ∪ {(l1, (x, y))|y ≤ 1 and x− y > 1}
W3 = W2 ∪ {(l0, (x, y))|y ≤ 2 and y − x < 1}
W4 = W3

The set of states from which the strategy can enforce F is thus W4, which in-
cludes the initial state (l0, (0, 0)).

Through this section it has been argued that:

30



CHAPTER 3. GAMES AND STRATEGY SYNTHESIS

l0start l1

l2

l3
c, y := 0

y > 2, u
y > 1, u

x > 2, c

Figure 3.2: A simple timed game automaton.

Theorem 3.2.1 (Strategy Synthesis for Timed Systems [MPS95])
Given a timed game automaton A and an acceptance condition

Ω ∈ {(F,∀♦), (F,∀�), ((F1, F2),∀U), ((F1, F2),∀W)}.

the problem RT-Synth(A,Ω) is solvable.

While we have showed that synthesising a strategy is possible, the methods
here do not take in to consideration how to find the good states in the first
place.

3.3 UPPAAL TIGA

UPPAAL TIGAis an extension to the model checker UPPAAL, which uses a
network of timed game automata to synthesise reachability and safety strategies.
A strategy in TIGA is a subset of the controllable transitions which guarantees
the specified property holds, no matter which uncontrollable transitions are
taken at any time. This section is based on [CDF+05]

Definition 3.3.1 (Timed game automaton)
A timed game automaton (TGA) in UPPAAL TIGA, is a timed game au-
tomaton. Where the set of actions, Act, are partitioned into two sets, Actc
and Actu. Actc is the set of controllable actions, and Actu is the set of uncon-
trollable action.

The following must hold:

• Actc ⊆ Act,

• Actu ⊆ Act,

• Actc ∩Actu = ∅ and

• Actc ∪Actu = Act.

UPPAAL TIGA uses a reachability algorithm that allows it to synthesise
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3.3. UPPAAL TIGA

strategies. The algorithm uses backwards-propagation to only include states
which are safe. A state is safe if it can reach the goal states, specified in the
property, using delay and controllable transitions, no matter which delay and
uncontrollable transitions the environment takes along the way.

In order to introduce the algorithm we will first introduce some helper func-
tions. The first ones are the Preda and the Posta, these functions gives all
the predecessors or successors respectively of a symbolic state given a discrete
transition with an action a ∈ Act.

Definition 3.3.2 (a-predecessors)
Preda(X) = {(l, v)|∃(l′, v′) ∈ X, (l, v) a−→ (l′, v′)} where X = (l, Z) denotes a
symbolic state, l and l′ are locations and v and v′ are clock valuations.

Definition 3.3.3 (a-successors)
Posta(X) = {(l′, v′)|∃(l, v) ∈ X, (l, v) a−→ (l′, v′)} where X = (l, Z) denotes a
symbolic state, l and l′ are locations and v and v′ are clock valuations.

To find the winning set of states we also need to be able to find all the
controllable- and uncontrollable-predecessors of a symbolic states. This is done
by the two functions Predc and Predu.

Definition 3.3.4 (Controllable-predecessors)
Predc(X) = {(l, v)|∃(l′, v′) ∈ X, (l, v) c−→ (l′, v′), c ∈ Actc} where X = (l, Z)
denotes a symbolic state, l and l′ are locations and v and v′ are clock valuations.

Definition 3.3.5 (Uncontrollable-predecessors)
Predu(X) = {(l, v)|∃(l′, v′) ∈ X, (l, v) u−→ (l′, v′), α ∈ Actu} where X = (l, Z)
denotes a symbolic state, l and l′ are locations and v and v′ are clock valuations.

This takes care of the discrete transitions, we also need to take time into
account. To do this we introduce two additional functions, X↑ and X↓. These
two functions return the time-successors and -predecessors respectively.

Definition 3.3.6 (Time-successors)
X↑ = {(l, v + d)|v |= Inv(l), v + d |= Inv(l)} where X = (l, Z) is a symbolic
states, l is a location, v is a clock valuation and d ∈ R≥0.

Definition 3.3.7 (Time-predecessors)
X↓ = {(l, v−d)|(l, v) ∈ X} where X = (l, Z) is a symbolic state, l is a location,
v is a clock valuation and d ∈ [0, v] ⊂ R.
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CHAPTER 3. GAMES AND STRATEGY SYNTHESIS

The final functions which we need is the safe time-predecessors, Predt(X,Y ).
This function gives all the time predecessors of X, which cannot delay into Y ,
see Figure 3.3 for a graphical representation of the function.

Figure 3.3: Top left: The green square represents X, and the red square
represents Y . Top right: The dark green area represents the addition to X
after X↓ \Y ↓. Notice that part of X has disappeared. Middle left: The dark
green area represents the addition of (X ∩ B↓) \ Y . Middle right: The dark
green represents the addition of ((X ∩ B↓) \ Y )↓. Bottom: This is the final
result of Predt(X,Y ), where the green represents the safe time-predecessors and
the red represents unsafe predecessors.

Definition 3.3.8 (Safe time-predecessors)
Predt(X,Y ) = (X↓ \ Y ↓) ∪

((
X ∩ Y ↓

)
\ Y
)↓ where X and Y are symbolic

states.

All these functions come together as the algorithm in Figure 3.4 on the
following page. The algorithm does a normal forward exploration of the state
space, unless a winning state is encountered. Then the algorithm simply puts
it back on Waiting-list for re-examination, to see if some of its predecessors
should also be included in the winning-set. The dependencies-list simply keep
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3.3. UPPAAL TIGA

track of which visited states precedes a particular state. The winning-list is
used to extract the final strategy, if one exists. It is populated from the the set
Win∗, which is calculated using the functions mentioned above. The calculation
simply takes all the winning states for the current location combined with all the
states from the current location which have controllable edges to winning states.
This is then used as the first argument for the safe-time predecessor function.
The second argument of the function are all the states with uncontrollable edges
from the current location, which does not lead to winning states. Using these
two arguments in the Safe time-predecessor function gives all the safe states
which precedes the current states. This is in turn intersected with the current
state S, to give exactly the safe states that can be reached and leads to winning
states, see Figure 3.3 on the previous page. [CDF+05]

Tiga-reachability()
1 S0 = (l0,0)↑

2 Passed← {S0}
3 Waiting ← {(S0, a, S)|S = Posta(S0)↑}
4 Win[S0]← {S0} ∩ ({Goal} × R|C|≥0 )
5
6 while (Waiting 6= ∅) ∧ (S0 /∈Win[S0]) do
7 (S, a, S′)← pop(Waiting)
8 if S′ /∈ Passed then
9 Passed← Passed ∪ {S′}

10 Depend[S′]← {(S, a, S′)}
11 Win[S′]← {S′} ∩ ({Goal} × R|C|≥0 )
12 Waiting ←Waiting ∪ {(S′, a, S′′)|S′′ = Posta(S′)↑}
13 if Win[S′] 6= ∅ then
14 Waiting ←Waiting ∪ {(S, a, S′)}
15
16 else Win∗ ← Predt(Win[S] ∪

⋃
S

c∈Actc−−−−→T
Predc(Win[T ]),

17
⋃
S

u∈Actu−−−−−→T
Predu(T \Win[T ])) ∩ S

18 if Win[S] ⊂Win∗ then
19 Waiting ←Waiting ∪Depend[S]
20 Win[S]←Win∗

21 Depend[S′]← Depend[S′] ∪ {(S, a, S′)}

Figure 3.4: TIGA-reachability.

When the algorithm has finished running, the winning-list contains states
which are safe according to the property. If no strategy was found Win[S0]
will be empty. If Win[S0] is not empty then a strategy can be extracted, by
starting in S0 and only include all the transitions which leads to a state in the
winning-list, then do the same for all these states and so on. This will result in
a mapping from states to transitions.
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start

A

x ≤ 0 B

BAD

x < 2

x = 2
(a)

start

A

x ≤ 0 B
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BAD

x < 2

x = 1

x = 2

(b)

Figure 3.5: a: A simple model demonstrating Zenoness. b: A model with
Zenoness, which can be avoided.

3.4 Zenoness

We want to avoid strategy which leads to Zeno-runs, because they will allow the
strategy to make an infinite amount of discrete transitions in an finite amount
of time. Earlier in this chapter we simply did not allow Zeno-runs, but how can
they be avoided in reality?

To illustrate the problem consider the models in Figure 3.5. The goal here
is to always make sure that you never enter the BAD state, in UPPAAL this
can be expressed as:

• control: A[] not BAD

To avoid the BAD state in Figure 3.5 (a), the strategy is to first take the
transition from A to B, and then keep taking the transition to B without delaying
forever. This yields a Zeno-run.

The above strategy can of course not be realised in the real world, so a
method to avoid it is necessary. The idea is to change the model, to include a
transition from B leading to a new location, C, see Figure 3.5 (b). The changed
model is then run in parallel with the process seen in Figure 3.6 on the next
page, together with a fitting property which forces a constant amount of time
to elapse between discrete transitions.

The construction in Figure 3.6 on the following page ensures that there are
exactly one time unit between changing the location from D to E and visa versa,
and that this change will always happen. The following property ensures the
desired behaviour:
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start

D

z ≤ 1

E

z ≤ 1

z = 1, z := 0

z = 1, z := 0

Figure 3.6: A simple model to help remove Zenoness.

• control: A[] (not BAD and A<> D)

The A<> D part of the property does the whole trick. After exactly one time
unit the model in Figure 3.6 is forces to location E, at this point in time the
model in Figure 3.5 on the preceding page (b) will be at location B. In order
to uphold the property it must move to location C. If it stays at B, then at
exactly two time units when the second model moves to D, in according to the
property, the uncontrollable transition to BAD will be enabled, and therefore
violating the property.

3.5 Pruning the strategies

To ensure that we generate as compact a strategy as possible, we must remove
any non-reachable states which are included during the back-propagation.

TIGA already returns the shortest path that leads to or stays within the
winning states when taking all the possible uncontrollable transitions from a
given state. But consider a situation where both a controllable and uncontrol-
lable transition leads to the winning states. A generated strategy can dictate
taking the controllable transition before the uncontrollable becomes enabled,
and thus a section of the strategy that takes care of the situation, where the
uncontrollable transition has been taken, is not necessary. However, when back-
propagating the winning states the TIGA algorithm will in some cases include
a strategy for the uncontrollable transition because it leads to the same winning
symbolic state.

Consider the model in Figure 3.7 on the next page, where the goal is to reach
the END location. From state A, the guards ensures that the controllable tran-
sition can only be taken before the uncontrollable transition becomes enabled.
But the generated strategy includes a rule for location B2 even though taking
the controllable transition from A prevents this situation from ever occurring.
The reason is that both B1 and B2 leads to the goal with controllable transi-
tions, but more importantly the time zone generated when taking the B2 path
is a a subset of the zone in the B1 path. Thus, when back-propagating from the
END location the controllable transition from B2 to END will be added to the
strategy.

In order to remove these unwanted parts of the strategies we have developed
a relatively simple algorithm that uses the already generated state space and
strategy graph in UPPAAL TIGA . The idea is to do a forward exploration
from the initial state and only adding the uncontrollable transitions if they
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start

A

B1

B2

END

x < 1

x > 1

Figure 3.7: A simple model which illustrates the problem

are enabled at the same time or before a winning controllable transition. The
algorithm in Figure 3.8 on the following page shows the process. It uses three
lists WAITING, PASSED and STRATEGY. The WAITING list contains states
that have to be explored, the PASSED list contains states that have been fully
explored and the STRATEGY list contains the whole original strategy.

The elements in the STRATEGY list is formed of a discrete part (the lo-
cations), a time zone, and the action which leads to the time zone. From the
already explored state set the initial state is put on the WAITING list. In the
main loop the WAITING is popped. The popped state is compared with the
states in the STRATEGY. If a state is found that shares the same discrete part
and has an intersecting time zone, then all successors from the popped state
are also compared with the states in the STRATEGY. Controllable transitions
are explored only if they are represented in the strategy, and the uncontrol-
lable transitions are only explored if they are enabled in the time zone found in
the strategy. In line 12, the function Predu returns the symbolic state in (l, Z)
which can reach (l′, Z ′) by an uncontrollable transition. When all the successors
are explored the state is put on the PASSED list.

The last part of the algorithm removes the states in the STRATEGY that
are not present in the passed list.

We have implemented the minimizeCurrent algorithm in UPPAAL TIGA
for both DBMs and CDDs, the patch is available upon request, if legal access
to the UPPAAL-source is possessed.

In this chapter we have looked at how to model systems using two player
games. The games are a nice way to look at systems which interact with an
unpredictable environment, as the environment can be seen as the opponent of
the controller. This ensures that a possible strategy must cover all possibilities,
since the environment will always have precedents over the controller when a
transition is enabled.

We have also looked into the synthesis of strategies for these games, and how
the model checker UPPAAL TIGA implements this feature.
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minimizeCurrent()
1 WAITING← {(l0, 0)}
2 PASSED ← ∅
3 STRATEGY ← {((l0, 0), Actc ∪ λ) , . . . , ((ln, vn), Actc ∪ λ)}
4
5 while WAITING 6= ∅ do
6 (l, Z)← pop(WAITING)
7 for each (k, Y,⇒b) in STRATEGY do
8 if l = k and Z ∩ Y 6= ∅ then
9 for each (l′, Z ′) : (l, Z)⇒a (l′, Z ′) do

10 if ⇒b = ⇒a then
11 WAITING←WAITING ∪ {(l′, Z ′)}
12 else if ⇒a 6= controllable and Predu(l′, Z ′) ∩ (k, Y ) 6= ∅ then
13 WAITING←WAITING ∪ {(l′, Z ′)}
14 PASSED ← PASSED ∪ {(l, Z)}
15
16 for each (k, Y,⇒b) in STRATEGY do
17 if k /∈ PASSED then
18 STRATEGY ← STRATEGY \ {(k, Y,⇒b)}

Figure 3.8: minimizeCurrent.

