
Ordering Estimation for Bayesian Network

Structure Learning

Saulius Pačekajus
Aalborg University, Denmark

January 29, 2009

Abstract

Learning structure of Bayesian network have been a great challenge of Ma-
chine learning for the last few decades. A lot of ideas have been offered during
that time and some of them proved to provide pretty handy results. The new
idea of ordering estimation is proposed aiming to improve properties of order-
ing based or dependant Bayesian network structure learning algorithms. Three
different approaches of ordering estimation are presented and tested by thor-
ough experiments. The results show, that ordering based or dependant search
algorithms can benefit from ordering estimation and even the idea of using K2
without optimal ordering is proposed.

Contents

1 Bayesian Networks 4

2 Structure Learning 6
2.1 Score Based Learning . 7

2.1.1 Mutual Information . 7
2.1.2 Bayesian Inference Measure 8
2.1.3 Minimal Description Length 9

2.2 Ordering in Score Based Learning 10
2.3 Algorithms . 10

2.3.1 K2 . 10
2.3.2 Hill Climber Greedy Search 11
2.3.3 Ordering Based Search . 12

3 Ordering Estimation 16
3.1 OE1 – Scoring Function Approach 17
3.2 OE2 – Mutual Information Approach 17
3.3 OE3 – Dependence Tree Approach 18

4 Experiments 21
4.1 Assumptions of OE1 and OE2 . 21
4.2 Ordering Estimation in Action 22
4.3 Ordering Estimation Compared to Hill-Climber 32

5 Conclusions 38

6 Future Work 39

1

Acknowledgments

I would like to thank my supervisor Yifeng and my girlfriend Agnė for the
patience and efforts concerning this work.

2

Introduction

Bayesian Network (BN) is a probabilistic graphical model. It represents a joint
probability distribution over a set of variables in a subject of matter. BNs are
widely used in decision support systems, expert systems and adaptive systems
because of their advantages – they can provide a solution under uncertainty,
their structure can provide insights about the relations between variables and
they can adapt to the changes of the subject of matter.

Learning structure of a Bayesian Network is a great challenge of Machine
Learning. Choosing the best structure from all possible BN structures given the
data is in fact proved to be an NP-complete task. Nevertheless there are a few
heuristics invented, that aim to find optimal or close to optimal structure while
using reasonable amounts of resources (data set size, time and computation
power). Some of them are based or depends on the ordering of attributes of the
domain.

This article presents three methods for ordering estimation (OE) that can
improve results and usability of ordering based or dependant BN structure learn-
ing algorithms. The OE methods improve the quality of the resulting structure
while being fast and simple. Extensive experiments (including sources) are
provided to prove the utility of the methods as well as support the choice of
particular estimation algorithms.

3

Chapter 1

Bayesian Networks

Formally, Bayesian belief network [11] is a directed acyclic graph (DAG) where
nodes represent attributes or variables of a subject of matter and arcs between
the nodes embody the causal relationship of attributes or variables. Every node
of a network can gain one of the predefined values (states), depending on what
kind of attribute it is representing – boolean, nominal or numeric. It is then
said that an evidence is entered on a variable.

Node A is called a parent of node B if there exists an arc from node A to
node B. The relation between two nodes is causal – specifically an arc from A
to B is interpreted a conditional probability P (A|B). There is also a conditional
probability table (CPT) attached to every node of a Bayesian network. A CPT
contains probability values for every state of a node for every possible parent
value configuration. To conclude, a Bayesian network represents a joint distribu-
tion over the attributes of a subject of matter, so P (X) =

∏n
i=1 P (Xi|Pa(Xi)),

where X = {X1, · · · , Xn} are the variables of a network and Pa(Xi) is a set of
parents of variable Xi. An example of a Bayesian network, including CPTs for
every node, can be seen in Figure 1.2.

Conditional independence properties of variables are represented by a graph-
ical property of Bayesian network, called d-separation. There are three basic
variable connection structures (Figure 1.1):

(a) Serial Connection (b) Diverging Connection (c) Converging Connection

Figure 1.1: Connection types

• Serial connection: is a type of connection presented in Figure 1.1a. If the
state of B is unknown, a knowledge about A will influence a knowledge
about C and in the other way around – a knowledge about C will affect
a knowledge about A. Nevertheless if the state of B is known, then the

4

Figure 1.2: A small Bayesian belief network with conditional probability tables
for every node.

channel between A and C is blocked and no evidence on A will affect C
and in the other way around. A and C are called d-separated given B.

• Diverging connection: Figure 1.1b shows a type of connection that is called
diverging. Just like in serial connection, influence can flow from any child
of A to any other child as long as there is no evidence on A. B, C, · · · , X
are called d-separated given A.

• Converging connection: a type of connection presented in Figure 1.1c has
a bit different properties as the first two. Knowledge about any of the
parents of A cannot affect knowledge about any other parent, unless there
is an evidence on A or its descendants. B, C, · · · , X are called d-separated
(and they are d-connection given A).

A more formal definition of Bayesian network and its properties can be found
at [11].

5

Chapter 2

Structure Learning

Learning Bayesian network is a very important part of Machine learning. A
formal definition of this process could be:

Given a set of data, infer the topology for the causal network that
may have generated them together with the corresponding uncer-
tainty distribution. [18]

As stated in the definition, two stages of learning process are distinguished:
learning topology (structure) and learning parameters of a network. While learn-
ing parameters is an important part of the process, the first stage – learning
structure of BN – is much more complex task, hence it is the target of this work
as well as most material in the area of BN learning. One interested in parameter
learning should refer to [14, 19].

There are two main approaches for learning Bayesian network structure:
constraint based approach and score based approach. The first one constructs
the structure of the network based on the conditional tests between variables.
The most famous constraint based algorithms are PC [20] and NPC [21]. The
score based approach traverse DAG space led by data goodness-of-fit criterion
[17]. The criterion is described by a scoring function that measures quality of
the network structure given the data. Some representatives of this approach are
structure learning algorithms K2 [8], B [3], FG [9] and HCMC [5].

Although both approaches are known to provide pretty good results, they
also have well known drawbacks. Constraint based methods tend to need large
data sets, the reasons for this, as stated in [17], are two: firstly to get reliable
estimates from conditional tests between variables with weak conditional de-
pendency; secondly when there is a high number of variables involved. Score
based methods explore the space of all possible DAGs that grows more than
exponentially to the number of variables, therefore score based methods use
heuristics to explore only the part of the DAG-space that is likely to contain
a BN structure, that is optimal given the data. The most widely used heuris-
tic is a hill-climber (HC) greedy search that uses traversal operators to obtain
network neighborhood [17] and choose one or more best candidates for further
search.

Since the constraint based approach requires much larger dataset compared
to the score based the latter have become the approach of choice in most of the
works in the area of BN structure learning.

6

2.1 Score Based Learning

Generally a score based approach searches a DAG space (a set of all possible
DAGs over some set of attributes) using the goodness-of-fit measure which sim-
ply is a score of the BN structure given the data. The higher is the score – the
better is the structure.

Anyway the score alone is not enough. Generally it is computationally im-
possible to check all the possible DAG structures, because it is simply too much
of them. The number of different DAGs given the number of nodes n is expressed
by Robinson’s formula [16] and is stated in equation 2.1.

G(n) =

 1 if n = 0∑n
i=1(−1)i+1

(
n
i

)
2i(n−1)G(n− 1) if n > 0 (2.1)

Since G(n) is more than exponential to n, it is necessary to use some strate-
gies to find the candidates that fit data best without checking all DAG space.
A greedy search is a most popular solution in this situation. Generally it uses
heuristics to traverse the search space by picking path of the best candidates at
every step. Some usual search spaces are:

• The space of all possible DAGs given the attributes. It is usually traversed
using arc operators like addition, deletion and reversion. See subsections
2.3.1 and 2.3.2 for more details and examples.

• The space of all possible attribute orderings. It is used in Ordering Search
(OS) introduced in [22]. In OS it is traversed using simple swap operator
which swaps two adjacent attributes in ordering. See subsection 2.3.3 for
more details and examples.

• The space of equivalence classes. Equivalence class is a group of BNs
that represent the same conditional independence relations. All the BNs
from the same equivalence class are covered by the same partially directed
graph. It can be traversed using the same arc operators like addition, dele-
tion and reversion. See [6] and [15] for more information about equivalence
classes and equivalence class based BN structure learning.

The quality measure often expressed as scoring function is the core of score
based learning. Its main goal is to evaluate how good some BN structure
represents conditional independence properties of the attributes of some given
dataset. The following subsections introduce three quality measures used in this
work. For simplicity, two usual assumptions should be taken into account for
the rest of the article: all the attributes are discrete and there are no missing
values in the data.

2.1.1 Mutual Information

Mutual information (MI) is a simple and natural way to evaluate conditional
dependency of two variables. The higher MI is, the stronger dependence is
between two variables.

I(X; Y) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(2.2)

7

In general it is of the form of equation 2.2 where P (x) is a probability of
variable X having value x. However, as P (x) is usually unknown when learning
structure from the data, the observed frequency P̂ (x) (number of entries where
X = x divided by total number of entries) is used.

Although MI can be used to evaluate the relationship between two variables,
it is not sufficient to be used as the main quality measure for score based BN
structure learning. The reason is that MI is a pairwise function while some parts
of BN can embody more complex relations. Consider a logical XOR relation
in Figure 2.1. The correct BN structure (Figure 2.1a) could not be learned
using MI, because variables X, Y and XOR must be considered all together,
otherwise I(X; XOR) = I(Y ; XOR) = 0 would indicate, that X and XOR
as well as Y and XOR are conditionally independent, thus no arc would be
added between X and XOR as well as Y and XOR. Therefore MI is not
usually concerned as a scoring function. Nevertheless, MI can be successfully
used while approximating initial parent candidates. An example of that could
be a Sparse Candidate algorithm (restriction step) introduced in [10].

(a) BN representation of
XOR relation

X Y XOR
0 0 0
0 1 1
1 0 1
1 1 0

(b) CPT of XOR node

Figure 2.1: XOR relation

In order to overcome limits of MI measure, more advanced metrics have
been introduced. The most popular two of them are described in the following
subsections.

2.1.2 Bayesian Inference Measure

In Bayesian Inference the score is a probability of the network structure given
the data (P (BS |D)). According to a basic probability rule P (BS |D) = P (BS ,D)

P (D) ,
therefore in order to maximize P (BS |D) it is enough to maximize P (BS , D).

P (BS , D) = P (BS)
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! (2.3)

Bayesian Inference uses Bayesian Dirichlet scoring function (BDe) intro-
duced in [8]. It has a form of equation 2.3 for discrete variables, where BS

is a structure of Bayesian network, D is a data set, P (BS) is the prior probabil-
ity of a network structure BS , that can be used to express any prior knowledge
of a structure. n is the number of variables, ri is the arity of a variable Xi,
qi is the number of possible parent (Pa(Xi)) configurations, Nijk is a number
of entries in D where variable Xi is set to its kth value and its parents are
instantiated to their jth configuration and Nij =

∑ri

k=1 Nijk.
Since the equation involves factorials and runs through all of the parent

configurations it is obviously a time costly operation and the results (depending

8

on the number of attributes and entries in data set) are usually extremely small,
therefore a logarithm of the score is often used instead. It replaces multiplication
with summation and provides numbers that are easier to process. Assuming
there is no prior knowledge about the structure being considered, P (BS) can
be set to 1. Therefore the implementation version of the score function can be
expressed in equation 2.4.

log P (BS , D) =
n∑

i=1

qi∑
j=1

[
log((ri − 1)!)− log((Nij + ri − 1)!) +

ri∑
k=1

log(Nijk!)

]
(2.4)

It can also be seen, that both – the original BDe and its logarithmic version
used in implementation are decomposable [17]. It means, that the score of
overall (global) structure is a product or sum of local structure (child-parent
configurations) scores. This property is widely used to improve the efficiency of
a greedy search – it is enough to calculate the local score difference to know the
score difference of all the network.

A more detailed discussion on Bayesian Inference measure and BDe can be
found in [8].

2.1.3 Minimal Description Length

The Minimal Description Length principle employs some ideas from coding the-
ory – it searches for a BN structure that has the shortest sum of lengths of the
encodings of a BN and the data given a BN. So generally the MDL measure is
the number of bits needed to encode a BN and a data set given a BN.

L(BS , D) = log P (BS)−N ·H(BS , D)− 1
2
K · log N (2.5)

Bouckaert in [2] provides a definition of MDL measure as in equation 2.5,
where H(BS , D) =

∑n
i=1

∑qi

j=1

∑ri

k=1−
Nijk

N log Nijk

Nij
and K =

∑n
i=1 qi(ri − 1)

and BS , P (BS), D, n, ri, qi, Nijk, Nij the same as in BDe definition above.
The first term of the equation 2.5 takes the same role as the P (BS) part in

BDe – it embodies any prior knowledge about the structure BS . The second
term N ·H(BS , D) represents the conditional entropy of the structure BS . Fi-
nally, the last term 1

2K · log N is the error, which is introduced by estimating
all the required probabilities BP for the structure BS from the data set D in
H(BS , D), where K is the number of independent probabilities that have to be
estimated.

As it can be seen from the equation 2.5, the tradeoff between accuracy and
complexity of a structure BS is introduced in MDL measure. Entropy H(BS , D)
is smaller when the number of arcs is bigger, because the structure with more
arcs represents the probability distribution in D more accurately. On the other
hand K is bigger when the number of arcs is bigger, because every new arc
increases complexity of the structure. So in order to maximize the measure
L(BS , D) it is necessary to minimize both – H(BS , D) and K, therefore every
new arc must decrease the entropy H(BS , D) enough to overcome the increase
of K.

9

L(BS , D) = log P (BS) +
n∑

i=1

 qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− 1

2
qi(ri − 1)

 (2.6)

After expressing MDL measure as in equation 2.6 it can be clearly seen, that
L(BS , D) is also decomposable, which means that the local score changes are
equal to the changes of global score.

Since both measures – MDL and BDe – look similar, one might wonder if
they actually are equal and at some level one would be right. Bouckaert in [2]
has shown, that the MDL measure (L(BS , D)) is actually the approximation of
the logarithm of BDe (log P (BS , D)). Therefore they can both be used in more
or less the same methods.

One interested to learn more about MDL should refer to [13], [2] or [17].

2.2 Ordering in Score Based Learning

Another quite important concept in score based learning is variable ordering. It
is usually used to constraint a search space by a simple rule – variable X can
only consider another variable Y to be its parent (Y ∈ Pa(X)) if and only if Y
precedes X given ordering.

For example, consider ordering of four variables (A, B, C,D). Then Pa(A) =,
Pa(B) ∈ P({A}), Pa(C) ∈ P({A, B}) and Pa(D) ∈ P({A, B, C}), where P de-
notes power set.

The benefits of having variable ordering in the process of BN structure learn-
ing as noted in [22] are that it reduces search space and helps to avoid expensive
acyclicity checks.

2.3 Algorithms

Some BN structure learning algorithms are introduced in this subsection. While
K2 (2.3.1) and hill climber (2.3.2) are two classical examples of score based BN
structure learning, ordering based search (2.3.3) aims to solve the same problem
in different manner.

2.3.1 K2

K2 is one of the first score based BN structure score algorithms introduced in
[8]. It needs optimal variable ordering and a score function to calculate local
structure. Although originally it uses Bayesian Inference measure in [8], MDL
can also be used in the same manner.