While looking into strategy synthesis for timed game automata, we ran into
a particularly nasty type of strategies. Namely strategies, which leads to Zeno-
runs. So we looked into how to avoid such unwanted behaviour. The solution
involves changing the model in a way, which avoids the Zeno-runs all together.

Lastly we found an example of a model configuration, which yielded a strat-
egy containing, under the strategy, unreachable states. This possibly gives an
unnecessarily large strategy, and to avoid this we developed an algorithm for
removing the unreachable states.

In the next chapter, we will look further into decreasing the size of strategies.
This will be done for a specific system, in this case the system is a real life brick-
sorter, build from LEGO, and controlled by a LEGO NXT. We will model the
system in several ways, to determine the model which yields the most compact
strategy.
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Chapter 4

Model experiments

Figure 4.1: Brick-sorter build in LEGO.

In this chapter we will, through experiments, try to identify ways to reduce
the generated strategy by applying various modelling tricks. We will start by
constructing a model reflecting the real life brick-sorter seen in Figure 4.1. The
first model will include all possible information, ex. where a brick is at all times.
This full model will be the starting point for the following modelling tricks we
will present, in order to reduce the generated strategy.

The modelling is done in UPPAAL TIGA [BCD+06], so the models will be
described in the context of this tool. The experiments were run on an Dell
PowerEdge 2950, 2x2.5 GHz CPU (Quad Core Intel Xeon), with 32 GB RAM.
UPPAAL can only utilise 4GB RAM, and one CPU core.

The metrics for the tests will be how compact the strategy is for a given
number of concurrent bricks, as well as the time it takes to generate the strategy.
The compactness is measured by looking at the number of symbolic states in the
strategy, where a controllable action must be taken, disregarding wait actions.
This in turn gives the number of branches needed to implement the strategy in
a naive way.
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Each model consists of a number of processes, modelling bricks, run in par-
allel with a controller processes. Each brick process represents an actual brick
on the conveyor belt. This means that a strategy generated with three brick
processes, can handle a maximum of three simultaneous real bricks. The con-
troller process can receive information from the bricks, as well as act upon the
bricks. The controller is naturally the same for all the experiments, so we can
compare the strategies, and can be seen in Figure 4.2.

black?

remove!

white?

CONTR

Figure 4.2: Controller: the controller process.

The controller is a very simple process, with only one location, and thus
the controller is memoryless. It can act upon the bricks by sending a push-
command. The corresponding edge in the brick model is controllable, so the
controller can decide when a brick is pushed off. There are also two colour
events, one for black and one for white, this tells the controller that a brick
passed under the sensor, and which colour it reported.

Because the controller is the same for all the experiments, then naturally
there will also be some transitions, and locations which are the same for all the
models. The transitions are the ones which synchronise with the controller, that
is the transitions which fires when a black or a white brick is sensed, and the
transition taken, when the controller decides to push a brick. There are also two
locations which need to be present in all the brick models. These are the OFF
and the END locations, because the property we use to generate the strategies
depend on them. The property will also be the same for all the experiments, for
us to compare the results. The property can be seen in Figure 4.3, the property
includes a colour variable which must also be in all the models. The property
quite simply says that when a brick is in the location OFF, then the colour
variable must be white, and if it is in the location END the colour must be
black.

control: A[] forall(i:id_t)
(Brick(i).OFF imply Brick(i).colour == WHITE) and
(Brick(i).END imply Brick(i).colour == BLACK)

Figure 4.3: The property, which the generated strategy must comply with.

A number of constants are used in all the models, in order to ease comparison,
and changing timing for all the models at once. These constants can be seen in
Figure 4.4 on the facing page, and will be explained as they are used.
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// Global declarations
const int SENSE_TIME_MIN = 8;
const int SENSE_TIME_MAX = 10;

const int PISTON_TIME_MIN = 100;
const int PISTON_TIME_MAX = 120;

const int TOTAL_TIME_MIN = SENSE_TIME_MIN + PISTON_TIME_MIN;
const int TOTAL_TIME_MAX = SENSE_TIME_MAX + PISTON_TIME_MAX;

const int END_TIME = 2;

const int BLACK = 0;
const int WHITE = 1;

const int RES = 1;

const int N = 4;

typedef int[0, N-1] id_t;

chan remove, white, black;
broadcast chan tick;

int turn;

int next() {
if (turn == N-1) {

return 0;
}

return turn + 1;
}

Figure 4.4: Constants and the next() − function used throughout the experi-
ments.
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4.1 The full model

The first experiment is done on the full model to establish benchmark for the
various modelling tricks. The full modelled, referred to as “Brick FO CYC”
since it is fully observable, and cyclic, can be seen in Figure 4.6 on the next
page and its local declarations, can be seen in Figure 4.5.

// Local declarations
clock x;
bool colour;

Figure 4.5: The local declarations for the full model.

The full model consists of a number of locations, which together with the
time zones constrained by the guards an invariants describes all the possible
states of the system. The IDLE location represents the states, where the block
is not on the conveyor yet. All the states where the brick is on the conveyor,
but not under the sensor yet, are all in the ON location. The SENSOR and
SENSED locations cover all the states in which a brick is under the sensor, and
until it is reaches the piston. The PISTON location is for the states when the
brick is at the piston, and it is possible for the controller to push the brick of
the belt. The OFF and END locations have already been covered above.

As there is no guard on the transition from IDLE to ON, the bricks can be
put on the belt at any time. The SENSE TIME MIN and SENSE TIME MAX
used the guard and invariant for the ON to SENSOR transition, represents the
minimum and maximum time the brick takes to reach the sensor, from the be-
ginning of the conveyor. The PISTON TIME MIN and PISTON TIME MAX
is the minimum and maximum time it takes a brick to reach the piston from the
sensor, and is therefor used as guard and invariant for the SENSED to PISTON
transition. Finally the END TIME is the time it takes for a brick to pass the
piston, which means is can no longer be pushed by the controller.

The model is cyclic, because of the transitions from END and OFF back to
IDLE. This means that when the brick has gone through the system and ended
up being either pushed off, or went all the way to the end, and the machine
is ready to take sort another brick. Another thing to notice, is that the brick
processes are not ordered in any way, so whenever a brick is introduced into
the system process representing it in the model, is selected randomly from the
processes which are in the IDLE states.

For the testes an incrementing number, starting from one, of processes mod-
elling the full system is run in parallel with the controller process. The system
is is described in TIGA as:

Brick(const id_t ID) = BRICK_FO_CYC(ID);

system Controller, Brick;

The number of concurrent bricks is controlled by the constant N, seen in Fig-
ure 4.4 on the previous page, and corresponds directly to the N in the results
table. The tests were run with N from one, up until the machine ran out of
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x := 0

black!white!

x:=0

x := 0,
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x >= SENSE_TIME_MIN
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Figure 4.6: Brick FO CYC(const id t ID): Full model, with cycles.
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memory, and the size of the strategy as well as the generation time has be
noted, with and without minimisation algorithm from the previous chapter, in
Table 4.1. The result from this experiment will be the measure of comparison
for the rest of the experiments.

N Size, no minimisation time Size, with minimisation time
1 1 0.01s 1 0.01s
2 25 0.02s 25 0.02s
3 470 0.36s 470 0.39s
4 7989 32.87s 7989 34.92s
5 – – – –

Table 4.1: Results for the full model.

4.2 Partial observation

So far we have only looked at controller synthesis in systems with full observ-
ability. That is systems where the exact state and time is always known, to the
controller. However as the controller-process, in reality, cannot observe the full
state of a system, for example due to a limited number of sensors, one might
view a set of states as being indistinguishable from the controllers point of view.
This introduce the notion of observations, which are the state changes which
the controller can actually observe.

If a strategy for a given system depends on full observability, that is where
all state information is accessible to the controller, but the controller cannot
separate some of the different states, due to limited observability. Then the
strategy will not work as the controller might not be able to separate some
states requiring different actions to win. A way to avoid this is to change the
model to include only observable locations.

Partial observability in timed game automata, was introduced in [BMP03]
and [CDL+07]. The first article shows that controller synthesis in the general
case is undecidable, however it also shows that limiting the systems resources
regains decidability. The second article looks at a particular type of strategy
and impose some limitations to avoid the undecidablity result. Common to both
methods is that they incorperate partial observability into the model checking
algorithm. This is done by defining what is obersvabel and what is not.

In order to better realise a strategy in a real world system and subsequently
make the model checking and strategy generation faster, we will introduce a
formalism to alter a detailed model and compress it. This is achieved by ab-
stracting away the unobservable states.

In the case of the bricker sorter model, the locations which are observational
equivalent can be seen in Figure 4.7 on the next page, which when collapsed,
reduced to the model seen in Figure 4.8 on page 46. The blue locations are
collapsed into the location called READY, the red locations are collapsed into
the location SENSED, the orange locations are collapsed into the location END
and lastly the green location is unchanged as OFF. The local declarations for
this model can be seen in Figure 4.9 on page 46

This test runs an incrementing number of processes, starting from one, of the
reduced brick in parallel with the controller process. The system is is described
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Figure 4.7: The full model with observational equivalent locations in the same
colour.
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black!white!

remove?

x := 0,
colour := WHITE

ENDOFF

READY

x := 0,
colour := BLACK

x > TOTAL_TIME_MAX

x <= TOTAL_TIME_MAX +
         END_TIME

x >= TOTAL_TIME_MIN and
x <= TOTAL_TIME_MAX

SENSED

Figure 4.8: Brick PO CYC(const id t ID): Reduced model, with cycles.

// Local declarations
clock x;
bool colour;

Figure 4.9: The local declarations for the reduced model.
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in TIGA as:

Brick(const id_t ID) = BRICK_PO_CYC(ID);

system Controller, Brick;

The results have been noted in Table 4.2.

N Size, no minimisation time Size, with minimisation time
1 1 0.01s 1 0.01s
2 12 0.01s 12 0.02s
3 108 0.04s 108 0.04s
4 864 0.50s 864 0.63s
5 6480 18.78s 6480 19.84s
6 46656 1471.17s 46656 1489.42s
7 – – – –

Table 4.2: Results for the reduced model.

This modelling technique is based on the theory in the next subsection.

4.2.1 Alternating simulation

In the articles mentioned earlier partial observability is introduced directly into
the model checking algorithm. The ideas behind have been integrated into a
development version of UPPAAL TIGA, with partial observations. However at
the time of this writing, the tool is not ready for production use. Instead we have
chosen to look at partial observability as a modelling abstraction. This entails
that some transitions in a given model leads to observable changes, and some
do not. The states which are connected only by unobservable transitions can
then be collapsed into one, in a abstract representation of the original model.

Every controllable action leads to an observation change. The argument
behind this is simple, if the controller at some state issues a controllable action
the controller must be aware that a state change has happened. Since only the
controller can take a controllable transition it will always know when one has
occurred.

Every winning state in the abstract model must belong to its own observa-
tion. The reason behind this is simple. In order to find a winning strategy we
must have a property. The property for the abstract model must be the same as
for the concrete model in order to ensure an equivalent strategy and therefore
we must be able to declare the same bad and good states.

Lastly sensory input can be modelled as uncontrollable channels that com-
municates with the controller. Thus uncontrollable transitions which are not
internal leads to changes in the observation.

Based on the discussion above we need a set of rules that guarantee that if
we have a winning strategy for the abstract model it implies that there exist a
strategy for the concrete system.

First we define a set of weak transitions that consists of an ordinary transition
and several τ transitions, which are unobservable internal transitions in a model.
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Definition 4.2.1 (Weak Transitions)
The weak transitions consists of a transition or a series of transitions, where
transitions can be either controllable, delays or τ -transitions, and is defined
as:

• c⇒:
τ1−→ τ2−→ · · · τk−→ c−→ , where k ≥ 0

• d⇒:
τ−→ · · · d1−→ · · · τ−→ · · · d2−→ · · · τ−→ · · · dk−→, where there can be any number of
τ transitions and

∑k
i=1 di = d.

We will formulate an alternating simulation and show that if an abstract
model follows the relation, a winning strategy w.r.t. reachability exists for the
concrete system. To do this we put some restrictions on the models. The
concrete system must not have any τ -divergence. Furthermore we assume de-
terminism for all actions including delay actions. The reason for no τ -divergence
can be seen in Figure 4.10. Suppose we have a strategy for (b), but then we can
not be sure to also have a strategy for (a), because the environment could force
the system to go to B every time it is in A thereby preventing us from reaching
D.

Astart

B

C D

τ

τ

τ

c

(a)

Estart F
c

(b)

Figure 4.10: a: An example of a concrete system. b: The abstraction of (a).
E is an abstraction of A,B and C. F is an abstraction of D. F and D are the
winning states.

We are now ready to define an alternating simulation, which can determine
if a model is an abstraction of a concrete system.

Definition 4.2.2 (Alternating simulation)
Let sc be a state for the concrete system and let sa be a state for the abstract
model. Furthermore let Wc be the winning states for the concrete system and let
Wa be the winning states for the abstract. An alternating simulation between
states is a relation sc R sa with the following rules:

1. sa ∈Wa ⇒ sc ∈Wc.

2. a. sc
u−→ s′c ⇒ sa

u−→ sa ∧ s′c R s′a.

b. sc
τ−→ s′c ⇒ s′c R sa.
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c. sc
d⇒ s′c ⇒ sa

d−→ s′a ∧ s′c R s′a.

3. a. sa
c−→ s′a ⇒ ∀s′c. sc

c⇒ s′c ⇒ s′c R s′a.

To illustrate that a state s2 is an abstraction of state s1 we write s1 ≤ s2.
This leads to the following definition.

Definition 4.2.3 (Abstraction)
Let sc be a state for the concrete system and set sa be a state for the abstract
model.