As it can be seen from K2 pseudo code in Figure 2.2, the algorithm iterates
through all n variables and selects at most k parents from at most n− 1 candi-
dates. Hence the overall complexity of the algorithm is O(kn2) which makes it
the fastest score based BN structure learning algorithm (see subsections 2.3.2
and 2.3.3 for comparison). Its complexity is comparatively small because it
uses an optimal ordering of variables to constraint the DAG space that is being
searched – the algorithm avoids an expensive step selecting valid parameters

10

Require: X = {X1, · · · , Xn} – a set of variables, ≺ – an optimal ordering of
variables in X, D – a data set, g – a decomposable scoring function, k – a
maximum number of parents and a function Prec(Xi) = {X : X ≺ Xi}

Ensure: for each variable Xi an optimal parent set Pa(Xi) (|Pa(Xi)| ≤ k)
1: for Xi in X do
2: Pa(Xi) = ∅
3: Scurrent = g(Xi, Pa(Xi), D)
4: proceed = true
5: while proceed and |Pa(Xi)| ≤ k do
6: Xz = argmaxX∈Prec(Xi)\Pa(Xi)g(Xi, Pa(Xi) ∪X, D)
7: Snew = g(Xi, Pa(Xi) ∪Xz, D)
8: if Snew > Scurrent then
9: Pa(Xi) = Pa(Xi) ∪Xz

10: Scurrent = Snew

11: else
12: proceed = false
13: end if
14: end while
15: end for

Figure 2.2: The pseudo code of K2 algorithm

for traversal operators (see subsection 2.3.2 for more details). Unfortunately
optimal ordering is usually not available thus making K2 impractical in most
situations.

2.3.2 Hill Climber Greedy Search

Hill climber greedy search (HC) is a general heuristic for score based DAG
search. In other words it is a class of many similar algorithm, starting with very
simple B [3], FG [9] and including some advanced and complicated HCMC [5]
and ORSearch [1]. While varying in difficulty and resulting structure quality,
most of them can be represented by a simplified generic HC algorithm described
in Figure 2.3.

A new element scenario is introduced for convenience – it can be viewed as
a simple structure containing three fields: operator – an operator being applied,
parameters – parameters for operator being applied and gain – a score gain of
the operator being applied.

While it might look quite sophisticated from the pseudo code in Figure 2.3, it
is much easier to imagine when having particular parameters in mind. Consider
OP contains the three usual arc operators – addition, deletion and reversal.
Then a typical scenario would be

 operator : Addition
parameters : {Xi, Xj}
gain : g(Xi, Pa(Xi) ∪Xj , D)− g(Xi, Pa(Xi), D)

The function GetS(op) depending on op would return: scenarios for every

two nodes where arc can be added without introducing a cycle, if op = Addition;

11

Require: X = {X1, · · · , Xn} – a set of variables, D – a data set, g – a decom-
posable scoring function, OP – a set of traversal operators, GetS(op) – a
function returning all valid scenarios for operator op being applied on DAG

Ensure: DAG – a DAG representing locally optimal structure over X given
data D

1: DAG – an arcless DAG over X
2: Scurrent = g(DAG,D)
3: proceed = true
4: while proceed do
5: SC = ∅
6: for op ∈ OP do
7: SCop = GetS(op)
8: for s ∈ SCop do
9: let Lbefore be a local structure targeted by s before applying op

10: let Lafter be a local structure targeted by s after applying op
11: s.gain = g(Lafter, D)− g(Lbefore, D)
12: end for
13: SC = SC ∪ SCop

14: end for
15: sbest = argmaxs∈SCs.gain
16: if sbest.gain > 0 then
17: apply sbest.operator on DAG given sbest.parameters
18: Scurrent = Scurrent + s.gain
19: else
20: proceed = false
21: end if
22: end while

Figure 2.3: The pseudo code of generic HC algorithm

scenarios for every arc, if op = Deletion; scenarios for every arc where it can be
reversed without introducing a cycle, if op = Reversal.

Having the same usual three operators in mind, the complexity of the func-
tion GetS(op) is O(n2) as there are at most n(n − 1) arcs to be evaluate for
every operator. Thus every iteration of the outer loop is O(3n2) = O(n2) com-
plex which is more or less equivalent to running K2 with maximum number of
parents k = 3, which is quite realistic. Nevertheless HC usually iterates more
than once (unless it starts with optimal DAG), thus it tends to need more time
than K2.

For more profound explanation of hill climber greedy search in general and
particular algorithms and their implementation details one should refer to [17],
[3], [9], [5] and [1].

2.3.3 Ordering Based Search

Ordering based search (OS) addresses the problem of learning optimal BN struc-
ture given the data in a different way compared with K2 and HC. Instead of
traversing DAG search space, it traverses the space of attribute orderings. Ac-
cording to [22] it does so, because ordering search space is much smaller than

12

DAG search space, the search steps are more global (hence it is supposed to
escape local optima better) and it avoids expensive acyclicity checks.

Require: all the same as in main algorithm in Figure 2.6, X – a variables, C
– a set of parent candidates and k – a maximum number of parents

Ensure: best – best parent set for variable X given candidates C
1: P = {P : P ∈ P(C), |P | ≤ k}
2: best = argmaxP∈Pg(X,P, D)
3: return best

Figure 2.4: The pseudo code of best function used in OS algorithm

Require: all the same as in main algorithm in Figure 2.6, Xi, Xj – two adjacent
variables (j = i + 1), Pa(Xi), Pa(Xj) already computed and ≺ – ordering
of variables

Ensure: gain – a score gain of swapping Xi and Xj in ordering ≺
1: Pa′(Xi) = best(Xi, P rec(Xi,≺) ∪Xj , k)
2: Pa′(Xj) = best(Xj , P rec(Xj ,≺)\Xi, k)
3: gaini = g(Xi, Pa′(Xi), D)− g(Xi, Pa(Xi), D)
4: gainj = g(Xj , Pa′(Xj), D)− g(Xj , Pa(Xj), D)
5: gain = gaini + gainj

6: return gain

Figure 2.5: The pseudo code of gain function used in OS algorithm

As OS is still a score based search it also uses score which is the score of
the best structure consistent with given ordering. The method for doing that as
proposed in [22] is simply to select the best possible parent set given ordering
for every node. The function best in Figure 2.4 does exactly that, where P(C)
means the power set of C. Obviously the number of parent sets to evaluate for

variable Xi is
∑k

l=0

(
i
l

)
, where k is the maximum number of parents. As(

n
k

)
= O(nk), the complexity of the overall function best is also O(nk).

Pseudo code of the OS algorithm can be seen in Figure 2.6. The algorithm
first precomputes best parent sets for every variable and evaluates the gain of
swapping two adjacent variable in the ordering. It then loops as long as the
best gain is positive. The algorithm applies the best gain swap on the current
ordering, updates the parent sets of swapped variables and evaluates two new
swap possibilities at every iteration.

In order to make it clear how the algorithm works, consider a small example
of the BN over four variables A, B,C, D (see Figure 2.7a). Assume the original
BN structure in Figure 2.7a is the optimal structure, hence it is a desired re-
sult of OS. Then there are 4 optimal orderings for it: (A, C,B, D), (A, C,D, B),
(C, A,B,D), (C, A,D, B). Ideally it should be, that gain(A, C) = gain(C, A) =
gain(B, D) = gain(D,B) = 0, gain(B, A), gain(D,A), gain(B, C), gain(D,C) >
0 and gain(A, B), gain(A, D), gain(C, B), gain(C, D) < 0. Consider non-
optimal random orderings (D,B,C, A) and (A, D, B, C) – OS algorithm should
take learning paths depicted in Figures 2.7b and 2.7c respectively.

13

Require: X = {X1, · · · , Xn} – a set of variables, D – a data set, g – a de-
composable scoring function, k – a maximum number of parents, a function
Prec(Xi,≺) = {X : X ≺ Xi}, gain(Xi, Xj ,≺) – a function returning score
gain of swapping Xi and Xj in ≺ (see Figure 2.5), best(X,C) – a function
selecting best X parent set given candidates C (see Figure 2.4)

Ensure: DAG – a DAG representing optimal structure over X given data D
1: let ≺ be some random ordering of variables in X
2: for Xi ∈ X do
3: Pa(Xi) = best(Xi, P rec(Xi,≺), k)
4: if i < n then
5: gaini(i+1) = gain(i, i + 1,≺)
6: end if
7: end for
8: proceed = true
9: while proceed do

10: i, j = argmaxi,jgainij

11: if gainij > 0 then
12: swap Xi and Xj in ≺
13: swap i and j
14: Pa(Xi) = best(Xi, P rec(Xi,≺), k)
15: Pa(Xj) = best(Xj , P rec(Xj ,≺), k)
16: gainij = −gainji

17: gain(i−1)i = gain(i− 1, i,≺)
18: gainj(j+1) = gain(j, j + 1,≺)
19: else
20: proceed = false
21: end if
22: end while
23: construct DAG according to Pa(Xi) for every Xi ∈ X

Figure 2.6: The pseudo code of OS algorithm

While choosing best parent sets and evaluating swap possibilities are sepa-
rated for the sake of clarity in Figure 2.6, both of them can be optimized by
merging in order to have only one run over possible parent sets. Even though it
does not decrease the complexity of the algorithm which is O(nk+1) for initial-
ization and O(nk) for every iteration. Although the author in [22] claims that
OS can be faster and produce higher quality structures than HC, logic however
is against that claim – OS is a more complex algorithm than HC, given k > 2
and this fact is supported by experiments in section 4.

14

(a) A Bayesian network (b) Ordering learn path
for random ordering
(D, B, C, A)

(c) Ordering learn path
for random ordering
(A, D, B, C)

Figure 2.7: OS example

15

Chapter 3

Ordering Estimation

The aim of Ordering Estimation (OE) method is to improve ordering based
or dependant BN structure learning algorithms like K2 and OS. While optimal
ordering is one of the requirements for K2, OS can also benefit from that, because
optimal ordering could simply shorten the search path (as it is already what OS
searches for) by reducing the number of iterations needed. The quality of the
resulting BN structure is also expected to increase since again, in K2 optimal
ordering is one of the requirements to learn optimal BN structure and in the
case of OS it should be easier to find higher quality ordering and escape local
minimas as the search already starts with higher quality ordering and it does
not take steps that could decrease it.

To find an optimal ordering by exhaustive search is in fact computationally
impossible as the number of all possible orderings over n variables is O(nn) =
2O(n log2 n). Again, just like in the case of optimal BN structure search – heuris-
tics could be used and that is actually what OS do. Nevertheless, the complexity
of OS (O(nk+1) for initialization and O(nk) for every iteration) is already im-
practical. Therefore the purpose of OE is not to find an optimal ordering, but to
estimate a good ordering as close to optimal as it is possible by using reasonable
computational resources. A good ordering can be defined as the ordering which
can be used in ordering based or dependant structure learning algorithms to
get higher average score compared with random ordering without loosing much
time.

In order to estimate ordering it is necessary to have some criterion based
on which variables are ordered. Consider a weight set W = {w1, · · · , wn},∀i ∈
{1, · · · , n}, wi ∈ R where wi represents the weight of variable Xi. These weights
can be used to define variable ordering in the way, that Xi ∈ X precedes Xj ∈ X
if and only if wi > wj . Hence variable Xi can only be a parent of Xj if wi > wj .
Therefore estimating optimal ordering can be restated as estimating weights W
such that for every Xj ∈ X and for every Xi ∈ Pa(Xj) holds wi > wj .

It is hard to imagine how can this be done without building BN structure
itself, but remember that the goal is to estimate a good ordering (not necessarily
optimal). Therefore the accuracy of estimating W can be relaxed as long as the
resulting ordering is good ordering.

Intuitively, weights W must contain values for every node starting with the
highest values for top parents and finishing with the lowest values for bottom
children. Three methods aiming to do that are introduced in the following

16

sections.

3.1 OE1 – Scoring Function Approach

The first ordering estimation method (OE1) aims to build weights W using
scoring function (see subsection 2.1). It simply counts the positive, zero and
negative score gains of every variable Xi being a single parent of every other
variable Xj ∈ X\Xi (equation 3.1).

wi =
{1,··· ,n}\i∑

j

sgn(g(Xj , {Xi}, D)− g(Xj , ∅, D)) (3.1)

OE1 comes with the naive assumption that a parent or a grandparent has
better chances to be a parent than a child or a grandchild. This way, the closer
to the top variable is, the more other variables find it good as a parent (positive
and higher score gain) and the closer to the bottom variable is, the more other
variables find it bad as a parent (negative or low score gain). The sgn of a score
gain is taken, because local scores of different structures cannot be compared.

The overall algorithm can be seen in Figure 3.1.

Require: X = {X1, · · · , Xn} – a set of variables, D – a data set, g – a decom-
posable scoring function

Ensure: ≺ – estimated ordering
1: W = {w1, · · · , wn} a set of weights, where wi is the weight of Xi

2: for wi ∈W do
3: wi = 0
4: end for
5: for Xi ∈ X do
6: for Xj ∈ X\{Xi} do
7: wj = wj + sgn(g(Xi, {Xj}, D)− g(Xi, ∅), D))
8: end for
9: end for

10: ≺ – a new ordering for variables in X
11: sort ≺ according to weights in W

Figure 3.1: The pseudo code of OE1 algorithm

3.2 OE2 – Mutual Information Approach

The second ordering estimation method (OE2) is similar to OE1. The only
difference is that it sums mutual information (MI) of every variable Xi pairwise
with every other variable Xj ∈ X\Xi (equation 3.2).

wi =
{1,··· ,n}\i∑

j

MI(Xi, Xj , D)) (3.2)

17

Again OE2 comes with an assumption that a parent or a grandparent has
better chances to get higher MI values with other variables than a child or a
grandchild.

The overall algorithm can be seen in Figure 3.2.

Require: X = {X1, · · · , Xn} – a set of variables, D – a data set, m – a mutual
information function (see equation 2.2 in subsection 2.1.1).

Ensure: ≺ – estimated ordering
1: W = {w1, · · · , wn} a set of weights, where wi is the weight of Xi

2: for wi ∈W do
3: wi = 0
4: end for
5: for Xi ∈ X do
6: for Xj ∈ X\{Xi} do
7: wj = wj + m(Xi, Xj , D)
8: end for
9: end for

10: ≺ – a new ordering for variables in X
11: sort ≺ according to weights in W

Figure 3.2: The pseudo code of OE2 algorithm

3.3 OE3 – Dependence Tree Approach

The third ordering based method (OE3) is a bit more advanced than OE1 and
OE2. It uses Dependence Tree (DT) to get weights W . DT is a graphical model
introduced by [7], where the author shows that a discrete n-dimensional proba-
bility distribution can be approximated by product of second-order distributions
in a form of equation 3.3 where P (Xi|X0) = P (Xi).

P ((X)) =
n∏
i

P (Xi|Xj(i)), 0 ≤ j(i) < i (3.3)

In fact a pair consisting of the variable set (X) = {X1, · · · , Xn} and the
mapping j(i) where 0 ≤ j(i) < i is called the dependence tree of the dis-
tribution P . It can be represented as a spanning tree in a directed graph
where nodes X1, · · · , Xn are represented by vertices and there exists a di-
rected arc from Xi to Xk for every pair of variables Xi and Xk such that
k = j(i). An example of dependence tree for probability distribution P (X) =
P (X2|X1)P (X3|X2)P (X4|X2)P (X5|X2)P (X6|X5) can be found in Figure 3.3.

While there are nn−2 possible dependence trees for n variables, the optimal
one, that approximates probability distribution best is desired. Mutual infor-
mation (MI) of every pair of variables that have arc between them is used as
a weight of the arc. As stated in [7] the maximum weight dependence tree is
an optimal approximation of P (X). Now the problem of finding a maximum
weight dependence tree can be seen as very similar to finding minimal spanning
tree in a directed graph. The only difference is that it should pick arcs with
maximum instead of minimum weights. As proposed in [7], Kruskal’s algorithm
([12]) which is O(n2 log n) complex is used for that.