• sc ≤ sa if there exist an alternating simulation R such that sc R sa.

We assume that there is at most one abstraction for the same concrete state,
in other words ∀sc, sa, s′a where sc ≤ sa ∧ sc ≤ s′a ⇒ sa = s′a.

Definition 4.2.4 (Abstraction function)
Let Sa be states in the abstract model and let Sc be states in the concrete
system. An abstraction function F : Sc → Sa is a function that maps a state
to its abstraction, such that whenever sc ≤ sa then sa = F (sc).

From Chapter 3 we know that a strategy is a function C : S → Actc ∪ {λ}
where for each state an action or wait is chosen. The strategy defines a series
of winning runs. We wish to show that if we find a strategy for the abstract
model then there exists a strategy for the concrete system. To show this, we
define when a strategy in the concrete system corresponds with a strategy in
the abstract model.

Definition 4.2.5
Let F : Sc → Sa be an abstraction function. Whenever Ca : Sa → Actc ∪ {λ}
is a strategy for the abstract model then F (Ca) is the strategy for the concrete
system defined by:

F (Ca)(sc) = Ca(F (sc)),

and F (Ca)(sc) = Cc(sc).

The definition above tells us when a strategy in the abstract model corre-
sponds to a strategy in the concrete system. At a certain state sc, in the concrete
system, the action performed by the concrete strategy must be the same as the
action performed by the abstract strategy in the state sa whenever sc ≤ sa. We
are now able to formulate the following theorem:
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Theorem 4.2.1
Given Ca is a winning strategy w.r.t reachability for the abstract model, then
F (Ca) = Cc (defined by Cc(sc) = Ca(F (sc))) is a winning strategy w.r.t reach-
ability for the concrete system.

Proof. Let
βc = s0

d0−→ s′0
a0−→ s1

d1−→ s′1
a1−→ s2

d2−→ · · ·

be a run for the concrete system according to Cc. We claim that

βa = F (s0) d0−→ F (s′0) ca0−→ F (s1) d1−→ F (s′1) ca1−→ F (s2) d2−→ · · ·

is a run in the abstract model according to Ca, where τ̂ = ε and F (s′i) = F (si+1)
if ai = τ . We show that for all i:

1. F (si)
di−→ F (s′i) according to Ca.

2. F (s′i)
bai−→ F (si+1) according to Ca.

For (1) we note that si
di−→ s′i according to Cc. Thus Cc(ti) = Ca(F (ti)) = λ

whenever si
d′i−→ ti with d′i < di. From this it follows that (1) is according to Ca.

For (2) we have 3 cases for ai:

• ai = τ , then s′i
τ−→ si+1 and F (s′i) = F (si+1) by the alternating simulation

(2.b.) and the functionality of ≤.

• ai = u, then s′i
u−→ si+1. Since s′i ≤ F (s′i) it follows that F (s′i)

u−→ ti+1

with si+1 ≤ ti+1. By the functionality of ≤ we have that ti+1 = F (si+1).

• ai = c, then s′i
c−→ si+1. Thus Cc(s′i) = c = Ca(F (s′i)). Then F (s′i)

c−→ ti+1.
By the alternating simulation (3.a.) it follows that si+1 ≤ ti+1 and by the
functionality of ≤ we have ti+1 = F (si+1).

Now, since βa is a run in the abstract model according to Ca, where Ca is a
winning strategy w.r.t reachability, it follows that for some n either F (sn) or
F (s′n) is a goal state (F (sn) ∈ Wa ∨ F (s′n) ∈ Wa). Since sn ≤ F (sn) and
s′n ≤ F (s′n) it follows that either sn or s′n is goal state (sn ∈Wc ∨ s′n ∈Wc) of
the concrete system. �

4.3 Sequential

Another way to reduce verification time and strategy size is to make sure any
identical processes are not explored in all possible combinations, this is called
symmetry reduction. This can be done by running the processes in the same
sequence every time. Ex. process one always runs first, then the second, then
the third, and so on.

This can be implemented in a model by introducing a global variable, in our
case called turn, this variable is set to one to begin with. Then each of the
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processes need a guard on all the edges going out from the initial location, with
the expression: turn == ID, where ID is the process-id. This ensures that the
first process is the only one which can move out of the initial location. To make
the processes run in sequence, so the first process represents the first brick, the
second process the second brick and so on, the turn-variable is set to the next
process-id. This ensures that the processes always run in the same sequence.
The turn-variable, as well as the next()-function can be seen in Figure 4.4 on
page 41. An implementation of this can be seen in Figure 4.11. The local
declarations for this model can be seen in Figure 4.12.

remove?

black!
x := 0,
colour := WHITE,
turn := next()

x := 0,
colour := BLACK,
turn := next()

white!

OFF

SENSED

END

READY

turn == ID

x >= TOTAL_TIME_MIN and
x <= TOTAL_TIME_MAX

x > TOTAL_TIME_MAX

turn == ID

x <= TOTAL_TIME_MAX +
END_TIME

Figure 4.11: Brick PO CYC SE(const id t ID): Reduced model, with cy-
cles, sequential.

// Local declarations
clock x;
bool colour;

Figure 4.12: The local declarations for the sequential model.

As with the other tests an incrementing number of processes, modelling the
sequential behaviour, is run in parallel with the controller process. The system
is is described in TIGA as:

Brick(const id_t ID) = BRICK_PO_CYC_SE(ID);

system Controller, Brick;

The results have been noted in Table 4.3 on the next page.
This method is usable because, if there exists a winning strategy for the

symmetry reduced model, then there also exists a winning strategy for the
unreduced model.
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N Size, no minimisation time Size, with minimisation time
1 1 0.01s 1 0.01s
2 19 0.01s 17 0.01s
3 195 0.04s 165 0.04s
4 1531 0.28s 1249 0.24s
5 10327 2.24s 8200 2.41s
6 63167 20.65s 49759 27.24s
7 360862 175.29s 283284 186.46s
8 – – – –

Table 4.3: Results for the sequential model.

A winning strategy for the unreduced model can be constructed from the
winning strategy for the reduced model. This can be done because the symmetry
reduction simply remove runs, which are already covered by another process.
The fact that all processes representing the bricks are identical, makes original
runs identical except for process-id. This means that if we use the reduced
strategy on the unreduced state space, then it will only be able to handle one
path through the reduced parts in the state space. However since what was
removed from the model by the symmetry reduction, was symmetric, then no
matter which path is taken through the reduced part the same actions should
be taken. So whenever reducible states are reached in the unreduced model,
using the reduced strategy, simply follow the strategy, ignoring the process-id.
The fact that the strategy of the ordered system is a subset of the unordered is
the reason why this technique might yield a smaller strategy.

4.4 Acyclic

Yet another way to reduce verification time and strategy size, is to remove
cycles from the model. This helps by removing the need for the verifier to make
multiple runs over the same locations.

This is implemented in a model, simply by removing the edges leading into
the initial location. This can be seen in Figure 4.13 on the facing page, with its
local declarations in Figure 4.14 on the next page.

As with the other tests, an incrementing number, starting from one, of pro-
cesses modelling the acyclic behaviour is run in parallel with the controller
process. The system is is described in TIGA as:

Brick(const id_t ID) = BRICK_PO_ACYC(ID);

system Controller, Brick;

The results have been noted in Table 4.4 on the facing page.
This method is usable because, a winning strategy for a cyclic model can be

constructed from a winning strategy from a cyclic model with cycles removed.
The construction is quite simple. The problem with a acyclic model, is that

once a process has reached one of the winning states, then the process cannot
be reused. The solution is simply to reuse the processes. That is when the last
process has reached a winning state, simply start using the processes over.
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black!white!

remove?

x := 0,
colour := WHITE

ENDOFF

READY

x := 0,
colour := BLACK

x > TOTAL_TIME_MAX

x <= TOTAL_TIME_MAX +
END_TIME

x >= TOTAL_TIME_MIN and
x <= TOTAL_TIME_MAX SENSED

Figure 4.13: Brick PO ACYC(const id t ID): Reduced model, without cy-
cles.

// Local declarations
clock x;
bool colour;

Figure 4.14: The local declarations for the acyclic model.

N Size, no minimisation time Size, with minimisation time
1 1 0.01s 1 0.01s
2 10 0.01s 10 0.01s
3 75 0.02s 75 0.02s
4 500 0.23s 500 0.25s
5 3125 7.56s 3125 7.96s
6 18750 531.25s 18750 501.43s
7 – – – –

Table 4.4: Results for the acyclic model.
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4.5 Acyclic and sequential

The two methods above, the sequential and the acyclic, can be combined. This
combines the advantages of both methods. Firstly removal of the cycles, ensures
that the verification algorithm only has to search through a three structure, and
thus the state space will be greatly reduced. As a further reduction, the sequen-
tial nature of the model, remove most of the interleaving, and thus reduces
the state space further, as well as reducing the size of the strategy. The im-
plementation of this can be seen in Figure 4.15, and the local declarations in
Figure 4.16.

remove?

black!
x := 0,
colour := WHITE,
turn := next()

x := 0,
colour := BLACK,
turn := next()

white!

OFF

SENSED

END

READY

turn == ID

x >= TOTAL_TIME_MIN and
x <= TOTAL_TIME_MAX

x > TOTAL_TIME_MAX

turn == ID

x <= TOTAL_TIME_MAX +
END_TIME

Figure 4.15: Brick PO ACYC SE(const id t ID): Reduced model, without
cycles and sequential.

// Local declarations
clock x;
bool colour;

Figure 4.16: The local declarations for the acyclic and sequential model.

As with the other tests, an incrementing number, starting from one, of pro-
cesses modelling the sequential and acyclic behaviour is run in parallel with the
controller process. The system is is described in TIGA as:

Brick(const id_t ID) = BRICK_PO_ACYC_SE(ID);

system Controller, Brick;

The results have been noted in Table 4.5 on the next page.
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N Size, no minimisation time Size, with minimisation time
1 1 0.01s 1 0.01s
2 8 0.01s 8 0.02s
3 43 0.01s 43 0.01s
4 194 0.03s 194 0.04s
5 793 0.19s 793 0.20s
6 3041 1.09s 3041 1.25s
7 11164 5.84s 11164 6.08s
8 39696 35.92s 39694 37.14s
9 138235 226.80s 138219 236.12s
10 – – – –

Table 4.5: Results for the acyclic and sequential model.

4.6 Acyclic, sequential and discrete

The final modelling technique we will present is discretization of the model.
This is done by adding a discrete clock, in the form of an integer variable. The
discrete clock is then used instead of a normal clock, to guard discrete actions.
In order for the discrete time to elapse a loop is added to all locations which
synchronises with a clock process, see Figure 4.17. The clock process makes
sure that the discrete clocks only increment every RES, time units, where RES
is the resolution of the discrete clocks. The resolution of the discrete clocks
have a large impact on the number of symbolic states generated, as well as the
time spent, during the verification process. The lower the resolution, the more
discrete states are generated, and there by defeating the advantage of using time
zones.

This type of modelling reflects reality more closely than than our previous
models, as a real life implementation of a strategy would run on a discrete
controller, in the form of hardware and software. The model only allow the
controller to take an action on discrete intervals, where as the environment can
take actions at any time.

A discretization of the acyclic and sequential brick sorter model can be seen
in Figure 4.18 on the next page, and its local declarations in Figure 4.19 on the
following page. The model uses two clocks, x and y, where x is a discrete clock,
and y is a normal clock. As discrete time only need to elapse at the location
Sensed this is the only place the afore mentioned loop is added. The value
of RES can not be higher than TOTAL TIME MAX, as this would allow the
environment to disable the discrete action before it is enabled.

z := 0

tick!

z == RES

z <= RES

Figure 4.17: Clock: The process which ensures the discrete clock are only
updateable at fixed times.
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END_TIME
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Figure 4.18: Brick PO ACYC SE DIS(const id t ID): Reduced model,
without cycles, sequential and discrete.

// Local declarations
int x;
clock y;
bool colour;

Figure 4.19: The local declarations for the acyclic, sequential and discrete model.

As with the previous tests, an incrementing number, starting from one, of
processes modelling the sequential, acyclic and discrete behaviour is run in par-
allel with the controller process. A small difference is the addition of the Clock-
process. The test is also run with different values of RES, to demonstrate the
impact of the discrete clock resolution. The system is is described in TIGA as:

Brick(const id_t ID) = BRICK_PO_ACYC_SE_DIS(ID);

system Controller, Brick, Clock;

Several tests were run with resolutions: 1, 10, 65, and 130. The first with reso-
lution one, see result in Table 4.6 on the next page. The state space explosion is
hinted by the low number of concurrent processes which can be handled. This
results from the enormous subdivision of the discrete states. The second test
with resolution ten, Table 4.7 on the facing page, improves a little upon the
subdivision problem. The last two testes were run with resolutions: half of TO-
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N Size, no minimisation time Size, with minimisation time
1 312 0.01s 312 0.01s
2 49654 1.50s 49654 1.65s
3 5387673 244.37s 5374834 275.31s
4 – – – –

Table 4.6: Results for the acyclic, sequential and discrete model, with resolution
1.

N Size, no minimisation time Size, with minimisation time
1 34 0.01s 34 0.01s
2 636 0.02s 626 0.02s
3 8291 0.34s 8258 0.37s
4 88587 5.42s 87271 5.86s
5 812348 68.57s 784237 73.74s
6 – – – –

Table 4.7: Results for the acyclic, sequential and discrete model, with resolution
10.

TAL TIME MAX, and TOTAL TIME MAX, the results can be seen Table 4.8
and Table 4.9 on the following page respectively.

4.7 Comparison and conclusion

All the test results in have been plotted in Figure 4.20 on page 59, the vertical
axis represents the number of symbolic states in the strategy, and the horizontal
axis represent the number of brick processes. The discrete test plotted in the
figure has a resolution of TOTAL TIME MAX, as this was the best of the
discrete tests.

From the plot it is clear that the full model is clearly the worst model, the
verifier runs out of memory after four brick-processes, and has a larger strategy
than all the other models. It is also clear that the observational abstraction
helps, as it can handle two processes more than the full model. When the cyclic
model is made sequential it is interesting to note that it can handle one process

N Size, no minimisation time Size, with minimisation time
1 8 0.01s 8 0.01s
2 42 0.01s 42 0.01s
3 185 0.02s 183 0.02s
4 745 0.08s 715 0.09s
5 2850 0.47s 2591 0.49s
6 10552 2.81s 8863 2.90s
7 38171 15.59s 28927 16.67s
8 135591 83.09s 90751 84.92s
9 – – – –

Table 4.8: Results for the acyclic, sequential and discrete model, with resolution
half TOTAL TIME MAX.
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N Size, no minimisation time Size, with minimisation time
1 6 0.01s 6 0.01s
2 26 0.01s 26 0.01s
3 101 0.01s 99 0.01s
4 375 0.05s 349 0.05s
5 1360 0.27s 1161 0.28s
6 4852 1.55s 3681 1.57s
7 17067 8.41s 11201 8.55s
8 59249 44.04s 32897 44.51s
9 203174 223.47s 93697 225.24s
10 – – – –

Table 4.9: Results for the acyclic, sequential and discrete model, with resolution
TOTAL TIME MAX

more than the corresponding non-sequential model, but with a larger strategy.
This indicates that the sequential model generates fever symbolic states during
verification, however it takes more symbolic states to represent the strategy.
This might be explained by extra variable introduced to the model, which the
strategy must be able to handle. If cycles are removed from the process, as
with the acyclic model, then the strategy size is reduced considerably, however
number of processes which the verifier can handle remains at six. Curiously
when the acyclic model is made sequential, the number of processes go up to
nine, and the number of symbolic states needed to represent the strategy goes
down as well. This could be explained because the combination of the two
tricks, will inherit the smaller state space from the sequential model and the
smaller strategy from the acyclic model. Finally the acyclic, sequential and
discrete model, in this case, needs the least amount of states to represent the
strategy. However as seen in the previous tests, the size of the strategy, in the
discrete case, depends on the resolution of the discrete clock, the higher the
resolution the smaller the strategy. And since the largest possible resolution,
for a given model, is dependent on the model it might not always be advisable
to use discretization.

In the next chapter we will introduce a data structure called Hybrid CDDs,
which allows for a very compact representation of a strategy. The CDD is an
acyclic graph, which represents a decision tree for a given strategy. UPPAAL
TIGA is able to output strategies as CDDs, which we will then parse and use
to generate code. This code can then control the brick-sorter, according to the
strategy proposed by TIGA.

We have chosen to work on the cyclic model with observational abstraction,
even though this model does not generate the most compact strategies. It is
however, by far the easiest to implement, as the strategy does not need any post
processing, which is the case with the later model.
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Figure 4.20: Comparison of the test results.
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Chapter 5

Implementation

UPPAAL has the feature of outputting the strategies as a hybrid clock differ-
ence diagram. The biggest reason for using this data-structure is that looking
up actions is linear in the number of clocks in the system. In short, instead of
looking for the right set of locations and their associated federations in the com-
plete strategy, you simply read the current clock values, the discrete variables
and locations and go through the CDD, which gives the appropriate action.

5.1 Clock difference diagrams

This section gives an introduction to CDDs, and is based on [LWYP98] and
[BLP+99]. A CDD is a compact representation of a decision diagram for finite
unions of zones. A CDD node, branches with respect to intervals of the reals for
a given clock difference. The size and number of intervals is not fixed. However
there can only be a finite number of intervals, and they must be compatible with
the clock constraints. This means that all intervals have integer bounds, and
any bound can either be included or not. A CDD works in the following way:
Take a valuation, and follow the unique path along which the constraints given
by type and interval are fulfilled by the valuation. Remember that the clocks
are denoted C = {x1, . . . , xn}. A type is a pair (i, j) where 1 ≤ i < j ≤ n. The
types has a linear ordering denoted by v. (i, j) v (i′, j′) iff either j < j′ or
j = j′ ∧ i ≤ i′. In order to relate interval and types to constraints, the following
notation is used:

• Given a type (i, j) and an interval Int of the reals, then Int(i, j) denotes
the clock constraint having type (i, j) which restricts the value of xi − xj
to the interval Int.

• Given a clock constraint g and a valuation v, by g(v) the application of g
to v is denoted, i.e. the boolean value derived from replacing the clocks
in g by the values given in v.

Note that the notation is typically used jointly, i.e. Int(i, j)(v) expresses the
fact that v fulfils the constraint given by the interval Int and the type (i, j).

For example, if the type is (2, 1) and Int = [3, 5), then Int(i, j) would be the
constraint 3 ≤ x2−x1 < 5. For v, where v(x2) = 9 and v(x1) = 5.2, Int(i, j)(v)
would be true, but for v′, with v′(x2) = 3 and v′(x1) = 4, Int(i, j)(v′) is false.
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This leads to the following definition of a CDD:

Definition 5.1.1 (Clock Difference Diagram)
A Clock Difference Diagram (CDD) is a directed acyclic graph consisting of a
set of nodes N , such that:

• N Has exactly two terminal nodes called True and False.

• All other nodes n ∈ N are inner nodes written as
((i, j), (Int1, n1), . . . , (Intq, nq)) where (Int1, n1), . . . , (Intq, nq) are
the successor nodes of n and n1, . . . , nq ∈ N .

Let n Int−−→ m indicate that (Int,m) ∈ {(Int1, n1), . . . , (Intq, nq)}. For each
inner node n, the following must hold:

• The successors are disjoint: for all l,m ∈ {1, . . . , q}, l 6= m it follows
that Intl ∩ Intm = ∅.

• All successors forms an R-cover:
⋃
m∈{1,...,q} Intm = R.

• The CDD is ordered: for all n Int−−→ m then (i, j)m v (i, j)n.

Further, the CDD is assumed to be reduced:

• It has maximal sharing: for all n,m ∈ N , {(Int1, n1), . . . , (Intq, nq)} =
{(Int1,m1), . . . , (Intq,mq)} implies that n = m.

• It has no trivial edges: whenever n Int−−→ m then Int 6= R.

• All intervals are maximal: whenever n Int1−−−→ m, n
Int2−−−→ m then Int1 =

Int2 or Int1 ∪ Int2 does not equal any other interval in the graph.

Let V be the set of clock valuations. The semantics of a CDD is defined as:

Definition 5.1.2
Given a CDD, each node n ∈ N is assigned a semantics JnK ⊆ V , recursively
defined by:

• JTrueK = V ,

• JFalseK = ∅,

• JnK = J((i, j), (Int1, n1), . . . , (Intq, nq))K =
⋃
m∈{1,...,q}{v ∈

JnmK|Intm(i, j)(v) = True}.

Figure 5.1 on the following page shows how different Federations can be
represented by CDD’s. Note that only intervals that leads to true are shown.
Every operation needed in a federation is supported by the CDD data-structure
such as: union, intersection and letting time pass. [LWYP98] discusses how these
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Figure 5.1: Example CDD’s. Intervals not shown lead implicitly to false.
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and other operations are accomplished. These operations make representing
federations with CDD’s a viable option for state-space exploration [BLP+99].

5.2 UPPAAL TIGA hybrid-CDD strategies

TIGA has a feature that allows it to output the strategies as a hybrid-CDD.
Hybrid-CDDs consist of a CDD with binary desicion diagrams(BDDs) as sub-
trees, and actions instead of true and false. The CDD is responsible for evaluat-
ing the clocks in the system, and the BDDs evaluate locations and variables of
the system. For example, suppose that we want to execute the action remove if
the clock x is between 108 and 130, the brick is in location sensed and colour
= black. The subtree responsible for this querry can be seen in Figure 5.2

x

...

[0,108)

location = sensed

[108,130]

...

(130,132]

...

(132,INF)

colour = black

true

...

false

remove

true

wait

false

Figure 5.2: A hybrid-CDD subtree.

The BDD part of the tree asks if the current value of a variable or location
mathes a given value according to a Boolean expression. If the current value
matches the given value the true edge is taken if it does not, the false edge is
taken. By traversing the tree with current clock, location and variable values a
controller can deside to do an action or wait.

Compare the hybrid-CDD output in Figure 5.3 on the following page, with
the default TIGA strategy output bellow:

State: ( Controller.CONTR Brick(0).SENSED ) Brick(0).colour=0
While you are in (Brick(0).x<=132), wait.
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State: ( Controller.CONTR Brick(0).OFF ) Brick(0).colour=1
While you are in true, wait.

State: ( Controller.CONTR Brick(0).SENSED ) Brick(0).colour=1
While you are in (Brick(0).x<108), wait.
When you are in (108<=Brick(0).x && Brick(0).x<=130),
take transition Controller.CONTR->Controller.CONTR
{ 1, remove!, 1 } Brick(0).SENSED->Brick(0).OFF
{ x >= TOTAL_TIME_MIN && x <= TOTAL_TIME_MAX, remove?, 1 }

State: ( Controller.CONTR Brick(0).READY ) Brick(0).colour=0
While you are in true, wait.

State: ( Controller.CONTR Brick(0).END ) Brick(0).colour=0
While you are in true, wait.

State: ( Controller.CONTR Brick(0).READY ) Brick(0).colour=1
While you are in true, wait.

Brick(0).x

_9360318

[0;108[

_9360328

[108;130]

_9360338

]130;132]

_9360348

]132;INF[

_action0

_9360308

_9360278

_9360078

_action5

_9360218

_9360298_93600d8

Figure 5.3: A full hybrid-CDD tree as outputted by TIGA. The dotted edges
represent false edges, and the solid represents true
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The tree in Figure 5.3 on the preceding page uses the followin table to
evaluate the locations and variables. action0 represents wait and action5
represents remove.

_9360308: if ((_loc[_Brick(0)] & 2) == 2 && Brick(0).colour == 0)
goto _error; else goto _action0;

_9360278: if ((_loc[_Brick(0)] & 2) == 0 && Brick(0).colour == 1)
goto _error; else goto _action0;

_9360318: if ((_loc[_Brick(0)] & 1) == 1)
goto _9360278; else goto _9360308;

_9360078: if (Brick(0).colour == 1)
goto _error; else goto _action0;

_9360218: if (Brick(0).colour == 1)
goto _action5; else goto _action0;

_9360298: if ((_loc[_Brick(0)] & 2) == 2)
goto _9360218; else goto _9360078;

_9360328: if ((_loc[_Brick(0)] & 1) == 1)
goto _9360298; else goto _9360308;

_9360338: if ((_loc[_Brick(0)] & 1) == 1)
goto _9360078; else goto _9360308;

_93600d8: if ((_loc[_Brick(0)] & 2) == 2)
goto _error; else goto _9360078;

_9360348: if ((_loc[_Brick(0)] & 1) == 1)
goto _93600d8; else goto _9360308;

While the standard output is easier for a human to understand, its is far
easier for a computer to use a CDD. This is because the CDD contains very
simple expressions, which always evaluate to true or false.

5.3 Hybrid-CDD implementation

We would like to be able to execute a given strategy represented as a Hybrid
CDD. To accomplish this, we have decided to implement a Hybrid CDD struc-
ture and evaluator in Java, in which we can encode a generated strategy.

In order to execute the code generated by TIGA and the parser we have
developed a data structure that allow is to do two things. Firstly it allows
us to build a hybrid-CDD tree as outputted by TIGA and secondly it supports
traversing the tree in order to determine which or if an action should be executed
given the values of the clocks in the system, in which locations the system is
and the value of the variables.

This is accomplish with four main classes: the CDD class, the CNode class,
the DNode and the ANode class. The simplest off these is the ANode class which
represents actions the controller can take. It consists of a processId, two pri-
mary methods besides the constructors, and the assorted get and set methods.
The primary methods are the runCode() method and the isInInterval(time)
method. Both methods are common for the tree node classes, but only runCode()
differs in its execution for each class.

isInInterval(...) checks if the value of the clock supplied as argument
is within the interval belonging to a node. This is accomplished with a call to
isWithinBound(time) on the interval. If the node has no interval the method
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just returns true. A node has a interval if it is a child of a CNode and either
the constructors or the setInterval(Left bound, min, max, Right bound)
method have been used to initialise the interval.

public boolean i s I n I n t e r v a l ( int c l o ck ){
i f ( i n t e r == null ){

return true ;
}
return i n t e r . isWithinBound ( c l o ck ) ;

}
The Interval class implementation can be seen in Appendix A.8.