18

Figure 3.3: Example of a dependence tree

The OE3 method comes with the assumption, that the closer to the top node
is, the more general variable it represents and the closer to the bottom it is, the
more specific variable it represents. This is assumed for both – BN as well as
DT, but since DT is easier to construct, the goal of OE3 is to simply come up
with an optimal ordering of DT. As DT is also DAG, the definition of optimal
ordering is the same as for BN.

Algorithm for OE3 can be seen in Figure 3.4.

19

Require: X = {X1, · · · , Xn} – a set of variables, D – a data set, m – a mutual
information function (see equation 2.2 in subsection 2.1.1).

Ensure: ≺ – estimated ordering
1: W = {wij : i, j ∈ {1, · · · , n}, i < j ≤ n}, where wij is the weight of arc

Xi → Xj

2: for ∀i ∈ {1, · · · , n} do
3: for ∀j ∈ {i + 1, · · · , n} do
4: wij = m(Xi, Xj , D)
5: end for
6: end for
7: DAG – an arcless DAG over X
8: C = {Ci = {Xi} : i ∈ {1, · · · , n}}, were Ci is set of variables Xi has a path

to
9: while W 6= ∅ do

10: i, j = argmaxijwij

11: if Xj 6∈ Ci then
12: add Xi → Xj to DAG
13: Ci = Cj = Ci ∪ Cj

14: W = W\{wsi}
15: end if
16: end while
17: ≺= ∅ – a new ordering
18: while | ≺ | < n do
19: for Xi ∈ X do
20: if Xi 6∈≺ and ∀Xj ∈≺: Xj ∈ Pa(Xi) then
21: add Xi to the rightmost of ≺
22: end if
23: end for
24: end while

Figure 3.4: The pseudo code of OE3 algorithm

20

Chapter 4

Experiments

Two kinds of experiments have been conducted: the first to check the assump-
tion of OE1 and OE2 and the second to test how proposed OE algorithms work.
Four Bayesian networks have been used to generate test cases: Studfarm (12
nodes), Boblo (22 nodes), Boerlage92 (22 nodes) and Alarm (37 nodes). Table
4.1 shows how many different data sets of different sizes have been used during
experimenting.

Studfarm Boblo Boerlage92 Alarm
Entries Sets Entries Sets Entries Sets Entries Sets

2000 100 2000 100 2000 10 2000 10
4000 100 4000 100 4000 10 4000 10
8000 100 8000 100 8000 10 8000 10

16000 100 16000 100 16000 10 16000 10
32000 100 32000 10 32000 10
64000 100

Table 4.1: Datasets used

4.1 Assumptions of OE1 and OE2

The goal of the first part of experiments is to check the assumption introduced
in subsections 3.1 and 3.2. It states, that in BN the closer to the top a variable
is, the more other variables find it good as a parent and the closer to the
bottom it is, the less other variables find it good as a parent. According to this
assumption, variables closer to the top are expected to get more positive and
higher score gains while being evaluated as parents to other variables in case of
OE1 and higher MI values while being evaluated with other variables in case of
OE2. So the task for experiments is simply to compare the weights generated
by OE1 and OE2 to some attributes of variables that describe their position
between the top and the bottom of original BN. The numbers of ancestors and
successors are expected to do that because obviously, variables closer to the
top have less ancestors and might (although need not to) have more successors.
Therefore experiment simply uses a data sets to generate OE1 and OE2 weights

21

for every variable, averages them and calculates the correlation to the numbers
of ancestors and successors for every variable.

Variable Successors Ancestors OE1 weight OE2 weight
K 3 0 -5 0.0278
John 0 11 9 0.1036
Gwenn 2 2 2 0.0826
Irene 1 6 8 0.0955
Dorothy 2 2 4 0.0952
Henry 1 5 6 0.1010
Brian 5 0 -1 0.0561
Eric 2 2 0 0.0717
Ann 6 0 0 0.0843
Fred 2 2 2 0.0825
Cecily 3 0 -5 0.0278
L 3 0 -5 0.0284

Correlation with Successors -0.64 -0.45
Correlation with Ancestors 0.87 0.69

Table 4.2: OE1 and OE2 assumption check results for Studfarm

As it can be seen in the results tables (Table 4.2 – 4.5), the correlation be-
tween OE1 weights and the number of ancestors of variable is pretty high for
BNs Studfarm (Table 4.2), Boblo (Table 4.3) and Alarm (Table 4.5). Unfor-
tunately, as it can be seen in Table 4.4, there is no correlation in case of BN
Boerlage92. OE2 weights, on the other hand, seem to have reasonable correla-
tion only in case of Studfarm and Alarm as well as the same correlation (just
positive) as OE1 weights in case of Boerlage92. It is hard to make any firm
conclusion out of this alone before results of the second part of experiments are
present.

4.2 Ordering Estimation in Action

The second and more important part of experiments aims to test if ordering
estimation methods really work. Additionally, reversed ordering for every OE
method was also tested. Call them OE1R, OE2R and OE3R respectively.

During experiment phase, tests are run for all datasets. AD-trees are build
for every dataset in order to boost up score function evaluation time as it ef-
ficiently caches all data frequency counts. Refer to [4] for more information
concerning AD-trees. A single step can be described as:
1: Build AD-tree for a dataset
2: Execute OS with optimal ordering
3: Execute OS with ordering prepared by OE1
4: Execute OS with ordering prepared by OE1R
5: Execute OS with ordering prepared by OE2
6: Execute OS with ordering prepared by OE2R
7: Execute OS with ordering prepared by OE3
8: Execute OS with ordering prepared by OE3R

22

Variable Successors Ancestors OE1 weight OE2 weight
f3 0 8 8 1.3000
f2 0 8 7 0.1800
asts2 0 3 -6 1.2600
asts1 0 3 -6 1.2600
astd2 0 3 -6 1.3000
astd1 0 3 -6 1.3100
sc 2 1 -16 0.1000
dc 2 1 -16 0.0600
pe 6 0 -16 0.1300
f1 0 8 7 1.3700
atd2 7 0 -6 1.3100
atd1 7 0 -6 1.3100
ats2 7 0 -6 1.2800
ats1 7 0 -6 1.2800
aph2 5 2 -2 1.8300
aph1 5 2 -2 1.8400
ageno 4 6 7 3.2700
f4 0 8 7 1.0400
node20 1 0 -19 0.0000
node21 1 0 -18 0.0000
node22 1 0 -19 0.0000
node23 1 0 -19 0.0000

Correlation with Successors -0.07 0.29
Correlation with Ancestors 0.86 0.36

Table 4.3: OE1 and OE2 assumption check results for Boblo

9: Execute OS 20 times (5 in case of Boerlage92 and Alarm) with random
ordering

10: Execute K2 with optimal ordering
11: Execute K2 with ordering prepared by OE1
12: Execute K2 with ordering prepared by OE1R
13: Execute K2 with ordering prepared by OE2
14: Execute K2 with ordering prepared by OE2R
15: Execute K2 with ordering prepared by OE3
16: Execute K2 with ordering prepared by OE3R
17: Execute K2 20 times (5 in case of Boerlage92 and Alarm) with random

ordering
18: Execute HC (see section 4.3)

As maximum number of parents is required for OS and K2, the actual num-
bers where used: 2 for Studfarm and Boblo and 4 for Boerlage92 and Alarm.

The results are average, variance and standard deviation of resulting BN
score, run time and iteration count in case of OS. The spreadsheet contain-
ing complete results should be available on the project website at http://cs.
aau.dk/~cerberus. Because of limitations of this print form, only the most
important part of the results is present in this paper.