The runCode method takes no arguments and simply calls the method which
corresponds to the action the node represents. In our case there is only a single
action representing activating the piston. The method throws a Wait excep-
tion because ANode like all the other node classes(DNode and CNode) belongs
to the interface class Node which contains runCode(), setInterval(...), and
isInInterval(...).

public void runCode ( ) throws Wait{
Main . remove ( processID ) ;
throw new Wait ( ) ;

}
The DNode represents conditional if statements on the locations and variables

of the system. Each DNode consists of a code object, one or two child nodes each
corresponding to either true or false and optionally an interval. A code takes
four arguments: The type of variable or location the DNode checks, which process
in question, the value the variable is compared with and the kind of operator
used in the comparison. A call to the method evaluate() in the code will
return true, if the Boolean expression consisting of current value of the variable,
the given value in the DNode and the operator returns true, and false otherwise.
Implementation of the NCode class(code) can be seen in Appendix A.6.

evaluate() is used in the runCode() method. If evaluate() returns true
runCode() will recursively call runCode() of its true child node, if it exist,
and similarly the false child if evaluate() returns false. If the resulting child
does not exist runCode() will throw a Wait exception. Because we have removed
paths that lead only to the delay action in the tree an empty child will represent
the delay. The main loop, shown in Appendix B will catch the Wait and stop
executing the tree and delay a little before trying again.

public void runCode ( ) throws Wait{
i f ( code . eva luate ( ) ){

i f ( nTrue != null ){
nTrue . runCode ( ) ;

}
else throw new Wait ( ) ;

}
else i f ( nFalse != null ){

nFalse . runCode ( ) ;
}
else throw new Wait ( ) ;

}
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The CNode is used to compare the current value of a given clock with a list
of intervals. A CNode consists, in addition to its own interval, of a clock and a
list of Node children. runCode() starts by reading the time of the clock, then
for each of the node in the child list, it checks if isInInterval(...) returns
true. If that is the case it recursively calls the runCode() on the child node. If
there are no child nodes or if isInInterval(...) returns false for each child
a Wait exception is thrown.

public void runCode ( ) throws Wait{
int time ;
time = c lock . readClock ( ) ;
i f ( s izeOfNodeChi ldren ()>0){

L i s t I t e r a t o r<Node> i t = nodeChildren . l i s t I t e r a t o r ( ) ;
while ( i t . hasNext ( ) ){

Node c h i l d = (Node ) i t . next ( ) ;
i f ( c h i l d . i s I n I n t e r v a l ( time ) ){

c h i l d . runCode ( ) ;
}

}
throw new Wait ( ) ;

}
else throw new Wait ( ) ;

}

The last of the four main classes is the CDD class and it is responsible for
building the hybrid CDD tree. It consist of a root node and two interest-
ing methods. The most simple one is the runTree() which simply calls the
runCode() method on the root node. The other one is overloaded and is used
to build the three. The addExistingNode(...) method takes two nodes and
adds the second node as the first nodes child. An additional Boolean argument
is used if the parent is a DNode. The whole CDD implementation can be seen
in Appendix A

5.4 Parser and code generation

In order to take the strategy generated by TIGA, and put and encode in into
our Hybrid-CDD implementation we must parse the output from TIGA, and
generate the Strat.java-file.

First the TIGA verifyta is run with:

verifytga -s -q -t 0 -g 1 -w 0 -x model.xml

which outputs the strategy as pseudo code and as a Hybrid-CDD. An example
of the outputted pseudo code, for the Brick PO CYC model with one brick
process, which pushes off the white bricks, follows.

@DOT
-> tiga_dot_long.dot
-> tiga_dot_long.ps
-> tiga_dot_short.dot
-> tiga_dot_short.ps
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@PROCESSES

#define _Controller 0
#define _Brick(0) 1

@ACTIONS

_error: /* Unknown state. */
_action0: /* Delay action. */
_action1: /* Controller.CONTR->Controller.CONTR { 1, remove!, 1 }
Brick(0).SENSED->Brick(0).OFF

{ x >= 5122 && x <= 6133, remove?, 1 }
*/
_action2: /* Brick(0).READY->Brick(0).SENSED

{ 1, white!, x := 0, colour := WHITE }
Controller.CONTR->Controller.CONTR { 1, white?, 1 }
*/
_action3: /* Brick(0).OFF->Brick(0).READY { 1, tau, 1 }
*/
_action4: /* Brick(0).SENSED->Brick(0).END { x > 6133, tau, 1 }
*/
_action5: /* Brick(0).END->Brick(0).READY { 1, tau, 1 }
*/

@CODE

goto _a1b00c8;
_a1502e8: if ((_loc[_Brick(0)] & 2) == 2 && Brick(0).colour == 0)

goto _error; else goto _action0;
_a150228: if ((_loc[_Brick(0)] & 2) == 0 && Brick(0).colour == 1)

goto _error; else goto _action0;
_a1502f8: if ((_loc[_Brick(0)] & 1) == 1) goto _a150228; else

goto _a1502e8;
_a1b00c8 : if (Brick(0).x>=0 && Brick(0).x<5122)

goto _a1502f8;
_a150078: if (Brick(0).colour == 1) goto _error; else

goto _action0;
_a1501d8: if (Brick(0).colour == 1) goto _action1; else

goto _action0;
_a1501e8: if ((_loc[_Brick(0)] & 2) == 2) goto _a1501d8; else

goto _a150078;
_a150308: if ((_loc[_Brick(0)] & 1) == 1) goto _a1501e8; else

goto _a1502e8;
_a1b00c8 : if (Brick(0).x>=5122 && Brick(0).x<=6133)

goto _a150308;
_a150318: if ((_loc[_Brick(0)] & 1) == 1) goto _a150078; else

goto _a1502e8;
_a1b00c8 : if (Brick(0).x>6133 && Brick(0).x<=6933)

goto _a150318;
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_a150148: if ((_loc[_Brick(0)] & 2) == 2) goto _error; else
goto _a150078;

_a150328: if ((_loc[_Brick(0)] & 1) == 1) goto _a150148; else
goto _a1502e8;

_a1b00c8 : if (Brick(0).x>6933) goto _a150328;
else goto _error;

@END

The interesting thing to note in the above output are the label looking like,
a1502e8 between @CODE and @END. These labels contain expressions which,

when evaluated, determines whether a process is in a give location or whether a
variable has a give value. These labels decorate the nodes in the CDD outputted
by the verifier after running the above verifyta command. The CDD belonging
to the above pseudo code can be seen in Figure 5.4.

Brick(0).x

_a1502f8

[0;5122[

_a150308

[5122;6133]

_a150318

]6133;6933]

_a150328

]6933;INF[

_action0

_a1502e8

_a150228

_a150078

_action1

_a1501d8

_a1501e8_a150148

Figure 5.4: CDD for Brick PO CYC

The pseudo code and the CDD are run through the following steps to produce
runnable for a LEGO NXT. First all the paths leading only to the node labelled
action0 are removed, this node represents the delay-action. This is a simple

optimisation, which removes a lot of useless nodes from the CDD. The next step
involves reading in the pseudo code corresponding to a given node in the CDD.
This pseudo code is then parsed. This process yields a directed acyclic graph,
which is decorated with the parsed pseudo code. This graph is then used to
generate a JAVA-class which represents the strategy in the form of a Hybrid-
CDD. An example of the code generated from the model Brick PO CYC, with
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one brick process and a property which pushes of all the white bricks can be
seen in Appendix A.12.

This JAVA-class is then compiled, linked with the needed code, and uploaded
to the LEGO NXT. The implementation of a parser/code generator, which sup-
ports a subset of the output from TIGA needed to support the Brick PO CYC
model, can be found in Appendix C.

In this chapter we have presented a way to implement Hybrid CDDs on a
LEGO NXT in Java. Even though it does not implement all the functionality
to support all the features needed to evaluate every UPPAAL expression, for
example there is no support for UPPAAL-C, it still has enough functionality to
be used for the Brick PO CYC model strategies.

We also presented a small parser/code-generator, which can parse the out-
putted strategy from TIGA, and generate the Java-code needed to initialise the
corresponding Hybrid CDD.

This enables us to take the Brick PO CYC model in TIGA, and generate
strategies with a changing number brick processes or a different property, and
within seconds have the real life brick-sorter working in the intended way.
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Chapter 6

Conclusion

Through this report we have gone from defining discrete event systems and
modelling formalisms, to using models and modelling tools to automatically
generate code for a real life brick-sorter, which we have build with LEGO bricks.
The brick-sorter will, depending on the colour of the bricks passing the sensor,
either push bricks off the belt or let them travel to the end.

We have defined timed automata in Chapter 2, which is a formalism perfectly
suited to model discrete event systems, such as our brick-sorter. The reason
timed automata is suited for modelling DESs, is that they can model an event
with a transition from one state to another. Each transition can be constrained
by guards that only allow the transition to be taken if the values of the clocks
satisfied the guards and the invariants, which are constraints on the locations.
These constraints allow us to model that events can happen during certain time
intervals, and this perfectly reflects real-life systems, which often is dependent
on timing. Timed automata use regions and zones to represent infinitely many
states in a finite way, which enables full states-pace exploration of the model.
While the results presented in the chapter certainly is not something new, they
are important to understand in order to get the whole picture from model to
implementation.

Chapter 3 dealt with playing a two player game on a timed game automata.
The game is used to synthesise a strategy that guarantee certain objectives.
The game is played between a controller and an environment. The controller
can do two things, it can either decide, at certain states, to take a special
transition marked as controllable, if they are enabled, or let time pass. The
environment can chose to take transitions marked as uncontrollable or wait at
certain states. The transitions taken by the environment take precedence over
the ones suggested by the controller. This reflects that unpredictable events do
not wait for a process to finish before they happen. The objective of the game
can be one of two tings. For a reachability objective, the goal for the controller
is to end in a certain set of states, and for the environment to prevent the system
from reaching theses states. For a safety objective, the controllers goal is to stay
within a set of states, and the goal for the environment is to force the system
out of these states.

Given all the winning states found during a state space exploration, we have
shown it is possible to generate a strategy from the above rules, and have de-
scribed how the model checker tool UPPAAL TIGA accomplishes this. The
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idea is that the synthesised strategies is used as an important part of the im-
plementation of the system, namely which methods, represented as controllable
transitions in the model, to call at certain times. As such it is important to
make sure that the strategies are as short as possible. To accomplish this we
have added a pruning algorithm that in certain situations, at the cost of time
used to generate the strategy, will result in smaller strategies.

In Chapter4 we have further explored reducing the size of the strategies
by altering the model in a way that guarantee the resulting strategy is still
applyable on the brick-sorter. We have developed an alternating simulation,
which allow us to abstract multiple locations in the model into a single location.
Performed experiments show that the abstract model results in a much smaller
explored states-pace and synthesised strategy. The experiments also show that
making the model acyclic results in smaller strategies. Making the model se-
quential reduces the size of the explored states-pace and combining acyclic and
sequential models both reduce states-pace and strategy size. Experiments with
discrete models show that they can yield the best results with a low enough
resolution on the discrete clocks, but upping the resolution quickly results in
large states-paces and strategies making utilisation of the model questionable.

The implementation of the abstracted model is described in Chapter 5. UP-
PAAL TIGA is able to output strategies in a hybrid-CDD representation, which
allows faster code execution. Therefore we have implemented data-structure
that allows building and executing Hybrid-CDDs in Java. To complement this
we have developed a parser that takes the Hybrid-CDD strategy outputted by
TIGA and generates code initialise the implemented data structure. The result
is that we are able to change which colour of bricks we want to sort off in TIGA
and automatically transfer the new program to LEGO NXT. Further develop-
ing this technology can result in amazing flexibility of discrete event systems
modelled with timed automata.

72



Chapter 7

Future work

The results and ideas we have introduced in this report is only the begining.
Even though we have only worked with a very small toy example, we have hit
the roof, in terms of what model checking of real-time systems can handel. It
is therefore clear that the ideas from this report can only be put into wide use,
if some fundemental problems in model checking are solved. However there is
still hope that this will happen, as it is a very active research area, which makes
progress every year.

It is also clear from working on this project that chosing the right way to
model a system is very important. Even small changes to a model can signifi-
cantly lower both the memory and time needed to produce a usable strategy. A
way to handle this is ofcourse to just rely on the model checkers to become bet-
ter and better, but since the techniques employed are PSPACE-Hard, it might be
a good idea to look into alternatives. A viable alternative is, as mentioned ear-
lier, to apply various modelling tricks to improve the resources needed to check
a model. However as these tricks require a great deal of knowledge about how
the model checker works internally, it would be a good idea to have the model
checker apply these tricks automaticaly. This would allow the model checker to
handel more complex models, and choose the modelling tricks needed to reduce
the verification time, state space usage and the strategy size. Finding ways to
reduce the size of the strategy as well as minimising the evaluation time of these
is also important. If the strategies are to be implemented on embeded systems,
there will be limited resources, in terms of memory, for holding the strategy,
and in terms of cpu resoucese, for executing the strategy. Minimising the time it
takes to execute the code is extremely important on hard real-time systems, as
the system must be able to act on continues input, with out missing important
data. For example if a controller for a car airbag takes 100ms to execute the
strategy, but it must be able to react wihtin 10ms to save lives.

Another way to make the strategy generation easier, might be to use the
fact that large parts of a systems might be modelled discretely. This uses the
fact that if the strategy is implemented as hardware or software, then its actions
can only occur in discrete intervals. So if a part of the model’s only job is to
issue and act on discrete events, og change the discrete state of the model, then
this part might be seen as a discrete model. There are a lot of very of very
efficient techniques for verifying discrete models, and some of these migth be
applied to the discrete parts of a model. These techniques include, SAT-solving
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and partial order reduction.
It seems fair to assume that modelling real-time systems with timed au-

tomata and expressing wanted properties in CTL requires specialist knowledge,
which normal people does not have. So to make what we have presented in this
report accessible to more people, it would be a good idea to put some further
abtractions ontop of timed automata and CTL. These abstractions should be
target at an end user. For example at software engineer might be more comfort-
able with UML, a production engineer with flow diagrams or a factory worker
might be most comfortabel to tell a system what to do in natural language.

So far all the tings mentioned in this chapter are things which are not specific
just to our setup, but general problems which also affects other areas outside
our field.

However there are also things which could be improved upon in our project.
The Hybrid-CDD implementation we have written, is not general enough to
handle every kind of expression UPPAAL TIGA can output. Our implementa-
tion can only handle a single action, activating a piston, for the implementaion
to be truely usefull, it should be possible to specify what code an action should
run, directly in the model. Also the output from TIGA as it is now is not easy
to parse, and sometimes the outputtet CDDs are broken. This was not a big
problem for us, as our parser is very basic. But if code generation from TIGA is
to be used for real work, then a complete parser should be implemented. This
could very well be within TIGA itself, which would allow access directly to all
the information about a strategy, without going through a text format first.

If all of this comes together, then it would be possible to make a tool, which
will enable an engineer to lay out a factory floor with different production ma-
chines and define how they are connected. This tool will generate a model which
takes the functionality of each machine and represent the functionallity of the
entire factory. The next thing would be to define the products the factory are
to produce as processes. Then whenever the factory gets an order, the sales
people can use these product processes to see if the factory have capacity to
produce the desired product numbers, simply be checking if a strategy exits for
the wanted order. If the strategy exists then it will simply be a matter of having
the factory implement it. As an added bonus it might be possible to optimize
the strategy with regards to things like production time, reosource use or overall
cost.
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hybrid-CDD
implementation

These are all the classes used in the hybrid-CDD implementation

A.1 CDD.java

public class CDD{
private Node root ;
stat ic Node node ;

protected void setRoot (Node n){
root = n ;

}

public CDD(){
setRoot ( null ) ;

}

public CDD(Node n){
setRoot (n ) ;

}

public Node getRoot ( ){
return root ;

}

public void addExistingNode (Node o , Node c ){
CNode p = (CNode) o ;
i f ( ( p != null ) && ( c != null ) ){

p . addChild ( c ) ;
}

}
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public void addExistingNode (Node o , Node c ,
boolean type ){

DNode p = (DNode) o ;

i f ( ( p != null ) && ( c != null ) ){
try {

i f ( type == fa l se ){
node = p . ge tFa l s e ( ) ;

}
else node = p . getTrue ( ) ;

} catch ( NoNodeException e ){

i f ( type == fa l se ){
p . s e t F a l s e ( c ) ;

}
else p . setTrue ( c ) ;

}
}

}

public void runTree ( ) throws Wait{
try{

root . runCode ( ) ;
} catch ( Wait e ){

throw new Wait ( ) ;
}

}

public void t e s tTree ( ){
root . t e s t ( ) ;

}
}

A.2 Node.java

interface Node{

public void runCode ( ) throws Wait ;
public void s e t I n t e r v a l (Bound l e f t , f loat min ,

f loat max , Bound r i g h t ) ;
public void t e s t ( ) ;
public boolean i s I n I n t e r v a l ( int c l o ck ) ;

}

A.3 CNode.java

import java . u t i l . ∗ ;
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public class CNode implements Node{

protected ArrayList<Node> nodeChildren
= new ArrayList<Node>() ;

protected I n t e r v a l i n t e r ;
protected Clock c l o ck ;

public CNode ( ){
i n t e r = null ;
c l o ck = null ;

}

public CNode( int c l ){
i n t e r = null ;
c l o ck = new Clock ( c l ) ;

}

public CNode( int c l , f loat min , Bound l e f t ){

i n t e r = new I n t e r v a l (min , l e f t ) ;
c l o ck = new Clock ( c l ) ;

}

public CNode( int c l , f loat min , f loat max ,
Bound l e f t , Bound r i g h t ){

i n t e r = new I n t e r v a l (min , max , l e f t , r i g h t ) ;
c l o ck = new Clock ( c l ) ;

}

public void s e t I n t e r v a l (Bound l e f t , f loat min ,
f loat max , Bound r i g h t ){

i f ( i n t e r == null )
i n t e r = new I n t e r v a l (min , max , l e f t , r i g h t ) ;

else {
i n t e r . s e t I n t e r v a l (min , max ) ;
i n t e r . setBounds ( l e f t , r i g h t ) ;

}
}

public f loat get Interva lMin ( ){
return i n t e r . ge tMinInterva l ( ) ;

}

public f loat getIntervalMax ( ){
return i n t e r . getMaxInterval ( ) ;

}
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public void addChild (Node c h i l d ){
nodeChildren . add ( c h i l d ) ;

}

public Node getChi ld ( int i ) throws NoNodeException{
i f ( i > nodeChildren . s i z e ( ) ){

throw new NoNodeException ( ) ;
}
else return (Node ) nodeChildren . get ( i ) ;

}

public int s izeOfNodeChi ldren ( ){
return nodeChildren . s i z e ( ) ;

}

public boolean i s I n I n t e r v a l ( int c l o ck ){
i f ( i n t e r == null ){

return true ;
}
return i n t e r . isWithinBound ( c l o ck ) ;

}

public void runCode ( ) throws Wait{
int time ;
time = c lock . readClock ( ) ;
i f ( s izeOfNodeChi ldren ()>0){

L i s t I t e r a t o r<Node> i t
= nodeChildren . l i s t I t e r a t o r ( ) ;

while ( i t . hasNext ( ) ){
Node c h i l d = (Node ) i t . next ( ) ;
i f ( c h i l d . i s I n I n t e r v a l ( time ) ){

c h i l d . runCode ( ) ;
}

}
throw new Wait ( ) ;

}
else throw new Wait ( ) ;

}

public void t e s t ( ){
System . out . p r i n t l n ( ” This i s a CNode” ) ;

}

}

A.4 DNode.java

public class DNode implements Node{

protected NCode code ;
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protected Node nTrue , nFalse ;

protected I n t e r v a l i n t e r ;

public DNode( ){
code=null ;
nTrue=null ;
nFalse=null ;
i n t e r=null ;

}

public DNode(NCode d){
code=d ;
nTrue=null ;
nFalse=null ;
i n t e r=null ;

}

public DNode(NCode d , f loat min , Bound l e f t ){
code=d ;
nTrue=null ;
nFalse=null ;
i n t e r=new I n t e r v a l (min , l e f t ) ;

}

public DNode(NCode d , f loat min , f loat max ,
Bound l e f t , Bound r i g h t ){

code=d ;
nTrue = null ;
nFalse=null ;
i n t e r=new I n t e r v a l (min , max , l e f t , r i g h t ) ;

}

public DNode( int varC , int var , int val , int op ){
code = new NCode( varC , var , val , op ) ;
nTrue= null ;
nFalse= null ;
i n t e r = null ;

}

public void s e t I n t e r v a l (Bound l e f t , f loat min ,
f loat max , Bound r i g h t ){

i f ( i n t e r == null )
i n t e r = new I n t e r v a l (min , max , l e f t , r i g h t ) ;

else {
i n t e r . s e t I n t e r v a l (min , max ) ;
i n t e r . setBounds ( l e f t , r i g h t ) ;

}
}
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public boolean i s I n I n t e r v a l ( int c l o ck ){
i f ( i n t e r == null ){

return true ;
}
return i n t e r . isWithinBound ( c l o ck ) ;

}

public void setTrue (Node node ){
nTrue=node ;

}

public void s e t F a l s e (Node node ){
nFalse=node ;

}

public void setCode (NCode c ){
code=c ;

}

public Node getTrue ( ) throws NoNodeException{
i f ( nTrue == null ){

throw new NoNodeException ( ) ;
}
else return nTrue ;

}

public Node ge tFa l s e ( ) throws NoNodeException{
i f ( nFalse == null ){

throw new NoNodeException ( ) ;
}
else return nFalse ;

}

public NCode getCode ( ){
return code ;

}

public void runCode ( ) throws Wait{
i f ( code . eva luate ( ) ){

i f ( nTrue != null ){
nTrue . runCode ( ) ;

}
else throw new Wait ( ) ;

}
else i f ( nFalse != null ){

nFalse . runCode ( ) ;
}
else throw new Wait ( ) ;

}
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public void t e s t ( ){
System . out . p r i n t l n ( ” This i s a DNode” ) ;

}

}

A.5 ANode.java

public class ANode implements Node{

protected I n t e r v a l i n t e r ;
protected int proce s s Id ;

public ANode( int id ){
proce s s Id = id ;
i n t e r=null ;

}

public ANode( int id , f loat min , Bound l e f t ){
proce s s Id = id ;
i n t e r=new I n t e r v a l (min , l e f t ) ;

}

public ANode( int id , f loat min , f loat max ,
Bound l e f t , Bound r i g h t ){

proce s s Id = id ;
i n t e r = new I n t e r v a l (min , max , l e f t , r i g h t ) ;

}

public void s e t I n t e r v a l (Bound l e f t , f loat min ,
f loat max , Bound r i g h t ){

i f ( i n t e r == null )
i n t e r = new I n t e r v a l (min , max , l e f t , r i g h t ) ;

else {
i n t e r . s e t I n t e r v a l (min , max ) ;
i n t e r . setBounds ( l e f t , r i g h t ) ;

}
}

public void runCode ( ) throws Wait{
Main . remove ( p roc e s s Id ) ;
throw new Wait ( ) ;

}

public boolean i s I n I n t e r v a l ( int c l o ck ){
i f ( i n t e r == null ){

return true ;
}
return i n t e r . isWithinBound ( c l o ck ) ;

}

81



A.6. NCODE.JAVA

public void t e s t ( ){
System . out . p r i n t l n ( ” This i s a ANode” ) ;

}

}

A.6 NCode.java

public class NCode{

protected int v a r i a b l e ;

protected int var iab l eChooser ;

protected int value ;

protected int operator ;

public NCode( ){
var iab l eChooser = 0 ;
v a r i a b l e =0;
va lue =0;
operator =0;

}

public NCode( int varC , int var , int val , int op ){
var iab l eChooser = varC ;
v a r i a b l e = var ;
va lue = va l ;
operator = op ;

}

public boolean eva luate ( ){
switch ( var iab l eChooser ){

case 0 :

switch ( operator ){

case 0 :
i f ( ( St ra t . l o c a t i o n [ v a r i a b l e ]

& value )>0){
return true ;

}
else return fa l se ;

case 1 :
i f ( St ra t . l o c a t i o n [ v a r i a b l e ] == value ){
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return true ;
}
else return fa l se ;

default :
System . out . p r i n t l n ( ”Not v a l i d code ” ) ;

}
break ;

case 1 :
switch ( operator ) {

case 0 :
i f ( St ra t . co l ou r [ v a r i a b l e ] == value ){

return true ;
}
else return fa l se ;

case 1 :
i f ( St ra t . co l ou r [ v a r i a b l e ] <= value ){

return true ;
}
else return fa l se ;

case 2 :
i f ( St ra t . co l ou r [ v a r i a b l e ] >= value ){

return true ;
}
else return fa l se ;

case 3 :
i f ( St ra t . co l ou r [ v a r i a b l e ] < value ){

return true ;
}
else return fa l se ;

case 4 :
i f ( St ra t . co l ou r [ v a r i a b l e ] > value ){

return true ;
}
else return fa l se ;

default :
System . out . p r i n t l n ( ”Not a v a l i d

operator va lue ” ) ;
}
break ;

default :
System . out . p r i n t l n ( ”Not a v a l i d

v a r i a b l e type value ” ) ;
}
return fa l se ;
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}
}

A.7 Clock.java

public class Clock{

protected int name ;

public Clock ( ){
name = 0 ;

}

public Clock ( int n){
name = n ;

}

public int readClock ( ){
return Main . va lue (name ) ;

}

public void r e s e tC lock ( ){
Main . r e s e t (name ) ;

}

public int getName ( ){
return name ;

}

public void setName ( int n){
name = n ;

}

}

A.8 Interval.java

public class I n t e r v a l {

protected Bound lBound ;
protected Bound rBound ;

protected Float intMin ;
protected Float intMax ;

public I n t e r v a l ( ){
lBound = Bound . c l o s e d ;
rBound = Bound . open ;
intMax = new Float ( Float . POSITIVE INFINITY ) ;
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intMin = new Float ( 0 ) ;
}

public I n t e r v a l ( f loat min , Bound l e f t ){
lBound = l e f t ;
rBound = Bound . open ;
intMax = new Float ( Float . POSITIVE INFINITY ) ;
intMin = new Float ( min ) ;

}

public I n t e r v a l ( f loat min , f loat max , Bound l e f t ,
Bound r i g h t ){

lBound = l e f t ;
rBound = r i g h t ;
intMin = new Float ( min ) ;
intMax = new Float (max ) ;

}

public void s e t I n t e r v a l ( f loat min , f loat max){
intMin = new Float ( min ) ;
intMax = new Float (max ) ;

}

public void setBounds (Bound l e f t , Bound r i g h t ){
rBound = r i g h t ;
lBound = l e f t ;

}

public f loat getMinInterva l ( ){
return intMin . f l o a tVa lue ( ) ;

}

public f loat getMaxInterval ( ){
return intMax . f l oa tVa lue ( ) ;

}

public boolean isWithinBound ( int c l o ck ){

i f ( lBound == Bound . c l o s e d ){
i f ( rBound == Bound . c l o s e d ){

i f ( c l o ck >= intMin && c lock <= intMax ){
return true ;

}
else return fa l se ;

}
else {

i f ( c l o ck >= intMin && c lock < intMax ){
return true ;

}
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else return fa l se ;
}

}
else {

i f ( rBound == Bound . c l o s e d ){
i f ( c l o ck > intMin && c lock <= intMax ){

return true ;
}
else return fa l se ;

}
else {

i f ( c l o ck > intMin && c lock < intMax ){
return true ;

}
else return fa l se ;

}
}

}
}

A.9 Wait.java

class Wait extends Exception {
Wait ( ){

super ( ”Wait” ) ;
}

}

A.10 NoNodeException.java

class NoNodeException extends Exception {
NoNodeException ( ){

super ( ”No such node” ) ;
}

}

A.11 Bound.java

enum Bound { c losed , open}

A.12 Strat.java

Here is an example of a generated strategy, which handles one brick, and white
bricks are pushed of the convyour belt.