23

http://cs.aau.dk/~cerberus
http://cs.aau.dk/~cerberus

Variable Successors Ancestors OE1 weight OE2 weight
C21 0 20 -13 0.0600
C19 4 13 -6 0.6300
C18 5 12 -6 0.6300
C16 6 11 0 0.2200
C14 9 5 3 0.3400
C13 1 8 -10 0.0700
C12 10 3 -16 0.0300
C11 12 4 2 0.4100
C10 2 7 -1 0.2400
C8 14 3 -6 0.0900
C7 11 2 -6 0.1000
C6 21 0 -10 0.0900
C5 20 1 1 0.1500
C4 17 2 2 0.3800
C3 4 3 -6 0.3600
C2 0 5 -6 0.3500
C1 1 0 -19 0.0100
C22 9 6 -13 0.0500
C23 8 8 0 0.2800
C24 7 9 -4 0.1600
C25 3 14 -6 0.2300
C26 2 15 -10 0.1900
C27 1 16 -13 0.1000

Correlation with Successors 0.38 -0.06
Correlation with Ancestors -0.15 0.15

Table 4.4: OE1 and OE2 assumption check results for Boerlage92

24

MinVol 0 7 3 3.4600
Press 0 6 5 2.9100
PAP 0 1 -31 0.0400
ExpCO2 0 9 5 4.0300
HRBP 0 20 14 3.1200
ErrLowOutput 1 0 -33 0.0300
HRSat 0 20 14 2.8800
HREKG 0 20 13 2.8800
ErrCauter 2 0 -31 0.0700
BP 0 23 17 1.0600
History 0 1 -22 0.3100
CO 1 22 24 2.9500
HR 5 18 13 3.5300
Catechol 6 17 15 3.0600
ArtCO2 8 8 5 3.6500
TPR 7 1 -19 0.6500
Anaphylaxis 8 0 -24 0.0300
SaO2 7 12 10 3.5000
PVSat 8 9 8 3.8500
FiO2 9 0 -22 0.0400
VentAlv 11 7 5 4.6000
VentLung 13 6 3 3.9500
VentTube 15 3 0 2.4600
Disconnect 16 0 -4 0.9000
VentMach 16 1 -6 0.9900
MinVolSet 17 0 -9 0.4300
KinkedTube 15 0 -6 0.5100
Shunt 8 2 -4 0.5600
Intubation 16 0 -4 1.0400
PulmEmbolus 10 0 -21 0.0600
InsuffAnesth 7 0 -21 0.3800
PCWP 0 3 -19 1.7800
CVP 0 3 -20 1.6600
StrokeVolume 2 2 -20 1.4000
LVEDVolume 2 2 -20 2.0900
LVFailure 7 0 -22 0.3700
Hypovolemia 6 0 -23 1.5100
Correlation with Successors -0.01 -0.15
Correlation with Ancestors 0.84 0.62

Table 4.5: OE1 and OE2 assumption check results for Alarm

25

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Entries Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

2000 -843 7 -844 6 -877 5 -855 6 -878 6 -870 7 -881 7 -876 7
4000 -1601 7 -1602 7 -1665 7 -1622 7 -1667 7 -1642 9 -1684 9 -1667 8
8000 -3111 10 -3111 9 -3226 9 -3134 10 -3238 10 -3190 12 -3272 12 -3233 12

16000 -6121 8 -6121 7 -6336 8 -6150 8 -6354 8 -6281 10 -6436 10 -6358 10

Table 4.6: Experiment results for network Studfarm running OS algorithm

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Entries Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

2000 -844 1 -856 1 -888 1 -844 1 -844 1 -899 1 -929 1 -909 1
4000 -1602 1 -1611 1 -1688 1 -1602 1 -1602 1 -1712 2 -1797 2 -1743 1
8000 -3111 2 -3113 2 -3275 2 -3111 2 -3111 2 -3346 2 -3535 2 -3409 2

16000 -6121 1 -6128 2 -6439 2 -6121 2 -6121 1 -6610 2 -7046 2 -6741 2

Table 4.7: Experiment results for network Studfarm running K2 algorithm

26

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Entries Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

2000 -9903 76 -9904 76 -9987 80 -11091 76 -9929 77 -10167 74 -10287 73 -10415 74
4000 -19282 74 -19279 75 -19507 79 -21447 77 -19362 75 -19793 71 -20058 71 -20276 74
8000 -37865 74 -37863 78 -38340 81 -43053 76 -38032 77 -38845 72 -39381 71 -39894 75

16000 -75065 74 -75063 77 -76063 79 -85402 74 -75374 77 -76947 72 -78038 72 -78950 74
32000 -149081 72 -149079 74 -151049 79 -170089 75 -149652 75 -152741 75 -154921 70 -156584 73
64000 -297310 72 -297309 72 -300877 78 -341601 75 -298441 76 -304391 77 -308895 70 -312487 74

Table 4.8: Experiment results for network Boblo running OS algorithm

27

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Entries Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

2000 -9907 11 -10251 9 -10187 8 -11333 9 -10076 9 -10482 10 -10337 10 -10700 10
4000 -19284 10 -19892 9 -19964 8 -22409 9 -19682 9 -20422 9 -20140 10 -20911 10
8000 -37866 10 -38400 10 -39288 8 -43954 9 -38715 9 -40110 9 -39564 10 -41221 10

16000 -75066 10 -75401 11 -77953 8 -86958 9 -76848 9 -79503 9 -78411 10 -81578 11
32000 -149082 11 -149218 13 -154813 9 -172395 10 -152659 10 -157900 9 -155629 10 -161614 10
64000 -297311 9 -297315 13 -308502 9 -343974 9 -304406 9 -314932 10 -310289 10 -322990 10

Table 4.9: Experiment results for network Boblo running K2 algorithm

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Entries Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

2000 -20525 5255 -20605 5157 -20553 5104 -20589 6075 -20556 5015 -20549 4454 -20589 5714 -20593 4955
4000 -41012 5061 -41152 4811 -41056 4897 -41129 5793 -41060 4840 -41056 4359 -41115 5539 -41113 4890
8000 -81805 4623 -82009 4906 -81855 4658 -81966 5709 -81889 4537 -81874 4078 -81969 5348 -81977 4603

16000 -163313 4471 -163562 4443 -163429 4010 -163524 5501 -163448 4090 -163401 3779 -163529 5042 -163537 4289
32000 -326405 3841 -326725 4093 -326557 3785 -326681 5045 -326583 3833 -326513 3567 -326667 4743 -326716 4071

Table 4.10: Experiment results for network Boerlage92 running OS algorithm

28

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Entries Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

2000 -20853 14 -20646 20 -20875 12 -20832 24 -20906 12 -20569 14 -20956 15 -20716 16
4000 -41673 9 -41202 21 -41619 12 -41438 22 -41762 12 -41078 14 -41785 16 -41393 16
8000 -83140 8 -82096 20 -83148 11 -82175 22 -83293 12 -81900 14 -83253 14 -82427 16

16000 -166277 7 -163700 19 -165439 10 -163898 22 -166272 12 -163437 14 -165819 13 -164488 16
32000 -332284 7 -326938 18 -331592 10 -327316 21 -332188 11 -326570 14 -330636 14 -328587 15

Table 4.11: Experiment results for network Boerlage92 running K2 algorithm

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

-19639 203566 -20076 215967 -20224 241356 -20754 243875 -20047 229714 -20393 232888 -20949 222871 -20552 214183
-38398 217984 -38740 231038 -39240 257050 -40382 269315 -38983 243595 -39605 247656 -40412 238285 -39754 229281
-75942 230657 -76106 243976 -77064 270909 -79690 278455 -76740 254931 -77857 260097 -79003 252180 -78067 244182

-150729 242566 -150733 257271 -152327 276282 -157297 300789 -151726 269695 -153797 272194 -155188 263795 -154068 255417
-300264 264846 -300269 284572 -302420 292633 -311660 310943 -301728 281015 -305467 281903 -306974 276841 -305113 280059

Table 4.12: Experiment results for network Alarm running OS algorithm

29

Optimal OE1 OE1R OE2 OE2R OE3 OE3R Random
Entries Score Time Score Time Score Time Score Time Score Time Score Time Score Time Score Time

2000 -19681 131 -20164 184 -20404 223 -21425 284 -20150 224 -20489 207 -21104 284 -20738 236
4000 -38462 133 -39118 203 -39500 253 -41512 301 -39110 243 -39760 233 -40733 332 -39996 263
8000 -76026 139 -76999 219 -77356 281 -81382 340 -76936 268 -78104 267 -79575 365 -78504 299

16000 -150851 141 -151510 214 -153021 303 -160960 359 -152009 255 -154247 287 -156137 427 -154635 311
32000 -300425 165 -301277 234 -303482 310 -319224 369 -302077 266 -306262 331 -308511 454 -306186 367

Table 4.13: Experiment results for network Alarm running K2 algorithm

30

Tables 4.6 – 4.13 represent averages of resulting BN score and run time for
BNs Studfarm (Table 4.6 and 4.7 for OS and K2 respectively), Boblo (Tables 4.8
and 4.9), Boerlage92 (Tables 4.10 and 4.11) and Alarm (Tables 4.12 and 4.13).
The best average score of resulting BN is bolded and better than random average
score is underlined for every dataset size. Only OE methods are considered while
selecting best and better than random averages, as Optimal ordering obviously
(and experiments prove that) is always the best. Although best averages are
not underlined, they have shown always to be better than random. There is no
Entries column in Table 4.12, but it is the same as in Table 4.13.