import java . u t i l . Hashtable ;

class Stra t {
public stat ic CDD t r e e ;
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public stat ic void makeStrategy ( ) {
Hashtable v e r t i c e s = new Hashtable ( ) ;

v e r t i c e s . put ( ”9 dd2ef8 ” , new DNode(0 , 1 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd0738” , new DNode(1 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd2728” , new DNode(0 , 1 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3288” , new DNode(0 , 1 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd1dd8” , new DNode(1 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3b98” , new DNode(0 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd2358” , new DNode(1 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3b78” , new DNode(0 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9 e51748 ” , new CNode ( 1 ) ) ;
v e r t i c e s . put ( ”9dd3a38” , new DNode(0 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd31e8” , new DNode(1 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3668” , new DNode(0 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3208” , new DNode(0 , 1 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9 e516e8 ” , new CNode ( 1 ) ) ;
v e r t i c e s . put ( ”9dd3b18” , new DNode(0 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd1658” , new DNode(1 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3988” , new DNode(0 , 0 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3bb8” , new DNode(0 , 0 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9d40068” , new ANode ( 1 ) ) ;
v e r t i c e s . put ( ”9dd1858” , new DNode(1 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd0748” , new DNode(1 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3608” , new DNode(0 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9 e517a8 ” , new CNode ( 0 ) ) ;
v e r t i c e s . put ( ”9 dd17f8 ” , new DNode(1 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd36a8” , new DNode(0 , 0 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9 e51778 ” , new CNode ( 1 ) ) ;
v e r t i c e s . put ( ”9dd3b88” , new DNode(0 , 0 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3698” , new DNode(0 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3b68” , new DNode(0 , 0 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9 c249e8 ” , new ANode ( 0 ) ) ;
v e r t i c e s . put ( ”9 dd31f8 ” , new DNode(1 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3a28” , new DNode(0 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3678” , new DNode(0 , 0 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9 e51718 ” , new CNode ( 1 ) ) ;
v e r t i c e s . put ( ”9 dd0 f f8 ” , new DNode(0 , 1 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd2b38” , new DNode(0 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd2e78” , new DNode(0 , 1 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3b08” , new DNode(0 , 0 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd23e8” , new DNode(1 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3bc8” , new DNode(0 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3638” , new DNode(0 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9 dd35f8 ” , new DNode(0 , 1 , 2 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3ba8” , new DNode(0 , 0 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9 dd36f8 ” , new DNode(0 , 1 , 1 , 0 ) ) ;
v e r t i c e s . put ( ”9dd3978” , new DNode(0 , 1 , 1 , 0 ) ) ;

t r e e = new CDD( (Node ) v e r t i c e s . get ( ”9 e517a8 ” ) ) ;

87



A.12. STRAT.JAVA

t r e e . addExistingNode ( ( Node )
v e r t i c e s . get ( ”9 e517a8 ” ) ,
(Node ) v e r t i c e s . get ( ”9 e51778 ” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9 e51778 ” ) ) . s e t I n t e r v a l (Bound .
open , 132 .0 f , Float . POSITIVE INFINITY , Bound . open ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e517a8 ” ) ,
(Node ) v e r t i c e s . get ( ”9 e51748 ” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9 e51748 ” ) ) . s e t I n t e r v a l (Bound .
open , 130 .0 f , 132 .0 f , Bound . c l o s e d ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e517a8 ” ) ,
(Node ) v e r t i c e s . get ( ”9 e51718 ” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9 e51718 ” ) ) . s e t I n t e r v a l (
Bound . c losed , 108 .0 f , 130 .0 f , Bound . c l o s e d ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e517a8 ” ) ,
(Node ) v e r t i c e s . get ( ”9 e516e8 ” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9 e516e8 ” ) ) . s e t I n t e r v a l (
Bound . c losed , 0 . 0 f , 108 .0 f , Bound . open ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e51778 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd3bc8” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9dd3bc8” ) ) . s e t I n t e r v a l (
Bound . c losed , 108 .0 f , 130 .0 f , Bound . c l o s e d ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e51748 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd3ba8” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9dd3ba8” ) ) . s e t I n t e r v a l (
Bound . c losed , 108 .0 f , 130 .0 f , Bound . c l o s e d ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e51718 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd3a38” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9dd3a38” ) ) . s e t I n t e r v a l (
Bound . open , 132 .0 f , Float . POSITIVE INFINITY ,
Bound . open ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e51718 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd3a28” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9dd3a28” ) ) . s e t I n t e r v a l (
Bound . open , 130 .0 f , 132 .0 f , Bound . c l o s e d ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e51718 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd3b18” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9dd3b18” ) ) . s e t I n t e r v a l (
Bound . c losed , 0 . 0 f , 108 .0 f , Bound . open ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e51718 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd3b98” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9dd3b98” ) ) . s e t I n t e r v a l (
Bound . c losed , 108 .0 f , 130 .0 f , Bound . c l o s e d ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 e516e8 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd3b78” ) ) ;
( ( Node ) v e r t i c e s . get ( ”9dd3b78” ) ) . s e t I n t e r v a l (
Bound . c losed , 108 .0 f , 130 .0 f , Bound . c l o s e d ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3bc8” ) ,
(Node ) v e r t i c e s . get ( ”9dd3988” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3bc8” ) ,
(Node ) v e r t i c e s . get ( ”9dd3bb8” ) , true ) ;
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t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3ba8” ) ,
(Node ) v e r t i c e s . get ( ”9dd3988” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3ba8” ) ,
(Node ) v e r t i c e s . get ( ”9 dd36f8 ” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3a38” ) ,
(Node ) v e r t i c e s . get ( ”9dd36a8” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3a28” ) ,
(Node ) v e r t i c e s . get ( ”9dd3678” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b18” ) ,
(Node ) v e r t i c e s . get ( ”9dd3b08” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b98” ) ,
(Node ) v e r t i c e s . get ( ”9dd3988” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b98” ) ,
(Node ) v e r t i c e s . get ( ”9dd3b88” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b78” ) ,
(Node ) v e r t i c e s . get ( ”9dd3988” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b78” ) ,
(Node ) v e r t i c e s . get ( ”9dd3b68” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3988” ) ,
(Node ) v e r t i c e s . get ( ”9dd3978” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3988” ) ,
(Node ) v e r t i c e s . get ( ”9dd2b38” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3bb8” ) ,
(Node ) v e r t i c e s . get ( ”9 dd36f8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd36f8 ” ) ,
(Node ) v e r t i c e s . get ( ”9 dd2ef8 ” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd36a8” ) ,
(Node ) v e r t i c e s . get ( ”9dd3698” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3678” ) ,
(Node ) v e r t i c e s . get ( ”9dd3668” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b08” ) ,
(Node ) v e r t i c e s . get ( ”9dd3608” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b88” ) ,
(Node ) v e r t i c e s . get ( ”9dd3638” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b88” ) ,
(Node ) v e r t i c e s . get ( ”9 dd36f8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b68” ) ,
(Node ) v e r t i c e s . get ( ”9dd2b38” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3b68” ) ,
(Node ) v e r t i c e s . get ( ”9 dd36f8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3978” ) ,
(Node ) v e r t i c e s . get ( ”9 dd0 f f8 ” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd2b38” ) ,
(Node ) v e r t i c e s . get ( ”9dd2728” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd2ef8 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd23e8” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3698” ) ,
(Node ) v e r t i c e s . get ( ”9dd2e78” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3698” ) ,
(Node ) v e r t i c e s . get ( ”9 dd35f8 ” ) , fa l se ) ;
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t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3668” ) ,
(Node ) v e r t i c e s . get ( ”9 dd35f8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3668” ) ,
(Node ) v e r t i c e s . get ( ”9dd2358” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3608” ) ,
(Node ) v e r t i c e s . get ( ”9 dd35f8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3608” ) ,
(Node ) v e r t i c e s . get ( ”9dd3288” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3638” ) ,
(Node ) v e r t i c e s . get ( ”9dd3208” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3638” ) ,
(Node ) v e r t i c e s . get ( ”9 dd35f8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd0 f f8 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd0748” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd2728” ) ,
(Node ) v e r t i c e s . get ( ”9dd0738” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd23e8” ) ,
(Node ) v e r t i c e s . get ( ”9dd0738” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd2e78” ) ,
(Node ) v e r t i c e s . get ( ”9dd2358” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd35f8 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd1dd8” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd35f8 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd1858” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd2358” ) ,
(Node ) v e r t i c e s . get ( ”9dd1658” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3288” ) ,
(Node ) v e r t i c e s . get ( ”9dd1dd8” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3288” ) ,
(Node ) v e r t i c e s . get ( ”9dd2358” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3208” ) ,
(Node ) v e r t i c e s . get ( ”9 dd31f8 ” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd3208” ) ,
(Node ) v e r t i c e s . get ( ”9dd2358” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd0748” ) ,
(Node ) v e r t i c e s . get ( ”9dd0738” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd0738” ) ,
(Node ) v e r t i c e s . get ( ”9d40068” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd1dd8” ) ,
(Node ) v e r t i c e s . get ( ”9 c249e8 ” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd1858” ) ,
(Node ) v e r t i c e s . get ( ”9 dd17f8 ” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd1658” ) ,
(Node ) v e r t i c e s . get ( ”9 c249e8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd31f8 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd31e8” ) , true ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd31f8 ” ) ,
(Node ) v e r t i c e s . get ( ”9dd0738” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9 dd17f8 ” ) ,
(Node ) v e r t i c e s . get ( ”9 c249e8 ” ) , true ) ;

90



APPENDIX A. HYBRID-CDD IMPLEMENTATION

t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd31e8” ) ,
(Node ) v e r t i c e s . get ( ”9 c249e8 ” ) , fa l se ) ;
t r e e . addExistingNode ( ( Node ) v e r t i c e s . get ( ”9dd31e8” ) ,
(Node ) v e r t i c e s . get ( ”9d40068” ) , true ) ;

}
}
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Main.java

This is the main class that initiate and controls the sensors, implements the
transitions and runs the tree.

import l e j o s . nxt . ∗ ;
import l e j o s . u t i l . ∗ ;
import l e j o s . nxt . addon . ∗ ;

public class Main{

public stat ic DebugMessages dbmsg
= new DebugMessages ( ) ;

stat ic TimerListener updateLCD
= new TimerListener ( ) {

public void timedOut ( ) {
int i ;
S t r ing s t r ;

LCD. c l e a r ( ) ;
for ( i = 0 ; i < Stra t .BRICKS; i++) {
s t r = ”B” + i + ” ” + Strat . l o c a t i o n [ i ]

+ ” ” + Strat . co l ou r [ i ]
+ ” ” + value ( i ) ;

LCD. drawString ( s t r , 0 , i ) ;
}

}
} ;

stat ic boolean s en so r r eady = true ;

stat ic TimerListener sensorTogg le
= new TimerListener ( ) {

public void timedOut ( ) {
s e t t l e . s top ( ) ;
s en so r r eady = true ;
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}
} ;

stat ic Timer s e t t l e = new Timer (800 , sensorTogg le ) ;

stat ic SensorPor tL i s t ene r sensorL
= new SensorPor tL i s t ene r ( ) {

public void stateChanged ( SensorPort aSource ,
int aOldValue , int aNewValue ) {

int i ;

i f ( s en so r r eady && Math . abs ( aNewValue
− aOldValue ) < 2) {

s en so r r eady = fa l se ;
s e t t l e . s t a r t ( ) ;

for ( i = 0 ; i < Stra t .BRICKS; i++) {
i f ( St ra t . l o c a t i o n [ i ] != 3) {

i f ( aNewValue < 750 &&
aNewValue > 700){

Stra t . l o c a t i o n [ i ] = 3 ;
St ra t . co l ou r [ i ] = 0 ;
r e s e t ( i ) ;

}
i f ( aNewValue <= 700){

Stra t . l o c a t i o n [ i ] = 3 ;
St ra t . co l ou r [ i ] = 1 ;
r e s e t ( i ) ;

}
break ;

}
}

}
}

} ;

protected stat ic void remove ( int proce s s ){
Motor .C. r o t a t e ( 3 6 0 ) ;
S t ra t . l o c a t i o n [ p roc e s s ] = 2 ;

}

private stat ic void runStrategy ( ){
try{

Stra t . t r e e . runTree ( ) ;

} catch ( Wait e ){
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return ;
}

}

public stat ic void main ( St r ing [ ] a rgs )
throws Exception {

Stra t . makeStrategy ( ) ;

L ightSensor s enso r =
new LightSensor ( SensorPort . S1 , true ) ;

SensorPort . S1 . addSensorPortL i s tener ( sensorL ) ;

Timer LCDupdater = new Timer (100 , updateLCD ) ;
LCDupdater . s t a r t ( ) ;

int i ;

Motor .A. setSpeed ( 2 5 0 ) ;
Motor .B. setSpeed ( 2 5 0 ) ;
Motor .A. forward ( ) ;
Motor .B. forward ( ) ;
Motor .C. setSpeed ( 9 0 0 ) ;

for ( i = 0 ; i < Stra t .BRICKS; i++) {
r e s e t ( i ) ;
S t ra t . l o c a t i o n [ i ] = 2 ;

}

while ( ! Button .ESCAPE. i s P r e s s e d ( ) ) {

runStrategy ( ) ;

for ( i = 0 ; i < Stra t .BRICKS; i++) {
i f ( St ra t . l o c a t i o n [ i ] == 3 &&

value ( i ) > 6500) {
Stra t . l o c a t i o n [ i ] = 1 ;
r e s e t ( i ) ;

}
}
Thread . s l e e p ( 1 ) ;

}

}

public stat ic int value ( int i ) {
return ( int ) System . cur rentT imeMi l l i s ( )

− Stra t . x [ i ] ;
}
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public stat ic void r e s e t ( int i ) {
Stra t . x [ i ] = ( int ) System . cur rentT imeMi l l i s ( ) ;

}

}
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parser.rb

This is the code for the parser and code generator.

r e q u i r e ’ rubygems ’
r e q u i r e ’ r g l / adjacency ’
r e q u i r e ’ r g l /dot ’
r e q u i r e ’ r g l / t r a v e r s a l ’

$ f a l s e e d g e l i s t = [ ]
$ v e r t e x l a b e l = {}
$ e d g e l a b e l = {}
$ac t i on s = {}
$root = ””
$n = 0

def m a r k a s f a l s e (u , v )
$ f a l s e e d g e l i s t . push ( [ u , v ] )

end

def i s i n f a l s e ?(u , v )
return $ f a l s e e d g e l i s t . i n c lude ? ( [ u , v ] )

end

def s e t v e r t e x l a b e l (u , l a b e l )
i f $ v e r t e x l a b e l . has key ?( l a b e l )

i f $ v e r t e x l a b e l [ l a b e l ] . class == Str ing then
$ v e r t e x l a b e l [ l a b e l ] = [ $ v e r t e x l a b e l [ l a b e l ] ,

u ]
else

$ v e r t e x l a b e l [ l a b e l ] . push (u)
end

else
$ v e r t e x l a b e l [ l a b e l ] = u

end
end
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def s e t e d g e l a b e l (u , v , l a b e l )
$ e d g e l a b e l [ [ u , v ] ] = l a b e l

end

def g r a p h f r o m d o t f i l e ( f i l e )
g = RGL: : DirectedAdjacencyGraph . new

IO . f o r each ( f i l e ) { | l i n e |
case l i n e
#matches a v e r t e x
when / ˆ\” ( .∗ )\” \ [ l a b e l =\” ( .∗ )\”\ ]\ ; $/

g . add vertex ( $1 )
s e t v e r t e x l a b e l ( $1 , $2 )

v = $1
ac t i on = $2
i f ac t i on =˜ /\ a c t i o n [1−9] [0−9]∗ / then

$ac t i on s [ a c t i on ] = v
end

#matches a c l o c k egde
when / ˆ\” ( .∗ )\” \−\> \” ( .∗ )\” \ [ s t y l e =( .∗ ) ,

l a b e l =\” ( .∗ )\”\ ]\ ; $/
g . add edge ( $1 , $2 )
s e t e d g e l a b e l ( $1 , $2 , $4 )

#matches a d i s c r e t e edge
when / ˆ\” ( .∗ )\” \−\> \” ( .∗ )\” \ [ s t y l e = ( . ∗ ) \ ] \ ; $/

g . add edge ( $1 , $2 )

i f $3 == ”dashed” then
m a r k a s f a l s e ( $1 , $2 )

end
end

}
return g

end

def r eve r s e g raph ( g )
f = RGL: : DirectedAdjacencyGraph . new

g . each edge { | u , v | f . add edge (v , u) }

return f
end

def prune wai t paths ( g )
f = reve r s e g raph ( g )

v i s i t e d = {}
wait ing = [ ]
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$ac t i on s . each { | act ion , v |

f . a d j a c e n t v e r t i c e s ( v ) . each { |w |
i f not wait ing . i n c lude ?(w) then

wait ing . push (w)
end

}

v i s i t e d [ v ] = 1
}

until wait ing . empty?
f . a d j a c e n t v e r t i c e s ( wa i t ing [ 0 ] ) . each { |w |

i f not wait ing . i n c lude ?(w) then
wait ing . push (w)

end
}
v i s i t e d [ wa i t ing [ 0 ] ] = 1
wai t ing . d e l e t e a t (0 )

end

g . each ve r t ex { | v |
i f not v i s i t e d . has key ?( v ) then

g . remove vertex ( v )
end

}
end

def t r a n s l a t e l a b e l s ( f i l e )
tmp = {}
tmp act ions = {}
ac t i on = ””

IO . f o r each ( f i l e ) { | l i n e |
case l i n e
when / ˆ(\ [0−9a−f ]{7} ) ? : i f \ ( ? \ ( ( . ∗ ) \ ) /

tmp [ $ v e r t e x l a b e l [ $1 ] ] = $2
when /ˆ goto \ ([0−9a−f ] { 7 } ) ; $/

$root = $1
when /ˆ\#d e f i n e \ Br ick /

$n = $n + 1
when / ˆ(\ a c t i o n [0−9]∗) /

ac t i on = $1
when /ˆ Brick \ ( ( [ 0 −9 ] )\ )\ .SENSED.∗ remove\?/

tmp act ions [ $a c t i on s [ a c t i on ] ] = $1
end

}

$ v e r t e x l a b e l . each { | l abe l , v |
case l a b e l
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when /ˆ a c t i o n / then
tmp [ v ] = l a b e l

when / ˆ [ˆ ] /
i f v . class == Array then

$ v e r t e x l a b e l [ l a b e l ] . each { |w |
tmp [w] = l a b e l

}
else

tmp [ v ] = l a b e l
end

end
}
$ v e r t e x l a b e l = tmp
$ac t i on s = tmp act ions

end

def p a r s e l a b e l s ( )
$ v e r t e x l a b e l . each { | u , l a b e l |

case l a b e l
when /ˆ\ l o c \ [\ Br ick \ ( ( [ 0 −9 ] )\ )\ ] \& ([0 −9 ] )\ )\

== [0−9] $/
$ v e r t e x l a b e l [ u ] = { ’ vtype ’ => ’ l o c a t i o n ’ ,

’ p roce s s ’ => $1 ,
’ l o c a t i o n ’ => $2 , ’ operator ’ => 0}

when /ˆ\ l o c \ [\ Br ick \ ( ( [ 0 −9 ] )\ )\ ] == ( [0 −9 ] ) $/
$ v e r t e x l a b e l [ u ] = { ’ vtype ’ => ’ l o c a t i o n ’ ,

’ p roce s s ’ => $1 ,
’ l o c a t i o n ’ => $2 , ’ operator ’ => 1}

when /ˆ Brick \ ( ( [ 0 −9 ] )\ )\ . c o l ou r == ([0 −9 ] ) $/
$ v e r t e x l a b e l [ u ] = { ’ vtype ’ => ’ v a r i a b l e ’ ,

’ operator ’ => 0 ,
’ va lue ’ => $2 , ’ p roce s s ’ => $1}

when /ˆ\ a c t i o n [1−9] [0−9]∗ $/
$ v e r t e x l a b e l [ u ] = { ’ vtype ’ => ’ a c t i on ’ ,

’ p roce s s ’ => $ac t i on s [ u ]}
when /ˆ Brick \ ( ( [ 0 −9 ] )\ )\ . x$/

$ v e r t e x l a b e l [ u ] = { ’ vtype ’ => ’ c l o ck ’ ,
’ p ro ce s s ’ => $1}

end
}

$ e d g e l a b e l . each { | p , l a b e l |
tmp = {}

/ ( [ \ [ \ ] ] ) ( [ 0 − 9 ] ∗ ) \ ; ( [ 0 − 9 ] ∗ | INF ) ( [ \ [ \ ] ] ) /\
. match ( l a b e l )

tmp [ ’ l e f t b ’ ] = case $1
when ’ [ ’

”Bound . c l o s e d ”
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when ’ ] ’
”Bound . open”

end

tmp [ ’ r i gh tb ’ ] = case $4
when ’ ] ’

”Bound . c l o s e d ”
when ’ [ ’

”Bound . open”
end

tmp [ ’max ’ ] = i f $3 == ”INF” then
” Float . POSITIVE INFINITY”

else
$3 . t o s + ” . 0 f ”

end

tmp [ ’ min ’ ] = $2 . t o s + ” . 0 f ”

$ e d g e l a b e l [ p ] = tmp
}

end

def pr in t do t g raph ( g )
f = RGL: :DOT: : Digraph . new( ”G” )
g . each ve r t ex { | v |

i f $ v e r t e x l a b e l . has key ?( v ) then
case $ v e r t e x l a b e l [ v ] [ ’ vtype ’ ]
when ’ l o c a t i o n ’

l a b e l = ” Locat ion \n” +
” Process : ” +

$ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ] +
”\n” +

” Locat ion : ” +
$ v e r t e x l a b e l [ v ] [ ’ l o c a t i o n ’ ] +
”\n” +

” Operator : ” +
$ v e r t e x l a b e l [ v ] [ ’ operator ’ ] . t o s

when ’ c l o ck ’
l a b e l = ”Clock : x\n” +

$ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ]
when ’ v a r i a b l e ’

l a b e l = ” Var iab le \n” +
” Process : ” +

$ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ] +
”\ nco lour == ” +

$ v e r t e x l a b e l [ v ] [ ’ va lue ’ ]
when ’ a c t i on ’

l a b e l = ” Action :\ npush\nProcess : ” +
$ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ]
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else
l a b e l = ” Action :\ nwait ”

end

f << RGL: :DOT: : Node . new({ ’name ’ => v ,
” l a b e l ” => l a b e l })

end
}

g . each edge { | u , v |
i f $ f a l s e e d g e l i s t . i n c lude ? ( [ u , v ] ) then

f << RGL: :DOT: : DirectedEdge . new({ ’ from ’ => u ,
’ to ’ => v , ’ s t y l e ’ => ’ dashed ’ })

else
i f $ e d g e l a b e l . i n c lude ? ( [ u , v ] ) then

l a b e l = ”$” + ( $ e d g e l a b e l [ [ u , v ] ] [ ’ l e f t b ’ ]
== ’Bound . open ’ ? ’ ( ’ : ’ [ ’ ) +

$ e d g e l a b e l [ [ u , v ] ] [ ’ min ’ ] [ 0 . . . − 3 ] + ” ;
” + ( $ e d g e l a b e l [ [ u , v ] ] [ ’max ’ ] ==

’ Float . POSITIVE INFINITY ’ ?
’ \ i n f ’ :

$ e d g e l a b e l [ [ u , v ] ] [ ’max ’ ] [ 0 . . . − 3 ] )
+ ( $ e d g e l a b e l [ [ u , v ] ] [ ’ r i gh tb ’ ] ==
’Bound . open ’ ? ’ ) ’ : ’ ] ’ ) + ”$”

f << RGL: :DOT: : DirectedEdge . new({ ’ from ’ =>
u , ’ to ’ => v , ’ l a b e l ’ => l a b e l })

else
f << RGL: :DOT: : DirectedEdge . new({ ’ from ’ =>

u , ’ to ’ => v})
end

end
}

return f
end

def gene ra te code ( g )
code = ” import java . u t i l . Hashtable ;\n\n”
code = code + ” c l a s s St ra t {\n”
code = code + ”\ t p u b l i c s t a t i c CDD t r e e ;\n”
code = code + ”\ t p u b l i c s t a t i c i n t BRICKS = ” +

$n . t o s + ” ;\n”

code = code + ”\ t p u b l i c s t a t i c i n t x [ ] = ” +
”new i n t [BRICKS ] ; ”

code = code + ”\ t p u b l i c s t a t i c i n t l o c a t i o n [ ] ” +
” = new i n t [BRICKS ] ; ”

code = code + ”\ t p u b l i c s t a t i c i n t co l our [ ] = ” +
”new i n t [BRICKS ] ; ”

code = code + ”\n\ t p u b l i c s t a t i c void makeStrategy ( ) ”
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+ ” {\n”
code = code + ”\ t \ tHashtable v e r t i c e s = ” +

”new Hashtable ( ) ; \ n\n”

g . each ve r t ex { | v |
code = code + ”\ t \ t v e r t i c e s . put (\” ”
code = code + v . t o s
code = code + ” \” , ”
case $ v e r t e x l a b e l [ v ] [ ’ vtype ’ ]
when ’ c l o ck ’

code = code + ”new CNode( ”
code = code + $ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ]

when ’ l o c a t i o n ’
code = code + ”new DNode(0 , ”
code = code + $ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ]
code = code + ” , ”
code = code +

$ v e r t e x l a b e l [ v ] [ ’ l o c a t i o n ’ ] . t o s
code = code + ” , 0”

when ’ v a r i a b l e ’
code = code + ”new DNode(1 , ”
code = code + $ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ]
code = code + ” , ”
code = code + $ v e r t e x l a b e l [ v ] [ ’ va lue ’ ] . t o s
code = code + ” , ”
code = code +

$ v e r t e x l a b e l [ v ] [ ’ operator ’ ] . t o s
when ’ a c t i on ’

code = code + ”new ANode( ” +
$ v e r t e x l a b e l [ v ] [ ’ p ro ce s s ’ ]

end
code = code + ” ) ) ; \ n”

}

code = code +
”\n\ t \ t t r e e = new CDD( (Node ) v e r t i c e s . get (\” ”

code = code + $root
code = code + ” \” ) ) ;\ n”

i t e r a t o r = RGL: : BFSIterator . new( g , $root )

i t e r a t o r . each { | v |
g . a d j a c e n t v e r t i c e s ( v ) . each { |w |

code = code +
”\ t \ t t r e e . addExistingNode ( ( Node )

v e r t i c e s . get (\” ”
code = code + v . t o s
code = code + ” \”) , (Node ) v e r t i c e s . get (\” ”
code = code + w. t o s
code = code + ” \”) ”
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APPENDIX C. PARSER.RB

case $ v e r t e x l a b e l [ v ] [ ’ vtype ’ ]
when ’ c l o ck ’

code = code + ” ) ; \ n”
code = code + ”\ t \ t ( ( Node )

v e r t i c e s . get (\” ”
code = code + w. t o s
code = code + ” \ ” ) ) . s e t I n t e r v a l ( ”
code = code + $ e d g e l a b e l [ [ v ,w ] ] [ ’ l e f t b ’ ]
code = code + ” , ”
code = code + $ e d g e l a b e l [ [ v ,w ] ] [ ’ min ’ ]
code = code + ” , ”
code = code + $ e d g e l a b e l [ [ v ,w ] ] [ ’max ’ ]
code = code + ” , ”
code = code + $ e d g e l a b e l [ [ v ,w ] ] [ ’ r i gh tb ’ ]
code = code + ” ) ; \ n”

else
i f i s i n f a l s e ?(v , w) then

code = code + ” , f a l s e ”
else

code = code + ” , t rue ”
end
code = code + ” ) ; \ n”

end
}

}

code = code + ”\ t }\n}”
return code

end

g = g r a p h f r o m d o t f i l e ( ” t i g a d o t s h o r t . dot ” )
prune wai t paths ( g )

t r a n s l a t e l a b e l s ( ” t i g a o u t ” )

p a r s e l a b e l s ( )

#puts p r i n t d o t g r a p h ( g )
puts gene ra te code ( g )
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