Some simple statistics about every OE algorithm being best or at least better
than random can be found in Tables 4.14 – 4.17. According to this statistics
OE1 have been best while running OS (Table 4.14) for most of the times. On
the other hand OE2R turned out to be best while running K2 (Table 4.15) for
most of the times. While getting best result is important and here is where
OE1 and OE2R good in case of OS and K2 respectively, reliability is even more
important and this is where OE3 together with OE1R and OE1 together with
OE3 is better in case of OS and K2 respectively. So OE3 is obviously the most
reliable OE method (out of the three proposed) with only two minor exceptions
on Alarm (Tables 4.12 and 4.13 32000 entries cases) for both BN structure
learning algorithms considered (OS and K2).

It is really hard to make a conclusion which method is generally the best.
OE1 could take this position but it provides exceptionally not the best or even
the better than random average score for Boerlage92 network in case of OS. As
OE1R average scores are better than OE1 (and even best for datasets of size
4000 and 8000) in Table 4.10, it seems that OE1 method prepares pretty much
a reversed ordering compared to the optimal one. So, although OE1 seems to
be quite reliable in case of K2 it is not even guaranteed to estimate better than
random ordering in case of OS.

At this point OE1 and OE2 assumption experiments from section 4.1 should
be remembered. The relation of OE1 being highly effective on BNs Studfarm,
Boblo and Alarm and OE1 weight correlating well with ancestor count of vari-
ables while both factors failing on Boerlage92 indicate, that the assumption at
least for OE1 might be true. On the other hand there is OE2 and there is no
notable relation in its case. This could lead two ways: either scoring function
suits better than mutual information for ordering estimation or the assumption
is wrong. Obviously more experiments are needed to conclude which one (or
both) are right.

Entries OE1 OE1R OE2 OE2R OE3 OE3R
2000 2 0 0 1 1 0
4000 3 1 0 0 1 0
8000 3 1 0 0 0 0

16000 3 0 0 0 1 0
32000 2 0 0 0 1 0
Total 13 2 0 1 4 0

Table 4.14: Best OE algorithm statistics for OS

31

Entries OE1 OE1R OE2 OE2R OE3 OE3R
2000 0 0 1 3 1 0
4000 0 0 1 3 1 0
8000 1 0 1 2 1 0

16000 2 0 1 1 1 0
32000 2 0 0 0 1 0
Total 5 0 4 9 5 0

Table 4.15: Best OE algorithm statistics for K2

Entries OE1 OE1R OE2 OE2R OE3 OE3R
2000 3 3 2 3 4 2
4000 3 4 1 3 4 1
8000 3 3 1 3 3 2

16000 3 3 1 3 3 2
32000 2 3 1 3 2 2
Total 14 16 6 15 16 9

Table 4.16: Better than random OE algorithm statistics for OS

4.3 Ordering Estimation Compared to Hill-Climber

While OE1 and OE3 methods have provided best results it is also interesting to
see how their improvements on OS and K2 compares with Hill-Climber which
has been included in experiments. Tables 4.18 – 4.25 provide the results for BNs
Studfarm (Tables 4.6 and 4.7 for OS and K2 respectively), Boblo (Tables 4.8
and 4.9), Boerlage92 (Tables 4.10 and 4.11) and Alarm (Tables 4.12 and 4.13).
Best average scores are bolded and and better than HC are underlined.

Obviously the results confirm, that even a generic HC is really hard to beat.
In case of Studfarm and Alarm OS have managed to produce better structures
while in case of Boblo and Boerlage92 HC has advantage. Anyway experiments
confirmed that the complexity of OS is higher having maximum number of
parents k > 2. OS executes faster for Studfarm and Boblo with k = 2, but the
time grows exponentially when k = 4 for Boerlage92 and Alarm.

Anyway, when OS becomes impractical with k > 2, K2 proves to be really
very fast. Although K2 average scores are worse than HC, running K2 with OE1
estimated orderings results are close to those got by running it with optimal
ordering, which is more or less the limit of K2. Also most of them are above the

Entries OE1 OE1R OE2 OE2R OE3 OE3R
2000 4 3 1 3 4 1
4000 4 3 1 3 4 1
8000 4 3 2 3 4 1

16000 4 3 2 3 4 1
32000 3 2 1 2 2 1
Total 19 14 7 14 18 5

Table 4.17: Better than random OE algorithm statistics for K2

32

results of running K2 with random ordering. Having this in mind, K2 becomes
more practical as it is now possible to benefit from its high speed without having
an optimal ordering which is usually unknown.

33

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -843 7 -844 6 -870 7 -876 7 -860 16
4000 -1601 7 -1602 7 -1642 9 -1667 8 -1628 15
8000 -3111 10 -3111 9 -3190 12 -3233 12 -3149 20

16000 -6121 8 -6121 7 -6281 10 -6358 10 -6181 23

Table 4.18: OS with OE1 and OE3 compared to HC for Studfarm

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -844 1 -856 1 -899 1 -909 1 -860 16
4000 -1602 1 -1611 1 -1712 2 -1743 1 -1628 15
8000 -3111 2 -3113 2 -3346 2 -3409 2 -3149 20

16000 -6121 1 -6128 2 -6610 2 -6741 2 -6181 23

Table 4.19: K2 with OE1 and OE3 compared to HC for Studfarm

34

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -9903 76 -9904 76 -10167 74 -10415 74 -9884 110
4000 -19282 74 -19279 75 -19793 71 -20276 74 -19269 124
8000 -37865 74 -37863 78 -38845 72 -39894 75 -37864 126

16000 -75065 74 -75063 77 -76947 72 -78950 74 -75099 140
32000 -149081 72 -149079 74 -152741 75 -156584 73 -149077 161
64000 -297310 72 -297309 72 -304391 77 -312487 74 -297242 176

Table 4.20: OS with OE1 and OE3 compared to HC for Boblo

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -9907 11 -10251 9 -10482 10 -10700 10 -9884 110
4000 -19284 10 -19892 9 -20422 9 -20911 10 -19269 124
8000 -37866 10 -38400 10 -40110 9 -41221 10 -37864 126

16000 -75066 10 -75401 11 -79503 9 -81578 11 -75099 140
32000 -149082 11 -149218 13 -157900 9 -161614 10 -149077 161
64000 -297311 9 -297315 13 -314932 10 -322990 10 -297242 176

Table 4.21: K2 with OE1 and OE3 compared to HC for Boblo

35

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -20525 5255 -20605 5157 -20549 4454 -20593 4955 -20558 217
4000 -41012 5061 -41152 4811 -41056 4359 -41113 4890 -40980 233
8000 -81805 4623 -82009 4906 -81874 4078 -81977 4603 -81766 215

16000 -163313 4471 -163562 4443 -163401 3779 -163537 4289 -163305 206
32000 -326405 3841 -326725 4093 -326513 3567 -326716 4071 -326462 206

Table 4.22: OS with OE1 and OE3 compared to HC for Boerlage92

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -20853 14 -20646 20 -20569 14 -20716 16 -20558 217
4000 -41673 9 -41202 21 -41078 14 -41393 16 -40980 233
8000 -83140 8 -82096 20 -81900 14 -82427 16 -81766 215

16000 -166277 7 -163700 19 -163437 14 -164488 16 -163305 206
32000 -332284 7 -326938 18 -326570 14 -328587 15 -326462 206

Table 4.23: K2 with OE1 and OE3 compared to HC for Boerlage92

36

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -19639 203566 -20076 215967 -20393 232888 -20552 214183 -19786 1124
4000 -38398 217984 -38740 231038 -39605 247656 -39754 229281 -38622 1181
8000 -75942 230657 -76106 243976 -77857 260097 -78067 244182 -76258 1390

16000 -150729 242566 -150733 257271 -153797 272194 -154068 255417 -151538 1406
32000 -300264 264846 -300269 284572 -305467 281903 -305113 280059 -301346 1536

Table 4.24: OS with OE1 and OE3 compared to HC for Alarm

Optimal OE1 OE3 Random HC
Entries Score Time Score Time Score Time Score Time Score Time

2000 -19681 131 -20164 184 -20489 207 -20738 236 -19786 1124
4000 -38462 133 -39118 203 -39760 233 -39996 263 -38622 1181
8000 -76026 139 -76999 219 -78104 267 -78504 299 -76258 1390

16000 -150851 141 -151510 214 -154247 287 -154635 311 -151538 1406
32000 -300425 165 -301277 234 -306262 331 -306186 367 -301346 1536

Table 4.25: K2 with OE1 and OE3 compared to HC for Alarm

37

Chapter 5

Conclusions

This work targets a certain class of Bayesian network structure learning methods
– ordering based or dependant algorithms. As they consider variable ordering
at some point, this work assumes that manipulating ordering may have some
effects on their results.

The idea of ordering estimation is quite straightforward – to estimate variable
ordering that is optimal or close to it. The goal of OE is to improve ordering
based or dependant BN structure learning algorithms like OS and K2 used in
this work. While K2 requires optimal ordering to run OS started with optimal
ordering is expected to benefit from that too (section 3).

Three OE methods, that aim to estimate variable position in BN have been
proposed:

1. Scoring function approach OE1 (section 3.1)

2. Mutual information approach OE2 (section 3.2)

3. Dependence tree ([7]) approach OE3 (section 3.3)

The experiments have shown that every one of them have different features,
provide different results and have different reasons for that. While OE1 have
produced higher score structures in many cases, OE3 proved to be more reliable
and OE2 turned out to be unsuccessful. In spite of that, both – OS and K2 –
have gained from at least one of the methods as they proved to be better than
running algorithms withs random ordering.

While OS have provided better quality structures, the most important re-
sult of this work is that K2 being impractical because of the requirement to
have optimal ordering can be resurrected for some real work. Using ordering
estimation have increased the score of resulting structure and made it possible
to benefit from the high speed K2 can offer compared to the most popular score
based BN structure learning approach – Hill-climber greedy search.

Although some promissing results have been shown in this paper, even more
is yet to discover in order to improve quality of ordering estimation as well as
find the ways to incorporate it with other solutions in order to achieve even
better results.

38

Chapter 6

Future Work

Quite a few side directions have been considered during this research. Continu-
ing this work, and important task would be to improve OE algorithm. Although
OE1 and OE3 have provided satisfactory results in different ways, one might
try to come up with a solution that is both – reliable (like OE3) and provides
high score results (like OE1) in most cases.

In spite of that, OE1 and OE3 have a potential. Anyway it is not very
clear as experiments with more BNs need to be done. On the other hand K2
being very fast compared to HC can be used to prepare initial structure for HC.
The results of HC can be expected to improve as starting with some reasonably
approximated structure could help to escape local maxima as well as save some
iterations and time.

Although OS have been shown to be inefficient when maximum number
of parents is more than 2, the exhaustive parent candidate evaluation, which
is O(nk) complex, could be replaced with some more efficient approach. For
example fast K2 could be used to approximate best parent set. This could
possibly make OS faster than HC. Of course the question would be if resulting
structure quality would be at least as good as HC.

39

Bibliography

[1] W.-K. W. Andrew Moore. Optimal reinsertion: A new search operator
for accelerated and more accurate bayesian network structure learning. In
T. Fawcett and N. Mishra, editors, Proceedings of the 20th International
Conference on Machine Learning (ICML ’03), pages 552–559, Menlo Park,
California, August 2003. AAAI Press.

[2] R. R. Bouckaert. Probabilistic network construction using the MDL princi-
ple. Technical report, Department of Computer Science, Utrecht University,
July 1994.

[3] R. R. Bouckaert. Bayesian belief networks: from inference to construction.
PhD thesis, Utrecht Universiteit, 1995.

[4] A. M. Brigham Anderson. Ad-trees for fast counting and for fast learning
of association rules. In Knowledge Discovery from Databases Conference,
1998.

[5] R. Castelo and T. Kocka. On inclusion-driven learning of bayesian net-
works. The Journal of Machine Learning Research, 4:527–574, 2003.

[6] D. M. Chickering. Learning equivalence classes of bayesian-network struc-
tures. J. Mach. Learn. Res., 2:445–498, 2002.

[7] C. Chow and C. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–
467, 1968.

[8] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9(4):309–347, 1992.

[9] N. Friedman and M. Goldszmidt. Sequential update of Bayesian network
structure. In Thirteenth Conf. on Uncertainty in Artificial Intelligence,
pages 165–174, 1997.

[10] N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network struc-
ture from massive datasets: The “Sparse candidate” algorithm. In Uncer-
tainty in Artificial Intelligence, pages 206–215, 1999.

[11] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2001.

40

[12] J. Joseph B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. In Proceedings of the American Mathematical
Society, Vol 7, No. 1, volume 7, pages 48–50. American Mathematical
Society, February 1956.

[13] W. Lam and F. Bacchus. Learning Bayesian belief networks: an approach
based on MDL principle. Computational Intelligence, 10(3):269–293, 1994.

[14] S. L. Lauritzen. The EM algorithm for graphical association models with
missing data. Computational Statistics & Data Analysis, 19(2):191–201,
1995.

[15] P. Munteanu and D. Cau. Efficient score-based learning of equivalence
classes of bayesian networks. In PKDD ’00: Proceedings of the 4th European
Conference on Principles of Data Mining and Knowledge Discovery, pages
96–105, London, UK, 2000. Springer-Verlag.

[16] R. W. Robinson. Counting unlabeled acyclic digraphs. In Australian Con-
ference on Combinational Mathematics, pages 28–43, 1976.

[17] J. Roure. Incremental methods for Bayesian network structure learning:
Thesis. AI Communications, 18(1):61–62, 2005.

[18] R. Sangüesa and U. Cortés. Learning causal networks from data: a sur-
vey and a new algorithm for recovering possibilistic causal networks. AI
Communications, 10(1):31–61, 1997.

[19] D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional
probabilities on directed graphical structures.

[20] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and
Search, Second Edition (Adaptive Computation and Machine Learning).
The MIT Press, January 2001.

[21] H. Steck. Constraint-based Structural Learning in Bayesian Networks Using
Finite Data Sets. PhD thesis, Technische Universität München, 2001.

[22] M. Teyssier and D. Koller. Ordering-based search: A simple and effective
algorithm for learning bayesian networks. In Proceedings of the Twenty-
first Conference on Uncertainty in AI (UAI), pages 584–590, Edinburgh,
Scottland, UK, July 2005.

41

	Bayesian Networks
	Structure Learning
	Score Based Learning
	Mutual Information
	Bayesian Inference Measure
	Minimal Description Length

	Ordering in Score Based Learning
	Algorithms
	K2
	Hill Climber Greedy Search
	Ordering Based Search

	Ordering Estimation
	OE1 -- Scoring Function Approach
	OE2 -- Mutual Information Approach
	OE3 -- Dependence Tree Approach

	Experiments
	Assumptions of OE1 and OE2
	Ordering Estimation in Action
	Ordering Estimation Compared to Hill-Climber

	Conclusions
	Future Work

